WO2024021344A1 - 混合动力系统控制方法、装置及车辆 - Google Patents

混合动力系统控制方法、装置及车辆 Download PDF

Info

Publication number
WO2024021344A1
WO2024021344A1 PCT/CN2022/128636 CN2022128636W WO2024021344A1 WO 2024021344 A1 WO2024021344 A1 WO 2024021344A1 CN 2022128636 W CN2022128636 W CN 2022128636W WO 2024021344 A1 WO2024021344 A1 WO 2024021344A1
Authority
WO
WIPO (PCT)
Prior art keywords
torque
vehicle
motor
engine
future
Prior art date
Application number
PCT/CN2022/128636
Other languages
English (en)
French (fr)
Inventor
朱宏
陈才
段增旭
王君刚
曲万达
Original Assignee
湖南行必达网联科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南行必达网联科技有限公司 filed Critical 湖南行必达网联科技有限公司
Publication of WO2024021344A1 publication Critical patent/WO2024021344A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • B60W2510/0657Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/083Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • B60W2710/083Torque
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present application relates to the technical field of hybrid vehicles, and in particular to a hybrid system control method, device and vehicle.
  • the control strategy of hybrid vehicles needs continuous improvement.
  • Current energy management strategies are mostly based on fixed calibration values in the controller and cannot be flexible according to real-time working conditions or upcoming working conditions. Changes lead to poor adaptability of the vehicle to different working conditions and increase the fuel consumption of the vehicle.
  • this application provides a hybrid power system control method, device and vehicle.
  • This application provides a hybrid power system control method, including:
  • the current engine control torque and the current motor control torque of the vehicle are corrected based on the SOC change amount to obtain the engine correction control torque and the motor correction control torque; wherein, the engine correction control torque and the motor correction control torque are used For controlling the hybrid system of the vehicle.
  • determining the SOC change amount of the vehicle's power battery in the future driving distance based on the traffic information includes:
  • the SOC change amount of the power battery in the future travel distance is determined based on the vehicle speed of the vehicle in the future travel distance, the slope data of the future travel distance, and the current vehicle weight of the vehicle.
  • the location of the power battery is determined based on the vehicle speed of the vehicle in the future travel distance, the slope data of the future travel distance, and the current vehicle weight of the vehicle. Describe the SOC changes in future driving distances, including:
  • the SOC change amount of the power battery in the future driving distance is determined.
  • determining the motor torque of the vehicle in the future travel distance based on the required torque of the vehicle in the future travel journey includes:
  • the torque ratio corresponding to the demand torque of the vehicle in the future driving distance is determined as the target torque ratio; wherein the torque ratio is engine torque and motor torque ratio;
  • the motor torque of the vehicle in the future travel distance is determined based on the target torque ratio and the required torque of the vehicle in the future travel distance.
  • the torque ratio corresponding to the required torque is determined based on the sum of the fuel consumption corresponding to the engine torque and the equivalent fuel consumption corresponding to the motor torque.
  • the current engine control torque and the current motor control torque of the vehicle are corrected based on the SOC change to obtain the engine corrected control torque and the motor corrected control torque, including:
  • the current demand torque of the vehicle is redistributed based on the corrected SOC to obtain the engine corrected control torque and the electric motor corrected control torque.
  • the current demand torque of the vehicle is redistributed based on the modified SOC to obtain the engine corrected control torque and the motor corrected control torque, including:
  • the torque ratio corresponding to the current demand torque of the vehicle is determined based on the preset corresponding relationship between the demand torque and the torque ratio; wherein the torque ratio is the ratio of the engine torque to the motor torque. ;
  • the engine correction control torque and the motor correction control torque are determined based on a torque ratio corresponding to the current demand torque of the vehicle and an update result of the motor torque correction coefficient.
  • This application also provides a hybrid power system control device, including:
  • the data acquisition module is used to obtain traffic information on the vehicle's future journey
  • a first calculation module configured to determine the SOC change amount of the vehicle's power battery in the future driving distance based on the traffic information
  • the second calculation module is used to correct the current engine control torque and the current motor control torque of the vehicle based on the SOC change amount to obtain the engine correction control torque and the motor correction control torque; wherein, the engine correction control torque and The motor correction control torque is used to control the hybrid system of the vehicle.
  • the application also provides a vehicle, including: a hybrid system and a controller;
  • the hybrid system includes an engine, a motor, a clutch and a gearbox; the motor is arranged between the clutch and the gearbox, and the motor is connected to the input shaft of the gearbox;
  • the controller is used to execute the hybrid power system control method as described in any one of the above.
  • the present application also provides an electronic device, including a memory, a processor, and a computer program stored in the memory and executable on the processor.
  • the processor executes the program, the hybrid power system as described in any one of the above is implemented. System control methods.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is executed by a processor, the hybrid power system control method as described above is implemented.
  • the hybrid power system control method, device and vehicle provided by this application obtain the traffic information of the vehicle's future driving distance, determine the SOC change amount of the vehicle's power battery in the future driving distance based on the traffic information, and control the vehicle based on the SOC change amount.
  • the current control torque of the engine and the current control torque of the motor are corrected to obtain the engine correction control torque and the motor correction control torque, so as to control the hybrid system of the vehicle through the engine correction control torque and the motor correction control torque, so as to be able to control the vehicle according to the traffic information.
  • the control method of the hybrid system is modified in real time, allowing the vehicle to adapt to different working conditions, improving the working efficiency of the hybrid system, and thereby reducing the vehicle's fuel consumption.
  • Figure 1 is a schematic flow chart of the hybrid power system control method provided by this application.
  • Figure 2 is a schematic flow chart provided by this application for determining the SOC change amount of the power battery in the future driving distance
  • Figure 3 is a schematic flow chart of determining the torque ratio corresponding to the required torque provided by this application.
  • Figure 4 is a schematic diagram of the correspondence between the data set composed of demand torque and SOC and the driving mode provided by this application;
  • FIG. 5 is a schematic structural diagram of the hybrid power system control device provided by this application.
  • Figure 6 is a schematic structural diagram of an electronic device provided by this application.
  • the hybrid power system control method of the present application will be described below with reference to FIGS. 1 to 4 .
  • the hybrid power system control method of this application is executed by electronic equipment such as a controller or the hardware and/or software thereof.
  • the controller can be the vehicle's own controller or a newly added controller, and can be set according to actual needs.
  • the hybrid power system control method of this application includes:
  • the vehicle is a vehicle using a P (Position, position) type 2 hybrid power system, such as a commercial vehicle.
  • P ition, position
  • hybrid systems can be divided into P0, P1, P2, P3, P4 and other types according to the position of the motor.
  • the P2 type hybrid system includes an engine, a motor, a clutch and a gearbox.
  • the motor is set between the clutch and the transmission. between the boxes, and the motor is rigidly connected to the input shaft of the gearbox.
  • the traffic information of the vehicle's future journey can be obtained through high-precision maps. For example, it can include the slope, turning radius, traffic lights, congestion status, speed limit status, etc. of the future journey. It can be understood that the traffic information may also include meteorological data during the future driving journey, such as fog concentration, rainfall, etc., where the meteorological data can be obtained through roadside equipment.
  • S102 Determine the change amount of SOC (State of Charge, state of charge) of the vehicle's power battery in the future driving distance based on the traffic information.
  • the specific method of determining the SOC change amount of the vehicle's power battery in the future driving distance based on the traffic information in the future driving distance of the vehicle can be set according to actual needs. For example, it can be determined based on the traffic information in the future driving distance of the vehicle. The speed of the vehicle in the future travel distance and the required torque in the future travel distance. By distributing the engine torque and motor torque, the motor torque of the vehicle in the future travel distance is obtained. According to the motor torque of the vehicle in the future travel distance, And the vehicle speed in the future driving distance is used to determine the SOC change of the power battery in the future driving distance.
  • the current control torque of the vehicle's engine is the control torque of the vehicle's engine at the current moment
  • the current control torque of the vehicle's motor is the control torque of the vehicle's motor at the current moment.
  • the current control torque of the vehicle's engine and the current control torque of the motor can be obtained by allocating the current demand torque of the vehicle (that is, the demand torque of the vehicle at the current moment).
  • the current demand torque of the vehicle can be based on the depth of the driver's accelerator pedal and the vehicle at the current moment. Information such as vehicle speed and vehicle weight at the current moment is obtained.
  • the specific method of allocating the current demand torque of the vehicle to obtain the current control torque of the engine and the current control torque of the motor can be set according to actual needs. For example, the current demand torque of the vehicle, the current SOC of the power battery, and the current speed of the vehicle can be set. The current demand torque is distributed.
  • the specific method of correcting the current control torque of the vehicle's engine and the current control torque of the motor based on the SOC change amount can be set according to actual needs.
  • the current SOC of the power battery can be corrected based on the SOC change amount to obtain the corrected SOC
  • the current demand torque of the vehicle is redistributed according to the revised SOC to obtain the engine correction control torque and the motor correction control torque, so as to control the hybrid system of the vehicle through the engine correction control torque and the motor correction control torque.
  • the embodiment of the present application obtains the traffic information in the future driving distance of the vehicle, determines the SOC change amount of the vehicle's power battery in the future driving distance based on the traffic information, and controls the current control torque of the vehicle's engine and motor based on the SOC change amount. Make corrections to obtain the engine correction control torque and the motor correction control torque, so as to control the vehicle's hybrid system through the engine correction control torque and the motor correction control torque, so that the control method of the hybrid system can be corrected in real time based on traffic information. This enables the vehicle to adapt to different working conditions, improves the working efficiency of the hybrid system, and thereby reduces the fuel consumption of the vehicle.
  • determining the SOC change amount of the vehicle's power battery in the future driving distance based on the traffic information includes:
  • the SOC change amount of the power battery in the future travel distance is determined based on the vehicle speed of the vehicle in the future travel distance, the slope data of the future travel distance, and the current vehicle weight of the vehicle.
  • the specific method of determining the vehicle's speed in the future travel distance based on traffic information can be set according to actual needs. For example, it can be based on the weight of the vehicle at the current moment and the slope, turning radius, traffic lights, etc. in the future travel distance.
  • Congestion status, etc. determine the vehicle's predicted speed in the future journey, and correct the vehicle's predicted speed in the future journey according to the speed limit in the future journey. For example, if the predicted vehicle speed is greater than the speed limit, the vehicle's predicted speed in the future journey will be corrected.
  • the speed limit is used as the vehicle speed in the future driving distance, otherwise, the predicted vehicle speed is used as the vehicle speed in the future driving distance.
  • the specific method of determining the SOC change amount of the power battery in the future travel distance based on the vehicle speed in the future travel distance, the slope data of the future travel distance, and the current weight of the vehicle can be set according to actual needs.
  • the vehicle's demand torque in the future travel distance can be determined based on the vehicle's speed in the future travel distance, the slope data of the future travel distance, and the vehicle's current weight; the demand torque of the vehicle in the future travel distance can be distributed, and we get The engine torque and motor torque of the vehicle in the future travel distance; the SOC change amount of the power battery in the future travel distance can be determined based on the motor torque of the vehicle in the future travel distance and the vehicle speed in the future travel distance.
  • the embodiment of the present application determines the vehicle speed in the future travel distance and the slope data of the future travel distance based on the traffic information, and determines the power battery based on the vehicle speed in the future travel distance, the slope data of the future travel distance, and the current vehicle weight of the vehicle.
  • the SOC change in the future driving distance can quickly and accurately predict the SOC change of the power battery in the future driving distance, and then based on the SOC change of the power battery in the future driving distance, the current control torque of the engine and the motor can be controlled The current controlled torque is effectively corrected to maximize the efficiency of the hybrid system.
  • the determination of the future driving distance of the power battery based on the vehicle speed of the vehicle in the future driving distance, the slope data of the future driving distance and the current vehicle weight of the vehicle includes:
  • the SOC change amount of the power battery in the future driving distance is determined.
  • the specific method of determining the required torque of the vehicle in the future travel distance based on the vehicle speed in the future travel distance, the slope data of the future travel distance, and the current vehicle weight of the vehicle can be set according to actual needs. For example, it can be set according to The corresponding relationship between the preset data set composed of vehicle speed, gradient and vehicle weight and the required torque is matched with the vehicle speed in the future travel distance, the gradient data of the future travel distance and the current vehicle weight of the vehicle to obtain the future performance of the vehicle.
  • the required torque during the driving distance can be calculated offline.
  • the vehicle speed is input to the PID driver respectively.
  • the model is used to back-calculate the accelerator pedal depth through the PID driver model to obtain the predicted value of the accelerator pedal depth.
  • the vehicle speed, slope and vehicle weight can be obtained.
  • the corresponding relationship between the data set composed of vehicle speed, gradient and vehicle weight and the required torque can be written to the controller, thereby effectively improving the calculation efficiency and ensuring the engine's performance in determining the vehicle's required torque in the future journey.
  • the real-time correction of the current control torque and the current control torque of the motor improves the working efficiency of the hybrid system and effectively reduces vehicle fuel consumption.
  • the required torque of the vehicle in the future driving distance can be further distributed to obtain the motor torque of the vehicle in the future driving distance.
  • the efficiency range of the motor when charging and discharging the power battery, the efficiency range of the engine, and the shifting pattern of the gearbox can be comprehensively considered.
  • the corresponding relationship between different demand torques and motor torques can be calculated offline and written into the controller, so that in the process of determining the motor torque of the vehicle in the future driving distance based on the demand torque of the vehicle in the future driving distance, It can effectively improve calculation efficiency.
  • the motor torque can be positive torque or negative torque. Positive torque means that the motor is in a driving state, and negative torque means that the motor is in a power generation state.
  • the SOC change amount of the power battery in the future travel distance can be determined based on the motor torque of the vehicle in the future travel distance and the vehicle speed in the future travel distance.
  • the specific method of determining the SOC change amount of the power battery in the future driving distance can be set according to actual needs. For example, the discharge amount of the power battery can be determined based on the motor torque of the vehicle in the future driving distance, and the discharge amount of the power battery can be determined based on the future driving distance of the vehicle.
  • the vehicle speed during the journey is used to determine the amount of recycled electricity, that is, the charge amount of the power battery. According to the discharge amount and charge amount of the power battery, the SOC change amount of the power battery in the future driving distance can be obtained.
  • the SOC change amount can be positive or negative.
  • SOC change amount when the SOC change amount is positive, it means that the power battery is charged during the future driving distance and the SOC increases; when the SOC change amount is negative, it means that the power battery will be charged during the future driving distance. The battery is discharged and the SOC decreases.
  • the flow chart for determining the SOC change of the power battery in the future driving distance is shown in Figure 2, including:
  • the slope data of the future journey and the current weight of the vehicle, the vehicle's required torque in the future journey is determined through the PID driver model and the vehicle longitudinal mechanics model;
  • the calculation process of the SOC change amount of the power battery in the future driving distance is simple and efficient, which can effectively improve the validity and real-time performance of the calculation results of the SOC change amount, so that the current torque of the engine can be controlled based on the SOC change amount. And the current control torque of the motor is effectively corrected, thereby maximizing the working efficiency of the hybrid system.
  • determining the motor torque of the vehicle in the future travel based on the required torque of the vehicle in the future travel includes:
  • the torque ratio corresponding to the demand torque of the vehicle in the future driving distance is determined as the target torque ratio; wherein the torque ratio is engine torque and motor torque ratio;
  • the motor torque of the vehicle in the future travel distance is determined based on the target torque ratio and the required torque of the vehicle in the future travel distance.
  • the torque ratio is the ratio of engine torque to motor torque.
  • the preset corresponding relationship between the required torque and the torque ratio that is, the preset corresponding relationship between the required torque and the torque ratio.
  • the preset corresponding relationship between the demand torque and the torque ratio can be determined based on empirical values, or the corresponding torque ratio when the demand torque takes different values can be calculated according to the preset torque distribution plan to obtain the corresponding relationship between the demand torque and the torque ratio. , and store the corresponding relationship in the controller for real-time calling.
  • the required torque of the vehicle in the future driving distance can be matched according to the preset corresponding relationship between the demand torque and the torque ratio, so as to obtain the required torque of the vehicle in the future driving distance.
  • the corresponding torque ratio is the target torque ratio.
  • the distribution ratio of engine torque and motor torque can be determined, so that the vehicle's required torque in the future driving distance can be distributed according to the target torque ratio, and the motor torque of the vehicle in the future driving distance can be obtained.
  • the embodiment of the present application determines the target torque ratio based on the preset corresponding relationship between the demand torque and the torque ratio, and allocates the demand torque of the vehicle in the future driving distance based on the target torque ratio, which can effectively improve the calculation efficiency and ensure the current operation of the engine.
  • the real-time correction of the control torque and the current control torque of the motor improves the working efficiency of the hybrid system and effectively reduces vehicle fuel consumption.
  • the torque ratio corresponding to the demand torque is determined based on the sum of the fuel consumption corresponding to the engine torque and the equivalent fuel consumption corresponding to the motor torque.
  • the available torque range of the engine and the available torque range of the motor according to the rotation speed of the transmission input shaft; wherein, the rotation speed of the power source (engine and/or motor) can be determined according to the rotation speed of the transmission input shaft, so as to determine the available torque range of the engine according to the preset According to the corresponding relationship between the engine speed and the available torque range of the engine, the available torque range of the engine can be obtained. According to the corresponding relationship between the preset motor speed and the available torque range of the motor, the available torque range of the motor can be obtained. For example, the output torque range of the motor is -500 to 500 Nm, and the output torque range of the engine is 0 to 1500 Nm.
  • the torque ratio corresponding to the demand torque is determined based on the sum of the fuel consumption corresponding to the engine torque and the equivalent fuel consumption corresponding to the motor torque, and the corresponding relationship between the demand torque and the torque ratio is obtained. , can effectively reduce vehicle fuel consumption.
  • the correction of the current engine control torque and the current motor control torque of the vehicle based on the SOC variation to obtain the engine correction control torque and the motor correction control torque includes:
  • the current demand torque of the vehicle is redistributed based on the corrected SOC to obtain the engine corrected control torque and the electric motor corrected control torque.
  • the current SOC of the power battery is the actual SOC of the power battery at the current moment; the specific method of correcting the current SOC of the power battery based on the SOC change can be set according to actual needs. For example, the current SOC of the power battery can be compared with The SOC changes are summed to obtain the modified SOC.
  • the current demand torque of the vehicle is further redistributed based on the corrected SOC to obtain the engine corrected control torque and the motor corrected control torque.
  • the vehicle's current demand torque is redistributed based on the revised SOC, that is, the vehicle's current SOC is updated to the revised SOC to redistribute the vehicle's current demand torque to obtain the engine correction control torque and the motor correction control torque.
  • the embodiment of the present application corrects the current SOC of the power battery based on the SOC change to obtain the corrected SOC, and redistributes the current demand torque of the vehicle based on the corrected SOC to obtain the engine corrected control torque and the motor corrected control torque, which can quickly and effectively
  • the engine torque and motor torque are corrected so that the engine torque and motor torque can be corrected in real time based on the traffic information in the future journey to maximize the efficiency of the hybrid system and thereby reduce vehicle fuel consumption.
  • the redistribution of the current demand torque of the vehicle based on the corrected SOC to obtain the engine corrected control torque and the motor corrected control torque includes:
  • the torque ratio corresponding to the current demand torque of the vehicle is determined based on the preset corresponding relationship between the demand torque and the torque ratio; wherein the torque ratio is the ratio of the engine torque to the motor torque. ;
  • the engine correction control torque and the motor correction control torque are determined based on a torque ratio corresponding to the current demand torque of the vehicle and an update result of the motor torque correction coefficient.
  • the driving mode of the vehicle can be driving charging, power-assisted driving, engine driving, or pure electric driving; driving charging, that is, the engine provides the required torque of the vehicle, and at the same time, the engine charges the power battery; power-assisted driving, that is, the engine and the motor simultaneously provide the vehicle's required torque; engine-driven, that is, the engine provides the vehicle's required torque, and the engine pauses to charge the power battery; pure electric drive, that is, the motor provides the vehicle's required torque.
  • the specific method of determining the driving mode of the vehicle based on the corrected SOC and the current demand torque of the vehicle can be set according to actual needs.
  • the current driving mode of the vehicle can be determined based on the correspondence between the data set composed of the preset demand torque and SOC and the driving mode.
  • the required torque and the modified SOC of the power battery are matched to determine the vehicle's driving mode at the current moment.
  • the corresponding relationship between the data set composed of the preset demand torque and SOC and the driving mode can be as shown in FIG. 4 .
  • driving charging, power-assisted driving, engine driving, and pure electric driving all belong to hybrid modes.
  • the preset mode may be a mode that requires both the engine and the motor to participate in vehicle driving. For example, it may include driving charging and power-assisted driving. If the vehicle's drive mode does not meet the preset mode, for example, the vehicle's drive mode is engine drive or pure electric drive, then the engine correction control torque and motor correction control torque are determined directly according to the vehicle's demand torque. If the vehicle's drive mode is If the vehicle is driven by an engine, the engine correction control torque is equal to the vehicle's current demand torque, and the motor correction control torque is zero. If the vehicle's drive mode is pure electric drive, the engine correction control torque is zero, and the motor correction control torque is equal to the vehicle's current demand torque. .
  • the torque ratio corresponding to the vehicle's current demand torque can be determined based on the preset correspondence between demand torque and torque ratio.
  • the motor torque correction coefficient can also be updated based on the corrected SOC.
  • the corrected SOC can be matched according to the preset corresponding relationship between the SOC and the motor torque correction coefficient to obtain the motor torque correction coefficient corresponding to the corrected SOC, and the motor torque correction coefficient corresponding to the corrected SOC is used as the motor torque correction coefficient. Update results.
  • the motor torque correction coefficient is strongly related to the SOC. The greater the SOC, the greater the motor torque correction coefficient, so that when the SOC is high, the motor drive can be used as much as possible. For example, when the SOC is small (for example, 20%), the motor torque correction coefficient can be set to 0.1.
  • the motor correction control torque can be determined based on the torque ratio corresponding to the vehicle's current demand torque and the update result of the motor torque correction coefficient.
  • the initial value of the motor torque can be determined based on the torque ratio corresponding to the current demand torque; by correcting the initial value of the motor torque based on the update result of the motor torque correction coefficient, the motor correction control torque can be obtained.
  • the current demand torque of the vehicle is related to the motor torque.
  • the difference between the corrected control torques is the engine corrected control torque.
  • the specific method of correcting the initial value of the motor torque based on the update result of the motor torque correction coefficient can be set according to actual needs.
  • the initial value of the motor torque can be directly multiplied by the update result of the motor torque correction coefficient.
  • the embodiment of the present application determines the driving mode of the vehicle based on the modified SOC and the vehicle's current demand torque, and when the driving mode meets the preset mode, determines the torque corresponding to the vehicle's current demand torque based on the correspondence between the preset demand torque and the torque ratio. ratio, and at the same time, the motor torque correction coefficient is updated based on the corrected SOC, so that the engine correction control torque and the motor correction control torque are determined based on the torque ratio corresponding to the current demand torque of the vehicle and the update result of the motor torque correction coefficient, which can simultaneously combine the SOC and the driver
  • the demand torque updates the energy management strategy of the hybrid system to maximize the fuel-saving potential of the hybrid system while meeting the driver's operating needs.
  • the hybrid power system control device provided by the present application will be described below.
  • the hybrid power system control device described below and the hybrid power system control method described above can be referred to each other correspondingly.
  • the hybrid power system control device of this application includes:
  • the data acquisition module 501 is used to obtain traffic information on the future driving distance of the vehicle;
  • the first calculation module 502 is used to determine the SOC change amount of the vehicle's power battery in the future driving distance based on the traffic information;
  • the second calculation module 503 is used to correct the current engine control torque and the current motor control torque of the vehicle based on the SOC change amount to obtain the engine correction control torque and the motor correction control torque; wherein, the engine correction control torque And the motor correction control torque is used to control the hybrid system of the vehicle.
  • the first calculation module 502 is specifically used to:
  • the SOC change amount of the power battery in the future travel distance is determined based on the vehicle speed of the vehicle in the future travel distance, the slope data of the future travel distance, and the current vehicle weight of the vehicle.
  • the first calculation module 502 is specifically used to:
  • the SOC change amount of the power battery in the future driving distance is determined.
  • the first calculation module 502 is specifically used to:
  • the torque ratio corresponding to the demand torque of the vehicle in the future driving distance is determined as the target torque ratio; wherein the torque ratio is engine torque and motor torque ratio;
  • the motor torque of the vehicle in the future travel distance is determined based on the target torque ratio and the required torque of the vehicle in the future travel distance.
  • a third calculation module is also included, and the third calculation module is used for:
  • the torque ratio corresponding to the required torque is determined based on the sum of the fuel consumption corresponding to the engine torque and the equivalent fuel consumption corresponding to the motor torque.
  • the second calculation module 503 is specifically used to:
  • the current demand torque of the vehicle is redistributed based on the corrected SOC to obtain the engine corrected control torque and the electric motor corrected control torque.
  • the second calculation module 503 is specifically used to:
  • the torque ratio corresponding to the current demand torque of the vehicle is determined based on the preset corresponding relationship between the demand torque and the torque ratio; wherein the torque ratio is the ratio of the engine torque to the motor torque. ;
  • the engine correction control torque and the motor correction control torque are determined based on a torque ratio corresponding to the current demand torque of the vehicle and an update result of the motor torque correction coefficient.
  • the application also provides a vehicle, including: a hybrid system and a controller;
  • the hybrid system includes an engine, a motor, a clutch and a gearbox; the motor is arranged between the clutch and the gearbox, and the motor is connected to the input shaft of the gearbox;
  • the controller is used to execute the hybrid power system control method as described in any of the above embodiments.
  • the vehicles are commercial vehicles, such as trucks, buses, construction machinery, etc.
  • the vehicle includes a hybrid system and a controller, wherein the hybrid system includes an engine, a motor, a clutch and a gearbox; the motor is arranged between the clutch and the gearbox, and the motor is rigidly connected to the input shaft of the gearbox, that is, the implementation of this application
  • the vehicle in this example uses a P2 type hybrid system.
  • the controller is used to control the hybrid system.
  • Figure 6 illustrates a schematic diagram of the physical structure of an electronic device.
  • the electronic device may include: a processor (processor) 601, a communications interface (Communications Interface) 602, a memory (memory) 603 and a communication bus 604.
  • the processor 601, the communication interface 602, and the memory 603 complete communication with each other through the communication bus 604.
  • the processor 601 can call logical instructions in the memory 603 to execute a hybrid system control method, which method includes: obtaining traffic information in the future driving distance of the vehicle;
  • the current engine control torque and the current motor control torque of the vehicle are corrected based on the SOC change amount to obtain the engine correction control torque and the motor correction control torque; wherein, the engine correction control torque and the motor correction control torque are used For controlling the hybrid system of the vehicle.
  • the above-mentioned logical instructions in the memory 603 can be implemented in the form of software functional units and can be stored in a computer-readable storage medium when sold or used as an independent product.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program code. .
  • the present application also provides a computer program product.
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium.
  • the computer program includes program instructions. When the program instructions are read by a computer, When executed, the computer can execute the hybrid power system control method provided by each of the above methods. The method includes: obtaining traffic information in the future driving distance of the vehicle;
  • the current engine control torque and the current motor control torque of the vehicle are corrected based on the SOC change amount to obtain the engine correction control torque and the motor correction control torque; wherein, the engine correction control torque and the motor correction control torque are used For controlling the hybrid system of the vehicle.
  • the present application also provides a non-transitory computer-readable storage medium on which a computer program is stored.
  • the computer program is implemented when executed by a processor to execute the hybrid power system control methods provided above.
  • the method includes : Obtain traffic information on the vehicle’s future journey;
  • the current engine control torque and the current motor control torque of the vehicle are corrected based on the SOC change amount to obtain the engine correction control torque and the motor correction control torque; wherein, the engine correction control torque and the motor correction control torque are used For controlling the hybrid system of the vehicle.
  • the device embodiments described above are only illustrative.
  • the units described as separate components may or may not be physically separated.
  • the components shown as units may or may not be physical units, that is, they may be located in One location, or it can be distributed across multiple network units. Some or all of the modules can be selected according to actual needs to achieve the purpose of this embodiment. Persons of ordinary skill in the art can understand and implement the method without any creative effort.
  • each embodiment can be implemented by software plus a necessary general hardware platform, and of course, it can also be implemented by hardware.
  • the computer software product can be stored in a computer-readable storage medium, such as ROM/RAM, magnetic disk, optical disk, etc., including a number of instructions to cause a computer device (which can be a personal computer, a server, or a network device, etc.) to execute the methods described in various embodiments or certain parts of the embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

本申请涉及混合动力车辆领域,提供一种混合动力系统控制方法、装置及车辆,该方法包括:获取车辆未来行驶路程中的交通信息;基于交通信息确定车辆的动力电池在未来行驶路程中的SOC变化量;基于SOC变化量对车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩;其中,发动机修正控制扭矩以及电机修正控制扭矩用于对车辆的混合动力系统进行控制。本申请能够根据交通信息对混合动力系统的控制方式进行实时修正,使得车辆能够适应不同的工况,实现了混合动力系统的工作效率的提升,进而降低了车辆的油耗。

Description

混合动力系统控制方法、装置及车辆
相关申请的交叉引用
本申请要求于2022年7月29日提交的申请号为2022109080896,发明名称为“混合动力系统控制方法、装置及车辆”的中国专利申请的优先权,其通过引用方式全部并入本文。
技术领域
本申请涉及混合动力车辆技术领域,尤其涉及一种混合动力系统控制方法、装置及车辆。
背景技术
混合动力车辆的控制策略,尤其能量管理策略这一核心技术需要不断进步,目前的能量管理策略大都是基于控制器中固定的标定值来实现的,无法根据实时工况或即将到来的工况灵活改变,从而导致车辆对不同工况的适应性差,增加了车辆的油耗。
发明内容
针对现有技术中存在的问题,本申请提供一种混合动力系统控制方法、装置及车辆。
本申请提供一种混合动力系统控制方法,包括:
获取车辆未来行驶路程中的交通信息;
基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC变化量;
基于所述SOC变化量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩;其中,所述发动机修正控制扭矩以及所述电机修正控制扭矩用于对所述车辆的混合动力系统进行控制。
根据本申请提供的混合动力系统控制方法,所述基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC变化量,包括:
基于所述交通信息确定所述车辆在所述未来行驶路程中的车速以及所述未来行驶路程的坡度数据;
基于所述车辆在所述未来行驶路程中的车速、所述未来行驶路程的坡度数据以及所述车辆的当前车重确定所述动力电池在所述未来行驶路程中的SOC变化量。
根据本申请提供的混合动力系统控制方法,所述基于所述车辆在所述未来行驶路程中的车速、所述未来行驶路程的坡度数据以及所述车辆的当前车重确定所述动力电池在所述未来行驶路程中的SOC变化量,包括:
基于所述车辆在所述未来行驶路程中的车速、所述未来行驶路程的坡度数据以及所述车辆的当前车重确定所述车辆在所述未来行驶路程中的需求扭矩;
基于所述车辆在所述未来行驶路程中的需求扭矩确定所述车辆在所述未来行驶路程中的电机扭矩;
基于所述车辆在所述未来行驶路程中的电机扭矩以及所述车辆在所述未来行驶路程中的车速,确定所述动力电池在所述未来行驶路程中的SOC变化量。
根据本申请提供的混合动力系统控制方法,所述基于所述车辆在所述未来行驶路程中的需求扭矩确定所述车辆在所述未来行驶路程中的电机扭矩,包括:
基于预设的需求扭矩与扭矩比的对应关系,确定所述车辆在所述未来行驶路程中的需求扭矩所对应的扭矩比,作为目标扭矩比;其中,所述扭矩比为发动机扭矩与电机扭矩的比值;
基于所述目标扭矩比以及所述车辆在所述未来行驶路程中的需求扭矩确定所述车辆在所述未来行驶路程中的电机扭矩。
根据本申请提供的混合动力系统控制方法,所述预设的需求扭矩与扭矩比的对应关系是通过如下步骤获取的:
所述需求扭矩取不同值时,分别基于所述发动机扭矩对应的燃油消耗以及所述电机扭矩对应的等效燃油消耗之和,确定所述需求扭矩所对应的扭矩比。
根据本申请提供的混合动力系统控制方法,所述基于所述SOC变化 量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩,包括:
基于所述SOC变化量对所述动力电池的当前SOC进行修正,得到修正SOC;
基于所述修正SOC对所述车辆的当前需求扭矩进行重新分配,得到所述发动机修正控制扭矩以及所述电机修正控制扭矩。
根据本申请提供的混合动力系统控制方法,所述基于所述修正SOC对所述车辆的当前需求扭矩进行重新分配,得到所述发动机修正控制扭矩以及所述电机修正控制扭矩,包括:
基于所述修正SOC以及所述车辆的当前需求扭矩确定所述车辆的驱动模式;
所述驱动模式满足预设模式时,基于预设的需求扭矩与扭矩比的对应关系,确定所述车辆的当前需求扭矩对应的扭矩比;其中,所述扭矩比为发动机扭矩与电机扭矩的比值;
基于所述修正SOC更新电机扭矩修正系数;
基于所述车辆的当前需求扭矩对应的扭矩比以及所述电机扭矩修正系数的更新结果确定所述发动机修正控制扭矩以及所述电机修正控制扭矩。
本申请还提供一种混合动力系统控制装置,包括:
数据获取模块,用于获取车辆未来行驶路程中的交通信息;
第一计算模块,用于基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC变化量;
第二计算模块,用于基于所述SOC变化量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩;其中,所述发动机修正控制扭矩以及所述电机修正控制扭矩用于对所述车辆的混合动力系统进行控制。
本申请还提供一种车辆,包括:混合动力系统和控制器;
其中,所述混合动力系统包括发动机、电机、离合器和变速箱;所述电机设置在所述离合器与所述变速箱之间,且所述电机与所述变速箱的输入轴连接;
所述控制器用于执行如上述任一种所述的混合动力系统控制方法。
本申请还提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如上述任一种所述的混合动力系统控制方法。
本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一种所述的混合动力系统控制方法。
本申请提供的混合动力系统控制方法、装置及车辆,通过获取车辆未来行驶路程中的交通信息,基于交通信息确定车辆的动力电池在未来行驶路程中的SOC变化量,并基于SOC变化量对车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩,以通过发动机修正控制扭矩以及电机修正控制扭矩对车辆的混合动力系统进行控制,从而能够根据交通信息对混合动力系统的控制方式进行实时修正,使得车辆能够适应不同的工况,实现了混合动力系统的工作效率的提升,进而降低了车辆的油耗。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请提供的混合动力系统控制方法的流程示意图;
图2是本申请提供的确定动力电池在未来行驶路程中的SOC变化量的流程示意图;
图3是本申请提供的确定需求扭矩所对应的扭矩比的流程示意图;
图4是本申请提供的需求扭矩以及SOC构成的数据组与驱动模式的对应关系示意图;
图5是本申请提供的混合动力系统控制装置的结构示意图;
图6是本申请提供的电子设备的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
下面结合图1至图4描述本申请的混合动力系统控制方法。本申请混合动力系统控制方法由控制器等电子设备或其中的硬件和/或软件执行,控制器可以为车辆自身的控制器,也可以为新增加的控制器,具体可以根据实际需求进行设定。如图1所示,本申请混合动力系统控制方法包括:
S101、获取车辆未来行驶路程中的交通信息。
具体地,车辆为采用P(Position,位置)2类型混合动力系统的车辆,如,商用车。其中,根据电机的位置可以将混合动力系统分为P0、P1、P2、P3、P4等多种类型,P2类型混合动力系统包括发动机、电机、离合器以及变速箱,其中,电机设置在离合器与变速箱之间,且电机与变速箱的输入轴刚性连接。
车辆未来行驶路程中的交通信息可以通过高精度地图进行获取,例如,可以包括未来行驶路程中的坡度、转弯半径、红绿灯、拥堵状态、限速状态等。可以理解的是,交通信息还可以包括未来行驶路程中的气象数据,如雾的浓度、雨量等,其中,气象数据可以通过路侧设备获取。
S102、基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC(State Of Charge,荷电状态)变化量。
具体地,基于车辆未来行驶路程中的交通信息确定车辆的动力电池在未来行驶路程中的SOC变化量的具体方式可以根据实际需求进行设定,例如,可以根据车辆未来行驶路程中的交通信息确定车辆在未来行驶路程中的车速以及在未来行驶路程中的需求扭矩,通过对发动机扭矩以及电机扭矩进行分配,得到车辆在未来行驶路程中的电机扭矩,并根据车辆在未来行驶路程中的电机扭矩以及车辆在未来行驶路程中的车速来确定动力电池在未来行驶路程中的SOC变化量。
S103、基于所述SOC变化量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩;其中,所述发动机修正控制扭矩以及所述电机修正控制扭矩用于对所述车辆的混合动力系统进行控制。
具体地,车辆的发动机当前控制扭矩是当前时刻车辆的发动机的控制扭矩,车辆的电机当前控制扭矩是当前时刻车辆的电机的控制扭矩。车辆的发动机当前控制扭矩以及电机当前控制扭矩可以通过对车辆的当前需求扭矩(即车辆在当前时刻的需求扭矩)进行分配得到,车辆的当前需求扭矩可以根据当前时刻驾驶员的油门踏板深度以及车辆在当前时刻的车速、车重等信息得到。
对车辆的当前需求扭矩进行分配得到发动机当前控制扭矩以及电机当前控制扭矩的具体方式可以根据实际需求进行设定,例如,可以根据车辆的当前需求扭矩、动力电池的当前SOC以及车辆的当前车速对当前需求扭矩进行分配。
基于SOC变化量对车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正的具体方法可以根据实际需求进行设定,例如,可以根据SOC变化量对动力电池的当前SOC进行修正,得到修正SOC,并根据修正SOC重新对车辆的当前需求扭矩进行重新分配,以得到发动机修正控制扭矩以及电机修正控制扭矩,从而通过发动机修正控制扭矩以及电机修正控制扭矩对车辆的混合动力系统进行控制。
传统方法通常基于控制器中固定的标定值对车辆的混合动力系统进行控制,无法根据实时工况或即将到来的工况对混合动力系统的控制方式进行灵活改变,从而导致车辆对不同工况的适应性较差,造成车辆的油耗极大增加。
本申请实施例通过获取车辆未来行驶路程中的交通信息,基于交通信息确定车辆的动力电池在未来行驶路程中的SOC变化量,并基于SOC变化量对车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩,以通过发动机修正控制扭矩以及电机修正控制扭矩对车辆的混合动力系统进行控制,从而能够根据交通信息对混合动力系统的控制方式进行实时修正,使得车辆能够适应不同 的工况,实现了混合动力系统的工作效率的提升,进而降低了车辆的油耗。
基于上述实施例,所述基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC变化量,包括:
基于所述交通信息确定所述车辆在所述未来行驶路程中的车速以及所述未来行驶路程的坡度数据;
基于所述车辆在所述未来行驶路程中的车速、所述未来行驶路程的坡度数据以及所述车辆的当前车重确定所述动力电池在所述未来行驶路程中的SOC变化量。
具体地,基于交通信息确定车辆在未来行驶路程中的车速的具体方式可以根据实际需求进行设定,例如,可以根据车辆在当前时刻的车重以及未来行驶路程中的坡度、转弯半径、红绿灯、拥堵状态等确定车辆在未来行驶路程中的预测车速,并根据未来行驶路程中的限速对车辆在未来行驶路程中的预测车速进行修正,例如,预测车速大于限速时,将未来行驶路程中的限速作为车辆在未来行驶路程中的车速,否则,将预测车速作为车辆在未来行驶路程中的车速。
基于车辆在未来行驶路程中的车速、未来行驶路程的坡度数据以及车辆的当前车重确定动力电池在未来行驶路程中的SOC变化量的具体方式可以根据实际需求进行设定。例如,可以根据车辆在未来行驶路程中的车速、未来行驶路程的坡度数据以及车辆的当前车重确定车辆在未来行驶路程中的需求扭矩;对车辆在未来行驶路程中的需求扭矩进行分配,得到车辆在未来行驶路程中的发动机扭矩以及电机扭矩;根据车辆在未来行驶路程中的电机扭矩以及车辆在未来行驶路程中的车速即可确定动力电池在未来行驶路程中的SOC变化量。
本申请实施例基于交通信息确定车辆在未来行驶路程中的车速以及未来行驶路程的坡度数据,并基于车辆在未来行驶路程中的车速、未来行驶路程的坡度数据以及车辆的当前车重确定动力电池在未来行驶路程中的SOC变化量,能够快速准确地对动力电池在未来行驶路程中的SOC变化量进行预测,进而根据动力电池在未来行驶路程中的SOC变化量能够对发动机当前控制扭矩以及电机当前控制扭矩进行有效修正,实现了混合动力系统的工作效率的最大程度提升。
基于上述任一实施例,所述基于所述车辆在所述未来行驶路程中的车速、所述未来行驶路程的坡度数据以及所述车辆的当前车重确定所述动力电池在所述未来行驶路程中的SOC变化量,包括:
基于所述车辆在所述未来行驶路程中的车速、所述未来行驶路程的坡度数据以及所述车辆的当前车重确定所述车辆在所述未来行驶路程中的需求扭矩;
基于所述车辆在所述未来行驶路程中的需求扭矩确定所述车辆在所述未来行驶路程中的电机扭矩;
基于所述车辆在所述未来行驶路程中的电机扭矩以及所述车辆在所述未来行驶路程中的车速,确定所述动力电池在所述未来行驶路程中的SOC变化量。
具体地,基于车辆在未来行驶路程中的车速、未来行驶路程的坡度数据以及车辆的当前车重确定车辆在未来行驶路程中的需求扭矩的具体方式可以根据实际需求进行设定,例如,可以根据预设的车速、坡度以及车重构成的数据组与需求扭矩的对应关系,对车辆在未来行驶路程中的车速、未来行驶路程的坡度数据以及车辆的当前车重进行匹配,以得到车辆在未来行驶路程中的需求扭矩。其中,预设的车速、坡度以及车重构成的数据组与需求扭矩的对应关系可以通过线下计算得到,例如,在车速、坡度以及车重取不同值时,分别将车速输入至PID驾驶员模型,以通过PID驾驶员模型反算油门踏板深度,得到油门踏板深度预测值,将油门踏板深度预测值、坡度和车重输入至车辆纵向力学模型,即可得到车速、坡度以及车重构成的数据组对应的需求扭矩。可以将车速、坡度以及车重构成的数据组与需求扭矩的对应关系写入到控制器,从而在确定车辆在未来行驶路程中的需求扭矩的过程中,能够有效提高计算效率,保证了对发动机当前控制扭矩以及电机当前控制扭矩进行修正的实时性,进而提高了混合动力系统的工作效率,实现了车辆油耗的有效降低。
得到车辆在未来行驶路程中的需求扭矩后,可以进一步对车辆在未来行驶路程中的需求扭矩进行分配,以得到车辆在未来行驶路程中的电机扭矩。在对未来行驶路程中的需求扭矩进行分配的过程中,可以综合考虑电机在动力电池充放电时的效率区间、发动机效率区间以及变速箱的换挡规 律。其中,可以线下计算不同需求扭矩与电机扭矩的对应关系,并写入到控制器中,从而在基于车辆在未来行驶路程中的需求扭矩确定车辆在未来行驶路程中的电机扭矩的过程中,能够有效提高计算效率。需要说明的是,电机扭矩可以为正扭矩或负扭矩,正扭矩代表电机处于驱动状态,负扭矩代表电机处于发电状态。
得到车辆在未来行驶路程中的电机扭矩后,可以根据车辆在未来行驶路程中的电机扭矩以及车辆在未来行驶路程中的车速,确定动力电池在未来行驶路程中的SOC变化量。确定动力电池在未来行驶路程中的SOC变化量的具体方法可以根据实际需求进行设定,例如,可以根据车辆在未来行驶路程中的电机扭矩来确定动力电池的放电量,并根据车辆在未来行驶路程中的车速来确定回收电量,即,动力电池的充电量,从而根据动力电池的放电量和充电量即可得到动力电池在未来行驶路程中的SOC变化量。需要说明的是,SOC变化量可以为正值或负值,SOC变化量为正值时,代表未来行驶路程中动力电池充电,SOC增加;SOC变化量为负值时,代表未来行驶路程中动力电池放电,SOC减少。
作为一种可选的实施方式,确定动力电池在未来行驶路程中的SOC变化量的流程示意图如图2所示,包括:
基于车辆在未来行驶路程中的车速、未来行驶路程的坡度数据以及车辆的当前车重,通过PID驾驶员模型以及车辆纵向力学模型确定车辆在未来行驶路程中的需求扭矩;
将车辆在未来行驶路程中的需求扭矩输入至发动机与电机的扭矩分配模型,得到车辆在未来行驶路程中的电机扭矩;
将车辆在未来行驶路程中的电机扭矩以及车辆在未来行驶路程中的车速输入至SOC计算模型,得到动力电池在未来行驶路程中的SOC变化量。
本申请实施例中,动力电池在未来行驶路程中的SOC变化量的计算过程简单高效,能够有效提高SOC变化量的计算结果的有效性和实时性,从而根据SOC变化量能够对发动机当前控制扭矩以及电机当前控制扭矩进行有效修正,实现了混合动力系统的工作效率的最大程度提升。
基于上述任一实施例,所述基于所述车辆在所述未来行驶路程中的需 求扭矩确定所述车辆在所述未来行驶路程中的电机扭矩,包括:
基于预设的需求扭矩与扭矩比的对应关系,确定所述车辆在所述未来行驶路程中的需求扭矩所对应的扭矩比,作为目标扭矩比;其中,所述扭矩比为发动机扭矩与电机扭矩的比值;
基于所述目标扭矩比以及所述车辆在所述未来行驶路程中的需求扭矩确定所述车辆在所述未来行驶路程中的电机扭矩。
具体地,扭矩比即发动机扭矩与电机扭矩的比值。预设的需求扭矩与扭矩比的对应关系,即,预先设定好的需求扭矩与扭矩比的对应关系。其中,预设的需求扭矩与扭矩比的对应关系可以根据经验值确定,也可以根据预设的扭矩分配方案计算需求扭矩取不同数值时对应的扭矩比,以得到需求扭矩与扭矩比的对应关系,并将该对应关系存储至控制器中,以便于实时调用。
在得到车辆在未来行驶路程中的需求扭矩之后,可以根据预设的需求扭矩与扭矩比的对应关系对车辆在未来行驶路程中的需求扭矩进行匹配,以得到车辆在未来行驶路程中的需求扭矩所对应的扭矩比,即,目标扭矩比。
根据目标扭矩比即可确定发动机扭矩与电机扭矩的分配比例,从而根据目标扭矩比对车辆在未来行驶路程中的需求扭矩进行分配,即可得到车辆在未来行驶路程中的电机扭矩。
本申请实施例基于预设的需求扭矩与扭矩比的对应关系确定目标扭矩比,并基于目标扭矩比对车辆在未来行驶路程中的需求扭矩进行分配,能够有效提高计算效率,保证了对发动机当前控制扭矩以及电机当前控制扭矩进行修正的实时性,进而提高了混合动力系统的工作效率,实现了车辆油耗的有效降低。
基于上述任一实施例,所述预设的需求扭矩与扭矩比的对应关系是通过如下步骤获取的:
所述需求扭矩取不同值时,分别基于所述发动机扭矩对应的燃油消耗以及所述电机扭矩对应的等效燃油消耗之和,确定所述需求扭矩所对应的扭矩比。
具体地,在需求扭矩取不同值时,可以分别确定一个扭矩比,从而得 到各需求扭矩所对应的扭矩比。其中,确定需求扭矩所对应的扭矩比的流程示意图如图3所示,包括:
S301、确定变速箱输入轴的转速;其中,可以通过转速传感器确定变速箱输入轴的转速。
S302、根据变速箱输入轴的转速确定发动机的可用扭矩范围以及电机的可用扭矩范围;其中,根据变速箱输入轴的转速即可确定动力源(发动机和/或电机)的转速,从而根据预设的发动机转速与发动机可用扭矩范围的对应关系即可得到发动机的可用扭矩范围,根据预设的电机转速与电机可用扭矩范围的对应关系即可得到电机的可用扭矩范围。例如,电机的输出扭矩范围为-500~500牛米,发动机的输出扭矩范围为0~1500牛米。
S303、在不同扭矩比时,分别计算做预设单位的功(例如,一单位的功)发动机扭矩对应的燃油消耗以及电机扭矩对应的等效燃油消耗之和,即总燃油消耗量;即,遍历不同的扭矩比,针对每个扭矩比均计算相应的总燃油消耗量;其中,假设发动机扭矩占需求扭矩的比例为a,则,电机扭矩占需求扭矩的比例为(1-a),扭矩比为a:(1-a);可以根据燃油消耗转化为电能的转化效率,计算电机扭矩消耗的电量的等效燃油消耗,即,电机扭矩对应的等效燃油消耗。
S304、根据不同扭矩比对应的总燃油消耗量,确定需求扭矩所对应的扭矩比;其中,可以将总燃油消耗量最低时对应的扭矩比作为该需求扭矩所对应的扭矩比。
本申请实施例在需求扭矩取不同值时,分别基于发动机扭矩对应的燃油消耗以及电机扭矩对应的等效燃油消耗之和,确定需求扭矩所对应的扭矩比,得到需求扭矩与扭矩比的对应关系,能够有效降低车辆的燃油消耗。
基于上述任一实施例,所述基于所述SOC变化量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩,包括:
基于所述SOC变化量对所述动力电池的当前SOC进行修正,得到修正SOC;
基于所述修正SOC对所述车辆的当前需求扭矩进行重新分配,得到所述发动机修正控制扭矩以及所述电机修正控制扭矩。
具体地,动力电池的当前SOC即当前时刻动力电池的实际SOC;基于SOC变化量对动力电池的当前SOC进行修正的具体方式可以根据实际需求进行设定,例如,可以对动力电池的当前SOC与SOC变化量进行求和,得到修正SOC。
确定修正SOC后,进一步基于修正SOC对车辆的当前需求扭矩进行重新分配,以得到发动机修正控制扭矩以及电机修正控制扭矩。基于修正SOC对车辆的当前需求扭矩进行重新分配,即将车辆的当前SOC更新为修正SOC,以对车辆的当前需求扭矩进行重新分配,得到发动机修正控制扭矩以及电机修正控制扭矩。
本申请实施例基于SOC变化量对动力电池的当前SOC进行修正,得到修正SOC,并基于修正SOC对车辆的当前需求扭矩进行重新分配,得到发动机修正控制扭矩以及电机修正控制扭矩,能够快速有效地对发动机扭矩以及电机扭矩进行修正,从而能够根据未来行驶路程中的交通信息对发动机扭矩以及电机扭矩进行实时修正,以最大程度发挥混合动力系统的工作效率,进而实现了车辆油耗的降低。
基于上述任一实施例,所述基于所述修正SOC对所述车辆的当前需求扭矩进行重新分配,得到所述发动机修正控制扭矩以及所述电机修正控制扭矩,包括:
基于所述修正SOC以及所述车辆的当前需求扭矩确定所述车辆的驱动模式;
所述驱动模式满足预设模式时,基于预设的需求扭矩与扭矩比的对应关系,确定所述车辆的当前需求扭矩对应的扭矩比;其中,所述扭矩比为发动机扭矩与电机扭矩的比值;
基于所述修正SOC更新电机扭矩修正系数;
基于所述车辆的当前需求扭矩对应的扭矩比以及所述电机扭矩修正系数的更新结果确定所述发动机修正控制扭矩以及所述电机修正控制扭矩。
具体地,车辆的驱动模式可以为行车充电、助力驱动、发动机驱动、纯电驱动;行车充电,即,由发动机提供车辆的需求扭矩,同时,通过发动机为动力电池充电;助力驱动,即,发动机和电机同时提供车辆的需求 扭矩;发动机驱动,即,由发动机提供车辆的需求扭矩,且发动机暂停为动力电池充电;纯电驱动,即,由电机提供车辆的需求扭矩。基于修正SOC以及车辆的当前需求扭矩确定车辆的驱动模式的具体方式可以根据实际需求进行设定,例如,可以根据预设的需求扭矩以及SOC构成的数据组与驱动模式的对应关系对车辆的当前需求扭矩以及动力电池的修正SOC进行匹配,以确定车辆在当前时刻的驱动模式。其中,作为一种可选的实施方式,预设的需求扭矩以及SOC构成的数据组与驱动模式的对应关系可以如图4所示。图4中,行车充电、助力驱动、发动机驱动、纯电驱动均属于混动模式。
确定车辆的驱动模式后,可以进一步根据驱动模式对车辆的当前需求扭矩进行分配。预设模式可以为同时需要发动机以及电机参与车辆驱动的模式,例如,可以包括行车充电以及助力驱动。若车辆的驱动模式不满足预设模式,例如,车辆的驱动模式为发动机驱动或纯电驱动,则,直接根据车辆的需求扭矩确定发动机修正控制扭矩以及电机修正控制扭矩,若车辆的驱动模式为发动机驱动,则发动机修正控制扭矩等于车辆的当前需求扭矩,电机修正控制扭矩为零,若车辆的驱动模式为纯电驱动,则发动机修正控制扭矩为零,电机修正控制扭矩等于车辆的当前需求扭矩。
若车辆的驱动模式满足预设模式,可以基于预设的需求扭矩与扭矩比的对应关系,确定车辆的当前需求扭矩对应的扭矩比,即发动机扭矩与电机扭矩的比值。同时,还可以基于修正SOC更新电机扭矩修正系数。其中,可以根据预设的SOC与电机扭矩修正系数的对应关系,对修正SOC进行匹配,以得到修正SOC对应的电机扭矩修正系数,并将修正SOC对应的电机扭矩修正系数作为电机扭矩修正系数的更新结果。电机扭矩修正系数与SOC强相关,SOC越大,电机扭矩修正系数越大,以在SOC较高时,尽量多使用电机驱动。例如,在SOC较小时(例如,20%),可以将电机扭矩修正系数设定为0.1。
确定车辆的当前需求扭矩对应的扭矩比以及电机扭矩修正系数的更新结果之后,即可根据车辆的当前需求扭矩对应的扭矩比以及电机扭矩修正系数的更新结果确定电机修正控制扭矩。例如,根据当前需求扭矩对应的扭矩比可以确定电机扭矩的初始值;根据电机扭矩修正系数的更新结果 对电机扭矩的初始值进行修正,即可得到电机修正控制扭矩,车辆的当前需求扭矩与电机修正控制扭矩的差值即为发动机修正控制扭矩。其中,基于电机扭矩修正系数的更新结果对电机扭矩的初始值进行修正的具体方式可以根据实际需求进行设定,例如,可以直接将电机扭矩的初始值与电机扭矩修正系数的更新结果进行相乘,得到电机修正控制扭矩,还可以将电机扭矩的初始值与电机扭矩修正系数的更新结果进行相乘后,根据预设的电机扭矩取值区间对相乘结果进行调整,得到电机修正控制扭矩。
本申请实施例基于修正SOC以及车辆的当前需求扭矩确定车辆的驱动模式,并在驱动模式满足预设模式时,基于预设的需求扭矩与扭矩比的对应关系确定车辆的当前需求扭矩对应的扭矩比,同时,基于修正SOC更新电机扭矩修正系数,从而根据车辆的当前需求扭矩对应的扭矩比以及电机扭矩修正系数的更新结果确定发动机修正控制扭矩以及电机修正控制扭矩,能够同时结合SOC以及驾驶员的需求扭矩对混合动力系统的能量管理策略进行更新,以在满足驾驶员操作需求的前提下,最大程度挖掘混合动力系统的节油潜能。
下面对本申请提供的混合动力系统控制装置进行描述,下文描述的混合动力系统控制装置与上文描述的混合动力系统控制方法可相互对应参照。如图5所示,本申请混合动力系统控制装置包括:
数据获取模块501,用于获取车辆未来行驶路程中的交通信息;
第一计算模块502,用于基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC变化量;
第二计算模块503,用于基于所述SOC变化量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩;其中,所述发动机修正控制扭矩以及所述电机修正控制扭矩用于对所述车辆的混合动力系统进行控制。
基于上述实施例,所述第一计算模块502具体用于:
基于所述交通信息确定所述车辆在所述未来行驶路程中的车速以及所述未来行驶路程的坡度数据;
基于所述车辆在所述未来行驶路程中的车速、所述未来行驶路程的坡度数据以及所述车辆的当前车重确定所述动力电池在所述未来行驶路程 中的SOC变化量。
基于上述任一实施例,所述第一计算模块502具体用于:
基于所述车辆在所述未来行驶路程中的车速、所述未来行驶路程的坡度数据以及所述车辆的当前车重确定所述车辆在所述未来行驶路程中的需求扭矩;
基于所述车辆在所述未来行驶路程中的需求扭矩确定所述车辆在所述未来行驶路程中的电机扭矩;
基于所述车辆在所述未来行驶路程中的电机扭矩以及所述车辆在所述未来行驶路程中的车速,确定所述动力电池在所述未来行驶路程中的SOC变化量。
基于上述任一实施例,所述第一计算模块502具体用于:
基于预设的需求扭矩与扭矩比的对应关系,确定所述车辆在所述未来行驶路程中的需求扭矩所对应的扭矩比,作为目标扭矩比;其中,所述扭矩比为发动机扭矩与电机扭矩的比值;
基于所述目标扭矩比以及所述车辆在所述未来行驶路程中的需求扭矩确定所述车辆在所述未来行驶路程中的电机扭矩。
基于上述任一实施例,还包括第三计算模块,所述第三计算模块用于:
所述需求扭矩取不同值时,分别基于所述发动机扭矩对应的燃油消耗以及所述电机扭矩对应的等效燃油消耗之和,确定所述需求扭矩所对应的扭矩比。
基于上述任一实施例,所述第二计算模块503具体用于:
基于所述SOC变化量对所述动力电池的当前SOC进行修正,得到修正SOC;
基于所述修正SOC对所述车辆的当前需求扭矩进行重新分配,得到所述发动机修正控制扭矩以及所述电机修正控制扭矩。
基于上述任一实施例,所述第二计算模块503具体用于:
基于所述修正SOC以及所述车辆的当前需求扭矩确定所述车辆的驱动模式;
所述驱动模式满足预设模式时,基于预设的需求扭矩与扭矩比的对应关系,确定所述车辆的当前需求扭矩对应的扭矩比;其中,所述扭矩比为 发动机扭矩与电机扭矩的比值;
基于所述修正SOC更新电机扭矩修正系数;
基于所述车辆的当前需求扭矩对应的扭矩比以及所述电机扭矩修正系数的更新结果确定所述发动机修正控制扭矩以及所述电机修正控制扭矩。
本申请还提供一种车辆,包括:混合动力系统和控制器;
其中,所述混合动力系统包括发动机、电机、离合器和变速箱;所述电机设置在所述离合器与所述变速箱之间,且所述电机与所述变速箱的输入轴连接;
所述控制器用于执行如上任一实施例所述的混合动力系统控制方法。
具体地,车辆为商用车,诸如货车、客车、工程机械等。车辆包括混合动力系统和控制器,其中,混合动力系统包括发动机、电机、离合器和变速箱;电机设置在离合器与变速箱之间,且电机与变速箱的输入轴刚性连接,即,本申请实施例中车辆采用的是P2类型的混合动力系统。控制器用于对混合动力系统进行控制。
图6示例了一种电子设备的实体结构示意图,如图6所示,该电子设备可以包括:处理器(processor)601、通信接口(Communications Interface)602、存储器(memory)603和通信总线604,其中,处理器601,通信接口602,存储器603通过通信总线604完成相互间的通信。处理器601可以调用存储器603中的逻辑指令,以执行混合动力系统控制方法,该方法包括:获取车辆未来行驶路程中的交通信息;
基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC变化量;
基于所述SOC变化量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩;其中,所述发动机修正控制扭矩以及所述电机修正控制扭矩用于对所述车辆的混合动力系统进行控制。
此外,上述的存储器603中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做 出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
另一方面,本申请还提供一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法所提供的混合动力系统控制方法,该方法包括:获取车辆未来行驶路程中的交通信息;
基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC变化量;
基于所述SOC变化量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩;其中,所述发动机修正控制扭矩以及所述电机修正控制扭矩用于对所述车辆的混合动力系统进行控制。
又一方面,本申请还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各提供的混合动力系统控制方法,该方法包括:获取车辆未来行驶路程中的交通信息;
基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC变化量;
基于所述SOC变化量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩;其中,所述发动机修正控制扭矩以及所述电机修正控制扭矩用于对所述车辆的混合动力系统进行控制。
以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现 本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (11)

  1. 一种混合动力系统控制方法,包括:
    获取车辆未来行驶路程中的交通信息;
    基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC变化量;
    基于所述SOC变化量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩;其中,所述发动机修正控制扭矩以及所述电机修正控制扭矩用于对所述车辆的混合动力系统进行控制。
  2. 根据权利要求1所述的混合动力系统控制方法,其中,所述基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC变化量,包括:
    基于所述交通信息确定所述车辆在所述未来行驶路程中的车速以及所述未来行驶路程的坡度数据;
    基于所述车辆在所述未来行驶路程中的车速、所述未来行驶路程的坡度数据以及所述车辆的当前车重确定所述动力电池在所述未来行驶路程中的SOC变化量。
  3. 根据权利要求2所述的混合动力系统控制方法,其中,所述基于所述车辆在所述未来行驶路程中的车速、所述未来行驶路程的坡度数据以及所述车辆的当前车重确定所述动力电池在所述未来行驶路程中的SOC变化量,包括:
    基于所述车辆在所述未来行驶路程中的车速、所述未来行驶路程的坡度数据以及所述车辆的当前车重确定所述车辆在所述未来行驶路程中的需求扭矩;
    基于所述车辆在所述未来行驶路程中的需求扭矩确定所述车辆在所述未来行驶路程中的电机扭矩;
    基于所述车辆在所述未来行驶路程中的电机扭矩以及所述车辆在所述未来行驶路程中的车速,确定所述动力电池在所述未来行驶路程中的SOC变化量。
  4. 根据权利要求3所述的混合动力系统控制方法,其中,所述基于所述车辆在所述未来行驶路程中的需求扭矩确定所述车辆在所述未来行驶路程中的电机扭矩,包括:
    基于预设的需求扭矩与扭矩比的对应关系,确定所述车辆在所述未来行驶路程中的需求扭矩所对应的扭矩比,作为目标扭矩比;其中,所述扭矩比为发动机扭矩与电机扭矩的比值;
    基于所述目标扭矩比以及所述车辆在所述未来行驶路程中的需求扭矩确定所述车辆在所述未来行驶路程中的电机扭矩。
  5. 根据权利要求4所述的混合动力系统控制方法,其中,所述预设的需求扭矩与扭矩比的对应关系是通过如下步骤获取的:
    所述需求扭矩取不同值时,分别基于所述发动机扭矩对应的燃油消耗以及所述电机扭矩对应的等效燃油消耗之和,确定所述需求扭矩所对应的扭矩比。
  6. 根据权利要求1所述的混合动力系统控制方法,其中,所述基于所述SOC变化量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩,包括:
    基于所述SOC变化量对所述动力电池的当前SOC进行修正,得到修正SOC;
    基于所述修正SOC对所述车辆的当前需求扭矩进行重新分配,得到所述发动机修正控制扭矩以及所述电机修正控制扭矩。
  7. 根据权利要求6所述的混合动力系统控制方法,其中,所述基于所述修正SOC对所述车辆的当前需求扭矩进行重新分配,得到所述发动机修正控制扭矩以及所述电机修正控制扭矩,包括:
    基于所述修正SOC以及所述车辆的当前需求扭矩确定所述车辆的驱动模式;
    所述驱动模式满足预设模式时,基于预设的需求扭矩与扭矩比的对应关系,确定所述车辆的当前需求扭矩对应的扭矩比;其中,所述扭矩比为发动机扭矩与电机扭矩的比值;
    基于所述修正SOC更新电机扭矩修正系数;
    基于所述车辆的当前需求扭矩对应的扭矩比以及所述电机扭矩修正 系数的更新结果确定所述发动机修正控制扭矩以及所述电机修正控制扭矩。
  8. 一种混合动力系统控制装置,包括:
    数据获取模块,用于获取车辆未来行驶路程中的交通信息;
    第一计算模块,用于基于所述交通信息确定所述车辆的动力电池在所述未来行驶路程中的SOC变化量;
    第二计算模块,用于基于所述SOC变化量对所述车辆的发动机当前控制扭矩以及电机当前控制扭矩进行修正,得到发动机修正控制扭矩以及电机修正控制扭矩;其中,所述发动机修正控制扭矩以及所述电机修正控制扭矩用于对所述车辆的混合动力系统进行控制。
  9. 一种车辆,包括:混合动力系统和控制器;
    其中,所述混合动力系统包括发动机、电机、离合器和变速箱;所述电机设置在所述离合器与所述变速箱之间,且所述电机与所述变速箱的输入轴连接;
    所述控制器用于执行如权利要求1至7任一项所述的混合动力系统控制方法。
  10. 一种电子设备,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其中,所述处理器执行所述程序时实现如权利要求1至7任一项所述的混合动力系统控制方法。
  11. 一种非暂态计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现如权利要求1至7任一项所述的混合动力系统控制方法。
PCT/CN2022/128636 2022-07-29 2022-10-31 混合动力系统控制方法、装置及车辆 WO2024021344A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210908089.6A CN115071670A (zh) 2022-07-29 2022-07-29 混合动力系统控制方法、装置及车辆
CN202210908089.6 2022-07-29

Publications (1)

Publication Number Publication Date
WO2024021344A1 true WO2024021344A1 (zh) 2024-02-01

Family

ID=83242642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128636 WO2024021344A1 (zh) 2022-07-29 2022-10-31 混合动力系统控制方法、装置及车辆

Country Status (2)

Country Link
CN (1) CN115071670A (zh)
WO (1) WO2024021344A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115071670A (zh) * 2022-07-29 2022-09-20 湖南行必达网联科技有限公司 混合动力系统控制方法、装置及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106427987A (zh) * 2015-08-04 2017-02-22 现代自动车株式会社 控制混合动力车辆的系统和方法
US20180162352A1 (en) * 2016-12-12 2018-06-14 Hyundai Motor Company Method and device for controlling full load mode of hybrid vehicle
CN109353329A (zh) * 2018-09-28 2019-02-19 潍柴动力股份有限公司 一种混合动力汽车的控制方法及装置
CN109895769A (zh) * 2017-12-11 2019-06-18 郑州宇通客车股份有限公司 混合动力汽车及定速巡航控制方法和控制系统
CN114670805A (zh) * 2022-04-29 2022-06-28 中国第一汽车股份有限公司 一种用于并联式混合动力车辆的扭矩分配方法和分配装置
CN115071670A (zh) * 2022-07-29 2022-09-20 湖南行必达网联科技有限公司 混合动力系统控制方法、装置及车辆

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9815373B2 (en) * 2015-02-23 2017-11-14 Ford Global Technologies, Llc Battery state of charge target based on predicted regenerative energy
KR101713734B1 (ko) * 2015-10-06 2017-03-08 현대자동차 주식회사 하이브리드 차량의 제어 방법 및 장치
WO2018104850A1 (en) * 2016-12-08 2018-06-14 Kpit Technologies Limited Model predictive based control for automobiles
US10464547B2 (en) * 2017-07-13 2019-11-05 GM Global Technology Operations LLC Vehicle with model-based route energy prediction, correction, and optimization
US11117567B2 (en) * 2018-06-26 2021-09-14 Toyota Motor Engineering & Manufacturing North America, Inc. Real time trajectory optimization for hybrid energy management utilizing connected information technologies
JP2021020563A (ja) * 2019-07-26 2021-02-18 本田技研工業株式会社 車両エネルギ管理システム及び車両エネルギ管理方法
WO2021081051A1 (en) * 2019-10-21 2021-04-29 Michigan Technological University Predictive powertrain control for a multi-mode hybrid electric vehicle

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106427987A (zh) * 2015-08-04 2017-02-22 现代自动车株式会社 控制混合动力车辆的系统和方法
US20180162352A1 (en) * 2016-12-12 2018-06-14 Hyundai Motor Company Method and device for controlling full load mode of hybrid vehicle
CN109895769A (zh) * 2017-12-11 2019-06-18 郑州宇通客车股份有限公司 混合动力汽车及定速巡航控制方法和控制系统
CN109353329A (zh) * 2018-09-28 2019-02-19 潍柴动力股份有限公司 一种混合动力汽车的控制方法及装置
CN114670805A (zh) * 2022-04-29 2022-06-28 中国第一汽车股份有限公司 一种用于并联式混合动力车辆的扭矩分配方法和分配装置
CN115071670A (zh) * 2022-07-29 2022-09-20 湖南行必达网联科技有限公司 混合动力系统控制方法、装置及车辆

Also Published As

Publication number Publication date
CN115071670A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
Wu et al. A predictive energy management strategy for multi-mode plug-in hybrid electric vehicles based on multi neural networks
US10545503B2 (en) Propulsion efficient autonomous driving strategy
CN110239512B (zh) 一种混合动力车辆的能量管理方法及系统
CN115140017B (zh) 混合动力车辆行驶控制方法、装置、设备及存储介质
CN112498334B (zh) 智能网联混合动力汽车的鲁棒能量管理方法及系统
CN111497821B (zh) 混动车辆的能量管理方法
CN113264032B (zh) 一种混合动力车的能量管理方法、装置和系统
US20240182018A1 (en) Method for adaptative real-time optimization of a power or torque split in a vehicle
CN110576755A (zh) 一种基于辅助能源系统的氢能汽车燃料电池能量管理系统
CN114889580B (zh) 混合动力车辆能量管理控制方法、系统、装置及存储介质
CN115214606B (zh) 一种插电式混合动力汽车能量管理方法
CN114940077A (zh) 具有分布式扭矩致动器的移动平台的运动和扭矩控制架构
CN116749834B (zh) 一种增程式汽车的能源监控方法及装置
CN109353329A (zh) 一种混合动力汽车的控制方法及装置
WO2024021344A1 (zh) 混合动力系统控制方法、装置及车辆
CN111645666A (zh) 发动机的扭矩控制方法及控制装置
WO2024199307A1 (zh) 混动车辆的电池能量管理方法、装置、车辆和存储介质
CN115107583B (zh) 燃料电池的能量管理方法、整车控制器、处理器与车辆
CN117301888A (zh) 一种扭矩分配方法、装置、存储介质和车辆
CN116373620A (zh) 基于驾驶里程的增程器控制方法、装置及增程式电动汽车
CN115071673A (zh) 基于无模型自适应控制的phev实时能量管理策略
CN116653911B (zh) 混动系统控制方法、装置、计算机可读介质及电子设备
CN115539232B (zh) 发动机控制方法、装置、设备以及存储介质
WO2025093131A1 (en) System and method of controlling power split in a powertrains system
CN118618152A (zh) 燃料电池车辆及其能量管理方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952782

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE