KR20220006760A - 직교 주파수 분할 다중 변조 시스템에서 피크 대 평균 전력 비를 감소시키는 방법 및 장치 - Google Patents

직교 주파수 분할 다중 변조 시스템에서 피크 대 평균 전력 비를 감소시키는 방법 및 장치 Download PDF

Info

Publication number
KR20220006760A
KR20220006760A KR1020200084548A KR20200084548A KR20220006760A KR 20220006760 A KR20220006760 A KR 20220006760A KR 1020200084548 A KR1020200084548 A KR 1020200084548A KR 20200084548 A KR20200084548 A KR 20200084548A KR 20220006760 A KR20220006760 A KR 20220006760A
Authority
KR
South Korea
Prior art keywords
dmrs
phase rotation
pdsch
cdm
base station
Prior art date
Application number
KR1020200084548A
Other languages
English (en)
Inventor
안광진
심세준
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to KR1020200084548A priority Critical patent/KR20220006760A/ko
Priority to EP21838424.6A priority patent/EP4164188A4/en
Priority to PCT/KR2021/008550 priority patent/WO2022010218A1/ko
Publication of KR20220006760A publication Critical patent/KR20220006760A/ko
Priority to US18/094,758 priority patent/US20230164014A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2614Peak power aspects
    • H04L27/2621Reduction thereof using phase offsets between subcarriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03006Arrangements for removing intersymbol interference
    • H04L25/03343Arrangements at the transmitter end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/03929Spatial equalizers codebook-based design with layer mapping, e.g. codeword-to layer design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 개시는 4G 시스템 이후 보다 높은 데이터 전송률을 지원하기 위한 5G 통신 시스템을 IoT 기술과 융합하는 통신 기법 및 그 시스템에 관한 것이다. 본 개시는 5G 통신 기술 및 IoT 관련 기술을 기반으로 지능형 서비스 (예를 들어, 스마트 홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 헬스 케어, 디지털 교육, 소매업, 보안 및 안전 관련 서비스 등)에 적용될 수 있다. 본 개시는 이동 통신 시스템에서 MIMO-OFDM 신호 전송 시 발생할 수 있는 피크 대 평균 전력 비(Peak to Average Power Ratio, PARR)를 감소시키는 방법 및 장치를 제안한다.

Description

직교 주파수 분할 다중 변조 시스템에서 피크 대 평균 전력 비를 감소시키는 방법 및 장치{METHOD AND APPARATUS FOR REDUCING PEAK TO AVERAGE POWER RATIO IN ORTHOGONAL FREQUENCY DIVISION MULTIPLEXING SYSTEM}
본 개시는 이동 통신 시스템에서 MIMO-OFDM 신호 전송 시 발생할 수 있는 피크 대 평균 전력 비(Peak to Average Power Ratio, PARR)를 감소시키는 방법 및 장치에 관한 것이다.
4G 통신 시스템 상용화 이후 증가 추세에 있는 무선 데이터 트래픽 수요를 충족시키기 위해, 개선된 5G 통신 시스템 또는 pre-5G 통신 시스템을 개발하기 위한 노력이 이루어지고 있다. 이러한 이유로, 5G 통신 시스템 또는 pre-5G 통신 시스템은 4G 네트워크 이후 (Beyond 4G Network) 통신 시스템 또는 LTE 시스템 이후 (Post LTE) 이후의 시스템이라 불리어지고 있다. 높은 데이터 전송률을 달성하기 위해, 5G 통신 시스템은 초고주파(mmWave) 대역 (예를 들어, 60기가(60GHz) 대역과 같은)에서의 구현이 고려되고 있다. 초고주파 대역에서의 전파의 경로손실 완화 및 전파의 전달 거리를 증가시키기 위해, 5G 통신 시스템에서는 빔포밍(beamforming), 거대 배열 다중 입출력(massive MIMO), 전차원 다중입출력(Full Dimensional MIMO: FD-MIMO), 어레이 안테나(array antenna), 아날로그 빔형성(analog beam-forming), 및 대규모 안테나 (large scale antenna) 기술들이 논의되고 있다. 또한 시스템의 네트워크 개선을 위해, 5G 통신 시스템에서는 진화된 소형 셀, 개선된 소형 셀 (advanced small cell), 클라우드 무선 액세스 네트워크 (cloud radio access network: cloud RAN), 초고밀도 네트워크 (ultra-dense network), 기기 간 통신 (Device to Device communication: D2D), 무선 백홀 (wireless backhaul), 이동 네트워크 (moving network), 협력 통신 (cooperative communication), CoMP (Coordinated Multi-Points), 및 수신 간섭제거 (interference cancellation) 등의 기술 개발이 이루어지고 있다. 이 밖에도, 5G 시스템에서는 진보된 코딩 변조(Advanced Coding Modulation: ACM) 방식인 FQAM (Hybrid FSK and QAM Modulation) 및 SWSC (Sliding Window Superposition Coding)과, 진보된 접속 기술인 FBMC(Filter Bank Multi Carrier), NOMA(non orthogonal multiple access), 및SCMA(sparse code multiple access) 등이 개발되고 있다.
한편, 인터넷은 인간이 정보를 생성하고 소비하는 인간 중심의 연결 망에서, 사물 등 분산된 구성 요소들 간에 정보를 주고 받아 처리하는 IoT(Internet of Things, 사물인터넷) 망으로 진화하고 있다. 클라우드 서버 등과의 연결을 통한 빅데이터(Big data) 처리 기술 등이 IoT 기술에 결합된 IoE (Internet of Everything) 기술도 대두되고 있다. IoT를 구현하기 위해서, 센싱 기술, 유무선 통신 및 네트워크 인프라, 서비스 인터페이스 기술, 및 보안 기술과 같은 기술 요소 들이 요구되어, 최근에는 사물간의 연결을 위한 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 연구되고 있다. IoT 환경에서는 연결된 사물들에서 생성된 데이터를 수집, 분석하여 인간의 삶에 새로운 가치를 창출하는 지능형 IT(Internet Technology) 서비스가 제공될 수 있다. IoT는 기존의 IT(information technology)기술과 다양한 산업 간의 융합 및 복합을 통하여 스마트홈, 스마트 빌딩, 스마트 시티, 스마트 카 혹은 커넥티드 카, 스마트 그리드, 헬스 케어, 스마트 가전, 첨단의료서비스 등의 분야에 응용될 수 있다.
이에, 5G 통신 시스템을 IoT 망에 적용하기 위한 다양한 시도들이 이루어지고 있다. 예를 들어, 센서 네트워크(sensor network), 사물 통신(Machine to Machine, M2M), MTC(Machine Type Communication)등의 기술이 5G 통신 기술인 빔 포밍, MIMO, 및 어레이 안테나 등의 기법에 의해 구현되고 있는 것이다. 앞서 설명한 빅데이터 처리 기술로써 클라우드 무선 액세스 네트워크(cloud RAN)가 적용되는 것도 5G 기술과 IoT 기술 융합의 일 예라고 할 수 있을 것이다.
무선통신 시스템에서 단말이 채널을 추정하기 위해서는 기지국이 이를 위한 기준신호 (Reference signal)을 전송해야 한다. 단말은 기준신호를 이용하여 채널 추정을 수행하고, 수신된 신호를 복조 할 수 있다. 또한 단말은 기준신호를 통해 채널 상태를 파악하고 이를 기지국으로 피드백 하는데 사용할 수도 있다. LTE 시스템과는 달리, 5G 무선통신에서는 증가된 orthogonal DMRS 안테나 포트, 증가된 Cell-ID, 증가된 채널 대역폭, 다양한 subcarrier spacing 지원, slot기반 전송 및 slot aggregation 지원, 시간상 DMRS bundling 뿐만 아니라 configurable DMRS 구조 지원을 고려하고 있다. 이러한 다양한 특징을 지원할 때 기지국이 DMRS를 생성하고 이에 대한 정보를 단말로 전달하는 방법이 기존 LTE시스템과 달라질 수 있다.
본 개시에서는 OFDM(Orthogoanl Frequency Division Multiplexing) 이동 통신 시스템에서 DMRS 신호 전송 시 발생하는 PAPR을 감소시키는 방법을 제안한다. 보다 구체적으로, 본 개시에서는 복수의 DMRS 시퀀스를 사용하지 않고도 DMRS 신호의 PAPR을 감소시키는 방법을 개시한다.
상기와 같은 문제점을 해결하기 위한 본 발명의 일 실시예에 따른 무선 통신 시스템에서 기지국의 방법은, 적어도 하나의 단말로 전송하기 위한 PDSCH(physical downlink shared channel)가 매핑되는 레이어(layer) 정보 및 부호 분할 다중화(code division multiplexing, CDM) 그룹 정보를 확인하는 단계; 상기 레이어 정보 및 상기 CDM 그룹 정보에 기초하여, 상기 PDSCH를 위한 복조 기준 신호(demodulation reference signal, DMRS)에 위상 회전(phase rotation)을 적용하는 단계; 및 상기 적어도 하나의 단말로, 상기 위상 회전이 적용된 상기 DMRS를 전송하는 단계를 포함할 수 있다.
본 발명의 일 실시예에 따른 무선 통신 시스템에서 기지국은, 신호를 송수신하는 송수신부; 및 상기 송수신부와 연결된 제어부를 포함하고, 상기 제어부는, 적어도 하나의 단말로 전송하기 위한 PDSCH(physical downlink shared channel)가 매핑되는 레이어(layer) 정보 및 부호 분할 다중화(code division multiplexing, CDM) 그룹 정보를 확인하고, 상기 레이어 정보 및 상기 CDM 그룹 정보에 기초하여, 상기 PDSCH를 위한 복조 기준 신호(demodulation reference signal, DMRS)에 위상 회전(phase rotation)을 적용하고, 상기 적어도 하나의 단말로, 상기 위상 회전이 적용된 상기 DMRS를 전송하도록 설정될 수 있다.
본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말의 방법은, 기지국으로부터, PDSCH(physical downlink shared channel)를 위한 복조 기준 신호(demodulation reference signal, DMRS) 정보를 수신하는 단계; 상기 수신된 DMRS 정보에 기초하여, 수신할 DMRS를 확인하는 단계; 및 상기 기지국으로부터, 상기 확인된 DMRS를 수신하는 단계를 포함하되, 상기 DMRS는, 상기 PDSCH가 매핑되는 레이어(layer) 정보 및 부호 분할 다중화(code division multiplexing, CDM) 그룹 정보에 기초하여, 복수의 CDM 그룹 별로 위상 회전(phase rotation)이 적용될 수 있다.
본 발명의 일 실시예에 따른 무선 통신 시스템에서 단말은, 신호를 송수신하는 송수신부; 및 상기 송수신부와 연결된 제어부를 포함하고, 상기 제어부는, 기지국으로부터, PDSCH(physical downlink shared channel)를 위한 복조 기준 신호(demodulation reference signal, DMRS) 정보를 수신하고, 상기 수신된 DMRS 정보에 기초하여, 수신할 DMRS를 확인하고, 상기 기지국으로부터, 상기 확인된 DMRS를 수신하도록 설정되되, 상기 DMRS는, 상기 PDSCH가 매핑되는 레이어(layer) 정보 및 부호 분할 다중화(code division multiplexing, CDM) 그룹 정보에 기초하여, 복수의 CDM 그룹 별로 위상 회전(phase rotation)이 적용될 수 있다.
본 개시를 통해 효과적인 DMRS 신호의 생성 및 처리를 수행함으로써 무선자원의 효율적인 전송이 가능하다.
도 1은 5G 시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다.
도 2는 본 개시의 이동 통신 시스템에서 하향링크로 스케줄링 할 수 있는 최소 단위인 1 서브프레임(subframe) 또는 슬롯(slot) 및 1 자원 블록(resource block, RB)의 무선 자원을 도시한 도면이다.
도 3은 PDSCH에 전달되는 PDSCH-DMRS의 구조를 나타낸 도면이다.
도 4는 4-layer 전송에서 PDSCH용 DMRS 신호에 하나의 sequence를 사용한 경우 precoding으로 인해 증가되는 PAPR을 도시한 도면이다.
도 5는 4-layer 전송에서 precoding에 의해 증가되는 PAPR을 시뮬레이션으로 확인한 CCDF(Complementary Cumulative Distribution Function) 결과를 도시한 도면이다.
도 6은 본 개시의 일 실시예에 따른 PDSCH용 DMRS 신호에 CDM group 별로 다른 sequence가 사용한 경우를 도시한 도면이다.
도 7은 본 개시의 일 실시예에 따른 기지국에서 수행되는 PAPR의 증가를 방지하기 위한 전송 채널 프로세싱 과정을 도시한 블록도이다.
도 8a 및 도 8b는 PAPR 감소 처리를 위한 방법을 도시한 순서도이다.
도 9는 본 개시의 일 실시예에 따른 4-layer 전송에서 PDSCH용 DMRS 신호에 서브-블록 단위로 phase rotation이 적용된 경우를 도시한 도면이다.
도 10은 본 개시의 일 실시예에 따른 다수의 PDSCH가 주파수 다중 분할(frequency division multiplexing, FDM)된 경우를 도시한 도면이다.
도 11은 본 개시의 일 실시예에 따른 PDSCH의 전송에서 mini-slot이 적용되는 경우를 도시한 도면이다.
도 12는 본 개시에 따른 PAPR 감소 기술을 4-layer 전송의 경우에 적용한 시뮬레이션 결과를 도시한 도면이다.
도 13은 본 개시의 일 실시예에 따른 단말이 PAPR reduction이 적용된 OFDM DMRS 신호를 수신하는 방법을 도시한 순서도이다.
도 14는 본 개시의 실시예에 따른 단말의 내부 구조를 도시하는 블록도이다.
도 15는 본 개시의 실시예에 따른 기지국의 내부 구조를 도시하는 블록도이다.
무선 통신 시스템은 초기의 음성 위주의 서비스를 제공하던 것에서 벗어나 예를 들어, 3GPP의 HSPA(High Speed Packet Access), LTE(Long Term Evolution 혹은 E-UTRA (Evolved Universal Terrestrial Radio Access)), LTE-Advanced (LTE-A), 3GPP2의 HRPD(High Rate Packet Data), UMB(Ultra Mobile Broadband), 및 IEEE의 802.16e 등의 통신 표준과 같이 고속, 고품질의 패킷 데이터 서비스를 제공하는 광대역 무선 통신 시스템으로 발전하고 있다. 또한, 5세대 무선통신 시스템으로 5G 혹은 NR (new radio)의 통신표준이 만들어지고 있다.
상기 광대역 무선 통신 시스템의 대표적인 예로, LTE/LTE-A 시스템에서는 하향링크(Downlink; DL)에서는 OFDM(Orthogonal Frequency Division Multiplexing) 방식을 채용하고 있고, 상향링크(Uplink; UL)에서는 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식을 채용하고 있다. 상향링크는 단말(UE(User Equipment) 혹은 MS(Mobile Station))이 기지국(eNode B, 혹은 base station(BS))으로 데이터 혹은 제어신호를 전송하는 무선링크를 뜻하고, 하향링크는 기지국이 단말로 데이터 혹은 제어신호를 전송하는 무선링크를 뜻한다. 상기와 같은 다중 접속 방식은, 통상 각 사용자 별로 데이터 혹은 제어정보를 실어 보낼 시간-주파수 자원을 서로 겹치지 않도록, 즉 직교성(Orthogonality)이 성립하도록, 할당 및 운용함으로써 각 사용자의 데이터 혹은 제어정보를 구분한다.
도 1은 5G 시스템에서 데이터 또는 제어채널이 전송되는 무선 자원 영역인 시간-주파수 영역의 기본 구조를 도시한 도면이다.
도 1을 참조하면, 도 1에 가로축은 시간 영역을, 세로축은 주파수 영역을 나타낸다. 시간 및 주파수 영역에서 자원의 기본 단위는 자원 요소(Resource Element, RE, 101)로서 시간 축으로 1 OFDM(Orthogonal Frequency Division Multiplexing) 심볼(102) 및 주파수 축으로 1 부반송파(Subcarrier)(103)로 정의될 수 있다. 주파수 영역에서
Figure pat00001
(일례로 12)개의 연속된 RE들은 하나의 자원 블록(Resource Block, RB, 104)을 구성할 수 있다.
시간 자원에 대해서 살펴보면, 1 프레임은 10ms로 정의될 수 있다. 1 서브프레임은 1ms로 정의될 수 있으며, 따라서 1 프레임은 총 10개의 서브프레임으로 구성될 수 있다. 1 슬롯(110)은 14개의 OFDM 심볼로 정의될 수 있다 (즉 1 슬롯 당 심볼 수(
Figure pat00002
)=14). 1 서브프레임(미도시)은 하나 또는 다수 개의 슬롯으로 구성될 수 있으며, 1 서브프레임당 슬롯의 개수는 부반송파 간격에 대한 설정 값 μ에 따라 다를 수 있다. μ=0일 경우, 1 서브프레임은 1개의 슬롯으로 구성될 수 있고, μ=1일 경우, 1 서브프레임은 2개의 슬롯으로 구성될 수 있다. 즉 부반송파 간격에 대한 설정 값 μ에 따라 1 서브프레임 당 슬롯 수가 달라질 수 있고, 이에 따라 1 프레임 당 슬롯 수가 달라질 수 있다. 각 부반송파 간격 설정 μ에 따른
Figure pat00003
Figure pat00004
는 하기의 <표 1>과 같이 정의될 수 있다.
Figure pat00005
Figure pat00006
Figure pat00007
Figure pat00008
0 14 10 1
1 14 20 2
2 14 40 4
3 14 80 8
4 14 160 16
5 14 320 32
NR에서 한 개의 컴포넌트 캐리어(component carrier, CC) 혹은 서빙 셀(serving cell)은 최대 250개 이상의 RB로 구성되는 것이 가능하다. 따라서 단말이 LTE와 같이 항상 전체 서빙 셀 대역폭(serving cell bandwidth)을 수신하는 경우 단말의 파워 소모가 극심할 수 있고, 이를 해결하기 위하여 기지국은 단말에게 하나 이상의 대역폭 부분(bandwidth part,BWP)을 설정하여 단말이 셀(cell) 내 수신 영역을 변경할 수 있도록 지원하는 것이 가능하다. NR에서 기지국은 CORESET #0 (혹은 common search space, CSS)의 대역폭인 ‘initial BWP’를 MIB를 통하여 단말에게 설정할 수 있다. 이후 기지국은 RRC 시그날링을 통하여 단말의 초기 BWP(first BWP)를 설정하고, 향후 하향링크 제어 정보(downlink control information, DCI)를 통하여 지시될 수 있는 적어도 하나 이상의 BWP 설정 정보들을 통지할 수 있다. 이후 기지국은 DCI를 통하여 BWP ID를 공지함으로써 단말이 어떠한 대역을 사용할 지 지시할 수 있다. 만약 단말이 특정 시간 이상 동안 현재 할당된 BWP에서 DCI를 수신하지 못할 경우 단말은 ‘default BWP’로 회귀하여 DCI 수신을 시도할 수 있다. 도 2는 본 개시의 이동 통신 시스템에서 하향링크로 스케줄링 할 수 있는 최소 단위인 1 서브프레임(subframe) 또는 슬롯(slot) 및 1 자원 블록(resource block, RB)의 무선 자원을 도시한 도면이다.
상기 도 2에 도시된 무선 자원은 시간축 상에서 한 개의 서브프레임(또는 이는 슬롯으로 칭할 수 있다)으로 이루어지며 주파수축 상에서 한 개의 RB로 이루어질 수 있다. 이와 같은 무선 자원은 주파수 영역에서 12개의 서브캐리어(subcarrier, 이는 부반송파와 혼용 가능하다)로 이루어지며 시간 영역에서 14개의 OFDM 심볼로 이루어져서 총 168개의 고유 주파수 및 시간 위치를 갖도록 할 수 있다. NR에서는 LTE 및 LTE-A와 마찬가지로 상기 도 2의 각각의 고유 주파수 및 시간 위치를 자원 요소(resource element, RE)라 할 수 있다.
상기 도 2에 도시된 무선 자원에는 다음과 같은 복수 개의 서로 다른 종류의 신호가 전송될 수 있다.
1. 복조 기준 신호(Demodulation Reference Signal, DMRS, 200): 특정 단말을 위하여 전송되는 기준 신호이며 해당 단말에게 데이터를 전송할 경우에만 전송될 수 있다. LTE-A 시스템에서 DMRS는 총 8개의 DMRS 안테나 포트(antenna port, 이하 포트와 혼용 가능하다)들로 이루어질 수 있다. LTE-A에서는 포트 7에서 포트 14까지 DMRS 포트에 해당하며 포트들은 코드 분할 다중화(code division multiplexing, CDM) 또는 주파수 분할 다중화(frequency division multiplexing, FDM)을 이용하여 서로 간섭을 발생시키지 않도록 직교성(orthogonality)을 유지할 수 있다.
2. PDSCH(Physical Downlink Shared Channel, 210): 하향링크로 전송되는 데이터 채널로 기지국이 단말에게 트래픽을 전송하기 위하여 이용하며 상기 도 1의 데이터 영역(data region)에서 기준 신호가 전송되지 않는 RE를 이용하여 전송될 수 있다.
3. PDCCH(Physical Downlink Control Channel, 220): 하향링크로 전송되는 제어 채널로 기지국이 단말에게 PDSCH 또는 PUSCH(Physical Uplink Shared Channel)를 스케줄링 하기 위한 자원 할당, 변조 및 코딩 스킴(modulation and coding scheme, MCS), 리던던시 버전(redundancy version, RV), 프리코딩 자원 블록 그룹(precoding resource block group, PRG) 등의 다양한 제어 정보를 지시하기 위한 채널이다.
4. 채널 상태 정보 기준 신호(Channel state Information Reference Signal, CSI-RS, 230): 한 개의 셀에 속한 단말들을 위하여 전송되는 기준 신호로 채널 상태를 측정하는데 이용된다. 한 개의 셀에는 복수개의 CSI-RS가 전송될 수 있다. LTE에서는 특정 위치의 정해진 패턴을 이용하여 정해진 시간 및 주파수 자원에서 전송되었던 반면, NR에서는 주파수와 시간을 기준으로 (2,1), (2,2), (4,1)개의 단위 RE 패턴을 기준으로 하여 자유로운 시간 및 주파수 위치에서 합성되어 사용될 수 있다.
5. 위상 추적 기준 신호(Phase Tracking Reference Signal, PTRS, 240): 주로 6 GHz 이상의 높은 주파수 대역(예를 들어 28 GHz) 에서 빠르게 변화하는 위상을 추정하기 위한 기준 신호로 위치 오프셋 및 밀도를 설정 가능하며, MCS를 이용하여 해당 PTRS의 사용이 간접적으로 동적 지시될 수 있다.
6. 트래킹을 위한 CSI-RS(CSI-RS for tracking, 250): LTE에서 지원하던 셀 특정 기준 신호(Cell Specific RS, CRS)의 부재에 따라 동기 신호 블록(Synchronization Signal Block, SSB) 및 PBCH(Physical Broadcast Channel) DMRS 이외에 시간 및 주파수 동기를 맞출 기준 신호가 부족함에 따라, 이러한 동기를 위한 RS가 추가로 할당될 수 있도록 하였다. 구체적으로, CSI-RS를 기반으로 하여 CSI-RS 집합 내에 해당 CSI-RS가 트래킹을 위해 사용되는지에 대한 여부를 RRC로 설정하도록 할 수 있다.
상기 신호에서 DMRS의 경우, DCI를 통해 아래와 같은 DMRS 정보가 전송될 수 있다.
- DMRS port(s)
- Number of DMRS CDM group(s) without data
- Number of front-load symbol
최근의 5G NR 이동통신 시스템 역시 MIMO-OFDM 방식을 적용하고 있다. 5G NR 시스템에서 downlink 데이터 정보는 PDSCH(Physical Downlink Shared Channel)을 통해 전달되는데, DMRS(Demodulation Reference Signal)와 데이터가 함께 전송된다. 보다 높은 throughput을 위해 최대 8 레이어 전송이 가능하고, 각 레이어 마다 서로 다른 DMRS 신호가 할당될 수 있다.
도 3은 PDSCH에 전달되는 PDSCH-DMRS의 구조를 나타낸 도면이다.
도 3을 참조하면, PDSCH를 위한 DMRS는 사용자(user)별로 하나의 sequence를 이용하여 주파수 축 및 시간 축 자원에 매핑될 수 있다. DMRS용으로 하나의 OFDM 심볼만 사용되는 경우 2개의 DMRS 포트들이 주파수 축에서 같은 자원을 사용하며 length 2인 OCC(Orthogonal Cover Code)로 구분되는 하나의 CDM group으로 할당될 수 있다. DMRS용으로 2개의 OFDM 심볼이 사용되는 경우는 심볼 단위로 OCC가 적용되어 4개의 DMRS 포트들이 하나의 CDM group에 할당될 수 있다.
DMRS는 주파수 축 자원 할당 방식에 따라 2가지 configuration이 가능하며 최대 12개의 포트로 구분될 수 있다. Type 1 방법(configuration 1)은 하나의 DM-RS 심볼에 최대 네 개까지의 직교 RS를 넣을 수 있고, 두 개의 DM-RS 심볼에 최대 8개 까지의 직교 RS를 넣을 수 있다. Type 2(configuration 2)의 경우에는 한 심볼에 최대 6개, 두 심볼에 최대 12개를 지원할 수 있다.
이러한 주파수 축, 시간 축 및 코드 분할 등을 이용해 DMRS 포트는 구분되지만 sequence는 사용자 별로 하나인 특징으로 인해 MIMO 전송 시 채널 용량을 극대화 시키기 위한 precoding이 적용되면 PAPR(Peak to Average Power Ratio)가 증가하는 문제가 생긴다.
도 4는 4-layer 전송에서 PDSCH용 DMRS 신호에 하나의 sequence를 사용한 경우 precoding으로 인해 증가되는 PAPR을 도시한 도면이다.
도 4에 예시된 경우를 살펴보면, rank 4 전송이면서 하나의 OFDM 심볼만 DMRS configuration 1(Type 1)으로 설정되는 경우 2개의 CDM group에 해당하는 4개의 DMRS 포트가 각 레이어에 할당될 수 있다. 각 레이어 별로 주파수 축에 할당되는 DMRS 신호를 살펴 보면, L0로 표시된 첫번째 레이어의 경우 precoding 전에는 하나의 CDM group에 해당하는 하나의 DMRS sequence r0, r1, r2, … 등이 매 짝수 번째 RE마다 할당이 되고, 그 외 다른 CDM group에 해당하는 홀수 번째 RE에는 전송되는 신호가 없다. 다른 레이어의 경우에도 마찬가지로 동일한 DMRS sequence r0, r1, r2, … 들을 이용하여 주파수 축 상에서 매핑 방식만 다르게 DMRS 신호를 할당할 뿐 다른 DMRS 포트에 해당하는 신호가 함께 전송되지는 않는다. 하지만 precoding 과정을 거치면서 원래 레이어 별로 할당된 DMRS 신호 외에 다른 레이어에 속해 있던 다른 CDM group의 DMRS 신호들이 더해질 수 있다. Precoding 후의 주파수 축 자원을 관찰해 보면 DMRS sequence r0, r1, r2, … 들이 RE마다 반복되는 것을 볼 수 있다. 비록 서로 다른 precoding weight가 곱해진 형태로 반복되기는 하지만 전체 주파수 대역에 걸쳐 correlation이 높은 형태로 반복되기 때문에 OFDM 신호 생성 과정을 거치면서 PAPR이 증가하게 된다.
이때 사용되는 DMRS sequence r(n)은 크기와 위상을 갖는 복소수로서, IQ 파라미터를 통해 실수부와 허수부 각각에 수열이 대응되어 생성되는 복소수 수열일 수 있다.
도 5는 4-layer 전송에서 precoding에 의해 증가되는 PAPR을 시뮬레이션으로 확인한 CCDF(Complementary Cumulative Distribution Function) 결과를 도시한 도면이다.
도 5에서 검은색 실선은 precoding을 수행하지 않고 전송한 경우의 PAPR 결과이고, 점선은 precoding을 수행한 경우의 PAPR 결과를 도시한다. 도 5에 도시된 두 그래프에 따르면, 전술한 바와 같이 PDSCH용 DMRS신호가 precoding 과정을 통해 PAPR이 증가하는 것을 확인할 수 있으며, 0.01%(10-4) 확률 기준으로 약 2dB 정도의 PAPR이 증가하는 결과를 확인할 수 있다.
본 개시에서는 이러한 PDSCH용 DMRS의 precoding으로 인한 PAPR 증가 문제를 보완하기 위한 방법을 개시한다.
본 개시의 일 실시예에 따르면 DMRS용 sequence를 user당 하나가 아닌 CDM group별로 다른 복수의 sequence를 생성하여 PAPR의 증가를 방지할 수 있다.
도 6은 본 개시의 일 실시예에 따른 PDSCH용 DMRS 신호에 CDM group 별로 다른 sequence가 사용한 경우를 도시한 도면이다.
도 6에서 볼 수 있듯이 서로 다른 DMRS sequence가 서로 다른 CDM group에 사용되는 경우, precoding 과정을 거치면서 주파수 축에서 반복되더라도 correlation이 없는 서로 다른 sequence들이므로, random한 신호가 반복되는 것과 같은 효과를 통해 OFDM 신호 생성 후에도 PAPR 이 더 증가하지 않는 효과를 얻을 수 있다.
본 개시의 또 다른 실시예에서는 CDM group별로 다른 sequence를 사용하지 않고도 PAPR의 증가를 방지할 수 있는 방법을 개시한다. 즉, 복수의 sequence가 사용됨으로써 발생할 수 있는 signaling이나 연산의 증가를 방지하기 위해, 기존의 방법과 같이 사용자별 하나의 sequence를 사용하는 경우에도 PAPR의 증가를 막을 수 있는 방법을 개시한다.
도 7은 본 개시의 일 실시예에 따른 기지국에서 수행되는 PAPR의 증가를 방지하기 위한 전송 채널 프로세싱 과정을 도시한 블록도이다.
물리계층(physical layer, PHY layer)이 MAC(Medium Access Control) 계층으로부터 전송하고자 하는 신호에 대한 전송 블록을 전달 받으면, 각 전송 블록에 에러 정정을 위한 LDPC 인코딩 및 에러 검출을 위한 CRC 부가가 수행된다. 이후 코딩된 비트는 스크램블링되며(710), 변조기에 입력되어 변조 심볼로 변환되고(720), 각 레이어에 매핑된 후(730) RE(resource element)가 매핑되게 된다(740). 이후 프리코딩을 거쳐(760) 생성된 OFDM 신호가 안테나 포트를 통해 전송되게 된다(770).
본 개시에 따르면, 프리코딩 단계 이전에 레이어에 RE가 매핑되면, 매핑된 RE에 PAPR 감소 단계(750)를 통해 전송하고자 하는 신호의 PAPR을 낮출 수 있다. PAPR 감소 단계(750)는 반드시 RE의 매핑 이후 프리코딩 이전에 수행되어야 하는 것은 아니다. 예를 들어, 프리코딩의 바로 다음 단계에서 수행되는 것도 가능하며, RE 매핑 단계(740)에서 매핑과 동시에 reduction 처리가 함께 처리되는 것도 가능하다. 또한, 신호가 매핑될 RB index 정보를 이용하여 reduction을 위한 처리를 RE의 매핑 이전에 미리 수행하는 것도 가능할 것이다.
이하에서는, 도 8을 참조하여 본 개시에 따른 PAPR 감소 처리를 위한 구체적인 방법을 설명한다.
도 8a 및 도 8b는 PAPR 감소 처리를 위한 방법을 도시한 순서도이다.
도 8a를 참조하면, PAPR 감소 처리를 위해 기지국은 적어도 하나 이상의 단말에 전송되는 PDSCH를 위한 DMRS가 전송되는 layer 및 CDM group에 관한 정보를 확인할 수 있다(811).
이후, 기지국은 확인된 정보를 기초로, PDSCH를 위한 DMRS 및 PDSCH에 대하여 phase rotation을 적용할 수 있다(812). 여기서, DMRS에 적용되는 위상 회전(phase rotation)은 복소수로 표현될 수 있는 DMRS 시퀀스에 대하여 복소 평면 상에서 특정 위상만큼을 회전시키는 연산으로서, 보다 구체적으로 DMRS sequence n(r)에 대하여 특정 위상
Figure pat00009
만큼을 회전하는 위상 회전이란
Figure pat00010
를 곱하여
Figure pat00011
를 구하는 연산을 의미할 수 있다. 이때, DMRS에 적용되는 위상 회전은 복수의 CDM 그룹마다 서로 다른 위상값을 적용할 수 있다.
이후, 기지국은 위상 회전이 적용되어 PAPR이 감소된 DMRS 및 이와 관련된 PDSCH를 프리코딩 및 OFDM 신호 생성을 통해 각 레이어의 RE에 매핑하여, 적어도 하나 이상의 단말로 전송할 수 있다(813).
도 8b는 도 8a의 방법을 보다 구체화하여 도시한 도면이다.
도 8b를 참조하면, 도 8a의 단계 811에서, 먼저 전송하고자 하는 PDSCH 신호의 정보를 확인하여 rank 2 이상인지 여부, 즉 layer의 수가 2 이상인지 여부를 확인할 수 있다(821, 조건 1). layer 수가 2 이상인 경우, 서로 다른 CDM group에 해당하는 DMRS 포트들이 할당되었는지 여부를 확인한다. 보다 구체적으로, 기지국은 CDM group의 수가 2 이상인지 여부를 확인할 수 있다(822, 조건 2). 이는 layer가 1이거나 CDM group이 하나만 사용되는 경우에는 PAPR의 증가가 크게 문제되지 않기 때문이다. 따라서 layer의 수가 하나이거나, CDM group의 수가 하나인 경우에는 곧바로 프리코딩 단계(760)로 넘어갈 수 있다.
도 8a의 단계 812에서, 기지국은 CDM group의 수가 2 이상인 경우에는, PAPR Reduction을 처리해야 한다고 판단하고, 첫번째 CDM group을 제외한 나머지 CDM group들에 서로 다른 phase 값을 적용하여 phase rotation을 적용할 수 있다. 보다 구체적으로, 먼저 layer 신호를 선택하고(823), 해당 layer가 첫번째 CDM group에 해당하는지 여부를 확인할 수 있다(824). 만약 첫번째 CDM group이 아닌 경우에 phase rotation을 적용할 수 있다. 첫번째 CDM group에 대해서는 phase rotation을 적용하지 않을 수 있다. 만약 CDM 그룹의 수가 3인 경우에는 첫번째 CDM 그룹에 대해서는 위상 회전을 적용하지 않고, 두번째 CDM 그룹 및 세번째 CDM 그룹에는 서로 다른 위상값(또는 오프셋)을 이용하여 위상회전을 적용할 수 있다.
이후 각각의 layer 별로 phase rotation을 적용하는 경우에는 각 layer 상에서 신호를 주파수 축 상의 서브-블록 단위로 나눌 수 있다(825). 이를 통해, 각각의 서브-블록마다 다른 위상을 적용함으로써, 전체 주파수 대역에서 전송되는 신호의 PAPR이 증가하는 것을 방지할 수 있다.
각 서브-블록마다 적용할 서로 다른 phase 값을 구할 수 있다(826). 이때 각각의 서브-블록마다 정해지는 서로 다른 위상값은 특정값(오프셋)의 배수로 미리 정해질 수 있다. 즉, phase 값은 전체 주파수 대역을 적어도 PRG(Precoding Resource block Group) 단위로 나눈 각각의 서브-블록 별로 일정한 offset만큼 증가하는 값일 수 있다. Offset 값은 0도~360도 사이의 임의의 값으로 CDM group별로 다른 값일 수 있다. 또한 PDSCH 신호가 여러 심볼 구간에 걸쳐 전송되는 경우 모든 심볼 구간에 대해 동일한 phase rotation 방식을 적용할 수 있다. CDM group별 각각의 서브-블록에 적용해야 할 phase 값은 시뮬레이션 등을 통하여 미리 정해진 값을 사용함으로써 구현을 보다 간단히 할 수 있다.
위에서 확인한 서로 다른 phase 값에 기초하여, 각각의 서브-블록에 속한 모든 RE에 대해 phase rotation을 적용할 수 있다(827). 위 작업을 반복하여 모든 layer에 대한 모든 신호에 대하여 phase rotation을 적용할 수 있다(828).
이하에서는 phase rotation을 적용하는 구체적인 방법에 대해 개시한다.
전술한 바와 같이, 서로 다른 CDM group에 해당하는 DMRS 신호들이 precoding에 의하여 주파수 축에서 반복되는 문제로 인해 OFDM 신호 생성 후 PAPR이 높아지는 것이므로, PDSCH 전송 시 rank 2 이상에서 precoding이 수행되는 경우(조건 1) 및 서로 다른 CDM group에 해당하는 DMRS 포트들이 할당된 경우(조건 2)에만 phase rotation을 적용할 수 있다. Phase rotation은 첫번째 CDM group을 제외한 나머지 CDM group들에 대해서만 적용할 수 있다. 하나의 CDM group에 해당하는 두 개의 DMRS 신호가 모두 사용된 경우, 해당 DMRS 신호가 포함된 두 개의 레이어에 대해 동일한 phase 값을 선택하여 phase rotation을 적용할 수 있다. 즉, 주파수 축 OCC로 구분되는 두 개의 레이어에는 동일한 phase rotation을 적용할 수 있다.
Phase rotation에 사용되는 phase 값은 주파수 축 상에서 구분되는 서브-블록 단위로 일정하게 증가하는 값을 가질 수 있다. 서브-블록은 수신 성능을 저하시키지 않기 위해 PRG 단위 혹은 PRG의 배수 단위로 미리 구분할 수 있다. 또한 각각의 PDSCH가 전송되는 주파수 영역에 한정해서 서브-블록을 나누는 것이 아니라, 전체 carrier bandwidth에 해당하는 주파수 영역을 PRG의 배수 단위로 서브-블록을 구분할 수 있다. 하나의 서브-블록 내에서는 동일한 phase 값이 적용되며, 그 다음 서브-블록에서는 offset만큼 증가한 phase 값으로 phase rotation이 수행될 수 있다. Offset 값은 0도~360도 사이의 임의의 값으로 CDM group별로는 다른 값으로 설정한다. 특히 90도 단위의 offset 값을 사용하면 phase rotation 연산을 보다 쉽게 구현 할 수 있다. 상술한 서브-블록 단위로 적용되는 phase 값은 아래의 표 2와 같은 형태로 정리할 수 있다.
CDM group
1st 2nd 3rd
offset N/A
Figure pat00012
Figure pat00013
서브-블록 index RB index
0 0 ~ k-1 N/A A B
1 k ~ 2k-1 N/A A +
Figure pat00014
B +
Figure pat00015
2 2k ~ 3k-1 N/A A +
Figure pat00016
B +
Figure pat00017
3 3k ~ 4k-1 N/A A +
Figure pat00018
B +3
Figure pat00019
N/A
Figure pat00020
-1
Figure pat00021
~ M-1
N/A A +
Figure pat00022
B +
Figure pat00023
위 표 2에 예시된 내용은 M개의 RB 자원을 가진 carrier bandwidth에 대해 k개의 RB단위로 서브-블록을 나눈 예이다. k값은 PRG의 배수 단위 이면서 나누어진 서브-블록의 개수가 2개 이상이 되도록 M보다 작은 값으로 설정할 수 있다. 대부분의 서브-블록이 k개의 RB 단위로 이루어지지만, 마지막 서브-블록은 M값이 k의 배수가 아니면 k보다 작은 RB만으로 이루어질 수 있다. 첫번째 CDM group을 제외한 두번째, 세번째 CDM group에 해당하는 모든 레이어 신호에 대해 각 서브-블록에 해당하는 phase를 적용하여 phase rotation을 수행할 수 있다. A, B로 표현된 값은 첫번째 서브-블록에서 가질 수 있는 초기 위상 값을 뜻하며 0도를 포함한 0도~360도 사이의 값을 가질 수 있다. 두번째 서브-블록부터는 이전 서브-블록에 비해 offset값 만큼 phase가 증가된 값으로 phase rotation을 수행할 수 있다.PDSCH 전송에 사용되는 OFDM 심볼 수가 2 이상인 경우, PDSCH가 전송되는 모든 OFDM 심볼에 대해 동일한 방식으로 phase rotation을 수행할 수 있다. 모든 OFDM 심볼에 대해 동일한 서브-블록 구조를 가지며, 서브-블록 단위로 적용되는 CDM group별 phase값도 동일할 수 있다.
서브-블록은 수신 성능을 저하시키지 않기 위해 PRG 단위 혹은 PRG의 배수 단위로 정할 수 있다. 5G NR 이동통신 시스템에서 PRG는 wideband, 2, 4 세가지 값 중 하나로 정할 수 있다. Wideband로 PRG를 운용하는 경우는 서브-블록을 나눌 수가 없으므로 논외로 하면, PRG의 단위는 2 혹은 4가 가능할 수 있다. 이런 경우 서브-블록을 4-RB 단위로 설정하면 PRG 2나 4 모두의 배수에 해당하기 때문에 user별 PRG 설정을 2 또는 4 중에 한가지 값으로 좀 더 자유롭게 할 수 있다.
또한, CDM group별 서브-블록 단위로 적용하는 phase값을 90도의 배수가 되도록 설정하면 구현을 보다 쉽게 할 수 있다. 표 2 에서 A, B값을 0으로 설정하고
Figure pat00024
을 90도,
Figure pat00025
를 180도로 설정하면 적용되는 모든 phase값이 90도의 배수로 결정된다. 이렇게 되면 phase rotation을 적용할 때 복소수 곱셈 연산을 하는 대신 비교적 간단한 I/Q 치환 및 부호 변환 연산만으로 쉽게 구현할 수 있는 장점이 있다.
도 9는 본 개시의 일 실시예에 따른 4-layer 전송에서 PDSCH용 DMRS 신호에 서브-블록 단위로 phase rotation이 적용된 경우를 도시한 도면이다.
표 2에서와 같이, 첫번째 CDM group을 제외한 두번째 CDM group에 phase offset
Figure pat00026
을 적용하였으며, 서브-블록의 수는 3개이고, 초기 위상 값 A는 0인 경우이다. 두번째 CDM group에 해당하는 두 개의 DMRS 포트가 할당된 L2와 L3 레이어에 대해, 서브-블록 단위로 phase offset만큼 증가하는 phase값이 적용되었다. 이 경우, 도 6에서 사용된 서로 다른 DMRS sequence를 사용한 것과 같이, 각각의 서브 블록에서 correlation이 높지 않아 PAPR의 증가를 효과적으로 방지할 수 있다. A를 0으로 잡은 경우, 서브-블록 0 구간에서 도 4의 경우와 유사하나, 전체 대역폭이 아닌 일부 대역폭에 한해 적용되는 것이므로, 전체적인 상관도가 낮아서 본 개시의 PAPR reduction을 적용하지 않은 경우보다 큰 PAPR 증가 방지 효과를 얻을 수 있다.
이하에서는, PDSCH가 전송되는 구체적인 상황에 대하여 본 개시에 따른 phase rotation을 적용하는 방법에 대해 설명한다.
- 실시 예 1: 하나의 PDSCH가 slot내 전체 자원을 사용하는 경우
표 2의 예가 적용될 수 있다. 전체 주파수 축 자원이 서브-블록으로 구분되어 있으므로 서브-블록 단위로 적용해야 할 phase값을 각 CDM group에 해당하는 레이어에 적용하여 phase rotation을 적용할 수 있다. 첫번째 OFDM 심볼부터 마지막 OFDM 심볼까지 동일한 작업을 반복하여 전체 RE에 PAPR reduction 처리를 수행할 수 있다.
- 실시 예 2: 다수의 PDSCH가 FDM되는 경우
도 10은 본 개시의 일 실시예에 따른 다수의 PDSCH가 주파수 다중 분할(frequency division multiplexing, FDM)된 경우를 도시한 도면이다.
도 10을 참조하면, PDSCH 0부터 PDSCH 2까지 서로 다른 3개의 PDSCH가 PRG 0부터 2까지 서로 다른 3개의 PRG에 각각 대응된다.
이와 같이 PRG 단위로 여러 개의 PDSCH가 할당된 경우, PDSCH별로 서로 다른 DMRS sequence를 사용할 수도 있으나 cell specific한 변수를 사용하여 동일한 DMRS sequence를 PDSCH 모두가 공통으로 사용하는 방법도 가능하다. Fronted-loaded DMRS의 경우 DMRS 신호가 전송되는 OFDM 심볼 위치도 동일할 가능성이 매우 크며, 이 경우 하나의 DMRS sequence가 전 주파수 대역에 할당되는 형태이기 때문에 실시 예 1처럼 하나의 PDSCH가 slot내 전체 자원을 사용하는 경우와 같은 DMRS 매핑 형태를 갖게 된다. 이러한 구조에서 만일 PDSCH 단위로 phase를 달리 주는 방법을 적용하면 slot내 할당되는 PDSCH 전체에 대해 phase 조절을 해 주어야 하기 때문에 구현이 복잡해 질 수 있다. Carrier bandwidth를 PRG의 배수 단위로 미리 나눈 서브-블록을 이용하면 할당된 PDSCH 수에 관계없이 주파수 축 내의 RB위치를 기반으로 하는 phase값만 계산해서 phase rotation을 수행함으로써 구현을 보다 간단히 할 수 있다.
즉, 이 경우에도 실시예 1과 같이 표 2의 예시가 그대로 적용될 수 있다. DMRS configuration 1(type 1)인 경우를 예시하면, CDM group은 #0(표 2의 1st group)과 #1(표 2의 2nd group)의 2개로 구분될 수 있다. 서브-블록의 크기를 PRG 단위로 하는 경우, PRG 0에는 서브-블록 index가 0인 경우의 phase A를 적용할 수 있고, PRG 1에는 서브-블록 index가 1과 대응되므로, 1 offset 만큼이 증가한 phase A+
Figure pat00027
을 적용할 수 있고, PRG 2에는 서브-블록 index 2와 대응되도록 phase A+
Figure pat00028
를 적용할 수 있다.
서브-블록의 크기는 PRG의 배수로 결정될 수 있으므로, 서브-블록의 크기가 PRG 크기의 2배만큼인 경우에는 PRG 0과 PRG 1이 서브-블록 index 0에 대응되고, PRG 2가 서브-블록 index 1에 대응되도록 하여 phase rotation을 모든 RE에 적용할 수 있다.
- 실시 예 3: mini-slot 운용
도 11은 본 개시의 일 실시예에 따른 PDSCH의 전송에서 mini-slot이 적용되는 경우를 도시한 도면이다.
도 11과 같이, 시간 축 OFDM 심볼 단위로 서로 다른 PDSCH가 운용되는 경우, 주파수 축으로는 표 2의 예를 그대로 적용할 수 있다. 5G NR 이동통신 시스템의 경우 PDSCH 전송 시 2개 이상의 OFDM 심볼이 사용되며, DMRS 신호가 전송되는 심볼이 별도로 구분된다. DMRS 신호와 데이터 신호에 같은 phase를 적용해야 수신 단에서 성능 저하를 일으키지 않기 때문에 PDSCH가 전송되는 모든 OFDM 심볼 구간에서는 같은 phase rotation 방식을 사용해야 한다. Mini slot으로 운용으로 여러 개의 PDSCH들이 TDM(Time Division Multiplexing) 방식으로 할당될 수 있다. 도 11과 같은 구조에서 PDSCH 0과 1만 사용된다고 가정하면, 각각의 PDSCH가 전송되는 OFDM 심볼 구간에 대해 서로 다른 phase값을 적용할 수도 있다. 하지만 PDSCH가 전송되는 OFDM 심볼 구간별로 다른 phase값을 적용하려면 구현이 좀 더 복잡해 질 수 밖에 없다. PDSCH 2까지 포함하여 TDM+FDM으로 전송되는 구조를 살펴보면 mini-slot 운용을 하더라도 모든 OFDM 심볼에서 같은 phase값을 사용해야 함을 알 수 있다. PDSCH 2가 전송되는 OFDM 심볼 구간에 대해서는 같은 phase값을 적용해야 하므로, PDSCH 0이 전송되는 OFDM 심볼 구간과 PDSCH 1이 전송되는 OFDM 심볼 구간을 나누어서 다른 phase를 적용할 수 없다. 즉, mini-slot이 적용되는 경우에도 실시예 1과 마찬가지로, 표 2의 예를 그대로 적용할 수 있다.
본 개시에 따른 구현 방법은 위 실시예로 국한되지 않으며, 실시예의 변형이나 실시예 간 조합, 변형된 실시예의 조합 등 다양한 방법이 적용될 수 있다.
도 12는 본 개시에 따른 PAPR 감소 기술을 4-layer 전송의 경우에 적용한 시뮬레이션 결과를 도시한 도면이다.
실선이 precoding을 수행하지 않은 경우의 PAPR 값을 도시한 결과이며, 굵은 점선은 precoding 수행 후 아무런 PAPR reduction 기법을 적용하지 않은 결과를 나타낸다. 도 5에서 설명한 바와 같이 precoding 과정을 통해 0.01% 확률 기준으로 약 2dB 정도 PAPR이 증가함을 확인할 수 있다. 가는 점선은 precoding 수행 후 본 개시에서 제안하는 PAPR reduction 기법을 적용한 결과이며, precoding을 수행하지 않은 실선과 거의 동일한 결과를 나타내는 것을 볼 수 있다. 본 개시에서 제안하는 방법을 적용하면 precoding에 의해 발생할 수 있는 PAPR 증가가 효과적으로 방지됨을 알 수 있다.
본 개시에서는 기지국의 동작을 위주로 설명하였으나, 본 개시에 따른 PAPR reduction이 적용된 OFDM DMRS 신호를 수신하는 단말의 경우, PAPR이 감소된 PDSCH-DMRS를 수신함으로써, 원활하고 효율적인 통신을 수행할 수 있는 효과를 얻을 수 있다.
도 13은 본 개시의 일 실시예에 따른 단말이 PAPR reduction이 적용된 OFDM DMRS 신호를 수신하는 방법을 도시한 순서도이다.
도 13을 참조하면, 단말은 기지국으로부터 PDSCH를 위한 DMRS를 수신하기 위한 정보를 수신할 수 있다(1301). PDSCH를 위한 DMRS 정보는 DMRS configuration(DMRS type), 포트, CDM group, DMRS port grouping, OCC, DMRS의 최대 길이, DMRS를 수신하기 위한 DMRS 테이블 등의 정보를 포함할 수 있다. 이때 단말이 기지국으로부터 수신하는 DMRS 정보는 상위 계층 시그널링 또는 L1 시그널링, 또는 이 둘의 조합으로 수신할 수 있다.
이후 단말은, 수신된 DMRS 정보에 기초하여, 수신하게 될 PDSCH를 위한 DMRS를 확인할 수 있다(1302). 예를 들어, 단말은 DMRS port의 수(layer의 수), DMRS의 type, CDM group, OCC 정보 등을 확인함으로써 단말이 수신하기 위한 PDSCH를 위한 DMRS를 확인할 수 있다.
단말은 기지국으로부터 전송되는 DMRS를 수신할 수 있다(1303). 이 때 단말은 전술한 기지국으로부터 수신하는 DMRS 정보 및 단말에서 확인한 정보를 이용하여 확인된 DMRS를 수신할 수 있다.
단말이 수신한 DMRS는 기지국으로부터 PAPR을 감소하기 위한 처리가 적용된 DMRS일 수 있다. 이때, PAPR을 감소하기 위한 처리는 위상 회전을 적용하는 것일 수 있다. 단말이 수신하는 DMRS가 생성되는 방법은 전술한 바와 같다.
본 개시의 상기 실시예들을 수행하기 위한 단말과 기지국의 송신부, 수신부, 처리부가 각각 도 14와 도 15 도시되어 있다. 상기 제1 실시예부터 제3 실시예까지 DMRS의 전송을 위한 PAPR reduction 처리를 수행하여 기지국이 DMRS 정보를 생성하는 방법 및 기지국과 단말의 송수신 방법이 나타나 있으며, 이를 수행하기 위해 기지국과 단말의 수신부, 처리부, 송신부가 각각 실시예에 따라 동작하여야 한다.
구체적으로 도 14는 본 개시의 실시예에 따른 단말의 내부 구조를 도시하는 블록도이다. 도 14에서 도시되는 바와 같이, 본 개시의 단말은 단말기 수신부(1400), 단말기 송신부(1404), 단말기 처리부(1402)를 포함할 수 있다. 단말기 수신부(1400)와 단말이 송신부(1404)를 통칭하여 본 개시의 실시 예에서는 송수신부라 칭할 수 있다. 송수신부는 기지국과 통신을 위한 신호를 송수신할 수 있다. 상기 신호는 제어 정보와, 데이터를 포함할 수 있다. 이를 위해, 송수신부는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 또한, 송수신부는 무선 채널을 통해 신호를 수신하여 단말기 처리부(1402)로 출력하고, 단말기 처리부(1402)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다. 단말기 처리부(1402)는 상술한 본 개시의 실시예에 따라 단말이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 단말 수신부(1400)에서 기지국으로부터 기준신호를 수신하고, 단말 처리부(1402)는 기준신호의 적용 방법을 해석하도록 제어할 수 있다. 또한, 단말 송신부(1404)에서도 기준신호를 송신할 수 있다.
도 15는 본 개시의 실시예에 따른 기지국의 내부 구조를 도시하는 블록도이다. 도 14에서 도시되는 바와 같이, 본 개시의 기지국은 기지국 수신부(1501), 기지국 송신부(1505), 기지국 처리부(1503)를 포함할 수 있다. 기지국 수신부(1501)와 기지국 송신부(1505)를 통칭하여 본 개시의 실시 예에서는 송수신부라 칭할 수 있다. 송수신부는 단말과 신호를 송수신할 수 있다. 상기 신호는 제어 정보와, 데이터를 포함할 수 있다. 이를 위해, 송수신부는 송신되는 신호의 주파수를 상승 변환 및 증폭하는 RF 송신기와, 수신되는 신호를 저 잡음 증폭하고 주파수를 하강 변환하는 RF 수신기 등으로 구성될 수 있다. 또한, 송수신부는 무선 채널을 통해 신호를 수신하여 기지국 처리부(1503)로 출력하고, 기지국 처리부(1503)로부터 출력된 신호를 무선 채널을 통해 전송할 수 있다. 기지국 처리부(1503)는 상술한 본 개시의 실시예에 따라 기지국이 동작할 수 있도록 일련의 과정을 제어할 수 있다. 예를 들어, 기지국 처리부(1503)는 기준신호의 구조를 결정하고, 단말에게 전달할 기준신호에 대한 정보를 생성하도록 제어할 수 있다. 이후, 기지국 송신부(1505)에서 상기 기준신호와 관련 정보를 단말에게 전달하고, 기지국 수신부(1501)는 역시 기준신호를 수신할 수 있다.
한편, 본 명세서와 도면에 개시된 본 개시의 실시예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 각각의 실시 예는 필요에 따라 서로 조합되어 운용할 수 있다. 예컨대, 본 개시의 모든 실시예는 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다.
본 개시에서, 특정 조건(또는 기준)의 충족(fulfilled) 여부를 판단하기 위해, 이상 또는 이하의 표현이 사용되었으나, 이는 일 예를 표현하기 위한 기재일 뿐 초과 또는 미만의 기재를 배제하는 것이 아니다. '이상'으로 기재된 조건은 '초과', '이하'로 기재된 조건은 '미만', '이상 및 미만'으로 기재된 조건은 '초과 및 이하'로 대체될 수 있다.
본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들은 하드웨어, 소프트웨어, 또는 하드웨어와 소프트웨어의 조합의 형태로 구현될(implemented) 수 있다.
소프트웨어로 구현하는 경우, 하나 이상의 프로그램(소프트웨어 모듈)을 저장하는 컴퓨터 판독 가능 저장 매체가 제공될 수 있다. 컴퓨터 판독 가능 저장 매체에 저장되는 하나 이상의 프로그램은, 전자 장치(device) 내의 하나 이상의 프로세서에 의해 실행 가능하도록 구성된다(configured for execution). 하나 이상의 프로그램은, 전자 장치로 하여금 본 개시의 청구항 또는 명세서에 기재된 실시 예들에 따른 방법들을 실행하게 하는 명령어(instructions)를 포함할 수 있다.
이러한 프로그램(소프트웨어 모듈, 소프트웨어)은 랜덤 액세스 메모리 (random access memory), 플래시(flash) 메모리를 포함하는 불휘발성(non-volatile) 메모리, 롬(ROM: Read Only Memory), 전기적 삭제가능 프로그램가능 롬(EEPROM: Electrically Erasable Programmable Read Only Memory), 자기 디스크 저장 장치(magnetic disc storage device), 컴팩트 디스크 롬(CD-ROM: Compact Disc-ROM), 디지털 다목적 디스크(DVDs: Digital Versatile Discs) 또는 다른 형태의 광학 저장 장치, 마그네틱 카세트(magnetic cassette)에 저장될 수 있다. 또는, 이들의 일부 또는 전부의 조합으로 구성된 메모리에 저장될 수 있다. 또한, 각각의 구성 메모리는 복수 개 포함될 수도 있다.
또한, 프로그램은 인터넷(Internet), 인트라넷(Intranet), LAN(Local Area Network), WLAN(Wide LAN), 또는 SAN(Storage Area Network)과 같은 통신 네트워크, 또는 이들의 조합으로 구성된 통신 네트워크를 통하여 접근(access)할 수 있는 부착 가능한(attachable) 저장 장치(storage device)에 저장될 수 있다. 이러한 저장 장치는 외부 포트를 통하여 본 개시의 실시 예를 수행하는 장치에 접속할 수 있다. 또한, 통신 네트워크 상의 별도의 저장 장치가 본 개시의 실시 예를 수행하는 장치에 접속할 수도 있다.
상술한 본 개시의 구체적인 실시 예들에서, 본 개시에 포함되는 구성 요소는 제시된 구체적인 실시 예에 따라 단수 또는 복수로 표현되었다. 그러나, 단수 또는 복수의 표현은 설명의 편의를 위해 제시한 상황에 적합하게 선택된 것으로서, 본 개시가 단수 또는 복수의 구성 요소에 제한되는 것은 아니며, 복수로 표현된 구성 요소라 하더라도 단수로 구성되거나, 단수로 표현된 구성 요소라 하더라도 복수로 구성될 수 있다.
한편, 본 명세서와 도면에 개시된 본 개시의 실시 예들은 본 개시의 기술 내용을 쉽게 설명하고 본 개시의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 개시의 범위를 한정하고자 하는 것은 아니다. 즉 본 개시의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능하다는 것은 본 개시의 속하는 기술 분야에서 통상의 지식을 가진 자에게 자명한 것이다. 또한 상기 실시 예 1 내지 실시 예 4는 필요에 따라 하나 이상이 서로 조합되어 운용할 수 있다. 예컨대, 본 개시에서 제안하는 방법들의 일부분들이 서로 조합되어 기지국과 단말이 운용될 수 있다. 또한 상기 실시 예들은 5G, NR 시스템을 기준으로 제시되었지만, LTE, LTE-A, LTE-A-Pro 시스템 등 다른 시스템에도 상기 실시 예의 기술적 사상에 바탕을 둔 다른 변형예들이 실시 가능할 것이다.

Claims (20)

  1. 무선 통신 시스템에서 기지국의 방법에 있어서,
    적어도 하나의 단말로 전송하기 위한 PDSCH(physical downlink shared channel)가 매핑되는 레이어(layer) 정보 및 부호 분할 다중화(code division multiplexing, CDM) 그룹 정보를 확인하는 단계;
    상기 레이어 정보 및 상기 CDM 그룹 정보에 기초하여, 상기 PDSCH를 위한 복조 기준 신호(demodulation reference signal, DMRS)에 위상 회전(phase rotation)을 적용하는 단계; 및
    상기 적어도 하나의 단말로, 상기 위상 회전이 적용된 상기 DMRS를 전송하는 단계를 포함하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서,
    상기 레이어 정보 및 상기 CDM 그룹 정보를 확인하는 단계는,
    상기 PDSCH가 매핑되는 레이어의 수가 2 이상인지 확인하는 단계; 및
    상기 레이어의 수가 2 이상으로 확인되는 경우, 상기 CDM 그룹의 수를 확인하는 단계를 포함하고,
    상기 CDM 그룹의 수가 2 이상으로 확인되는 경우, 상기 DMRS에 상기 위상 회전이 적용되는 것을 특징으로 하는, 방법.
  3. 제1항에 있어서, 상기 복수의 CDM 그룹은 제1 CDM 그룹 및 제2 CDM 그룹을 포함하고, 상기 제1 CDM 그룹에는 위상 회전을 적용하지 않고, 상기 제2 CDM 그룹에는 위상 회전을 적용하는 것을 특징으로 하는, 방법.
  4. 제3항에 있어서,
    상기 DMRS에 위상 회전을 적용하는 단계는,
    상기 PDSCH가 전송되는 주파수 자원 영역을 복수의 서브-블록으로 구분하는 단계;
    상기 구분된 복수의 서브-블록마다 상기 위상 회전을 적용하기 위한 서로 다른 위상값을 확인하는 단계; 및
    상기 확인된 서로 다른 위상값에 기초하여, 상기 제2 CDM 그룹의 상기 구분된 복수의 서브-블록마다 상기 DMRS에 대한 위상 회전을 수행하는 단계를 포함하는 것을 특징으로 하는, 방법.
  5. 제4항에 있어서,
    상기 서브-블록의 크기는 프리코딩이 적용되기 위한 프리코딩 자원 블록 그룹(precoding resource block group, PRG) 크기의 배수인 것을 특징으로 하는, 방법.
  6. 제4항에 있어서,
    상기 DMRS가 제1 OFDM(orthogonal frequency division multiplexing) 심볼 및 제2 OFDM 심볼에서 전송되는 경우, 상기 제2 OFDM 심볼에 대해 상기 제1 OFDM 심볼에서 적용된 것과 동일한 방식의 위상 회전을 적용하는 것을 특징으로 하는 방법.
  7. 제4항에 있어서,
    상기 서로 다른 위상값은 미리 정해진 오프셋의 배수로 확인되는 것을 특징으로 하는, 방법.
  8. 무선 통신 시스템에서 단말의 방법에 있어서,
    기지국으로부터, PDSCH(physical downlink shared channel)를 위한 복조 기준 신호(demodulation reference signal, DMRS) 정보를 수신하는 단계;
    상기 수신된 DMRS 정보에 기초하여, 수신할 DMRS를 확인하는 단계; 및
    상기 기지국으로부터, 상기 확인된 DMRS를 수신하는 단계를 포함하되,
    상기 DMRS는, 상기 PDSCH가 매핑되는 레이어(layer) 정보 및 부호 분할 다중화(code division multiplexing, CDM) 그룹 정보에 기초하여, 복수의 CDM 그룹 별로 위상 회전(phase rotation)이 적용되는 것을 특징으로 하는, 방법.
  9. 제8항에 있어서, 상기 위상 회전은,
    상기 레이어 정보 및 상기 CDM 그룹 정보에 기초하여 상기 PDSCH가 매핑되는 레이어의 수가 2 이상이고, 상기 CDM 그룹의 수가 2 이상인 것으로 확인된 경우, 상기 DMRS에 적용되는 것을 특징으로 하는, 방법.
  10. 제9항에 있어서,
    상기 DMRS는, 상기 PDSCH가 전송되는 주파수 자원 영역에서 구분되는 복수의 서브-블록마다 서로 다른 위상값에 기초하여 위상 회전이 적용되는 것을 특징으로 하는, 방법.
  11. 무선 통신 시스템에서 기지국에 있어서,
    신호를 송수신하는 송수신부; 및
    상기 송수신부와 연결된 제어부를 포함하고,
    상기 제어부는,
    적어도 하나의 단말로 전송하기 위한 PDSCH(physical downlink shared channel)가 매핑되는 레이어(layer) 정보 및 부호 분할 다중화(code division multiplexing, CDM) 그룹 정보를 확인하고,
    상기 레이어 정보 및 상기 CDM 그룹 정보에 기초하여, 상기 PDSCH를 위한 복조 기준 신호(demodulation reference signal, DMRS)에 위상 회전(phase rotation)을 적용하고,
    상기 적어도 하나의 단말로, 상기 위상 회전이 적용된 상기 DMRS를 전송하도록 설정된 것을 특징으로 하는 기지국.
  12. 제11항에 있어서,
    상기 제어부는,
    상기 PDSCH가 매핑되는 레이어의 수가 2 이상인지 확인하고,
    상기 레이어의 수가 2 이상으로 확인되는 경우, 상기 CDM 그룹의 수를 확인하고,
    상기 CDM 그룹의 수가 2 이상으로 확인되는 경우, 상기 DMRS에 상기 위상 회전을 적용하도록 설정된 것을 특징으로 하는, 기지국.
  13. 제11항에 있어서, 상기 복수의 CDM 그룹은 제1 CDM 그룹 및 제2 CDM 그룹을 포함하고, 상기 제1 CDM 그룹에는 위상 회전을 적용하지 않고, 상기 제2 CDM 그룹에는 위상 회전을 적용하는 것을 특징으로 하는, 기지국.
  14. 제13항에 있어서,
    상기 제어부는,
    상기 PDSCH가 전송되는 주파수 자원 영역을 복수의 서브-블록으로 구분하고,
    상기 구분된 복수의 서브-블록마다 상기 위상 회전을 적용하기 위한 서로 다른 위상값을 확인하고,
    상기 확인된 서로 다른 위상값에 기초하여, 상기 제2 CDM 그룹의 상기 구분된 복수의 서브-블록마다 상기 DMRS에 대한 위상 회전을 수행하는 것을 특징으로 하는, 기지국.
  15. 제14항에 있어서,
    상기 서브-블록의 크기는 프리코딩이 적용되기 위한 프리코딩 자원 블록 그룹(precoding resource block group, PRG) 크기의 배수인 것을 특징으로 하는, 기지국.
  16. 제14항에 있어서,
    상기 DMRS가 제1 OFDM(orthogonal frequency division multiplexing) 심볼 및 제2 OFDM 심볼에서 전송되는 경우, 상기 제2 OFDM 심볼에 대해 상기 제1 OFDM 심볼에서 적용된 것과 동일한 방식의 위상 회전을 적용하는 것을 특징으로 하는 기지국.
  17. 제14항에 있어서,
    상기 서로 다른 위상값은 미리 정해진 오프셋의 배수로 확인되는 것을 특징으로 하는, 기지국.
  18. 무선 통신 시스템에서 단말에 있어서,
    신호를 송수신하는 송수신부; 및
    상기 송수신부와 연결된 제어부를 포함하고,
    상기 제어부는,
    기지국으로부터, PDSCH(physical downlink shared channel)를 위한 복조 기준 신호(demodulation reference signal, DMRS) 정보를 수신하고,
    상기 수신된 DMRS 정보에 기초하여, 수신할 DMRS를 확인하고,
    상기 기지국으로부터, 상기 확인된 DMRS를 수신하도록 설정되되,
    상기 DMRS는, 상기 PDSCH가 매핑되는 레이어(layer) 정보 및 부호 분할 다중화(code division multiplexing, CDM) 그룹 정보에 기초하여, 복수의 CDM 그룹 별로 위상 회전(phase rotation)이 적용되는 것을 특징으로 하는, 단말.
  19. 제18항에 있어서, 상기 위상 회전은,
    상기 레이어 정보 및 상기 CDM 그룹 정보에 기초하여 상기 PDSCH가 매핑되는 레이어의 수가 2 이상이고, 상기 CDM 그룹의 수가 2 이상인 것으로 확인된 경우, 상기 DMRS에 적용되는 것을 특징으로 하는, 단말.
  20. 제19항에 있어서,
    상기 DMRS는, 상기 PDSCH가 전송되는 주파수 자원 영역에서 구분되는 복수의 서브-블록마다 서로 다른 위상값에 기초하여 위상 회전이 적용되는 것을 특징으로 하는, 단말.
KR1020200084548A 2020-07-09 2020-07-09 직교 주파수 분할 다중 변조 시스템에서 피크 대 평균 전력 비를 감소시키는 방법 및 장치 KR20220006760A (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020200084548A KR20220006760A (ko) 2020-07-09 2020-07-09 직교 주파수 분할 다중 변조 시스템에서 피크 대 평균 전력 비를 감소시키는 방법 및 장치
EP21838424.6A EP4164188A4 (en) 2020-07-09 2021-07-06 METHOD AND DEVICE FOR REDUCING THE PEAK POWER/AVERAGE POWER RATIO IN AN ORTHOGONAL FREQUENCY DIVISION MODULATION SYSTEM
PCT/KR2021/008550 WO2022010218A1 (ko) 2020-07-09 2021-07-06 직교 주파수 분할 다중 변조 시스템에서 피크 대 평균 전력 비를 감소시키는 방법 및 장치
US18/094,758 US20230164014A1 (en) 2020-07-09 2023-01-09 Method and device for reducing peak-to-average power ratio in orthogonal frequency division multiplexing modulation system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020200084548A KR20220006760A (ko) 2020-07-09 2020-07-09 직교 주파수 분할 다중 변조 시스템에서 피크 대 평균 전력 비를 감소시키는 방법 및 장치

Publications (1)

Publication Number Publication Date
KR20220006760A true KR20220006760A (ko) 2022-01-18

Family

ID=79553392

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020200084548A KR20220006760A (ko) 2020-07-09 2020-07-09 직교 주파수 분할 다중 변조 시스템에서 피크 대 평균 전력 비를 감소시키는 방법 및 장치

Country Status (4)

Country Link
US (1) US20230164014A1 (ko)
EP (1) EP4164188A4 (ko)
KR (1) KR20220006760A (ko)
WO (1) WO2022010218A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115086131B (zh) * 2022-07-28 2023-01-20 北京智芯微电子科技有限公司 峰均比降低方法、装置、电子设备和可读存储介质
CN117769035B (zh) * 2024-02-20 2024-05-07 深圳市鼎阳科技股份有限公司 用于物理下行共享信道的数据处理方法及装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9887754B2 (en) * 2010-05-04 2018-02-06 Qualcomm Incorporated Method and apparatus for optimizing power distribution between symbols
EP3776895A1 (en) * 2018-04-13 2021-02-17 Telefonaktiebolaget LM Ericsson (publ) Reference signaling for radio access networks
EP3857833A4 (en) * 2018-09-28 2022-06-15 INTEL Corporation REDUCTION OF PEAK POWER TO AVERAGE POWER (PAPR) RATIO OF REFERENCE SIGNALS

Also Published As

Publication number Publication date
EP4164188A1 (en) 2023-04-12
EP4164188A4 (en) 2023-11-29
US20230164014A1 (en) 2023-05-25
WO2022010218A1 (ko) 2022-01-13

Similar Documents

Publication Publication Date Title
US11283509B2 (en) Method and apparatus for transmitting and receiving signal in wireless communication system
EP3580883B1 (en) Method and apparatus for nr-dmrs sequence design
EP3937446B1 (en) Phase tracking reference signal processing method and apparatus
KR102646746B1 (ko) 무선 통신 시스템에서 제어 정보를 전송하는 방법 및 장치
JP7280414B2 (ja) 受信機及び受信方法
KR102020005B1 (ko) 무선통신시스템에서 하향링크 제어 채널 전송을 위한 방법 및 장치
US20200260477A1 (en) Scheduling method and device in wireless communication system providing broadband service
KR102527280B1 (ko) 무선 통신 시스템에서 기준 신호 송수신 방법 및 장치
US20230164014A1 (en) Method and device for reducing peak-to-average power ratio in orthogonal frequency division multiplexing modulation system
US12081370B2 (en) Method and device for transmitting uplink channel in wireless communication system
US20220183015A1 (en) Apparatus and method for inter-cell interference control for wireless communication system
CN112313892B (zh) 用于在无线通信系统中发送和接收调制信号的方法和设备
US20200267674A1 (en) Method and apparatus for transmitting and receiving synchronization signal in wireless communication system
US20220124757A1 (en) Method and apparatus for transmitting uplink channel in wireless communication system
KR20220129270A (ko) 무선 통신 시스템에서 상향링크 채널 전송을 위한 방법 및 장치
KR20190053748A (ko) 무선 통신 시스템에서 제어 정보를 송수신하는 방법 및 장치
KR20210135549A (ko) 비면허 스펙트럼에 대한 pdsch의 자원 매핑을 위한 방법 및 장치
CN114208294A (zh) 用于从相邻小区接收rmsi的方法和装置
KR20220137473A (ko) 무선 통신 시스템에서 상향링크 채널 전송을 위한 방법 및 장치
KR20200078216A (ko) 무선 통신 시스템에서 dft-s-ofdm 기반 pdcch 전송 방법 및 장치
EP3829127B1 (en) Method and device for generating reference signal sequence for papr reduction in mobile communication system
KR20240038937A (ko) 무선 통신 시스템에서 제어 정보를 전송하는 방법 및 장치
EP4120645A1 (en) Ofdm-based method and device for spreading and transmitting compressed data
CN111193581A (zh) 发送和接收物理下行控制信道的方法以及通信装置
KR20220008599A (ko) 테스트 신호를 전송하는 전자 장치 및 이의 동작 방법