WO2024021316A1 - 峰均比降低方法、装置、电子设备和可读存储介质 - Google Patents

峰均比降低方法、装置、电子设备和可读存储介质 Download PDF

Info

Publication number
WO2024021316A1
WO2024021316A1 PCT/CN2022/125829 CN2022125829W WO2024021316A1 WO 2024021316 A1 WO2024021316 A1 WO 2024021316A1 CN 2022125829 W CN2022125829 W CN 2022125829W WO 2024021316 A1 WO2024021316 A1 WO 2024021316A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
data
demodulation reference
signal
specific
Prior art date
Application number
PCT/CN2022/125829
Other languages
English (en)
French (fr)
Inventor
王于波
李德建
朱鹤群
赵旭
甘杰
关媛
邵瑾
Original Assignee
北京智芯微电子科技有限公司
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京智芯微电子科技有限公司, 国家电网有限公司 filed Critical 北京智芯微电子科技有限公司
Publication of WO2024021316A1 publication Critical patent/WO2024021316A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/262Reduction thereof by selection of pilot symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers

Definitions

  • the present disclosure relates to the field of communications, and specifically to peak-to-average ratio reduction methods, devices, electronic equipment and readable storage media.
  • the peak-to-average ratio (i.e., the ratio of peak power to average power) of the Orthogonal Frequency Division Multiplexing (OFDM) signal of the 5G New Radio (NR) is high, which will cause the power amplifier at the signal transmitter to Nonlinear distortion reduces signal quality.
  • Existing methods for reducing peak-to-average ratio include hard peak elimination method, peak window function method, peak cancellation method and encoding method.
  • the idea of the hard peak clipping method is to cut off the peaks that exceed the threshold value. It can set the peak-to-average ratio within a preset range. It is a very simple, direct and effective technique to reduce the peak-to-average ratio.
  • the relatively large signal peak can be multiplied by an appropriate rectangular window function, which is the peak window function method.
  • the peak window function method is used to superimpose a window function with the signal, and the part beyond the window is cut off, so that the out-of-band radiation is reduced.
  • the peak cancellation method achieves the purpose of reducing the peak-to-average ratio of the signal by subtracting the spectral pulse that matches the input signal spectrum from the signal peak that exceeds the threshold.
  • the reference function is appropriately chosen so that it has approximately the same bandwidth as the transmitted OFDM signal, so that the peak cancellation technique does not introduce essentially any out-of-band interference.
  • the coding method constructs a time domain signal with a lower peak-to-average ratio by introducing redundant information bits. The coding method can not only reduce the peak-to-average ratio, but also obtain forward error correction capabilities.
  • the hard peak clipping method easily causes out-of-band radiation and in-band distortion of limiting noise due to nonlinear transformation, which greatly reduces the bit error performance of the system.
  • the peak window function method can reduce out-of-band radiation, it increases in-band distortion.
  • the peak cancellation method basically does not cause interference to the out-of-band, it will cause distortion of the in-band signal.
  • the encoding method traverses the complete set of codewords and searches for codewords with lower peak-to-average ratios for transmission, which will reduce data transmission efficiency. When the codewords are longer, that is, when the number of subcarriers increases, the complexity increases greatly.
  • embodiments of the present disclosure provide a peak-to-average ratio reduction method, a device, an electronic device, and a readable storage medium.
  • embodiments of the present disclosure provide a method for reducing the peak-to-average ratio, including:
  • the input data obtaining step obtains input data of a specific dimension in a specific resource element of a specific multi-carrier symbol
  • the data rotation step is to phase-rotate the input data according to the resource element position and specific dimensions of the input data to obtain phase-rotated data.
  • the input data acquisition step includes: acquiring the demodulation reference signal of a specific port in a specific resource element in the multi-carrier symbol where the demodulation reference signal is located.
  • the data rotation step includes: performing phase rotation on the demodulation reference signal with respect to the resource element position and port number of the demodulation reference signal to obtain a phase-rotated demodulation reference signal.
  • phase rotation angle of the phase rotation is linearly related to the resource element position of the demodulation reference signal.
  • the phase rotation angle of the phase rotation is linearly related to the port number of the demodulation reference signal.
  • the input data acquisition step includes: acquiring the demodulation reference signal of a specific port in a specific resource element in the multi-carrier symbol where the demodulation reference signal is located, and
  • the data signal of a specific layer in a specific resource element in the multi-carrier symbol where the data signal is located is located.
  • the specific port number of the specific port is the same as the specific layer number of the specific layer.
  • the data rotation step includes: performing phase rotation on the demodulation reference signal with respect to the resource element position and port number of the demodulation reference signal to obtain a phase-rotated demodulation reference signal;
  • phase rotation is performed on the data signal to obtain a phase-rotated data signal.
  • the phase rotation angle of the demodulation reference signal is linearly related to the resource element position of the demodulation reference signal; and/or
  • the phase rotation angle of the demodulation reference signal is linearly related to the port number of the demodulation reference signal; and/or
  • the phase rotation angle of the data signal is linearly related to the resource element position of the data signal; and/or
  • the phase rotation angle of the data signal is linearly related to the layer number of the data signal.
  • the demodulation reference signal and the data signal are located in different multi-carrier symbols.
  • the disclosure further includes:
  • the antenna data calculation step is to multiply the phase-rotated data by a precoding matrix to obtain antenna data.
  • the precoding matrix is obtained based on the number of ports of the channel state information reference signal.
  • a peak-to-average ratio reduction device including:
  • An input data acquisition module used to acquire input data of a specific dimension in a specific resource element of a specific multi-carrier symbol
  • a data rotation module is used to perform phase rotation on the input data according to the resource element position and specific dimensions of the input data, and obtain phase-rotated data.
  • the input data acquisition module is configured to: obtain the solution of a specific port in a specific resource element in the multi-carrier symbol where the demodulation reference signal is located. Adjust the reference signal.
  • the data rotation module is configured to: with respect to the resource element position and port number of the demodulation reference signal, The signal is phase rotated to obtain the phase rotated demodulation reference signal.
  • the phase rotation angle of the phase rotation is linearly related to the resource element position of the demodulation reference signal;
  • the phase rotation angle of the phase rotation is linearly related to the port number of the demodulation reference signal.
  • the input data acquisition module is configured to: obtain the solution of a specific port in a specific resource element in the multi-carrier symbol where the demodulation reference signal is located. tune the reference signal, and
  • the data signal of a specific layer in a specific resource element in the multi-carrier symbol where the data signal is located is located.
  • the specific port number of the specific port is the same as the specific layer number of the specific layer.
  • the data rotation module is configured to: with respect to the resource element position and port number of the demodulation reference signal, The signal is phase rotated to obtain the phase rotated demodulation reference signal;
  • phase rotation is performed on the data signal to obtain a phase-rotated data signal.
  • the phase rotation angle of the demodulation reference signal is linearly related to the resource element position of the demodulation reference signal;
  • the phase rotation angle of the demodulation reference signal is linearly related to the port number of the demodulation reference signal; and/or
  • the phase rotation angle of the data signal is linearly related to the resource element position of the data signal; and/or
  • the phase rotation angle of the data signal is linearly related to the layer number of the data signal.
  • the demodulation reference signal and the data signal are located in different multi-carrier symbols.
  • the disclosure further includes:
  • An antenna data calculation module is used to multiply the phase-rotated data by a precoding matrix to obtain antenna data.
  • the precoding matrix is obtained based on the number of ports of the channel state information reference signal.
  • embodiments of the present disclosure provide an electronic device including a memory and a processor, wherein the memory is used to store one or more computer instructions, and wherein the one or more computer instructions are processed by the The processor is executed to implement the method described in any one of the first aspect to the tenth implementation manner of the first aspect, the second aspect to the tenth implementation manner of the second aspect.
  • embodiments of the present disclosure provide a computer-readable storage medium on which computer instructions are stored.
  • the computer instructions When the computer instructions are executed by a processor, the computer instructions implement the tenth implementation manner of the first aspect to the first aspect, The method described in the second aspect to the tenth implementation manner of the second aspect.
  • an embodiment of the present disclosure provides a chip, including the method according to any one of the second aspects.
  • the peak-to-average ratio reduction method includes: an input data acquisition step, obtaining input data of a specific dimension in a specific resource element of a specific multi-carrier symbol; a data rotation step, targeting the resource element position of the input data and specific dimensions, perform phase rotation on the input data, and obtain the phase-rotated data, thereby reducing the peak-to-average ratio, while minimizing the introduction of nonlinear distortion and out-of-band interference, without causing a reduction in signal quality.
  • Figure 1 shows an exemplary schematic diagram of a demodulation reference signal according to an embodiment of the present disclosure
  • Figure 2 shows an exemplary schematic diagram of a peak-to-average ratio reduction method according to an embodiment of the present disclosure
  • Figure 3 shows an exemplary schematic diagram of a peak-to-average ratio reduction method according to another embodiment of the present disclosure
  • Figure 4 shows a structural block diagram of a peak-to-average ratio reduction device according to an embodiment of the present disclosure
  • Figure 5 shows a structural block diagram of a peak-to-average ratio reduction device according to another embodiment of the present disclosure
  • Figure 6 shows a structural block diagram of an electronic device according to an embodiment of the present disclosure
  • FIG. 7 shows a schematic structural diagram of a computer system suitable for implementing methods according to embodiments of the present disclosure.
  • the peak-to-average ratio i.e., the ratio of peak power and average power
  • OFDM Orthogonal Frequency Division Multiplexing
  • NR 5G New Radio
  • Existing methods for reducing peak-to-average ratio include hard peak elimination method, peak window function method, peak cancellation method and encoding method.
  • the idea of the hard peak clipping method is to cut off the peaks that exceed the threshold value. It can set the peak-to-average ratio within a preset range. It is a very simple, direct and effective technique to reduce the peak-to-average ratio.
  • the relatively large signal peak can be multiplied by an appropriate rectangular window function, which is the peak window function method.
  • the peak window function method is used to superimpose a window function with the signal, and the part beyond the window is cut off, so that the out-of-band radiation is reduced.
  • the peak cancellation method achieves the purpose of reducing the peak-to-average ratio of the signal by subtracting the spectral pulse that matches the input signal spectrum from the signal peak that exceeds the threshold.
  • the reference function is properly chosen so that it has approximately the same bandwidth as the transmitted OFDM signal, so the peak cancellation technique does not introduce essentially any out-of-band interference.
  • the coding method constructs a time domain signal with a lower peak-to-average ratio by introducing redundant information bits. The coding method can not only reduce the peak-to-average ratio, but also obtain forward error correction capabilities.
  • the hard peak clipping method easily causes out-of-band radiation and in-band distortion of limiting noise due to nonlinear transformation, which greatly reduces the bit error performance of the system.
  • the peak window function method can reduce out-of-band radiation, it increases in-band distortion.
  • the peak cancellation method basically does not cause interference to the out-of-band, it will cause distortion of the in-band signal.
  • the encoding method traverses the complete set of codewords and searches for codewords with lower peak-to-average ratios for transmission, which will reduce data transmission efficiency. When the codewords are longer, that is, when the number of subcarriers increases, the complexity increases greatly.
  • the present disclosure proposes a peak-to-average ratio reduction method, device, electronic equipment and readable storage medium.
  • FIG. 1 shows an exemplary schematic diagram of a demodulation reference signal according to an embodiment of the present disclosure.
  • FIG. 1 illustrates a demodulation reference signal and does not constitute a limitation on the present disclosure.
  • Figure 1 specifically shows the distribution of demodulation reference signals in one resource block (RB) of 5GNR.
  • the demodulation reference signals with resource element (Resource Element, RE) numbers 0, 2, 4, ..., 10 use ports (port) 0, 1;
  • Resource Element Resource Element
  • the demodulation reference signals with RE numbers 1, 3, 5, ..., 11 use ports 2 and 3.
  • Resource elements are subcarriers within a specific multicarrier symbol.
  • the demodulation reference signals using resource element numbers 0, 2, 4, ..., 10 of ports 0 and 1 are in the same code division multiplexing (Code Division Multiplexing, CDM) group , using Code Division Multiplexing (CDM) method to share the same RE position.
  • the demodulation reference signals using resource element numbers 1, 3, 5, ..., 11 of ports 2 and 3 are in the same CDM group and use Code Division Multiplexing (CDM) to share the same RE position.
  • the R15 version DMRS pilot sequence is generated by a pseudo-random sequence.
  • the initialization expression of the random sequence is
  • n SCID is a high-level configuration parameter.
  • port0 and port1 are the same CDM group
  • port2 and port3 are the same CDM group
  • the pseudo-random sequences used by the two CDM groups are generated by the above formula, where l, n SCID These parameters are the same for the same symbol, so the pilot sequences of the two CDM groups are exactly the same.
  • the OFDM time domain signal generated thereby is more likely to have a higher peak-to-average ratio.
  • the phase rotation amount e j2 ⁇ k ⁇ /N is introduced, and the phase rotation angle is 2 ⁇ k ⁇ /N.
  • k is the sequence number of RE (starting from 0)
  • is the sequence number of the port, that is, the port number
  • N is the number of inverse fast Fourier Transform (IFFT) points.
  • IFFT inverse fast Fourier Transform
  • the dimension of the pilot data Pilot is Re num ⁇ port, where Re num is the number of REs occupied by DMRS, and the number of ports is the number of ports, such as the 4 ports shown in Figure 1.
  • the matrix on the left is the pilot matrix, with a total of Re num rows and 4 columns. one of them is the DMRS signal of the kth RE and the ⁇ th port.
  • the matrix on the right is a phase rotation matrix, with a total of Re num rows and 4 columns.
  • the elements of the left matrix and the right matrix adopt position-corresponding dot multiplication instead of vector multiplication.
  • the phase rotation angle 2 ⁇ k ⁇ /N is linearly related to the port number ⁇ and is also linearly related to the RE number k.
  • phase rotation may also be performed on multiple OFDM symbols including DMRS signals and data signals.
  • DMRS needs to select 3 ports, here select port0, port1, and port2.
  • the number of DMRS ports is the same as the number of layers of data signals.
  • the number of transmission layers and the number of ports of the data signal are the same, and the transmission layer serial number and port serial number of the data signal are the same.
  • the specific dimension may be the transmission layer sequence number of the data signal, or the port sequence number of the DMRS signal.
  • the OFDM symbols including DMRS and data signals are phase-rotated to obtain phase-rotated data.
  • the data is multiplied by the precoding matrix to obtain the antenna data.
  • the antenna data may be antenna data corresponding to a physical antenna or antenna data corresponding to a virtual antenna.
  • the dimension of the precoding matrix PMI is layer*port CSIRS , where layer is the number of data layers, equal to 3, which is the same as the number of DMRS ports; port CSIRS is used for channel state information reference signal (Channel State Information Reference Signal, CSIRS) measurement.
  • the number of ports, here set to 8port, is the same as the dimension of the antenna.
  • the rotation phase e j2 ⁇ k ⁇ /N needs to be multiplied before shaping to reduce the probability of in-phase superposition between DMRSports.
  • the DMRS signal is used to demodulate the data signal at the receiving end, the data of the three layers need to be multiplied by the corresponding rotation phase e j2 ⁇ k ⁇ /N to ensure that the channels experienced by the DMRS signal and the data signal are consistent.
  • phase rotation of the DMRS signal and the data signal is performed to obtain the phase rotation signal
  • expression of the complete process of multiplying the phase rotation signal by the precoding matrix to obtain the antenna data is:
  • the left matrix data contains DMRS and data signals.
  • Re num of the left matrix is the number of REs occupied by DMRS; sym is the number of OFDM symbols occupied by DMRS and data signals; layer is the number of layers, which is 3.
  • the intermediate matrix is Re num row and port column, that is, the phase rotation matrix of Re num row and 3 columns.
  • right matrix is the precoding matrix rotated by CSIRS measurement.
  • port CSIRS is the number of ports used in CSIRS measurement, which is 8.
  • the peak-to-average ratio of DMRS symbols can be reduced by about 2dB.
  • port CSIRS is the port used for CSIRS measurement, which is assumed to be 8 here.
  • the DMRS signal and the data signal are phase rotated to obtain the phase rotation signal.
  • the phase rotation signal is multiplied by the precoding matrix to obtain the antenna data.
  • Re num is the number of RE occupied by DRMS
  • layer is 4
  • port is 4
  • port CSIRS is 8.
  • the intermediate matrix is the Re num row and port column, that is, the phase rotation matrix of Re num row and 4 columns.
  • the peak-to-average ratio of DMRS symbols can be reduced by about 2dB.
  • the number of ports and layers can also be other values, such as a larger value than shown in this disclosure, and the port CSIRS can also be other values, such as a larger value than what is actually shown in this disclosure. Numerical values, or other scenarios applicable to this method, are not limited by this disclosure.
  • FIG. 2 shows an exemplary schematic diagram of a peak-to-average ratio reduction method according to an embodiment of the present disclosure.
  • the peak-to-average ratio reduction method includes: steps S201 and S202.
  • step S201 input data of a specific dimension in a specific resource element of a specific multi-carrier symbol is obtained.
  • step S202 the input data is phase-rotated according to the resource element position and specific dimensions of the input data to obtain phase-rotated data.
  • Step S201 is an input data acquisition step
  • step S202 is a data rotation step.
  • the input data acquisition step input data of a specific dimension in a specific resource element of a specific multi-carrier symbol is obtained; and in the data rotation step, the input data is phase-rotated with respect to the resource element position and specific dimension of the input data. , obtain the phase-rotated data, thereby reducing the peak-to-average ratio, while minimizing the introduction of nonlinear distortion and out-of-band interference, which will not cause a reduction in signal quality.
  • the DMRS signals of ports 0, 1, 2, and 3 in RE0 ⁇ 11 in the OFDM symbol where the DMRS is located are obtained.
  • the step of obtaining through input data includes: obtaining the demodulation reference signal of a specific port in a specific resource element in the multi-carrier symbol where the demodulation reference signal is located, so as to reduce the peak-average value after phase rotation of the DMRS signal. ratio, while minimizing the introduction of nonlinear distortion and out-of-band interference, without causing a reduction in signal quality.
  • the phase rotation amount e j2 ⁇ k ⁇ /N is introduced, and the phase rotation angle is 2 ⁇ k ⁇ /N.
  • the phase rotation angle is related to the RE position k and port number ⁇ of the DMRS.
  • the data rotation step includes: performing phase rotation on the demodulation reference signal with respect to the resource element position and port number of the demodulation reference signal to obtain the phase-rotated demodulation reference signal, thereby avoiding an increase in signal amplitude, Reduce the peak-to-average ratio, while minimizing the introduction of nonlinear distortion and out-of-band interference, without causing a reduction in signal quality.
  • the phase rotation angle is 2 ⁇ k ⁇ /N.
  • the phase rotation angle is linearly related to the DMRS RE position k and port number ⁇ .
  • the number of transmission layers and the number of ports of the data signal are the same, and the transmission layer serial number and port serial number of the data signal are the same.
  • the specific dimension may be the transmission layer sequence number of the data signal, or the port sequence number of the DMRS signal.
  • the phase rotation angle of the phase rotation is linearly related to the resource element position of the demodulation reference signal; and/or the phase rotation angle of the phase rotation is linearly related to the port number of the demodulation reference signal, thereby avoiding the signal amplitude.
  • OFDM symbol data including the DMRS signal and the data signal can also be obtained.
  • the step of obtaining by inputting data includes: obtaining the demodulation reference signal of a specific port in a specific resource element in the multi-carrier symbol where the demodulation reference signal is located, and the specific resource element in the multi-carrier symbol where the data signal is located.
  • the data signal of a specific layer in the demodulation reference signal and the data signal are phase-rotated to obtain the phase-rotated signal, thereby avoiding the increase in signal amplitude and reducing the peak-to-average ratio, while minimizing the introduction of nonlinear distortion and band. External interference does not cause signal quality degradation.
  • the number of ports of the DMRS signal is 3 and 4, and the number of ports of the data signal is also 3 and 4, which is the same as the number of ports of the DMRS signal.
  • the specific port number of the specific port is the same as the specific layer number of the specific layer, thereby achieving synchronous rotation of the demodulation reference signal and the data signal, avoiding an increase in signal amplitude and reducing the peak-to-average ratio, while maximizing the It may not introduce nonlinear distortion and out-of-band interference, and does not cause signal quality degradation.
  • the phase rotation amount e j2 ⁇ k ⁇ /N is introduced, and the phase rotation angle is 2 ⁇ k ⁇ /N.
  • the phase rotation angle is related to the RE position k and port number ⁇ of the DMRS.
  • the port number ⁇ corresponds to the layer number of the data signal, and the data signal is phase-rotated.
  • the data rotation step includes: performing phase rotation on the demodulation reference signal with respect to the resource element position and port number of the demodulation reference signal to obtain the phase-rotated demodulation reference signal; and with respect to the resource elements of the data signal. position and layer number, phase-rotate the data signal, and obtain the phase-rotated data signal, thereby synchronously rotating the DMRS signal and the data signal to avoid increasing the signal amplitude and reducing the peak-to-average ratio, while minimizing the introduction of nonlinear distortion and Out-of-band interference does not cause signal quality degradation.
  • the phase rotation amount e j2 ⁇ k ⁇ /N is introduced, and the phase rotation angle is 2 ⁇ k ⁇ /N.
  • the phase rotation angle is linearly related to the DMRS RE position k and port number ⁇ .
  • the port number ⁇ of the DMRS signal corresponds to the layer number of the data signal, so the phase rotation angle and the layer number of the data signal are also linearly related.
  • the phase rotation angle of the demodulation reference signal is linearly related to the resource element position of the demodulation reference signal; and/or the phase rotation angle of the demodulation reference signal is linearly related to the port number of the demodulation reference signal; and /or the phase rotation angle of the data signal is linearly related to the resource element position of the data signal; and/or the phase rotation angle of the data signal is linearly related to the layer number of the data signal, thereby synchronously rotating the DMRS signal and the data signal to avoid signal amplitude
  • the value increases, reducing the peak-to-average ratio, while minimizing the introduction of nonlinear distortion and out-of-band interference, without causing a reduction in signal quality.
  • the DMRS signal is located in the third OFDM symbol of the slot, and the data signal is located in other OFDM symbols of the slot.
  • the demodulation reference signal and the data signal are phase-rotated respectively to avoid increasing the signal amplitude and reducing the peak-to-average ratio, and at the same time, as much as possible No nonlinear distortion and out-of-band interference are introduced, and no signal quality is reduced.
  • FIG. 3 shows an exemplary schematic diagram of a peak-to-average ratio reduction method according to another embodiment of the present disclosure.
  • the method for reducing the peak-to-average ratio includes step S301 in addition to the same steps S201 and S202 as in FIG. 2 .
  • step S301 the phase-rotated data is multiplied by the precoding matrix to obtain antenna data.
  • Step S301 is an antenna data calculation step.
  • the method also includes: an antenna data calculation step, multiplying the phase-rotated data by a precoding matrix to obtain antenna data, thereby reducing the peak-to-average ratio of DMRS symbols by about 2dB, and reducing the peak-to-average ratio as much as possible. No nonlinear distortion and out-of-band interference are introduced, and no signal quality is reduced.
  • port CSIRS is the number of ports used in CSIRS measurement, which is 8.
  • FIG. 4 shows a structural block diagram of a peak-to-average ratio reduction device according to an embodiment of the present disclosure.
  • the peak-to-average ratio reduction device 400 includes: an input data acquisition module 401 and a data rotation module 402 .
  • the input data acquisition module 401 is used to acquire input data of a specific dimension in a specific resource element of a specific multi-carrier symbol
  • the data rotation module 402 is used to perform phase rotation on the input data according to the resource element position and specific dimensions of the input data to obtain phase-rotated data.
  • an input data acquisition module is used to obtain input data of a specific dimension in a specific resource element of a specific multi-carrier symbol; a data rotation module is used to perform the input data on the resource element position and specific dimensions of the input data.
  • the data is phase-rotated to obtain the phase-rotated data, thereby avoiding an increase in signal amplitude and reducing the peak-to-average ratio, while at the same time minimizing the introduction of nonlinear distortion and out-of-band interference, resulting in no degradation of signal quality.
  • the input data acquisition module is used to: acquire the demodulation reference signal of a specific port in a specific resource element in the multi-carrier symbol where the demodulation reference signal is located, so as to reduce the peak value after phase rotation of the DMRS signal. average ratio, while minimizing the introduction of nonlinear distortion and out-of-band interference, without causing a reduction in signal quality.
  • the data rotation module is used to: perform phase rotation on the demodulation reference signal according to the resource element position and port number of the demodulation reference signal to obtain the phase-rotated demodulation reference signal, thereby avoiding an increase in signal amplitude. , reduce the peak-to-average ratio, while minimizing the introduction of nonlinear distortion and out-of-band interference, without causing a reduction in signal quality.
  • the phase rotation angle of the phase rotation is linearly related to the resource element position of the demodulation reference signal; and/or the phase rotation angle of the phase rotation is linearly related to the port number of the demodulation reference signal, thereby avoiding the signal amplitude.
  • the input data acquisition module is used to: obtain the demodulation reference signal of a specific port in a specific resource element in the multi-carrier symbol where the demodulation reference signal is located, and the specific resource in the multi-carrier symbol where the data signal is located.
  • the data signal of a specific layer in the element is phase-rotated on both the demodulation reference signal and the data signal to obtain the phase-rotated signal, thereby avoiding the increase in signal amplitude and reducing the peak-to-average ratio, while minimizing the introduction of nonlinear distortion and Out-of-band interference does not cause signal quality degradation.
  • the specific port number of the specific port is the same as the specific layer number of the specific layer, thereby achieving synchronous rotation of the demodulation reference signal and the data signal, avoiding an increase in signal amplitude and reducing the peak-to-average ratio, while minimizing the risk of Introduce nonlinear distortion and out-of-band interference without causing signal quality degradation.
  • the demodulation reference signal and the data signal are phase-rotated respectively to avoid increasing the signal amplitude and reducing the peak-to-average ratio, and at the same time, as much as possible No nonlinear distortion and out-of-band interference are introduced, and no signal quality is reduced.
  • FIG. 5 shows a structural block diagram of a peak-to-average ratio reduction device according to another embodiment of the present disclosure.
  • the peak-to-average ratio reduction device 500 includes, in addition to the same input data acquisition module 401 and data rotation module 402 as in FIG. 4 , an antenna data calculation module 501 .
  • the antenna data calculation module 501 is used to multiply the phase-rotated data by a precoding matrix to obtain antenna data.
  • the antenna data calculation module is used to multiply the phase-rotated data by the precoding matrix to obtain the antenna data, thereby reducing the peak-to-average ratio of the DMRS symbols by about 2dB and reducing the peak-to-average ratio while minimizing the risk. Introduce nonlinear distortion and out-of-band interference without causing signal quality degradation.
  • the input data acquisition module 401, the data rotation module 402, and the antenna data calculation module 501 can respectively be one or more processors or controllers with communication interfaces that can implement communication protocols. If necessary, It may include memory and related interfaces, system transmission buses, etc.; the processor or controller executes program-related codes to implement corresponding functions.
  • the input data acquisition module 401, the data rotation module 402, and the antenna data calculation module 501 share an integrated chip or share devices such as processors and memories.
  • the shared processor or chip executes program-related codes to implement corresponding functions.
  • the precoding matrix is obtained based on the port number of the channel state information reference signal, thereby reducing the peak-to-average ratio of DMRS symbols by about 2dB and reducing the peak-to-average ratio while minimizing the introduction of nonlinear distortion and out-of-band interference. , without causing signal quality degradation.
  • the above-mentioned device may be implemented as part or all of an electronic device through software, hardware, or a combination of both.
  • Embodiments of the present disclosure provide a chip that includes the above-mentioned peak-to-average ratio reduction device.
  • the peak-to-average ratio reduction device can be implemented as part or all of the chip through software, hardware, or a combination of both.
  • FIG. 6 shows a structural block diagram of an electronic device according to an embodiment of the present disclosure.
  • the electronic device 600 includes a memory 601 and a processor 602.
  • the memory 601 is used to store one or more computer instructions, and the one or more computer instructions are executed by the processor 602. To achieve the following steps:
  • the input data acquisition step obtains input data of specific multi-carrier symbols and specific dimensions in specific resource elements
  • the data rotation step is to phase-rotate the input data according to the resource element position and specific dimensions of the input data to obtain phase-rotated data.
  • the step of obtaining the input data includes: obtaining the demodulation reference signal of a specific port in a specific resource element in the multi-carrier symbol where the demodulation reference signal is located.
  • the data rotation step includes: performing phase rotation on the demodulation reference signal with respect to the resource element position and port number of the demodulation reference signal to obtain a phase-rotated demodulation reference signal.
  • the phase rotation angle of the phase rotation is linearly related to the resource element position of the demodulation reference signal.
  • the phase rotation angle of the phase rotation is linearly related to the port number of the demodulation reference signal.
  • the input data acquisition step includes: acquiring the demodulation reference signal of a specific port in a specific resource element in the multi-carrier symbol where the demodulation reference signal is located, and
  • the data signal of a specific layer in a specific resource element in the multi-carrier symbol where the data signal is located is located.
  • the specific port number of the specific port is the same as the specific layer number of the specific layer.
  • the data rotation step includes: performing phase rotation on the demodulation reference signal with respect to the resource element position and port number of the demodulation reference signal to obtain a phase-rotated demodulation reference signal;
  • phase rotation is performed on the data signal to obtain a phase-rotated data signal.
  • the phase rotation angle of the demodulation reference signal is linearly related to the resource element position of the demodulation reference signal.
  • the phase rotation angle of the demodulation reference signal is linearly related to the port number of the demodulation reference signal; and/or
  • the phase rotation angle of the data signal is linearly related to the resource element position of the data signal; and/or
  • the phase rotation angle of the data signal is linearly related to the layer number of the data signal.
  • the demodulation reference signal and the data signal are located in different multi-carrier symbols.
  • the antenna data calculation step is to multiply the phase-rotated data by a precoding matrix to obtain antenna data.
  • the precoding matrix is obtained based on the number of ports of the channel state information reference signal.
  • FIG. 7 shows a schematic structural diagram of a computer system suitable for implementing methods according to embodiments of the present disclosure.
  • the computer system 700 includes a processing unit 701 that can perform the above-described implementation according to a program stored in a read-only memory (ROM) 702 or loaded from a storage portion 708 into a random access memory (RAM) 703 Various treatments in the example. In the RAM 703, various programs and data required for the operation of the computer system 700 are also stored.
  • the processing unit 701, ROM 702 and RAM 703 are connected to each other via a bus 704.
  • An input/output (I/O) interface 705 is also connected to bus 704.
  • the following components are connected to the I/O interface 705: an input section 706 including a keyboard, a mouse, etc.; an output section 707 including a cathode ray tube (CRT), a liquid crystal display (LCD), etc., speakers, etc.; and a storage section 708 including a hard disk, etc. ; and a communication section 709 including a network interface card such as a LAN card, a modem, etc.
  • the communication section 709 performs communication processing via a network such as the Internet.
  • Driver 710 is also connected to I/O interface 705 as needed.
  • Removable media 711 such as magnetic disks, optical disks, magneto-optical disks, semiconductor memories, etc.
  • the processing unit 701 can be implemented as a processing unit such as CPU, GPU, TPU, FPGA, NPU, etc.
  • the method described above may be implemented as a computer software program.
  • embodiments of the present disclosure include a computer program product including computer instructions that, when executed by a processor, implement the method steps described above.
  • the computer program product may be downloaded and installed from the network via communications portion 709 and/or installed from removable media 711 .
  • each block in the flowchart or block diagrams may represent a module, segment, or portion of code that contains one or more components for implementing the specified logical function(s).
  • Executable instructions may also be noted that, in some alternative implementations, the functions noted in the block may occur out of the order noted in the figures. For example, two blocks shown one after another may actually execute substantially in parallel, or they may sometimes execute in the reverse order, depending on the functionality involved.
  • each block of the block diagram and/or flowchart illustration, and combinations of blocks in the block diagram and/or flowchart illustration can be implemented by special purpose hardware-based systems that perform the specified functions or operations. , or can be implemented using a combination of specialized hardware and computer instructions.
  • the units or modules described in the embodiments of the present disclosure may be implemented in software or programmable hardware.
  • the described units or modules may also be provided in the processor, and the names of these units or modules do not constitute a limitation on the units or modules themselves under certain circumstances.
  • the present disclosure also provides a computer-readable storage medium.
  • the computer-readable storage medium may be the computer-readable storage medium included in the electronic device or computer system in the above embodiments; it may also exist independently. , a computer-readable storage medium that is not installed in the device.
  • the computer-readable storage medium stores one or more programs, which are used by one or more processors to perform the methods described in the present disclosure.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Radio Transmission System (AREA)
  • Digital Transmission Methods That Use Modulated Carrier Waves (AREA)

Abstract

本公开实施例公开了一种峰均比降低方法、装置、电子设备和可读存储介质。其中,峰均比降低方法包括:输入数据获取步骤,获取特定多载波符号,特定资源元素中的特定维度的输入数据;数据旋转步骤,针对输入数据的资源元素位置和特定维度,对输入数据进行相位旋转,得到相位旋转后数据,从而降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。

Description

峰均比降低方法、装置、电子设备和可读存储介质 技术领域
本公开涉及通信领域,具体涉及峰均比降低方法、装置、电子设备和可读存储介质。
背景技术
5G新空口(New Radio,NR)的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号的峰均比(即峰值功率和均值功率的比值)较高,会导致信号发射端的功率放大器出现非线性失真,降低信号质量。
现有的降峰均比的方法有硬消峰法、峰值窗函数法、峰值抵消法以及编码法。
硬削峰法的思想是剪切掉超过门限值的峰值,其可以将峰均比设置在预设范围之内,是一种非常简单、直接和有效的降低峰均比的技术。为了减轻直接硬削峰带来的带外干扰,可以把比较大的信号峰乘以适当的矩形窗函数,即为峰值窗函数法。采用峰值窗函数法将一个窗函数与信号叠加,超出窗口部分被剪切掉,使得带外辐射减轻。峰值抵消法通过将超过门限的信号峰值减去与输入信号频谱相匹配的谱状脉冲,从而实现降低信号峰均比的目的。恰当地选择参考函数,使所述参考函数与传输的OFDM信号具有大致相当的带宽,因此峰值抵消技术基本上不会带来任何带外干扰。编码法通过引入冗余信息位来构造具有较低峰均比的时域信号,编码法不仅能降低峰均比,还能获得前向纠错能力。
上述几种降峰均比的方法存在如下缺点:硬削峰法由于进行非线性变换容易造成限幅噪声的带外辐射和带内失真,使得系统的误码性能大幅下降。峰值窗函数法虽然能够减轻带外辐射但是加重了带内的失真。峰值抵消法虽然基本对带外不造成干扰,但会带来带内信号的失真。编码法通过遍历码字全集,搜索具有较低峰均比的码字进行传输会降低数据传输效率,并且码字较长时,即子载波数增加时,复杂度大大增加。此外,这些方法在射频处理中抑制数据符号的峰均比时已经得到应用,对这些方法的进一步改进将会增加射频处理的复杂度。在5G NR版本15(Release 15,R15)中,在承载有解调参考信号(Demodulation Reference Signal,DMRS)的OFDM符号上较容易出现高峰均比现象,因此有必要提供一种针对DMRS的降低峰均比的方法。
发明内容
为了解决相关技术中的问题,本公开实施例提供了一种峰均比降低方法、装置、电子设备和可读存储介质。
第一方面,本公开实施例中提供了一种峰均比降低方法,包括:
输入数据获取步骤,获取特定多载波符号的特定资源元素中的特定维度的输入数据;
数据旋转步骤,针对所述输入数据的资源元素位置和特定维度,对所述输入数据进行相位旋转,得到相位旋转后数据。
在本公开实施例中,本公开在第一方面的第一种实现方式中,
所述输入数据获取步骤包括:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号。
在本公开实施例中,本公开在第一方面的第二种实现方式中,
所述数据旋转步骤包括:针对所述解调参考信号的资源元素位置和端口号,对所述解调参考信号进行相位旋转,得到相位旋转后解调参考信号。
在本公开实施例中,在本公开实施例中,本公开在第一方面的第三种实现方式中,
所述相位旋转的相位旋转角和所述解调参考信号的资源元素位置线性相关;和/或
所述相位旋转的相位旋转角和所述解调参考信号的端口号线性相关。
在本公开实施例中,本公开在第一方面的第四种实现方式中,
所述输入数据获取步骤包括:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号,和
数据信号所在的多载波符号中,特定资源元素中的特定层的数据信号。
在本公开实施例中,本公开在第一方面的第五种实现方式中,
所述特定端口的特定端口数和所述特定层的特定层数相同。
在本公开实施例中,本公开在第一方面的第六种实现方式中,
所述数据旋转步骤包括:针对所述解调参考信号的资源元素位置和端口号,对所述解调参考信号进行相位旋转,得到相位旋转后解调参考信号;和
针对所述数据信号的资源元素位置和层号,对所述数据信号进行相位旋转,得到相位旋转后数据信号。
在本公开实施例中,本公开在第一方面的第七种实现方式中,
所述解调参考信号的相位旋转角和所述解调参考信号的资源元素位置线性相关;和/或
所述解调参考信号的相位旋转角和所述解调参考信号的端口号线性相关;和/或
所述数据信号的相位旋转角和所述数据信号的资源元素位置线性相关;和/或
所述数据信号的相位旋转角和所述数据信号的层号线性相关。
在本公开实施例中,本公开在第一方面的第八种实现方式中,
所述解调参考信号和所述数据信号位于不同的多载波符号中。
在本公开实施例中,本公开在第一方面的第九种实现方式中,还包括:
天线数据计算步骤,对所述相位旋转后数据乘以预编码矩阵,得到天线数据。
在本公开实施例中,本公开在第一方面的第十种实现方式中,所述预编码矩阵基于信道状态信息参考信号的端口数得到。
第二方面,本公开实施例中提供了一种峰均比降低装置,包括:
输入数据获取模块,用于获取特定多载波符号的特定资源元素中的特定维度的输入数据;
数据旋转模块,用于针对所述输入数据的资源元素位置和特定维度,对所述输入数据进行相位旋转,得到相位旋转后数据。
在本公开实施例中,本公开在第二方面的第一种实现方式中,所述输入数据获取模块用于:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号。
在本公开实施例中,本公开在第二方面的第二种实现方式中,所述数据旋转模块用于:针对所述解调参考信号的资源元素位置和端口号,对所述解调参考信号进行相位旋转,得到相位旋转后解调参考信号。
在本公开实施例中,本公开在第二方面的第三种实现方式中,所述相位旋转的相位旋转角和所述解调参考信号的资源元素位置线性相关;和/或
所述相位旋转的相位旋转角和所述解调参考信号的端口号线性相关。
在本公开实施例中,本公开在第二方面的第四种实现方式中,所述输入数据获取模块用于:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号,和
数据信号所在的多载波符号中,特定资源元素中的特定层的数据信号。
在本公开实施例中,本公开在第二方面的第五种实现方式中,所述特定端口的特定端口数和所述特定层的特定层数相同。
在本公开实施例中,本公开在第二方面的第六种实现方式中,所述数据旋转模块用于:针对所述解调参考信号的资源元素位置和端口号,对所述解调参考信号进行相位旋转,得到相位旋转后解调参考信号;和
针对所述数据信号的资源元素位置和层号,对所述数据信号进行相位旋转,得到相位旋转后数据信号。
在本公开实施例中,本公开在第二方面的第七种实现方式中,所述解调参考信号的相位旋转角和所述解调参考信号的资源元素位置线性相关;和/或
所述解调参考信号的相位旋转角和所述解调参考信号的端口号线性相关;和/或
所述数据信号的相位旋转角和所述数据信号的资源元素位置线性相关;和/或
所述数据信号的相位旋转角和所述数据信号的层号线性相关。
在本公开实施例中,本公开在第二方面的第八种实现方式中,所述解调参考信号和所述数据信号位于不同的多载波符号中。
在本公开实施例中,本公开在第二方面的第九种实现方式中,还包括:
天线数据计算模块,用于对所述相位旋转后数据乘以预编码矩阵,得到天线数据。
在本公开实施例中,本公开在第二方面的第十种实现方式中,所述预编码矩阵基于信道状态信息参考信号的端口数得到。
第三方面,本公开实施例提供了一种电子设备,包括存储器和处理器,其中,所述存储器用于存储一条或多条计算机指令,其中,所述一条或多条计算机指令被所述处理器执行以实现如第一方面至第一方面的第十种实现方式、第二方面至第二方面的第十种实现方式任一项所述的方法。
第四方面,本公开实施例中提供了一种计算机可读存储介质,其上存储有计算机指令,该计算机指令被处理器执行时实现如第一方面至第一方面的第十种实现方式、第二方面至第二方面的第十种实现方式所述的方法。
第五方面,本公开实施例中提供了一种芯片,包括根据第二方面中任一项所述的方法。
本公开实施例提供的技术方案可以包括以下有益效果:
根据本公开实施例提供的技术方案,峰均比降低方法包括:输入数据获取步骤,获取特定多载波符号的特定资源元素中的特定维度的输入数据;数据旋转步骤,针对输入数据的资源元素位置和特定维度,对输入数据进行相位旋转,得到相位旋转后数据,从而降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
结合附图,通过以下非限制性实施方式的详细描述,本公开的其它特征、目的和优点将变得更加明显。在附图中:
图1示出根据本公开一实施例的解调参考信号的示例性示意图;
图2示出根据本公开一实施例的峰均比降低方法的示例性示意图;
图3示出根据本公开另一实施例的峰均比降低方法的示例性示意图;
图4示出根据本公开一实施例的峰均比降低装置的结构框图;
图5示出根据本公开另一实施例的峰均比降低装置的结构框图;
图6示出根据本公开的实施例的电子设备的结构框图;
图7示出适于用来实现根据本公开实施例的方法的计算机系统的结构示意图。
具体实施方式
下文中,将参考附图详细描述本公开的示例性实施方式,以使本领域技术人员可容易地实现它们。此外,为了清楚起见,在附图中省略了与描述示例性实施方式无关的部分。
在本公开中,应理解,诸如“包括”或“具有”等的术语旨在指示本说明书中所公开的标签、数字、步骤、行为、部件、部分或其组合的存在,并且不欲排除一个或多个其他标签、数字、步骤、行为、部件、部分或其组合存在或被添加的可能性。
另外还需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的标签可以相互组合。下面将参考附图并结合实施例来详细说明本公开。
示例性地,5G新空口(New Radio,NR)的正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)信号的峰均比(即峰值功率和均值功率的比值)较高,会导致信号发射端的功率放大器出现非线性失真,降低信号质量。
现有的降峰均比的方法有硬消峰法、峰值窗函数法、峰值抵消法以及编码法。
硬削峰法的思想是剪切掉超过门限值的峰值,其可以将峰均比设置在预设范围之内,是一种非常简单、直接和有效的降低峰均比的技术。为了减轻直接硬削峰带来的带外干扰,可以把比较大的信号峰乘以适当的矩形窗函数,即为峰值窗函数法。采用峰值窗函数法将一个窗函数与信号叠加,超出窗口部分被剪切掉,使得带外辐射减轻。峰值抵消法通过将超过门限的信号峰值减去与输入信号频谱相匹配的谱状脉冲,从而实现降低信号峰均比的目的。恰当地选择参考函数,使其与传输的OFDM信号具有大致相当的带宽,因此峰值抵消技术基本上不会带来任何带外干扰。编码法通过引入冗余信息位来构造具有较低峰均比的时域信号,编码法不仅能降低峰均比,还能获得前向纠错能力。
上述几种降峰均比的方法存在如下缺点:硬削峰法由于进行非线性变换容易造成限幅噪声的带外辐射和带内失真,使得系统的误码性能大幅下降。峰值窗函数法虽然能够减轻带外辐射但是加重了带内的失真。峰值抵消法虽然基本对带外不造成干扰,但会带来带内信号的失真。编码法通过遍历码字全集,搜索具有较低峰均比的码字进行传输会降低数据传输效率,并且码字较长时,即子载波数增加时,复杂度大大增加。此外,这些方法在射频处理中抑制数据符号的峰均比时已经得到应用,对这些方法的进一步改进将会增加射频处理的复杂度。在5GNR R15(Release 15)中,在承载解调参考信号(Demodulation Reference Signal,DMRS)的OFDM信号上较容易出现高峰均比现象,因此有必要提供一种针对DMRS的降低峰均比的方法。
为解决上述问题,本公开提出了一种峰均比降低方法、装置、电子设备和可读存储介质。
图1示出根据本公开一实施例的解调参考信号的示例性示意图。
本领域普通技术人员可以理解,图1示例性示出了解调参考信号,而不构成对本公开的限定。
图1具体示出了在5GNR的1个资源块(Resource Block,RB)中的解调参考信号的分布。
如图1所示,资源元素(Resource Element,RE)号为0、2、4、......、10的解调参考信号采用端口(port)0、1;资源元素(Resource Element,RE)号为1、3、5、......、11的解调参考信号采用端口(port)2、3。资源元素是在特定多载波符号中的子载波。
在本公开实施例中,采用端口0、1的0、2、4、......、10资源元素号的解调参考信号在同一码分复用(Code Division Multiplexing,CDM)组中,采用码分复用(Code Division Multiplexing,CDM)方式,共享相同的RE位置。采用端口2、3的1、3、5、......、11资源元素号的解调参考信号在同一CDM组中,采用码分复用(Code Division Multiplexing,CDM)方式,共享相同的RE位置。
R15版本DMRS导频序列由伪随机序列产生。随机序列的初始化表达式为
Figure PCTCN2022125829-appb-000001
其中,
Figure PCTCN2022125829-appb-000002
为一个时隙(slot)中的OFDM符号数,
Figure PCTCN2022125829-appb-000003
为一个无线帧中slot的个数,l为DMRS所在的符号索引,
Figure PCTCN2022125829-appb-000004
n SCID为高层配置的参数。
port0与port1是同一CDM组,port2与port3是同一CDM组,但是两个CDM组所使用的伪随机序列都是由上式产生,其中
Figure PCTCN2022125829-appb-000005
l,
Figure PCTCN2022125829-appb-000006
n SCID
Figure PCTCN2022125829-appb-000007
这几个参数对于同一符 号来说都是一样的,因此两个CDM组的导频序列是完全一样。由此生成的OFDM时域信号,较易出现较高的峰均比。
在本公开实施例中,引入相位旋转量e j2πkθ/N,相位旋转角为2πkθ/N。其中k为RE的序号(从0开始),θ为端口的序号,即port的编号,N为逆快速傅里叶变换(Inverse Fast Fourier Transform,IFFT)点数。设导频数据Pilot的维度为Re num×port,其中Re num是DMRS所占的RE数,port数是端口个数,例如图1中示出的4端口。将DMRS信号乘以相位旋转量,得到相位旋转后数据
Figure PCTCN2022125829-appb-000008
在上式中,左侧矩阵为导频矩阵,共Re num行、4列。其中的
Figure PCTCN2022125829-appb-000009
是第k个RE,第θ端口的DMRS信号。右侧矩阵为相位旋转矩阵,共Re num行、4列。左侧矩阵和右侧矩阵的元素采用位置相对应的点乘,而不是矢量乘法。相位旋转角2πkθ/N与端口的序号θ线性相关,也与RE的序号k线性相关。
在本公开实施例中,对于相同的port,例如port0,不同的RE,例如RE0、2、......、10,k值不同,因此相位旋转角不同,在同一个port进行IFFT叠加时减小了同相叠加的概率,因此减小峰均比。对于相同的RE,例如RE0,不同的port,例如port0、1,θ值不同,因此相位旋转角不同,相当于让两个port之间错开一个角度从而使叠加后的幅值减少,因此减小峰均比。对于不同CDM组,即不同port,不同RE,由于使用了前述相同的导频序列,会造成叠加后幅值升高,本公开通过旋转角和port序号、RE序号线性相关,将相同的序列在叠加时错开一个角度,从而降低叠加后的幅值,降低峰均比。
在本公开实施例中,也可以对包含DMRS信号和数据信号的多个OFDM符号进行相位旋转。
在本公开实施例中,在一个slot中需要发送的OFDM符号为14个,其中DMRS信号在第3个OFDM符号上,数据信号占用除第3OFDM符号外的K个OFDM符号,数据信号的发送层数为3,DMRS需要选择3个port,这里选择port0、port1、port2。DMRS的port数和数据信号的层数相同。
在本公开实施例中,数据信号的发送层数和端口数相同,而且数据信号的发送层序号和端口序号 相同。特定维度可以是数据信号的发送层序号,或DMRS信号的端口序号。
在本公开实施例中,对包含DMRS和数据信号的OFDM符号相位旋转,得到相位旋转后数据。相位旋转后数据乘以预编码矩阵,得到天线数据。天线数据可以是对应物理天线的天线数据,也可以是对应虚拟天线的天线数据。
预编码矩阵PMI的维度为layer*port CSIRS,其中layer为数据的层数,等于3,和DMRS端口数相同;port CSIRS为信道状态信息参考信号(Channel State Information Reference Signal,CSIRS)测量时所使用的port数,这里设定为8port,和天线的维度相同。为了降低DMRS在进行PMI赋形时所引起的高峰均比,在做赋形前需要乘以旋转相位e j2πkθ/N来降低DMRSport之间同相叠加的概率。由于在接收端是利用DMRS信号来解调数据信号,因此需要对3层的数据也都乘以对应的旋转相位e j2πkθ/N,以满足DMRS信号和数据信号所经历的信道是一致的。
在本公开实施例中,DMRS信号和数据信号进行相位旋转得到相位旋转信号,相位旋转信号乘以预编码矩阵得到天线数据的完整过程的表达式为:
Figure PCTCN2022125829-appb-000010
其中,左侧矩阵data包含DMRS和数据信号,左侧矩阵的Re num是DMRS所占RE个数;sym是DMRS和数据信号所占的OFDM符号数;layer是层数,为3。中间矩阵是Re num行、port列,即Re num行、3列的相位旋转矩阵。右侧矩阵
Figure PCTCN2022125829-appb-000011
是通过CSIRS测量旋转的预编码矩阵。port CSIRS为CSIRS测量时所使用的port数,为8。
在本公开实施例中,通过上述方式,可以将DMRS符号的峰均比降低2dB左右。
在本公开实施例中,也可以采用DMRS为4端口,即port0、port1、port2、port3,而数据信号相应采用4层的方式,layer=4。port CSIRS为CSIRS测量时所使用的port,这里假设为8。
DMRS信号和数据信号进行相位旋转得到相位旋转信号,相位旋转信号乘以预编码矩阵得到天线数据的完整过程的表达式为:
Figure PCTCN2022125829-appb-000012
其中,Re num为DRMS所占的RE数,layer为4,port为4,port CSIRS为8,中间矩阵是Re num行、port列,即Re num行、4列的相位旋转矩阵。
在本公开实施例中,通过上述方式,可以将DMRS符号的峰均比降低2dB左右。
本领域普通技术人员可以理解,port数、层数也可以为其它数值,例如比本公开所示出的更大的数值,port CSIRS也可以为其它数值,例如比本公开所实处的更大的数值,或适用于本方法的其它场景,本公开对此不作限定。
图2示出根据本公开一实施例的峰均比降低方法的示例性示意图。
如图2所示,峰均比降低方法包括:步骤S201、S202。
在步骤S201中,获取特定多载波符号的特定资源元素中的特定维度的输入数据。
在步骤S202中,针对输入数据的资源元素位置和特定维度,对输入数据进行相位旋转,得到相位旋转后数据。
步骤S201是输入数据获取步骤,步骤S202是数据旋转步骤。
根据本公开实施例,通过输入数据获取步骤,获取特定多载波符号的特定资源元素中的特定维度的输入数据;数据旋转步骤,针对输入数据的资源元素位置和特定维度,对输入数据进行相位旋转,得到相位旋转后数据,从而降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
在本公开实施例中,如图1所示,获取DMRS所在OFDM符号中,RE0~11中,port0、1、2、3的DMRS信号。
根据本公开实施例,通过输入数据获取步骤包括:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号,从而在对DMRS信号进行相位旋转后,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
在本公开实施例中,如前所述,引入相位旋转量e j2πkθ/N,相位旋转角为2πkθ/N。相位旋转角和DMRS的RE位置k、端口号θ相关。
根据本公开实施例,通过数据旋转步骤包括:针对解调参考信号的资源元素位置和端口号,对解调参考信号进行相位旋转,得到相位旋转后解调参考信号,从而避免信号幅值增加,降低峰均比,同 时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
在本公开实施例中,如前所述,相位旋转角为2πkθ/N。相位旋转角和DMRS的RE位置k、端口号θ线性相关。
在本公开实施例中,数据信号的发送层数和端口数相同,而且数据信号的发送层序号和端口序号相同。特定维度可以是数据信号的发送层序号,或DMRS信号的端口序号。
根据本公开实施例,通过相位旋转的相位旋转角和解调参考信号的资源元素位置线性相关;和/或相位旋转的相位旋转角和解调参考信号的端口号线性相关,从而避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
在本公开实施例中,如前所述,除了单独获取DMRS信号所在OFDM符号数据,也可以获取包含DMRS信号和数据信号所在的OFDM符号数据。
根据本公开实施例,通过输入数据获取步骤包括:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号,和数据信号所在的多载波符号中,特定资源元素中的特定层的数据信号,从而对解调参考信号和数据信号均进行相位旋转,得到相位旋转后信号,从而避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
在本公开实施例中,如前所述,DMRS信号的端口数为3、4,数据信号的端口数也为3、4,和DMRS信号的端口数相同。
根据本公开实施例,通过特定端口的特定端口数和所述特定层的特定层数相同,从而实现解调参考信号和数据信号的同步旋转,避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
在本公开实施例中,如前所述,引入相位旋转量e j2πkθ/N,相位旋转角为2πkθ/N。相位旋转角和DMRS的RE位置k、端口号θ相关。而端口号θ和数据信号的层号相对应一致,对数据信号进行相位旋转。
根据本公开实施例,通过数据旋转步骤包括:针对解调参考信号的资源元素位置和端口号,对解调参考信号进行相位旋转,得到相位旋转后解调参考信号;和针对数据信号的资源元素位置和层号,对数据信号进行相位旋转,得到相位旋转后数据信号,从而对DMRS信号和数据信号进行同步旋转,避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
在本公开实施例中,如前所述,引入相位旋转量e j2πkθ/N,相位旋转角为2πkθ/N。相位旋转角和DMRS的RE位置k、端口号θ线性相关。而DMRS信号的端口号θ和数据信号的层号对应一致,因此相位旋转角和数据信号的层号也线性相关。
根据本公开实施例,通过解调参考信号的相位旋转角和解调参考信号的资源元素位置线性相关;和/或解调参考信号的相位旋转角和解调参考信号的端口号线性相关;和/或数据信号的相位旋转角和数据信号的资源元素位置线性相关;和/或数据信号的相位旋转角和数据信号的层号线性相关,从而对DMRS信号和数据信号进行同步旋转,避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
在本公开实施例中,如前所述,DMRS信号位于slot的第3个OFDM符号,数据信号位于slot的其它OFDM符号。
根据本公开实施例,通过解调参考信号和数据信号位于不同的多载波符号中,从而对解调参考信号和数据信号分别进行相位旋转,避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
图3示出根据本公开另一实施例的峰均比降低方法的示例性示意图。
如图3所示,峰均比降低方法除了包含和图2相同的步骤S201、S202,还包括步骤S301。
在步骤S301中,对相位旋转后数据乘以预编码矩阵,得到天线数据。
步骤S301是天线数据计算步骤。
根据本公开实施例,通过还包括:天线数据计算步骤,对相位旋转后数据乘以预编码矩阵,得到天线数据,从而将DMRS符号的峰均比降低2dB左右,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
在本公开实施例中,如前所述,
Figure PCTCN2022125829-appb-000013
是通过CSIRS测量的预编码矩阵。port CSIRS为CSIRS测量时所使用的port数,为8。
图4示出根据本公开一实施例的峰均比降低装置的结构框图。
如图4所示,峰均比降低装置400包括:输入数据获取模块401、数据旋转模块402。
输入数据获取模块401,用于获取特定多载波符号的特定资源元素中的特定维度的输入数据;
数据旋转模块402,用于针对输入数据的资源元素位置和特定维度,对输入数据进行相位旋转,得到相位旋转后数据。
根据本公开实施例,通过输入数据获取模块,用于获取特定多载波符号的特定资源元素中的特定维度的输入数据;数据旋转模块,用于针对输入数据的资源元素位置和特定维度,对输入数据进行相位旋转,得到相位旋转后数据,从而避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
根据本公开实施例,通过输入数据获取模块用于:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号,从而在对DMRS信号进行相位旋转后,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
根据本公开实施例,通过数据旋转模块用于:针对解调参考信号的资源元素位置和端口号,对解调参考信号进行相位旋转,得到相位旋转后解调参考信号,从而避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
根据本公开实施例,通过相位旋转的相位旋转角和解调参考信号的资源元素位置线性相关;和/或相位旋转的相位旋转角和解调参考信号的端口号线性相关,从而避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
根据本公开实施例,通过输入数据获取模块用于:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号,和数据信号所在的多载波符号中,特定资源元素中的特定层 的数据信号,从而对解调参考信号和数据信号均进行相位旋转,得到相位旋转后信号,从而避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
根据本公开实施例,通过特定端口的特定端口数和特定层的特定层数相同,从而实现解调参考信号和数据信号的同步旋转,避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
根据本公开实施例,通过解调参考信号和数据信号位于不同的多载波符号中,从而对解调参考信号和数据信号分别进行相位旋转,避免信号幅值增加,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
图5示出根据本公开另一实施例的峰均比降低装置的结构框图。
如图5所示,峰均比降低装置500除了包括和图4相同的输入数据获取模块401、数据旋转模块402,还包括:天线数据计算模块501。
天线数据计算模块501,用于对所述相位旋转后数据乘以预编码矩阵,得到天线数据。
根据本公开实施例,通过天线数据计算模块,用于对相位旋转后数据乘以预编码矩阵,得到天线数据,从而将DMRS符号的峰均比降低2dB左右,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
在本公开实施例中,所述输入数据获取模块401、数据旋转模块402、天线数据计算模块501分别可以是具有通信接口能够实现通信协议的一个或多个处理器或者控制器,如有需要还可以包括存储器及相关的接口、系统传输总线等;所述处理器或者控制器执行程序相关的代码实现相应的功能。或者,可替换的方案为,所述输入数据获取模块401、数据旋转模块402、天线数据计算模块501共享一个集成芯片或者共享处理器、存储器等设备。所述共享的处理器或者芯片执行程序相关的代码实现相应的功能。
根据本公开实施例,通过预编码矩阵基于信道状态信息参考信号的端口数得到,从而将DMRS符号的峰均比降低2dB左右,降低峰均比,同时尽可能不引入非线性失真和带外干扰,不造成信号质量降低。
根据本公开的实施例,上述装置可以通过软件、硬件或者两者的结合实现成为电子设备的部分或者全部。
本公开实施例提供了一种芯片,所述芯片包括上述峰均比降低装置,所述峰均比降低装置可以通过软件、硬件或者两者的结合实现成为芯片的部分或者全部。
图6示出根据本公开的实施例的电子设备的结构框图。
如图6所示,所述电子设备600包括存储器601和处理器602,其中,存储器601用于存储一条或多条计算机指令,其中,所述一条或多条计算机指令被所述处理器602执行以实现以下步骤:
输入数据获取步骤,获取特定多载波符号,特定资源元素中的特定维度的输入数据;
数据旋转步骤,针对所述输入数据的资源元素位置和特定维度,对所述输入数据进行相位旋转,得到相位旋转后数据。
在本公开实施例中,所述输入数据获取步骤包括:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号。
在本公开实施例中,所述数据旋转步骤包括:针对所述解调参考信号的资源元素位置和端口号, 对所述解调参考信号进行相位旋转,得到相位旋转后解调参考信号。
在本公开实施例中,所述相位旋转的相位旋转角和所述解调参考信号的资源元素位置线性相关;和/或
所述相位旋转的相位旋转角和所述解调参考信号的端口号线性相关。
在本公开实施例中,所述输入数据获取步骤包括:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号,和
数据信号所在的多载波符号中,特定资源元素中的特定层的数据信号。
在本公开实施例中,所述特定端口的特定端口数和所述特定层的特定层数相同。
在本公开实施例中,所述数据旋转步骤包括:针对所述解调参考信号的资源元素位置和端口号,对所述解调参考信号进行相位旋转,得到相位旋转后解调参考信号;和
针对所述数据信号的资源元素位置和层号,对所述数据信号进行相位旋转,得到相位旋转后数据信号。
在本公开实施例中,所述解调参考信号的相位旋转角和所述解调参考信号的资源元素位置线性相关;和/或
所述解调参考信号的相位旋转角和所述解调参考信号的端口号线性相关;和/或
所述数据信号的相位旋转角和所述数据信号的资源元素位置线性相关;和/或
所述数据信号的相位旋转角和所述数据信号的层号线性相关。
在本公开实施例中,所述解调参考信号和所述数据信号位于不同的多载波符号中。
在本公开实施例中,还包括:
天线数据计算步骤,对所述相位旋转后数据乘以预编码矩阵,得到天线数据。
在本公开实施例中,所述预编码矩阵基于信道状态信息参考信号的端口数得到。
图7示出适于用来实现根据本公开实施例的方法的计算机系统的结构示意图。
如图7所示,计算机系统700包括处理单元701,其可以根据存储在只读存储器(ROM)702中的程序或者从存储部分708加载到随机访问存储器(RAM)703中的程序而执行上述实施例中的各种处理。在RAM703中,还存储有计算机系统700操作所需的各种程序和数据。处理单元701、ROM702以及RAM703通过总线704彼此相连。输入/输出(I/O)接口705也连接至总线704。
以下部件连接至I/O接口705:包括键盘、鼠标等的输入部分706;包括诸如阴极射线管(CRT)、液晶显示器(LCD)等以及扬声器等的输出部分707;包括硬盘等的存储部分708;以及包括诸如LAN卡、调制解调器等的网络接口卡的通信部分709。通信部分709经由诸如因特网的网络执行通信处理。驱动器710也根据需要连接至I/O接口705。可拆卸介质711,诸如磁盘、光盘、磁光盘、半导体存储器等等,根据需要安装在驱动器710上,以便于从其上读出的计算机程序根据需要被安装入存储部分708。其中,所述处理单元701可实现为CPU、GPU、TPU、FPGA、NPU等处理单元。
特别地,根据本公开的实施例,上文描述的方法可以被实现为计算机软件程序。例如,本公开的实施例包括一种计算机程序产品,其包括计算机指令,该计算机指令被处理器执行时实现上文所述的方法步骤。在这样的实施例中,该计算机程序产品可以通过通信部分709从网络上被下载和安装, 和/或从可拆卸介质711被安装。
附图中的流程图和框图,图示了按照本公开各种实施例的系统、方法和计算机程序产品的可能实现的体系架构、功能和操作。在这点上,流程图或框图中的每个方框可以代表一个模块、程序段或代码的一部分,所述模块、程序段或代码的一部分包含一个或多个用于实现规定的逻辑功能的可执行指令。也应当注意,在有些作为替换的实现中,方框中所标注的功能也可以以不同于附图中所标注的顺序发生。例如,两个接连地表示的方框实际上可以基本并行地执行,它们有时也可以按相反的顺序执行,这依所涉及的功能而定。也要注意的是,框图和/或流程图中的每个方框、以及框图和/或流程图中的方框的组合,可以用执行规定的功能或操作的专用的基于硬件的系统来实现,或者可以用专用硬件与计算机指令的组合来实现。
描述于本公开实施例中所涉及到的单元或模块可以通过软件的方式实现,也可以通过可编程硬件的方式来实现。所描述的单元或模块也可以设置在处理器中,这些单元或模块的名称在某种情况下并不构成对该单元或模块本身的限定。
作为另一方面,本公开还提供了一种计算机可读存储介质,该计算机可读存储介质可以是上述实施例中电子设备或计算机系统中所包含的计算机可读存储介质;也可以是单独存在,未装配入设备中的计算机可读存储介质。计算机可读存储介质存储有一个或者一个以上程序,所述程序被一个或者一个以上的处理器用来执行描述于本公开的方法。
以上描述仅为本公开的较佳实施例以及对所运用技术原理的说明。本领域技术人员应当理解,本公开中所涉及的发明范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离所述发明构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本公开中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (25)

  1. 一种峰均比降低方法,其特征在于,包括:
    输入数据获取步骤,获取特定多载波符号的特定资源元素中的特定维度的输入数据;
    数据旋转步骤,针对所述输入数据的资源元素位置和特定维度,对所述输入数据进行相位旋转,得到相位旋转后数据。
  2. 根据权利要求1所述的方法,其特征在于,
    所述输入数据获取步骤包括:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号。
  3. 根据权利要求2所述的方法,其特征在于,
    所述数据旋转步骤包括:针对所述解调参考信号的资源元素位置和端口号,对所述解调参考信号进行相位旋转,得到相位旋转后解调参考信号。
  4. 根据权利要求3所述的方法,其特征在于,
    所述相位旋转的相位旋转角和所述解调参考信号的资源元素位置线性相关;和/或
    所述相位旋转的相位旋转角和所述解调参考信号的端口号线性相关。
  5. 根据权利要求1所述的方法,其特征在于,
    所述输入数据获取步骤包括:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号,和
    数据信号所在的多载波符号中,特定资源元素中的特定层的数据信号。
  6. 根据权利要求5所述的方法,其特征在于,
    所述特定端口的特定端口数和所述特定层的特定层数相同。
  7. 根据权利要求5所述的方法,其特征在于,
    所述数据旋转步骤包括:针对所述解调参考信号的资源元素位置和端口号,对所述解调参考信号进行相位旋转,得到相位旋转后解调参考信号;和
    针对所述数据信号的资源元素位置和层号,对所述数据信号进行相位旋转,得到相位旋转后数据信号。
  8. 根据权利要求7所述的方法,其特征在于,
    所述解调参考信号的相位旋转角和所述解调参考信号的资源元素位置线性相关;和/或
    所述解调参考信号的相位旋转角和所述解调参考信号的端口号线性相关;和/或
    所述数据信号的相位旋转角和所述数据信号的资源元素位置线性相关;和/或
    所述数据信号的相位旋转角和所述数据信号的层号线性相关。
  9. 根据权利要求5所述的方法,其特征在于,
    所述解调参考信号和所述数据信号位于不同的多载波符号中。
  10. 根据权利要求1所述的方法,其特征在于,还包括:
    天线数据计算步骤,对所述相位旋转后数据乘以预编码矩阵,得到天线数据。
  11. 根据权利要求9所述的方法,其特征在于,
    所述预编码矩阵基于信道状态信息参考信号的端口数得到。
  12. 一种峰均比降低装置,其特征在于,包括:
    输入数据获取模块,用于获取特定多载波符号的特定资源元素中的特定维度的输入数据;
    数据旋转模块,用于针对所述输入数据的资源元素位置和特定维度,对所述输入数据进行相位旋转,得到相位旋转后数据。
  13. 根据权利要求12所述的装置,其特征在于,
    所述输入数据获取模块用于:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号。
  14. 根据权利要求13所述的装置,其特征在于,
    所述数据旋转模块用于:针对所述解调参考信号的资源元素位置和端口号,对所述解调参考信号进行相位旋转,得到相位旋转后解调参考信号。
  15. 根据权利要求14所述的装置,其特征在于,
    所述相位旋转的相位旋转角和所述解调参考信号的资源元素位置线性相关;和/或
    所述相位旋转的相位旋转角和所述解调参考信号的端口号线性相关。
  16. 根据权利要求12所述的装置,其特征在于,
    所述输入数据获取模块用于:获取解调参考信号所在多载波符号中,特定资源元素中的特定端口的解调参考信号,和
    数据信号所在的多载波符号中,特定资源元素中的特定层的数据信号。
  17. 根据权利要求16所述的装置,其特征在于,
    所述特定端口的特定端口数和所述特定层的特定层数相同。
  18. 根据权利要求16所述的装置,其特征在于,
    所述数据旋转模块用于:针对所述解调参考信号的资源元素位置和端口号,对所述解调参考信号进行相位旋转,得到相位旋转后解调参考信号;和
    针对所述数据信号的资源元素位置和层号,对所述数据信号进行相位旋转,得到相位旋转后数 据信号。
  19. 根据权利要求18所述的装置,其特征在于,
    所述解调参考信号的相位旋转角和所述解调参考信号的资源元素位置线性相关;和/或
    所述解调参考信号的相位旋转角和所述解调参考信号的端口号线性相关;和/或
    所述数据信号的相位旋转角和所述数据信号的资源元素位置线性相关;和/或
    所述数据信号的相位旋转角和所述数据信号的层号线性相关。
  20. 根据权利要求16所述的装置,其特征在于,
    所述解调参考信号和所述数据信号位于不同的多载波符号中。
  21. 根据权利要求12所述的装置,其特征在于,还包括:
    天线数据计算模块,用于对所述相位旋转后数据乘以预编码矩阵,得到天线数据。
  22. 根据权利要求21所述的装置,其特征在于,
    所述预编码矩阵基于信道状态信息参考信号的端口数得到。
  23. 一种电子设备,包括存储器和处理器;其中,所述存储器用于存储一条或多条计算机指令,其中,所述一条或多条计算机指令被所述处理器执行以实现权利要求1-11任一项所述的方法步骤。
  24. 一种可读存储介质,其上存储有计算机指令,该计算机指令被处理器执行时实现权利要求1-11任一项所述的方法步骤。
  25. 一种芯片,其特征在于,包括如权利要求12-22任一项所述的峰均比降低装置。
PCT/CN2022/125829 2022-07-28 2022-10-18 峰均比降低方法、装置、电子设备和可读存储介质 WO2024021316A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210897823.3A CN115086131B (zh) 2022-07-28 2022-07-28 峰均比降低方法、装置、电子设备和可读存储介质
CN202210897823.3 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024021316A1 true WO2024021316A1 (zh) 2024-02-01

Family

ID=83242148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/125829 WO2024021316A1 (zh) 2022-07-28 2022-10-18 峰均比降低方法、装置、电子设备和可读存储介质

Country Status (2)

Country Link
CN (1) CN115086131B (zh)
WO (1) WO2024021316A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115086131B (zh) * 2022-07-28 2023-01-20 北京智芯微电子科技有限公司 峰均比降低方法、装置、电子设备和可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040487A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 信号处理方法及装置
CN111817997A (zh) * 2020-07-21 2020-10-23 西安电子科技大学 Ofdm系统中联合旋转预编码与pts峰均比抑制方法
WO2021046823A1 (zh) * 2019-09-12 2021-03-18 华为技术有限公司 一种参考信号处理方法、装置及系统
CN112543161A (zh) * 2019-12-13 2021-03-23 青岛鼎信通讯股份有限公司 一种降低中压载波信号峰均比的方法
CN115086131A (zh) * 2022-07-28 2022-09-20 北京智芯微电子科技有限公司 峰均比降低方法、装置、电子设备和可读存储介质

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8792399B2 (en) * 2012-07-11 2014-07-29 Blackberry Limited Phase-rotated reference signals for multiple antennas
WO2015058357A1 (en) * 2013-10-22 2015-04-30 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for peak to average power ratio reduction
WO2018049035A1 (en) * 2016-09-08 2018-03-15 Intel IP Corporation System and method for enhancements on blockwised dmrs
CN107592280B (zh) * 2017-10-19 2019-08-02 中国电子科技集团公司第二十八研究所 一种结合信道估计避免pts发送边带信息的方法
KR20220006760A (ko) * 2020-07-09 2022-01-18 삼성전자주식회사 직교 주파수 분할 다중 변조 시스템에서 피크 대 평균 전력 비를 감소시키는 방법 및 장치
CN113225292B (zh) * 2021-05-08 2022-04-29 东南大学 利用导频分块降低ofdm峰均比的方法
CN114301751A (zh) * 2021-12-31 2022-04-08 诺领科技(南京)有限公司 一种用于物联网终端降低上行信号峰均比的频域计算方法
CN114726492B (zh) * 2022-03-09 2024-04-12 芯翼信息科技(上海)有限公司 解调参考信号的峰均比修正方法、终端及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107040487A (zh) * 2016-02-04 2017-08-11 中兴通讯股份有限公司 信号处理方法及装置
WO2021046823A1 (zh) * 2019-09-12 2021-03-18 华为技术有限公司 一种参考信号处理方法、装置及系统
CN112543161A (zh) * 2019-12-13 2021-03-23 青岛鼎信通讯股份有限公司 一种降低中压载波信号峰均比的方法
CN111817997A (zh) * 2020-07-21 2020-10-23 西安电子科技大学 Ofdm系统中联合旋转预编码与pts峰均比抑制方法
CN115086131A (zh) * 2022-07-28 2022-09-20 北京智芯微电子科技有限公司 峰均比降低方法、装置、电子设备和可读存储介质

Also Published As

Publication number Publication date
CN115086131B (zh) 2023-01-20
CN115086131A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
JP7057438B2 (ja) 情報送信方法及び装置
EP2371073B1 (en) Methods and apparatus for PAPR reduction in SC-FDMA systems
CN110224967B (zh) 用于峰值均值功率比降低的方法和发射器
WO2024021316A1 (zh) 峰均比降低方法、装置、电子设备和可读存储介质
RU2707742C1 (ru) Устройство передачи и способ передачи
KR102104947B1 (ko) 무선 근거리 네트워크에 대한 정보 송신 방법 및 장치
EP3890233A1 (en) Signal processing method and device
US11695609B2 (en) Side information transmission method based on partial transmit sequence technology, and apparatus
TWI691176B (zh) 在基於多重輸入多重輸出系統中用於適應性空間分集的裝置及方法
CN112804177B (zh) Ofdm时域加窗方法及装置
US10505599B1 (en) Matrix equalization computation with pipelined architecture
CN110071889B (zh) 一种适合多路ofdm系统的峰均比抑制方法
Nahar et al. PAPR reduction using eight factors rotating phase shift technique based on local search algorithm in OFDM
CN110958205A (zh) 一种基于共享cp的多符号联合均衡混合载波传输方法
CN104734764B (zh) Lte-a上行处理方法及装置
CN116319230B (zh) 一种信号接收方法、装置、计算机设备及存储介质
US20240097956A1 (en) Projected signals using discrete prolate spheroidal sequences
CN115225443B (zh) 载波循环移位方法和循环移位光滤波器组多载波系统
CN113422749B (zh) 基于laco-ofdm的可见光解调方法、装置、设备及存储介质
CN117176535A (zh) 信号的生成方法、装置、存储介质和计算机设备
US11558233B2 (en) WLAN baseband chip and FDMA PPDU generation method
JP2023102220A (ja) Ofdm送信装置及びofdm受信装置
CN117254992A (zh) 一种双天线发射分集的信道估计方法及系统
CN117650959A (zh) 一种针对bpsk调制的改进型部分传输序列方法
CN111385232A (zh) 简化非2幂次离散傅里叶变换的升采样方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952756

Country of ref document: EP

Kind code of ref document: A1