WO2024020786A1 - 用于无线通信的方法、网络设备及终端设备 - Google Patents

用于无线通信的方法、网络设备及终端设备 Download PDF

Info

Publication number
WO2024020786A1
WO2024020786A1 PCT/CN2022/107960 CN2022107960W WO2024020786A1 WO 2024020786 A1 WO2024020786 A1 WO 2024020786A1 CN 2022107960 W CN2022107960 W CN 2022107960W WO 2024020786 A1 WO2024020786 A1 WO 2024020786A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
network device
configuration
downlink
transmission
Prior art date
Application number
PCT/CN2022/107960
Other languages
English (en)
French (fr)
Inventor
邢金强
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2022/107960 priority Critical patent/WO2024020786A1/zh
Publication of WO2024020786A1 publication Critical patent/WO2024020786A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present application relates to the field of communication technology, and more specifically, to a method, network equipment and terminal equipment for wireless communication.
  • the network equipment In order to ensure the coverage of the community and the timely availability of the network, the network equipment will always remain in a working state with high power consumption. For example, network equipment will always remain active, performing uplink reception and/or downlink transmission. For another example, network equipment will always perform downlink transmission with the downlink transmission power corresponding to the cell coverage area.
  • network equipment is not required to maintain the above-mentioned high power consumption working state in all scenarios. For example, the number of terminal devices in the community may decrease at night (for example, some terminal devices will be shut down or enter a dormant state). At this time, if the network equipment continues to maintain the above working state, it will cause the service provided by the network equipment to It is far less than the total energy consumed by network equipment, that is, the energy efficiency of network equipment is low.
  • This application provides a method, network equipment and terminal equipment for wireless communication. Each aspect involved in this application is introduced below.
  • a method for wireless communication including: if a preset condition is met, a network device adjusts a configuration of the network device, wherein the configuration of the network device includes a variety of configurations corresponding to different power consumptions. configuration.
  • a method for wireless communication including: a terminal device sending instruction information to a network device, the instruction information being used to instruct the network device to adjust the configuration of the network device, wherein the network device
  • the configuration of the device includes multiple configurations corresponding to different power consumption.
  • a network device including: if a preset condition is met, a processing unit configured to adjust the configuration of the network device, wherein the configuration of the network device includes multiple configurations corresponding to different power consumption.
  • a terminal device including: a sending unit, configured to send instruction information to a network device, where the instruction information is used to instruct the network device to adjust the configuration of the network device, wherein the network device
  • the configurations include multiple configurations corresponding to different power consumption.
  • a terminal device including a processor, a memory, and a communication interface.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory, so that the terminal The device performs some or all of the steps of the method of the second aspect.
  • a sixth aspect provides a network device, including a processor, a memory, and a transceiver.
  • the memory is used to store one or more computer programs.
  • the processor is used to call the computer program in the memory so that the network
  • the device performs some or all of the steps of the method of the first aspect.
  • embodiments of the present application provide a communication system, which includes the above-mentioned terminal device and/or network device.
  • the system may also include other devices that interact with terminal devices or network devices in the solutions provided by the embodiments of this application.
  • embodiments of the present application provide a computer-readable storage medium that stores a computer program.
  • the computer program causes a communication device (for example, a terminal device or a network device) to perform the above aspects. some or all of the steps in the method.
  • embodiments of the present application provide a computer program product, wherein the computer program product includes a non-transitory computer-readable storage medium storing a computer program, and the computer program is operable to cause a communication device (such as , terminal equipment or network equipment) performs some or all of the steps in the methods of the above aspects.
  • the computer program product can be a software installation package.
  • embodiments of the present application provide a chip, which includes a memory and a processor.
  • the processor can call and run a computer program from the memory to implement some or all of the steps described in the methods of the above aspects.
  • the network device can adjust the power consumption of the network device by adjusting the configuration of the network device. It avoids that in traditional communication systems, network equipment always works in a working state corresponding to higher energy consumption, which helps to improve the energy efficiency of network equipment.
  • Figure 1 is a wireless communication system 100 applied in the embodiment of the present application.
  • Figure 2 is a schematic diagram of network equipment coverage.
  • Figure 3 is a schematic diagram of a method for wireless communication according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of discontinuous transmission by a network device according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of discontinuous transmission by a network device in an FDD scenario in an embodiment of the present application.
  • Figure 6 is a schematic diagram of network equipment performing discontinuous transmission in a TDD scenario in an embodiment of the present application.
  • Figure 7 is a schematic diagram of discontinuous reception in an embodiment of the present application.
  • Figure 8 is a schematic diagram of network equipment performing discontinuous reception in an FDD scenario in an embodiment of the present application.
  • Figure 9 is a schematic diagram of a network device performing discontinuous reception and discontinuous transmission in an FDD scenario in an embodiment of the present application.
  • Figure 10 is a schematic diagram of continuous reception and discontinuous transmission by network equipment in an FDD scenario in an embodiment of the present application.
  • Figure 11 is a schematic diagram of a network device performing discontinuous reception and discontinuous transmission in an FDD scenario in another embodiment of the present application.
  • Figure 12 is a schematic diagram of various time configurations shown in Table 1 in the embodiment of the present application.
  • Figure 13 is a schematic diagram of an emergency service transmission method in a downlink transmission scenario in an embodiment of the present application.
  • Figure 14 is a schematic diagram of an emergency service transmission method in an uplink transmission scenario in an embodiment of the present application.
  • Figure 15 is a schematic diagram of the coverage ranges corresponding to different bandwidths in this embodiment of the present application.
  • Figure 16 is a schematic diagram of a communication method based on the first bandwidth and the second bandwidth in the FDD scenario in the embodiment of the present application.
  • Figure 17 is a schematic diagram of a communication method based on the first bandwidth and the second bandwidth in the FDD scenario in another embodiment of the present application.
  • Figure 18 is a schematic diagram of a communication method based on the first bandwidth and the second bandwidth in the TDD scenario in the embodiment of the present application.
  • Figure 19 is a schematic diagram of a communication method based on the first bandwidth and the second bandwidth in a TDD scenario in another embodiment of the present application.
  • Figure 20 is a schematic diagram between downlink transmission power and downlink coverage.
  • Figure 21 is a schematic diagram of a network device according to an embodiment of the present application.
  • Figure 22 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • Figure 23 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 1 is a wireless communication system 100 applied in the embodiment of the present application.
  • the wireless communication system 100 may include a network device 110 and a terminal device 120.
  • the network device 110 may be a device that communicates with the terminal device 120 .
  • the network device 110 may provide communication coverage for a specific geographical area and may communicate with terminal devices 120 located within the coverage area.
  • Figure 1 exemplarily shows one network device and two terminals.
  • the wireless communication system 100 may include multiple network devices and the coverage of each network device may include other numbers of terminal devices. This application The embodiment does not limit this.
  • the wireless communication system 100 may also include other network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • network entities such as a network controller and a mobility management entity, which are not limited in this embodiment of the present application.
  • the terminal equipment in the embodiment of this application may also be called user equipment (UE), access terminal, user unit, user station, mobile station, mobile station (MS), mobile terminal (MT) ), remote station, remote terminal, mobile device, user terminal, terminal, wireless communications equipment, user agent or user device.
  • the terminal device in the embodiment of the present application may be a device that provides voice and/or data connectivity to users, and may be used to connect people, things, and machines, such as handheld devices and vehicle-mounted devices with wireless connection functions.
  • the terminal device in the embodiment of the present application can be a mobile phone (mobile phone), a tablet computer (Pad), a notebook computer, a handheld computer, a mobile internet device (mobile internet device, MID), a wearable device, a virtual reality (virtual reality, VR) equipment, augmented reality (AR) equipment, wireless terminals in industrial control, wireless terminals in self-driving, wireless terminals in remote medical surgery, smart Wireless terminals in smart grid, wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home, etc.
  • the UE may be used to act as a base station.
  • a UE may act as a scheduling entity that provides sidelink signals between UEs in V2X or D2D, etc.
  • cell phones and cars use sidelink signals to communicate with each other.
  • Cell phones and smart home devices communicate between each other without having to relay communication signals through base stations.
  • the network device in the embodiment of the present application may be a device used to communicate with a terminal device.
  • the network device may also be called an access network device or a wireless access network device.
  • the network device may be a base station.
  • the network device in the embodiment of this application may refer to a radio access network (radio access network, RAN) node (or device) that connects the terminal device to the wireless network.
  • radio access network radio access network, RAN node (or device) that connects the terminal device to the wireless network.
  • the base station can broadly cover various names as follows, or be replaced with the following names, such as: Node B (NodeB), evolved base station (evolved NodeB, eNB), next generation base station (next generation NodeB, gNB), relay station, Access point, transmission point (transmitting and receiving point, TRP), transmitting point (TP), main station MeNB, secondary station SeNB, multi-standard wireless (MSR) node, home base station, network controller, access node , wireless node, access point (AP), transmission node, transceiver node, base band unit (BBU), radio remote unit (Remote Radio Unit, RRU), active antenna unit (active antenna unit) , AAU), radio head (remote radio head, RRH), central unit (central unit, CU), distributed unit (distributed unit, DU), positioning node, etc.
  • NodeB Node B
  • eNB evolved base station
  • next generation NodeB next generation NodeB, gNB
  • relay station Access point
  • the base station may be a macro base station, a micro base station, a relay node, a donor node or the like, or a combination thereof.
  • a base station may also refer to a communication module, modem or chip used in the aforementioned equipment or devices.
  • the base station can also be a mobile switching center and a device that undertakes base station functions in device-to-device D2D, vehicle-to-everything (V2X), machine-to-machine (M2M) communications, and in 6G networks.
  • Base stations can support networks with the same or different access technologies. The embodiments of this application do not limit the specific technology and specific equipment form used by the network equipment.
  • Base stations can be fixed or mobile.
  • a helicopter or drone may be configured to act as a mobile base station, and one or more cells may move based on the mobile base station's location.
  • a helicopter or drone may be configured to serve as a device that communicates with another base station.
  • the network device in the embodiment of this application may refer to a CU or a DU, or the network device includes a CU and a DU.
  • gNB can also include AAU.
  • Network equipment and terminal equipment can be deployed on land, indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and satellites in the sky. In the embodiments of this application, the scenarios in which network devices and terminal devices are located are not limited.
  • network equipment serves as a node that communicates with terminal equipment and can send downlink information to the terminal equipment in the form of downlink signals. At the same time, the network equipment can also receive uplink signals from the terminal equipment. Uplink information sent in the form. As shown in Figure 2, the downlink signal coverage of network equipment and the uplink signal coverage of terminal equipment jointly determine the size of a cell, where the cell can also be called the "coverage of network equipment".
  • network equipment needs to remain in working state at all times, for example, sending downlink signals to terminal equipment in the community. Another example is receiving uplink signals sent by terminal equipment in the cell.
  • the network equipment needs to always transmit downlink information with the maximum downlink transmission power corresponding to the cell coverage range.
  • the network equipment will always remain in a working state with high power consumption. For example, network equipment will always remain active, performing uplink reception and/or downlink transmission. For another example, network equipment will always perform downlink transmission with the downlink transmission power corresponding to the cell coverage area.
  • network equipment is not required to maintain the above-mentioned high power consumption working state in all scenarios.
  • the number of terminal devices in the community may decrease at night (for example, some terminal devices will be shut down or enter a dormant state).
  • the network equipment continues to maintain the above working state, it will cause the service provided by the network equipment to It is far less than the total energy consumed by network equipment, that is, the energy efficiency of network equipment is low.
  • embodiments of the present application provide a method for wireless communication, which helps to improve the energy efficiency of network equipment.
  • the method for wireless communication according to the embodiment of the present application is introduced below with reference to FIG. 3 .
  • the method shown in Figure 3 may include step S310.
  • step S310 if the preset conditions are met, the network device adjusts the configuration of the network device, where the configuration of the network device includes multiple configurations corresponding to different power consumption.
  • the configuration of the above network device is associated with one or more of the following information of the network device: transmission time, reception time, downlink transmission power, downlink bandwidth, and downlink modulation method.
  • the above-mentioned corresponding relationship between multiple configurations and power consumption may include that different configurations among the multiple configurations correspond to different power consumption, or some different configurations among the multiple configurations may correspond to the same power consumption.
  • the following will introduce the corresponding relationship between various configurations and power consumption in conjunction with Table 1. For the sake of brevity, they will not be repeated here.
  • the above multiple configurations may be predefined or preconfigured, which is not limited in the embodiments of the present application.
  • the network device adjusts the configuration of the network device, which may include: if the preset conditions are met, the network device can adjust the configuration of the network device to a configuration with higher power consumption among multiple configurations, or if the preset conditions Assuming that the conditions are met, the network device can adjust the configuration of the network device to a configuration with lower power consumption among multiple configurations.
  • the configuration of the network device may include: if the preset conditions are met, the network device can adjust the configuration of the network device to a configuration with higher power consumption among multiple configurations, or if the preset conditions Assuming that the conditions are met, the network device can adjust the configuration of the network device to a configuration with lower power consumption among multiple configurations.
  • the network device when preset conditions are met, can adjust the power consumption of the network device by adjusting the configuration of the network device. It avoids that in traditional communication systems, network equipment always works in a working state corresponding to higher energy consumption, which helps to improve the energy efficiency of network equipment.
  • the above preset conditions may be associated with the number of terminal devices within the coverage of the network device.
  • the preset condition may include that the number of terminal devices within the coverage area of the network device is less than the first threshold.
  • the above-mentioned preset condition associated with the number of terminal devices can also be presented in other forms.
  • the preset condition can include that the number of terminal devices is a preset value.
  • the method of adjusting the configuration of the network device in the embodiment of the present application is introduced. Assume that multiple configurations include configuration 1 and configuration 2, where the power consumption corresponding to configuration 1 is higher than the power consumption corresponding to configuration 2, and the current configuration of the network device is configuration 1. At this time, if the preset conditions are met, the network device can adjust the current configuration from configuration 1 to configuration 2 to reduce the power consumption of the network device.
  • the above preset conditions may be associated with throughput within the coverage area of the network device.
  • the preset condition may include that the throughput within the coverage area of the network device is less than the second threshold.
  • the above-mentioned preset conditions associated with throughput may also be presented in other forms.
  • the preset conditions may include that the throughput is a preset value.
  • the method of adjusting the configuration of the network device in the embodiment of the present application is introduced. Assume that multiple configurations include configuration 3 and configuration 4, where the power consumption corresponding to configuration 3 is higher than the power consumption corresponding to configuration 4, and the current configuration of the network device is configuration 3. At this time, if the preset conditions are met, the network device can adjust the current configuration from configuration 3 to configuration 4 to reduce the power consumption of the network device.
  • first threshold and/or second threshold may be predefined or preconfigured, which is not limited in the embodiments of the present application.
  • the network device can adjust the configuration of the network device when the above preset conditions are met, the network device can also adjust the configuration of the network device based on the instruction information sent by the terminal device.
  • the first instruction information in method 1 is determined below. An example is used to introduce this, and for the sake of brevity, it will not be repeated here.
  • the configuration of the network device can be associated with the network device transmission time. Therefore, in this embodiment of the present application, the configuration of the network device may include a first time configuration, where the first time configuration may be used to instruct the network device to perform discontinuous transmission within the downlink transmission time.
  • the first time configuration may also be called "first transmission time configuration”.
  • the above discontinuous transmission can be understood as the network device performing downlink transmission at discrete transmission times.
  • the discrete transmission times may be arranged periodically, that is, each cycle includes a downlink transmission time and a downlink transmission stop time.
  • the above-mentioned discrete emission times may also be arranged in a non-periodic manner.
  • each cycle may include a transmitting time and a stopping transmitting time.
  • the period T1 includes the transmission time t1 and the transmission stop time s1
  • the period T2 includes the transmission time t2 and the transmission stop time s2
  • the period T3 includes the transmission time t3 and the transmission stop time s3.
  • the network device may perform non-continuous downlink transmission at the transmission time t1, the transmission time t2 and the transmission time t3, and stop the downlink transmission at the transmission stop time s1, the transmission stop time s2 and the transmission stop time s3.
  • the discontinuous emission indicated by the first time configuration may behave slightly differently.
  • the following uses the FDD scenario and the TDD scenario as examples respectively in conjunction with Figure 5 and Figure 6.
  • the first time configuration is used to instruct the network device to perform discontinuous transmission in the first downlink transmission frequency band, where the first downlink transmission frequency band is the FDD frequency band.
  • FDD frequency band 1 includes 3 cycles, and each cycle may include a transmission time and a transmission stop time.
  • the period T1 includes the transmission time t1 and the transmission stop time s1
  • the period T2 includes the transmission time t2 and the transmission stop time s2
  • the period T3 includes the transmission time t3 and the transmission stop time s3.
  • the network device may perform non-continuous downlink transmission at the transmission time t1, the transmission time t2 and the transmission time t3, and stop the downlink transmission at the transmission stop time s1, the transmission stop time s2 and the transmission stop time s3.
  • the first time configuration is used to instruct the network device to perform discontinuous transmission in the first downlink transmission frequency band that supports FDD. Compared with the network device performing continuous transmission in the first downlink transmission frequency band that supports FDD, , helping to reduce the power consumption of network equipment.
  • the first time configuration is used to indicate that the network device is in a non-transmitting state within one or more downlink time units.
  • the downlink time unit may include downlink time slots in the TDD frame structure.
  • the above-mentioned downlink time unit may also include downlink symbols, downlink subframes, etc.
  • TDD frequency band 1 includes 5 downlink time units: t1 ⁇ t5, and 4 uplink time units r1 ⁇ r4.
  • time configuration 1 instructs the network device to perform downlink transmission on downlink time units t1, t3, and t5, and to stop downlink transmission on downlink time units t2, t4.
  • the network device will perform downlink transmission in the downlink time units t1 to t5 respectively.
  • the network device will only perform downlink transmission on downlink time units t1, t3 and t5, and stop downlink transmission on downlink time units t2 and t4.
  • time interval for the network device to perform downlink transmission without considering time configuration 1 is smaller than the time interval for the network device to perform downlink transmission without considering time configuration 1.
  • time configuration 1 will shorten the downlink transmission time of the network device.
  • the adjustment is more sparse, which helps to reduce the time for network equipment to transmit downlink, thereby reducing the power consumption of network equipment.
  • the first time configuration is used to indicate that the network device is in a non-transmitting state in one or more downlink time units. Compared with the network device being in a transmitting state in each downlink time unit, it helps to reduce the network cost. The power consumption of the device.
  • the configuration of the network device can be associated with the reception time of the network device. Therefore, in this embodiment of the present application, the configuration of the network device may include a first time configuration, where the first time configuration may be used to instruct the network device to perform discontinuous reception within the uplink reception time.
  • the first time configuration may also be called "first reception time configuration".
  • the above discontinuous reception can be understood as the network device performing uplink reception at discrete reception times.
  • the discrete reception times may be arranged periodically, that is, each cycle includes an uplink reception time and a stop uplink reception time.
  • the above-mentioned discrete reception times may also be arranged in a non-periodic manner.
  • each cycle may include a receiving time and a receiving stop time.
  • the period T1 includes the reception time r1 and the reception stop time s1
  • the period T2 includes the reception time r2 and the reception stop time s2
  • the period T3 includes the reception time r3 and the reception stop time s3.
  • the network device may perform non-continuous uplink reception at the reception time r1, reception time r2 and reception time r3, and stop uplink reception at the reception stop time s1, reception stop time s2 and reception stop time s3.
  • the discontinuous reception indicated by the first time configuration may behave slightly differently.
  • the following uses FDD and TDD as examples in conjunction with Figure 8 and Figure 6 respectively.
  • the first time configuration is used to instruct the network device to perform discontinuous reception in the first uplink reception frequency band, where the first uplink reception frequency band is the FDD frequency band.
  • FDD frequency band 2 includes 3 cycles, and each cycle may include a receiving time and a receiving stop time.
  • the period T1 includes the reception time r1 and the reception stop time s1
  • the period T2 includes the reception time r2 and the reception stop time s2
  • the period T3 includes the reception time r3 and the reception stop time s3.
  • the network device may perform non-continuous uplink reception at the reception time r1, reception time r2 and reception time r3, and stop uplink reception at the reception stop time s1, reception stop time s2 and reception stop time s3.
  • the first time configuration is used to instruct the network device to perform discontinuous reception in the first uplink reception frequency band that supports FDD. Compared with the network device performing continuous reception in the first uplink reception frequency band that supports FDD, there is Helps reduce power consumption of network equipment.
  • the first time configuration is used to indicate that the network device is in a non-receiving state within one or more uplink time units.
  • the uplink time unit may include an uplink time slot in the TDD frame structure.
  • the above-mentioned uplink time unit may also include uplink symbols, uplink subframes, etc.
  • the TDD frame structure on TDD frequency band 1 includes 5 downlink time units: t1 ⁇ t5, and 4 uplink time units r1 ⁇ r4.
  • time configuration 1 instructs the network device to perform uplink reception on uplink time units r1, r3, and r5, and to stop uplink reception on uplink time units r2, r4. Accordingly, if the indication of time configuration 1 is not considered, the network device will perform uplink reception in uplink time units r1 to r4 respectively. However, based on the instructions of time configuration 1, the network device will only perform uplink reception on uplink time units r1 and r3, and stop uplink reception on uplink time units r2 and r4.
  • time configuration 1 changes the uplink reception time of the network device.
  • the adjustment is more sparse, that is, time configuration 1 adjusts the time interval for uplink reception by the network device to twice the time interval indicated by the TDD frame structure, which helps to reduce the time for the network device to receive uplink and reduce the power consumption of the network device. .
  • the first time configuration is used to indicate that the network device is in a non-receiving state within one or more uplink time units. Compared with the network device being in a receiving state in each uplink time unit, it helps to reduce the network cost. The power consumption of the device.
  • the above introduces the scheme of configuring and adjusting the downlink transmission time and uplink reception time of the network device at the first time.
  • the first time configuration may also include the downlink transmission time and the uplink reception time.
  • the specific adjustment method can be similar to the adjustment method introduced above. Please refer to the above introduction.
  • the discontinuous transmission and discontinuous reception introduced above can be used in combination.
  • the working mode of the network device in the first uplink receiving frequency band can be used in combination with the working mode of the network device in the first downlink transmitting frequency band.
  • the network device may be in a non-receiving state during one or more uplink time units and be in a non-transmitting state during one or more downlink time units.
  • the power consumption for downlink transmission is usually much greater than the power consumption for uplink reception. Therefore, in order to reduce the transmission delay of uplink services, when configuring network equipment to use a combination of discontinuous transmission and discontinuous reception , the duration of discontinuous reception can be shorter than the duration of discontinuous transmission. From the perspective of time configuration, that is, the transmission duration indicated by the first transmission time configuration is shorter than the reception duration indicated by the first reception time configuration. In terms of the time domain positions of the transmitting time and the receiving time, the transmitting time indicated by the first transmitting time configuration and the receiving time indicated by the first receiving time configuration may partially overlap.
  • FDD frequency band 1 is used for downlink transmission, where FDD frequency band 1 includes 3 cycles, and each cycle may include a transmission time and a transmission stop time.
  • the period T1 includes the transmission time t1 and the transmission stop time s1
  • the period T2 includes the transmission time t2 and the transmission stop time s2
  • the period T3 includes the transmission time t3 and the transmission stop time s3.
  • the network device may perform non-continuous downlink transmission at the transmission time t1, the transmission time t2 and the transmission time t3, and stop the downlink transmission at the transmission stop time s1, the transmission stop time s2 and the transmission stop time s3.
  • FDD frequency band 2 is used for uplink reception, where FDD frequency band 2 includes 5 cycles, and each cycle may include a reception time and a reception stop time.
  • the period T1 ⁇ includes the receiving time r1 and the stop receiving time s1 ⁇
  • the period T2 ⁇ includes the receiving time r2 and the stop receiving time s2 ⁇
  • the period T3 ⁇ includes the receiving time r3 and the stop receiving time s3 ⁇
  • T4 ⁇ includes the reception time r4 and the reception stop time s4 ⁇
  • the period T5 ⁇ includes the reception time r5 and the reception stop time s5 ⁇ .
  • the network device can perform discontinuous uplink reception at the reception time r1, reception time r2, reception time r3, reception time r4, and reception time r5, and at the stop reception time s1 ⁇ , stop reception time s2 ⁇ , and stop reception time s3 ⁇ , stop receiving time s4 ⁇ and stop receiving time s5 ⁇ stop uplink reception.
  • the period of FDD band 2 is shorter. In this way, the network equipment can perform uplink reception on FDD band 2 at a higher frequency to reduce the transmission delay of uplink services.
  • the power consumption for downlink transmission is usually much greater than the power consumption for uplink reception. Therefore, in order to reduce the transmission delay of uplink services, network equipment can also perform continuous transmission on the uplink reception frequency band. sexual reception.
  • the following uses the FDD frequency band as an example and introduces it in conjunction with Figure 10.
  • FDD frequency band 1 is used for downlink transmission, where FDD frequency band 1 includes 3 periods, and each period may include a transmission time and a transmission stop time.
  • the period T1 includes the transmission time t1 and the transmission stop time s1
  • the period T2 includes the transmission time t2 and the transmission stop time s2
  • the period T3 includes the transmission time t3 and the transmission stop time s3.
  • the network device may perform non-continuous downlink transmission at the transmission time t1, the transmission time t2 and the transmission time t3, and stop the downlink transmission at the transmission stop time s1, the transmission stop time s2 and the transmission stop time s3.
  • FDD frequency band 2 is used for uplink reception, and the network device can perform continuous uplink reception on FDD frequency band 2, or in other words, perform uplink reception on FDD frequency band 2 for a continuous period of time. Compared with the period of FDD band 1, network equipment can perform continuous uplink reception in FDD band 2 to reduce the transmission delay of uplink services.
  • the network equipment can be set to perform uplink reception and downlink transmission within the same time period, so that these common components can stop working when the network equipment stops working. That is to say, the transmitting time indicated by the first transmitting time configuration and the receiving time indicated by the first receiving time configuration may all overlap.
  • FDD frequency band 1 is used for downlink transmission, where FDD frequency band 1 includes 3 periods, and each period may include a transmission time and a transmission stop time.
  • the period T1 includes the transmission time t1 and the transmission stop time s1
  • the period T2 includes the transmission time t2 and the transmission stop time s2
  • the period T3 includes the transmission time t3 and the transmission stop time s3.
  • the network device may perform non-continuous downlink transmission at the transmission time t1, the transmission time t2 and the transmission time t3, and stop the downlink transmission at the transmission stop time s1, the transmission stop time s2 and the transmission stop time s3.
  • FDD frequency band 2 is used for uplink reception, where FDD frequency band 2 includes 3 cycles, and each cycle may include a reception time and a reception stop time.
  • the period T1 ⁇ includes the reception time r1 and the reception stop time s1 ⁇
  • the period T2 ⁇ includes the reception time r2 and the reception stop time s2 ⁇
  • the period T3 ⁇ includes the reception time r3 and the reception stop time s3 ⁇ .
  • the network device may perform non-continuous uplink reception at the reception time r1, reception time r2 and reception time r3, and stop uplink reception at the reception stop time s1 ⁇ , the reception stop time s2 ⁇ and the reception stop time s3 ⁇ .
  • the period of FDD frequency band 1 is the same as the period of FDD frequency band 2. In other words, the time when the network device performs downlink transmission on FDD frequency band 1 overlaps with the time when the network device performs uplink reception on FDD frequency band 2. In this way, the above-mentioned shared components can also stop working when the network device stops uplink reception and downlink transmission.
  • multiple time configurations may be set in the network device.
  • the multiple time configurations may include the first time configuration.
  • Multiple time configurations may indicate different time periods and/or operating hours of network devices.
  • the working duration of the network device may be, for example, a transmitting duration or a receiving duration.
  • the working time may be the working time within the time period.
  • the time period may be indicated by the time configuration, or of course, may also be determined by other methods.
  • the network device can include the three time configurations shown in Table 1, where the transmission duration shown in Table 1 can be the transmission duration in each cycle.
  • Time configuration 1 1ms 100ms
  • Time configuration 2 1ms 50ms
  • Time configuration 3 0.5ms 10ms
  • time configuration 1 shown in Table 1 can indicate that the network device's transmission time (also called “transmission duration") is 1ms and the transmission period is 100ms. That is to say, the network device can follow a 100ms cycle. Perform downlink transmission, and the transmission duration in each cycle is 1ms.
  • Time configuration 2 shown in Table 1 can indicate that the transmission duration of the network device is 1ms and the transmission period is 50ms. That is to say, the network device can perform downlink transmission according to a 50ms cycle, and the transmission duration in each cycle is 1ms.
  • Time configuration 3 shown in Table 1 can indicate that the transmission duration of the network device is 0.1ms and the cycle is 10ms. That is to say, the network device can perform downlink transmission according to a 10ms cycle, and the transmission duration in each cycle is 0.1ms.
  • time configuration 1 is the longest among the three time configurations.
  • time configuration 1 corresponds to the lowest power consumption.
  • the period indicated by time configuration 3 is the shortest among the three time configurations.
  • time configuration 3 corresponds to the highest power consumption.
  • the power consumption corresponding to time configuration 2 is lower than the power consumption corresponding to time configuration 3, and the power consumption corresponding to time configuration 2 is higher than the power consumption corresponding to time configuration 1.
  • time configuration 1 can correspond to lower throughput.
  • Time configuration 3 can correspond to higher throughput.
  • the throughput corresponding to time configuration 2 is lower than the throughput corresponding to time configuration 3, and the throughput corresponding to time configuration 2 is higher than the throughput corresponding to time configuration 1.
  • the unit of the transmission time and/or cycle in the above time configuration may be milliseconds as shown above, or may be units such as symbols, time slots, subframes or frames, which are not limited in the embodiments of the present application. .
  • the embodiments of this application provide two determination methods.
  • determination method 1 the terminal device can assist the network device in selecting an appropriate time configuration.
  • determination method 2 the network device can independently select the appropriate time configuration. The two determination methods are introduced below.
  • the terminal device can select a time configuration (also called “desired time configuration") from multiple time configurations, and send the desired time configuration to the network device through the first indication information.
  • the network device The first time configuration may be determined based on a time configuration desired by the terminal device.
  • the above multiple time configurations may be predefined through a communication protocol, or may be sent by the network device to the terminal device.
  • the network device may send to the terminal device through broadcast or dedicated signaling (eg, RRC signaling).
  • the terminal device can select a desired time configuration based on the transmission requirements of downlink services (eg, transmission delay).
  • the terminal device can also select the desired time configuration based on the throughput of downlink services.
  • the embodiments of the present application do not limit this.
  • some or all terminal devices within the coverage range of the network device can send their respective desired time configurations to the network device.
  • the expected time configuration sent by different terminal devices may be different. Accordingly, the network device may determine the first time configuration based on the expected time configuration indicated by each terminal device within the coverage range.
  • the network device may select a time configuration with the lowest power consumption among multiple desired time configurations as the first time configuration.
  • the time configuration shown in Table 1 as an example, assume that the expected time configuration indicated by terminal device 1 is time configuration 1, the expected time configuration indicated by terminal device 2 is time configuration 2, and the expected time configuration indicated by terminal device 3 is Time configuration 3.
  • the network device can select time configuration 1 as the first time configuration from the three time configurations to reduce the power consumption of the network device.
  • the network device may select the time configuration with the highest power consumption among multiple desired time configurations as the first time configuration.
  • the time configuration shown in Table 1 assume that the expected time configuration indicated by terminal device 1 is time configuration 1, the expected time configuration indicated by terminal device 2 is time configuration 2, and the expected time configuration indicated by terminal device 3 is Time configuration 3.
  • the network device can select time configuration 3 as the first time configuration from the three time configurations to reduce the transmission delay of downlink services.
  • the network device may select a time configuration with a middle power consumption among multiple desired time configurations as the first time configuration.
  • the time configuration shown in Table 1 as an example, assume that the expected time configuration indicated by terminal device 1 is time configuration 1, the expected time configuration indicated by terminal device 2 is time configuration 2, and the expected time configuration indicated by terminal device 3 is Time configuration 3.
  • the network device can select time configuration 2 as the first time configuration from the three time configurations to balance the power consumption of the network device and the transmission delay of downlink services.
  • the network device determines the first time configuration based on the time configuration expected by the terminal device.
  • the network device calculates the first time configuration based on the time configuration expected by the terminal device. The embodiments of the present application do not limit this.
  • the network device can autonomously select the first time configuration from multiple time configurations.
  • the network device may select a first time configuration from multiple time configurations based on statistical information of intra-cell services.
  • the statistical information of the service may include the transmission requirement of the service (for example, transmission delay) and/or the throughput of the service.
  • the selection of time configuration 1 and time configuration 2 can be determined based on the throughput threshold 1, and the selection of time configuration 2 and time configuration 3
  • the selection may be determined based on a throughput threshold of 2, where the throughput threshold of 2 is greater than the throughput threshold of 1.
  • the network device statistics that the current service throughput in the cell is less than or equal to the throughput threshold 1, the network device can use time configuration 1 as the first time configuration.
  • the network device counts the current service throughput in the cell as less than or equal to throughput threshold 2 and the current service throughput is greater than throughput threshold 1 the network device can use time configuration 2 as the first time configuration.
  • the throughput of current services in the cell counted by the network device is greater than the throughput threshold 2, the network device can use time configuration 3 as the first time configuration.
  • the selection of time configuration 1 and time configuration 2 can be determined based on the transmission delay threshold 1, time configuration 2 and time configuration The selection of 3 may be determined based on the transmission delay threshold 2, where the transmission delay threshold 2 is smaller than the transmission delay threshold 1.
  • the network device statistics that the transmission delay of the current service in the cell is greater than the transmission delay threshold 1, the network device can use time configuration 1 as the first time configuration. If the network device statistics that the transmission delay of the current service in the cell is less than the transmission delay threshold 1, and the transmission delay of the current service is greater than or equal to the transmission delay threshold 2, the network device can use time configuration 2 as the first time configuration. If the network device statistics that the transmission delay of the current service in the cell is less than the transmission delay threshold 2, the network device can use time configuration 3 as the first time configuration.
  • time configuration 1 can correspond to a low throughput and low latency scenario.
  • Time configuration 2 can correspond to a medium throughput and medium delay scenario.
  • Time configuration 3 can correspond to a high throughput and high latency scenario.
  • the network device may send the first time configuration to the terminal device.
  • the terminal device may perform downlink reception or uplink transmission based on the first time configuration. For example, the terminal device may receive downlink data at the transmission time indicated by the first time configuration, and/or the terminal device may perform uplink transmission at the reception time indicated by the first time configuration.
  • the above first time configuration may be indicated by the network device to the terminal device through broadcasting.
  • the network device may also indicate the first time configuration to the terminal device through dedicated signaling (for example, RRC signaling).
  • dedicated signaling for example, RRC signaling
  • the network equipment can perform discontinuous transmission. While the network equipment stops downlink transmission, downlink services are unreachable to the terminal equipment. However, in some scenarios, the terminal device has urgent services that need to be received. At this time, if the network device just stops downlink transmission, the network device cannot send the emergency service to the terminal device. Taking the terminal device as a vehicle as an example, the emergency service may include the terminal device requesting the network device to locate obstacles ahead to avoid a car accident. At this time, if the network device stops downlink transmission, the terminal device cannot know whether there is an obstacle ahead.
  • the terminal device can inform the network device of the transmission time of the emergency service through the second indication information.
  • the network device can transmit the emergency service based on the second indication information. Therefore, the second indication information may also be called “emergency service indication information" or “emergency status indication information”.
  • the first time configuration includes adjacent first transmission time and second transmission time
  • the above method further includes: the network device receives second indication information sent by the terminal device, and the second indication information is used to instruct the network device to perform the first transmission during the first transmission time.
  • a third transmission time for processing emergency services is configured between the time and the second transmission time.
  • the network device may be in a transmission-stopping state during part or all of the time period between the first transmission time and the second transmission time.
  • the first transmission time and the second transmission time may be two adjacent transmission times. In this case, the network device may be stopped during the entire time period between the first transmission time and the second transmission time. launch status.
  • the first transmission time and the second transmission time may be the transmission time t1 and the transmission time t2.
  • the above-mentioned first transmission time and the second transmission time may also be two non-adjacent transmission times.
  • the network device may be in a state of stopping transmission during part of the time period between the first transmission time and the second transmission time. .
  • the first transmitting time and the second transmitting time may be the transmitting time t1 and the transmitting time t3 respectively.
  • the above-mentioned third transmission time may include a partial or complete overlap of the transmission stop time between the first transmission time and the second transmission time.
  • the transmitting time t1 and the transmitting time t2 are used as the first transmitting time and the second transmitting time.
  • the third transmitting time may include part or all of the transmission stop time between the transmitting time t1 and the transmitting time t2 .
  • the transmission time t1 and the transmission time t3 are used as the first transmission time and the second transmission time.
  • the above-mentioned third transmission time may include part or all of the transmission stop time between the transmission time t1 and the transmission time t2, or the third transmission time.
  • the third transmission time may include part or all of the transmission stop time between the transmission time t2 and the transmission time t3.
  • the third transmission time may include the transmission stop time introduced above.
  • the third transmission time may include the transmission stop time and transmission time introduced above.
  • the third transmission time The time may include the stop transmission time between the transmission time t1 and the transmission time t2 in FIG. 5, as well as part or all of the time in the transmission time t2. The embodiments of the present application do not limit this.
  • the second indication information includes one or more of the following information of the emergency service: start time, end time, duration, and cycle.
  • the start time can be determined by the time unit in which the second indication information is transmitted and the time unit offset.
  • the time unit of the second indication information is the end time unit, and the time unit offset is ⁇ t.
  • the start time of the emergency service is the end time unit as the starting position, offset by ⁇ t time units. The starting position of a time unit.
  • the starting time in the second indication information may include a time unit offset of ⁇ t.
  • the above-mentioned resources used for transmitting emergency services are determined based on preconfiguration or instructions from the network device. For example, as shown in FIG. 5 , the network device may transmit the resources of the emergency service in the period T2 indicated by the transmission time t1 of the period T1.
  • FDD frequency band 1 is used for downlink transmission, where FDD frequency band 1 includes 3 periods, and each period may include a transmission time and a transmission stop time.
  • the period T1 includes the transmission time t1 and the transmission stop time s1
  • the period T2 includes the transmission time t2 and the transmission stop time s2
  • the period T3 includes the transmission time t3 and the transmission stop time s3.
  • the network device may perform non-continuous downlink transmission at the transmission time t1, the transmission time t2 and the transmission time t3, and stop the downlink transmission at the transmission stop time s1, the transmission stop time s2 and the transmission stop time s3.
  • the network device receives the second indication information sent by the terminal device in time unit 1 in cycle 1.
  • the second indication information indicates that the time unit offset is ⁇ t, and the duration of time unit 2 for transmitting emergency services is t. e .
  • the network device can determine the starting position of time unit 2, which is the time unit offset by ⁇ t from the end position of time unit 1 as the starting position.
  • the network device may also determine that the duration of time unit 2 is te based on the second information. Thereafter, the network device can send the emergency service to the terminal device in time unit 2, or in other words, the network device can send the emergency service to the terminal device within the time window of time unit 2.
  • the network device needs to receive the second indication information. Since the time at which the terminal device sends the second indication information is relatively random, therefore, to increase the possibility of receiving the second indication information, the network device can Continuous receiving state work. Of course, if the randomness of the second indication information is not considered, or the terminal device can send the second indication information according to certain rules, the network device can also work in a discontinuous reception state, which is not limited in the embodiments of this application.
  • the above section introduces the emergency service transmission scheme by taking the downlink transmission scenario as an example.
  • the emergency service transmission solution in the embodiment of the present application can also be applied to uplink transmission scenarios.
  • the first time configuration includes adjacent first reception time and second reception time
  • the above method further includes: the network device receives second indication information sent by the terminal device, and the second indication information is used to instruct the network device to receive the signal during the first reception time.
  • a third reception time for processing emergency services is configured between the time and the second reception time.
  • the network device may be in a reception-stop state during part or all of the time period between the first reception time and the second reception time.
  • the first reception time and the second reception time may be two adjacent reception times.
  • the network device may be stopped during the entire time period between the first reception time and the second reception time. launch status.
  • the first receiving time and the second receiving time may be receiving time r1 and receiving time r2.
  • the above-mentioned first reception time and the second reception time may also be two non-adjacent reception times.
  • the network device may be in a state of stopping transmission during part of the time period between the first reception time and the second reception time. .
  • the first receiving time and the second receiving time may be receiving time r1 and receiving time r3 respectively.
  • the above-mentioned third reception time may include a partial or complete overlap of the reception stop time between the first reception time and the second reception time.
  • the reception time r1 and the reception time r2 are used as the first reception time and the second reception time.
  • the third reception time may include part or all of the reception stop time between the reception time r1 and the reception time r2 .
  • the reception time r1 and the reception time r3 are used as the first reception time and the second reception time.
  • the third reception time may include part or all of the stop reception time between the reception time r1 and the reception time r2, or the third reception time.
  • the third reception time may include part or all of the stop reception time between the reception time r2 and the reception time r3.
  • the third reception time may include the stop reception time introduced above.
  • the third reception time may include the stop reception time and the reception time introduced above.
  • the third reception time The time may include the stop reception time between the reception time r1 and the reception time r2 in FIG. 8, as well as part or all of the time in the reception time r2. The embodiments of the present application do not limit this.
  • the second indication information includes one or more of the following information of the emergency service: start time, end time, duration, and cycle.
  • the start time can be determined by the time unit in which the second indication information is transmitted and the time unit offset.
  • the time unit of the second indication information is the end time unit, and the time unit offset is ⁇ t.
  • the start time of the emergency service is the end time unit as the starting position, offset by ⁇ t time units. The starting position of a time unit.
  • the starting time in the second indication information may include a time unit offset of ⁇ t.
  • the above-mentioned resources used for transmitting emergency services are determined based on preconfiguration or instructions from the network device. For example, as shown in FIG. 8 , the network device may transmit the resources of the emergency service in the period T2 indicated by the reception time r1 of the period T1.
  • FDD frequency band 2 is used for uplink reception, where FDD frequency band 2 includes 3 cycles, and each cycle may include a reception time and a reception stop time.
  • the period T1 ⁇ includes the reception time r1 and the reception stop time s1 ⁇
  • the period T2 ⁇ includes the reception time r2 and the reception stop time s2 ⁇
  • the period T3 ⁇ includes the reception time r3 and the reception stop time s3 ⁇ .
  • the network device may perform non-continuous uplink reception at the reception time r1, reception time r2 and reception time r3, and stop uplink reception at the reception stop time s1 ⁇ , the reception stop time s2 ⁇ and the reception stop time s3 ⁇ .
  • the network device receives the second indication information sent by the terminal device in the time unit 3 in the reception time r1.
  • the second indication information indicates that the time unit offset is ⁇ t, and the duration of the time unit 4 for transmitting the emergency service is t e .
  • the network device can determine the starting position of time unit 4, which is the time unit offset by ⁇ t from the end position of time unit 3 as the starting position.
  • the network device may also determine that the duration of the time unit 4 is te based on the second information.
  • the network device can receive the emergency service sent by the terminal device in time unit 4, or in other words, the network device can receive the emergency service sent by the terminal device within the time window indicated by time unit 4.
  • the network device determines whether the network device is in a discontinuous transmitting state or a discontinuous receiving state, when the network device is in a non-working state (for example, stop transmitting state or stop receiving state), in this state the network device is unable to receive or Send business.
  • a non-working state for example, stop transmitting state or stop receiving state
  • the network device may perform discontinuous operation (eg, discontinuous reception and/or discontinuous transmission) on the first bandwidth and continuous operation on the second bandwidth.
  • discontinuous operation eg, discontinuous reception and/or discontinuous transmission
  • the continuous operation of the network equipment in the second bandwidth can support the transmission of services, which helps to reduce the transmission delay of the services.
  • the discontinuous operation of the network device on the first bandwidth helps to reduce the power consumption of the network device.
  • the first time configuration corresponds to the first bandwidth of the network device
  • the network device also includes a second bandwidth
  • the second bandwidth corresponds to the second time configuration
  • the second time configuration is used to indicate one or more of the following: network device Continuous transmission is performed during the downlink transmission time; network equipment performs continuous reception during the uplink reception time.
  • the continuous transmission by the above-mentioned network equipment during the downlink transmission time may include various situations.
  • the following uses the TDD frequency band and the FDD frequency band as examples.
  • the network equipment For the FDD frequency band, the network equipment performs continuous downlink transmission within the downlink transmission time, which can be understood as the network equipment performs continuous downlink transmission within the FDD downlink transmission frequency band.
  • the network equipment performs continuous transmission within the downlink transmission time. It can be understood that the network equipment performs downlink transmission within the continuous downlink transmission time indicated by the TDD frame structure.
  • the continuous downlink transmission time indicated by the TDD frame structure It can be a transmission time unit with continuous index but discontinuous time domain position. Referring to Figure 6, taking the TDD frame structure shown in TDD band 1 as the TDD frame structure of the second bandwidth as an example, the network device performs continuous transmission during the downlink transmission time, which can be understood as the network device performs downlink transmission during the transmission time t1 to t5. emission.
  • the continuous reception by the above-mentioned network equipment during the uplink reception time can include a variety of situations.
  • the following uses the TDD frequency band and the FDD frequency band as examples.
  • the network device For the FDD frequency band, the network device performs continuous transmission within the uplink reception time, which can be understood as the network device performs continuous uplink reception within the FDD uplink reception frequency band.
  • the network device For the TDD frequency band, the network device performs continuous transmission within the uplink reception time. It can be understood that the network device performs uplink reception within the continuous uplink reception time indicated by the TDD frame structure. Among them, the continuous uplink reception time indicated by the TDD frame structure It can be a receiving time unit with continuous index but discontinuous time domain position. Referring to Figure 6, taking the TDD frame structure shown in TDD band 1 as the TDD frame structure of the second bandwidth as an example, the network device performs continuous reception during the uplink reception time, which can be understood as the network device performs downlink reception during the reception time r1 to r4. emission.
  • the first bandwidth may be greater than the second bandwidth. That is to say, the bandwidth of the continuous operation of the network device is smaller than the bandwidth of the discontinuous operation of the network device, which helps to reduce the power consumption of the network device.
  • the bandwidth for the network device to perform discontinuous operation may include one or more bandwidths. That is to say, the first bandwidth may include one or more bandwidths.
  • the first bandwidth includes a plurality of bandwidths
  • the first time configuration includes a first transmission time and a second transmission time
  • the first transmission time and the second transmission time correspond to different bandwidths among the plurality of bandwidths.
  • the network equipment in order to reduce the power consumption of network equipment, can first perform continuous operation on the second bandwidth, and then determine whether it is necessary to perform continuous operation on the second bandwidth based on the service transmission requirements in the cell and/or the number of terminal devices in the cell. Discontinuous operation over a bandwidth.
  • the intra-cell service transmission requirements may include cell throughput and intra-cell service transmission delay. For example, when the throughput of services in the cell is greater than the throughput threshold, the network device can activate the first bandwidth. For another example, when the number of terminal devices in the cell is greater than the terminal device number threshold, the network device may activate the first bandwidth.
  • the network device may also determine whether it is necessary to stop discontinuous work on the first bandwidth based on service transmission requirements in the cell and/or the number of terminal devices in the cell. In other words, the network device may also determine whether the first bandwidth needs to be deactivated based on the service transmission requirements in the cell and/or the number of terminal devices in the cell. For example, when the throughput of services in the cell is less than or equal to the throughput threshold, the network device may deactivate the first bandwidth. For another example, when the number of terminal devices in the cell is less than or equal to the terminal device number threshold, the network device may deactivate the first bandwidth.
  • the above-mentioned first bandwidth may also be Bandwidth for certain areas within the community.
  • the second bandwidth may be a bandwidth for all areas within the cell. In other words, the first bandwidth corresponds to the entire coverage of the network device, and the second bandwidth corresponds to a partial area within the coverage of the network device.
  • BW0 can correspond to the entire coverage 1510 of the network device.
  • BW1 may correspond to the area 1520 in the entire coverage area 1510 of the network device.
  • the above-mentioned first bandwidth is also It can be the bandwidth for certain terminal devices in the cell.
  • the second bandwidth may be a bandwidth for all terminal devices in the cell.
  • the first bandwidth corresponds to all terminal devices within the coverage range of the network device
  • the second bandwidth corresponds to some terminal devices within the coverage range of the network device.
  • the first bandwidth may be a special configuration for certain terminal devices in the cell
  • the second bandwidth may be a general configuration for all terminal devices in the cell.
  • the following uses the FDD frequency band as an example to introduce the communication method based on the first bandwidth and the second bandwidth in the embodiment of the present application with reference to FIG. 16 and FIG. 17 .
  • the downlink transmission bandwidth of the network device includes BW0 ⁇ BW3.
  • BW0 has the smallest bandwidth
  • BW0 can correspond to the entire coverage of network equipment.
  • BW1 ⁇ BW3 can correspond to some areas within the coverage of network equipment.
  • the bandwidth of BW1 is greater than BW2, and the bandwidth of BW2 is greater than BW3.
  • the network device can activate the downlink transmission bandwidth BW1 and Downlink transmission is performed on BW1 to cope with higher throughput. If the network device detects that the throughput in the cell is less than or equal to the throughput threshold 1 at the end of time period t1, the network device can deactivate the downlink transmission bandwidth BW1 to reduce the power consumption of the network device.
  • the network device can activate the downlink transmission bandwidth BW2, and Downlink transmission is performed on BW2 to cope with higher throughput. If the network device detects that the throughput in the cell is less than or equal to the throughput threshold 2 at the end of time period t2, the network device can deactivate the downlink transmission bandwidth BW2 to reduce the power consumption of the network device.
  • the network device can activate the downlink transmission bandwidth BW3 and perform downlink transmission on BW3 to cope with the higher throughput. quantity. If the network device detects that the throughput in the cell is less than or equal to the throughput threshold 3 at the end of time period t3, the network device can deactivate the downlink transmission bandwidth BW3 to reduce the power consumption of the network device.
  • throughput threshold 1 is smaller than throughput threshold 2
  • throughput threshold 2 is smaller than throughput threshold 3.
  • BW1 to BW3 can be activated or deactivated based on the monitored throughput in the cell. This helps to reduce the power consumption of network equipment while taking into account business transmission requirements.
  • the uplink receiving bandwidth of the network device includes BW4 ⁇ BW7.
  • BW4 has the smallest bandwidth, and BW4 can correspond to the entire coverage of network equipment.
  • BW5 ⁇ BW7 can correspond to some areas within the coverage of network equipment.
  • the bandwidth of BW5 is greater than BW6, and the bandwidth of BW6 is greater than BW7.
  • the network device can activate the uplink reception bandwidth BW5 and Uplink reception is performed on BW5 to handle higher throughput. If the network device detects that the throughput in the cell is less than or equal to the throughput threshold 4 at the end of time period t4, the network device can deactivate the uplink reception bandwidth BW5 to reduce the power consumption of the network device.
  • the network device can activate the uplink reception bandwidth BW6, and Uplink reception is performed on BW6 to cope with higher throughput. If the network device detects that the throughput in the cell is less than or equal to the throughput threshold 5 at the end of time period t5, the network device can deactivate the uplink reception bandwidth BW6 to reduce the power consumption of the network device.
  • the network device can activate the uplink reception bandwidth BW7 and perform uplink reception on BW7 to cope with the higher throughput. quantity. If the network device detects that the throughput in the cell is less than or equal to the throughput threshold 6 at the end of time period t6, the network device can deactivate the uplink reception bandwidth BW7 to reduce the power consumption of the network device.
  • throughput threshold 4 is smaller than throughput threshold 5
  • throughput threshold 5 is smaller than throughput threshold 6.
  • BW5 to BW7 can be activated or deactivated based on the monitored throughput in the cell. This helps to reduce the power consumption of network equipment while taking into account business transmission requirements.
  • the following uses the TDD frequency band as an example in conjunction with Figures 18 and 19 to introduce the communication method based on the first bandwidth and the second bandwidth in the embodiment of the present application.
  • TDD frequency band 1 includes 5 downlink time units: t1 ⁇ t5, and 4 uplink time units r1 ⁇ r4.
  • time configuration 1 instructs the network device to perform downlink transmission on downlink time units t1, t3, and t5, and to stop downlink transmission on downlink time units t2, t4.
  • the downlink transmission bandwidth of network equipment includes BW0 ⁇ BW3.
  • BW0 has the smallest bandwidth, and BW0 can correspond to the entire coverage of network equipment.
  • BW1 ⁇ BW3 can correspond to some areas within the coverage of network equipment.
  • the bandwidth of BW1 is greater than BW2, and the bandwidth of BW2 is greater than BW3.
  • the network device can activate the downlink transmission bandwidth BW1 and Downlink transmission is performed on BW1 to cope with higher throughput. If the network device detects that the throughput in the cell is less than or equal to the throughput threshold 1 at the end of time unit t1, the network device can deactivate the downlink transmission bandwidth BW1 to reduce the power consumption of the network device.
  • the network device can activate the downlink transmission bandwidth BW2, and Downlink transmission is performed on BW2 to cope with higher throughput. If the network device detects that the throughput in the cell is less than or equal to the throughput threshold 2 at the end of time unit t3, the network device can deactivate the downlink transmission bandwidth BW2 to reduce the power consumption of the network device.
  • the network device can activate the downlink transmission bandwidth BW3 and perform downlink transmission on BW3 to cope with the higher throughput. quantity. If the network device detects that the throughput in the cell is less than or equal to the throughput threshold 3 at the end of time unit t5, the network device can deactivate the downlink transmission bandwidth BW3 to reduce the power consumption of the network device.
  • throughput threshold 1 is smaller than throughput threshold 2
  • throughput threshold 2 is smaller than throughput threshold 3.
  • BW1 to BW3 can be activated or deactivated based on the monitored throughput in the cell. This helps to reduce the power consumption of network equipment while taking into account business transmission requirements.
  • TDD frequency band 1 includes 5 downlink time units: t1 ⁇ t5, and 4 uplink time units r1 ⁇ r4. Furthermore, time configuration 1 instructs the network device to perform uplink reception on uplink time units r1 and r3, and to stop uplink reception on uplink time units r2 and r4.
  • the uplink receiving bandwidth of the network device includes BW0 ⁇ BW2. Among them, BW0 has the smallest bandwidth, and BW0 can correspond to the entire coverage of network equipment. BW1 ⁇ BW2 can correspond to some areas within the coverage of the network device. And the bandwidth of BW1 is larger than BW2.
  • the network device can activate the uplink reception bandwidth BW1, and Upstream reception is performed on BW1 to handle higher throughput. If the network device detects that the throughput in the cell is less than or equal to the throughput threshold 1 at the end of time unit r1, the network device can deactivate the uplink reception bandwidth BW1 to reduce the power consumption of the network device.
  • the network device can activate the uplink reception bandwidth BW2 and perform uplink reception on BW2 to cope with the higher throughput. quantity. If the network device detects that the throughput in the cell is less than or equal to the throughput threshold 2 at the end of time unit r3, the network device can deactivate the uplink reception bandwidth BW2 to reduce the power consumption of the network device. Among them, throughput threshold 1 is smaller than throughput threshold 2.
  • BW1 to BW2 can be activated or deactivated based on the monitored throughput in the cell. This helps to reduce the power consumption of network equipment while taking into account business transmission requirements.
  • the first bandwidth and the second bandwidth may be configured in multiple ways.
  • the first bandwidth and the second bandwidth may correspond to independent bandwidth configurations. That is to say, the network device can activate the first bandwidth and the second bandwidth respectively. Referring to Figure 16, if BW0 and BW1 adopt independent bandwidth configurations, accordingly, within the time unit t1, the network device can activate BW1.
  • the first bandwidth and the second bandwidth may correspond to non-independent bandwidth configurations. That is to say, the network device activates a bandwidth combination including the first bandwidth and the second bandwidth at a certain moment. Referring to Figure 16, if BW0 and BW1 adopt non-independent bandwidth configurations, accordingly, within the time unit t1, the network device can activate the frequency band combination including BW0 and BW1.
  • the size of the second bandwidth and/or the duration of the second bandwidth are configurable.
  • the network device may configure the size of the second bandwidth and/or the duration of the second bandwidth based on the statistical information of the cell.
  • the statistical information of the cell includes the number of terminal devices in the cell, cell throughput, transmission requirements of services in the cell, etc.
  • the size of the second bandwidth can also be selected from multiple predefined bandwidths, and the duration of the second bandwidth can also be selected from multiple predefined durations.
  • the second bandwidth may be configured periodically, and accordingly, the network device may notify the terminal equipment in the cell of the configuration period of the second bandwidth. For example, notification is provided through broadcast messages, RRC signaling and other messages.
  • the second bandwidth may also be configured aperiodically, and accordingly, the network device dynamically schedules the activation time of the second bandwidth of the terminal device.
  • reducing the transmission power of network equipment can reduce the power consumption of network equipment.
  • the transmission power of network equipment has a greater impact on the downlink coverage of the cell.
  • reducing the transmit power of network equipment will directly reduce the downlink coverage of the cell.
  • the coverage range of the network device is 2010.
  • the coverage range of the network device may be from Coverage 2010 reduced to coverage 2020.
  • the reduction in coverage may lead to discontinuous coverage of the network.
  • the terminal device is located in an area outside the coverage range 2010 except the coverage range 2020, the network device cannot communicate with the terminal device, causing the terminal device to be in a no-service state.
  • the transmission power has matching configuration parameters, or in other words, the transmission power can correspond to the configuration parameters, and the configuration parameters are used to indicate that the network equipment can Configured downlink bandwidth and/or downlink modulation method.
  • the above-mentioned transmission power may be the transmission power corresponding to the coverage area of the network device, and the above-mentioned transmission power may also be the maximum transmission power of the network device, which is not limited in the embodiments of the present application.
  • the above configurable downlink bandwidth may be, for example, the maximum configurable downlink bandwidth.
  • the above configurable downlink bandwidth may also be a certain kind of configurable downlink bandwidth, which is not limited in the embodiments of the present application.
  • the above configurable downlink modulation method may be, for example, the most complex configurable downlink modulation method.
  • the above configurable downlink modulation method may also be a certain configurable downlink modulation method, which is not limited in the embodiments of the present application.
  • the above-mentioned downlink modulation methods may include 16 quadrature amplitude modulation (16QAM), quadrature reference phase shift keying (QPSK), interleaved quadrature quadrature phase shift keying (QPSK) , four-phase relative phase shift keying, Gaussian filtered minimum shift keying (GMSK), minimum shift keying (MSK), etc.
  • 16QAM 16 quadrature amplitude modulation
  • QPSK quadrature reference phase shift keying
  • QPSK interleaved quadrature quadrature phase shift keying
  • GMSK Gaussian filtered minimum shift keying
  • MSK minimum shift keying
  • the configuration of the network device can be associated with the downlink transmit power of the network device, then the configuration of the network device includes one or more downlink transmit power configurations, and the downlink transmit power configuration is used to indicate the downlink transmit power and configuration of the network device. Parameter mapping relationship.
  • the embodiment of the present application does not limit the mapping relationship between the downlink transmission power of the network device and the configuration parameters.
  • the mapping relationship between downlink transmit power and configuration parameters can be a one-to-one correspondence.
  • the mapping relationship between downlink transmit power and configuration parameters may be a one-to-many relationship.
  • the above-mentioned downlink transmit power configuration includes a first downlink transmit power configuration and a second downlink transmit power configuration
  • the first downlink power configuration is used to indicate the mapping relationship between the first downlink transmit power and the first configuration parameter
  • the second downlink transmit power configuration is used to indicate the mapping relationship between the second downlink transmit power and the second configuration parameter.
  • the first downlink transmit power is smaller than the second downlink transmit power
  • the downlink bandwidth indicated by the first configuration parameter is smaller than the second configuration parameter. Indicated downstream bandwidth.
  • the configuration parameters including the downlink modulation method Take the configuration parameters including the downlink modulation method as an example. If the complexity of the downlink modulation method is low, the demodulation threshold of the signal received by the terminal equipment is low. In this case, the terminal equipment usually demodulates the signal with lower signal strength. Then the demodulation can be successful. If the complexity of the downlink modulation method is high, the demodulation threshold of the signal received by the terminal equipment is high. In this case, the terminal equipment usually needs to demodulate a signal with a higher signal strength in order to successfully demodulate it.
  • downlink transmit power configuration 1 when the maximum transmit power of the network device is 30dbm, the maximum configurable downlink bandwidth of the network device is 200MHz, and the most complex configurable downlink modulation method of the network device is 16QAM.
  • downlink transmit power configuration 2 when the maximum transmit power of the network device is 27dbm, the maximum configurable downlink bandwidth of the network device is 100MHz, and the most complex configurable downlink modulation method of the network device is 16QAM.
  • downlink transmit power configuration 3 when the maximum transmit power of the network device is 27dbm, the maximum configurable downlink bandwidth of the network device is 200MHz, and the most complex configurable downlink modulation method of the network device is QPSK.
  • downlink transmit power configuration 4 when the maximum transmit power of the network device is 10dbm, the maximum configurable downlink bandwidth of the network device is 50MHz, and the most complex configurable downlink modulation method of the network device is QPSK.
  • the configuration parameters include the maximum configurable downlink bandwidth and the most complex configurable downlink modulation method
  • only one of the above two parameters can be adjusted. For example, see the downlink transmit power configuration shown in the first and second rows of Table 2. When the maximum transmit power of the network device is adjusted from 30dBM to 27dBm, you can only adjust the maximum configurable downlink bandwidth of the network device.
  • the most complex configuration The downlink modulation method remains unchanged. For another example, refer to the downlink transmit power configuration shown in the first and third rows of Table 2. After the maximum transmit power of the network device is adjusted from 30dBM to 27dBm, only the most complex configurable downlink modulation method of the network device can be adjusted. The maximum Configurable downstream bandwidth remains unchanged. This mapping method helps to keep the coverage of the network equipment the same or similar when the network equipment operates with different transmit powers.
  • the network device works based on downlink transmit power configuration 1.
  • the network device can switch from downlink transmit power configuration 1 to downlink transmit power configuration 2, and can work based on downlink transmit power configuration 2 to reduce the power consumption of the network device.
  • the network device may switch back to the downlink transmit power configuration 2 from the downlink transmit power configuration 1, and based on the parameters indicated by the downlink transmit power configuration 1 work to reduce service transmission delays.
  • downlink transmission power configuration 1 and downlink transmission power configuration 2 may correspond to the same threshold (first threshold).
  • first threshold the threshold that is used to satisfy the transmission power configuration.
  • different downlink transmission power configurations may correspond to different thresholds, and the embodiment of the present application does not limit this.
  • the network device Take the preset condition including that the throughput within the coverage area of the network device is less than the second threshold as an example. See Table 2. Assume that the network device works based on downlink transmit power configuration 1. When the network device detects that the throughput within the coverage area is less than the second threshold, When the threshold is reached, the network device can switch from downlink transmit power configuration 1 to downlink transmit power configuration 3, and can work based on downlink transmit power configuration 3 to reduce the power consumption of the network device. Then, when the network device detects that the throughput within the coverage area is greater than or equal to the second threshold, the network device may switch back to the downlink transmit power configuration 3 from the downlink transmit power configuration 1, and work based on the parameters indicated by the downlink transmit power configuration 1, to reduce service transmission delays.
  • the downlink transmission power configuration 1 and the downlink transmission power configuration 3 may correspond to the same threshold (the second threshold).
  • the second threshold the threshold
  • different downlink transmission power configurations may correspond to different thresholds, and the embodiment of the present application does not limit this.
  • FIG. 21 is a schematic diagram of a network device according to an embodiment of the present application.
  • Network device 2100 shown in FIG. 21 includes a processing unit 2110.
  • the processing unit 2110 is configured to adjust the configuration of the network device, where the configuration of the network device includes multiple configurations corresponding to different power consumption.
  • the configuration of the network device is associated with one or more of the following information of the network device: transmission time, reception time, downlink transmission power, downlink bandwidth, and downlink modulation method.
  • the configuration of the network device includes a first time configuration, and the first time configuration is used to indicate one or more of the following information: the network device performs a transmission operation within the downlink transmission time. Discontinuous transmission; the network device performs discontinuous reception within the uplink reception time.
  • the first time configuration is used to indicate one or more of the following information: the network device performs discontinuous transmission in the first downlink transmission frequency band ; And/or, the network device performs discontinuous reception in the first uplink receiving frequency band.
  • the first time configuration is used to indicate one or more of the following information: the network device is non-transmitting in one or more downlink time units. Status; the network device is in a non-receiving state within one or more uplink time units.
  • the first time configuration includes a first transmission time configuration and a first reception time configuration, and the transmission time indicated by the first transmission time configuration is the same as the reception time indicated by the first reception time configuration.
  • the times overlap partially or completely; and/or the transmission duration indicated by the first transmission time configuration is less than or equal to the reception duration indicated by the first reception time configuration.
  • the first time configuration belongs to multiple time configurations of the network device, and the time periods indicated by the multiple time configurations and/or the working hours of the network device are different.
  • the network device further includes: a first receiving unit, configured to receive first indication information sent by a terminal device, where the first indication information is used to instruct the terminal device to obtain the
  • the processing unit is configured to determine the first time configuration based on the selected time configuration.
  • the first time configuration includes adjacent first transmission time and second transmission time
  • the network device further includes: a second receiving unit configured to receive the second transmission time sent by the terminal device. Instruction information, the second instruction information is used to instruct the network device to configure a third transmission time for processing emergency services between the first transmission time and the second transmission time.
  • the second indication information includes one or more of the following information of the emergency service: start time, end time, duration, and cycle.
  • resources used to transmit the emergency service are determined based on preconfiguration or instructions from the network device.
  • the first time configuration corresponds to a first bandwidth of the network device
  • the network device further includes a second bandwidth
  • the second bandwidth corresponds to a second time configuration
  • the third time configuration corresponds to a second bandwidth of the network device.
  • the second time configuration is used to indicate one or more of the following: the network device performs continuous transmission during the downlink transmission time; the network device performs continuous reception during the uplink reception time.
  • the first bandwidth is greater than the second bandwidth.
  • the first bandwidth includes multiple bandwidths
  • the first time configuration includes a first transmission time and a second transmission time
  • the first transmission time and the second transmission time correspond to Different bandwidths among the plurality of bandwidths.
  • the second bandwidth corresponds to all terminal devices within the coverage range of the network device
  • the first bandwidth corresponds to some terminal devices within the coverage range of the network device.
  • the configuration of the network device includes one or more downlink transmit power configurations, and the downlink transmit power configuration is used to indicate a mapping relationship between the downlink transmit power of the network device and configuration parameters, so The configuration parameters are used to indicate the configurable downlink bandwidth and/or downlink modulation method of the network device.
  • the one or more downlink transmit power configurations include a first downlink transmit power configuration and a second downlink transmit power configuration, and the first downlink power configuration is used to indicate a first downlink transmit power configuration.
  • Mapping relationship between transmit power and the first configuration parameter, the second downlink transmit power configuration is used to indicate the mapping relationship between the second downlink transmit power and the second configuration parameter, the first downlink transmit power is smaller than the second downlink transmit power Transmit power; the downlink bandwidth indicated by the first configuration parameter is less than the downlink bandwidth indicated by the second configuration parameter; and/or the complexity of the downlink modulation method indicated by the first configuration parameter is less than the second configuration parameter Indicates the complexity of the downstream modulation scheme.
  • the preset conditions include one or more of the following: the number of terminal devices within the coverage area of the network device is less than a first threshold; the throughput within the coverage area of the network device The amount is less than the second threshold.
  • FIG. 22 is a schematic diagram of a terminal device according to an embodiment of the present application.
  • the terminal device 2200 shown in FIG. 22 includes a sending unit 2210.
  • the sending unit 2210 is configured to send instruction information to a network device, where the instruction information is used to instruct the network device to adjust the configuration of the network device, where the configuration of the network device includes multiple configurations corresponding to different power consumption.
  • the configuration of the network device is associated with one or more of the following information of the network device: transmission time, reception time, downlink transmission power, downlink bandwidth, and downlink modulation method.
  • the configuration of the network device includes a first time configuration, and the first time configuration is used to indicate one or more of the following information: the network device performs a transmission operation within the downlink transmission time. Discontinuous transmission; the network device performs discontinuous reception within the uplink reception time.
  • the first time configuration is used to indicate one or more of the following information: the network device performs discontinuous transmission in the first downlink transmission frequency band ; And/or, the network device performs discontinuous reception in the first uplink receiving frequency band.
  • the first time configuration is used to indicate one or more of the following information: the network device is non-transmitting in one or more downlink time units. Status; the network device is in a non-receiving state within one or more uplink time units.
  • the first time configuration includes a first transmission time configuration and a first reception time configuration, and the transmission time indicated by the first transmission time configuration is the same as the reception time indicated by the first reception time configuration.
  • the times overlap partially or completely; and/or the transmission duration indicated by the first transmission time configuration is less than or equal to the reception duration indicated by the first reception time configuration.
  • the first time configuration belongs to multiple time configurations of the network device, and the time periods indicated by the multiple time configurations and/or the working hours of the network device are different.
  • the terminal device further includes: a processing unit, configured to select a time configuration from the plurality of time configurations; and the sending unit, further configured to send a first indication to the network device.
  • Information the first indication information is used to indicate the time configuration, and the time configuration is used to determine the first time configuration.
  • the first time configuration includes adjacent first transmission time and second transmission time
  • the sending unit is also configured to send second indication information
  • the second indication information is Instructing the network device to configure a third transmission time for processing emergency services between the first transmission time and the second transmission time.
  • the second indication information includes one or more of the following information of the emergency service: start time, end time, duration, and cycle.
  • resources used to transmit the emergency service are determined based on preconfiguration or instructions from the network device.
  • the first time configuration corresponds to a first bandwidth of the network device
  • the network device further includes a second bandwidth
  • the second bandwidth corresponds to a second time configuration
  • the third time configuration corresponds to a second bandwidth of the network device.
  • the second time configuration is used to indicate one or more of the following: the network device performs continuous transmission during the downlink transmission time; the network device performs continuous reception during the uplink reception time.
  • the first bandwidth is greater than the second bandwidth.
  • the first bandwidth includes multiple bandwidths
  • the first time configuration includes a first transmission time and a second transmission time
  • the first transmission time and the second transmission time correspond to Different bandwidths among the plurality of bandwidths.
  • the second bandwidth corresponds to all terminal devices within the coverage range of the network device
  • the first bandwidth corresponds to some terminal devices within the coverage range of the network device.
  • the configuration of the network device includes one or more downlink transmit power configurations, and the downlink transmit power configuration is used to indicate a mapping relationship between the downlink transmit power of the network device and configuration parameters, so The configuration parameters are used to indicate the configurable downlink bandwidth and/or downlink modulation method of the network device.
  • the one or more downlink transmit power configurations include a first downlink transmit power configuration and a second downlink transmit power configuration, and the first downlink power configuration is used to indicate a first downlink transmit power configuration.
  • Mapping relationship between transmit power and the first configuration parameter, the second downlink transmit power configuration is used to indicate the mapping relationship between the second downlink transmit power and the second configuration parameter, the first downlink transmit power is smaller than the second downlink transmit power Transmit power; the downlink bandwidth indicated by the first configuration parameter is less than the downlink bandwidth indicated by the second configuration parameter; and/or the complexity of the downlink modulation method indicated by the first configuration parameter is less than the second configuration parameter Indicates the complexity of the downstream modulation scheme.
  • the processing unit 2110 may be a processor 2310.
  • the network device 2100 may also include a transceiver 2330 and a memory 2320, as specifically shown in Figure 23.
  • the sending unit 2210 may be a transceiver 2330.
  • the terminal device 900 may also include a transceiver 2330 and a memory 2320, as specifically shown in Figure 23.
  • Figure 23 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the dashed line in Figure 23 indicates that the unit or module is optional.
  • the device 2300 can be used to implement the method described in the above method embodiment.
  • Device 2300 may be a chip, terminal device or network device.
  • Apparatus 2300 may include one or more processors 2310.
  • the processor 2310 can support the device 2300 to implement the method described in the foregoing method embodiments.
  • the processor 2310 may be a general-purpose processor or a special-purpose processor.
  • the processor may be a central processing unit (CPU).
  • the processor can also be another general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), or an off-the-shelf programmable gate array (FPGA) Or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Apparatus 2300 may also include one or more memories 2320.
  • the memory 2320 stores a program, which can be executed by the processor 2310, so that the processor 2310 executes the method described in the foregoing method embodiment.
  • the memory 2320 may be independent of the processor 2310 or integrated in the processor 2310.
  • Apparatus 2300 may also include a transceiver 2330.
  • Processor 2310 may communicate with other devices or chips through transceiver 2330.
  • the processor 2310 can send and receive data with other devices or chips through the transceiver 2330.
  • An embodiment of the present application also provides a computer-readable storage medium for storing a program.
  • the computer-readable storage medium can be applied in the terminal or network device provided by the embodiment of the present application, and the program causes the computer to execute the method performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program product.
  • the computer program product includes a program.
  • the computer program product can be applied in the terminal or network device provided by the embodiments of the present application, and the program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • An embodiment of the present application also provides a computer program.
  • the computer program can be applied to the terminal or network device provided by the embodiments of the present application, and the computer program causes the computer to execute the methods performed by the terminal or network device in various embodiments of the present application.
  • time unit in this application may include time slots, symbols, subframes, frames, etc., which are not limited in the embodiments of this application.
  • system and “network” may be used interchangeably in this application.
  • terms used in this application are only used to explain specific embodiments of the application and are not intended to limit the application.
  • the terms “first”, “second”, “third” and “fourth” in the description, claims and drawings of this application are used to distinguish different objects, rather than to describe a specific sequence.
  • the terms “including” and “having” and any variations thereof are intended to cover non-exclusive inclusion.
  • the "instruction" mentioned may be a direct instruction, an indirect instruction, or an association relationship.
  • a indicates B which can mean that A directly indicates B, for example, B can be obtained through A; it can also mean that A indirectly indicates B, for example, A indicates C, and B can be obtained through C; it can also mean that there is an association between A and B. relation.
  • B corresponding to A means that B is associated with A, and B can be determined based on A.
  • determining B based on A does not mean determining B only based on A.
  • B can also be determined based on A and/or other information.
  • the term "correspondence” can mean that there is a direct correspondence or indirect correspondence between the two, or it can also mean that there is an association between the two, or it can also mean indicating and being instructed, configuring and being configured, etc. relation.
  • predefinition or “preconfiguration” can be achieved by pre-saving corresponding codes, tables or other methods that can be used to indicate relevant information in devices (for example, including terminal devices and network devices).
  • devices for example, including terminal devices and network devices.
  • predefined can refer to what is defined in the protocol.
  • the "protocol” may refer to a standard protocol in the communication field, which may include, for example, LTE protocol, NR protocol, and related protocols applied in future communication systems. This application does not limit this.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be determined by the implementation process of the embodiments of the present application. constitute any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application can be integrated into one processing unit, each unit can exist physically alone, or two or more units can be integrated into one unit.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another, e.g., the computer instructions may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be read by a computer or a data storage device such as a server or data center integrated with one or more available media.
  • the available media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., digital video discs (DVD)) or semiconductor media (e.g., solid state disks (SSD) )wait.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

提供了一种用于无线通信的方法、网络设备及终端设备。该方法包括:如果预设条件满足,则网络设备调整所述网络设备的配置,其中,所述网络设备的配置包括对应不同功耗的多种配置。在满足预设条件的情况下,网络设备可以通过调整网络设备的配置,来调整网络设备的功耗。避免了传统的通信系统中,网络设备始终以一个较高能耗对应的工作状态工作,有助于提高网络设备的能效。

Description

用于无线通信的方法、网络设备及终端设备 技术领域
本申请涉及通信技术领域,并且更为具体地,涉及一种用于无线通信的方法、网络设备及终端设备。
背景技术
为了保证小区的覆盖范围以及网络的及时可用,网络设备会始终保持在一个功耗较高的工作状态。例如,网络设备会始终保持工作状态,进行上行接收和/或下行发射。又例如,网络设备会始终以小区覆盖范围对应的下行发射功率进行下行发射。然而,并不是在全部的场景下都需要网络设备保持上述功耗较高的工作状态。例如,在夜间小区内终端设备的数量可能会减少(例如,有些终端设备会被关机,或进入休眠状态),此时,如果网络设备继续保持在上述工作状态下,会导致网络设备提供的服务远远小于网络设备所消耗的总能源量,即网络设备的能效较低。
发明内容
本申请提供一种用于无线通信的方法、网络设备及终端设备。下面对本申请涉及的各个方面进行介绍。
第一方面,提供了一种用于无线通信的方法,包括:如果预设条件满足,则网络设备调整所述网络设备的配置,其中,所述网络设备的配置包括对应不同功耗的多种配置。
第二方面,提供了一种用于无线通信的方法,包括:终端设备向网络设备发送指示信息,所述指示信息用于指示所述网络设备调整所述网络设备的配置,其中,所述网络设备的配置包括对应不同功耗的多种配置。
第三方面,提供了一种网络设备,包括:如果预设条件满足,则处理单元用于调整所述网络设备的配置,其中,所述网络设备的配置包括对应不同功耗的多种配置。
第四方面,提供了一种终端设备,包括:发送单元,用于向网络设备发送指示信息,所述指示信息用于指示所述网络设备调整所述网络设备的配置,其中,所述网络设备的配置包括对应不同功耗的多种配置。
第五方面,提供一种终端设备,包括处理器、存储器以及通信接口,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序,使得所述终端设备执行第二方面的方法中的部分或全部步骤。
第六方面,提供一种网络设备,包括处理器、存储器、收发器,所述存储器用于存储一个或多个计算机程序,所述处理器用于调用所述存储器中的计算机程序,使得所述网络设备执行第一方面的方法中的部分或全部步骤。
第七方面,本申请实施例提供了一种通信系统,该系统包括上述的终端设备和/或网络设备。在另一种可能的设计中,该系统还可以包括本申请实施例提供的方案中与终端设备或网络设备进行交互的其他设备。
第八方面,本申请实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序使得通信设备(例如,终端设备或网络设备)执行上述各个方面的方法中的部分或全部步骤。
第九方面,本申请实施例提供了一种计算机程序产品,其中,所述计算机程序产品包括存储了计算机程序的非瞬时性计算机可读存储介质,所述计算机程序可操作来使通信设备(例如,终端设备或网络设备)执行上述各个方面的方法中的部分或全部步骤。在一些实现方式中,该计算机程序产品可以为一个软件安装包。
第十方面,本申请实施例提供了一种芯片,该芯片包括存储器和处理器,处理器可以从存储器中调用并运行计算机程序,以实现上述各个方面的方法中所描述的部分或全部步骤。
在满足预设条件的情况下,网络设备可以通过调整网络设备的配置,来调整网络设备的功耗。避免了传统的通信系统中,网络设备始终以一个较高能耗对应的工作状态工作,有助于提高网络设备的能效。
附图说明
图1是本申请实施例应用的无线通信系统100。
图2是网络设备覆盖范围的示意图。
图3是本申请实施例的用于无线通信的方法的示意图。
图4是本申请实施例的网络设备进行非连续性发射的示意图。
图5是本申请实施例中在FDD场景下网络设备进行非连续性发射的示意图。
图6是本申请实施例中在TDD场景下网络设备进行非连续性发射的示意图。
图7是本申请实施例中非连续性接收的示意图。
图8是本申请实施例中在FDD场景下网络设备进行非连续性接收的示意图。
图9是本申请实施例中在FDD场景下网络设备进行非连续性接收以及非连续性发射的示意图。
图10是本申请实施例中在FDD场景下网络设备进行连续性接收以及非连续性发射的示意图。
图11是本申请另一实施例中在FDD场景下网络设备进行非连续性接收以及非连续性发射的示意图。
图12是本申请实施例中表1所示的多种时间配置的示意图。
图13是本申请实施例中下行传输场景中紧急业务的传输方法的示意图。
图14是本申请实施例中上行传输场景中紧急业务的传输方法的示意图。
图15是本申请实施例中不同带宽对应的覆盖范围的示意图。
图16是本申请实施例中FDD场景中基于第一带宽和第二带宽的通信方法的示意图。
图17是本申请另一实施例中FDD场景中基于第一带宽和第二带宽的通信方法的示意图。
图18是本申请实施例中TDD场景中基于第一带宽和第二带宽的通信方法的示意图。
图19是本申请另一实施例中TDD场景中基于第一带宽和第二带宽的通信方法的示意图。
图20是下行发射功率与下行覆盖范围之间的示意图。
图21是本申请实施例的网络设备的示意图。
图22是本申请实施例的终端设备的示意图。
图23是本申请实施例的通信装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110和终端设备120。网络设备110可以是与终端设备120通信的设备。网络设备110可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备120进行通信。
图1示例性地示出了一个网络设备和两个终端,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:第五代(5th generation,5G)系统或新无线(new radio,NR)、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)等。本申请提供的技术方案还可以应用于未来的通信系统,如第六代移动通信系统,又如卫星通信系统,等等。
本申请实施例中的终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、移动终端(mobile terminal,MT)、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。本申请实施例中的终端设备可以是指向用户提供语音和/或数据连通性的设备,可以用于连接人、物和机,例如具有无线连接功能的手持式设备、车载设备等。本申请的实施例中的终端设备可以是手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,虚拟现实(virtual reality,VR)设备、增强现实(augmented reality,AR)设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等。可选地,UE可以用于充当基站。例如,UE可以充当调度实体,其在V2X或D2D等中的UE之间提供侧行链路信号。比如,蜂窝电话和汽车利用侧行链路信号彼此通信。蜂窝电话和智能家居设备之间通信,而无需通过基站中继通信信号。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备也可以称为接入网设备或无线接入网设备,如网络设备可以是基站。本申请实施例中的网络设备可以是指将终端设备接入到无线网络的无线接入网(radio access network,RAN)节点(或设备)。基站可以广义的覆盖如下中的各种名称,或与如下名称进行替换,比如:节点B(NodeB)、演进型基站(evolved NodeB,eNB)、下一代基站(next generation NodeB,gNB)、中继站、接入点、传输点(transmitting and receiving point,TRP)、发射点(transmitting point,TP)、主站MeNB、辅站SeNB、多制式无线(MSR)节点、家庭基站、 网络控制器、接入节点、无线节点、接入点(access point,AP)、传输节点、收发节点、基带单元(base band unit,BBU)、射频拉远单元(Remote Radio Unit,RRU)、有源天线单元(active antenna unit,AAU)、射频头(remote radio head,RRH)、中心单元(central unit,CU)、分布式单元(distributed unit,DU)、定位节点等。基站可以是宏基站、微基站、中继节点、施主节点或类似物,或其组合。基站还可以指用于设置于前述设备或装置内的通信模块、调制解调器或芯片。基站还可以是移动交换中心以及设备到设备D2D、车辆外联(vehicle-to-everything,V2X)、机器到机器(machine-to-machine,M2M)通信中承担基站功能的设备、6G网络中的网络侧设备、未来的通信系统中承担基站功能的设备等。基站可以支持相同或不同接入技术的网络。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
基站可以是固定的,也可以是移动的。例如,直升机或无人机可以被配置成充当移动基站,一个或多个小区可以根据该移动基站的位置移动。在其他示例中,直升机或无人机可以被配置成用作与另一基站通信的设备。
在一些部署中,本申请实施例中的网络设备可以是指CU或者DU,或者,网络设备包括CU和DU。gNB还可以包括AAU。
网络设备和终端设备可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请实施例中对网络设备和终端设备所处的场景不做限定。
应理解,本申请中的通信设备的全部或部分功能也可以通过在硬件上运行的软件功能来实现,或者通过平台(例如云平台)上实例化的虚拟化功能来实现。
在现有通信系统(例如,蜂窝移动通信系统)中,网络设备作为与终端设备通信的节点,可以将下行信息以下行信号的形式发送给终端设备,同时网络设备还可以接收终端设备以上行信号的形式发送的上行信息。参见图2所示,网络设备的下行信号覆盖范围与终端设备的上行信号覆盖范围共同决定了一个小区的大小,其中,小区的又可以称为“网络设备的覆盖范围”。
基于当前网络的部署方式,一方面,为了保证通信的实时可用,网络设备需要始终保持工作状态,例如,向小区内的终端设备发送下行信号。又例如,接收小区内终端设备发送的上行信号。另一方面,为了保持网络设备的连续覆盖,网络设备需要始终以小区覆盖范围对应的最大下行发射功率发射下行信息。
如上文介绍,为了保证小区的覆盖范围以及网络的及时可用,网络设备会始终保持在一个功耗较高的工作状态。例如,网络设备会始终保持工作状态,进行上行接收和/或下行发射。又例如,网络设备会始终以小区覆盖范围对应的下行发射功率进行下行发射。
然而,并不是在全部的场景下都需要网络设备保持上述功耗较高的工作状态。例如,在夜间小区内终端设备的数量可能会减少(例如,有些终端设备会被关机,或进入休眠状态),此时,如果网络设备继续保持在上述工作状态下,会导致网络设备提供的服务远远小于网络设备所消耗的总能源量,即网络设备的能效较低。
因此,本申请实施例提供了一种用于无线通信的方法,有助于提高网络设备的能效。为了便于理解,下文结合图3介绍本申请实施例的用于无线通信的方法。图3所示的方法可以包括步骤S310。
在步骤S310中,如果预设条件满足,则网络设备调整网络设备的配置,其中,网络设备的配置包括对应不同功耗的多种配置。
上述网络设备的配置与网络设备的以下信息中的一种或多种关联:发射时间、接收时间、下行发射功率、下行带宽以及下行调制方式。
上述多种配置与功耗的对应关系可以包括多种配置中不同的配置对应的功耗不同,或者,多种配置中的部分不同配置可以对应相同的功耗。下文将结合表1介绍多种配置与功耗的对应关系,为了简洁,在此不再赘述。另外,上述多种配置可以是预定义的或者预配置的,本申请实施例对此不作限定。
上述若预设条件满足,则网络设备调整网络设备的配置,可以包括:若预设条件满足,网络设备可以将网络设备的配置调整为多个配置中对应功耗较高的配置,或者若预设条件满足,网络设备可以将网络设备的配置调整为多个配置中对应功耗较低的配置。下文将结合具体的场景介绍网络设备的配置的调整方式,为了简洁,在此不再赘述。
在本申请实施例中,在满足预设条件的情况下,网络设备可以通过调整网络设备的配置,来调整网络设备的功耗。避免了传统的通信系统中,网络设备始终以一个较高能耗对应的工作状态工作,有助于提高网络设备的能效。
下文介绍本申请实施例适用的预设条件。在一些实现方式中,上述预设条件可以与网络设备覆盖范围内的终端设备的数量关联。例如,预设条件可以包括网络设备的覆盖范围内的终端设备的数量小于第一阈值。当然,在本申请实施例中,上述与终端设备的数量关联的预设条件还可以以其他形式呈现,例 如,预设条件可以包括终端设备的数量为预设值。
以预设条件包括网络设备的覆盖范围内的终端设备的数量小于第一阈值为例,介绍本申请实施例中调整网络设备的配置的方法。假设多种配置包括配置1和配置2,其中配置1对应的功耗高于配置2对应的功耗,并且网络设备的当前配置为配置1。此时,如果满足预设条件,网络设备可以将当前配置从配置1调整为配置2,以降低网络设备的功耗。
在另一些实现方式中,上述预设条件可以与网络设备的覆盖范围内的吞吐量关联。例如,预设条件可以包括网络设备的覆盖范围内的吞吐量小于第二阈值。当然,在本申请实施例中,上述与吞吐量关联的预设条件还可以以其他形式呈现,例如,预设条件可以包括吞吐量为预设值。
以预设条件包括网络设备的覆盖范围内的吞吐量小于第二阈值为例,介绍本申请实施例中调整网络设备的配置的方法。假设多种配置包括配置3和配置4,其中配置3对应的功耗高于配置4对应的功耗,并且网络设备的当前配置为配置3。此时,如果满足预设条件,网络设备可以将当前配置从配置3调整为配置4,以降低网络设备的功耗。
需要说明的是,上述第一阈值和/或第二阈值可以是预定义的,也可以是预配置的,本申请实施例对此不作限定。
另外,除了在满足上述预设条件的情况下,网络设备可以调整网络设备的配置,网络设备还可以基于终端设备发送的指示信息调整网络设备的配置,下文以确定方式1中的第一指示信息为例进行介绍,为了简洁,在此不再赘述。
如上文所述,网络设备的配置可以与网络设备发射时间关联。因此,在本申请实施例中,网络设备的配置可以包括第一时间配置,其中,第一时间配置可以用于指示网络设备在下行发射时间内进行非连续性发射。其中,第一时间配置又可以称为“第一发射时间配置”。
上述非连续性发射可以理解为网络设备在离散的发射时间上进行下行发射。其中,离散的发射时间可以是周期性排布,即在每个周期内包括下行发射时间和停止下行发射时间。当然,在本申请实施例中,上述离散的发射时间也可以是非周期性排布。
为了便于理解,下文以周期性排布的发射时间为例,结合图4介绍本申请实施例的非连续性发射。在图4示出的3个周期内,每个周期可以包括发射时间以及停止发射时间。在周期T1内包括发射时间t1和停止发射时间s1,在周期T2内包括发射时间t2和停止发射时间s2,在周期T3内包括发射时间t3和停止发射时间s3。相应地,网络设备可以在发射时间t1、发射时间t2以及发射时间t3进行非连续性下行发射,并且在停止发射时间s1、停止发射时间s2以及停止发射时间s3停止下行发射。
在不同的场景中,第一时间配置指示的非连续发射的表现方式可能稍有差异。下文分别结合图5和图6以FDD场景和TDD场景为例介绍。
针对FDD场景而言,第一时间配置用于指示网络设备在第一下行发射频段进行非连续发射,其中,第一下行发射频段为FDD频段。
参见图5,假设FDD频段1上包括3个周期,每个周期可以包括发射时间以及停止发射时间。在周期T1内包括发射时间t1和停止发射时间s1,在周期T2内包括发射时间t2和停止发射时间s2,在周期T3内包括发射时间t3和停止发射时间s3。相应地,网络设备可以在发射时间t1、发射时间t2以及发射时间t3进行非连续性下行发射,并且在停止发射时间s1、停止发射时间s2以及停止发射时间s3停止下行发射。
在本申请实施例中,通过第一时间配置指示网络设备在支持FDD的第一下行发射频段进行非连续性发射,相比于网络设备在支持FDD的第一下行发射频段进行连续性发射,有助于降低网络设备的功耗。
针对TDD场景而言,第一时间配置用于指示网络设备在一个或多个下行时间单元内处于非发射状态。其中,下行时间单元可以包括TDD帧结构中的下行时隙。当然,上述下行时间单元还可以包括下行符号、下行子帧等。
参见图6,假设TDD频段1上包括5个下行时间单元:t1~t5,以及4个上行时间单元r1~r4。并且,时间配置1指示网络设备在下行时间单元t1、t3和t5上进行下行发射,并且在下行时间单元t2、t4上停止下行发射。相应地,如果不考虑时间配置1的指示,网络设备会在下行时间单元t1~t5上分别进行下行发射。然而,基于时间配置1的指示,网络设备只会在下行时间单元t1、t3和t5上进行下行发射,并且在下行时间单元t2、t4上停止下行发射。如此,在不考虑时间配置1的情况下网络设备进行下行发射的时间间隔小于在考虑时间配置1的情况下网络设备进行下行发射的时间间隔,或者说,时间配置1将网络设备的下行发射时间调整的更加稀疏,有助于减少网络设备进行下行发射的时间,以降低网络设备的功耗。
在本申请实施例中,通过第一时间配置指示网络设备在一个或多个下行时间单元内处于非发射状 态,相比于网络设备在每个下行时间单元内处于发射状态,有助于降低网络设备的功耗。
如上文所述,网络设备的配置可以与网络设备的接收时间关联。因此,在本申请实施例中,网络设备的配置可以包括第一时间配置,其中,第一时间配置可以用于指示网络设备在上行接收时间内进行非连续性接收。其中,第一时间配置又可以称为“第一接收时间配置”。
上述非连续性接收可以理解为网络设备在离散的接收时间上进行上行接收。其中,离散的接收时间可以是周期性排布,即在每个周期内包括上行接收时间和停止上行接收时间。当然,在本申请实施例中,上述离散的接收时间也可以是非周期性排布。
为了便于理解,下文以周期性排布的接收时间为例,结合图7介绍本申请实施例的非连续性接收。在图7示出的3个周期内,每个周期可以包括接收时间以及停止接收时间。在周期T1内包括接收时间r1和停止接收时间s1,在周期T2内包括接收时间r2和停止接收时间s2,在周期T3内包括接收时间r3和停止接收时间s3。相应地,网络设备可以在接收时间r1、接收时间r2以及接收时间r3进行非连续性上行接收,并且在停止接收时间s1、停止接收时间s2以及停止接收时间s3停止上行接收。
在不同的场景中,第一时间配置指示的非连续接收的表现方式可能稍有差异。下文分别结合图8和图6以FDD和TDD为例介绍。
针对FDD场景而言,第一时间配置用于指示网络设备在第一上行接收频段进行非连续接收,其中,第一上行接收频段为FDD频段。
参见图8,假设FDD频段2上包括3个周期,每个周期可以包括接收时间以及停止接收时间。在周期T1内包括接收时间r1和停止接收时间s1,在周期T2内包括接收时间r2和停止接收时间s2,在周期T3内包括接收时间r3和停止接收时间s3。相应地,网络设备可以在接收时间r1、接收时间r2以及接收时间r3进行非连续性上行接收,并且在停止接收时间s1、停止接收时间s2以及停止接收时间s3停止上行接收。
在本申请实施例中,通过第一时间配置指示网络设备在支持FDD的第一上行接收频段进行非连续性接收,相比于网络设备在支持FDD的第一上行接收频段进行连续性接收,有助于降低网络设备的功耗。
针对TDD场景而言,第一时间配置用于指示网络设备在一个或多个上行时间单元内处于非接收状态。其中,上行时间单元可以包括TDD帧结构中的上行时隙。当然,上述上行时间单元还可以包括上行符号、上行子帧等。
继续参见图6,假设TDD频段1上的TDD帧结构包括5个下行时间单元:t1~t5,以及4个上行时间单元r1~r4。并且,时间配置1指示网络设备在上行时间单元r1、r3和r5上进行上行接收,并且在上行时间单元r2、r4上停止上行接收。相应地,如果不考虑时间配置1的指示,网络设备会在上行时间单元r1~r4上分别进行上行接收。然而,基于时间配置1的指示,网络设备只会在上行时间单元r1和r3上进行上行接收,并且在上行时间单元r2、r4上停止上行接收。如此,在不考虑时间配置1的情况下网络设备进行上行接收的时间间隔小于在考虑时间配置1的情况下网络设备进行上行接收的时间间隔,或者说,时间配置1将网络设备的上行接收时间调整的更加稀疏,即时间配置1将网络设备进行上行接收的时间间隔调整为TDD帧结构指示的时间间隔的2倍,有助于减少网络设备进行上行接收的时间,以降低网络设备的功耗。
在本申请实施例中,通过第一时间配置指示网络设备在一个或多个上行时间单元内处于非接收状态,相比于网络设备在每个上行时间单元内处于接收状态,有助于降低网络设备的功耗。
需要说明的是,上文分别介绍了第一时间配置调整网络设备的下行发射时间和上行接收时间的方案。在本申请实施例中,第一时间配置还可以同时下行发射时间和上行接收时间。具体的调整方式可以与上文介绍的调整方式相似,可以参见上文的介绍。
通常,为了进一步降低网络设备的功耗,上文介绍的非连续性发射和非连续性接收可以结合使用。例如,针对FDD而言,网络设备在第一上行接收频段的工作方式可以与网络设备在第一下行发射频段的工作方式结合使用。又例如,针对TDD而言,网络设备可以在一个或多个上行时间单元内处于非接收状态,且在一个或多个下行时间单元内处于非发射状态。
对于网络设备而言,进行下行发射的功耗通常远远大于进行上行接收的功耗,因此,为了减少上行业务的传输时延,在配置网络设备结合使用非连续性发射和非连续性接收时,非连续性接收的时长可以小于非连续性发射的时长。从时间配置的角度来讲,即第一发射时间配置指示的发射时长小于第一接收时间配置指示的接收时长。从发射时间和接收时间的时域位置来讲,第一发射时间配置指示的发射时间与第一接收时间配置指示的接收时间可以部分重叠。
为了便于理解,下文以FDD频段为例结合图9,介绍非连续性发射和非连续性接收结合的方案。
参见图9,假设FDD频段1用于下行发射,其中,FDD频段1包括3个周期,每个周期可以包括 发射时间以及停止发射时间。在周期T1内包括发射时间t1和停止发射时间s1,在周期T2内包括发射时间t2和停止发射时间s2,在周期T3内包括发射时间t3和停止发射时间s3。相应地,网络设备可以在发射时间t1、发射时间t2以及发射时间t3进行非连续性下行发射,并且在停止发射时间s1、停止发射时间s2以及停止发射时间s3停止下行发射。
FDD频段2用于上行接收,其中,FDD频段2包括5个周期,每个周期可以包括接收时间以及停止接收时间。在周期T1`内包括接收时间r1和停止接收时间s1`,在周期T2`内包括接收时间r2和停止接收时间s2`,在周期T3`内包括接收时间r3和停止接收时间s3`,在周期T4`内包括接收时间r4和停止接收时间s4`,在周期T5`内包括接收时间r5和停止接收时间s5`。相应地,网络设备可以在接收时间r1、接收时间r2、接收时间r3、接收时间r4以及接收时间r5进行非连续性上行接收,并且在停止接收时间s1`、停止接收时间s2`、停止接收时间s3`、停止接收时间s4`以及停止接收时间s5`停止上行接收。
相比于FDD频段1的周期,FDD频段2的周期较短,这样,网络设备可以以较高的频率在FDD频段2上进行上行接收,以减少上行业务的传输时延。
如上文所述,对于网络设备而言,进行下行发射的功耗通常远远大于进行上行接收的功耗,因此,为了减少上行业务的传输时延,网络设备还可以在上行接收频段上进行连续性接收。下文以FDD频段为例结合图10进行介绍。
参见图10,假设FDD频段1用于下行发射,其中,FDD频段1包括3个周期,每个周期可以包括发射时间以及停止发射时间。在周期T1内包括发射时间t1和停止发射时间s1,在周期T2内包括发射时间t2和停止发射时间s2,在周期T3内包括发射时间t3和停止发射时间s3。相应地,网络设备可以在发射时间t1、发射时间t2以及发射时间t3进行非连续性下行发射,并且在停止发射时间s1、停止发射时间s2以及停止发射时间s3停止下行发射。
FDD频段2用于上行接收,并且,网络设备可以在FDD频段2进行连续性上行接收,或者说,在FDD频段2上以一段连续的时间进行上行接收。相比于FDD频段1的周期,网络设备可以在FDD频段2进行连续性上行接收,以减少上行业务的传输时延。
通常,网络设备中用于上行接收的元件与用于下行发射的元件中,有些元件是共用的。因此,为了进一步节约网络设备的功耗,可以设置网络设备相同的时间内进行上行接收和下行发射,使得这些共用元件可以在网络设备停止工作时也停止工作。也即是说,第一发射时间配置指示的发射时间与第一接收时间配置指示的接收时间可以全部重叠。
为了便于理解,下文以FDD频段为例结合图11,介绍非连续性发射和非连续性接收结合的方案。
参见图11,假设FDD频段1用于下行发射,其中,FDD频段1包括3个周期,每个周期可以包括发射时间以及停止发射时间。在周期T1内包括发射时间t1和停止发射时间s1,在周期T2内包括发射时间t2和停止发射时间s2,在周期T3内包括发射时间t3和停止发射时间s3。相应地,网络设备可以在发射时间t1、发射时间t2以及发射时间t3进行非连续性下行发射,并且在停止发射时间s1、停止发射时间s2以及停止发射时间s3停止下行发射。
FDD频段2用于上行接收,其中,FDD频段2包括3个周期,每个周期可以包括接收时间以及停止接收时间。在周期T1`内包括接收时间r1和停止接收时间s1`,在周期T2`内包括接收时间r2和停止接收时间s2`,在周期T3`内包括接收时间r3和停止接收时间s3`。相应地,网络设备可以在接收时间r1、接收时间r2以及接收时间r3进行非连续性上行接收,并且在停止接收时间s1`、停止接收时间s2`以及停止接收时间s3`停止上行接收。
其中,FDD频段1的周期与FDD频段2的周期相同,或者说,网络设备在FDD频段1上进行下行发射的时间与在FDD频段2上进行上行接收的时间重叠。这样,上述共用的元件便可以在网络设备停止上行接收以及下行发射时也停止工作。
为了提高网络设备的上行接收时间和/或下行发射时间的灵活性,网络设备中可以设置有多个时间配置,此时,多个时间配置中可以包括第一时间配置。多个时间配置指示的时间周期和/或网络设备的工作时长可以不同。其中,网络设备的工作时长例如可以是发射时长或者接收时长。
以网络设备进行周期性非连续工作(包括非连续性发射和/或非连续性接收)为例,工作时间可以是时间周期内的工作时长。其中,时间周期可以是时间配置指示的,当然,也可以是通过其他方式确定的。
需要说明的是,上述多个时间配置可以是协议预定义的,也可以是预配置的,本申请实施例对此不作限定。
下文结合图12以及表1,介绍本申请实施例的多种时间配置。假设网络设备可以包括表1中示出的3种时间配置,其中,表1所示的发射时长可以是每个周期内的发射时长。
表1
  发射时长 周期
时间配置1 1ms 100ms
时间配置2 1ms 50ms
时间配置3 0.5ms 10ms
参见图12,表1所示的时间配置1可以指示网络设备的发射时间的时长(又称为“发射时长”)为1ms,发射周期为100ms,也即是说,网络设备可以按照100ms的周期进行下行发射,并且,在每个周期内的发射时长为1ms。表1所示的时间配置2可以指示网络设备的发射时长为1ms,发射周期为50ms。也即是说,网络设备可以按照50ms的周期进行下行发射,并且,在每个周期内的发射时长为1ms。表1所示的时间配置3可以指示网络设备的发射时长为0.1ms,周期为10ms。也即是说,网络设备可以按照10ms的周期进行下行发射,并且,在每个周期内的发射时长为0.1ms。
对比上述3种时间配置,从功耗的角度来讲,时间配置1指示的周期是3种时间配置中周期最长的,也即是说,时间配置1对应的功耗最低。时间配置3指示的周期是3种时间配置中周期最短的,也即是说,时间配置3对应的功耗最高。时间配置2对应的功耗低于时间配置3对应的功耗,且时间配置2对应的功耗高于时间配置1对应的功耗。
从吞吐量的角度来讲,时间配置1可以对应的较低的吞吐量。时间配置3可以对应的较高的吞吐量。时间配置2对应的吞吐量低于时间配置3对应的吞吐量,且时间配置2对应的吞吐量高于时间配置1对应的吞吐量。
需要说明的是,上述时间配置中的发射时间和/或周期的单位可以是上文所示的毫秒,还可以是符号、时隙、子帧或帧等单位,本申请实施例对此不作限定。
在本申请实施例中,对于具有多种时间配置的网络设备而言,如何确定合适的时间配置是亟需解决的问题。本申请实施例提供了两种确定方式,在确定方式1中,终端设备可以辅助网络设备选择合适的时间配置。在确定方式2中,网络设备可以自主选择合适的时间配置。下文分别针对两种确定方式进行介绍。
在确定方式1中,终端设备可以从多个时间配置中选择时间配置(又称“期望的时间配置”),并将期望的时间配置通过第一指示信息发送给网络设备,相应地,网络设备可以基于终端设备期望的时间配置确定第一时间配置。
上述多个时间配置可以是通过通信协议预定义的,或者,可以是网络设备向终端设备发送的。例如,网络设备可以通过广播或专用信令(例如,RRC信令)向终端设备发送。
在一些实现方式中,终端设备可以基于下行业务的传输需求(例如,传输时延)选择期望的时间配置。当然,终端设备还可以基于下行业务的吞吐量,选择期望的时间配置。本申请实施例对此不作限定。
在另一些实现方式中,网络设备覆盖范围内的部分或全部终端设备都可以向网络设备发送各自期望的时间配置。不同的终端设备发送的期望的时间配置可能不同,相应地,网络设备可以基于覆盖范围内各个终端设备指示的期望的时间配置,确定第一时间配置。
例如,网络设备可以选择多个期望的时间配置中功耗最低的时间配置作为第一时间配置。以表1所示的时间配置为例,假设终端设备1指示的期望的时间配置为时间配置1,终端设备2指示的期望的时间配置为时间配置2,终端设备3指示的期望的时间配置为时间配置3,相应地,网络设备可以从3种时间配置中选择时间配置1作为第一时间配置,以降低网络设备的功耗。
又例如,网络设备可以选择多个期望的时间配置中功耗最高的时间配置作为第一时间配置。以表1所示的时间配置为例,假设终端设备1指示的期望的时间配置为时间配置1,终端设备2指示的期望的时间配置为时间配置2,终端设备3指示的期望的时间配置为时间配置3,相应地,网络设备可以从3种时间配置中选择时间配置3作为第一时间配置,以减少下行业务的传输时延。
又例如,网络设备可以选择多个期望的时间配置中功耗居中的时间配置作为第一时间配置。以表1所示的时间配置为例,假设终端设备1指示的期望的时间配置为时间配置1,终端设备2指示的期望的时间配置为时间配置2,终端设备3指示的期望的时间配置为时间配置3,相应地,网络设备可以从3种时间配置中选择时间配置2作为第一时间配置,以均衡网络设备的功耗以及下行业务的传输时延。
需要说明的是,网络设备基于终端设备期望的时间配置,确定第一时间配置的方案有很多种实现方式,例如网络设备基于终端设备期望的时间配置,计算第一时间配置。本申请实施例对此不作限定。
在确定方式2中,网络设备可以自主从多个时间配置中选择第一时间配置。
在一些实现方式中,网络设备可以基于小区内业务的统计信息,从多个时间配置中选择第一时间配置。其中,业务的统计信息可以包括业务的传输需求(例如,传输时延)和/或,业务的吞吐量。
以表1所示的时间配置为例,假设业务的统计信息包括业务的吞吐量,此时,时间配置1和时间配置2的选择可以基于吞吐量阈值1确定,时间配置2和时间配置3的选择可以基于吞吐量阈值2确定,其中,吞吐量阈值2大于吞吐量阈值1。相应地,如果网络设备统计小区内当前业务的吞吐量小于或等于吞吐量阈值1,网络设备可以采用时间配置1作为第一时间配置。如果网络设备统计小区内当前业务的吞吐量小于或等于吞吐量阈值2,且当前业务的吞吐量大于吞吐量阈值1,网络设备可以采用时间配置2作为第一时间配置。如果网络设备统计小区内当前业务的吞吐量大于吞吐量阈值2,网络设备可以采用时间配置3作为第一时间配置。
以表1所示的时间配置为例,假设业务的统计信息包括业务的传输时延,此时,时间配置1和时间配置2的选择可以基于传输时延阈值1确定,时间配置2和时间配置3的选择可以基于传输时延阈值2确定,其中,传输时延阈值2小于传输时延阈值1。相应地,如果网络设备统计小区内当前业务的传输时延大于传输时延阈值1,网络设备可以采用时间配置1作为第一时间配置。如果网络设备统计小区内当前业务的传输时延小于传输时延阈值1,且当前业务的传输时延大于或等于传输时延阈值2,网络设备可以采用时间配置2作为第一时间配置。如果网络设备统计小区内当前业务的传输时延小于传输时延阈值2,网络设备可以采用时间配置3作为第一时间配置。
需要说明的是,在本申请实施例中,还可以综合传输时延和吞吐量来选择时间配置。例如,时间配置1可以对应一个低吞吐量及低时延的场景。时间配置2可以对应一个中吞吐量及中时延的场景。时间配置3可以对应一个高吞吐量及高时延的场景。
当网络设备确定第一时间配置后,网络设备可以向终端设备发送第一时间配置,相应地,终端设备可以基于第一时间配置进行下行接收或上行发射。例如,终端设备可以在第一时间配置指示的发射时间接收下行数据,和/或,终端设备可以在第一时间配置指示的接收时间进行上行发射。
上述第一时间配置可以由网络设备通过广播的方式指示给终端设备,当然,网络设备也可以通过专用信令(例如,RRC信令)向终端设备指示第一时间配置。本申请实施例对此不作限定。
为了降低网络设备的功耗,网络设备可以进行非连续发射。网络设备在停止下行发射期间,下行业务是不可达终端设备的。然而,在一些场景中,终端设备有紧急业务需要接收。此时,如果网络设备刚好停止下行发射,则网络设备无法将紧急业务发送至终端设备。以终端设备为车辆为例,紧急业务可以包括终端设备请求网络设备定位前方障碍,以避免发生车祸。此时,如果网络设备停止下行发射,那么终端设备无法获知前方是否存在障碍。
因此,为了减小网络设备非连续发射对紧急业务传输的影响,终端设备可以通过第二指示信息告知网络设备紧急业务的发射时间,此时,网络设备可以基于第二指示信息来发射紧急业务。因此,第二指示信息又可以称为“紧急业务指示信息”或者“紧急状态指示信息”。
即,第一时间配置包括相邻的第一发射时间和第二发射时间,上述方法还包括:网络设备接收终端设备发送的第二指示信息,第二指示信息用于指示网络设备在第一发射时间和第二发射时间之间配置用于处理紧急业务的第三发射时间。
网络设备在上述第一发射时间与第二发射时间之间的部分或全部时间段可以处于停止发射状态。在一些实现方式中,上述第一发射时间与第二发射时间可以是相邻的两个发射时间,此时,网络设备可以在第一发射时间与第二发射时间之间的全部时间段处于停止发射状态。参见图5,第一发射时间和第二发射时间可以为发射时间t1和发射时间t2。当然,上述第一发射时间与第二发射时间也可以是不相邻的两个发射时间,此时,网络设备可以在第一发射时间与第二发射时间之间的部分时间段处于停止发射状态。继续参见图5,第一发射时间和第二发射时间可以分别为发射时间t1和发射时间t3。
上述第三发射时间可以包括第一发射时间与第二发射时间之间的停止发射时间部分或全部重叠。参见图5,以发射时间t1和发射时间t2作为第一发射时间和第二发射时间,上述第三发射时间可以包括发射时间t1和发射时间t2之间的部分或全部停止发射时间。参见图5,以发射时间t1和发射时间t3作为第一发射时间和第二发射时间,上述第三发射时间可以包括发射时间t1和发射时间t2之间的部分或全部停止发射时间,或者,第三发射时间可以包括发射时间t2和发射时间t3之间的部分或全部停止发射时间。下文将结合图13详细介绍,为了简洁,在此不再赘述。
需要说明的是,在本申请实施例中,第三发射时间可以包括上文介绍的停止发射时间,当然,第三发射时间可以包括上文介绍的停止发射时间以及发射时间,例如,第三发射时间可以包括图5中发射时间t1和发射时间t2之间的停止发射时间,以及发射时间t2中的部分或全部时间。本申请实施例对此不作限定。
在一些实现方式中,第二指示信息包括紧急业务的以下信息中的一种或多种:起始时间,结束时间,持续时间,以及周期。
若第二指示信息包括紧急业务的起始时间,该起始时间可以通过传输第二指示信息的时间单元以 及时间单元偏移量确定。例如,第二指示信息的时间单元为结束时间单元,且时间单元偏移量为Δt,相应地,紧急业务的起始时间为以结束时间单元为起始位置,偏移Δt个时间单元后的一个时间单元的起始位置。
需要说明的是,第二指示信息中的起始时间可以包括时间单元偏移量为Δt。当时间单元偏移量为Δt=0,或者,第二指示信息中不包含时间单元偏移量,则可以理解为时间单元偏移量为Δt=0,也即是说,紧急业务的起始时间为第二指示信息的结束时间单元。
在另一些实现方式中,上述用于传输紧急业务的资源基于预配置或网络设备的指示确定。例如,参见图5所示,网络设备可以在周期T1的发射时间t1指示周期T2中传输紧急业务的资源。
为了便于理解,下文结合图13介绍本申请实施例的紧急业务的传输方法。
参见图13,假设FDD频段1用于下行发射,其中,FDD频段1包括3个周期,每个周期可以包括发射时间以及停止发射时间。在周期T1内包括发射时间t1和停止发射时间s1,在周期T2内包括发射时间t2和停止发射时间s2,在周期T3内包括发射时间t3和停止发射时间s3。相应地,网络设备可以在发射时间t1、发射时间t2以及发射时间t3进行非连续性下行发射,并且在停止发射时间s1、停止发射时间s2以及停止发射时间s3停止下行发射。
相应地,网络设备在周期1中的时间单元1接收到终端设备发送的第二指示信息,第二指示信息指示时间单元偏移量为Δt,且传输紧急业务的时间单元2的持续时间为t e。网络设备可以确定时间单元2的起始位置,该起始位置为以时间单元1的结束位置为起始位置,偏移Δt后的时间单元。另外,网络设备还可以基于第二信息确定时间单元2的持续时间为t e。此后,网络设备可以在时间单元2上向终端设备发送紧急业务,或者说,网络设备可以在时间单元2的时间窗口内向终端设备发送紧急业务。
需要说明的是,本申请实施例中,网络设备需要接收第二指示信息,由于终端设备发送第二指示信息的时间比较随机,因此,提高接收到第二指示信息的可能性,网络设备可以以持续性接收状态工作。当然,如果不考虑第二指示信息的随机性,或者终端设备可以按照一定的规律发送第二指示信息,网络设备也可以以非连续接收状态工作,本申请实施例对此不作限定。
另外,上文以下行传输的场景为例,介绍了紧急业务的传输方案。本申请实施例的紧急业务的传输方案还可以应用于上行传输的场景。
即,第一时间配置包括相邻的第一接收时间和第二接收时间,上述方法还包括:网络设备接收终端设备发送的第二指示信息,第二指示信息用于指示网络设备在第一接收时间和第二接收时间之间配置用于处理紧急业务的第三接收时间。
网络设备在上述第一接收时间与第二接收时间之间的部分或全部时间段可以处于停止接收状态。在一些实现方式中,上述第一接收时间与第二接收时间可以是相邻的两个接收时间,此时,网络设备可以在第一接收时间与第二接收时间之间的全部时间段处于停止发射状态。参见图8,第一接收时间和第二接收时间可以为接收时间r1和接收时间r2。当然,上述第一接收时间与第二接收时间也可以是不相邻的两个接收时间,此时,网络设备可以在第一接收时间与第二接收时间之间的部分时间段处于停止发射状态。继续参见图8,第一接收时间和第二接收时间可以分别为接收时间r1和接收时间r3。
上述第三接收时间可以包括第一接收时间与第二接收时间之间的停止接收时间部分或全部重叠。参见图8,以接收时间r1和接收时间r2作为第一接收时间和第二接收时间,上述第三接收时间可以包括接收时间r1和接收时间r2之间的部分或全部停止接收时间。参见图8,以接收时间r1和接收时间r3作为第一接收时间和第二接收时间,上述第三接收时间可以包括接收时间r1和接收时间r2之间的部分或全部停止接收时间,或者,第三接收时间可以包括接收时间r2和接收时间r3之间的部分或全部停止接收时间。下文将结合图14详细介绍,为了简洁,在此不再赘述。
需要说明的是,在本申请实施例中,第三接收时间可以包括上文介绍的停止接收时间,当然,第三接收时间可以包括上文介绍的停止接收时间以及接收时间,例如,第三接收时间可以包括图8中接收时间r1和接收时间r2之间的停止接收时间,以及接收时间r2中的部分或全部时间。本申请实施例对此不作限定。
在一些实现方式中,第二指示信息包括紧急业务的以下信息中的一种或多种:起始时间,结束时间,持续时间,以及周期。
若第二指示信息包括紧急业务的起始时间,该起始时间可以通过传输第二指示信息的时间单元以及时间单元偏移量确定。例如,第二指示信息的时间单元为结束时间单元,且时间单元偏移量为Δt,相应地,紧急业务的起始时间为以结束时间单元为起始位置,偏移Δt个时间单元后的一个时间单元的起始位置。
需要说明的是,第二指示信息中的起始时间可以包括时间单元偏移量为Δt。当时间单元偏移量为Δt=0,或者,第二指示信息中不包含时间单元偏移量,则可以理解为时间单元偏移量为Δt=0,也即 是说,紧急业务的起始时间为第二指示信息的结束时间单元。
在另一些实现方式中,上述用于传输紧急业务的资源基于预配置或网络设备的指示确定。例如,参见图8所示,网络设备可以在周期T1的接收时间r1指示周期T2中传输紧急业务的资源。
为了便于理解,下文结合图14介绍本申请实施例的紧急业务的传输方法。
参见图14,FDD频段2用于上行接收,其中,FDD频段2包括3个周期,每个周期可以包括接收时间以及停止接收时间。在周期T1`内包括接收时间r1和停止接收时间s1`,在周期T2`内包括接收时间r2和停止接收时间s2`,在周期T3`内包括接收时间r3和停止接收时间s3`。相应地,网络设备可以在接收时间r1、接收时间r2以及接收时间r3进行非连续性上行接收,并且在停止接收时间s1`、停止接收时间s2`以及停止接收时间s3`停止上行接收。
相应地,网络设备在接收时间r1中的时间单元3接收到终端设备发送的第二指示信息,第二指示信息指示时间单元偏移量为Δt,且传输紧急业务的时间单元4的持续时间为t e。网络设备可以确定时间单元4的起始位置,该起始位置为以时间单元3的结束位置为起始位置,偏移Δt后的时间单元。另外,网络设备还可以基于第二信息确定时间单元4的持续时间为t e。此后,网络设备可以在时间单元4接收终端设备发送的紧急业务,或者说,网络设备可以在时间单元4指示的时间窗口内接收终端设备发送的紧急业务。
如上文所述,网络设备无论处于是非连续性发射状态还是非连续性接收状态,当网络设备处于非工作状态(例如,停止发射状态或停止接收状态),在该状态下网络设备是无法接收或发送业务的。
因此,为了在降低网络设备功耗的同时减少对业务传输的影响,本申请实施例还提供一种用于无线通信的方案。在该方案中,网络设备可以在第一带宽上进行非连续性工作(例如,非连续性接收和/或非连续性发射),并在第二带宽上进行连续性工作。如此,网络设备在第二带宽的连续性工作可以支持业务的传输,有助于减少业务的传输时延。另外,网络设备在第一带宽上的非连续性工作有助于降低网络设备的功耗。
即,第一时间配置与网络设备的第一带宽对应,网络设备还包括第二带宽,第二带宽对应第二时间配置,第二时间配置用于指示以下中的一种或多种:网络设备在下行发射时间内进行连续发射;网络设备在上行接收时间内进行连续接收。
上述网络设备在下行发射时间内进行连续发射可以包括多种情况,下文分别以TDD频段和FDD频段为例介绍。
针对FDD频段,网络设备在下行发射时间内进行连续发射,可以理解为,网络设备在FDD下行发射频段内进行连续的下行发射。
针对TDD频段,网络设备在下行发射时间内进行连续发射,可以理解为,网络设备在TDD帧结构指示的连续的下行发射时间内都进行下行发射,其中,TDD帧结构指示的连续的下行发射时间可以是索引连续,但是时域位置不连续的发射时间单元。参见图6,以TDD频段1所示的TDD帧结构作为第二带宽的TDD帧结构为例,网络设备在下行发射时间内进行连续发射,可以理解为网络设备在发射时间t1~t5上进行下行发射。
上述网络设备在上行接收时间内进行连续接收可以包括多种情况,下文分别以TDD频段和FDD频段为例介绍。
针对FDD频段,网络设备在上行接收时间内进行连续发射,可以理解为,网络设备在FDD上行接收频段内进行连续的上行接收。
针对TDD频段,网络设备在上行接收时间内进行连续发射,可以理解为,网络设备在TDD帧结构指示的连续的上行接收时间内都进行上行接收,其中,TDD帧结构指示的连续的上行接收时间可以是索引连续,但是时域位置不连续的接收时间单元。参见图6,以TDD频段1所示的TDD帧结构作为第二带宽的TDD帧结构为例,网络设备在上行接收时间内进行连续接收,可以理解为网络设备在接收时间r1~r4上进行下行发射。
在一些实现方式中,第一带宽可以大于第二带宽,也即是说,网络设备连续性工作的带宽小于网络设备非连续性工作的带宽,有助于降低网络设备的功耗。
在一些实现方式中,网络设备进行非连续性工作的带宽可以包括一个或多个,也就是说,第一带宽可以包括一种或多种带宽。当第一带宽包括多种带宽时第一时间配置包括第一发射时间和第二发射时间,第一发射时间和第二发射时间对应多种带宽中的不同带宽。如此,网络设备可以以不同的发射时间在多种带宽上进行非连续性工作,有助于提高网络设备为业务传输提供服务的灵活性。
在一些实现方式中,为了降低网络设备的功耗,网络设备可以先在第二带宽上进行连续性工作,再基于小区内业务传输需求和/或小区内终端设备的数量,确定是否需要在第一带宽上进行非连续性工作。其中,小区内业务传输需求可以包括小区吞吐量、小区内业务的传输时延。例如,当小区内业务的吞吐 量大于吞吐量阈值,网络设备可以激活第一带宽。又例如,当小区内终端设备的数量大于终端设备数量阈值,网络设备可以激活第一带宽。
在另一些实现方式中,当第一带宽被激活后,网络设备还可以基于小区内业务传输需求和/或小区内终端设备的数量,确定是否需要停止在第一带宽上进行非连续性工作。或者说,网络设备还可以基于小区内业务传输需求和/或小区内终端设备的数量,确定是否需要去激活第一带宽。例如,当小区内业务的吞吐量小于或等于吞吐量阈值,网络设备可以去激活第一带宽。又例如,当小区内终端设备的数量小于或等于终端设备数量阈值,网络设备可以去激活第一带宽。
在一些场景中,小区内可能会有些特定区域内的业务传输时延要求较高,和/或,特定区域内的吞吐量较大,因此,在一些实现方式中,上述第一带宽还可以是针对小区内某些区域的带宽。在另一些实施例中,第二带宽可以是针对小区内全部区域的带宽。或者说,第一带宽对应网络设备的全部覆盖范围,第二带宽对应网络设备的覆盖范围内的部分区域。
为了便于理解,下文结合图15介绍本申请实施例中不同带宽对应的覆盖范围。参见图15,以第一带宽为下行发射带宽BW0为例,BW0可以对应网络设备的全部覆盖范围1510。以第二带宽为下行发射带宽BW1为例,BW1可以对应网络设备的全部覆盖范围1510中的区域1520。
在另一些场景中,小区内可能会有些特定的终端设备的业务传输时延要求较高,和/或,特定终端设备的吞吐量较大,因此,在一些实现方式中,上述第一带宽还可以是针对小区内某些终端设备的带宽。在另一些实施例中,第二带宽可以是针对小区内全部终端设备的带宽。或者说,第一带宽对应网络设备的覆盖范围内的全部终端设备,第二带宽对应网络设备的覆盖范围内的部分终端设备。换句话说,第一带宽可以是针对小区内某些终端设备的特殊配置,相应地,第二带宽可以是针对小区内所有终端设备的通用配置。
为了便于理解,下文结合图16和图17以FDD频段为例,介绍本申请实施例中基于第一带宽和第二带宽的通信方法。
参见图16,假设网络设备的下行发射带宽包括BW0~BW3。其中,BW0的带宽最小,且BW0可以对应网络设备的全部覆盖范围。BW1~BW3可以对应网络设备的覆盖范围内的部分区域。并且BW1的带宽大于BW2,BW2的带宽大于BW3。
相应地,若网络设备在时间段t1的起始时刻,监测到小区内的吞吐量大于吞吐量阈值1,且小区内的吞吐量小于吞吐量阈值2,网络设备可以激活下行发射带宽BW1,并在BW1上进行下行发射,以应对较高的吞吐量。若网络设备在时间段t1的结束时刻,监测到小区内的吞吐量小于或等于吞吐量阈值1,则网络设备可以去激活下行发射带宽BW1,以降低网络设备的功耗。
若网络设备在时间段t2的起始时刻,监测到小区内的吞吐量大于或等于吞吐量阈值2,且小区内的吞吐量小于吞吐量阈值3,网络设备可以激活下行发射带宽BW2,并在BW2上进行下行发射,以应对较高的吞吐量。若网络设备在时间段t2的结束时刻,监测到小区内的吞吐量小于或等于吞吐量阈值2,则网络设备可以去激活下行发射带宽BW2,以降低网络设备的功耗。
若网络设备在时间段t3的起始时刻,监测到小区内的吞吐量大于或等于吞吐量阈值3,网络设备可以激活下行发射带宽BW3,并在BW3上进行下行发射,以应对较高的吞吐量。若网络设备在时间段t3的结束时刻,监测到小区内的吞吐量小于或等于吞吐量阈值3,则网络设备可以去激活下行发射带宽BW3,以降低网络设备的功耗。其中,吞吐量阈值1小于吞吐量阈值2,且吞吐量阈值2小于吞吐量阈值3。
在本申请实施例中,由于BW0的带宽较小,可以应对的小区内的吞吐量比较有限,因此,可以基于监测到的小区内的吞吐量来激活或去激活BW1~BW3中的一个或多个,有助于在降低网络设备功耗的同时兼顾业务的传输需求。
参见图17,假设网络设备的上行接收带宽包括BW4~BW7。其中,BW4的带宽最小,且BW4可以对应网络设备的全部覆盖范围。BW5~BW7可以对应网络设备的覆盖范围内的部分区域。并且BW5的带宽大于BW6,BW6的带宽大于BW7。
相应地,若网络设备在时间段t4的起始时刻,监测到小区内的吞吐量大于吞吐量阈值4,且小区内的吞吐量小于吞吐量阈值5,网络设备可以激活上行接收带宽BW5,并在BW5上进行上行接收,以应对较高的吞吐量。若网络设备在时间段t4的结束时刻,监测到小区内的吞吐量小于或等于吞吐量阈值4,则网络设备可以去激活上行接收带宽BW5,以降低网络设备的功耗。
若网络设备在时间段t5的起始时刻,监测到小区内的吞吐量大于或等于吞吐量阈值5,且小区内的吞吐量小于吞吐量阈值6,网络设备可以激活上行接收带宽BW6,并在BW6上进行上行接收,以应对较高的吞吐量。若网络设备在时间段t5的结束时刻,监测到小区内的吞吐量小于或等于吞吐量阈值5,则网络设备可以去激活上行接收带宽BW6,以降低网络设备的功耗。
若网络设备在时间段t6的起始时刻,监测到小区内的吞吐量大于或等于吞吐量阈值6,网络设备可以激活上行接收带宽BW7,并在BW7上进行上行接收,以应对较高的吞吐量。若网络设备在时间段t6的结束时刻,监测到小区内的吞吐量小于或等于吞吐量阈值6,则网络设备可以去激活上行接收带宽BW7,以降低网络设备的功耗。其中,吞吐量阈值4小于吞吐量阈值5,且吞吐量阈值5小于吞吐量阈值6。
在本申请实施例中,由于BW4的带宽较小,可以应对的小区内的吞吐量比较有限,因此,可以基于监测到的小区内的吞吐量来激活或去激活BW5~BW7中的一个或多个,有助于在降低网络设备功耗的同时兼顾业务的传输需求。
下文结合图18和图19以TDD频段为例,介绍本申请实施例中基于第一带宽和第二带宽的通信方法。
参见图18,假设TDD频段1上包括5个下行时间单元:t1~t5,以及4个上行时间单元r1~r4。并且,时间配置1指示网络设备在下行时间单元t1、t3和t5上进行下行发射,并且在下行时间单元t2、t4上停止下行发射。另外,网络设备的下行发射带宽包括BW0~BW3。其中,BW0的带宽最小,且BW0可以对应网络设备的全部覆盖范围。BW1~BW3可以对应网络设备的覆盖范围内的部分区域。并且BW1的带宽大于BW2,BW2的带宽大于BW3。
相应地,若网络设备在时间单元t1的起始时刻,监测到小区内的吞吐量大于吞吐量阈值1,且小区内的吞吐量小于吞吐量阈值2,网络设备可以激活下行发射带宽BW1,并在BW1上进行下行发射,以应对较高的吞吐量。若网络设备在时间单元t1的结束时刻,监测到小区内的吞吐量小于或等于吞吐量阈值1,则网络设备可以去激活下行发射带宽BW1,以降低网络设备的功耗。
若网络设备在时间单元t3的起始时刻,监测到小区内的吞吐量大于或等于吞吐量阈值2,且小区内的吞吐量小于吞吐量阈值3,网络设备可以激活下行发射带宽BW2,并在BW2上进行下行发射,以应对较高的吞吐量。若网络设备在时间单元t3的结束时刻,监测到小区内的吞吐量小于或等于吞吐量阈值2,则网络设备可以去激活下行发射带宽BW2,以降低网络设备的功耗。
若网络设备在时间单元t5的起始时刻,监测到小区内的吞吐量大于或等于吞吐量阈值3,网络设备可以激活下行发射带宽BW3,并在BW3上进行下行发射,以应对较高的吞吐量。若网络设备在时间单元t5的结束时刻,监测到小区内的吞吐量小于或等于吞吐量阈值3,则网络设备可以去激活下行发射带宽BW3,以降低网络设备的功耗。其中,吞吐量阈值1小于吞吐量阈值2,且吞吐量阈值2小于吞吐量阈值3。
在本申请实施例中,由于BW0的带宽较小,可以应对的小区内的吞吐量比较有限,因此,可以基于监测到的小区内的吞吐量来激活或去激活BW1~BW3中的一个或多个,有助于在降低网络设备功耗的同时兼顾业务的传输需求。
参见图19,假设TDD频段1上包括5个下行时间单元:t1~t5,以及4个上行时间单元r1~r4。并且,时间配置1指示网络设备在上行时间单元r1、r3上进行上行接收,并且在上行时间单元r2、r4上停止上行接收。另外,网络设备的上行接收带宽包括BW0~BW2。其中,BW0的带宽最小,且BW0可以对应网络设备的全部覆盖范围。BW1~BW2可以对应网络设备的覆盖范围内的部分区域。并且BW1的带宽大于BW2。
相应地,若网络设备在时间单元r1的起始时刻,监测到小区内的吞吐量大于吞吐量阈值1,且小区内的吞吐量小于吞吐量阈值2,网络设备可以激活上行接收带宽BW1,并在BW1上进行上行接收,以应对较高的吞吐量。若网络设备在时间单元r1的结束时刻,监测到小区内的吞吐量小于或等于吞吐量阈值1,则网络设备可以去激活上行接收带宽BW1,以降低网络设备的功耗。
若网络设备在时间单元r3的起始时刻,监测到小区内的吞吐量大于或等于吞吐量阈值2,网络设备可以激活上行接收带宽BW2,并在BW2上进行上行接收,以应对较高的吞吐量。若网络设备在时间单元r3的结束时刻,监测到小区内的吞吐量小于或等于吞吐量阈值2,则网络设备可以去激活上行接收带宽BW2,以降低网络设备的功耗。其中,吞吐量阈值1小于吞吐量阈值2。
在本申请实施例中,由于BW0的带宽较小,可以应对的小区内的吞吐量比较有限,因此,可以基于监测到的小区内的吞吐量来激活或去激活BW1~BW2中的一个或多个,有助于在降低网络设备功耗的同时兼顾业务的传输需求。
在本申请实施例中,上述第一带宽和第二带宽的配置方式可以有多种。在一些实现方式中,上述第一带宽和第二带宽可以对应独立的带宽配置。也即是说,网络设备可以分别激活第一带宽和第二带宽。参见图16,若BW0和BW1采用独立的带宽配置,相应地,在时间单元t1内,网络设备可以激活BW1。
在另一些实现方式中,上述第一带宽和第二带宽可以对应非独立的带宽配置。也即是说,网络设备在某一时刻激活的是包括第一带宽和第二带宽的带宽组合。参见图16,若BW0和BW1采用非独立的 带宽配置,相应地,在时间单元t1内,网络设备可以激活包含BW0和BW1的频带组合。
在一些实现方式中,第二带宽的大小和/或第二带宽的持续时间是可配的。例如,网络设备可以基于小区的统计信息,对第二带宽的大小和/或第二带宽的持续时间进行配置。其中,小区的统计信息包括小区中终端设备的数量、小区吞吐量、小区内业务的传输需求等。当然,在本申请实施例中,第二带宽的大小还可以预定义的多个带宽中选择的,第二带宽的持续时间也可以是预定义的多个持续时间中选择的。
在另一些实现方式中,第二带宽可以是周期性配置,相应地,网络设备可以告知小区内的终端设备第二带宽的配置周期。例如,通过广播消息、RRC信令等消息告知。当然,第二带宽也可以是非周期性配置,相应地,网络设备动态调度终端设备第二带宽的激活时间。
众所周知,降低网络设备的发射功率可以降低网络设备的功耗。然而,网络设备的发射功率对小区的下行覆盖范围影响较大。通常,降低网络设备的发射功率将直接降低小区的下行覆盖。参见图20所示,假设网络设备以发射功率1进行下行发射时,网络设备的覆盖范围为2010,当网络设备的发射功率从发射功率1降低到发射功率2时,网络设备的覆盖范围可能从覆盖范围2010缩小到覆盖范围2020。而覆盖范围的缩减可能导致网络的不连续覆盖,当终端设备位于覆盖范围2010中除覆盖范围2020之外的区域时,网络设备无法与该终端设备通信,导致终端设备处于无服务状态。
因此,为了减少降低网设备的发射功率对覆盖范围的影响,在本申请实施例中,发射功率具有匹配的配置参数,或者说,发射功率可以对应配置参数,该配置参数用于指示网络设备可配置的下行带宽和/或下行调制方式。
上述发射功率可以是网络设备的覆盖范围对应的发射功率,上述发射功率还可以是网络设备的最大发射功率,本申请实施例对此不作限定。
上述可配置的下行带宽例如可以是最大可配置下行带宽。当然,上述可配置的下行带宽还可以是可配置的某一种下行带宽,本申请实施例对此不作限定。
上述可配置的下行调制方式例如可以是最复杂可配置下行调制方式。当然,上述可配置的下行调制方式还可以是可配置的某一种下行调制方式,本申请实施例对此不作限定。
在一些实现方式中,上述下行调制方式可以包括16正交幅度调制(16quadrature amplitude modulation,16QAM)、四相相移键控(quadrature reference phase shift keying,QPSK),交错正交四相相移键控、四相相对相移键控、高斯滤波最小频移键控(gaussian filtered minimum shift keying,GMSK)、最小频移键控(minimum shift keying,MSK)等。
在一些实现方式中,若网络设备的配置可以与网络设备下行发射功率关联,那么网络设备的配置包括一个或多个下行发射功率配置,下行发射功率配置用于指示网络设备的下行发射功率与配置参数的映射关系。
需要说明的是,本申请实施例,对网络设备的下行发射功率与配置参数的映射关系不作限定。例如,下行发射功率与配置参数的映射关系可以一一对应的关系。又例如,下行发射功率与配置参数的映射关系可以一对多的关系。
以配置参数包括下行带宽为例,当对于较低的发射功率,可以匹配较少的带宽,这样,可以将发射功率集中在较小的频域资源上,相应地,当对于较高的发射功率,可以匹配较大的带宽,如此,有助于使得在使用不同的发射功率的情况下,单位频域资源上发射的功率密度相似或相同,如此,便有助于实现网络设备在使用不同的发射功率的情况下的覆盖范围相同。
也即是说,上述下行发射功率配置包括第一下行发射功率配置和第二下行发射功率配置,第一下行功率配置用于指示第一下行发射功率与第一配置参数的映射关系,第二下行发射功率配置用于指示第二下行发射功率与第二配置参数的映射关系,第一下行发射功率小于第二下行发射功率,且第一配置参数指示的下行带宽小于第二配置参数指示的下行带宽。
以配置参数包括下行调制方式为例,若下行调制方式的复杂度较低,终端设备接收信号的解调门限较低,这种情况下,终端设备通常对信号强度较低的信号进行解调,便可以解调成功。若下行调制方式的复杂度较高,终端设备接收信号的解调门限较高,这种情况下,终端设备通常要对信号强度较高的信号进行解调,才能解调成功。
如此,为了有助于实现网络设备以不同的发射功率工作时,能够得到相同或相似的覆盖范围,可以将较高的发射功率对应较复杂的下行调制方式,可以将较低的发射功率对应较简单的下行调制方式。也即是说,上述第一配置参数指示的下行调制方式的复杂度小于第二配置参数指示的下行调制方式的复杂度。
为了便于理解,下文结合表2介绍本申请实施例中的下行发射功率配置。
表2
Figure PCTCN2022107960-appb-000001
参见表2,在下行发射功率配置1中,网络设备的最大发射功率为30dbm时,网络设备的最大可配置下行带宽为200MHz,网络设备的最复杂可配置下行调制方式为16QAM。在下行发射功率配置2中,网络设备的最大发射功率为27dbm时,网络设备的最大可配置下行带宽为100MHz,网络设备的最复杂可配置下行调制方式为16QAM。在下行发射功率配置3中,网络设备的最大发射功率为27dbm时,网络设备的最大可配置下行带宽为200MHz,网络设备的最复杂可配置下行调制方式为QPSK。在下行发射功率配置4中,网络设备的最大发射功率为10dbm时,网络设备的最大可配置下行带宽为50MHz,网络设备的最复杂可配置下行调制方式为QPSK。
需要说明的是,若配置参数包括最大可配置下行带宽以及最复杂可配置下行调制方式时,可以仅调整上述两个参数中的一个。例如,参见表2第一行与第二行所示的下行发射功率配置,当网络设备的最大发射功率从30dBM调整为27dBm后,可以仅调整网络设备的最大可配置下行带宽,最复杂可配置下行调制方式保持不变。又例如,参见表2第一行与第三行所示的下行发射功率配置,当网络设备的最大发射功率从30dBM调整为27dBm后,可以仅调整网络设备的最复杂可配置下行调制方式,最大可配置下行带宽保持不变。这种映射方式有助于实现网络设备以不同的发射功率工作时保持网络设备的覆盖范围相同或相似。
为了便于理解,下文结合上文中介绍的预设条件,以表2所示的下行发射功率配置为例,介绍网络设备的下行发射功率配置的调整方法。
以预设条件包括网络设备的覆盖范围内的终端设备的数量小于第一阈值为例,参见表2,假设网络设备基于下行发射功率配置1工作,当网络设备监测到覆盖范围内的终端设备的数量小于第一阈值时,网络设备可以从下行发射功率配置1切换到下行发射功率配置2,可以基于下行发射功率配置2工作,以降低网络设备的功耗。然后,当网络设备监测到覆盖范围内的终端设备的数量大于或等于第一阈值时,网络设备可以从下行发射功率配置2切换回下行发射功率配置1,并基于下行发射功率配置1指示的参数工作,以降低业务传输的时延。
需要说明的是,基于上文的介绍可知,下行发射功率配置1和下行发射功率配置2可以对应一个相同的阈值(第一阈值)。当然,在本申请实施例中,不同的下行发射功率配置可以对应不同的阈值,本申请实施例对此不作限定。
以预设条件包括网络设备的覆盖范围内的吞吐量小于第二阈值为例,参见表2,假设网络设备基于下行发射功率配置1工作,当网络设备监测到覆盖范围内的吞吐量小于第二阈值时,网络设备可以从下行发射功率配置1切换到下行发射功率配置3,可以基于下行发射功率配置3工作,以降低网络设备的功耗。然后,当网络设备监测到覆盖范围内的吞吐量大于或等于第二阈值时,网络设备可以从下行发射功率配置3切换回下行发射功率配置1,并基于下行发射功率配置1指示的参数工作,以降低业务传输的时延。
需要说明的是,基于上文的介绍可知,下行发射功率配置1和下行发射功率配置3可以对应一个相同的阈值(第二阈值)。当然,在本申请实施例中,不同的下行发射功率配置可以对应不同的阈值,本申请实施例对此不作限定。
上文结合图1至图20,详细描述了本申请的方法实施例,下面结合图21至图23,详细描述本申请的装置实施例。应理解,方法实施例的描述与装置实施例的描述相互对应,因此,未详细描述的部分可以参见前面方法实施例。
图21是本申请实施例的网络设备的示意图。图21所示的网络设备2100包括处理单元2110。
如果预设条件满足,则处理单元2110用于调整所述网络设备的配置,其中,所述网络设备的配置包括对应不同功耗的多种配置。
在一种可能的实现方式中,所述网络设备的配置与所述网络设备的以下信息中的一种或多种关联:发射时间、接收时间、下行发射功率、下行带宽以及下行调制方式。
在一种可能的实现方式中,所述网络设备的配置包括第一时间配置,所述第一时间配置用于指示以下信息中的一种或多种:所述网络设备在下行发射时间内进行非连续发射;所述网络设备在上行接收时 间内进行非连续接收。
在一种可能的实现方式中,针对频分双工FDD,所述第一时间配置用于指示以下信息中的一种或多种:所述网络设备在第一下行发射频段进行非连续发射;和/或,所述网络设备在第一上行接收频段进行非连续接收。
在一种可能的实现方式中,针对时分双工TDD,所述第一时间配置用于指示以下信息中的一种或多种:所述网络设备在一个或多个下行时间单元内处于非发射状态;所述网络设备在一个或多个上行时间单元内处于非接收状态。
在一种可能的实现方式中,所述第一时间配置包括第一发射时间配置和第一接收时间配置,所述第一发射时间配置指示的发射时间与所述第一接收时间配置指示的接收时间部分或全部重叠;和/或所述第一发射时间配置指示的发射时长小于或等于所述第一接收时间配置指示的接收时长。
在一种可能的实现方式中,所述第一时间配置属于所述网络设备的多个时间配置,所述多个时间配置指示的时间周期和/或所述网络设备的工作时长不同。
在一种可能的实现方式中,所述网络设备还包括:第一接收单元,用于接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备从所述多个时间配置中选择的时间配置;所述处理单元,用于基于所述选择的时间配置,确定所述第一时间配置。
在一种可能的实现方式中,所述第一时间配置包括相邻的第一发射时间和第二发射时间,所述网络设备还包括:第二接收单元,用于接收终端设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一发射时间和所述第二发射时间之间配置用于处理紧急业务的第三发射时间。
在一种可能的实现方式中,所述第二指示信息包括所述紧急业务的以下信息中的一种或多种:起始时间,结束时间,持续时间,以及周期。
在一种可能的实现方式中,用于传输所述紧急业务的资源基于预配置或所述网络设备的指示确定。
在一种可能的实现方式中,所述第一时间配置与所述网络设备的第一带宽对应,所述网络设备还包括第二带宽,所述第二带宽对应第二时间配置,所述第二时间配置用于指示以下中的一种或多种:所述网络设备在下行发射时间内进行连续发射;所述网络设备在上行接收时间内进行连续接收。
在一种可能的实现方式中,所述第一带宽大于所述第二带宽。
在一种可能的实现方式中,所述第一带宽包括多种带宽,所述第一时间配置包括第一发射时间和第二发射时间,所述第一发射时间和所述第二发射时间对应所述多种带宽中的不同带宽。
在一种可能的实现方式中,所述第二带宽对应所述网络设备的覆盖范围内的全部终端设备,所述第一带宽对应所述网络设备的覆盖范围内的部分终端设备。
在一种可能的实现方式中,所述网络设备的配置包括一个或多个下行发射功率配置,所述下行发射功率配置用于指示所述网络设备的下行发射功率与配置参数的映射关系,所述配置参数用于指示所述网络设备可配置的下行带宽和/或下行调制方式。
在一种可能的实现方式中,所述一个或多个下行发射功率配置包括第一下行发射功率配置和第二下行发射功率配置,所述第一下行功率配置用于指示第一下行发射功率与第一配置参数的映射关系,所述第二下行发射功率配置用于指示第二下行发射功率与第二配置参数的映射关系,所述第一下行发射功率小于所述第二下行发射功率;所述第一配置参数指示的下行带宽小于所述第二配置参数指示的下行带宽;和/或,所述第一配置参数指示的下行调制方式的复杂度小于所述第二配置参数指示的下行调制方式的复杂度。
在一种可能的实现方式中,所述预设条件包括以下一种或多种:所述网络设备的覆盖范围内的终端设备的数量小于第一阈值;所述网络设备的覆盖范围内的吞吐量小于第二阈值。
图22是本申请实施例的终端设备的示意图。图22所示的终端设备2200包括发送单元2210。
发送单元2210,用于向网络设备发送指示信息,所述指示信息用于指示所述网络设备调整所述网络设备的配置,其中,所述网络设备的配置包括对应不同功耗的多种配置。
在一种可能的实现方式中,所述网络设备的配置与所述网络设备的以下信息中的一种或多种关联:发射时间、接收时间、下行发射功率、下行带宽以及下行调制方式。
在一种可能的实现方式中,所述网络设备的配置包括第一时间配置,所述第一时间配置用于指示以下信息中的一种或多种:所述网络设备在下行发射时间内进行非连续发射;所述网络设备在上行接收时间内进行非连续接收。
在一种可能的实现方式中,针对频分双工FDD,所述第一时间配置用于指示以下信息中的一种或多种:所述网络设备在第一下行发射频段进行非连续发射;和/或,所述网络设备在第一上行接收频段进行非连续接收。
在一种可能的实现方式中,针对时分双工TDD,所述第一时间配置用于指示以下信息中的一种或 多种:所述网络设备在一个或多个下行时间单元内处于非发射状态;所述网络设备在一个或多个上行时间单元内处于非接收状态。
在一种可能的实现方式中,所述第一时间配置包括第一发射时间配置和第一接收时间配置,所述第一发射时间配置指示的发射时间与所述第一接收时间配置指示的接收时间部分或全部重叠;和/或所述第一发射时间配置指示的发射时长小于或等于所述第一接收时间配置指示的接收时长。
在一种可能的实现方式中,所述第一时间配置属于所述网络设备的多个时间配置,所述多个时间配置指示的时间周期和/或所述网络设备的工作时长不同。
在一种可能的实现方式中,所述终端设备还包括:处理单元,用于从所述多个时间配置中选择时间配置;所述发送单元,还用于向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述时间配置,所述时间配置用于确定所述第一时间配置。
在一种可能的实现方式中,所述第一时间配置包括相邻的第一发射时间和第二发射时间,所述发送单元,还用于发送第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一发射时间和所述第二发射时间之间配置用于处理紧急业务的第三发射时间。
在一种可能的实现方式中,所述第二指示信息包括所述紧急业务的以下信息中的一种或多种:起始时间,结束时间,持续时间,以及周期。
在一种可能的实现方式中,用于传输所述紧急业务的资源基于预配置或所述网络设备的指示确定。
在一种可能的实现方式中,所述第一时间配置与所述网络设备的第一带宽对应,所述网络设备还包括第二带宽,所述第二带宽对应第二时间配置,所述第二时间配置用于指示以下中的一种或多种:所述网络设备在下行发射时间内进行连续发射;所述网络设备在上行接收时间内进行连续接收。
在一种可能的实现方式中,所述第一带宽大于所述第二带宽。
在一种可能的实现方式中,所述第一带宽包括多种带宽,所述第一时间配置包括第一发射时间和第二发射时间,所述第一发射时间和所述第二发射时间对应所述多种带宽中的不同带宽。
在一种可能的实现方式中,所述第二带宽对应所述网络设备的覆盖范围内的全部终端设备,所述第一带宽对应所述网络设备的覆盖范围内的部分终端设备。
在一种可能的实现方式中,所述网络设备的配置包括一个或多个下行发射功率配置,所述下行发射功率配置用于指示所述网络设备的下行发射功率与配置参数的映射关系,所述配置参数用于指示所述网络设备可配置的下行带宽和/或下行调制方式。
在一种可能的实现方式中,所述一个或多个下行发射功率配置包括第一下行发射功率配置和第二下行发射功率配置,所述第一下行功率配置用于指示第一下行发射功率与第一配置参数的映射关系,所述第二下行发射功率配置用于指示第二下行发射功率与第二配置参数的映射关系,所述第一下行发射功率小于所述第二下行发射功率;所述第一配置参数指示的下行带宽小于所述第二配置参数指示的下行带宽;和/或,所述第一配置参数指示的下行调制方式的复杂度小于所述第二配置参数指示的下行调制方式的复杂度。
在可选的实施例中,所述处理单元2110可以为处理器2310。网络设备2100还可以包括收发器2330和存储器2320,具体如图23所示。
在可选的实施例中,所述发送单元2210可以为收发机2330。终端设备900还可以包括收发器2330和存储器2320,具体如图23所示。
图23是本申请实施例的通信装置的示意性结构图。图23中的虚线表示该单元或模块为可选的。该装置2300可用于实现上述方法实施例中描述的方法。装置2300可以是芯片、终端设备或网络设备。
装置2300可以包括一个或多个处理器2310。该处理器2310可支持装置2300实现前文方法实施例所描述的方法。该处理器2310可以是通用处理器或者专用处理器。例如,该处理器可以为中央处理单元(central processing unit,CPU)。或者,该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
装置2300还可以包括一个或多个存储器2320。存储器2320上存储有程序,该程序可以被处理器2310执行,使得处理器2310执行前文方法实施例所描述的方法。存储器2320可以独立于处理器2310也可以集成在处理器2310中。
装置2300还可以包括收发器2330。处理器2310可以通过收发器2330与其他设备或芯片进行通信。例如,处理器2310可以通过收发器2330与其他设备或芯片进行数据收发。
本申请实施例还提供一种计算机可读存储介质,用于存储程序。该计算机可读存储介质可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网 络设备执行的方法。
本申请实施例还提供一种计算机程序产品。该计算机程序产品包括程序。该计算机程序产品可应用于本申请实施例提供的终端或网络设备中,并且该程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
本申请实施例还提供一种计算机程序。该计算机程序可应用于本申请实施例提供的终端或网络设备中,并且该计算机程序使得计算机执行本申请各个实施例中的由终端或网络设备执行的方法。
应理解,本申请中的时间单元可以包括时隙、符号、子帧、帧等,本申请实施例对此不作限定。
另外,本申请中术语“系统”和“网络”可以被可互换使用。另外,本申请使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。本申请的说明书和权利要求书及所述附图中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本申请的实施例中,提到的“指示”可以是直接指示,也可以是间接指示,还可以是表示具有关联关系。举例说明,A指示B,可以表示A直接指示B,例如B可以通过A获取;也可以表示A间接指示B,例如A指示C,B可以通过C获取;还可以表示A和B之间具有关联关系。
在本申请实施例中,“与A相应的B”表示B与A相关联,根据A可以确定B。但还应理解,根据A确定B并不意味着仅仅根据A确定B,还可以根据A和/或其它信息确定B。
在本申请实施例中,术语“对应”可表示两者之间具有直接对应或间接对应的关系,也可以表示两者之间具有关联关系,也可以是指示与被指示、配置与被配置等关系。
本申请实施例中,“预定义”或“预配置”可以通过在设备(例如,包括终端设备和网络设备)中预先保存相应的代码、表格或其他可用于指示相关信息的方式来实现,本申请对于其具体的实现方式不做限定。比如预定义可以是指协议中定义的。
本申请实施例中,所述“协议”可以指通信领域的标准协议,例如可以包括LTE协议、NR协议以及应用于未来的通信系统中的相关协议,本申请对此不做限定。
本申请实施例中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够读取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,数字通用光盘(digital video disc,DVD))或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (77)

  1. 一种用于无线通信的方法,其特征在于,包括:
    如果预设条件满足,则网络设备调整所述网络设备的配置,其中,所述网络设备的配置包括对应不同功耗的多种配置。
  2. 根据权利要求1所述的方法,其特征在于,所述网络设备的配置与所述网络设备的以下信息中的一种或多种关联:发射时间、接收时间、下行发射功率、下行带宽以及下行调制方式。
  3. 根据权利要求2所述的方法,其特征在于,所述网络设备的配置包括第一时间配置,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在下行发射时间内进行非连续发射;
    所述网络设备在上行接收时间内进行非连续接收。
  4. 根据权利要求3所述的方法,其特征在于,针对频分双工FDD,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在第一下行发射频段进行非连续发射;和/或,
    所述网络设备在第一上行接收频段进行非连续接收。
  5. 根据权利要求3所述的方法,其特征在于,针对时分双工TDD,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在一个或多个下行时间单元内处于非发射状态;
    所述网络设备在一个或多个上行时间单元内处于非接收状态。
  6. 根据权利要求3-5中任一项所述的方法,其特征在于,所述第一时间配置包括第一发射时间配置和第一接收时间配置,
    所述第一发射时间配置指示的发射时间与所述第一接收时间配置指示的接收时间部分或全部重叠;和/或
    所述第一发射时间配置指示的发射时长小于或等于所述第一接收时间配置指示的接收时长。
  7. 根据权利要求3-6中任一项所述的方法,其特征在于,所述第一时间配置属于所述网络设备的多个时间配置,所述多个时间配置指示的时间周期和/或所述网络设备的工作时长不同。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:
    所述网络设备接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备从所述多个时间配置中选择的时间配置;
    所述网络设备基于所述选择的时间配置,确定所述第一时间配置。
  9. 根据权利要求3-8中任一项所述的方法,其特征在于,所述第一时间配置包括相邻的第一发射时间和第二发射时间,
    所述方法还包括:
    所述网络设备接收终端设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一发射时间和所述第二发射时间之间配置用于处理紧急业务的第三发射时间。
  10. 根据权利要求9所述的方法,其特征在于,所述第二指示信息包括所述紧急业务的以下信息中的一种或多种:起始时间,结束时间,持续时间,以及周期。
  11. 根据权利要求9或10所述的方法,其特征在于,用于传输所述紧急业务的资源基于预配置或所述网络设备的指示确定。
  12. 根据权利要求3-11中任一项所述的方法,其特征在于,所述第一时间配置与所述网络设备的第一带宽对应,所述网络设备还包括第二带宽,所述第二带宽对应第二时间配置,所述第二时间配置用于指示以下中的一种或多种:
    所述网络设备在下行发射时间内进行连续发射;
    所述网络设备在上行接收时间内进行连续接收。
  13. 根据权利要求12所述的方法,其特征在于,所述第一带宽大于所述第二带宽。
  14. 根据权利要求12或13所述的方法,其特征在于,所述第一带宽包括多种带宽,所述第一时间配置包括第一发射时间和第二发射时间,所述第一发射时间和所述第二发射时间对应所述多种带宽中的不同带宽。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述第二带宽对应所述网络设备的覆盖范围内的全部终端设备,所述第一带宽对应所述网络设备的覆盖范围内的部分终端设备。
  16. 根据权利要求2所述的方法,其特征在于,其特征在于,所述网络设备的配置包括一个或多个下行发射功率配置,所述下行发射功率配置用于指示所述网络设备的下行发射功率与配置参数的映射关系,所述配置参数用于指示所述网络设备可配置的下行带宽和/或下行调制方式。
  17. 根据权利要求16所述的方法,其特征在于,所述一个或多个下行发射功率配置包括第一下行发射功率配置和第二下行发射功率配置,所述第一下行功率配置用于指示第一下行发射功率与第一配置参数的映射关系,所述第二下行发射功率配置用于指示第二下行发射功率与第二配置参数的映射关系,所述第一下行发射功率小于所述第二下行发射功率;
    所述第一配置参数指示的下行带宽小于所述第二配置参数指示的下行带宽;和/或,所述第一配置参数指示的下行调制方式的复杂度小于所述第二配置参数指示的下行调制方式的复杂度。
  18. 根据权利要求1-17中任一项所述的方法,其特征在于,所述预设条件包括以下一种或多种:
    所述网络设备的覆盖范围内的终端设备的数量小于第一阈值;
    所述网络设备的覆盖范围内的吞吐量小于第二阈值。
  19. 一种用于无线通信的方法,其特征在于,包括:
    终端设备向网络设备发送指示信息,所述指示信息用于指示所述网络设备调整所述网络设备的配置,其中,所述网络设备的配置包括对应不同功耗的多种配置。
  20. 根据权利要求19所述的方法,其特征在于,所述网络设备的配置与所述网络设备的以下信息中的一种或多种关联:发射时间、接收时间、下行发射功率、下行带宽以及下行调制方式。
  21. 根据权利要求20所述的方法,其特征在于,所述网络设备的配置包括第一时间配置,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在下行发射时间内进行非连续发射;
    所述网络设备在上行接收时间内进行非连续接收。
  22. 根据权利要求21所述的方法,其特征在于,针对频分双工FDD,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在第一下行发射频段进行非连续发射;和/或,
    所述网络设备在第一上行接收频段进行非连续接收。
  23. 根据权利要求21所述的方法,其特征在于,针对时分双工TDD,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在一个或多个下行时间单元内处于非发射状态;
    所述网络设备在一个或多个上行时间单元内处于非接收状态。
  24. 根据权利要求21-23中任一项所述的方法,其特征在于,所述第一时间配置包括第一发射时间配置和第一接收时间配置,
    所述第一发射时间配置指示的发射时间与所述第一接收时间配置指示的接收时间部分或全部重叠;和/或
    所述第一发射时间配置指示的发射时长小于或等于所述第一接收时间配置指示的接收时长。
  25. 根据权利要求21-24中任一项所述的方法,其特征在于,所述第一时间配置属于所述网络设备的多个时间配置,所述多个时间配置指示的时间周期和/或所述网络设备的工作时长不同。
  26. 根据权利要求25所述的方法,其特征在于,所述方法还包括:
    所述终端设备从所述多个时间配置中选择时间配置;
    所述终端设备向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述时间配置,所述时间配置用于确定所述第一时间配置。
  27. 根据权利要求21-26中任一项所述的方法,其特征在于,所述第一时间配置包括相邻的第一发射时间和第二发射时间,所述方法还包括:
    终端设备向所述网络设备发送第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一发射时间和所述第二发射时间之间配置用于处理紧急业务的第三发射时间。
  28. 根据权利要求27所述的方法,其特征在于,所述第二指示信息包括所述紧急业务的以下信息中的一种或多种:起始时间,结束时间,持续时间,以及周期。
  29. 根据权利要求27或28所述的方法,其特征在于,用于传输所述紧急业务的资源基于预配置或所述网络设备的指示确定。
  30. 根据权利要求21-29中任一项所述的方法,其特征在于,所述第一时间配置与所述网络设备的第一带宽对应,所述网络设备还包括第二带宽,所述第二带宽对应第二时间配置,所述第二时间配置用于指示以下中的一种或多种:
    所述网络设备在下行发射时间内进行连续发射;
    所述网络设备在上行接收时间内进行连续接收。
  31. 根据权利要求30所述的方法,其特征在于,所述第一带宽大于所述第二带宽。
  32. 根据权利要求30或31所述的方法,其特征在于,所述第一带宽包括多种带宽,所述第一时间 配置包括第一发射时间和第二发射时间,所述第一发射时间和所述第二发射时间对应所述多种带宽中的不同带宽。
  33. 根据权利要求30-32中任一项所述的方法,其特征在于,所述第二带宽对应所述网络设备的覆盖范围内的全部终端设备,所述第一带宽对应所述网络设备的覆盖范围内的部分终端设备。
  34. 根据权利要求20所述的方法,其特征在于,其特征在于,所述网络设备的配置包括一个或多个下行发射功率配置,所述下行发射功率配置用于指示所述网络设备的下行发射功率与配置参数的映射关系,所述配置参数用于指示所述网络设备可配置的下行带宽和/或下行调制方式。
  35. 根据权利要求34所述的方法,其特征在于,所述一个或多个下行发射功率配置包括第一下行发射功率配置和第二下行发射功率配置,所述第一下行功率配置用于指示第一下行发射功率与第一配置参数的映射关系,所述第二下行发射功率配置用于指示第二下行发射功率与第二配置参数的映射关系,所述第一下行发射功率小于所述第二下行发射功率;
    所述第一配置参数指示的下行带宽小于所述第二配置参数指示的下行带宽;和/或,所述第一配置参数指示的下行调制方式的复杂度小于所述第二配置参数指示的下行调制方式的复杂度。
  36. 一种网络设备,其特征在于,包括:
    如果预设条件满足,则处理单元用于调整所述网络设备的配置,其中,所述网络设备的配置包括对应不同功耗的多种配置。
  37. 根据权利要求36所述的网络设备,其特征在于,所述网络设备的配置与所述网络设备的以下信息中的一种或多种关联:发射时间、接收时间、下行发射功率、下行带宽以及下行调制方式。
  38. 根据权利要求37所述的网络设备,其特征在于,所述网络设备的配置包括第一时间配置,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在下行发射时间内进行非连续发射;
    所述网络设备在上行接收时间内进行非连续接收。
  39. 根据权利要求38所述的网络设备,其特征在于,针对频分双工FDD,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在第一下行发射频段进行非连续发射;和/或,
    所述网络设备在第一上行接收频段进行非连续接收。
  40. 根据权利要求38所述的网络设备,其特征在于,针对时分双工TDD,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在一个或多个下行时间单元内处于非发射状态;
    所述网络设备在一个或多个上行时间单元内处于非接收状态。
  41. 根据权利要求38-40中任一项所述的网络设备,其特征在于,所述第一时间配置包括第一发射时间配置和第一接收时间配置,
    所述第一发射时间配置指示的发射时间与所述第一接收时间配置指示的接收时间部分或全部重叠;和/或
    所述第一发射时间配置指示的发射时长小于或等于所述第一接收时间配置指示的接收时长。
  42. 根据权利要求38-41中任一项所述的网络设备,其特征在于,所述第一时间配置属于所述网络设备的多个时间配置,所述多个时间配置指示的时间周期和/或所述网络设备的工作时长不同。
  43. 根据权利要求42所述的网络设备,其特征在于,所述网络设备还包括:
    第一接收单元,用于接收终端设备发送的第一指示信息,所述第一指示信息用于指示所述终端设备从所述多个时间配置中选择的时间配置;
    所述处理单元,用于基于所述选择的时间配置,确定所述第一时间配置。
  44. 根据权利要求38-43中任一项所述的网络设备,其特征在于,所述第一时间配置包括相邻的第一发射时间和第二发射时间,所述网络设备还包括:
    第二接收单元,用于接收终端设备发送的第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一发射时间和所述第二发射时间之间配置用于处理紧急业务的第三发射时间。
  45. 根据权利要求44所述的网络设备,其特征在于,所述第二指示信息包括所述紧急业务的以下信息中的一种或多种:起始时间,结束时间,持续时间,以及周期。
  46. 根据权利要求44或45所述的网络设备,其特征在于,用于传输所述紧急业务的资源基于预配置或所述网络设备的指示确定。
  47. 根据权利要求38-46中任一项所述的网络设备,其特征在于,所述第一时间配置与所述网络设备的第一带宽对应,所述网络设备还包括第二带宽,所述第二带宽对应第二时间配置,所述第二时间配置用于指示以下中的一种或多种:
    所述网络设备在下行发射时间内进行连续发射;
    所述网络设备在上行接收时间内进行连续接收。
  48. 根据权利要求47所述的网络设备,其特征在于,所述第一带宽大于所述第二带宽。
  49. 根据权利要求47或48所述的网络设备,其特征在于,所述第一带宽包括多种带宽,所述第一时间配置包括第一发射时间和第二发射时间,所述第一发射时间和所述第二发射时间对应所述多种带宽中的不同带宽。
  50. 根据权利要求47-49中任一项所述的网络设备,其特征在于,所述第二带宽对应所述网络设备的覆盖范围内的全部终端设备,所述第一带宽对应所述网络设备的覆盖范围内的部分终端设备。
  51. 根据权利要求37所述的网络设备,其特征在于,所述网络设备的配置包括一个或多个下行发射功率配置,所述下行发射功率配置用于指示所述网络设备的下行发射功率与配置参数的映射关系,所述配置参数用于指示所述网络设备可配置的下行带宽和/或下行调制方式。
  52. 根据权利要求51所述的网络设备,其特征在于,所述一个或多个下行发射功率配置包括第一下行发射功率配置和第二下行发射功率配置,所述第一下行功率配置用于指示第一下行发射功率与第一配置参数的映射关系,所述第二下行发射功率配置用于指示第二下行发射功率与第二配置参数的映射关系,所述第一下行发射功率小于所述第二下行发射功率;
    所述第一配置参数指示的下行带宽小于所述第二配置参数指示的下行带宽;和/或,所述第一配置参数指示的下行调制方式的复杂度小于所述第二配置参数指示的下行调制方式的复杂度。
  53. 根据权利要求36-52中任一项所述的网络设备,其特征在于,所述预设条件包括以下一种或多种:
    所述网络设备的覆盖范围内的终端设备的数量小于第一阈值;
    所述网络设备的覆盖范围内的吞吐量小于第二阈值。
  54. 一种终端设备,其特征在于,包括:
    发送单元,用于向网络设备发送指示信息,所述指示信息用于指示所述网络设备调整所述网络设备的配置,其中,所述网络设备的配置包括对应不同功耗的多种配置。
  55. 根据权利要求54所述的终端设备,其特征在于,所述网络设备的配置与所述网络设备的以下信息中的一种或多种关联:发射时间、接收时间、下行发射功率、下行带宽以及下行调制方式。
  56. 根据权利要求55所述的终端设备,其特征在于,所述网络设备的配置包括第一时间配置,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在下行发射时间内进行非连续发射;
    所述网络设备在上行接收时间内进行非连续接收。
  57. 根据权利要求56所述的终端设备,其特征在于,针对频分双工FDD,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在第一下行发射频段进行非连续发射;和/或,
    所述网络设备在第一上行接收频段进行非连续接收。
  58. 根据权利要求56所述的终端设备,其特征在于,针对时分双工TDD,所述第一时间配置用于指示以下信息中的一种或多种:
    所述网络设备在一个或多个下行时间单元内处于非发射状态;
    所述网络设备在一个或多个上行时间单元内处于非接收状态。
  59. 根据权利要求56-58中任一项所述的终端设备,其特征在于,所述第一时间配置包括第一发射时间配置和第一接收时间配置,
    所述第一发射时间配置指示的发射时间与所述第一接收时间配置指示的接收时间部分或全部重叠;和/或
    所述第一发射时间配置指示的发射时长小于或等于所述第一接收时间配置指示的接收时长。
  60. 根据权利要求56-59中任一项所述的终端设备,其特征在于,所述第一时间配置属于所述网络设备的多个时间配置,所述多个时间配置指示的时间周期和/或所述网络设备的工作时长不同。
  61. 根据权利要求60所述的终端设备,其特征在于,所述终端设备还包括:
    处理单元,用于从所述多个时间配置中选择时间配置;
    所述发送单元,还用于向所述网络设备发送第一指示信息,所述第一指示信息用于指示所述时间配置,所述时间配置用于确定所述第一时间配置。
  62. 根据权利要求56-61中任一项所述的终端设备,其特征在于,所述第一时间配置包括相邻的第一发射时间和第二发射时间,所述发送单元,还用于:
    发送第二指示信息,所述第二指示信息用于指示所述网络设备在所述第一发射时间和所述第二发 射时间之间配置用于处理紧急业务的第三发射时间。
  63. 根据权利要求62所述的终端设备,其特征在于,所述第二指示信息包括所述紧急业务的以下信息中的一种或多种:起始时间,结束时间,持续时间,以及周期。
  64. 根据权利要求62或63所述的终端设备,其特征在于,用于传输所述紧急业务的资源基于预配置或所述网络设备的指示确定。
  65. 根据权利要求56-64中任一项所述的终端设备,其特征在于,所述第一时间配置与所述网络设备的第一带宽对应,所述网络设备还包括第二带宽,所述第二带宽对应第二时间配置,所述第二时间配置用于指示以下中的一种或多种:
    所述网络设备在下行发射时间内进行连续发射;
    所述网络设备在上行接收时间内进行连续接收。
  66. 根据权利要求65所述的终端设备,其特征在于,所述第一带宽大于所述第二带宽。
  67. 根据权利要求65或66所述的终端设备,其特征在于,所述第一带宽包括多种带宽,所述第一时间配置包括第一发射时间和第二发射时间,所述第一发射时间和所述第二发射时间对应所述多种带宽中的不同带宽。
  68. 根据权利要求65-67中任一项所述的终端设备,其特征在于,所述第二带宽对应所述网络设备的覆盖范围内的全部终端设备,所述第一带宽对应所述网络设备的覆盖范围内的部分终端设备。
  69. 根据权利要求55所述的终端设备,其特征在于,所述网络设备的配置包括一个或多个下行发射功率配置,所述下行发射功率配置用于指示所述网络设备的下行发射功率与配置参数的映射关系,所述配置参数用于指示所述网络设备可配置的下行带宽和/或下行调制方式。
  70. 根据权利要求69所述的终端设备,其特征在于,所述一个或多个下行发射功率配置包括第一下行发射功率配置和第二下行发射功率配置,所述第一下行功率配置用于指示第一下行发射功率与第一配置参数的映射关系,所述第二下行发射功率配置用于指示第二下行发射功率与第二配置参数的映射关系,所述第一下行发射功率小于所述第二下行发射功率;
    所述第一配置参数指示的下行带宽小于所述第二配置参数指示的下行带宽;和/或,所述第一配置参数指示的下行调制方式的复杂度小于所述第二配置参数指示的下行调制方式的复杂度。
  71. 一种网络设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述终端执行如权利要求1-18中任一项所述的方法。
  72. 一种终端设备,其特征在于,包括存储器和处理器,所述存储器用于存储程序,所述处理器用于调用所述存储器中的程序,以使所述网络设备执行如权利要求19-35中任一项所述的方法。
  73. 一种装置,其特征在于,包括处理器,用于从存储器中调用程序,以使所述装置执行如权利要求1-35中任一项所述的方法。
  74. 一种芯片,其特征在于,包括处理器,用于从存储器调用程序,使得安装有所述芯片的设备执行如权利要求1-35中任一项所述的方法。
  75. 一种计算机可读存储介质,其特征在于,其上存储有程序,所述程序使得计算机执行如权利要求1-35中任一项所述的方法。
  76. 一种计算机程序产品,其特征在于,包括程序,所述程序使得计算机执行如权利要求1-35中任一项所述的方法。
  77. 一种计算机程序,其特征在于,所述计算机程序使得计算机执行如权利要求1-35中任一项所述的方法。
PCT/CN2022/107960 2022-07-26 2022-07-26 用于无线通信的方法、网络设备及终端设备 WO2024020786A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107960 WO2024020786A1 (zh) 2022-07-26 2022-07-26 用于无线通信的方法、网络设备及终端设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107960 WO2024020786A1 (zh) 2022-07-26 2022-07-26 用于无线通信的方法、网络设备及终端设备

Publications (1)

Publication Number Publication Date
WO2024020786A1 true WO2024020786A1 (zh) 2024-02-01

Family

ID=89704957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107960 WO2024020786A1 (zh) 2022-07-26 2022-07-26 用于无线通信的方法、网络设备及终端设备

Country Status (1)

Country Link
WO (1) WO2024020786A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769921A (zh) * 2011-05-05 2012-11-07 中兴通讯股份有限公司 一种家庭基站的时间控制方法和装置
CN102883419A (zh) * 2012-09-20 2013-01-16 中国联合网络通信集团有限公司 能耗控制方法和基站
CN103222314A (zh) * 2011-08-24 2013-07-24 华为技术有限公司 降低基站系统能耗的方法和装置
CN103428002A (zh) * 2012-05-18 2013-12-04 华为技术有限公司 一种低功耗控制方法及设备
WO2014121512A1 (zh) * 2013-02-08 2014-08-14 华为技术有限公司 无线接入点控制方法及相关设备、系统
CN114173400A (zh) * 2020-09-11 2022-03-11 中国联合网络通信集团有限公司 网络设备的节能方法、装置和设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102769921A (zh) * 2011-05-05 2012-11-07 中兴通讯股份有限公司 一种家庭基站的时间控制方法和装置
CN103222314A (zh) * 2011-08-24 2013-07-24 华为技术有限公司 降低基站系统能耗的方法和装置
CN103428002A (zh) * 2012-05-18 2013-12-04 华为技术有限公司 一种低功耗控制方法及设备
CN102883419A (zh) * 2012-09-20 2013-01-16 中国联合网络通信集团有限公司 能耗控制方法和基站
WO2014121512A1 (zh) * 2013-02-08 2014-08-14 华为技术有限公司 无线接入点控制方法及相关设备、系统
CN114173400A (zh) * 2020-09-11 2022-03-11 中国联合网络通信集团有限公司 网络设备的节能方法、装置和设备

Similar Documents

Publication Publication Date Title
US11452069B2 (en) Communication method and communications device
US10623981B2 (en) Information transmission method, apparatus, and system
WO2019096202A1 (zh) 资源分配的方法和装置
TWI822745B (zh) 監聽pdcch的方法、終端設備和網路設備
WO2019029466A1 (zh) 一种时间配置的方法、网络设备及ue
EP2859763B1 (en) Enhanced power saving optimized configuration handling
WO2024066145A1 (zh) 侧行通信的方法及装置
WO2021047478A1 (zh) 一种通信方法及装置
WO2023125867A1 (zh) 信号传输的方法及装置
WO2023030514A1 (zh) 无线通信方法和通信装置
WO2021160150A1 (zh) Iab网络的复用调度方法和iab节点
US11546116B2 (en) Data transmission method and communications apparatus
WO2023020482A1 (zh) 通信方法与装置、终端和网络设备
WO2024020786A1 (zh) 用于无线通信的方法、网络设备及终端设备
WO2023082356A1 (zh) 无线通信的方法和终端设备
WO2022141629A1 (zh) 资源确定方法、第一终端设备和第二终端设备
CN114270946B (zh) 功率控制方法、装置及设备
WO2023202350A1 (zh) 数据传输的方法和装置
WO2024060187A1 (zh) 用于侧行通信方法以及终端设备
WO2023123073A1 (zh) 通信方法、终端设备及网络设备
WO2023197299A1 (zh) 无线通信的方法及装置
WO2024146319A1 (zh) 侧行功率控制的方法和装置
WO2023174201A1 (zh) 数据传输方法及装置、计算机可读存储介质
WO2024016347A1 (zh) 通信方法及通信装置
EP4346260A1 (en) Communication method and terminal device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952251

Country of ref document: EP

Kind code of ref document: A1