WO2019096202A1 - 资源分配的方法和装置 - Google Patents

资源分配的方法和装置 Download PDF

Info

Publication number
WO2019096202A1
WO2019096202A1 PCT/CN2018/115632 CN2018115632W WO2019096202A1 WO 2019096202 A1 WO2019096202 A1 WO 2019096202A1 CN 2018115632 W CN2018115632 W CN 2018115632W WO 2019096202 A1 WO2019096202 A1 WO 2019096202A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
initial access
uplink
access part
uplink initial
Prior art date
Application number
PCT/CN2018/115632
Other languages
English (en)
French (fr)
Inventor
黄煌
颜矛
高宽栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019096202A1 publication Critical patent/WO2019096202A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of communications, and more particularly to a method and apparatus for resource allocation.
  • the initial access process of the Long Term Evolution (LTE) system includes a random access procedure, and the random access procedure needs to transmit uplink data through the uplink channel.
  • the uplink frequency domain resource of LTE involves an uplink channel bandwidth and an uplink radio frequency channel number (ARFCN).
  • the terminal can determine the center frequency point position of the uplink channel according to the ARFCN, and determine the specific frequency band where the uplink channel is located according to the uplink channel bandwidth. position.
  • the uplink channel bandwidth supports six modes: 6, 15, 25, 50, 75, and 100.
  • the unit is a resource block (RB), and the bandwidth of each RB is 180 kHz.
  • the network device can only configure one of the above six uplink channel bandwidth modes for one cell.
  • the uplink initial access bandwidth of LTE is within the coverage of the uplink channel bandwidth.
  • the uplink channel bandwidth includes multiple uplink initial access part bandwidths, and each uplink initial access part bandwidth may be used for random access.
  • the present application provides a method and apparatus for resource allocation, which can improve random access efficiency.
  • a method for resource allocation comprising: determining, by a network device, a first parameter, where the first parameter is used to determine a number N of uplink initial access part bandwidths and a bandwidth of each uplink initial access part Band bandwidth, where N ⁇ 2, and the N is a positive integer; the network device transmits the first parameter to the terminal device.
  • the network device determines a first parameter, where the first parameter is used to determine a bandwidth of a bandwidth of each uplink initial access part of the plurality of uplink initial access part bandwidths, and sends the first parameter to the terminal device, so that the terminal device is configured according to the The first parameter determines a target initial access part bandwidth in the plurality of uplink initial access part bandwidths, thereby improving random access efficiency.
  • the first parameter includes an uplink channel bandwidth and a bandwidth of a bandwidth of the first uplink initial access part, and the first parameter indicates any one of the N uplink initial access part bandwidths.
  • the bandwidth of the bandwidth of the two uplink initial access part is the same, and the bandwidth of the first uplink initial access part is the uplink initial access part bandwidth of any one of the N uplink initial access part bandwidths.
  • the first parameter includes a bandwidth of a bandwidth of the N and the first uplink initial access part, and the first parameter indicates the bandwidth of the N uplink initial access parts.
  • the bandwidth of the bandwidth of any of the two uplink initial access part bandwidths is the same, wherein the bandwidth of the first uplink initial access part is the uplink initial access part bandwidth of any one of the N uplink initial access part bandwidths.
  • the network device can flexibly set the number of bandwidths of the first uplink initial access part by using the first parameter.
  • the first parameter includes a bandwidth of the N and the bandwidth of each of the uplink initial access portions.
  • the network device can flexibly set the bandwidth of each uplink initial access part bandwidth of the N uplink initial access part bandwidths by using the first parameter, thereby improving the flexibility of configuring the initial uplink access part bandwidth.
  • the method further includes: determining, by the network device, a second parameter, where the second parameter is used to determine a frequency domain start location of each uplink initial access part bandwidth; The network device sends the second parameter to the terminal device.
  • the network device can enable the terminal device to determine a frequency domain start position of each uplink initial access part bandwidth by using the second parameter, thereby determining a frequency domain position of each uplink initial access part bandwidth, and improving the determined uplink initial access part. The reliability of the bandwidth.
  • the second parameter includes a number of reference subcarrier intervals of a frequency domain start position offset of a first uplink initial access part relative to a frequency domain start position offset of an uplink channel bandwidth, and The second parameter indicates that the bandwidth of the N uplink initial access parts is continuous.
  • the network device can indicate another N-1 frequency domain starting positions according to the frequency domain starting position of the first uplink initial access part, thereby avoiding separately indicating the frequency domain starting position of each uplink initial access part, saving the letter. Make the cost.
  • the second parameter includes a frequency domain start position of a first uplink initial access part bandwidth, and the second parameter indicates that the N uplink initial access part bandwidth is continuous .
  • the frequency domain end position of the bandwidth of the first uplink initial access part is the frequency domain start position of the bandwidth of the second uplink initial access part, so that the frequency domain start position of the first uplink initial access part can be determined.
  • An additional N-1 frequency domain start positions are used to avoid indicating the frequency domain start position of each uplink initial access part separately, which saves signaling overhead.
  • the second parameter includes a number of reference subcarrier intervals of a frequency domain start position offset of the uplink initial access part bandwidth and a frequency domain start position offset of the uplink channel bandwidth.
  • the network device avoids the frequency domain start position directly indicating the bandwidth of the uplink initial access part, and may indicate the number of reference subcarrier spacings by offset from the frequency domain start position of a certain uplink channel bandwidth, thereby saving signaling overhead.
  • the second parameter includes a frequency domain start position or an uplink channel number of the bandwidth of each uplink initial access part.
  • the frequency domain position of the N initial uplink access part bandwidth can be flexibly set, which improves the flexibility of indication.
  • the method further includes: the network device sending indication information, where the indication information is used to indicate a frequency domain start location of the first frequency domain resource relative to a bandwidth of the first uplink initial access part The number of reference subcarrier intervals of the frequency domain start location offset, wherein the first uplink initial access part bandwidth is any one of the N uplink initial access part bandwidths.
  • the network device avoids directly indicating the frequency domain start position of the first frequency domain resource, and may indicate the number of reference subcarrier spacings by using an offset from a frequency domain start position of a certain uplink initial access part bandwidth, thereby saving signaling overhead.
  • the method further includes: determining, by the network device, a third parameter, where the third parameter is used to determine a subcarrier spacing of each uplink initial access part bandwidth; Sending the third parameter to the terminal device.
  • the network device configures the subcarrier spacing of each uplink initial access part bandwidth by configuring the bandwidth of the bandwidth of the first uplink initial access part in the foregoing various possible implementation manners, and improves the flexibility of indicating the subcarrier spacing.
  • the third parameter indicates a subcarrier spacing of the bandwidth of each uplink initial access part.
  • the third parameter includes a subcarrier spacing of a first uplink initial access part bandwidth, and the third parameter indicates any two uplinks of the N uplink initial access part bandwidths.
  • the sub-carrier spacing of the initial access part of the bandwidth is the same, wherein the first uplink initial access part bandwidth is the uplink initial access part bandwidth of any one of the N uplink initial access part bandwidths.
  • the subcarrier spacing of the first uplink initial access part bandwidth is a subcarrier spacing of the random access message 1 by the network device, a subcarrier spacing of the random access message 2, and random access.
  • the subcarrier spacing of the message 4 the subcarrier spacing of the uplink control channel corresponding to the random access message 3, the subcarrier spacing of the uplink control channel corresponding to the random access message 4, the subcarrier spacing of the system information block SIB, and the remaining minimum system
  • the network device may determine the subcarrier spacing of the bandwidth of the first uplink initial access part according to the foregoing manners, and improve the flexibility of determining the subcarrier spacing.
  • the third parameter includes multiple index values, and the multiple index values are in one-to-one correspondence with sub-carrier spacings of the N uplink initial access part bandwidths, and the multiple indexes The value is in one-to-one correspondence with multiple reference subcarrier intervals.
  • the network device simultaneously indicates the subcarrier spacing of the uplink initial access part of the bandwidth and the reference subcarrier through an index value, thereby saving signaling overhead.
  • a second aspect provides a method for resource allocation, where the method includes: receiving, by a terminal device, a first parameter, where the first parameter is used to determine a bandwidth of each uplink initial access part in N uplink initial access part bandwidths Band bandwidth, where N ⁇ 2, and the N is a positive integer; the terminal device determines, according to the first parameter, a target uplink initial access part bandwidth in the N uplink initial access part bandwidth, The target uplink initial access part bandwidth is used for random access.
  • the terminal device receives the first parameter, and determines, according to the first parameter, a bandwidth of the target initial access part of the multiple uplink initial access part bandwidths for random access, thereby improving the efficiency of the random access.
  • the terminal device may first determine a frequency domain resource location of each uplink initial access part bandwidth in the N uplink initial access part bandwidth, and then select a target uplink initial access part bandwidth from the multiple uplink initial access part bandwidths, and improve The flexibility of selecting the bandwidth of the target uplink initial access part.
  • the first parameter includes an uplink channel bandwidth and a bandwidth of a bandwidth of the first uplink initial access part, and the first parameter indicates any one of the N uplink initial access part bandwidths.
  • the bandwidth of the bandwidth of the two uplink initial access part is the same, and the bandwidth of the first uplink initial access part is the uplink initial access part bandwidth of any one of the N uplink initial access part bandwidths.
  • the first parameter includes a bandwidth of a bandwidth of the N and the first uplink initial access part, and the first parameter indicates the bandwidth of the N uplink initial access parts.
  • the bandwidth of the bandwidth of any of the two uplink initial access part bandwidths is the same, wherein the bandwidth of the first uplink initial access part is the uplink initial access part bandwidth of any one of the N uplink initial access part bandwidths.
  • the network device can flexibly set the number of bandwidths of the first uplink initial access part by using the first parameter.
  • the first parameter includes a bandwidth of the N and the bandwidth of each of the uplink initial access portions.
  • the network device can flexibly set the bandwidth of each uplink initial access part bandwidth of the N uplink initial access part bandwidths by using the first parameter, thereby improving the flexibility of configuring the initial uplink access part bandwidth.
  • the method further includes: the terminal device receiving a second parameter, where the second parameter is used to determine a frequency domain start position or an uplink channel of each uplink initial access part bandwidth number.
  • the terminal device can determine the frequency domain start position of each uplink initial access part bandwidth according to the second parameter, thereby determining the frequency domain position of each uplink initial access part bandwidth, and improving the reliability of the determined uplink initial access part bandwidth. Sex.
  • the second parameter includes a number of reference subcarrier intervals of a frequency domain start position offset of a first uplink initial access part relative to a frequency domain start position offset of an uplink channel bandwidth, and The second parameter indicates that the bandwidth of the N uplink initial access parts is continuous.
  • the terminal device can determine another N-1 frequency domain starting position according to the frequency domain starting position of the first uplink initial access part, so as to avoid indicating the frequency domain starting position of each uplink initial access part separately, saving the letter. Make the cost.
  • the second parameter includes a frequency domain start position of a first uplink initial access part bandwidth, and the second parameter indicates that the N uplink initial access part bandwidth is continuous .
  • the terminal device can determine another N-1 frequency domain starting position according to the frequency domain starting position of the first uplink initial access part, and avoid indicating the frequency domain starting position of each uplink initial access part separately, saving The signaling overhead.
  • the second parameter includes a number of reference subcarrier intervals of a frequency domain start position offset of the uplink initial access part bandwidth and a frequency domain start position offset of the uplink channel bandwidth.
  • the terminal device determines the frequency domain start position of the bandwidth of each uplink initial access part by using the offset of the reference frequency of the frequency domain start position of the uplink channel bandwidth, and prevents the network device from directly indicating the uplink initial access part.
  • the frequency domain start position of the bandwidth thereby saving signaling overhead.
  • the second parameter includes a frequency domain start position or an uplink channel number of the bandwidth of each uplink initial access part.
  • the frequency domain location of the N initial uplink access part bandwidth can be flexibly set, which improves the flexibility of the network device indication.
  • the method further includes: the terminal device receiving indication information, where the indication information is used to indicate a frequency domain start position of the first frequency domain resource with respect to a bandwidth of the first uplink initial access part The number of reference subcarrier intervals of the frequency domain start location offset, wherein the first uplink initial access part bandwidth is any one of the N uplink initial access part bandwidths.
  • the terminal device may determine a frequency domain start position of the first frequency domain resource by using an offset of the frequency domain start position of the bandwidth of the uplink initial access part, and the network device avoids directly indicating the first frequency domain.
  • the frequency domain start position of the resource saves signaling overhead.
  • a third aspect provides a method for random access, where the method includes: determining, by a terminal device, a target uplink initial access part bandwidth in a plurality of uplink initial access part bandwidths; Enter part of the bandwidth for random access.
  • the multiple uplink initial access part bandwidths are in one-to-one correspondence with the states of the multiple terminal devices, and the terminal device determines a target uplink initial connection in the multiple uplink initial access part bandwidths.
  • the inbound part of the bandwidth includes: determining, by the terminal device, the bandwidth of the target uplink initial access part according to the current state.
  • the multiple uplink initial access part bandwidths are in one-to-one correspondence with multiple threshold ranges of the reference signal received power RSRP, and the terminal device determines the bandwidth of the multiple uplink initial access part bandwidths.
  • the target uplink access part of the bandwidth includes: the terminal device determines the bandwidth of the target uplink initial access part according to the RSRP value of the downlink signal.
  • the multiple uplink initial access part bandwidths are in one-to-one correspondence with multiple threshold ranges of the bit size occupied by the random access message 3, and the terminal device determines the multiple uplink initial connections.
  • the target uplink initial access part bandwidth in the part of the bandwidth includes: the terminal device determines the bandwidth of the target uplink initial access part according to the size of the bit occupied by the random access message 3.
  • the multiple uplink initial access part bandwidths are in one-to-one correspondence with multiple service types
  • the terminal device determines a target uplink initial access part in the multiple uplink initial access part bandwidths.
  • the bandwidth includes: determining, by the terminal device, the bandwidth of the target uplink initial access part according to the current service type.
  • the fourth aspect provides a method for random access, which includes: receiving, by the terminal device, first indication information, where the first indication information is used to indicate that the first frequency domain resource is compared to the uplink initial access part of the bandwidth.
  • the number of the first subcarrier spacing of the frequency domain start position offset ; the terminal device according to the number of the first subcarrier spacing of the offset and the frequency domain starting position of the uplink initial access part bandwidth, Determining a frequency domain location of the first frequency domain resource.
  • the method further includes: the terminal device receiving second indication information, where the second indication information indicates that the uplink initial access part bandwidth is relative to a frequency domain of the uplink channel bandwidth. a number of second subcarrier spacings of the initial position offset; the terminal device determines the uplink initial access according to the number of the offset second subcarrier spacings and the frequency domain starting location of the uplink channel bandwidth The frequency domain start position or the upstream channel number of part of the bandwidth.
  • the number of the first subcarrier intervals of the offset is less than or equal to a preset threshold.
  • the first frequency domain resource is any one of a random access resource, a random access message 3, and a frequency domain resource of an uplink control channel corresponding to the random message 4.
  • the fifth aspect provides a method for random access retransmission, which includes: determining, by the terminal device, a number of failures of sending a random access message 1 on a bandwidth of the first uplink initial access part; When the number of failures is K, the random access message 1 is sent on the bandwidth of the second uplink initial access part, where K is a preset positive integer.
  • the first uplink initial access part bandwidth and the second uplink initial access part bandwidth are different uplink initial access part bandwidths on the same carrier frequency.
  • the first uplink initial access part bandwidth and the second uplink initial access part bandwidth are uplink initial access part bandwidths on different carrier frequencies.
  • the terminal device sends the random access message 1 by using a first parameter on a bandwidth of the first uplink initial access part, the first parameter includes a first beam direction, And transmitting, by the terminal device, the random access message 1 on the bandwidth of the second uplink initial access part, where the terminal device is in the first And transmitting, by the second parameter, the random access message 1 by using a second parameter, where the second parameter includes at least one of a second beam direction, a second downlink synchronization signal block, and a second transmit power.
  • the sending, by the terminal device, the random access message 1 on the bandwidth of the second uplink initial access part, where the terminal device is on the bandwidth of the second uplink initial access part The random access message 1 is sent M times, and M is a preset positive integer.
  • a method for resource allocation wherein the network device determines a first parameter, where the first parameter is used to determine N random access opportunities, where N ⁇ 2, and the N is positive An integer; the network device sends the first parameter to a terminal device.
  • the random access opportunity is used to send a time and frequency resource required for a random access preamble. That is, the network device determines a first parameter, where the first parameter is used to determine each random access opportunity of the multiple random access opportunities, and sends the first parameter to the terminal device, so that the terminal device determines the multiple according to the first parameter. Target random access opportunities in random access opportunities, thereby improving the efficiency of random access.
  • the first parameter includes a random access message corresponding to the target random access opportunity and/or a frequency range of the uplink control channel corresponding to the random access message 4.
  • the network device sends the first parameter and the random access message 2 to the terminal device, and the terminal device determines, according to the first parameter and the received random access message 2, the uplink corresponding to the random access message 3 and/or the random access message 4. Control the frequency position of the channel to improve the efficiency of random access.
  • the network device sends a random access message 2 to the terminal device, and the terminal device determines the random access message 3 and/or random according to the random access message 2 and the frequency domain location of the target random access opportunity. Enter the frequency position of the uplink control channel corresponding to message 4.
  • the first parameter includes a frequency domain start location and/or an uplink channel number of the multiple random access opportunities.
  • the first parameter includes indication information of a frequency range of the uplink access channel corresponding to the random access message 3 and/or the random access message 4 corresponding to the target random access opportunity, and the indication The information is used by the terminal device to determine the frequency position of the uplink control channel corresponding to the random access message 3 and/or the random access message 4 according to the indication information and the random access message 2.
  • a seventh aspect provides a method for resource allocation, the method comprising: receiving, by a terminal device, a first parameter, where the first parameter is used to determine N random access opportunities, where N ⁇ 2, and the N is positive
  • the integer device determines, according to the first parameter, a target random access opportunity in the N random access opportunities, where the target random access opportunity is used for random access.
  • the terminal device receives the first parameter, and determines a target random access opportunity for random access in each of the plurality of random access opportunities according to the first parameter, thereby improving the efficiency of the random access.
  • the terminal device further determines, according to the frequency location of the target random access opportunity, the frequency of the uplink access channel corresponding to the random access message 3 and/or the random access message 4 corresponding to the target random access opportunity. Range, thereby avoiding the need for the terminal to operate in an excessively wide frequency band and reducing signaling overhead and complexity.
  • the terminal device further determines, according to the received random access message 2 and the frequency location of the target random access opportunity, the frequency position of the uplink control channel corresponding to the random access message 3 and/or the random access message 4, thereby improving The efficiency of random access.
  • the first parameter includes a frequency domain start location or an uplink channel number of the multiple random access opportunities.
  • the first parameter includes indication information of a frequency range of the uplink access channel corresponding to the random access message 3 and/or the random access message 4 corresponding to the target random access opportunity
  • the terminal device The frequency position of the uplink control channel corresponding to the random access message 3 and/or the random access message 4 is determined according to the indication information and the random access message 2.
  • a device for resource allocation is provided, and the device may be a network device or a chip in the network device.
  • the device has the functionality to implement the various embodiments of the first or sixth aspect described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the network device comprises: a processing module and a transceiver module
  • the processing module may be, for example, a processor
  • the transceiver module may be, for example, a transceiver
  • the transceiver Includes RF circuitry
  • the network device further includes a storage module, which may be, for example, a memory.
  • the storage module is configured to store a computer execution instruction
  • the processing module is connected to the storage module, and the processing module executes a computer execution instruction stored by the storage module, so that the network device performs the first aspect Or the method of resource allocation according to any of the sixth aspects.
  • the chip when the device is a chip in a network device, the chip includes: a processing module and a transceiver module, and the processing module may be, for example, a processor, and the transceiver module may be, for example, the chip. Input/output interface, pins or circuits, etc.
  • the processing module may execute a computer execution instruction stored by the storage module to cause the chip in the terminal to perform the resource allocation method of any of the first aspect or the sixth aspect.
  • the storage module is a storage module in the chip, such as a register, a cache, etc.
  • the storage module may also be a storage module located outside the chip in the network device, such as a read-only memory ( Read-only memory (ROM) or other types of static storage devices, random access memory (RAM), etc. that can store static information and instructions.
  • ROM Read-only memory
  • RAM random access memory
  • the processor mentioned in any of the above may be a general-purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the above.
  • the application provides a device for resource allocation, and the device may be a terminal device or a chip in the terminal device.
  • the apparatus has the functionality to implement the various embodiments of any of the second, third, fourth, and fifth aspects described above. This function can be implemented in hardware or in hardware by executing the corresponding software.
  • the hardware or software includes one or more units corresponding to the functions described above.
  • the terminal device when the device is a terminal device, the terminal device includes: a processing module and a transceiver module, the processing module may be, for example, a processor, and the transceiver module may be, for example, a transceiver, the transceiver The radio frequency circuit is included.
  • the terminal device further includes a storage module, and the storage module may be, for example, a memory.
  • the storage module is configured to store a computer execution instruction
  • the processing module is connected to the storage module, and the processing module executes a computer execution instruction stored by the storage module, so that the terminal device performs the second aspect
  • the method of resource allocation of any of the third aspect, the fourth aspect, and the fifth aspect are examples of resource allocation of any of the third aspect, the fourth aspect, and the fifth aspect.
  • the chip when the device is a chip in the terminal device, the chip includes: a processing module and a transceiver module, and the processing module may be, for example, a processor, and the transceiver module may be, for example, the chip. Input/output interface, pins or circuits, etc.
  • the processing module may execute computer execution instructions stored by the storage module to cause the chip in the terminal device to perform resource allocation according to any one of the second aspect, the third aspect, the fourth aspect, and the fifth aspect Methods.
  • the storage module is a storage module in the chip, such as a register, a cache, etc., and the storage module may also be a storage module located outside the chip in the terminal device, such as a ROM or may be stored. Static information and instructions for other types of static storage devices, RAM, etc.
  • the processor mentioned in any of the above may be a CPU, a microprocessor, an ASIC, or one or more for controlling any of the above second aspect, the third aspect, the fourth aspect, and the fifth aspect. Aspects of the method of resource allocation are performed by an integrated circuit of a program.
  • a communication system comprising: the apparatus of the above eighth aspect and the apparatus of the above ninth aspect.
  • a computer storage medium storing program code for indicating execution of any of the above first to seventh aspects or any possible implementation thereof The instructions in the method.
  • a computer program product comprising instructions which, when run on a computer, cause the computer to perform the method of any one of the first to seventh aspects above or any possible implementation thereof.
  • the network device determines a first parameter for determining a number N of uplink initial access part bandwidths and a frequency band bandwidth of each uplink initial access part bandwidth, and sends the first parameter to the terminal device, so that the terminal device is configured according to the
  • the first parameter determines a bandwidth of the target initial access part in the bandwidth of the N uplink initial access parts, thereby improving the efficiency of random access.
  • FIG. 1 is a schematic diagram showing an application scenario of the present application
  • FIG. 2 is a schematic flowchart of a method for resource allocation according to an embodiment of the present application
  • FIG. 3 is a schematic diagram showing another method of resource allocation in the present application.
  • FIG. 4 is a schematic diagram showing another method of resource allocation in the present application.
  • FIG. 5 is a schematic flowchart of a method for random access according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram showing a method of random access according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram showing a method of random access according to another embodiment of the present application.
  • FIG. 8 is a schematic diagram showing a method of random access according to still another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of a method for random access according to another embodiment of the present application.
  • FIG. 10 is a schematic diagram showing a method of random access according to still another embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method for random access retransmission according to still another embodiment of the present application.
  • FIG. 12 is a schematic block diagram of an apparatus for resource allocation according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of an apparatus for resource allocation according to an embodiment of the present application.
  • FIG. 14 is a schematic block diagram of an apparatus for resource allocation according to another embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of an apparatus for resource allocation according to another embodiment of the present application.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • the terminal device in the embodiment of the present application may refer to a user equipment, an access terminal, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, a wireless communication device, a user agent, or User device.
  • the terminal device may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the network device in the embodiment of the present application may be a device for communicating with the terminal device, and the network device may be a Global System of Mobile communication (GSM) system or Code Division Multiple Access (CDMA).
  • Base Transceiver Station which may also be a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, or an evolved base station in an LTE system (Evolutional The NodeB, eNB or eNodeB) may also be a wireless controller in a Cloud Radio Access Network (CRAN) scenario, or the network device may be a relay station, an access point, an in-vehicle device, a wearable device, and a future.
  • the network device in the 5G network or the network device in the PLMN network in the future is not limited in this embodiment.
  • FIG. 1 is a schematic diagram of an application scenario of the present application.
  • the communication system of FIG. 1 may include user equipment 10 and network equipment 20.
  • the network device 20 is configured to provide communication services for the user equipment 10 and access the core network.
  • the user equipment 10 accesses the network by searching for synchronization signals, broadcast signals, and the like transmitted by the network device 20, thereby performing communication with the network.
  • the arrows shown in FIG. 1 may represent uplink/downlink transmissions by a cellular link between user equipment 10 and network device 20.
  • the initial access procedure of the LTE system includes a random access procedure, and the random access procedure needs to transmit uplink data through the uplink channel.
  • the terminal In the downlink system information of the frequency division duplexing (FDD) mode of the LTE, including the uplink channel bandwidth and the absolute radio frequency channel number (ARFCN), the terminal can determine the center frequency of the uplink channel according to the ARFCN. The location, together with the uplink channel bandwidth, determines the specific frequency domain resource location where the uplink channel is located.
  • the uplink channel bandwidth supports six modes: 6, 15, 25, 50, 75, and 100.
  • the unit is a resource block (RB), and the bandwidth of each RB is 180 kHz.
  • the network device can only configure one of the above six uplink channel bandwidth modes for one cell.
  • the uplink initial access bandwidth of LTE is within the coverage of the uplink channel bandwidth.
  • Table 1 shows the maximum bandwidth that uplink transmissions in NR may support. Since the maximum bandwidth in the NR is much larger than the bandwidth of the LTE, in order to reduce the signaling overhead during configuration, a bandwidth part (BWP) is introduced in the NR, and part of the bandwidth is a part of the channel bandwidth. In the uplink scenario, the uplink initial access part bandwidth is involved, and the uplink initial access part bandwidth is used for random access of the terminal device.
  • the frequency domain resource location of the uplink channel may also be similar to that of LTE, that is, determined by ARFCH and uplink channel bandwidth.
  • FIG. 2 is a schematic flowchart of a method for resource allocation according to an embodiment of the present application.
  • an uplink channel includes a plurality of uplink initial access part bandwidths.
  • the following embodiments are described by taking one uplink channel as an example, but the application is not limited thereto.
  • the network device determines a first parameter, where the first parameter is used to determine a number N of uplink initial access part bandwidths and a frequency band bandwidth of each uplink initial access part bandwidth, where N ⁇ 2, and the N is positive Integer.
  • the first parameter is used to determine a bandwidth of a bandwidth of each of the uplink initial access part bandwidths of the plurality of uplink initial access part bandwidths.
  • the initial active uplink bandwidth part refers to a frequency band used to transmit the random access message 3 and the uplink control channel corresponding to the random access message 4.
  • random access message 1 (corresponding random access opportunity or frequency resource) is located in the uplink initial access part bandwidth.
  • the first parameter may further include a type of a cyclic prefix, a frame structure configuration index, a random access configuration index, a downlink synchronization block (SS/PBCH Block) information, a downlink synchronization block set period, and a random access configuration period. And at least one of slot format information (SFI) and uplink channel number ARFCN.
  • the frame structure configuration index is used to indicate the number of downlink subframes
  • the random access configuration index is used to indicate the preamble format.
  • the first parameter may indirectly indicate the number of bandwidths of the uplink initial access part, that is, the first parameter may include an uplink channel bandwidth (CBW) and a bandwidth part of the bandwidth of the first uplink initial access part. BWP), and the first parameter indicates that the bandwidth of the bandwidth of the N uplink initial access part bandwidths is the same.
  • the number N is the maximum number of uplink initial access portion bandwidths that the upstream channel bandwidth can include.
  • the bandwidth of the first uplink initial access part is the bandwidth of any uplink initial access part of the bandwidth of the N uplink initial access parts, and the first embodiment is not described unless otherwise specified.
  • the meaning of the bandwidth of the uplink initial access part is the same as the meaning of the bandwidth of the first uplink initial access part.
  • the first parameter may directly indicate the number of bandwidths of the uplink initial access part, that is, the first parameter includes a bandwidth of the bandwidth of the N and the first uplink initial access part, and the first The parameter indicates that the bandwidth of the bandwidth of any two of the uplink initial access part bandwidths of the N uplink initial access part bandwidths is the same.
  • the first parameter indicates that the number N included may not be the maximum value of the uplink initial access portion bandwidth that the uplink channel bandwidth can include.
  • the first parameter may include N and a bandwidth of a bandwidth of each uplink initial access portion.
  • the network device can flexibly set the bandwidth of the bandwidth of each uplink initial access part of the N uplink initial access part bandwidth by using the first parameter.
  • the frequency domain start position of the N uplink initial access part bandwidth may be a frequency domain location agreed by the network device and the terminal device in advance, or may be the same as the start position of the uplink channel bandwidth.
  • the first parameter may further specify a frequency location of the uplink initial access part bandwidth, or specify an uplink channel number ARFCN, determine a frequency location of the uplink initial access part bandwidth according to the ARFCN, or specify a downlink initial access bandwidth and/or
  • the frequency position of the downlink synchronization signal block determines the frequency position of the uplink initial access part bandwidth according to the downlink initial access bandwidth and/or the absolute frequency position of the downlink synchronization signal block (for example, in the time division duplex mode, the downlink initial access bandwidth is The center frequency position is the same as the center frequency position of the upstream initial access portion bandwidth). For example, as shown in Figure 3.
  • At least one of f0, f1, f2, f3, f4, f5, f6, f7, f8 is determined according to the first parameter.
  • f0 is the starting position of the bandwidth of the first uplink initial access part in the uplink channel bandwidth
  • f1 is the middle position of the bandwidth of the first uplink initial access part in the uplink channel bandwidth
  • f2 is the middle of the uplink channel bandwidth End position of an uplink initial access part bandwidth
  • f3 is the starting position of the i-th uplink initial access part bandwidth in the uplink channel bandwidth
  • f4 is the i-th uplink initial access part bandwidth in the uplink channel bandwidth
  • f5 is the end position of the bandwidth of the i-th uplink initial access part in the uplink channel bandwidth, where i is a pre-configured fixed value, for example, N/2-1, or a value specified by the base station configuration
  • f6 is an uplink The starting position of the bandwidth of the Nth uplink initial access part in the channel
  • the relative position of the uplink channel bandwidth and the uplink initial access part bandwidth may be separately notified by the base station, or may not require notification, for example, the relative position is a preset value or is notified by other parameters after the first parameter.
  • the bandwidths of the respective uplink initial access portions in FIG. 3 may overlap or overlap each other.
  • the difference between at least one of the bandwidth, the starting position, and the center position between the overlapping uplink initial access part bandwidths is a preset value, for example, the center position of the uplink initial access part bandwidth is the same; or according to the base station indication Determined; the spacing between each other is determined according to preset and/or rules and/or parameters specified by the base station.
  • bandwidth and/or the sub-carrier spacing of the bandwidth of each uplink initial access part in FIG. 3 may be the same or different.
  • the specific implementation manner may be the manner of any of the foregoing embodiments, and details are not described herein again.
  • the network device may further determine a second parameter, where the second parameter is used to determine a frequency domain start position of each uplink initial access part bandwidth, and the network device sends the second parameter to the terminal device.
  • the second parameter may directly indicate a frequency domain start position of the first uplink initial access part bandwidth, for example, the second parameter includes a frequency domain start position of the first uplink initial access part, and
  • the second parameter indicates that the bandwidth of the N uplink initial access parts is continuous. That is to say, the frequency domain end position of the bandwidth of the first uplink initial access part is the frequency domain start position of the bandwidth of the second uplink initial access part, so that the frequency domain of the first uplink initial access part is used.
  • the starting position can determine another N-1 frequency domain starting positions.
  • the second parameter may indirectly indicate a frequency domain start position of the first uplink initial access part bandwidth, for example, the second parameter includes a frequency domain start position of the first uplink initial access part bandwidth.
  • An offset value of a frequency domain start position of the uplink channel bandwidth, and the second parameter indicates that the bandwidth of the N uplink initial access parts is continuous.
  • the offset value may be offset by the number of reference subcarrier spacings.
  • reference subcarrier spacing may be the same as or different from the subcarrier spacing of the bandwidth of the first uplink initial access part.
  • the second parameter includes a frequency domain start position of each uplink initial access part bandwidth.
  • the frequency domain locations of the N initial uplink access part bandwidths can be flexibly set.
  • the bandwidth of the adjacent uplink initial access part may be directly spaced.
  • the subcarrier spacing of the N uplink initial access part bandwidths is SCS 0 , SCS 1 , . . . , SCS N-1 , and the ith uplink initial access part bandwidth corresponds to the ith subcarrier spacing.
  • the network device may further determine a third parameter, where the third parameter is used to determine a subcarrier spacing of each uplink initial access part bandwidth, and the network device sends the third parameter to the terminal device.
  • the third parameter is N bits, and the subcarrier spacing of the N uplink initial access part bandwidths is indicated in a bitmap manner.
  • the third parameter may directly indicate a subcarrier spacing of each uplink initial access part bandwidth, and may make the subcarrier spacing of different uplink initial access part bandwidths different.
  • the third parameter may also indirectly indicate a subcarrier spacing of each uplink initial access part bandwidth.
  • the third parameter includes any one of the uplink initial access part bandwidths of the N uplink initial access part bandwidths.
  • the subcarrier spacing is the same, and the subcarrier spacing indicating the bandwidth of the N uplink initial access portions is the same.
  • the network device may be configured according to a subcarrier interval of the random access message 1, a subcarrier interval of the random access message 2, a subcarrier interval of the random access message 3, and a subroutine indicating the downlink control channel of the random access message 3.
  • the carrier interval, the subcarrier spacing of the uplink control channel corresponding to the random access message 4, the subcarrier spacing of the first system information block (SIB1), and the remaining minimum system information (RMSI) At least one of a carrier interval, a subcarrier spacing of the synchronization block SS, a subcarrier spacing of a physical broadcast channel PBCH, a subcarrier spacing of a Broadcast Control Channel (BPCH), and a carrier frequency determines a first uplink initial access portion The subcarrier spacing of the bandwidth.
  • the network device may use the subcarrier spacing of the random access message 1 as the subcarrier spacing of the bandwidth of the first uplink initial access part. Or, when the subcarrier spacing of the random access message 1 is less than or equal to a preset threshold, the network device determines the subcarrier spacing of the bandwidth of the first uplink initial access part to be a fixed value. For example, if the subcarrier spacing of the random access message 1 is less than or equal to 15 kHz, the subcarrier spacing of the bandwidth of the first uplink initial access portion is fixed to 15 kHz.
  • the network device may allocate the SIB1, the minimum system information, the random access message 2, the random access message 3, the control channel corresponding to the random access message 3, and the subcarrier spacing of any one of the uplink control channels corresponding to the random access message 4.
  • the subcarrier spacing as the bandwidth of the first uplink initial access part.
  • the subcarrier spacing of the uplink control channel corresponding to the random access message 3 and the random access message 4 is used as the subcarrier spacing of the bandwidth of the first uplink initial access part, which should be understood as the first uplink initial access.
  • the partial bandwidth is the same as the subcarrier spacing of the uplink control channel corresponding to the random access message 3 and the random access message 4 and may be indicated by the same indication information, such as one bit in the RMSI.
  • the network device may use the subcarrier spacing of the SS or PBCH signal as the subcarrier spacing of the first uplink initial access part bandwidth, or use half of the subcarrier spacing of the SS or PBCH signal as the first uplink initial access part.
  • the subcarrier spacing of the bandwidth For example, if the subcarrier spacing of the SS or PBCH signal is 15 kHz or 30 kHz, the subcarrier spacing of the first uplink initial access part bandwidth is the same as the subcarrier spacing of the SS or PBCH signal; if the subcarrier spacing of the SS or PBCH signal is At 240 kHz, the subcarrier spacing of the first uplink initial access portion bandwidth is 120 kHz.
  • the network device may also determine a sub-carrier spacing of the bandwidth of the first uplink initial access part according to the carrier frequency, that is, the network device may preset a threshold range mapping relationship between the sub-carrier spacing of the first uplink initial access part bandwidth and the carrier frequency.
  • the carrier frequency is less than 3 GHz, and the subcarrier spacing corresponding to the bandwidth of the first uplink initial access part is 15 kHz; the carrier frequency is greater than or equal to 3 GHz and less than or equal to 6 GHz, and the subcarrier spacing corresponding to the bandwidth of the first uplink initial access part is 30 kHz; The subcarrier spacing corresponding to the bandwidth of the first uplink initial access part of the carrier frequency greater than 6 GHz is 120 kHz.
  • the network device may jointly indicate a subcarrier spacing of the uplink initial access part bandwidth and a reference subcarrier spacing of the uplink initial access part bandwidth.
  • the values of the SCS BWP and the SCS Ref are 15 kHz, 30 kHz, 60 kHz, 120 kHz, 240 kHz, 480 kHz, and 960 kHz.
  • Table 2 shows the correspondence between the index values and the SCS BWP and SCS Ref .
  • the values of u 1 and u 2 are 0 to 6.
  • Table 3 the correspondence between the index value and the subcarrier index u 1 corresponding to the SCS BWP and the subcarrier index u 2 corresponding to the SCS Ref is shown. There are more options in practice, such as 0-20. It is worth noting that in practice, only some of the combinations in Table 2 or 3 may be required.
  • the network device sends the first parameter to the terminal device.
  • the terminal device receives the first parameter.
  • the network device may send the first parameter by using dedicated signaling, or may carry the first parameter in other signaling.
  • the first parameter may be carried in radio resource control (RRC) signaling, system information (SI), remaining minimum system information (RMSI), and 0th system information block (System information block 0, SIB0), system information block 1, SIB1, medium access control-control element (MAC CE) signaling, downlink control information , DCI), or physical downlink control channel (PDCCH) command, and the like.
  • RRC radio resource control
  • SI system information
  • RMSI remaining minimum system information
  • 0th system information block System information block 0, SIB0
  • SIB1 system information block 1
  • MAC CE medium access control-control element
  • DCI downlink control information
  • PDCCH physical downlink control channel
  • the terminal device determines, according to the first parameter, a target uplink initial access part bandwidth in the bandwidth of the N uplink initial access parts.
  • the terminal device determines, according to the first parameter, a resource location of the bandwidth of the N uplink initial access portions. And determining, by the N uplink initial access part, the target uplink initial access part bandwidth, and performing random access on the target uplink initial access part bandwidth.
  • the terminal device may be configured according to the number N of uplink initial access part bandwidths and the bandwidth bandwidth of each uplink initial access part bandwidth, and a preset frequency domain starting position of the N uplink initial access part bandwidths.
  • the resource locations of the N uplink initial access part bandwidths are determined.
  • the uplink initial access part bandwidth and the downlink initial access part bandwidth may form a pair, so that the terminal device may initially access the first part of the bandwidth of the downlink. It is determined as the first location of the uplink initial access part of the bandwidth, and does not need to specifically configure the frequency domain start position of the uplink initial access part of the bandwidth.
  • the first location may be a central frequency point location, or may be a frequency domain start location, or a frequency domain end location, or may be other agreed locations, which is not limited in this application.
  • the frequency domain start position of the uplink initial access part of the bandwidth may be affected by the uplink initial access part bandwidth.
  • the terminal device may determine the number of uplink initial access part bandwidths according to the ratio of the uplink channel bandwidth of the first parameter to the bandwidth of the bandwidth of the first uplink initial access part.
  • the bandwidth of the first uplink initial access part is the uplink initial access part bandwidth of any one of the N uplink initial access part bandwidths.
  • the bandwidth of the N uplink initial access part is the bandwidth of all the uplink initial access parts included in the uplink channel bandwidth.
  • the frequency of the first uplink initial access part of the N uplink initial access part bandwidths The start position of the domain may be the same as the start of the frequency domain of the uplink channel bandwidth.
  • the frequency domain start position of the bandwidth of the other uplink initial access part may be continuous with the bandwidth of the previous uplink initial access part.
  • N floor(CBW/BWP)
  • the first parameter may include N and a bandwidth of the bandwidth of the first uplink initial access part, and the first parameter indicates any two uplink initial connections of the N uplink initial access part bandwidths.
  • the bandwidth of the band entering the partial bandwidth is the same.
  • the terminal device may determine a frequency domain resource location of the N uplink initial access part bandwidth according to the frequency band bandwidth of the N and the first uplink initial access part bandwidth.
  • the first parameter may include N and a bandwidth of a bandwidth of each uplink initial access part, such that the terminal device determines a frequency domain resource location of the uplink initial access part bandwidth that may have different frequency bandwidths according to the first parameter.
  • the first parameter may further specify a frequency location of the uplink initial access part bandwidth, or specify an uplink channel number ARFCN, determine a frequency location of the uplink initial access part bandwidth according to the ARFCN, or specify a downlink initial access bandwidth and/or
  • the frequency position of the downlink synchronization signal block determines the frequency position of the uplink initial access part bandwidth according to the downlink initial access bandwidth and/or the absolute frequency position of the downlink synchronization signal block (for example, in the time division duplex mode, the downlink initial access bandwidth is The center frequency position is the same as the center frequency position of the upstream initial access portion bandwidth).
  • At least one of f0, f1, f2, f3, f4, f5, f6, f7, f8 is determined according to the first parameter.
  • f0 is the starting position of the bandwidth of the first uplink initial access part in the uplink channel bandwidth
  • f1 is the middle position of the bandwidth of the first uplink initial access part in the uplink channel bandwidth
  • f2 is the middle of the uplink channel bandwidth End position of an uplink initial access part bandwidth
  • f3 is the starting position of the i-th uplink initial access part bandwidth in the uplink channel bandwidth
  • f4 is the i-th uplink initial access part bandwidth in the uplink channel bandwidth
  • f5 is the end position of the bandwidth of the i-th uplink initial access part in the uplink channel bandwidth, where i is a pre-configured fixed value, for example, N/2-1, or a value specified by the base station configuration
  • f6 is an uplink The starting position of the bandwidth of the Nth uplink
  • the relative position of the uplink channel bandwidth and the uplink initial access part bandwidth may be separately notified by the base station, or may not require notification, for example, the relative position is a preset value or is notified by other parameters after the first parameter.
  • the network device carries the first parameter by using the configuration information, where the first parameter is used to determine that multiple uplink initial access part bandwidths are continuously placed in the uplink channel bandwidth, and the base station configuration information is as follows:
  • ul-CarrierFreq is the uplink channel number
  • ul-Bandwidth is the bandwidth of the uplink initial access part bandwidth
  • ul-SubcarrierSpacing is the subcarrier spacing of the uplink initial access part of the bandwidth
  • ul-NumberOfBWPs is the uplink initial access part of the bandwidth.
  • the number, ul-PRBOffset is the starting position of the bandwidth of the uplink initial access part.
  • the bandwidths of the respective uplink initial access portions in FIG. 4 may overlap or overlap each other.
  • the difference between at least one of the bandwidth, the starting position, and the center position between the overlapping uplink initial access part bandwidths is a preset value, for example, the center position of the uplink initial access part bandwidth is the same; or according to the base station indication determine.
  • bandwidth and/or the sub-carrier spacing of the bandwidth of each uplink initial access part in FIG. 4 may be the same or different.
  • the specific implementation manner may be the manner of any of the foregoing embodiments, and details are not described herein again.
  • the terminal device may further receive the second parameter, and determine, according to the second parameter, a frequency domain start position of each uplink initial access part bandwidth.
  • the second parameter may directly indicate a frequency domain start position of each uplink initial access part bandwidth.
  • the starting position of the frequency domain may be a frequency domain starting position of the uplink channel bandwidth, a center frequency point location, and the like, which is not limited in this application.
  • the starting position of the frequency domain may be a specific PRB.
  • the network device carries the second parameter by using the configuration information, where the second parameter is used to determine that the bandwidth of the multiple uplink initial access parts can be arbitrarily placed in the uplink channel bandwidth, and the configuration information can be as follows:
  • ul-CarrierFreq refers to the uplink channel number, which is used to determine the center position of the uplink channel bandwidth
  • ul-Bandwidth represents the uplink channel bandwidth
  • ul-SubcarrierSpacing represents the subcarrier spacing of the uplink initial access part of the bandwidth.
  • the second parameter may also indirectly indicate a frequency domain start position of each uplink initial access part bandwidth.
  • the second parameter indicates that the N uplink initial access part bandwidths are continuous, and the second The parameter includes a frequency domain start position of a bandwidth of a first uplink initial access part of the N uplink initial access part bandwidths. In this way, the terminal device can determine the frequency domain starting position of the bandwidth of each uplink initial access part according to the second parameter.
  • the bandwidth of each uplink initial access part bandwidth is BWP 0 , BWP 1 ,... , BWP N-1
  • the starting position of the bandwidth of the i-th uplink initial access part is BWP 0 + BWP 1 + ... + BWP N-1
  • i 0, 1, ..., N-1.
  • the frequency domain starting position of the bandwidth of the first uplink initial access part is PRB
  • the bandwidth of the bandwidth of each uplink initial access part is BWP 0 , BWP 1 , ..., BWP N-1
  • the network device carries the second parameter by using the configuration information, where the second parameter is used to determine specific parameters corresponding to the bandwidths of the multiple uplink initial access portions, and the configuration information is as follows:
  • the second parameter indicates that the bandwidth of the N uplink initial access parts is continuous, and the second parameter includes a frequency domain starting position of the first uplink initial access part bandwidth and a frequency domain of the uplink channel bandwidth.
  • the offset value of the starting position The terminal device may determine a frequency domain start position of the first uplink initial access part bandwidth according to the offset value and a frequency domain start position of the uplink channel bandwidth, and determine other uplink initials according to the bandwidth of the uplink initial access part bandwidth. Accessing a starting location of a portion of the bandwidth, and determining a frequency domain resource location of each of the uplink initial access portions of the N uplink initial access portions.
  • the second parameter may also include a frequency domain start position offset value of the frequency domain start position of each uplink access part with respect to the uplink channel bandwidth.
  • the offset value may be offset by the number of reference subcarrier spacings.
  • the terminal device receives the third parameter, and determines a subcarrier spacing of each uplink channel bandwidth portion according to the third parameter.
  • the third parameter may indicate a subcarrier spacing of each uplink channel bandwidth portion, which increases the flexibility of indication.
  • the network device carries the third parameter to configure a subcarrier spacing of multiple uplink initial access part bandwidths of the multiple uplink channel bandwidths by using the third parameter, and the configuration information is as follows:
  • the network device configures, by using configuration information, that the uplink initial access part bandwidth of the multiple uplink channel bandwidths has the same subcarrier spacing and frequency band bandwidth, and the configuration information is as follows:
  • the network device configures, by using configuration information, that each of the plurality of uplink channel bandwidths has the same frequency band bandwidth, and the configuration information is as follows:
  • the third parameter may include a subcarrier spacing of the bandwidth of the first uplink initial access part, and the subcarrier spacing indicating the bandwidth of the N uplink initial access part is the same, and the terminal equipment initially allocates the bandwidth of the first uplink initial part.
  • the subcarrier spacing is used as the subcarrier spacing of the bandwidth of each of the uplink initial access portions of the N uplink initial access portions, which saves the indication signaling overhead.
  • the terminal device selects one of the plurality of uplink initial access part bandwidths supported for random access, and the plurality of uplink initial access part bandwidths have the same frequency bandwidth and subcarrier spacing (NR should support multiple initial active UL BWPs of Same numerology and bandwidth, where UE can select one to perform random access).
  • the terminal device receives the index value, and searches for the SCS BWP and the SCS Ref corresponding to the index value in the mapping relationship table according to the index value.
  • the network device determines a first parameter for determining a number N of uplink initial access part bandwidths and a frequency band bandwidth of each uplink initial access part bandwidth, and sends the first parameter to the terminal device.
  • the first parameter is used to determine, by the terminal device, the bandwidth of the target initial access part in the bandwidth of the N uplink initial access parts according to the first parameter, thereby improving the efficiency of random access.
  • FIG. 5 is a schematic flowchart of a method for random access according to an embodiment of the present application.
  • the embodiment of the present application is applied to a communication system in which an uplink channel includes a plurality of uplink initial access part bandwidths.
  • the terminal device determines a target uplink initial access part bandwidth in a plurality of uplink initial access part bandwidths.
  • the manner in which the terminal device determines the bandwidth of the multiple uplink initial access portions may be the manner of the embodiment described in FIG. 2, or may be other manners, which is not limited in this application.
  • the target uplink initial access part bandwidth may be one uplink initial access part bandwidth of the multiple uplink initial access part bandwidths.
  • the multiple uplink initial access part bandwidths may be in one-to-one correspondence with the maximum channel bandwidth capability (or the terminal device classification) of the multiple terminal devices, so that the terminal device may initially connect from multiple uplinks according to the maximum channel bandwidth supported by the terminal device.
  • Select the target uplink initial access part bandwidth in the incoming part of the bandwidth For example, the uplink initial access part bandwidth 1 is used for the terminal device whose maximum channel bandwidth is not greater than N1, and the uplink initial access part bandwidth 2 is used for the terminal device whose maximum channel bandwidth capability is not greater than N2, and the uplink initial access part bandwidth 3 is used for The maximum channel bandwidth capability is not greater than the N3 terminal device, and N1 ⁇ N2 ⁇ N3.
  • the uplink initial access part bandwidth is selected; or the maximum channel bandwidth supported by the terminal device is greater than N1 and not greater than N2, then the uplink initial access part bandwidth 2 is selected; or the terminal device supports If the maximum channel bandwidth is greater than N2 and not greater than N3, the upstream initial access portion bandwidth 3 is selected.
  • the uplink initial access part bandwidth 2 is selected; or the terminal device supports If the maximum channel bandwidth is greater than N2 and not greater than N3, the upstream initial access portion bandwidth 3 is selected.
  • it is not limited to the above three cases, for example, according to the channel bandwidth capability, it is divided into two categories, or divided into more classes.
  • the multiple uplink initial access part bandwidths may be in one-to-one correspondence with the states of the multiple terminal devices, so that the terminal device may select the target uplink initial access from the multiple uplink initial access part bandwidths according to the current state of the terminal. Part of the bandwidth.
  • the status of the terminal device may include an idle state, an inactive state, and a connected state.
  • the terminal device may pre-arrange with the network device or configure the mapping relationship between the state of each type of terminal device and the bandwidth of the uplink initial access part by the network device, so that the terminal device may initiate from the multiple uplinks according to the current state and the mapping relationship.
  • the bandwidth of the target uplink initial access part is determined in the access part bandwidth.
  • state of different terminal devices may correspond to the bandwidth of the same uplink initial access part, and the state of one type of terminal device may also correspond to the bandwidth of at least two uplink initial access parts.
  • the uplink initial access part bandwidth 1 is used for the terminal device in the idle state
  • the uplink initial access part bandwidth 2 is used for the terminal device in the inactive state
  • the uplink initial access part bandwidth 3 is used for the terminal device in the connected state.
  • the uplink initial access part bandwidth 1 is used for the terminal device in the idle state, and the uplink initial access part bandwidth 2 is used for the terminal device in the inactive state and the terminal device in the connected state. Then, when the terminal device initiates random access from the idle state, the uplink initial access part bandwidth 1 is used; when the terminal device initiates random access from the inactive state or the connection state, the uplink initial access part bandwidth 2 is used.
  • the uplink initial access part bandwidth 1 is used for the terminal device in the idle state and the terminal device in the inactive state
  • the uplink initial access part bandwidth 2 is used for the terminal device in the connected state.
  • the uplink initial access part bandwidth 1 is used; when the terminal device initiates random access from the connection state, the uplink initial access part bandwidth 2 is used.
  • the uplink initial access part bandwidth 1 is used for the terminal device in the idle state and in the connected state, and the uplink initial access part bandwidth 2 is used for the terminal device in the inactive state.
  • the uplink initial access part bandwidth 1 is used; when the terminal device initiates random access from the inactive state, the uplink initial access part bandwidth 2 is used.
  • the multiple uplink initial access part bandwidths may be in one-to-one correspondence with multiple threshold ranges of Reference Signal Receiving Power (RSRP), so that the terminal device may perform multiple uplinks according to the RSRP value of the downlink signal.
  • RSRP Reference Signal Receiving Power
  • the target uplink initial access part bandwidth is selected in the initial access part bandwidth.
  • the terminal device can determine the target uplink initial access part bandwidth in the bandwidth of the multiple uplink initial access parts according to the RSRP value and the mapping relationship of the received downlink signal.
  • the uplink initial access part bandwidth 1 and the RSRP are greater than the threshold 0, and the threshold range 1 is less than the threshold 1.
  • the uplink initial access part bandwidth 2 and the RSRP are greater than or equal to the threshold 1 and the threshold range 2 is less than the threshold 2.
  • the uplink initial access part bandwidth 3 corresponds to a threshold range 3 in which the RSRP is greater than or equal to the threshold 2 and less than the threshold 3. Then, the value of the RSRP of the downlink signal received by the terminal device is within the threshold range 1, and the random access is performed by using the uplink initial access part bandwidth 1; if the received RSRP value of the downlink signal is within the threshold range 2, the uplink initial is used.
  • the access part bandwidth 2 performs random access; if the received RSRP value of the downlink signal is within the threshold range 3, the uplink initial access part bandwidth 3 is used for random access.
  • mapping relationship between the threshold range of the downlink signal RSRP and the bandwidth of the uplink initial access part may be pre-agreed by the terminal device and the network device, or may be configured by the network device.
  • the multiple uplink initial access part bandwidths are in one-to-one correspondence with multiple threshold ranges of the bit size occupied by the random access message 3, so that the terminal device can determine according to the size of the bit occupied by the random access message 3.
  • the uplink initial access part bandwidth 1 is used for the random access message 3.
  • the size of the random access message 3 is less than or equal to the threshold value 1.
  • the uplink initial access part bandwidth 2 is used for the random access message 3 to be greater than the threshold value 1.
  • the bandwidth of the uplink initial access part is used; when the size of the bit occupied by the random access message 3 of the terminal device is greater than the threshold value At 1 o'clock, the uplink initial access part bandwidth 2 is used.
  • the multiple uplink initial access part bandwidths are in one-to-one correspondence with multiple service types, so that the terminal device may determine, according to the current service type, the target uplink initial access part of the multiple uplink initial access part bandwidths. bandwidth.
  • the service types can be classified into two types, services with high delay requirements and services with low latency requirements.
  • the uplink initial access part bandwidth 1 is used for the service type 1 with high delay requirement
  • the uplink initial access part bandwidth 2 is used for the service type 2 with low delay requirement.
  • the terminal device triggers random access to the service type 1
  • the uplink initial access portion bandwidth 1 is used; otherwise, the uplink initial access portion bandwidth 2 is used.
  • the uplink initial access part bandwidth with a relatively large subcarrier spacing is used for a service type with a high delay requirement
  • the uplink initial access part bandwidth with a small subcarrier spacing is used for a service type with a low delay requirement.
  • the terminal device may randomly select one of the multiple uplink initial access part bandwidths as the target uplink initial access part bandwidth.
  • the terminal device can be selected with equal probability.
  • the multiple uplink initial access part bandwidths may correspond to the number of messages 1 (or random access preambles) that are allowed to be sent before receiving the random access response message or the random access response message window is invalid, In this way, the terminal device can select the target uplink initial access part bandwidth from the plurality of uplink initial access part bandwidths according to the number of messages 1 to be sent.
  • the terminal device may also acquire the number of messages 1 sent by the terminal device according to the bandwidth of the uplink initial access part where the random access resource of the random access preamble is detected.
  • the terminal device sends multiple messages 1 the multiple random access time, frequency, preamble or sequence resources of each message 1 in the selected initial access part bandwidth are sent according to a predefined resource pattern.
  • the uplink initial access part bandwidth 1 only the terminal device is allowed to send a message 1 before receiving the random access response message or the random access response message window is invalid, and the uplink initial access part bandwidth 2 allows the terminal device to receive At least one message 1 is sent before the random access response message or the random access response message window expires.
  • the uplink initial access part bandwidth 2 is selected for random access, and at least one message 1 is sent.
  • the terminal device performs random access on a bandwidth of the target uplink initial access part.
  • the terminal device completes an initial access process on the bandwidth of the initial uplink access part of the target, that is, the uplink control channel corresponding to the random access message 1, the random access message 3, and the random access message 4 are all uplinked to the target.
  • the initial access part is completed on the bandwidth.
  • the bandwidth of the uplink initial access part of the last transmission is determined as the bandwidth of the target uplink initial access part, and the multiple random access messages 1 may be different.
  • the uplink initial access part of the bandwidth is transmitted, but the uplink control channel corresponding to the random access message 3 and the random access message 4 needs to be transmitted within the bandwidth of the uplink initial access part of the successfully transmitted message 1.
  • the method for random access in the embodiment of the present application determines the bandwidth of the target uplink initial access part in the bandwidth of the plurality of uplink initial access parts, and initially accesses part of the bandwidth in the target uplink, and performs random access, thereby improving The efficiency of random access.
  • the network device determines a first parameter, the first parameter is used to determine a number N of random access opportunities within the uplink channel bandwidth, a bandwidth of each random access opportunity, and/or a subcarrier spacing, each At least one of a scheduling position of the random access message 3 corresponding to the random access opportunity, a scheduling position of the uplink control channel corresponding to the random access message 4, and a frequency range BWP i of the uplink control channel corresponding to the message 3 and the message 4, Where N ⁇ 2 and the N is a positive integer.
  • the N random access opportunities are associated with the same downlink signal.
  • the random access opportunity also known as the RACH occasion/RACH transmission occasion/RACH opportunity/RACH chance (RO) refers to the time and frequency resources needed to transmit a random access preamble. .
  • RO RACH occasion/RACH transmission occasion/RACH opportunity/RACH chance
  • BWP i is a preset value.
  • the preset is based on a carrier frequency range, a subcarrier spacing of the random access message 3, a subcarrier spacing of the random access message 1, a subcarrier spacing of the downlink initial access bandwidth, and a subcarrier of the random access message 2.
  • At least one of an interval, a subcarrier spacing of the RMSI, and a subcarrier spacing of the PBCH is determined. For example, when the carrier frequency is below 3 GHz, the BWP i is k1 resource blocks RB; when the carrier frequency is above 3 GHz and below 6 GHz, the BWP i is k2 resource blocks RB; when the carrier frequency is above 6 GHz, the BWP i is k3 resources.
  • Block RB where k1, k2, k3 belong to a non-negative integer.
  • the k1, k2, k3 resource blocks are referenced by the subcarrier spacing of the corresponding random access message 3.
  • the BWP i when the random access message 3 subcarrier spacing is 15 kHz, the BWP i is k4 resource block RBs; when the random access message 3 subcarrier spacing is 30 kHz, the BWP i is k5 resource blocks RB; the random access message 3
  • the subcarrier spacing is 60 kHz, BWP i is k6 resource block RBs; when the random access message 3 subcarrier spacing is 120 kHz, BWP i is k7 resource blocks RB.
  • the k4, k5, k6, k7 resource blocks are referenced by the subcarrier spacing of the corresponding random access message 3.
  • the BWP i is based on the base station configuration information, the carrier frequency range, the subcarrier spacing of the random access message 3, the subcarrier spacing of the random access message 1, the subcarrier spacing of the downlink initial access bandwidth, and the random access message. At least one of the subcarrier spacing of 2, the subcarrier spacing of the RMSI, and the subcarrier spacing of the PBCH is determined.
  • the first parameter may further specify a frequency location of the random access opportunity, or an uplink channel number ARFCN, determine a frequency location of the uplink initial access part bandwidth according to the ARFCN, or a downlink initial access bandwidth and/or a downlink synchronization signal block.
  • Frequency position determining the frequency position of the random access opportunity according to the downlink initial access bandwidth and/or the absolute frequency position of the downlink synchronization signal block (for example, in the time division duplex mode, the center frequency position of the downlink initial access bandwidth and the uplink randomization The center frequency of the access opportunity is the same).
  • At least one of f0, f1, f2, f3, f4, f5, f6, f7, f8 is determined according to the first parameter.
  • f0 is the starting position of the first random access opportunity in the uplink channel bandwidth
  • f1 is the middle position of the first random access opportunity in the uplink channel bandwidth
  • f2 is the first random access in the uplink channel bandwidth
  • f3 is the starting position of the i-th random access opportunity in the uplink channel bandwidth
  • f4 is the middle position of the i-th random access opportunity in the uplink channel bandwidth
  • f5 is the inner channel of the uplink channel bandwidth
  • i is a pre-configured fixed value, such as N/2-1, or a base station configuration specified value
  • f6 is the Nth random access opportunity within the upstream channel bandwidth
  • the starting position, f7 is the middle position of the Nth random access opportunity in the uplink channel bandwidth
  • the relative position of the uplink channel bandwidth and the random access opportunity may be separately notified by the base station, or may not require notification, for example, the relative position is a preset value or is notified by other parameters after the first parameter.
  • the interval is determined according to parameters and/or rules indicated by the predefined and/or base station.
  • bandwidth and/or the sub-carrier spacing of each random access opportunity in FIG. 6 may be the same or different.
  • the specific implementation manner may be the manner of any of the foregoing embodiments, and details are not described herein again.
  • the terminal device determines, according to the first parameter, a target random access opportunity among the N random access opportunities in the uplink channel bandwidth. After the random access preamble is sent on the target random access opportunity, the corresponding random access response message is received, and the uplink scheduling grant of the random access message 3 is obtained, and the uplink scheduling grant and the location of the target random access opportunity are determined according to the uplink scheduling grant.
  • the specific location of the random access message 3 is determined according to f0, the uplink scheduling grant in the random access message 2, for example, the frequency location of the uplink scheduling grant indication is f1, and the specific content of the random access message 3 is The position is f0+f1.
  • the specific requirement of the random access message 3 needs to consider SCS0 and SCS1, for example, f0 ⁇ SCS0+f1 ⁇ SCS1.
  • the specific location of the random access message 3 in the frequency domain is located to the right of the random access opportunity (ie, the frequency is increased), or it may be understood that the frequency f0 of the random access opportunity is the frequency of the random access message 3.
  • the reference starting position of the scheduling range is located to the right of the random access opportunity (ie, the frequency is increased), or it may be understood that the frequency f0 of the random access opportunity is the frequency of the random access message 3.
  • the frequency f0 of the random access opportunity is a reference end position, an intermediate position, or other specified position of the frequency scheduling range in which the random access message 3 is located.
  • the frequency f0 of the random access opportunity is the reference end position of the frequency scheduling range in which the random access message 3 is located.
  • the relationship between f0 and f1 may be f0-f1.
  • the frequency f0 of the random access opportunity is an intermediate position of the frequency scheduling range in which the random access message 3 is located.
  • the range of the random access message 3 may be determined according to the maximum frequency range BWPi that the random access message may schedule, for example, F0+f1-floor(BWPi/2).
  • the specific requirement of the random access message 3 needs to consider SCS0 and SCS1, for example, f0 ⁇ SCS0-f1 ⁇ SCS1 or f0 ⁇ SCS0+ ( F1-floor(BWPi/2)) ⁇ SCS1.
  • the first parameter may also specify a frequency location of the random access opportunity, or specify an uplink channel number ARFCN, determine a frequency location of the random access opportunity according to the ARFCN, or specify a downlink initial access bandwidth and/or a downlink synchronization signal block.
  • Frequency position determining the frequency position of the random access opportunity according to the downlink initial access bandwidth and/or the absolute frequency position of the downlink synchronization signal block (for example, in the time division duplex mode, the center frequency position of the downlink initial access bandwidth is randomly connected The center frequency of the incoming opportunity is the same). For example, as shown in FIG.
  • At least one of f0, f1, f2, f3, f4, f5, f6, f7, f8 is determined according to the first parameter.
  • f0 is the starting position of the first random access opportunity in the uplink channel bandwidth
  • f1 is the middle position of the first random access opportunity in the uplink channel bandwidth
  • f2 is the first random access in the uplink channel bandwidth
  • f3 is the starting position of the i-th random access opportunity in the uplink channel bandwidth
  • f4 is the middle position of the i-th random access opportunity in the uplink channel bandwidth
  • f5 is the inner channel of the uplink channel bandwidth
  • i is a pre-configured fixed value, such as N/2-1, or a base station configuration specified value
  • f6 is the Nth random access opportunity within the upstream channel bandwidth
  • f7 is the middle position of the Nth random access opportunity in the uplink channel bandwidth
  • f8 is the ending position
  • the relative position of the uplink channel bandwidth and the random access opportunity may be separately notified by the base station or may not require notification, for example, the relative position is a preset value or is notified by other parameters after the first parameter.
  • each random access opportunity in FIG. 8 may be partially overlapped or spaced from each other.
  • the difference between at least one of the bandwidth, the starting position, and the center position between the overlapping random access opportunities is a preset value, for example, the center position of the random access opportunity is the same; or is determined according to the indication of the base station.
  • bandwidth and/or the sub-carrier spacing of each random access opportunity in FIG. 8 may be the same or different.
  • the specific implementation manner may be the manner of any of the foregoing embodiments, and details are not described herein again.
  • the method for determining the target random access opportunity from the N random access opportunities is similar to the method for determining the bandwidth of multiple uplink initial access portions in this patent, and details are not described herein again. It should be understood that replacing the uplink initial access part bandwidth with a random access opportunity can work.
  • the method for determining the target random access opportunity from the N random access opportunities and transmitting the random access message 1 at least once is the same as that in the uplink initial access part bandwidth, and details are not described herein again. It should be understood that replacing the uplink initial access part bandwidth with a random access opportunity can work.
  • FIG. 9 is a schematic flowchart of a method for random access according to another embodiment of the present application.
  • the embodiment of the present application is applied to a communication system in which an uplink channel includes a plurality of uplink initial access part bandwidths.
  • the uplink initial access part bandwidth in the following embodiments may be any one of the multiple uplink initial access part bandwidths.
  • the network device sends, to the terminal device, first indication information, where the first indication information is used to indicate a number of first subcarrier spacings of the frequency domain start position offset of the first frequency domain resource relative to the uplink initial access part bandwidth.
  • the first sub-carrier interval may be a sub-carrier interval in the bandwidth of the uplink initial access part, or may be a reference sub-carrier interval, which is not limited in this application.
  • the frequency domain start position offset value of the first frequency domain resource relative to the uplink initial access part bandwidth may be a resource element (RE, also referred to as resource particle). limited.
  • RE resource element
  • this resource element may also be referred to as a subcarrier.
  • the terminal device determines a frequency domain location of the first frequency domain resource according to the number of the first subcarrier spacing of the offset and the frequency domain starting location of the uplink initial access part bandwidth.
  • the frequency domain start location of the uplink initial access part bandwidth may be that the terminal device receives the second indication information, and is determined according to the second indication information and a frequency domain start position of the uplink channel bandwidth, where the second The indication information is used to indicate the number of second subcarrier spacings of the frequency domain start position of the uplink initial access part bandwidth relative to the frequency domain start position offset of the uplink channel bandwidth.
  • the network device indirectly indicates a frequency domain start position of the uplink initial access part of the bandwidth, and the terminal device needs to determine the uplink initial access according to the frequency domain start position of the uplink channel bandwidth and the offset second subframe interval.
  • the frequency domain start position of part of the bandwidth is the frequency domain start position of part of the bandwidth.
  • the second indication information may be the first parameter of the offset value of the frequency domain start position of the frequency domain start position and the uplink channel bandwidth of the uplink initial access part bandwidth in the embodiment shown in FIG. 2 . .
  • the second subcarrier spacing and the first subcarrier spacing may be the same or different, which is not limited in this application.
  • the number of first subcarrier spacings of the first frequency domain resource offset from the frequency domain starting position of the initial access part bandwidth is b
  • the initial access part bandwidth is relative to the uplink channel bandwidth.
  • the number of the second subcarrier spacing of the domain start location offset is a
  • the frequency domain location of the first frequency domain resource in the uplink channel bandwidth is a+b.
  • the frequency domain start position of the uplink channel bandwidth is N SCS0
  • the first subcarrier spacing is SCS1
  • the second subcarrier spacing is SCS2
  • F (SCS1 * F1 + SCS2 * F2 + N SCS0 ) / SCS2.
  • the first frequency domain resource may be any one of a random access resource, a random access message 3, and a frequency domain resource of an uplink control channel corresponding to the random message 4.
  • the random access resource may be a frequency domain resource that sends at least one of a random access message 2, a random access message 3, and a random access message 4.
  • the network device may generate a random access message 2, schedule a random access message 3, and receive an uplink control channel corresponding to the random access message 4 according to the frequency domain location of the random access resource where the detected random access message 1 is located. .
  • the number of the first sub-carrier spacing of the first frequency domain resource relative to the frequency domain starting position offset of the upper initial access part bandwidth is less than or equal to a preset threshold.
  • the preset threshold may be determined by the network device according to at least one of an uplink channel bandwidth, a carrier frequency location of an uplink channel bandwidth, or an ARFCN, an uplink carrier subcarrier spacing. For example, when the uplink channel carrier frequency is less than 3 GHz, the preset threshold is 25 RBs (or 4 MHz); when the carrier frequency of the uplink channel bandwidth is greater than 3 GHz and less than 6 GHz, the pre-threshold is 50 RBs (or 10 MHz); When the carrier frequency of the channel bandwidth is greater than 6 GHz, the preset threshold is 100 RBs (or 20 MHz).
  • the network device sends, to the terminal device, a number of first subcarrier intervals indicating a frequency domain start position offset of the first frequency domain resource relative to the uplink initial access part bandwidth.
  • the first indication information the terminal device determines the frequency domain location of the first frequency domain resource according to the number of the first subcarrier spacing of the offset and the frequency domain starting location of the uplink initial access part bandwidth, thereby avoiding direct Indicates that the first frequency domain resource is in the frequency domain position of the uplink channel bandwidth, which saves resource overhead of indicating the channel.
  • FIG. 11 is a schematic flowchart of a method for random access retransmission in still another embodiment of the present application.
  • the embodiment of the present application is applied to a communication system in which an uplink channel includes a plurality of uplink initial access part bandwidths.
  • the uplink initial access part bandwidth in the following embodiments may be any one of the multiple uplink initial access part bandwidths.
  • the terminal device determines a number of failures of sending the random access message 1 on the bandwidth of the first uplink initial access part.
  • the terminal device may determine whether the random access message 1 is successfully sent according to whether the feedback information of the random access message 1 is received.
  • the terminal device sends the random access message 1 on the bandwidth of the second uplink initial access part when determining that the number of failures is the preset number of times K.
  • the preset number of times K may be configured by the network device or determined by the terminal device, which is not limited in this application.
  • the bandwidth of the second uplink initial access part is an uplink initial access part bandwidth different from the bandwidth of the first uplink initial access part. That is, when determining that the number of failures of sending the random access message 1 on the bandwidth of the first uplink initial access part reaches the preset number of times K, the terminal device may switch to the bandwidth of the second uplink initial access part to send the random connection.
  • Message 1 is entered to facilitate the terminal device to successfully transmit the random access message 1, thereby improving the efficiency of random access.
  • the first uplink initial access part bandwidth and the second uplink initial access part bandwidth may be different uplink initial access part bandwidths on the same carrier frequency.
  • the uplink initial access part bandwidth and the second uplink initial access part bandwidth may be different uplink initial access part bandwidths on different carrier frequencies.
  • the terminal device sends the random message 1 by using the first parameter on the bandwidth of the first uplink initial access part, and the terminal device resends the random connection by using the second parameter on the bandwidth of the second uplink initial access part. Enter message 1.
  • the first parameter may include at least one of a first beam direction, a first downlink synchronization signal block, and a first transmission power
  • the second parameter may include a second beam direction, a second downlink synchronization signal block, and At least one of the second transmit powers.
  • the first parameter is different from the second parameter, and specifically, the first parameter and the second parameter are at least one different.
  • the network device may configure the number of times that the terminal device performs the uplink initial access part bandwidth switching.
  • the terminal device may also send the random access message 1 multiple times.
  • the power ramp step size used by the terminal device and the power bandwidth of the terminal device in the first uplink initial access part bandwidth are used.
  • the step size can be different.
  • the terminal device may reset the power ramp when starting to retransmit the random access message 1 on the bandwidth of the second uplink initial access part.
  • the terminal device may also determine, according to the power offset value P offset specified by the network device, the estimated path loss PL, and the climbing power P ramp used when the last random access message 1 is transmitted, determine the transmission random access message 1 Transmit power P.
  • the terminal device may switch to the second when determining that the number of failures of transmitting the random access message 1 on the bandwidth of the first uplink initial access part reaches the preset number of times K.
  • the random access message 1 is sent on the uplink initial access part of the bandwidth, so that the terminal device can successfully send the random access message 1, thereby improving the efficiency of the random access.
  • the terminal device and the network device include corresponding hardware structures and/or software modules for performing the respective functions in order to implement the above functions.
  • the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods to implement the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present application.
  • the application may divide the functional units of the terminal device and the network device according to the above method example.
  • each functional unit may be divided according to each function, or two or more functions may be integrated into one processing unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit. It should be noted that the division of the unit in the present application is schematic, and is only a logical function division, and the actual implementation may have another division manner.
  • FIG. 12 shows a possible structural diagram of the network device involved in the above embodiment.
  • the network device 1200 includes a processing module 1202 and a transceiver module 1203.
  • the processing module 1202 is configured to control the management of the actions of the network device 1200.
  • the processing module 1202 is configured to support the network device 1200 to perform step 201 of FIG. 2 and/or other processes for the techniques described herein.
  • the transceiver module 1203 is configured to support communication of the network device 1200 with other communication devices.
  • the network device 1200 can also include a storage module 1201 for storing program codes and data of the network device 1200.
  • the processing module 1202 is configured to determine a first parameter, where the first parameter is used to determine a number N of uplink initial access part bandwidths and a frequency bandwidth of each uplink initial access part bandwidth, where N ⁇ 2, and The N is a positive integer; the transceiver module 1203 is configured to send the first parameter to the terminal device.
  • the processing module 1202 may be a processor or a controller, such as a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), and an application-specific integrated circuit. , ASIC), field programmable gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the transceiver module 1203 can be a transceiver, a transceiver circuit, or the like.
  • the storage module 1201 may be a memory.
  • the network device involved in the present application may be the network device shown in FIG.
  • the network device 1300 includes a processor 1302, a transceiver 1303, and a memory 1301.
  • the transceiver 1303, the processor 1302, and the memory 1301 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the network device 1200 and the network device 1300 provided by the present application determine a first parameter for determining a bandwidth of a bandwidth of each uplink initial access part of the plurality of uplink initial access part bandwidths, and send the first parameter to the terminal device. And determining, by the terminal device, the bandwidth of the target initial access part in the bandwidth of the multiple uplink initial access parts according to the first parameter, thereby improving the efficiency of random access.
  • FIG. 14 shows a possible structural diagram of the terminal device involved in the above embodiment.
  • the terminal device 1400 includes a processing module 1402 and a transceiver module 1403.
  • the processing module 1402 is for controlling management of the actions of the terminal device 1400.
  • the processing module 1402 is configured to support the terminal device 1400 to perform step 203 of FIG. 2 and/or other processes for the techniques described herein.
  • the transceiver module 1403 is configured to support communication between the terminal device 1400 and other communication devices.
  • the terminal device 1400 may further include a storage module 1401 for storing program codes and data of the terminal device 1400.
  • the transceiver module 1403 is configured to receive a first parameter, where the first parameter is used to determine a bandwidth of a bandwidth of each of the uplink initial access portions of the N uplink initial access portions, where N ⁇ 2, and The N is a positive integer; the processing module 1402 is configured to determine, according to the first parameter, a target uplink initial access part bandwidth in the N uplink initial access part bandwidth, where the target uplink initial access part bandwidth is used. Random access.
  • Processing module 1402 may be a processor or controller, such as a CPU, general purpose processor, DSP, ASIC, FPGA or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the transceiver module 1403 can be a transceiver, a transceiver circuit, or the like.
  • the storage module 1401 may be a memory.
  • the terminal device involved in the present application may be the terminal device shown in FIG.
  • the terminal device 1500 includes a processor 1502, a transceiver 1503, and a memory 1501.
  • the transceiver 1503, the processor 1502, and the memory 1501 can communicate with each other through an internal connection path to transfer control and/or data signals.
  • the terminal device 1400 and the terminal device 1500 provided by the present application receive the first parameter, and determine, according to the first parameter, the bandwidth of the target initial access part for random access in the bandwidth of the multiple uplink initial access parts, thereby improving The efficiency of random access.
  • transceivers may include a transmitter and a receiver.
  • the transceiver may further include an antenna, and the number of antennas may be one or more.
  • the memory can be a separate device or integrated into the processor.
  • the above various devices or parts of the device can be integrated into the chip for implementation, such as integration into a baseband chip.
  • the network device or the terminal device in the device and the method embodiment are completely corresponding, and the corresponding steps are performed by the corresponding module, for example, the sending module method or the step sent by the transmitter performing the method embodiment, and the receiving module or the receiver performing the method embodiment
  • the steps of receiving, except for transmitting and receiving, may be performed by a processing module or processor.
  • a processing module or processor For the function of the specific module, reference may be made to the corresponding method embodiment, which is not described in detail.
  • the size of the sequence number of each process does not mean the order of execution sequence, and the order of execution of each process should be determined by its function and internal logic, and should not constitute any limitation on the implementation process of the present application.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种资源分配的方法和装置,该方法包括:网络设备确定第一参数,该第一参数用于确定上行初始接入部分带宽的数目N和每个上行初始接入部分带宽的频带带宽,其中,N≥2,且该N为正整数;该网络设备向终端设备发送该第一参数。本申请实施例通过确定多个上行初始接入部分带宽中的目标上行初始接入部分带宽,并在该目标上行初始接入部分带宽,进行随机接入,提高了随机接入的效率。

Description

资源分配的方法和装置
本申请要求于2017年11月17日提交中国专利局、申请号为201711147521.X、申请名称为“资源分配的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,更具体地涉及一种资源分配的方法和装置。
背景技术
长期演进(Long Term Evolution,LTE)系统的初始接入过程包括随机接入过程,随机接入过程需要通过上行信道传输上行数据。在LTE的上行频域资源涉及上行信道带宽和上行信道号(absolute radio frequency channel number,ARFCN),终端可以根据ARFCN确定上行信道的中心频点位置,再结合上行信道带宽确定上行信道所在的具体频带位置。上行信道带宽支持6种模式:6,15,25,50,75以及100,单位为资源块(resource block,RB),每个RB的带宽为180kHz。网络设备只能为一个小区配置上述6种上行信道带宽模式中的一种模式。LTE的上行初始接入带宽在上行信道带宽的覆盖范围内。
由于新无线(new radio,NR)中的最大带宽远大于LTE的带宽,为了降低配置时的信令开销,NR中引入了部分带宽(bandwidth part,BWP),部分带宽为最大带宽中的一部分。在上行场景中,上行信道带宽包括多个上行初始接入部分带宽,每个上行初始接入部分带宽可以用于随机接入。
但是,在支持多个上行初始接入部分带宽的NR中,网络设备如何为终端设备进行频域资源的配置,亟待解决。
发明内容
本申请提供一种资源分配的方法和装置,能够提高随机接入效率。
第一方面,提供了一种资源分配的方法,该方法包括:网络设备确定第一参数,所述第一参数用于确定上行初始接入部分带宽的数目N和每个上行初始接入部分带宽的频带带宽,其中,N≥2,且所述N为正整数;所述网络设备向终端设备发送所述第一参数。
即网络设备确定第一参数,该第一参数用于确定多个上行初始接入部分带宽中每个上行初始接入部分带宽的频带带宽,并向终端设备发送该第一参数使得终端设备根据该第一参数确定该多个上行初始接入部分带宽中的目标初始接入部分带宽,从而提高随机接入的效率。
在一些可能的实现方式中,所述第一参数包括上行信道带宽和第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入部分带宽为所述N个上 行初始接入部分带宽中的任一个上行初始接入部分带宽。
这样避免单独指示每个上行初始接入部分带宽的频带带宽,节省了信令开销。
在一些可能的实现方式中,所述第一参数包括所述N和所述第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
这样网络设备可以通过第一参数灵活的设定第一上行初始接入部分带宽的数目。
在一些可能的实现方式中,所述第一参数包括所述N和所述每个上行初始接入部分带宽的频带宽度。
这样网络设备可以通过第一参数灵活的设定N个上行初始接入部分带宽的各个上行初始接入部分带宽的频带宽度,提高了配置上行初始接入部分带宽的灵活性。
在一些可能的实现方式中,所述方法还包括:所述网络设备确定第二参数,所述第二参数用于确定所述每个上行初始接入部分带宽的频域起始位置;所述网络设备向所述终端设备发送所述第二参数。
网络设备通过第二参数能够使得终端设备确定每个上行初始接入部分带宽的频域起始位置,进而确定每个上行初始接入部分带宽的频域位置,提高了确定的上行初始接入部分带宽的可靠性。
在一些可能的实现方式中,所述第二参数包括第一个上行初始接入部分的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目,且所述第二参数指示所述N个上行初始接入部分带宽为连续的。
网络设备能够根据第一个上行初始接入部分的频域起始位置指示另外N-1个频域起始位置,避免单独指示每个上行初始接入部分的频域起始位置,节省了信令开销。
在一些可能的实现方式中,所述第二参数包括第一个上行初始接入部分带宽的频域起始位置,且所述第二参数指示所述N个上行初始接入部分带宽为连续的。
第一个上行初始接入部分带宽的频域结束位置即为第二个上行初始接入部分带宽的频域起始位置,这样根据第一个上行初始接入部分的频域起始位置可以确定出另外N-1个频域起始位置,避免单独指示每个上行初始接入部分的频域起始位置,节省了信令开销。
在一些可能的实现方式中,所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目。
网络设备避免直接指示上行初始接入部分带宽的频域起始位置,可以通过与某一个上行信道带宽的频域起始位置的偏移参考子载波间隔的数目指示,节省了信令开销。
在一些可能的实现方式中,所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置或者上行信道号。
这样N个上行初始接入部分带宽的频域位置可以灵活设定的,提高了指示的灵活性。
在一些可能的实现方式中,所述方法还包括:所述网络设备发送指示信息,所述指示信息用于指示第一频域资源的频域起始位置相对于第一上行初始接入部分带宽的频域起始位置偏移的参考子载波间隔的数目,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
网络设备避免直接指示第一频域资源的频域起始位置,可以通过与某一个上行初始接 入部分带宽的频域起始位置的偏移参考子载波间隔的数目指示,节省了信令开销。
在一些可能的实现方式中,所述方法还包括:所述网络设备确定第三参数,所述第三参数用于确定所述每个上行初始接入部分带宽的子载波间隔;所述网络设备向所述终端设备发送所述第三参数。
网络设备通过上述各种可能的实现方式中配置第一上行初始接入部分带宽的频带带宽的方式配置每个上行初始接入部分带宽的子载波间隔,提高了指示子载波间隔的灵活性。
在一些可能的实现方式中,所述第三参数指示所述每个上行初始接入部分带宽的子载波间隔。
在一些可能的实现方式中,所述第三参数包括第一上行初始接入部分带宽的子载波间隔,且所述第三参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的子载波间隔相同,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
在一些可能的实现方式中,第一上行初始接入部分带宽的子载波间隔是由所述网络设备根据随机接入消息1的子载波间隔、随机接入消息2的子载波间隔、随机接入消息4的子载波间隔、随机接入消息3对应的上行控制信道的子载波间隔、随机接入消息4对应的上行控制信道的子载波间隔、系统信息块SIB的子载波间隔、剩余的最小系统信息RMSI的子载波间隔、同步块SS的子载波间隔、物理广播信道PBCH的子载波间隔、下行初始接入带宽的子载波间隔、广播控制信道BPCH的子载波间隔和载波频率中的至少一项确定的,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
网络设备可以根据上述各种方式确定第一上行初始接入部分带宽的子载波间隔,提高确定子载波间隔的灵活性。
在一些可能的实现方式中,所述第三参数包括多个索引值,所述多个索引值与所述N个上行初始接入部分带宽的子载波间隔一一对应,且所述多个索引值与多个参考子载波间隔一一对应。
网络设备通过一个索引值同时指示上行初始接入部分带宽的子载波间隔和参考子载波间,节省了信令开销。
第二方面,提供了一种资源分配的方法,该方法包括:终端设备接收第一参数,所述第一参数用于确定N个上行初始接入部分带宽中的每个上行初始接入部分带宽的频带带宽,其中,N≥2,且所述N为正整数;所述终端设备根据所述第一参数,确定所述N个上行初始接入部分带宽中的目标上行初始接入部分带宽,所述目标上行初始接入部分带宽用于随机接入。
终端设备接收第一参数,并根据该第一参数确定该多个上行初始接入部分带宽中的用于随机接入的目标初始接入部分带宽,从而提高随机接入的效率。
在一些可能的实现方式中,所述终端设备根据所述第一参数,确定所述N个上行初始接入部分带宽中的目标上行初始接入部分带宽包括:所述终端设备根据所述第一参数,确定所述N个上行初始接入部分带宽中的每个上行初始接入部分带宽的频域资源位置;所述终端设备确定所述N个上行初始接入部分带宽中的目标上行初始接入部分带宽的频域资 源位置。
终端设备可以先确定出N个上行初始接入部分带宽中每个上行初始接入部分带宽的频域资源位置,再从该多个上行初始接入部分带宽选择目标上行初始接入部分带宽,提高了选择目标上行初始接入部分带宽的灵活性。
在一些可能的实现方式中,所述第一参数包括上行信道带宽和第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
这样避免单独指示每个上行初始接入部分带宽的频带带宽,节省了信令开销。
在一些可能的实现方式中,所述第一参数包括所述N和所述第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
这样网络设备可以通过第一参数灵活的设定第一上行初始接入部分带宽的数目。
在一些可能的实现方式中,所述第一参数包括所述N和所述每个上行初始接入部分带宽的频带宽度。
这样网络设备可以通过第一参数灵活的设定N个上行初始接入部分带宽的各个上行初始接入部分带宽的频带宽度,提高了配置上行初始接入部分带宽的灵活性。
在一些可能的实现方式中,所述方法还包括:所述终端设备接收第二参数,所述第二参数用于确定所述每个上行初始接入部分带宽的频域起始位置或者上行信道号。
终端设备根据第二参数能够确定每个上行初始接入部分带宽的频域起始位置,进而确定每个上行初始接入部分带宽的频域位置,提高了确定的上行初始接入部分带宽的可靠性。
在一些可能的实现方式中,所述第二参数包括第一个上行初始接入部分的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目,且所述第二参数指示所述N个上行初始接入部分带宽为连续的。
终端设备能够根据第一个上行初始接入部分的频域起始位置确定另外N-1个频域起始位置,避免单独指示每个上行初始接入部分的频域起始位置,节省了信令开销。
在一些可能的实现方式中,所述第二参数包括第一个上行初始接入部分带宽的频域起始位置,且所述第二参数指示所述N个上行初始接入部分带宽为连续的。
终端设备能够根据第一个上行初始接入部分的频域起始位置可以确定出另外N-1个频域起始位置,避免单独指示每个上行初始接入部分的频域起始位置,节省了信令开销。
在一些可能的实现方式中,所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目。
终端设备通过与某一个上行信道带宽的频域起始位置的偏移参考子载波间隔的数目确定每个上行初始接入部分带宽的频域起始位置,避免网络设备直接指示上行初始接入部分带宽的频域起始位置,从而节省了信令开销。
在一些可能的实现方式中,所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置或者上行信道号。
这样N个上行初始接入部分带宽的频域位置可以灵活设定的,提高了网络设备指示的灵活性。
在一些可能的实现方式中,所述方法还包括:所述终端设备接收指示信息,所述指示信息用于指示第一频域资源的频域起始位置相对于第一上行初始接入部分带宽的频域起始位置偏移的参考子载波间隔的数目,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
终端设备可以通过与某一个上行初始接入部分带宽的频域起始位置的偏移参考子载波间隔的数目确定第一频域资源的频域起始位置,网络设备避免直接指示第一频域资源的频域起始位置,节省了信令开销。
第三方面,提供了一种随机接入的方法,该方法包括:终端设备确定多个上行初始接入部分带宽中的目标上行初始接入部分带宽;所述终端设备在所述目标上行初始接入部分带宽,进行随机接入。
在一些可能的实现方式中,所述多个上行初始接入部分带宽与多个终端设备的状态一一对应,所述终端设备确定所述多个上行初始接入部分带宽中的目标上行初始接入部分带宽包括:所述终端设备根据当前的状态,确定所述目标上行初始接入部分带宽。
在一些可能的实现方式中,所述多个上行初始接入部分带宽与参考信号接收功率RSRP的多个阈值范围一一对应,所述终端设备确定所述多个上行初始接入部分带宽中的目标上行初始接入部分带宽包括:所述终端设备根据下行信号的RSRP值,确定所述目标上行初始接入部分带宽。
在一些可能的实现方式中,所述多个上行初始接入部分带宽与随机接入消息3占用的比特位大小的多个阈值范围一一对应,所述终端设备确定所述多个上行初始接入部分带宽中的目标上行初始接入部分带宽包括:所述终端设备根据随机接入消息3占用的比特位的大小,确定所述目标上行初始接入部分带宽。
在一些可能的实现方式中,所述多个上行初始接入部分带宽与多种业务类型一一对应,所述终端设备确定所述多个上行初始接入部分带宽中的目标上行初始接入部分带宽包括:所述终端设备根据当前的业务类型,确定所述目标上行初始接入部分带宽。
第四方面,提供了一种随机接入的方法,其特征在于,包括:终端设备接收第一指示信息,所述第一指示信息用于指示第一频域资源相对于上行初始接入部分带宽的频域起始位置偏移的第一子载波间隔的数目;所述终端设备根据所述偏移的第一子载波间隔的数目和所述上行初始接入部分带宽的频域起始位置,确定所述第一频域资源的频域位置。
在一些可能的实现方式中,所述方法还包括:所述终端设备接收第二指示信息,所述第二指示信息指示所述上行初始接入部分带宽相对于所述上行信道带宽的频域起始位置偏移的第二子载波间隔的数目;所述终端设备根据所述偏移的第二子载波间隔的数目和所述上行信道带宽的频域起始位置,确定所述上行初始接入部分带宽的频域起始位置或者上行信道号。
在一些可能的实现方式中,所述偏移的第一子载波间隔的数目小于或等于预设阈值。
在一些可能的实现方式中,所述第一频域资源为随机接入资源、随机接入消息3和随机消息4对应的上行控制信道的频域资源中的任一项。
第五方面,提供了一种随机接入重传的方法,其特征在于,包括:终端设备确定在第 一上行初始接入部分带宽上发送随机接入消息1失败次数;所述终端设备在所述失败次数为K时,在第二上行初始接入部分带宽上发送所述随机接入消息1,K为预设的正整数。
在一些可能的实现方式中,所述第一上行初始接入部分带宽与所述第二上行初始接入部分带宽为同一个载波频率上的不同上行初始接入部分带宽。
在一些可能的实现方式中,所述第一上行初始接入部分带宽与所述第二上行初始接入部分带宽为不同载波频率上的上行初始接入部分带宽。
在一些可能的实现方式中,若所述终端设备在所述第一上行初始接入部分带宽上采用第一参数发送所述随机接入消息1,所述第一参数包括第一波束方向、第一下行同步信号块和第一发送功率中的至少一项,则所述终端设备在第二上行初始接入部分带宽上发送所述随机接入消息1包括:所述终端设备在所述第二上行初始接入部分带宽上采用第二参数发送所述随机接入消息1,所述第二参数包括第二波束方向、第二下行同步信号块和第二发送功率中的至少一项。
在一些可能的实现方式中,所述终端设备在所述第二上行初始接入部分带宽上发送所述随机接入消息1包括:所述终端设备在所述第二上行初始接入部分带宽上发送M次所述随机接入消息1,M为预设的正整数。
第六方面,提供了一种资源分配的方法,其特征在于,网络设备确定第一参数,所述第一参数用于确定N个随机接入机会,其中N≥2,且所述N为正整数;所述网络设备向终端设备发送所述第一参数。
随机接入机会用于发送一个随机接入前导所需要的时间、频率资源。即网络设备确定第一参数,该第一参数用于确定多个随机接入机会中每个随机接入机会,并向终端设备发送该第一参数使得终端设备根据该第一参数确定该多个随机接入机会中的目标随机接入机会,从而提高随机接入的效率。
在一些可能的实现方式中,所述第一参数包括目标随机接入机会对应的随机接入消息3和/或随机接入消息4对应的上行控制信道的频率范围。
网络设备向终端设备发送该第一参数和随机接入消息2,终端设备根据该第一参数和接收到的随机接入消息2确定随机接入消息3和/或随机接入消息4对应的上行控制信道的频率位置,从而提高随机接入的效率。
在一些可能的实现方式中,网络设备向终端设备发送随机接入消息2,终端设备根据随机接入消息2和目标随机接入机会的频域位置,确定随机接入消息3和/或随机接入消息4对应的上行控制信道的频率位置。
在一些可能的实现方式中,所述第一参数包括所述多个随机接入机会的频域起始位置和/或上行信道号。
在一些可能的实现方式中,所述第一参数包括所述目标随机接入机会对应的随机接入消息3和/或随机接入消息4对应的上行控制信道的频率范围的指示信息,该指示信息用于终端设备根据该指示信息和随机接入消息2确定随机接入消息3和/或随机接入消息4对应的上行控制信道的频率位置。
第七方面,提供了一种资源分配的方法,该方法包括:终端设备接收第一参数,所述第一参数用于确定N个随机接入机会,其中N≥2,且所述N为正整数;所述终端设备根据所述第一参数,确定所述N个随机接入机会中的目标随机接入机会,所述目标随机接入 机会用于随机接入。
即终端设备接收第一参数,并根据该第一参数确定多个随机接入机会中每个随机接入机会中用于随机接入的目标随机接入机会,从而提高随机接入的效率。
在一些可能的实现方式中,终端设备还根据所述目标随机接入机会的频率位置确定目标随机接入机会对应的随机接入消息3和/或随机接入消息4对应的上行控制信道的频率范围,从而避免终端需要操作在过宽的频带,并且降低信令开销和复杂度。
可选地,终端设备还根据接收到的随机接入消息2和目标随机接入机会的频率位置确定随机接入消息3和/或随机接入消息4对应的上行控制信道的频率位置,从而提高随机接入的效率。在一些可能的实现方式中,所述第一参数包括所述多个随机接入机会的频域起始位置或者上行信道号。
在一些可能的实现方式中,所述第一参数包括所述目标随机接入机会对应的随机接入消息3和/或随机接入消息4对应的上行控制信道的频率范围的指示信息,终端设备根据该指示信息和随机接入消息2确定随机接入消息3和/或随机接入消息4对应的上行控制信道的频率位置。
第八方面,提供了一种资源分配的装置,该装置可以是网络设备,也可以是网络设备内的芯片。该装置具有实现上述第一方面或第六方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,当该装置为网络设备时,网络设备包括:处理模块和收发模块,所述处理模块例如可以是处理器,所述收发模块例如可以是收发器,所述收发器包括射频电路。可选地,所述网络设备还包括存储模块,该存储模块例如可以是存储器。当网络设备包括存储模块时,该存储模块用于存储计算机执行指令,该处理模块与该存储模块连接,该处理模块执行该存储模块存储的计算机执行指令,以使该网络设备执行上述第一方面或第六方面任意一项的资源分配的方法。
在另一种可能的设计中,当该装置为网络设备内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储模块存储的计算机执行指令,以使该终端内的芯片执行上述第一方面或第六方面任意一项的资源分配的方法。可选地,所述存储模块为所述芯片内的存储模块,如寄存器、缓存等,所述存储模块还可以是所述网络设备内的位于所述芯片外部的存储模块,如只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储设备,随机存取存储器(random access memory,RAM)等。
其中,上述任一处提到的处理器,可以是一个通用中央处理器(CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制上述第一方面或第六方面的资源分配的方法的程序执行的集成电路。
第九方面,本申请提供一种资源分配的装置,该装置可以是终端设备,也可以是终端设备内的芯片。该装置具有实现上述第二方面、第三方面、第四方面和第五方面中任一方面的各实施例的功能。该功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。该硬件或软件包括一个或多个与上述功能相对应的单元。
在一种可能的设计中,当该装置为终端设备时,终端设备包括:处理模块和收发模块,所述处理模块例如可以是处理器,所述收发模块例如可以是收发器,所述收发器包括射频电路,可选地,所述终端设备还包括存储模块,该存储模块例如可以是存储器。当终端设备包括存储模块时,该存储模块用于存储计算机执行指令,该处理模块与该存储模块连接,该处理模块执行该存储模块存储的计算机执行指令,以使该终端设备执行上述第二方面、第三方面、第四方面和第五方面中任一方面中的任意一项的资源分配的方法。
在另一种可能的设计中,当该装置为终端设备内的芯片时,该芯片包括:处理模块和收发模块,所述处理模块例如可以是处理器,所述收发模块例如可以是该芯片上的输入/输出接口、管脚或电路等。该处理模块可执行存储模块存储的计算机执行指令,以使该终端设备内的芯片执行上述第二方面、第三方面、第四方面和第五方面中任一方面中的任意一项的资源分配的方法。可选地,所述存储模块为所述芯片内的存储模块,如寄存器、缓存等,所述存储模块还可以是所述终端设备内的位于所述芯片外部的存储模块,如ROM或可存储静态信息和指令的其他类型的静态存储设备,RAM等。
其中,上述任一处提到的处理器,可以是一个CPU,微处理器,ASIC,或一个或多个用于控制上述第二方面、第三方面、第四方面和第五方面中任一方面中的资源分配的方法的程序执行的集成电路。
第十方面,提供了一种通信系统,该通信系统包括:上述第八方面的装置和上述第九方面的装置。
第十一方面,提供了一种计算机存储介质,该计算机存储介质中存储有程序代码,该程序代码用于指示执行上述第一方面至第七方面中的任一方面或其任意可能的实现方式中的方法的指令。
第十二方面,提供了一种包含指令的计算机程序产品,其在计算机上运行时,使得计算机执行上述第一方面至第七方面中的任一方面或其任意可能的实现方式中的方法。
基于上述方案,网络设备确定用于确定上行初始接入部分带宽的数目N和每个上行初始接入部分带宽的频带带宽的第一参数,并向终端设备发送该第一参数使得终端设备根据该第一参数确定该N个上行初始接入部分带宽中的目标初始接入部分带宽,从而提高随机接入的效率。
附图说明
图1示出了本申请一个应用场景的示意图;
图2示出了本申请一个实施例的资源分配的方法的示意性流程图;
图3示出了本申请另一个资源分配的方法的示意图;
图4示出了本申请又一个资源分配的方法的示意图;
图5示出了本申请一个实施例的随机接入的方法的示意性流程图;
图6示出了本申请一个实施例的随机接入的方法的示意图;
图7示出了本申请另一个实施例的随机接入的方法的示意图;
图8示出了本申请又一个实施例的随机接入的方法的示意图;
图9示出了本申请另一个实施例的随机接入的方法的示意性流程图;
图10示出了本申请又一个实施例的随机接入的方法的示意图;
图11示出了本申请又一个实施例的随机接入重传的方法的示意性流程图;
图12示出了本申请一个实施例的资源分配的装置的示意性框图;
图13示出了本申请一个实施例的资源分配的装置的示意性结构图;
图14示出了本申请另一个实施例的资源分配的装置的示意性框图;
图15示出了本申请另一个实施例的资源分配的装置的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、LTE频分双工(Frequency Division Duplex,FDD)系统、LTE时分双工(Time Division Duplex,TDD)、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、全球互联微波接入(Worldwide Interoperability for Microwave Access,WiMAX)通信系统、未来的第五代(5th Generation,5G)系统或新无线(New Radio,NR)等。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的终端设备等,本申请实施例对此并不限定。
本申请实施例中的网络设备可以是用于与终端设备通信的设备,该网络设备可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),还可以是云无线接入网络(Cloud Radio Access Network,CRAN)场景下的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备或者未来演进的PLMN网络中的网络设备等,本申请实施例并不限定。
图1是本申请一个应用场景的示意图。图1中的通信系统可以包括用户设备10和网络设备20。网络设备20用于为用户设备10提供通信服务并接入核心网,用户设备10通过搜索网络设备20发送的同步信号、广播信号等而接入网络,从而进行与网络的通信。图1中所示出的箭头可以表示通过用户设备10与网络设备20之间的蜂窝链路进行的上/下行传输。
LTE系统的初始接入过程包括随机接入过程,随机接入过程需要通过上行信道传输上行数据。在LTE的频分双工(frequency division duplexing,FDD)模式的下行系统信息中, 包括上行信道带宽以及上行信道号(absolute radio frequency channel number,ARFCN),终端可以根据ARFCN确定上行信道的中心频点位置,再结合上行信道带宽确定上行信道所在的具体频域资源位置。上行信道带宽支持6种模式:6,15,25,50,75以及100,单位为资源块(resource block,RB),每个RB的带宽为180kHz。网络设备只能为一个小区配置上述6种上行信道带宽模式中的一种模式。LTE的上行初始接入带宽在上行信道带宽的覆盖范围内。
表1示出了NR中上行传输可能支持的最大带宽。由于NR中的最大带宽远大于LTE的带宽,为了降低配置时的信令开销,NR中引入了部分带宽(bandwidth part,BWP),部分带宽为信道带宽中的一部分。在上行场景中,涉及上行初始接入部分带宽,该上行初始接入部分带宽用于终端设备的随机接入。其中,上行信道的频域资源位置也可以与LTE类似,即通过ARFCH和上行信道带宽确定。
表1
Figure PCTCN2018115632-appb-000001
但是,网络设备对于NR中支持的多个上行初始接入部分带宽如何为终端设备进行配置,亟待解决。
图2示出了本申请一个实施例的资源分配的方法的示意性流程图。
本申请实施例应用于一个上行信道包括多个上行初始接入部分带宽的通信系统中。下述实施例以某一个上行信道为例进行说明,但本申请并不限于此。
201,网络设备确定第一参数,该第一参数用于确定上行初始接入部分带宽的数目N和每个上行初始接入部分带宽的频带带宽,其中,N≥2,且所述N为正整数。
也就是说,第一参数用于确定多个上行初始接入部分带宽中每个上行初始接入部分带宽的频带带宽。
上行初始接入部分带宽(initial active uplink bandwidth part),是指用来发送随机接入消息3、随机接入消息4对应的上行控制信道的频带。
可选地,随机接入消息1(对应的随机接入机会或者频率资源)位于上行初始接入部分带宽内。
可选地,该第一参数还可以包括循环前缀的类型,帧结构配置索引,随机接入配置索引、下行同步块(SS/PBCH Block)信息、下行同步块集周期、随机接入配置周期以及时隙结构信息(slot format information,SFI)、上行信道号ARFCN中的至少一项。其中,帧结构配置索引用于指示下行子帧的数量,随机接入配置索引用于指示前导格式。
可选地,该第一参数可以间接指示该上行初始接入部分带宽的数目,即该第一参数可以包括上行信道带宽(CBW)和第一上行初始接入部分带宽的频带带宽(bandwidth part,BWP),且该第一参数指示该N个上行初始接入部分带宽的频带带宽相同。这样该数目N为上行信道带宽能够包括的最多的上行初始接入部分带宽的数目。
需要说明的是,该第一上行初始接入部分带宽为该N个上行初始接入部分带宽的任一个上行初始接入部分带宽,在不作特别说明的情况下,下述实施例中的第一上行初始接入部分带宽的含义与上述第一上行初始接入部分带宽的含义相同。
可选地,所述第一参数可以直接指示该上行初始接入部分带宽的数目,即第一参数包括所述N和所述第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同。
应理解,第一参数指示包括的数目N可以不是上行信道带宽能够包括的上行初始接入部分带宽的最大值。
可选地,第一参数可以包括N和每个上行初始接入部分带宽的频带宽度。这样网络设备可以通过第一参数灵活的设定N个上行初始接入部分带宽的各个上行初始接入部分带宽的频带宽度。
应理解,上述实施例中,该N个上行初始接入部分带宽的频域起始位置可以是网络设备与终端设备预先约定的频域位置,也可以是与上行信道带宽的起始位置相同。
可选地,第一参数还可以指定上行初始接入部分带宽的频率位置,或者指定上行信道号ARFCN,根据ARFCN确定上行初始接入部分带宽的频率位置,或者指定下行初始接入带宽和/或者下行同步信号块的频率位置,根据下行初始接入带宽和/或者下行同步信号块的绝对频率位置确定上行初始接入部分带宽的频率位置(例如在时分双工方式中,下行初始接入带宽的中心频率位置与上行初始接入部分带宽的中心频率位置相同)。例如,如图3所示。根据第一参数,确定f0、f1、f2、f3、f4、f5、f6、f7、f8中的至少一个。其中f0为上行信道带宽内的第一个上行初始接入部分带宽的起始位置,f1为上行信道带宽内的第一个上行初始接入部分带宽的中间位置,f2为上行信道带宽内的第一个上行初始接入部分带宽的结束位置;f3为上行信道带宽内的第i个上行初始接入部分带宽的起始位置,f4为上行信道带宽内的第i个上行初始接入部分带宽的中间位置,f5为上行信道带宽内的第i个上行初始接入部分带宽的结束位置,其中i为预配置的固定值,例如为N/2-1,或者基站配置指定的值;f6为上行信道带宽内的第N个上行初始接入部分带宽的起始位置,f7为上行信道带宽内的第N个上行初始接入部分带宽的中间位置,f8为上行信道带宽内的第N个上行初始接入部分带宽的结束位置。
应理解,图3中,上行信道带宽与上行初始接入部分带宽的相对位置可以由基站另行通知,或者不需要通知,例如相对位置为预设值或者在第一参数之后通过其它参数通知。
应理解,图3中各个上行初始接入部分带宽之间可以相互部分重叠(overlap)或者相互之间有间隔。此时,重叠的上行初始接入部分带宽之间的带宽、起始位置、中心位置中的至少一项的区别为预设值,例如上行初始接入部分带宽的中心位置相同;或者根据基站指示确定;相互之间的间隔根据预设和/或者基站指定的规则和/或参数确定。
应理解,图3中各个上行初始接入部分带宽的频带宽度和/或子载波间隔可以一样,也可以不一样,具体实施方式可以是以上任意实施例的方式,这里不再赘述。
可选地,网络设备还可以确定第二参数,该第二参数用于确定每个上行初始接入部分带宽的频域起始位置,网络设备向终端设备发送该第二参数。
可选地,该第二参数可以直接指示第一个上行初始接入部分带宽的频域起始位置,例如,该第二参数包括第一个上行初始接入部分的频域起始位置,且该第二参数指示该N个上行初始接入部分带宽为连续的。也就是说,第一个上行初始接入部分带宽的频域结束位置即为第二个上行初始接入部分带宽的频域起始位置,这样根据第一个上行初始接入部分的频域起始位置可以确定出另外N-1个频域起始位置。
可选地,该第二参数可以间接指示第一个上行初始接入部分带宽的频域起始位置,例如,第二参数包括第一个上行初始接入部分带宽的频域起始位置相对于上行信道带宽的频域起始位置的偏移值,且该第二参数指示该N个上行初始接入部分带宽为连续的。
可选地,该偏移值可以偏移的参考子载波间隔的数目。
应理解,该参考子载波间隔可以与该第一个上行初始接入部分带宽的子载波间隔相同,也可以不相同。
可选地,该第二参数包括每个上行初始接入部分带宽的频域起始位置。这样N个上行初始接入部分带宽的频域位置可以灵活设定的,例如相邻上行初始接入部分带宽直接可以有间隔。
例如,N个上行初始接入部分带宽的子载波间隔为SCS 0,SCS 1,…,SCS N-1,第i个上行初始接入部分带宽对应第i个子载波间隔。
可选地,网络设备还可以确定第三参数,该第三参数用于确定每个上行初始接入部分带宽的子载波间隔,网络设备向终端设备发送该第三参数。例如第三参数为N个比特,以位图方式指示N个上行初始接入部分带宽的子载波间隔。
可选地,该第三参数可以直接指示每个上行初始接入部分带宽的子载波间隔,可以使得不同上行初始接入部分带宽的子载波间隔不同。
可选地,该第三参数也可以间接指示每个上行初始接入部分带宽的子载波间隔,具体地,第三参数包括N个上行初始接入部分带宽中任一个上行初始接入部分带宽的子载波间隔,且指示N个上行初始接入部分带宽的子载波间隔相同。
可选地,网络设备可以根据随机接入消息1的子载波间隔、随机接入消息2的子载波间隔、随机接入消息3的子载波间隔、指示随机接入消息3的下行控制信道的子载波间隔、随机接入消息4对应的上行控制信道的子载波间隔、第一系统信息块(system information block 1,SIB1)的子载波间隔、剩余最小系统信息(remaining minimum system information,RMSI)的子载波间隔、同步块SS的子载波间隔、物理广播信道PBCH的子载波间隔、广播控制信道(Broadcast Control Channel,BPCH)的子载波间隔和载波频率中的至少一项确定第一上行初始接入部分带宽的子载波间隔。
具体地,网络设备可以将随机接入消息1的子载波间隔作为第一上行初始接入部分带宽的子载波间隔。或者网络设备在随机接入消息1的子载波间隔小于或等于预设阈值时,将第一上行初始接入部分带宽的子载波间隔确定为一个固定值。例如,若随机接入消息1的子载波间隔小于或等于15kHz时,第一上行初始接入部分带宽的子载波间隔固定为15kHz。
网络设备可以将SIB1、最小系统信息、随机接入消息2、随机接入消息3、对应随机 接入消息3的控制信道和随机接入消息4对应的上行控制信道中任一项的子载波间隔的作为该第一上行初始接入部分带宽的子载波间隔。例如,将随机接入消息3和随机接入消息4对应的上行控制信道的子载波间隔作为该第一上行初始接入部分带宽的子载波间隔,此时应理解为该第一上行初始接入部分带宽与随机接入消息3和随机接入消息4对应的上行控制信道的子载波间隔相同且可以由同一个的指示信息指示,例如RMSI中的一个比特来指示。
网络设备可以将SS或PBCH信号的子载波间隔作为该第一上行初始接入部分带宽的子载波间隔,或者将SS或PBCH信号的子载波间隔取值的一半作为该第一上行初始接入部分带宽的子载波间隔。例如,若SS或PBCH信号的子载波间隔为15kHz或30kHz时,第一上行初始接入部分带宽的子载波间隔与SS或PBCH信号的子载波间隔相同;若该SS或PBCH信号的子载波间隔为240kHz时,第一上行初始接入部分带宽的子载波间隔为120kHz。
网络设备也可以根据载波频率确定第一上行初始接入部分带宽的子载波间隔,即网络设备可以预先设定第一上行初始接入部分带宽的子载波间隔与载波频率的阈值范围映射关系。
例如,载波频率小于3GHz对应第一上行初始接入部分带宽的子载波间隔为15kHz;载波频率大于或等于3GHz且小于或等于6GHz对应第一上行初始接入部分带宽的子载波间隔为30kHz;当载波频率大于6GHz对应第一上行初始接入部分带宽的子载波间隔为120kHz。
可选地,网络设备可以联合指示上行初始接入部分带宽的子载波间隔和上行初始接入部分带宽的参考子载波间隔。
具体地,网络设备设定一个索引值,每个索引值对应一个上行初始接入部分带宽的子载波间隔(SCS BWP=15×2 u1kHz,u 1为对应的子载波索引)和一个上行初始接入部分带宽的参考子载波间隔(SCS Ref=15×2 u2kHz,u 2为对应的子载波索引)。这样避免分别指示造成信令开销太大。
例如,在SCS BWP和SCS Ref取值为15kHz,30kHz,60kHz,120kHz,240kHz,480kHz,960kHz,如表2示出了索引值与SCS BWP和SCS Ref的对应关系。实际当中可以有更多选项,例如1920kHz,3840kHz。
表2
索引 SCS Ref SCS BWP 索引 SCS Ref SCS BWP 索引 SCS Ref SCS BWP
0 15kHz 15kHz 17 60kHz 120kHz 34 240kHz 960kHz
1 15kHz 30kHz 18 60kHz 240kHz 35 480kHz 15kHz
2 15kHz 60kHz 19 60kHz 480kHz 36 480kHz 30kHz
3 15kHz 120kHz 20 60kHz 960kHz 37 480kHz 60kHz
4 15kHz 240kHz 21 120kHz 15kHz 38 480kHz 120kHz
5 15kHz 480kHz 22 120kHz 30kHz 39 480kHz 240kHz
6 15kHz 960kHz 23 120kHz 60kHz 40 480kHz 480kHz
7 30kHz 15kHz 24 120kHz 120kHz 41 480kHz 960kHz
8 30kHz 30kHz 25 120kHz 240kHz 42 960kHz 15kHz
9 30kHz 60kHz 26 120kHz 480kHz 43 960kHz 30kHz
10 30kHz 120kHz 27 120kHz 960kHz 44 960kHz 60kHz
11 30kHz 240kHz 28 240kHz 15kHz 45 960kHz 120kHz
12 30kHz 480kHz 29 240kHz 30kHz 46 960kHz 240kHz
13 30kHz 960kHz 30 240kHz 60kHz 47 960kHz 480kHz
14 60kHz 15kHz 31 240kHz 120kHz 48 960kHz 960kHz
15 60kHz 30kHz 32 240kHz 240kHz      
16 60kHz 60kHz 33 240kHz 480kHz      
等价地,在u 1和u 2取值为0~6,如表3示出了索引值与SCS BWP对应的子载波索引u 1和SCS Ref对应的子载波索引u 2的对应关系。实际当中可以有更多选项,例如0~20。值得注意的是,实际当中可以只需要表2或3中的一部分组合。
表3
索引 u 1 u 2 索引 u 1 u 2 索引 u 1 u 2
0 0 0 17 2 3 34 4 6
1 0 1 18 2 4 35 5 0
2 0 2 19 2 5 36 5 1
3 0 3 20 2 6 37 5 2
4 0 4 21 3 0 38 5 3
5 0 5 22 3 1 39 5 4
6 0 6 23 3 2 40 5 5
7 1 0 24 3 3 41 5 6
8 1 1 25 3 4 42 6 0
9 1 2 26 3 5 43 6 1
10 1 3 27 3 6 44 6 2
11 1 4 28 4 0 45 6 3
12 1 5 29 4 1 46 6 4
13 1 6 30 4 2 47 6 5
14 2 0 31 4 3 48 6 6
15 2 1 32 4 4      
16 2 2 33 4 5      
202,网络设备向终端设备发送该第一参数。相应地,终端设备接收该第一参数。
可选地,网络设备可以通过专用信令发送该第一参数,也可以将该第一参数携带在其他信令中。
具体地,第一参数可以携带在无线资源控制(radio resource control,RRC)信令、系统信息(system information,SI)、剩余最小系统信息(remaining minimum system information, RMSI),第0系统信息块(system information block 0,SIB0)、第一系统信息块(system information block 1,SIB1)、媒体接入控制-控制元素(Medium access control-control element,MAC CE)信令、下行控制信息(downlink control information,DCI)、或物理下行控制信道(physical downlink control channel,PDCCH)指令等。
203,终端设备根据该第一参数,确定该N个上行初始接入部分带宽中的目标上行初始接入部分带宽。
可选地,终端设备根据该第一参数,确定该N个上行初始接入部分带宽的资源位置。再确定该N个上行初始接入部分带宽中的目标上行初始接入部分带宽,进而在该目标上行初始接入部分带宽上进行随机接入。
具体地,终端设备可以根据上行初始接入部分带宽的数目N和每个上行初始接入部分带宽的频带带宽,以及预先设定的该N个上行初始接入部分带宽的频域起始位置,确定该N个上行初始接入部分带宽的资源位置。
例如,在时分双工(time division duplexing,TDD)场景下,上行初始接入部分带宽和下行初始接入部分带宽可以形成一个配对,这样终端设备可以将下行初始接入部分带宽的第一位置,确定为该上行初始接入部分带宽的第一位置,而不需要专门配置上行初始接入部分带宽的频域起始位置。
应理解,该第一位置可以是中心频点位置,也可以是频域起始位置,或者频域结束位置,或者还可以是其他约定的位置,本申请对此不进行限定。
可选地,上行初始接入部分带宽的频带带宽实际取值可能会受该上行初始接入部分带宽中的子载波间隔影响,例如,BWP i=BWP×SCS i
可选地,上行初始接入部分带宽的频域起始位置(位于上行信道带宽中的位置,或者位于N个上行初始接入部分带宽中的位置)可能会受该上行初始接入部分带宽中的子载波间隔影响,例如,PRB i=PRB×SCS i
可选地,若第一参数包括上行信道带宽(CBW)和第一上行初始接入部分带宽的频带带宽(BWP),且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,则终端设备可以根据第一参数的上行信道带宽和第一上行初始接入部分带宽的频带带宽的比值确定上行初始接入部分带宽的数目N。
具体地,第一上行初始接入部分带宽为该N个上行初始接入部分带宽中任一个上行初始接入部分带宽。N个上行初始接入部分带宽是该上行信道带宽包括的所有上行初始接入部分带宽,在该场景下,该N个上行初始接入部分带宽中的第一个上行初始接入部分带宽的频域起始位置可以与该上行信道带宽的频域起始位置相同。相应地,其他上行初始接入部分带宽的频域起始位置可以与上一个上行初始接入部分带宽连续。
例如,N=floor(CBW/BWP),第i个上行初始接入部分带宽的频域起始位置为i×BWP,i=0,1,…,N-1。
可选地,第一参数可以包括N和所述第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同。则终端设备可以根据N和第一上行初始接入部分带宽的频带带宽确定N个上行初始接入部分带宽的频域资源位置。
可选地,第一参数可以包括N和每个上行初始接入部分带宽的频带宽度,这样终端设 备根据该第一参数确定可以具有不同频带宽度的上行初始接入部分带宽的频域资源位置。
可选地,第一参数还可以指定上行初始接入部分带宽的频率位置,或者指定上行信道号ARFCN,根据ARFCN确定上行初始接入部分带宽的频率位置,或者指定下行初始接入带宽和/或者下行同步信号块的频率位置,根据下行初始接入带宽和/或者下行同步信号块的绝对频率位置确定上行初始接入部分带宽的频率位置(例如在时分双工方式中,下行初始接入带宽的中心频率位置与上行初始接入部分带宽的中心频率位置相同)。
例如,如图4所示。根据第一参数,确定f0、f1、f2、f3、f4、f5、f6、f7、f8中的至少一个。其中f0为上行信道带宽内的第一个上行初始接入部分带宽的起始位置,f1为上行信道带宽内的第一个上行初始接入部分带宽的中间位置,f2为上行信道带宽内的第一个上行初始接入部分带宽的结束位置;f3为上行信道带宽内的第i个上行初始接入部分带宽的起始位置,f4为上行信道带宽内的第i个上行初始接入部分带宽的中间位置,f5为上行信道带宽内的第i个上行初始接入部分带宽的结束位置,其中i为预配置的固定值,例如为N/2-1,或者基站配置指定的值;f6为上行信道带宽内的第N个上行初始接入部分带宽的起始位置,f7为上行信道带宽内的第N个上行初始接入部分带宽的中间位置,f8为上行信道带宽内的第N个上行初始接入部分带宽的结束位置。
应理解,上行信道带宽与上行初始接入部分带宽的相对位置可以由基站另行通知,或者不需要通知,例如相对位置为预设值或者在第一参数之后通过其它参数通知。
例如,网络设备通过配置信息携带该第一参数,该第一参数用于确定的多个上行初始接入部分带宽在上行信道带宽内连续放置,基站配置信息如下:
Figure PCTCN2018115632-appb-000002
其中ul-CarrierFreq是上行信道号,ul-Bandwidth是上行初始接入部分带宽的频带宽度,ul-SubcarrierSpacing是上行初始接入部分带宽的子载波间隔,ul-NumberOfBWPs是上行初始接入部分带宽的个数,ul-PRBOffset是上行初始接入部分带宽的起始位置。
应理解,图4中各个上行初始接入部分带宽之间可以相互部分重叠(overlap)或者相互之间有间隔。此时,重叠的上行初始接入部分带宽之间的带宽、起始位置、中心位置中的至少一项的区别为预设值,例如上行初始接入部分带宽的中心位置相同;或者根据基站指示确定。
应理解,图4中各个上行初始接入部分带宽的频带宽度和/或子载波间隔可以一样,也可以不一样,具体实施方式可以是以上任意实施例的方式,这里不再赘述。
可选地,终端设备还可以接收第二参数,并根据该第二参数确定每个上行初始接入部分带宽的频域起始位置。
可选地,该第二参数可以直接指示每个上行初始接入部分带宽的频域起始位置。
具体地,该频域起始位置可以是上行信道带宽的频域起始位置,中心频点位置等,本申请对此不进行限定。该频域起始位置可以是某个具体的PRB。
例如,网络设备通过配置信息携带该第二参数,该第二参数用于确定多个上行初始接入部分带宽在上行信道带宽内可以任意放置,该配置信息可以如下:
Figure PCTCN2018115632-appb-000003
其中ul-CarrierFreq是指上行信道号,用于确定上行信道带宽的中心位置,ul-Bandwidth表示上行信道带宽,ul-SubcarrierSpacing表示上行初始接入部分带宽的子载波间隔。
可选地,该第二参数也可以间接指示每个上行初始接入部分带宽的频域起始位置,具体地,第二参数指示N个上行初始接入部分带宽是连续的,以及该第二参数包括该N个上行初始接入部分带宽中的第一个上行初始接入部分带宽的频域起始位置。这样终端设备可以根据该第二参数确定出每个上行初始接入部分带宽的频域起始位置。
例如,若第一个上行初始接入部分带宽的频域起始位置与上行信道带宽的频域起始位置相同,且N个上行初始接入部分带宽的频带带宽相同,则第i个上行初始接入部分带宽的起始位置为i×BWP,i=0,1,…,N-1。或者第一个上行初始接入部分带宽的频域起始位置与上行信道带宽的中心频点位置相同,则第i个上行初始接入部分带宽的起始位置为(CBW-N×BWP)/2+i×BWP,i=0,1,…,N-1。或者N个上行初始接入部分带宽均匀分布在上行信道带宽内,例如第i个上行初始接入部分带宽的起始位置为floor((2i+1)×CBW/2N))-BWP/2,i=0,1,…,N-1。
再例如,若第一个上行初始接入部分带宽的频域起始位置与上行信道带宽的频域起始位置相同,每个上行初始接入部分带宽的频带宽度为BWP 0,BWP 1,…,BWP N-1,则第i个上行初始接入部分带宽的起始位置为BWP 0+BWP 1+…+BWP N-1,i=0,1,…,N-1。
又例如,若第一个上行初始接入部分带宽的频域起始位置为PRB,每个上行初始接入部分带宽的频带宽度为BWP 0,BWP 1,…,BWP N-1,则第i个上行初始接入部分带宽的起始位置为PRB+BWP 0+BWP 1+…+BWP N-1,i=0,1,…,N-1。
又例如,网络设备通过配置信息携带该第二参数,该第二参数用于确定多个上行初始接入部分带宽分别对应的具体参数,该配置信息如下:
Figure PCTCN2018115632-appb-000004
…,
Figure PCTCN2018115632-appb-000005
…,
可选地,该第二参数指示N个上行初始接入部分带宽是连续的,且该第二参数包括第一个上行初始接入部分带宽的频域起始位置相对于上行信道带宽的频域起始位置的偏移值。终端设备根据该偏移值和上行信道带宽的频域起始位置可以确定第一个上行初始接入部分带宽的频域起始位置,再根据上行初始接入部分带宽的频带带宽确定其他上行初始接入部分带宽的起始位置,进而确定N个上行初始接入部分带宽中每个上行初始接入部分带宽的频域资源位置。
可选地,第二参数也可以包括每个上行接入部分的频域起始位置相对于上行信道带宽的频域起始位置偏移值。
可选地,该偏移值可以偏移的参考子载波间隔的数目。
可选地,终端设备接收第三参数,并根据第三参数确定每个上行信道带宽部分的子载波间隔。
可选地,第三参数可以指示每个上行信道带宽部分的子载波间隔,提高了指示的灵活性。
例如,网络设备通过配置信息携带该第三参数配置多个上行信道带宽中的多个上行初始接入部分带宽的子载波间隔,该配置信息如下:
Figure PCTCN2018115632-appb-000006
…,
又例如,网络设备通过配置信息配置多个上行信道带宽中的上行初始接入部分带宽具有相同的子载波间隔和频带带宽,该配置信息如下:
Figure PCTCN2018115632-appb-000007
…,
又例如,网络设备通过配置信息配置多个上行信道带宽中的每个上行信道带宽具有相同的频带带宽,该配置信息如下:
Figure PCTCN2018115632-appb-000008
…,
可选地,第三参数可以包括第一上行初始接入部分带宽的子载波间隔,且指示N个上行初始接入部分带宽的子载波间隔相同,终端设备将该第一上行初始接入部分带宽的子载波间隔作为该N个上行初始接入部分带宽中每个上行初始接入部分带宽的子载波间隔,节省了指示信令开销。
例如,终端设备在支持的多个上行初始接入部分带宽中选择一个进行随机接入,该多个上行初始接入部分带宽具有相同的频带宽度和子载波间隔(NR should support multiple initial active UL BWPs of same numerology and bandwidth,where UE can select one to perform random access)。
可选地,终端设备接收索引值,并根据该索引值在映射关系表中查找该索引值对应的SCS BWP和SCS Ref
因此,本申请实施例的资源分配的方法,网络设备确定用于确定上行初始接入部分带宽的数目N和每个上行初始接入部分带宽的频带带宽的第一参数,并向终端设备发送该第一参数使得终端设备根据该第一参数确定该N个上行初始接入部分带宽中的目标初始接入部分带宽,从而提高随机接入的效率。
图5示出了本申请一个实施例的随机接入的方法的示意性流程图。
本申请实施例应用于一个上行信道包括多个上行初始接入部分带宽的通信系统中。
应理解,本申请实施例与图2所示的实施例相同的术语可以表示相同的含义,为避免重复,在此不进行赘述。
301,终端设备确定多个上行初始接入部分带宽中的目标上行初始接入部分带宽。
具体地,终端设备确定多个上行初始接入部分带宽的方式可以是通过图2所述的实施例的方式,也可以是通过其他方式,本申请对此不进行限定。
应理解,该目标上行初始接入部分带宽可以是该多个上行初始接入部分带宽中的一个上行初始接入部分带宽。
可选地,多个上行初始接入部分带宽可以与多个终端设备的最大信道带宽能力(或者终端设备分类)一一对应,这样终端设备可以根据自己支持最大信道带宽,从多个上行初始接入部分带宽中选择目标上行初始接入部分带宽。例如,上行初始接入部分带宽1用于最大信道带宽不大于N1的终端设备,上行初始接入部分带宽2用于最大信道带宽能力不大于N2的终端设备,上行初始接入部分带宽3用于最大信道带宽能力不大于N3的终端设备,且N1<N2<N3。如果终端设备支持的最大信道带宽不大于N1,则选择上行初始接入部分带宽;或者终端设备支持的最大信道带宽大于N1且不大于N2,则选择上行初始接入部分带宽2;或者终端设备支持的最大信道带宽大于N2且不大于N3,则选择上行初始接入部分带宽3。在实际中,不限于以上3种情况,例如根据信道带宽能力分为2类,或者分为更多类。
可选地,多个上行初始接入部分带宽可以与多个终端设备的状态一一对应,这样终端设备可以根据自己当前的状态,从多个上行初始接入部分带宽中选择目标上行初始接入部分带宽。
具体地,终端设备的状态可以包括空闲状态、非激活状态和连接状态。终端设备可以和网络设备预先约定或者由网络设备配置每类终端设备的状态与上行初始接入部分带宽的映射关系,这样终端设备可以根据自己当前的状态以及上述映射关系,从该多个上行初始接入部分带宽中确定出目标上行初始接入部分带宽。
还应理解,不同的终端设备的状态可以对应同一个上行初始接入部分带宽,一类终端设备的状态也可以对应至少两个上行初始接入部分带宽。
例如,上行初始接入部分带宽1用于处于空闲状态的终端设备,上行初始接入部分带 宽2用于处于非激活态的终端设备,上行初始接入部分带宽3用于处于连接状态的终端设备。则终端设备从空闲状态发起随机接入时,使用上行初始接入部分带宽1;当终端设备从非激活状态发起随机接入时,使用上行初始接入部分带宽2;当终端设备从连接状态发起随机接入时,使用上行初始接入部分带宽3。
再例如,上行初始接入部分带宽1用于处于空闲状态的终端设备,上行初始接入部分带宽2用于处于非激活态的终端设备和处于连接状态的终端设备。则当终端设备从空闲状态发起随机接入时,使用上行初始接入部分带宽1;当终端设备从非激活状态或连接状态发起随机接入时,使用上行初始接入部分带宽2。
又例如,上行初始接入部分带宽1用于处于空闲状态的终端设备和非激活态的终端设备、上行初始接入部分带宽2用于处于连接状态的终端设备。当终端设备从空闲状态或非激活态发起随机接入时,使用上行初始接入部分带宽1;当终端设备从连接状态发起随机接入时,使用上行初始接入部分带宽2。
又例如,上行初始接入部分带宽1用于处于空闲状态和处于连接状态的终端设备、上行初始接入部分带宽2用于处于非激活状态的终端设备。当终端设备从空闲状态或连接状态发起随机接入时,使用上行初始接入部分带宽1;当终端设备从非激活状态发起随机接入时,使用上行初始接入部分带宽2。
可选地,多个上行初始接入部分带宽可以与参考信号接收功率(Reference Signal Receiving Power,RSRP)的多个阈值范围一一对应,这样终端设备可以根据下行信号的RSRP值,从多个上行初始接入部分带宽中选择目标上行初始接入部分带宽。
具体地,下行信号RSRP的阈值范围可以有多个,并且每个下行信号RSRP的阈值范围与至少一个上行初始接入部分带宽存在映射关系。这样终端设备可以根据接收到的下行信号的RSRP值以及映射关系,确定该多个上行初始接入部分带宽中的目标上行初始接入部分带宽。
例如,上行初始接入部分带宽1与RSRP大于阈值0,且小于阈值1的阈值范围1对应,上行初始接入部分带宽2与RSRP大于或等于阈值1,且小于阈值2的阈值范围2对应,上行初始接入部分带宽3与RSRP大于或等于阈值2,且小于阈值3的阈值范围3对应。则终端设备接收到的下行信号的RSRP的值在阈值范围1内,使用上行初始接入部分带宽1进行随机接入;若接收到的下行信号的RSRP的值在阈值范围2内,使用上行初始接入部分带宽2进行随机接入;若接收到的下行信号的RSRP的值在阈值范围3内,使用上行初始接入部分带宽3进行随机接入。
应理解,该下行信号RSRP的阈值范围与上行初始接入部分带宽存在的映射关系,可以是终端设备与网络设备预先约定的,也可以是网络设备配置的。
可选地,多个上行初始接入部分带宽与随机接入消息3占用的比特位大小的多个阈值范围一一对应,这样终端设备可以根据随机接入消息3占用的比特位的大小,确定该多个上行初始接入部分带宽中的目标上行初始接入部分带宽。
例如,上行初始接入部分带宽1用于随机接入消息3的大小小于或等于门限值1、上行初始接入部分带宽2用于随机接入消息3大于门限值1。当终端设备的随机接入消息3占用的比特位的大小小于门限值1时,使用上行初始接入部分带宽1;当终端设备的随机接入消息3占用的比特位的大小大于门限值1时,使用上行初始接入部分带宽2。
可选地,所述多个上行初始接入部分带宽与多种业务类型一一对应,这样终端设备可以根据当前的业务类型确定该多个上行初始接入部分带宽中的目标上行初始接入部分带宽。
具体地,业务类型可以分为两类,时延要求高的业务和时延要求低的业务。
例如,上行初始接入部分带宽1用于时延要求高的业务类型1、上行初始接入部分带宽2用于时延要求低的业务类型2。当终端设备的触发随机接入的是业务类型1时,使用上行初始接入部分带宽1;否则使用上行初始接入部分带宽2。
应理解,通常子载波间隔比较大的上行初始接入部分带宽用于时延要求高的业务类型,子载波间隔比较小的上行初始接入部分带宽用于时延要求低的业务类型。
可选地,终端设备可以从多个上行初始接入部分带宽中随机选择一个作为目标上行初始接入部分带宽。
可选地,终端设备可以按照等概率选择。
可选地,多个上行初始接入部分带宽可以与在接收到随机接入响应消息或者随机接入响应消息窗失效前允许发送的消息1(或者随机接入前导)的个数一一对应,这样终端设备可以根据需要发送的消息1的个数,从多个上行初始接入部分带宽中选择目标上行初始接入部分带宽。终端设备也可以根据检测到随机接入前导的随机接入资源所在的上行初始接入部分带宽,获取终端设备发送的消息1的个数。可选地,当终端设备发送多个消息1时,各个消息1在所选的初始接入部分带宽中的多个随机接入时间、频率、前导或者序列资源按照预定义的资源图案发送。
例如,上行初始接入部分带宽1中只允许终端设备在接收到随机接入响应消息或者随机接入响应消息窗失效前发送一个消息1,上行初始接入部分带宽2中允许终端设备在接收到随机接入响应消息或者随机接入响应消息窗失效前发送至少一个消息1。终端设备在需要进行波束扫描或者需要尽快接入网络时,选择上行初始接入部分带宽2进行随机接入,并且发送至少一个消息1。
302,终端设备在所述目标上行初始接入部分带宽上,进行随机接入。
具体地,终端设备在该目标上行初始接入部分带宽上完成初始接入过程,即随机接入消息1、随机接入消息3和随机接入消息4对应的上行控制信道都是在该目标上行初始接入部分带宽上完成的。
需要说明的是,随机接入消息1可以是进行多次传输时,将最后一次传输的上行初始接入部分带宽确定为目标上行初始接入部分带宽,该多次随机接入消息1可以在不同的上行初始接入部分带宽发送,但是随机接入消息3和随机接入消息4对应的上行控制信道需要在成功发送消息1的上行初始接入部分带宽内进行发送。
因此,本申请实施例的随机接入的方法,通过确定多个上行初始接入部分带宽中的目标上行初始接入部分带宽,并在该目标上行初始接入部分带宽,进行随机接入,提高了随机接入的效率。
在另外的实现方式中,网络设备确定第一参数,该第一参数用于确定上行信道带宽内的随机接入机会数目N、每个随机接入机会的频带带宽和/或子载波间隔、各个随机接入机会对应的随机接入消息3的调度位置、随机接入消息4对应的上行控制信道的调度位置、消息3和消息4对应的上行控制信道的频率范围BWP i中的至少一项,其中,N≥2,且所 述N为正整数。可选地,所述N个随机接入机会与同一个下行信号相关联。
随机接入机会又称为随机接入资源、随机接入时机(RACH occasion/RACH transmission occasion/RACH opportunity/RACH chance,RO),是指用来发送一个随机接入前导所需要的时间、频率资源。
可选地,BWP i为预设值。
可选地,该预设置根据载波频率范围、随机接入消息3的子载波间隔、随机接入消息1的子载波间隔、下行初始接入带宽的子载波间隔、随机接入消息2的子载波间隔、RMSI的子载波间隔、PBCH的子载波间隔中的至少一项确定。例如,载波频率在3GHz以下时,BWP i为k1个资源块RB;载波频率在3GHz以上且6GHz以下时,BWP i为k2个资源块RB;载波频率在6GHz以上时,BWP i为k3个资源块RB,其中k1,k2,k3属于非负整数。可选地,k1,k2,k3个资源块以相应的随机接入消息3的子载波间隔为参考。再例如,随机接入消息3子载波间隔在15kHz时,BWP i为k4个资源块RB;随机接入消息3子载波间隔在30kHz时,BWP i为k5个资源块RB;随机接入消息3子载波间隔在60kHz时,BWP i为k6个资源块RB;随机接入消息3子载波间隔在120kHz时,BWP i为k7个资源块RB。可选地,k4,k5,k6,k7个资源块以相应的随机接入消息3的子载波间隔为参考。
可选地,BWP i为根据基站配置信息、载波频率范围、随机接入消息3的子载波间隔、随机接入消息1的子载波间隔、下行初始接入带宽的子载波间隔、随机接入消息2的子载波间隔、RMSI的子载波间隔、PBCH的子载波间隔中的至少一项确定。
可选地,第一参数还可以指定随机接入机会的频率位置,或者上行信道号ARFCN,根据ARFCN确定上行初始接入部分带宽的频率位置,或者下行初始接入带宽和/或者下行同步信号块的频率位置,根据下行初始接入带宽和/或者下行同步信号块的绝对频率位置确定随机接入机会的频率位置(例如在时分双工方式中,下行初始接入带宽的中心频率位置与上行随机接入机会的中心频率位置相同)。
例如,如图6所示。根据第一参数,确定f0、f1、f2、f3、f4、f5、f6、f7、f8中的至少一个。其中f0为上行信道带宽内的第一个随机接入机会的起始位置,f1为上行信道带宽内的第一个随机接入机会的中间位置,f2为上行信道带宽内的第一个随机接入机会的结束位置;f3为上行信道带宽内的第i个随机接入机会的起始位置,f4为上行信道带宽内的第i个随机接入机会的中间位置,f5为上行信道带宽内的第i个随机接入机会的结束位置,其中i为预配置的固定值,例如为N/2-1,或者基站配置指定的值;f6为上行信道带宽内的第N个随机接入机会的起始位置,f7为上行信道带宽内的第N个随机接入机会的中间位置,f8为上行信道带宽内的第N个随机接入机会的结束位置。
应理解,图6中,上行信道带宽与随机接入机会的相对位置可以由基站另行通知,或者不需要通知,例如相对位置为预设值或者在第一参数之后通过其它参数通知。
应理解,图6中各个随机接入机会之间有间隔。此时,该间隔根据预定义和/或基站指示的参数和/或规则确定。
应理解,图6中各个随机接入机会的频带宽度和/或子载波间隔可以一样,也可以不一样,具体实施方式可以是以上任意实施例的方式,这里不再赘述。
终端设备根据该第一参数,确定该上行信道带宽内的N个随机接入机会中的目标随机接入机会。在目标随机接入机会上发送随机接入前导后,接收到对应的随机接入响应消息, 获取随机接入消息3的上行调度授权,根据上行调度授权以及所述目标随机接入机会的位置确定随机接入消息3的频率位置和随机接入消息4对应的上行控制信道的频率位置。具体地如图7所示,随机接入消息3的具体位置根据f0、随机接入消息2中的上行调度授权确定,例如上行调度授权指示的频率位置为f1,则随机接入消息3的具体位置为f0+f1。可选地,如果f0对应的子载波间隔SCS0与f1对应的子载波间隔SCS1不相同,则随机接入消息3的具体需要考虑SCS0和SCS1,例如f0×SCS0+f1×SCS1。应理解,此时随机接入消息3的在频域的具体位置位于随机接入机会的右边(即频率增大),或者可以理解为随机接入机会的频率f0是随机接入消息3所在频率调度范围的参考起始位置。
应理解,在另外的实现方式中,可以理解为随机接入机会的频率f0是随机接入消息3所在频率调度范围的参考结束位置、中间位置、或者其它指定位置。例如,随机接入机会的频率f0是随机接入消息3所在频率调度范围的参考结束位置。具体地,例如f0与f1的关系可以是f0-f1。再例如,随机接入机会的频率f0是随机接入消息3所在频率调度范围的中间位置,此时随机接入消息3的范围可以根据随机接入消息可能调度的最大频率范围BWPi确定,例如为f0+f1-floor(BWPi/2)。可选地,如果f0对应的子载波间隔SCS0与f1对应的子载波间隔SCS1不相同,则随机接入消息3的具体需要考虑SCS0和SCS1,例如f0×SCS0-f1×SCS1或者f0×SCS0+(f1-floor(BWPi/2))×SCS1。
可选地,第一参数还可以指定随机接入机会的频率位置,或者指定上行信道号ARFCN,根据ARFCN确定随机接入机会的频率位置,或者指定下行初始接入带宽和/或者下行同步信号块的频率位置,根据下行初始接入带宽和/或者下行同步信号块的绝对频率位置确定随机接入机会的频率位置(例如在时分双工方式中,下行初始接入带宽的中心频率位置与随机接入机会的中心频率位置相同)。例如,如图7所示。根据第一参数,确定f0、f1、f2、f3、f4、f5、f6、f7、f8中的至少一个。其中f0为上行信道带宽内的第一个随机接入机会的起始位置,f1为上行信道带宽内的第一个随机接入机会的中间位置,f2为上行信道带宽内的第一个随机接入机会的结束位置;f3为上行信道带宽内的第i个随机接入机会的起始位置,f4为上行信道带宽内的第i个随机接入机会的中间位置,f5为上行信道带宽内的第i个随机接入机会的结束位置,其中i为预配置的固定值,例如为N/2-1,或者基站配置指定的值;f6为上行信道带宽内的第N个随机接入机会的起始位置,f7为上行信道带宽内的第N个随机接入机会的中间位置,f8为上行信道带宽内的第N个随机接入机会的结束位置。
应理解,上行信道带宽与随机接入机会的相对位置可以由基站另行通知,或者不需要通知,例如相对位置为预设值或者在第一参数之后通过其它参数通知。
应理解,图8中各个随机接入机会之间可以相互部分重叠(overlap)或者相互之间有间隔。此时,重叠的随机接入机会之间的带宽、起始位置、中心位置中的至少一项的区别为预设值,例如随机接入机会的中心位置相同;或者根据基站指示确定。
应理解,图8中各个随机接入机会的频带宽度和/或子载波间隔可以一样,也可以不一样,具体实施方式可以是以上任意实施例的方式,这里不再赘述。
终端设备从N个随机接入机会中确定目标随机接入机会的方法,与本专利中多个上行初始接入部分带宽的确定方法相似,这里不再赘述。应理解,把所述的上行初始接入部分带宽替换成随机接入机会,即可工作。
终端设备从N个随机接入机会中确定目标随机接入机会并至少一次发送随机接入消息1的方法,与上行初始接入部分带宽中相同,这里不再赘述。应理解,把所述的上行初始接入部分带宽替换成随机接入机会,即可工作。
图9示出了本申请另一个实施例的随机接入的方法的示意性流程图。
本申请实施例应用于一个上行信道包括多个上行初始接入部分带宽的通信系统中。下述实施例中的上行初始接入部分带宽可以是该多个上行初始接入部分带宽中的任意一个。
应理解,本申请实施例与前述实施例相同的术语可以表示相同的含义,为避免重复,在此不进行赘述。
401,网络设备向终端设备发送第一指示信息,该第一指示信息用于指示第一频域资源相对于上行初始接入部分带宽的频域起始位置偏移的第一子载波间隔的数目。
具体地,第一子载波间隔可以是该上行初始接入部分带宽中的子载波间隔,也可以是参考子载波间隔,本申请对此不进行限定。
应理解,第一频域资源相对于上行初始接入部分带宽的频域起始位置偏移值可以以资源元素(resource element,RE,又称为资源粒子)为单位,本申请对此不进行限定。
应理解,该资源元素也可以称为子载波。
402,终端设备根据该偏移的第一子载波间隔的数目和该上行初始接入部分带宽的频域起始位置,确定该第一频域资源的频域位置。
可选地,该上行初始接入部分带宽的频域起始位置可以是终端设备接收第二指示信息,并根据该第二指示信息和上行信道带宽的频域起始位置确定的,其中第二指示信息用于指示该上行初始接入部分带宽的频域起始位置相对于上行信道带宽的频域起始位置偏移的第二子载波间隔的数目。
具体地,网络设备间接的指示上行初始接入部分带宽的频域起始位置,终端设备需要根据上行信道带宽的频域起始位置和偏移的第二子载波间隔的数目确定上行初始接入部分带宽的频域起始位置。
应理解,该第二指示信息可以是图2所示的实施例中的包括上行初始接入部分带宽的频域起始位置和上行信道带宽的频域起始位置的偏移值的第一参数。
还应理解,该第二子载波间隔和该第一子载波间隔可以相同,也可以不相同,本申请对此不进行限定。
例如,如图10所示,第一频域资源相对初始接入部分带宽的频域起始位置偏移的第一子载波间隔的数目为b,而初始接入部分带宽相对上行信道带宽的频域起始位置偏移的第二子载波间隔的数目为a,则该第一频域资源在上行信道带宽内的频域位置为a+b。
再例如,若上行信道带宽的频域起始位置为N SCS0,第一子载波间隔为SCS1,第二子载波间隔为SCS2,则F=(SCS1*F1+SCS2*F2+N SCS0)/SCS1,或者F=(SCS1*F1+SCS2*F2+N SCS0)/SCS2。
可选地,该第一频域资源可以是随机接入资源、随机接入消息3和随机消息4对应的上行控制信道的频域资源中的任一项。
具体地,该随机接入资源可以是发送随机接入消息2、随机接入消息3、随机接入消息4中的至少一项的频域资源。
例如,网络设备可以根据检测到的随机接入消息1所在的随机接入资源的频域位置, 生成随机接入消息2、调度随机接入消息3、接收随机接入消息4对应的上行控制信道。
可选地,第一频域资源相对于上初始接入部分带宽的频域起始位置偏移的第一子载波间隔的数目小于或等于预设阈值。
具体地,该预设阈值可以由网络设备根据上行信道带宽、上行信道带宽的载波频率位置或者ARFCN、上行信道的子载波间隔中的至少一项确定。例如,当上行信道载波频率小于3GHz时,预设阈值为25个RB(或者4MHz);当上行信道带宽的载波频率大于3GHz且小于6GHz时,预阈值为50个RB(或者10MHz);当上行信道带宽的载波频率大于6GHz时,预设阈值为100个RB(或者20MHz)。
因此,本申请实施例的随机接入的方法,网络设备向终端设备发送指示第一频域资源相对于上行初始接入部分带宽的频域起始位置偏移的第一子载波间隔的数目的第一指示信息,终端设备根据该偏移的第一子载波间隔的数目和该上行初始接入部分带宽的频域起始位置,确定该第一频域资源的频域位置,这样避免了直接指示第一频域资源在上行信道带宽的频域位置,节省了指示信道的资源开销。
图11示出了本申请又一个实施例的随机接入重传的方法的示意性流程图。
本申请实施例应用于一个上行信道包括多个上行初始接入部分带宽的通信系统中。下述实施例中的上行初始接入部分带宽可以是该多个上行初始接入部分带宽中的任意一个。
应理解,本申请实施例与前述实施例相同的术语可以表示相同的含义,为避免重复,在此不进行赘述。
601,终端设备确定在第一上行初始接入部分带宽上发送随机接入消息1的失败次数。
具体地,终端设备可以根据是否接收到随机接入消息1的反馈信息确定该随机接入消息1是否发送成功。
602,该终端设备在确定失败次数为预设次数K时,在第二上行初始接入部分带宽上发送该随机接入消息1。
具体地,该预设次数K可以由网络设备配置,也可以是终端设备确定,本申请对此不进行限定。第二上行初始接入部分带宽为与第一上行初始接入部分带宽不同的上行初始接入部分带宽。也就是说,终端设备在确定在第一上行初始接入部分带宽上发送随机接入消息1的失败次数达到预设次数K时,可以切换到第二上行初始接入部分带宽上发送该随机接入消息1,以便于终端设备能够成功发送该随机接入消息1,从而提高随机接入的效率。
可选地,该第一上行初始接入部分带宽与第二上行初始接入部分带宽可以是同一个载波频率上的不同上行初始接入部分带宽。
可选地,该上行初始接入部分带宽与第二上行初始接入部分带宽可以是不同载波频率上的不同上行初始接入部分带宽。
可选地,终端设备在该第一上行初始接入部分带宽上采用第一参数发送该随机消息1,则终端设备在该第二上行初始接入部分带宽上采用第二参数重新发送该随机接入消息1。
具体地,该第一参数可以包括第一波束方向、第一下行同步信号块和第一发送功率中的至少一项,而第二参数可以包括第二波束方向、第二下行同步信号块和第二发送功率中的至少一项。第一参数与第二参数不同,具体可以是第一参数与第二参数至少存在一项不同。
可选地,网络设备可以配置终端设备进行上行初始接入部分带宽切换的次数。
可选地,终端设备在第二上行初始接入部分带宽上没有成功发送该随机接入消息1后,还可以发送多次该随机接入消息1。
可选地,终端设备在第二上行初始接入部分带宽进行多次重传随机接入消息1时,采用的功率爬坡步长与终端设备在第一上行初始接入部分带宽采用的功率爬坡步长可以不相同。
具体地,终端设备在第二上行初始接入部分带宽上开始重传随机接入消息1时可以功率爬坡重置。
可选地,终端设备也可以根据网络设备指定的功率偏移值P offset、估计的路损PL和上一次随机接入消息1传输时采用的爬坡功率P ramp确定传输随机接入消息1的发送功率P。
具体地的,P=P offset+P ramp+PL。
可选地,终端设备也可以仅根据网络设备指定的功率偏移值P offset和估计的路损PL确定传输随机接入消息1的发送功率P,即P=P offset+PL。
因此,本申请实施例的随机接入重传的方法,终端设备在确定在第一上行初始接入部分带宽上发送随机接入消息1的失败次数达到预设次数K时,可以切换到第二上行初始接入部分带宽上发送该随机接入消息1,以便于终端设备能够成功发送该随机接入消息1,从而提高随机接入的效率。
上文详细介绍了本申请提供的资源分配的方法的示例。可以理解的是,终端设备和网络设备为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
本申请可以根据上述方法示例对终端设备和网络设备进行功能单元的划分,例如,可以对应各个功能划分各个功能单元,也可以将两个或两个以上的功能集成在一个处理单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。需要说明的是,本申请中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。
在采用集成的单元的情况下,图12示出了上述实施例中所涉及的网络设备的一种可能的结构示意图。网络设备1200包括:处理模块1202和收发模块1203。处理模块1202用于对网络设备1200的动作进行控制管理,例如,处理模块1202用于支持网络设备1200执行图2的步骤201和/或用于本文所描述的技术的其它过程。收发模块1203用于支持网络设备1200与其它通信设备的通信。网络设备1200还可以包括存储模块1201,用于存储网络设备1200的程序代码和数据。
例如,处理模块1202用于确定第一参数,所述第一参数用于确定上行初始接入部分带宽的数目N和每个上行初始接入部分带宽的频带带宽,其中,N≥2,且所述N为正整数;收发模块1203用于向终端设备发送所述第一参数。
处理模块1202可以是处理器或控制器,例如可以是中央处理器(central processing unit,CPU),通用处理器,数字信号处理器(digital signal processor,DSP),专用集成 电路(application-specific integrated circuit,ASIC),现场可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。收发模块1203可以是收发器、收发电路等。存储模块1201可以是存储器。
当处理模块1202为处理器,收发模块1203为收发器,存储模块1201为存储器时,本申请所涉及的网络设备可以为图13所示的网络设备。
参阅图13所示,该网络设备1300包括:处理器1302、收发器1303、存储器1301。其中,收发器1303、处理器1302以及存储器1301可以通过内部连接通路相互通信,传递控制和/或数据信号。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请提供的网络设备1200和网络设备1300,确定用于确定多个上行初始接入部分带宽中每个上行初始接入部分带宽的频带带宽的第一参数,并向终端设备发送该第一参数,使得终端设备根据该第一参数确定该多个上行初始接入部分带宽中的目标初始接入部分带宽,从而提高随机接入的效率。
在采用集成的单元的情况下,图14示出了上述实施例中所涉及的终端设备的一种可能的结构示意图。终端设备1400包括:处理模块1402和收发模块1403。处理模块1402用于对终端设备1400的动作进行控制管理,例如,处理模块1402用于支持终端设备1400执行图2的步骤203和/或用于本文所描述的技术的其它过程。收发模块1403用于支持终端设备1400与其它通信设备的通信。终端设备1400还可以包括存储模块1401,用于存储终端设备1400的程序代码和数据。
例如,收发模块1403用于接收第一参数,所述第一参数用于确定N个上行初始接入部分带宽中的每个上行初始接入部分带宽的频带带宽,其中,N≥2,且所述N为正整数;处理模块1402用于根据所述第一参数,确定所述N个上行初始接入部分带宽中的目标上行初始接入部分带宽,所述目标上行初始接入部分带宽用于随机接入。
处理模块1402可以是处理器或控制器,例如可以是CPU,通用处理器,DSP,ASIC,FPGA或者其他可编程逻辑器件、晶体管逻辑器件、硬件部件或者其任意组合。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。收发模块1403可以是收发器、收发电路等。存储模块1401可以是存储器。
当处理模块1402为处理器,收发模块1403为收发器,存储模块1401为存储器时,本申请所涉及的终端设备可以为图15所示的终端设备。
参阅图15所示,该终端设备1500包括:处理器1502、收发器1503、存储器1501。其中,收发器1503、处理器1502以及存储器1501可以通过内部连接通路相互通信,传递控制和/或数据信号。
本领域的技术人员可以清楚地了解到,为了描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本申请提供的终端设备1400和终端设备1500,接收第一参数,并根据该第一参数确定该多个上行初始接入部分带宽中的用于随机接入的目标初始接入部分带宽,从而提高随机接入的效率。
应理解,上述收发器可以包括发射机和接收机。收发器还可以进一步包括天线,天线的数量可以为一个或多个。存储器可以是一个单独的器件,也可以集成在处理器中。上述的各个器件或部分器件可以集成到芯片中实现,如集成到基带芯片中实现。
装置和方法实施例中的网络设备或终端设备完全对应,由相应的模块执行相应的步骤,例如发送模块方法或发射器执行方法实施例中发送的步骤,接收模块或接收器执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块或处理器执行。具体模块的功能可以参考相应的方法实施例,不再详述。
在本申请各个实施例中,各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请的实施过程构成任何限定。
另外,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随 机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种资源分配的方法,其特征在于,所述方法包括:
    网络设备确定第一参数,所述第一参数用于确定上行初始接入部分带宽的数目N和每个上行初始接入部分带宽的频带带宽,其中,N≥2,且所述N为正整数;
    所述网络设备向终端设备发送所述第一参数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一参数包括上行信道带宽和第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  3. 根据权利要求1所述的方法,其特征在于,所述第一参数包括所述N和所述第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  4. 根据权利要求1所述的方法,其特征在于,所述第一参数包括所述N和所述每个上行初始接入部分带宽的频带宽度。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备确定第二参数,所述第二参数用于确定所述每个上行初始接入部分带宽的频域起始位置;
    所述网络设备向所述终端设备发送所述第二参数。
  6. 根据权利要求5所述的方法,其特征在于,所述第二参数包括第一个上行初始接入部分的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目,且所述第二参数指示所述N个上行初始接入部分带宽为连续的;或
    所述第二参数包括第一个上行初始接入部分带宽的频域起始位置或者上行信道号,且所述第二参数指示所述N个上行初始接入部分带宽为连续的;或
    所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目;或
    所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述方法还包括:
    所述网络设备发送指示信息,所述指示信息用于指示第一频域资源的频域起始位置相对于第一上行初始接入部分带宽的频域起始位置偏移的参考子载波间隔的数目,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  8. 一种资源分配的方法,其特征在于,包括:
    终端设备接收第一参数,所述第一参数用于确定N个上行初始接入部分带宽中的每个上行初始接入部分带宽的频带带宽,其中,N≥2,且所述N为正整数;
    所述终端设备根据所述第一参数,确定所述N个上行初始接入部分带宽中的目标上行初始接入部分带宽,所述目标上行初始接入部分带宽用于随机接入。
  9. 根据权利要求8所述的方法,其特征在于,所述终端设备根据所述第一参数,确定所述N个上行初始接入部分带宽中的目标上行初始接入部分带宽包括:
    所述终端设备根据所述第一参数,确定所述N个上行初始接入部分带宽中的每个上行初始接入部分带宽的频域资源位置;
    所述终端设备确定所述N个上行初始接入部分带宽中的目标上行初始接入部分带宽的频域资源位置。
  10. 根据权利要求8或9所述的方法,其特征在于,所述第一参数包括上行信道带宽和第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  11. 根据权利要求8或9所述的方法,其特征在于,所述第一参数包括所述N和所述第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  12. 根据权利要求8或9所述的方法,其特征在于,所述第一参数包括所述N和所述每个上行初始接入部分带宽的频带宽度。
  13. 根据权利要求8至12中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收第二参数,所述第二参数用于确定所述每个上行初始接入部分带宽的频域起始位置或者上行信道号。
  14. 根据权利要求13所述的方法,其特征在于,所述第二参数包括第一个上行初始接入部分的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目,且所述第二参数指示所述N个上行初始接入部分带宽为连续的;或
    所述第二参数包括第一个上行初始接入部分带宽的频域起始位置,且所述第二参数指示所述N个上行初始接入部分带宽为连续的;或
    所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目;或
    所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置。
  15. 根据权利要求8至14中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备接收指示信息,所述指示信息用于指示第一频域资源的频域起始位置相对于第一上行初始接入部分带宽的频域起始位置偏移的参考子载波间隔的数目,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  16. 一种资源分配的装置,其特征在于,所述装置包括:
    处理模块,用于确定第一参数,所述第一参数用于确定上行初始接入部分带宽的数目N和每个上行初始接入部分带宽的频带带宽,其中,N≥2,且所述N为正整数;
    收发模块,用于向终端设备发送所述第一参数。
  17. 根据权利要求16所述的装置,其特征在于,所述第一参数包括上行信道带宽和第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入 部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  18. 根据权利要求16所述的装置,其特征在于,所述第一参数包括所述N和所述第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  19. 根据权利要求16所述的装置,其特征在于,所述第一参数包括所述N和所述每个上行初始接入部分带宽的频带宽度。
  20. 根据权利要求16至19中任一项所述的装置,其特征在于,所述处理模块,还用于确定第二参数,所述第二参数用于确定所述每个上行初始接入部分带宽的频域起始位置或者上行信道号;
    所述收发模块,还用于向所述终端设备发送所述第二参数。
  21. 根据权利要求20所述的装置,其特征在于,所述第二参数包括第一个上行初始接入部分的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目,且所述第二参数指示所述N个上行初始接入部分带宽为连续的;或
    所述第二参数包括第一个上行初始接入部分带宽的频域起始位置,且所述第二参数指示所述N个上行初始接入部分带宽为连续的;或
    所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目;或
    所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置或者上行信道号。
  22. 根据权利要求16至21中任一项所述的装置,其特征在于,所述收发模块,还用于发送指示信息,所述指示信息用于指示第一频域资源的频域起始位置相对于第一上行初始接入部分带宽的频域起始位置偏移的参考子载波间隔的数目,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  23. 一种资源分配的装置,其特征在于,包括:
    收发模块,用于接收第一参数,所述第一参数用于确定N个上行初始接入部分带宽中的每个上行初始接入部分带宽的频带带宽,其中,N≥2,且所述N为正整数;
    处理模块,用于根据所述第一参数,确定所述N个上行初始接入部分带宽中的目标上行初始接入部分带宽,所述目标上行初始接入部分带宽用于随机接入。
  24. 根据权利要求23所述的装置,其特征在于,所述处理模块具体用于:
    根据所述第一参数,确定所述N个上行初始接入部分带宽中的每个上行初始接入部分带宽的频域资源位置;
    确定所述N个上行初始接入部分带宽中的目标上行初始接入部分带宽的频域资源位置。
  25. 根据权利要求23或24所述的装置,其特征在于,所述第一参数包括上行信道带宽和第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  26. 根据权利要求23或24所述的装置,其特征在于,所述第一参数包括所述N和所述第一上行初始接入部分带宽的频带带宽,且所述第一参数指示所述N个上行初始接入部 分带宽中的任意两个上行初始接入部分带宽的频带带宽相同,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  27. 根据权利要求23或24所述的装置,其特征在于,所述第一参数包括所述N和所述每个上行初始接入部分带宽的频带宽度。
  28. 根据权利要求23至27中任一项所述的装置,其特征在于,所述装置还包括:
    所述终端设备接收第二参数,所述第二参数用于确定所述每个上行初始接入部分带宽的频域起始位置或者上行信道号。
  29. 根据权利要求28所述的装置,其特征在于,所述第二参数包括第一个上行初始接入部分的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目,且所述第二参数指示所述N个上行初始接入部分带宽为连续的;或
    所述第二参数包括第一个上行初始接入部分带宽的频域起始位置,且所述第二参数指示所述N个上行初始接入部分带宽为连续的;或
    所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置相对于上行信道带宽的频域起始位置偏移的参考子载波间隔的数目;或
    所述第二参数包括所述每个上行初始接入部分带宽的频域起始位置。
  30. 根据权利要求23至29中任一项所述的装置,其特征在于,所述收发模块,还用于接收指示信息,所述指示信息用于指示第一频域资源的频域起始位置相对于第一上行初始接入部分带宽的频域起始位置偏移的参考子载波间隔的数目,其中,所述第一上行初始接入部分带宽为所述N个上行初始接入部分带宽中的任一个上行初始接入部分带宽。
  31. 一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行如权利要求1至15中任一项所述的方法。
  32. 一种计算机程序产品,当其在计算机上运行时,使得计算机执行权利要求1至15中任一项所述的方法。
PCT/CN2018/115632 2017-11-17 2018-11-15 资源分配的方法和装置 WO2019096202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711147521.X 2017-11-17
CN201711147521.XA CN109803396A (zh) 2017-11-17 2017-11-17 资源分配的方法和装置

Publications (1)

Publication Number Publication Date
WO2019096202A1 true WO2019096202A1 (zh) 2019-05-23

Family

ID=66540076

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/115632 WO2019096202A1 (zh) 2017-11-17 2018-11-15 资源分配的方法和装置

Country Status (2)

Country Link
CN (1) CN109803396A (zh)
WO (1) WO2019096202A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4247075A4 (en) * 2020-12-18 2024-01-10 Guangdong Oppo Mobile Telecommunications Corp Ltd RESOURCE DETERMINATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3979750B1 (en) * 2019-08-01 2023-09-27 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Random access method and related device
CN112584539B (zh) * 2019-09-30 2023-01-13 华为技术有限公司 一种随机接入方法及装置
CN110958179B (zh) * 2019-11-27 2021-10-15 中国联合网络通信集团有限公司 终端部分带宽切换方法、装置及系统
CN113543226A (zh) * 2020-04-15 2021-10-22 中国移动通信有限公司研究院 一种信息接收方法、信息发送方法及设备
BR112022023177A2 (pt) * 2020-05-15 2023-01-03 Beijing Xiaomi Mobile Software Co Ltd Método para determinar uma parte de largura de banda de acesso inicial, primeiro terminal, e, dispositivo de rede de acesso
CN115699868A (zh) * 2020-07-29 2023-02-03 Oppo广东移动通信有限公司 重选初始带宽部分bwp的方法、终端设备和网络设备
WO2022021308A1 (zh) * 2020-07-31 2022-02-03 Oppo广东移动通信有限公司 带宽检查方法、装置、计算机设备及存储介质
CN115052343A (zh) * 2021-03-08 2022-09-13 华为技术有限公司 一种传输信息的方法及装置
CN113170475B (zh) * 2021-03-17 2023-08-01 北京小米移动软件有限公司 一种带宽部分配置方法、带宽部分配置装置及存储介质
CN115150968A (zh) * 2021-03-30 2022-10-04 大唐移动通信设备有限公司 随机接入方法、设备、装置及存储介质
CN115334677A (zh) * 2021-05-10 2022-11-11 华为技术有限公司 一种通信方法及装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005308A (zh) * 2006-01-17 2007-07-25 上海原动力通信科技有限公司 宽带时分双工移动通信系统的物理层随机接入方法
CN103825670A (zh) * 2012-11-16 2014-05-28 华为技术有限公司 工作窄带确定方法、终端设备及基站

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104885513A (zh) * 2013-01-21 2015-09-02 富士通株式会社 信息发送方法、检测方法及其装置
WO2017162022A1 (zh) * 2016-03-25 2017-09-28 中兴通讯股份有限公司 上行信息的发送、接收方法、装置、系统及存储介质
CN107295653B (zh) * 2016-03-31 2020-08-11 中兴通讯股份有限公司 一种载波中prb资源分配方法和装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101005308A (zh) * 2006-01-17 2007-07-25 上海原动力通信科技有限公司 宽带时分双工移动通信系统的物理层随机接入方法
CN103825670A (zh) * 2012-11-16 2014-05-28 华为技术有限公司 工作窄带确定方法、终端设备及基站

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Bandwidth part configuration and frequency resource allocation", R1-1710164, 30 June 2017 (2017-06-30), XP051299388 *
MEDIATEK INC: "Summary of Offline Discussion on Bandwidth Part Operation", R1-1716832, 21 September 2017 (2017-09-21), XP051353894 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4247075A4 (en) * 2020-12-18 2024-01-10 Guangdong Oppo Mobile Telecommunications Corp Ltd RESOURCE DETERMINATION METHOD, TERMINAL DEVICE AND NETWORK DEVICE

Also Published As

Publication number Publication date
CN109803396A (zh) 2019-05-24

Similar Documents

Publication Publication Date Title
WO2019096202A1 (zh) 资源分配的方法和装置
JP7055869B2 (ja) マルチキャリア通信のためのキャリア・スイッチング方法、装置およびシステム
JP7016404B2 (ja) リソース割り当て方法、端末及びネットワークデバイス
TWI812603B (zh) 數據傳輸方法和裝置
WO2019062003A1 (zh) 数据传输的方法、终端设备和网络设备
EP3641454B1 (en) Communication methods, network device, terminal device, computer readable storage medium and computer program product
US20160234713A1 (en) Information Transmission Method, Apparatus, and System
EP3873160B1 (en) Method and device for transmitting ssb in an unlicensed spectrum
EP2378812A2 (en) Method of handling system information reception and related communication device
US11778516B2 (en) Device category in 3GPP communications
JP2022538211A (ja) Bwpの管理方法および装置、端末
US11212809B2 (en) Method for wireless communication and terminal device
US20220030565A1 (en) Method and device for adjusting pdcch monitoring period
WO2023030514A1 (zh) 无线通信方法和通信装置
CN113424618A (zh) 一种通信方法、装置及计算机可读存储介质
CN113261385B (zh) 无线通信中的灵活下行链路控制信号监测
WO2019153266A1 (zh) 用于传输数据的方法和设备
WO2020248143A1 (zh) 监听控制信道的方法、终端设备和网络设备
US10660142B2 (en) Device and method of handling a radio resource control connection
WO2022183455A1 (zh) 一种随机接入资源确定方法、电子设备及存储介质
US10772040B2 (en) Wireless access method and apparatus
WO2020093403A1 (zh) 一种随机接入方法及装置、终端、基站
CN113543324B (zh) 一种目标信息发送方法、接收方法和装置
US11191010B2 (en) System information transmission method and apparatus
WO2021208981A1 (zh) 一种目标信息发送方法、接收方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18879674

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18879674

Country of ref document: EP

Kind code of ref document: A1