WO2024021231A1 - 高容量电池活性材料的制备方法及其应用 - Google Patents

高容量电池活性材料的制备方法及其应用 Download PDF

Info

Publication number
WO2024021231A1
WO2024021231A1 PCT/CN2022/117480 CN2022117480W WO2024021231A1 WO 2024021231 A1 WO2024021231 A1 WO 2024021231A1 CN 2022117480 W CN2022117480 W CN 2022117480W WO 2024021231 A1 WO2024021231 A1 WO 2024021231A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
iron oxide
battery active
iron
sintering
Prior art date
Application number
PCT/CN2022/117480
Other languages
English (en)
French (fr)
Inventor
王雀乐
李长东
阮丁山
刘伟健
缪建麟
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024021231A1 publication Critical patent/WO2024021231A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of lithium-ion battery materials, and specifically relates to a preparation method and application of high-capacity battery active materials.
  • Li 5 FeO 4 has the advantage of ultra-high theoretical capacity. Adding a certain amount of Li 5 FeO 4 to the cathode material can effectively improve the problem of lithium ion loss during the first charge and discharge. There are still some problems in the current method of synthesizing Li 5 FeO 4. For example, the synthetic material particles are too large, resulting in long lithium ion migration paths, relatively low capacity, poor conductivity, poor stability and other problems. To address these problems, it is generally considered to reduce the material size by reducing the particle size of iron oxide. However, it is difficult to reach the nanoscale of iron oxide, and the nanoscale iron oxide on the market is expensive, has a small supply, and does not have a cost advantage.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a preparation method and application of high-capacity battery active materials.
  • the preparation method of the ferric hydroxide colloid is: slowly adding the iron salt solution into hot water, accompanied by heating and stirring, and keeping it warm for a period of time after the liquid addition is completed, to obtain The iron hydroxide colloid.
  • Iron hydroxide colloid is prepared by heating an iron salt solution in water to undergo a hydrolysis reaction. Further, the water is deionized water with an impurity content of ⁇ 1000 ppm; further, the concentration of the iron salt solution is 0.1-12 mol/L; further, the heating temperature is above 80°C; further, add The heat preservation time after the liquid is finished is more than 10 minutes.
  • step S1 the temperature of the hot water is above 80°C.
  • the carbon source is at least one of carbon nanotubes, conductive carbon black, graphite powder, polyethyleneimine, glucose or polyvinyl alcohol. Further, the particle size Dv50 of the carbon source is 0.5-3 ⁇ m.
  • step S1 the spray drying temperature is 180-250°C.
  • step S1 the mixed material needs to be stirred during the spray drying process, and the stirring speed is 100-500 rpm.
  • step S1 the added amount of the carbon source is 5%-30% of the mass of the nano-iron oxide produced.
  • step S1 the BET of the nano-iron oxide is 28-58 m 2 /g, and the particle size Dv50 is 100-700 nm.
  • the lithium source is at least one of lithium hydroxide monohydrate, lithium hydroxide anhydrous or lithium oxide, and the lithium element in the lithium source and the nano-oxide
  • the molar ratio of iron elements in iron is 5.0-5.8.
  • the sintering temperature is 600-900°C. Further, the sintering time is 8-36 hours.
  • the organic polymer is at least one of polypyrrole, polythiophene, polyacetylene, polyphenylene or polyphenylene vinylene. Further, the added amount of the organic polymer is 0.1%-3% of the theoretical mass of the battery active material.
  • the organic solvent is at least one of triethanolamine, N-methylpyrrolidone, 2-hydroxyethylamine, glycerol or di-n-pentyl ether.
  • the organic solvent selected in the present invention has a relatively higher flash point, ensuring that spray drying proceeds smoothly.
  • the wet grinding process is: first add the sintered material to the organic solvent, perform wet rough crushing under a protective atmosphere, and then perform sand grinding. , and adding the organic polymer during the sanding process to obtain the grinding material.
  • the rotation speed of the coarse crushing is 400-800 rpm
  • the particle size of the material after coarse crushing is Dv50 ⁇ 20 ⁇ m.
  • the rotation speed of the sand grinding is 2000-3000 rpm.
  • the particle size Dv50 of the abrasive is 0.5-3 ⁇ m.
  • step S3 the spray drying temperature is 150-220°C.
  • the sintering temperature is 200-400°C. Further, the sintering time is 2-10 h.
  • step S4 the material obtained after the sintering is sieved, and the particle size Dv50 of the obtained battery active material is 2-8 ⁇ m.
  • the invention also provides the application of the preparation method in preparing lithium ion batteries.
  • the present invention uses ferric hydroxide colloid as the iron source. Compared with ferric hydroxide directly synthesized by precipitation of iron source and alkali solution, the colloid has better dispersion and the produced iron oxide particles are smaller, which is beneficial to the subsequent preparation of small iron hydroxide. Li 5 FeO 4 particles, while the material synthesized by iron source and alkali solution precipitation is easy to agglomerate, the particles are larger, and the platform voltage is higher.
  • the present invention also introduces a conductive carbon source into the iron hydroxide colloid, which not only prevents the material from melting and growing during the sintering process, making the synthesized particles smaller, but also helps improve the conductive properties of the material.
  • the present invention sinters and combines Li 5 FeO 4 into lumps, wet grinding is carried out under an organic solvent and a protective atmosphere to prevent the material from deteriorating in the air, which can effectively reduce the particle size of the material, which is beneficial to shortening the lithium ion life. migration path, thereby increasing the material capacity; adding organic polymers during the sanding process is to form a nano-coated carbon layer on the surface of the material.
  • the organic polymer molecular chain used in the present invention is larger. , can form a relatively dense coating layer on the surface of the material to ensure the coating effect, and its thickness is controllable, which can further improve the stability and conductive properties of the material; compared with gas phase coating, the present invention has lower requirements for equipment. More security.
  • the high-capacity battery active material synthesized by the present invention has a simple synthesis process, low processing cost, high efficiency, and is easy to realize industrialization.
  • Figure 1 is a schematic diagram of the synthesis process of Embodiment 1 of the present invention.
  • Figure 2 is a SEM image of the iron oxide synthesized in Example 1;
  • Figure 3 is an SEM image of Li 5 FeO 4 synthesized in Example 1;
  • Figure 4 is a TEM image of Li 5 FeO 4 synthesized in Example 1;
  • Figure 5 is the charge and discharge curve of Li 5 FeO 4 synthesized in Example 1;
  • Figure 6 is an SEM image of Li 5 FeO 4 synthesized in Comparative Example 1;
  • Figure 7 is the charge and discharge curve of Li 5 FeO 4 synthesized in Comparative Example 1;
  • Figure 8 is an SEM image of Li 5 FeO 4 synthesized in Comparative Example 2;
  • Figure 9 is the charge and discharge curve of Li 5 FeO 4 synthesized in Comparative Example 2.
  • a high-capacity battery active material Li 5 FeO 4 is synthesized. See Figure 1. The specific process is:
  • the stirring speed is 300 rpm
  • spray drying the spray drying temperature is 200°C
  • carbon-doped nano-iron oxide can be obtained, its morphology is shown in Figure 2, the measured particle size Dv50 of nano-iron oxide is 560nm, BET is 42m 2 /g;
  • the sintered block material is subjected to coarse crushing treatment on rollers with a roller gap of 1.5mm, and is added to the 2-hydroxyethylamine solvent and subjected to wet coarse crushing under a nitrogen atmosphere.
  • the crusher speed is 650 rpm.
  • the particle size Dv50 of the material after coarse crushing is 12 ⁇ m, and then it is subjected to high-speed sanding.
  • the sanding speed is 2600 rpm and the sanding time is 1.5 h.
  • the particle size of the material after sanding is 0.9 ⁇ m.
  • a certain amount of water is added during the sanding process.
  • Polythiophene is added in an amount of 1% of the final theoretical synthetic material mass. After sanding, it is spray-dried in a nitrogen atmosphere at a drying temperature of 220°C to obtain a dry material;
  • the dried materials are sintered at low temperature at a sintering temperature of 520°C and a sintering time of 10 hours. After sintering, the material is passed through a 400-mesh sieve to obtain the high-capacity battery active material Li 5 FeO 4 .
  • the measured particle size Dv50 is 4 ⁇ m.
  • a high-capacity battery active material Li 5 FeO 4 is synthesized.
  • the specific process is:
  • the sintered block material is subjected to coarse crushing treatment on rollers with a roller gap of 1.5mm, and is added to the N-methylpyrrolidone solvent and subjected to wet coarse crushing under a nitrogen atmosphere.
  • the crusher speed is 650 rpm.
  • the sanding speed is 2600rpm
  • the sanding time is 1.5h
  • the particle size of the material after sanding is 0.9 ⁇ m
  • a certain amount of polyphenylene is added during the sanding process, the amount added is the final theoretical 1% of the mass of the synthetic material, spray-drying in a nitrogen atmosphere after sanding, the drying temperature is 220°C, and the dry material is obtained;
  • the sintered block material is subjected to coarse crushing treatment on rollers with a roller gap of 1.5mm, and added to the 2-hydroxyethylamine solvent, and wet coarse crushing is carried out under a nitrogen atmosphere.
  • the crusher speed is 650 rpm.
  • the particle size Dv50 of the material after coarse crushing is 12 ⁇ m.
  • the sanding speed is 2600 rpm and the sanding time is 1.5 h.
  • the particle size of the material after sanding is 1.2 ⁇ m.
  • Spray drying is carried out in a nitrogen atmosphere. The drying temperature The temperature is 220°C, and the dry material is obtained, which is passed through a 400-mesh sieve to obtain the battery active material Li 5 FeO 4 , and its particle size Dv50 is measured to be 5.2 ⁇ m.
  • the particle size of the nano-iron oxide obtained in this comparative example is larger than that of Example 1. This is because Example 1 also added graphite powder to the iron hydroxide colloid, which can prevent the iron oxide from melting and growing up, so the particle size of Example 1 is smaller. Some, the final particle size of the final product is also lower.
  • a battery active material Li 5 FeO 4 is synthesized.
  • the difference from Example 1 is that dry crushing is used.
  • the specific process is:
  • Example 1 Take the nano-iron oxide and lithium hydroxide of Example 1 and mix them at high speed in a high-speed mixer.
  • the molar ratio of lithium element to iron element is 5.3, the mixing speed is 600 rpm, and the mixing time is 40 minutes to obtain a uniformly mixed material.
  • place it in a nitrogen atmosphere for high-temperature sintering the sintering temperature is 680°C, the sintering time is 25h, and a sintered block material is obtained;
  • Example 2 a battery active material Li 5 FeO 4 is synthesized.
  • the difference from Example 1 is that low molecular organic matter is used instead of high molecular polymer.
  • the specific process is:
  • the sintered lump material was prepared according to the process of steps (1) and (2) of Example 1, and the sintered lump material was subjected to rough crushing treatment on rollers.
  • the roller gap was 1.5 mm.
  • the material obtained by rough crushing was added to 2-hydroxyethyl.
  • wet coarse crushing is carried out under a nitrogen atmosphere.
  • the crusher speed is 650 rpm.
  • the particle size Dv50 of the material after coarse crushing is 12 ⁇ m.
  • high-speed sand grinding is performed.
  • the sand grinding speed is 2600 rpm and the sand grinding time is 1.5 h.
  • the particle size of the material after sanding is 0.9 ⁇ m, and a certain amount of glucose is added during the sanding process.
  • the amount added is 1% of the final theoretical synthetic material mass.
  • spray drying is performed under a nitrogen atmosphere.
  • the drying temperature is 220°C, and the dry material is obtained;
  • the dry material is sintered at a sintering temperature of 550°C and a sintering time of 10 hours. After sintering, it is passed through a 400-mesh sieve to obtain the battery active material Li 5 FeO 4 .
  • Example 1 The Li 5 FeO 4 of Example 1, Example 2, Comparative Example 1, Comparative Example 2, and Comparative Example 3 are respectively made into button batteries, which require slurry preparation, coating, drying, tableting, assembly, and installation. Cabinet test and other steps: 1 Prepare the slurry, weigh 4g of material and mix it with conductive agent and binder. The mass ratio of material: conductive agent: binder is 8:1:1.
  • the binder used is PVDF, conductive
  • the agent is conductive carbon
  • 2 Coating use a scraper to coat on the aluminum foil
  • 3 Drying dry the coated pole piece in a vacuum drying oven, the drying temperature is 120°C, and the drying time is 2 hours
  • 4 Tablet pressing use a roller machine to press the dried pole pieces into tablets
  • the specific capacity was tested under the conditions of charging voltage 4.25V and charging rate 0.1C. The results are shown in Table 1.
  • Comparative Example 3 It can be seen from Table 1 that the charging capacity of Comparative Example 3 is lower than that of Example 1. This is because the carbon coating material of Comparative Example 3 is a low molecular organic substance, and the carbon coating layer formed is not as dense as that of Example 1, resulting in a decrease in capacity. reduce.
  • Figure 5 is the charge and discharge curve of Li 5 FeO 4 synthesized in Example 1. It can be seen from the figure that its capacity can reach 705mAh/g.
  • Figure 7 is the charge and discharge curve of Li 5 FeO 4 synthesized in Comparative Example 1. It can be seen from the figure that its capacity is 220mAh/g, which is significantly lower than the capacity of the material doped and coated with carbon source in Example 1. It shows that carbon doping and coating can greatly improve the material capacity.
  • Figure 9 is the charge and discharge curve of Li 5 FeO 4 synthesized in Comparative Example 2. It can be seen from the figure that its capacity is 545mAh/g, which is lower than the capacity of Li 5 FeO 4 with smaller particles synthesized by wet grinding in Example 1. About 160mAh/g. It shows that wet grinding can effectively reduce the particle size of the material, thereby shortening the migration path of lithium ions and increasing the material capacity.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明公开了一种高容量电池活性材料的制备方法及其应用,将氢氧化铁胶体与碳源混合,所得混合物料进行喷雾干燥,得到碳掺杂的纳米氧化铁,将纳米氧化铁与锂源混合,置于惰性气氛下烧结,将烧结料、有机聚合物和有机溶剂混合进行湿法研磨,所得研磨料在保护气氛下进行喷雾干燥,所得干燥物料在惰性气氛下烧结,即得电池活性材料。本发明采用氢氧化铁胶体做铁源,胶体分散性好,制得的氧化铁颗粒小,有利于后续制备小颗粒的Li 5FeO 4,在氢氧化铁胶体中引入导电碳源,既可以阻隔材料熔融长大,使得合成的颗粒更小,又有利于改善材料的导电性能;在砂磨过程中添加有机聚合物,能在材料表面形成相对致密的包覆层,进一步改善材料的稳定性和导电性能。

Description

高容量电池活性材料的制备方法及其应用 技术领域
本发明属于锂离子电池材料技术领域,具体涉及一种高容量电池活性材料的制备方法及其应用。
背景技术
目前,新能源汽车对动力电池的续航里程要求越来越高,这对动力电池材料的循环容量提出了更高的要求。众所周知,锂离子电池在首次充放电时,由于SEI膜的形成,锂离子并不能100%返回到正极当中,而是会损失部分锂离子,进而导致锂离子电池首次充放电容量及循环容量不能充分发挥,为解决此问题,通常在正极材料中加入一些超高容量物质进行改善。
Li 5FeO 4具有超高的理论容量的优点,在正极材料中加入一定量的Li 5FeO 4,可有效改善首次充放电锂离子损失问题。目前合成Li 5FeO 4方法仍存在一些问题,例如合成材料颗粒过大,造成锂离子迁移路径长,容量相对较低,还存在导电性差,稳定性差等问题。针对这些问题,一般考虑通过降低氧化铁的粒度来降低材料尺寸,但氧化铁达到纳米级比较困难,且市面上的纳米级氧化铁价格昂贵,供应量较少,不具备成本优势。另外,目前的碳包覆技术中,有采用气态的低分子量有机物在材料表面进行气相包覆的方法,在一定程度上也可改善材料的导电性与稳定性,但气相包覆对于安全生产和设备方面要求较高,不利于工业化。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种高容量电池活性材料的制备方法及其应用。
根据本发明的一个方面,提出了包括以下步骤:
S1:将氢氧化铁胶体与碳源混合,所得混合物料进行喷雾干燥,得到碳掺杂的纳米 氧化铁;
S2:将所述纳米氧化铁与锂源混合,置于惰性气氛下烧结,得到烧结料;
S3:将所述烧结料、有机聚合物和有机溶剂混合,在保护气氛下进行湿法研磨,所得研磨料在保护气氛下进行喷雾干燥,得到干燥物料;
S4:所述干燥物料在惰性气氛下烧结,即得所述电池活性材料。
在本发明的一些实施方式中,步骤S1中,所述氢氧化铁胶体的制备方法为:将铁盐溶液缓慢加入到热水中,期间伴随加热和搅拌,加液结束后保温一段时间,得到所述氢氧化铁胶体。通过铁盐溶液在水中加热发生水解反应制备氢氧化铁胶体。进一步地,所述水为杂质含量≤1000ppm的去离子水;进一步地,所述铁盐溶液的浓度为0.1-12mol/L;进一步地,所述加热的温度为80℃以上;进一步地,加液结束后保温的时间为10min以上。
在本发明的一些实施方式中,步骤S1中,所述热水的温度为80℃以上。
在本发明的一些实施方式中,步骤S1中,所述碳源为碳纳米管、导电炭黑、石墨粉、聚乙烯亚胺、葡萄糖或聚乙烯醇中的至少一种。进一步地,所述碳源的粒径Dv50为0.5-3μm。
在本发明的一些实施方式中,步骤S1中,所述喷雾干燥的温度为180-250℃。
在本发明的一些实施方式中,步骤S1中,所述喷雾干燥的过程中需对所述混合物料进行搅拌,搅拌的转速为100-500rpm。
在本发明的一些实施方式中,步骤S1中,所述碳源的添加量为生成所述纳米氧化铁质量的5%-30%。
在本发明的一些实施方式中,步骤S1中,所述纳米氧化铁的BET为28-58m 2/g,粒径Dv50为100-700nm。
在本发明的一些实施方式中,步骤S2中,所述锂源为单水氢氧化锂、无水氢氧化锂或氧化锂中的至少一种,所述锂源中锂元素与所述纳米氧化铁中铁元素的摩尔比为5.0-5.8。
在本发明的一些实施方式中,步骤S2中,所述烧结的温度为600-900℃。进一步地,所述烧结的时间为8-36h。
在本发明的一些实施方式中,步骤S3中,所述有机聚合物为聚吡咯、聚噻吩、聚乙炔、聚亚苯基或聚苯乙炔中的至少一种。进一步地,所述有机聚合物的添加量为理论所得电池活性材料质量的0.1%-3%。
在本发明的一些实施方式中,步骤S3中,所述有机溶剂为三乙醇胺、N-甲基吡咯烷酮、2-羟基乙胺、甘油或二正戊基醚中的至少一种。与甲醇、乙醇等低闪电的有机溶剂相比,本发明所选有机溶剂的闪点相对更高,保证喷雾干燥顺利进行。
在本发明的一些实施方式中,步骤S3中,所述湿法研磨的过程为:先将所述烧结料加入到所述有机溶剂中,在保护气氛下进行湿法粗破,再进行砂磨,并在砂磨过程中加入所述有机聚合物,即得所述研磨料。进一步地,所述粗破的转速为400-800rpm,粗破后物料的粒径Dv50≤20μm。进一步地,所述砂磨的转速为2000-3000rpm。
在本发明的一些实施方式中,步骤S3中,所述研磨料的粒度Dv50为0.5-3μm。
在本发明的一些实施方式中,步骤S3中,所述喷雾干燥的温度为150-220℃。
在本发明的一些实施方式中,步骤S4中,所述烧结的温度为200-400℃。进一步地,所述烧结的时间为2-10h。
在本发明的一些实施方式中,步骤S4中,经所述烧结后得到的物料进行过筛,所得电池活性材料的粒径Dv50为2-8μm。
本发明还提供所述的制备方法在制备锂离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明采用氢氧化铁胶体做铁源,与直接利用铁源和碱液沉淀合成的氢氧化铁相比,胶体分散性更好,制得的氧化铁颗粒更小,有利于后续制备小颗粒的Li 5FeO 4,而铁源和碱液沉淀合成的材料容易团聚,颗粒较大,平台电压较高。此外本发明还在氢氧化铁胶体中引入导电碳源,既可以在烧结过程中阻隔材料熔融长大,使得合成的颗粒更小,又有利于改善材料的导电性能。
2、本发明烧结合成块状Li 5FeO 4后,在有机溶剂和保护气氛下,进行湿法研磨,防止物料在空气中变质,可有效降低材料的粒径,这有利于减短锂离子的迁移路径,进而提升材料容量;在砂磨过程中添加有机聚合物,则是为了在材料表面形成一层纳米包覆碳层,与一般低分子量有机物相比,本发明所用有机聚合物分子链大,能在材料表面形成相对致密的包覆层,保证包覆效果,且其厚度可控,能够进一步改善材料的稳定性和导电性能;与气相包覆相比,本发明对设备的要求低,安全性更高。
3、本发明合成的高容量电池活性材料,合成工艺简单,加工成本低,效率高,易于实现产业化。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明实施例1的合成工艺示意图;
图2为实施例1合成的氧化铁的SEM图;
图3为实施例1合成的Li 5FeO 4的SEM图;
图4为实施例1合成的Li 5FeO 4的TEM图;
图5为实施例1合成的Li 5FeO 4的充放电曲线;
图6为对比例1合成的Li 5FeO 4的SEM图;
图7为对比例1合成的Li 5FeO 4的充放电曲线;
图8为对比例2合成的Li 5FeO 4的SEM图;
图9为对比例2合成的Li 5FeO 4的充放电曲线。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例合成了一种高容量电池活性材料Li 5FeO 4,参见图1,具体过程为:
(1)在90℃加热条件下,将体积为3L,浓度为5mol/L的氯化铁溶液缓慢加入到去离子水中,并在加液过程中,对容器内溶液进行搅拌,搅拌转速为80rpm,加液结束后,保温20min,形成氢氧化铁胶体溶液后,加入石墨粉作为碳源物质,其Dv50为1.5μm,其添加量为喷雾干燥后理论形成的纳米氧化铁的质量的6.5%,并继续搅拌,搅拌转速为300rpm,进行喷雾干燥,喷雾干燥温度为200℃,可得到碳掺杂的纳米氧化铁,其形貌参见图2,测得纳米氧化铁的粒径Dv50为560nm,BET为42m 2/g;
(2)将纳米氧化铁与氢氧化锂在高混机内进行高速混合,其中锂元素与铁元素的摩尔比为5.3,混合转速为600rpm,混合时间为40min,得到混合均匀物料,将其置于氮气气氛下进行高温烧结,烧结温度为680℃,烧结时间为25h,得到烧结块状料;
(3)将烧结块状料进行对辊粗破处理,辊轮间隙为1.5mm,并加入到2-羟基乙胺溶剂中,在氮气气氛下进行湿法粗破碎,其破碎机转速为650rpm,粗破后物料的粒径Dv50为12μm,再进行高速砂磨,砂磨转速为2600rpm,砂磨时间为1.5h,砂磨后物料的粒度为0.9μm,并在砂磨过程当中加入一定量的聚噻吩,其添加量为最终理论合成材料质量的1%,砂磨结束后在氮气气氛下进行喷雾干燥,干燥温度为220℃,得到干燥物料;
(4)把干燥物料进行低温烧结,烧结温度为520℃,烧结时间为10h,烧结后过400目筛,即得高容量电池活性材料Li 5FeO 4,测得其粒径Dv50为4μm。
表征测试:经过该法合成得到的Li 5FeO 4,参见图3,材料颗粒均匀性较好;参见图4,所合成材料包覆效果较好,形成了明显的包覆层。
实施例2
本实施例合成了一种高容量电池活性材料Li 5FeO 4,具体过程为:
(1)在90℃加热条件下,将体积为3L,浓度为5mol/L的氯化铁溶液缓慢加入到去离子水中,并在加液过程中,对容器内溶液进行搅拌,搅拌转速为80rpm,加液结束后,保温20min,形成氢氧化铁胶体溶液后,加入碳纳米管作为碳源物质,其添加量为喷雾干燥后理论形成的纳米氧化铁的质量的6.5%,并继续搅拌,搅拌转速为300rpm, 进行喷雾干燥,喷雾干燥温度为200℃,可得到碳掺杂的纳米氧化铁;
(2)将纳米氧化铁与氢氧化锂在高混机内进行高速混合,其中锂元素与铁元素的摩尔比为5.3,混合转速为600rpm,混合时间为40min,得到混合均匀物料,将其置于氮气气氛下进行高温烧结,烧结温度为680℃,烧结时间为25h,得到烧结块状料;
(3)将烧结块状料进行对辊粗破处理,辊轮间隙为1.5mm,并加入到N-甲基吡咯烷酮溶剂中,在氮气气氛下进行湿法粗破碎,其破碎机转速为650rpm,再进行高速砂磨,砂磨转速为2600rpm,砂磨时间为1.5h,砂磨后物料的粒度为0.9μm,并在砂磨过程当中加入一定量的聚亚苯基,其添加量为最终理论合成材料质量的1%,砂磨结束后在氮气气氛下进行喷雾干燥,干燥温度为220℃,得到干燥物料;
(4)把干燥物料进行低温烧结,烧结温度为550℃,烧结时间为10h,烧结后过400目筛,即得高容量电池活性材料Li 5FeO 4
对比例1
本对比例合成了一种无碳包覆的Li 5FeO 4,与实施例1的区别在于,未加入碳源和有机聚合物,具体过程为:
(1)在90℃加热条件下,将体积为3L,浓度为5mol/L的氯化铁溶液缓慢加入到去离子水中,并在加液过程中,对容器内溶液进行搅拌,搅拌转速为80rpm,加液结束后,保温20min,形成氢氧化铁胶体溶液后,进行喷雾干燥,喷雾干燥温度为200℃,可得到纳米氧化铁,测得纳米氧化铁的粒径Dv50为890nm,BET为31m 2/g;
(2)将纳米氧化铁与氢氧化锂在高混机内进行高速混合,其中锂元素与铁元素的摩尔比为5.3,混合转速为600rpm,混合时间为40min,得到混合均匀物料,将其置于氮气气氛下进行高温烧结,烧结温度为680℃,烧结时间为25h,得到烧结块状料;
(3)将烧结块状料进行对辊粗破处理,辊轮间隙为1.5mm,并加入到2-羟基乙胺溶剂中,在氮气气氛下进行湿法粗破碎,其破碎机转速为650rpm,粗破后物料的粒径Dv50为12μm,在进行高速砂磨,砂磨转速为2600rpm,砂磨时间为1.5h,砂磨后物料的粒度为1.2μm,在氮气气氛下进行喷雾干燥,干燥温度为220℃,得到干燥物料,过400目筛,即得电池活性材料Li 5FeO 4,测得其粒径Dv50为5.2μm。
表征测试:经过该法合成得到的Li 5FeO 4,参见图6,材料颗粒均匀性较好。
本对比例所得纳米氧化铁的粒径大于实施例1,这是由于实施例1在氢氧化铁胶体中还加入了石墨粉,可以阻隔氧化铁熔融长大,因此实施例1的粒径更低一些,最终得到的成品粒径也更低。
对比例2
本对比例合成了一种电池活性材料Li 5FeO 4,与实施例1的区别在于,采用干法破碎,具体过程为:
(1)取实施例1的纳米氧化铁与氢氧化锂在高混机内进行高速混合,其中锂元素与铁元素的摩尔比为5.3,混合转速为600rpm,混合时间为40min,得到混合均匀物料,将其置于氮气气氛下进行高温烧结,烧结温度为680℃,烧结时间为25h,得到烧结块状料;
(2)将所述烧结所得块状料进行对辊粗破处理,辊轮间隙为1.5mm,并利用气流粉碎进行干法破碎,并在气流粉碎后加入一定量的聚噻吩进行干法混合,其添加量为最终理论合成材料质量的1%,在氮气气氛下进行烧结,烧结温度为520℃;
(3)将上述烧结后材料过400目筛,即得电池活性材料Li 5FeO 4,测得其粒径Dv50为8.2μm。
表征测试:经过该法合成方法得到的Li 5FeO 4,参见图8,图中可见所形成材料颗粒较大。
对比例3
本对比例合成了一种电池活性材料Li 5FeO 4,与实施例1的区别在于,最后采用低分子有机物代替高分子聚合物,具体过程为:
按照实施例1步骤(1)和(2)的过程制备得到烧结块状料,将烧结块状料进行对辊粗破处理,辊轮间隙为1.5mm,粗破所得物料加入到2-羟基乙胺溶剂中,在氮气气氛下进行湿法粗破碎,其破碎机转速为650rpm,粗破后物料的粒径Dv50为12μm,再进行高速砂磨,砂磨转速为2600rpm,砂磨时间为1.5h,砂磨后物料的粒度为0.9μm,并 在砂磨过程当中加入一定量的葡萄糖,其添加量为最终理论合成材料质量的1%,砂磨结束后在氮气气氛下进行喷雾干燥,干燥温度为220℃,得到干燥物料;
把干燥物料进行烧结,烧结温度为550℃,烧结时间为10h,烧结后过400目筛,即得电池活性材料Li 5FeO 4
试验例
将实施例1、实施例2,对比例1,对比例2,对比例3的Li 5FeO 4分别制成扣式电池,需要经过浆料的制备,涂布,干燥,压片,组装,上柜测试等步骤:①制备浆料,称取4g材料与导电剂,粘结剂混合,其中材料:导电剂:粘结剂的质量比为8:1:1,所用粘结剂为PVDF,导电剂为导电炭;②涂布,使用刮刀在铝箔上进行涂布;③干燥,将涂布好的极片在真空干燥箱中进行干燥,干燥温度为120℃,干燥时间为2h;④压片,将干燥后极片使用对辊机进行压片;⑤将正极极片,负极极片,隔膜,电解液等电池零件组装成扣式电池。在充电电压4.25V,充电倍率0.1C的条件下测试比容量,其结果如表1所示。
表1
样品编号 充电容量mAh/g
实施例1 705
实施例2 698
对比例1 220
对比例2 545
对比例3 621
由表1可见对比例3的充电容量低于实施例1,这是由于对比例3的碳包覆材料为低分子有机物,所形成的碳包覆层不如实施例1的致密,导致容量有所降低。
图5为实施例1合成的Li 5FeO 4的充放电曲线,从图中可见其容量能达到705mAh/g。
图7为对比例1合成的Li 5FeO 4的充放电曲线,从图中可见其容量为220mAh/g,较实施例1加入碳源掺杂与包覆的材料的容量要明显低得多,表明碳掺杂和包覆能极大提 升材料容量。
图9为对比例2合成的Li 5FeO 4的充放电曲线,从图中可见其容量为545mAh/g,较实施例1使用湿法研磨合成的更小颗粒的Li 5FeO 4的容量要低约160mAh/g。表明湿法研磨能有效降低材料的粒径,进而减短锂离子的迁移路径,提升材料容量。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种电池活性材料的制备方法,其特征在于,包括以下步骤:
    S1:将氢氧化铁胶体与碳源混合,所得混合物料进行喷雾干燥,得到碳掺杂的纳米氧化铁;
    S2:将所述纳米氧化铁与锂源混合,置于惰性气氛下烧结,得到烧结料;
    S3:将所述烧结料、有机聚合物和有机溶剂混合,在保护气氛下进行湿法研磨,所得研磨料在保护气氛下进行喷雾干燥,得到干燥物料;
    S4:所述干燥物料在惰性气氛下烧结,即得所述电池活性材料。
  2. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述氢氧化铁胶体的制备方法为:将铁盐溶液缓慢加入到水中,期间伴随加热和搅拌,加液结束后保温一段时间,得到所述氢氧化铁胶体。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述碳源为碳纳米管、导电炭黑、石墨粉、聚乙烯亚胺、葡萄糖或聚乙烯醇中的至少一种。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述喷雾干燥的温度为180-250℃。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S1中,所述碳源的添加量为生成所述纳米氧化铁质量的5%-30%。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述烧结的温度为600-900℃。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述有机聚合物为聚吡咯、聚噻吩、聚乙炔、聚亚苯基或聚苯乙炔中的至少一种。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S3中,所述研磨料的粒度Dv50为0.5-3μm。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S4中,所述烧结的温度为400-600℃。
  10. 如权利要求1-9任一项所述的制备方法在制备锂离子电池中的应用。
PCT/CN2022/117480 2022-07-28 2022-09-07 高容量电池活性材料的制备方法及其应用 WO2024021231A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210898632.9A CN115332500A (zh) 2022-07-28 2022-07-28 高容量电池活性材料的制备方法及其应用
CN202210898632.9 2022-07-28

Publications (1)

Publication Number Publication Date
WO2024021231A1 true WO2024021231A1 (zh) 2024-02-01

Family

ID=83918910

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/117480 WO2024021231A1 (zh) 2022-07-28 2022-09-07 高容量电池活性材料的制备方法及其应用

Country Status (3)

Country Link
CN (1) CN115332500A (zh)
FR (1) FR3138575A1 (zh)
WO (1) WO2024021231A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117317415A (zh) * 2023-11-15 2023-12-29 银贮(宁波)科技有限公司 一种碳包覆高铁酸锂补锂添加剂及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1709799A (zh) * 2004-06-16 2005-12-21 中南大学 一种超细/纳米氧化铁/铁粉的制备方法
CN101757892A (zh) * 2010-01-02 2010-06-30 桂林理工大学 蔗渣活性炭/氧化铁的制备方法
CN103435105A (zh) * 2013-08-07 2013-12-11 浙江凯恩电池有限公司 一种铁氧化物/碳复合锂离子电池负极材料及其制备方法和应用
CN109428067A (zh) * 2017-08-30 2019-03-05 深圳市比亚迪锂电池有限公司 正极活性材料、制备方法、正极和高比能量动力电池
JP2019085315A (ja) * 2017-11-09 2019-06-06 株式会社豊田自動織機 炭素被覆Li5FeO4
CN110299515A (zh) * 2018-03-23 2019-10-01 比亚迪股份有限公司 一种正极活性材料及其制备方法、正极和电池
CN110459748A (zh) * 2019-08-20 2019-11-15 湖北融通高科先进材料有限公司 一种碳包覆铁酸锂材料及其制备方法
CN112490415A (zh) * 2019-09-12 2021-03-12 湖南杉杉能源科技股份有限公司 一种锂离子正极材料补锂添加剂及其制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1709799A (zh) * 2004-06-16 2005-12-21 中南大学 一种超细/纳米氧化铁/铁粉的制备方法
CN101757892A (zh) * 2010-01-02 2010-06-30 桂林理工大学 蔗渣活性炭/氧化铁的制备方法
CN103435105A (zh) * 2013-08-07 2013-12-11 浙江凯恩电池有限公司 一种铁氧化物/碳复合锂离子电池负极材料及其制备方法和应用
CN109428067A (zh) * 2017-08-30 2019-03-05 深圳市比亚迪锂电池有限公司 正极活性材料、制备方法、正极和高比能量动力电池
JP2019085315A (ja) * 2017-11-09 2019-06-06 株式会社豊田自動織機 炭素被覆Li5FeO4
CN110299515A (zh) * 2018-03-23 2019-10-01 比亚迪股份有限公司 一种正极活性材料及其制备方法、正极和电池
CN110459748A (zh) * 2019-08-20 2019-11-15 湖北融通高科先进材料有限公司 一种碳包覆铁酸锂材料及其制备方法
CN112490415A (zh) * 2019-09-12 2021-03-12 湖南杉杉能源科技股份有限公司 一种锂离子正极材料补锂添加剂及其制备方法

Also Published As

Publication number Publication date
FR3138575A1 (fr) 2024-02-02
CN115332500A (zh) 2022-11-11

Similar Documents

Publication Publication Date Title
US11637273B2 (en) Preparation method of silicon-based composite negative electrode material for lithium battery
CN106711461A (zh) 一种球形多孔硅碳复合材料及其制备方法与用途
WO2020107672A1 (zh) 一种硅基复合负极材料及其制备方法、锂离子电池负极
CN105789594A (zh) 一种硅/氧化硅/碳复合材料及其制备方法和应用
CN108682787B (zh) 一种锂离子电池极片及其制备方法
CN113206249B (zh) 一种具有良好电化学性能的锂电池硅氧复合负极材料及其制备方法
WO2023056767A1 (zh) 一种高倍率磷酸铁锂正极材料的制备方法
WO2021238600A1 (zh) 一种锂离子电池用硅碳负极材料及其制备方法
WO2024021231A1 (zh) 高容量电池活性材料的制备方法及其应用
JP2024516477A (ja) フェロボロン合金被覆リン酸鉄リチウムの製造方法
WO2022193498A1 (zh) 一种高首效SiO石墨复合负极材料的制备方法
CN114050243B (zh) 氮掺杂协同导电聚合物改性硅碳复合负极材料及制备方法
CN106129409B (zh) 一种利用乙基纤维素为碳源制备磷酸锰铁锂正极材料的方法
CN109659547B (zh) 一种用于锂电池的二元固溶体硼酸盐正极材料及制备方法
CN111048766A (zh) 一种硅酸铁锂/碳正极材料及其制备方法和用途
KR20220083973A (ko) 석류 유사 구조 실리콘 기반 복합 재료 및 그 제조 방법 및 응용
CN110429272B (zh) 一种类火龙果结构的硅碳复合负极材料及其制备方法
WO2024000814A1 (zh) 一种正极活性材料的制备方法及其应用
CN108832183B (zh) 一种锂离子电池制备方法
CN110061198B (zh) 一种硅碳复合负极材料及其制备方法和应用
CN107195897B (zh) 一种纳米FeNbO4/石墨烯复合材料及其制备和应用
CN113594461B (zh) 一种碳硅复合材料及其制备方法和应用
CN102299333A (zh) 一种碳包覆型Li4Ti5O12纳米负极材料的制备方法
CN106981645A (zh) 改性磷酸铁锂正极材料及其制备方法
CN114162814A (zh) 一种石墨的改性方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952672

Country of ref document: EP

Kind code of ref document: A1