WO2024020764A1 - 电池单体、电池和用电设备 - Google Patents

电池单体、电池和用电设备 Download PDF

Info

Publication number
WO2024020764A1
WO2024020764A1 PCT/CN2022/107772 CN2022107772W WO2024020764A1 WO 2024020764 A1 WO2024020764 A1 WO 2024020764A1 CN 2022107772 W CN2022107772 W CN 2022107772W WO 2024020764 A1 WO2024020764 A1 WO 2024020764A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
electrode
battery cell
alkali metal
supplementary
Prior art date
Application number
PCT/CN2022/107772
Other languages
English (en)
French (fr)
Inventor
黄瑛
刘江
陈文伟
姚斌
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/107772 priority Critical patent/WO2024020764A1/zh
Priority to CN202280057956.8A priority patent/CN117941119A/zh
Publication of WO2024020764A1 publication Critical patent/WO2024020764A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, and in particular to a battery cell, a battery and electrical equipment.
  • Embodiments of the present application provide a battery cell, a battery and a power device, which can increase the battery capacity, enhance the safety of the battery, extend the service life of the battery, thereby improving the performance of the battery.
  • a battery cell including: an electrode assembly; a supplementary electrode used to supplement alkali metal ions for the battery cell; and an isolation film covering the supplementary electrode.
  • the first side is a surface facing the electrode assembly, and the isolation film is used to prevent the alkali metal ions from passing through.
  • the battery cell includes a supplementary electrode, which can not only supplement the loss of active alkali metal during use of the battery including the battery cell, improve the service life of the battery, but also supplement The loss of active alkali metal during the first charging of the battery increases the energy density of the battery.
  • the first surface of the supplementary electrode facing the electrode assembly is covered with an isolation film to prevent the alkali metal ions of the supplementary electrode from being released from the first side facing the electrode assembly and embedded in the electrode pole piece, resulting in local over-replenishment of the electrode pole piece.
  • Alkali metals may partially precipitate out of the alkali metals, thereby improving the safety of the battery. Therefore, the technical solution of the present application can improve the performance of the battery.
  • the alkali metal ions are lithium ions or sodium ions.
  • Lithium-ion batteries are widely used due to their large capacity, strong charge retention ability, long cycle life, and high safety.
  • the electrode materials used in sodium-ion batteries are mainly sodium salts. Sodium salt raw materials are abundant and cheap. Due to the characteristics of sodium salts, low-concentration electrolytes are allowed to be used, which can reduce production costs. Moreover, sodium ions have good thermal stability. Sodium-ion batteries have good thermal stability. Security is guaranteed.
  • the first surface is the surface with the largest surface area of the supplementary electrode.
  • the surface with the largest surface area of the supplementary electrode faces the electrode assembly, allowing the supplementary electrode and electrode assembly to be arranged more reasonably, saving the internal space of the battery cell, reducing the volume of the battery cell, and increasing the energy density of the battery.
  • the surface of the electrode assembly includes a planar portion, and the first surface faces the planar portion of the electrode assembly.
  • the electrode assembly includes a flat part, which can better utilize the space of the battery cell, thereby improving the energy density of the battery; in addition, the first surface of the supplementary electrode faces the flat part of the electrode assembly, making the supplementary electrode and the electrode assembly more reasonable Arranged on the ground, the internal space of the battery cell is saved, the volume of the battery cell is reduced, and the energy density of the battery is further improved.
  • the planar portion is the side with the largest surface area of the electrode assembly.
  • the side with the largest surface area of the electrode assembly is opposite to the side with the largest surface area of the supplementary electrode, which further saves the internal space of the battery cell, reduces the volume of the battery cell, and improves the energy density of the battery.
  • the battery cell includes at least two electrode assemblies, the at least two electrode assemblies are arranged along a first direction, and the supplementary electrode is disposed on two adjacent electrode assemblies. Between the electrode assemblies, the first surface is perpendicular to the first direction.
  • the supplementary electrode is arranged between two adjacent electrode assemblies to ensure that there are sufficient alkali metal ions in the battery cell and to ensure that the alkali metal ion content of each electrode assembly is similar to avoid local excess alkali metal ions in the battery cell.
  • the phenomenon of local precipitation of alkali metal from the electrode poles increases the safety of the battery.
  • the isolation film is a polymer film resistant to electrolyte corrosion.
  • the isolation membrane needs to be resistant to electrolyte corrosion, so as to avoid being corroded by the electrolyte and unable to effectively prevent the passage of alkali metal ions.
  • the polymer film is a polyester material film or a polyamide resin film.
  • Polyester material film and polyamide resin film have good electrical insulation, impact resistance, and corrosion resistance.
  • the polyester material film is made of polyethylene terephthalate (PET).
  • PET has excellent electrical insulation, and its electrical properties are still good even at high temperatures and high frequencies.
  • the supplementary electrode is in a sheet shape.
  • the supplementary electrode includes a current collector and an alkali metal, and the alkali metal is disposed on the surface of the current collector.
  • the supplementary electrode transmits current through the current collector and the positive or negative electrode of the battery cell, converts alkali metal into alkali metal ions, and supplements the battery cell with alkali metal ions.
  • a battery including: the battery cell in the above-mentioned first aspect or any possible implementation of the first aspect.
  • an electrical device including: the battery in the above second aspect or any possible implementation of the second aspect, where the battery is used to provide electrical energy.
  • the battery cell includes a supplementary electrode, which can not only supplement the loss of active alkali metal during use of the battery including the battery cell, improve the service life of the battery, but also It supplements the loss of active alkali metal in the battery during the first charging process and improves the energy density of the battery.
  • the first surface of the supplementary electrode facing the electrode assembly is covered with an isolation film to prevent the alkali metal ions of the supplementary electrode from being released from the first side facing the electrode assembly and embedded in the electrode pole piece, resulting in local over-replenishment of the electrode pole piece. Alkali metals may partially precipitate out of the alkali metals, thereby improving the safety of the battery. Therefore, the technical solution of the present application can improve the performance of the battery.
  • Figure 1 is a schematic structural diagram of a vehicle disclosed in an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a battery disclosed in an embodiment of the present application.
  • Figure 3 is a schematic structural diagram of a battery cell disclosed in an embodiment of the present application.
  • Figure 4 is a schematic top view of a battery cell according to an embodiment of the present application.
  • Figure 5 is a partial cross-sectional structural diagram of the battery cell shown in Figure 4 along A-A’;
  • FIG. 6 is an enlarged view of the battery cell shown in FIG. 5 at position B.
  • FIG. 6 is an enlarged view of the battery cell shown in FIG. 5 at position B.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment may be included in at least one embodiment of the application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. It will be explicitly and implicitly understood by those skilled in the art that the embodiments described herein may be combined with other embodiments.
  • the battery cell may include a lithium ion secondary battery, a lithium ion primary battery, a lithium-sulfur battery, a sodium lithium ion battery, a sodium ion battery or a magnesium ion battery, etc., which are not limited in the embodiment of the present application.
  • the battery cell may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited to this. Battery cells are generally divided into three types according to packaging methods: cylindrical battery cells, rectangular battery cells and soft-pack battery cells, and the embodiments of the present application are not limited to this.
  • the battery mentioned in the embodiments of this application refers to a single physical module including one or more battery cells to provide higher voltage and capacity.
  • the battery mentioned in this application may include a battery module or a battery pack.
  • Batteries generally include a box for packaging one or more battery cells. The box can prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells.
  • the battery cell may include an electrode assembly and an electrolyte.
  • the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator. Battery cells mainly rely on the movement of metal ions between the positive and negative electrodes to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer.
  • the positive electrode active material layer is coated on the surface of the positive electrode current collector.
  • the current collector that is not coated with the positive electrode active material layer protrudes from the current collector that is coated with the positive electrode active material layer.
  • the current collector coated with the positive electrode active material layer serves as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium or lithium manganate, etc.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer.
  • the negative electrode active material layer is coated on the surface of the negative electrode current collector.
  • the current collector that is not coated with the negative electrode active material layer protrudes from the current collector that is coated with the negative electrode active material layer.
  • the current collector coated with the negative active material layer serves as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be graphite, carbon or silicon.
  • the number of positive electrode tabs is multiple and stacked together, and the number of negative electrode tabs is multiple and stacked together.
  • the material of the separator can be polypropylene (PP) or polyethylene (polyethylene, PE).
  • the electrode assembly may have a rolled structure or a laminated structure, and the embodiments of the present application are not limited thereto.
  • a common problem currently existing in batteries is that during the first charging process, a large amount of alkali metal ions released from the positive electrode are consumed to form a solid electrolyte interphase (SEI) film on the surface of the negative electrode.
  • SEI solid electrolyte interphase
  • the alkali metal ions of the positive electrode are irreversibly consumed. It usually exceeds 10%, resulting in low first cycle charge and discharge efficiency, thus reducing the energy density of the battery.
  • the battery will continue to consume active alkali metals during normal use, resulting in a greatly reduced battery life.
  • a battery cell which includes an electrode assembly, a supplementary electrode and a separator.
  • the supplementary electrode is used to supplement the battery cell with alkali metal ions.
  • the isolation film covers the first side of the supplementary electrode, which is the surface facing the electrode assembly. The isolation film is used to prevent the alkali metal ions from passing through.
  • the battery cell includes a supplementary electrode, which can not only supplement the loss of active alkali metal during use of the battery including the battery cell, improve the service life of the battery, but also It supplements the loss of active alkali metal in the battery during the first charging process and improves the energy density of the battery.
  • the first surface of the supplementary electrode facing the electrode assembly is covered with an isolation film to prevent the alkali metal ions of the supplementary electrode from being released from the first side facing the electrode assembly and embedded in the electrode pole piece, resulting in local over-replenishment of the electrode pole piece.
  • Alkali metals may partially precipitate out of the alkali metals, thereby improving the safety of the battery. Therefore, the technical solution of the present application can improve the performance of the battery.
  • FIG. 1 it is a schematic structural diagram of a vehicle 1 according to an embodiment of the present application.
  • the vehicle 1 can be a fuel vehicle, a gas vehicle or a new energy vehicle.
  • the new energy vehicle can be a pure electric vehicle, a hybrid vehicle or a new energy vehicle. Extended range vehicles, etc.
  • a motor 40 , a controller 30 and a battery 10 may be disposed inside the vehicle 1 .
  • the controller 30 is used to control the battery 10 to provide power to the motor 40 .
  • the battery 10 may be disposed at the bottom, front or rear of the vehicle 1 .
  • the battery 10 can be used to supply power to the vehicle 1 .
  • the battery 10 can be used as an operating power source of the vehicle 1 and used in the circuit system of the vehicle 1 , for example, to meet the power requirements for starting, navigation, and operation of the vehicle 1 .
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include multiple battery cells.
  • FIG. 2 it is a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery cells 20 .
  • the battery 10 may also include a box 11.
  • the inside of the box 11 is a hollow structure, and a plurality of battery cells 20 are accommodated in the box 11.
  • a plurality of battery cells 20 are connected in parallel or in series or in a mixed combination and then placed in the box 11 .
  • the battery 10 may also include other structures, which will not be described in detail here.
  • the battery 10 may further include a bus component, which is used to realize electrical connection between multiple battery cells 20 , such as parallel connection, series connection, or mixed connection.
  • the bus component can realize electrical connection between the battery cells 20 by connecting the electrode terminals of the battery cells 20 .
  • the bus part may be fixed to the electrode terminal of the battery cell 20 by welding. The electric energy of the plurality of battery cells 20 can be further drawn out through the box through the conductive mechanism.
  • the electrically conductive means can also be part of the busbar.
  • the number of battery cells 20 can be set to any value. Multiple battery cells 20 can be connected in series, parallel or mixed connection to achieve larger capacity or power. Since the number of battery cells 20 included in each battery 10 may be large, in order to facilitate installation, the battery cells 20 may be arranged in groups, and each group of battery cells 20 forms a battery module. The number of battery cells 20 included in the battery module is not limited and can be set according to requirements.
  • the battery may include multiple battery modules, which may be connected in series, parallel or mixed connection.
  • FIG. 3 it is a schematic structural diagram of a battery cell 20 according to an embodiment of the present application.
  • the battery cell 20 includes an electrode assembly 21 , a supplementary electrode 22 and a separator 23 .
  • the supplementary electrode 22 is used to supplement the battery cell 20 with alkali metal ions.
  • the isolation film 23 covers the first side 221 of the supplementary electrode 22 .
  • the first side 221 is the surface facing the electrode assembly 21 .
  • the isolation film 23 is used for The passage of alkali metal ions of the supplementary electrode 22 is prevented.
  • the isolation film 23 refers to an isolation film that does not allow alkali metal ions to pass through. In the embodiment of the present application, the isolation film 23 covers the first surface 221 of the supplementary electrode 22 . Therefore, the isolation film 23 only ensures the alkali of the supplementary electrode 22 . Metal ions cannot be released from the first surface 221 of the supplementary electrode 22 into the electrolyte without affecting the release of alkali metal ions of the supplementary electrode 22 into the electrolyte from other surfaces not covered by the isolation film 23 .
  • the isolation film 23 in this application realizes the control of the release path of alkali metal ions by covering a specific position on the surface of the supplementary electrode 22, and avoids the local precipitation of alkali metal caused by excessive local supplementation of alkali metal on the electrode plate.
  • the performance of the isolation membrane 23 in isolating alkali metal ions can be detected through chemical reactions. Specifically, the opening of the beaker is covered with the isolation film 23, the solution containing alkali metal ions is poured into the beaker with the opening covered with the isolation film 23, and whether the solution filtered by the isolation film 23 contains the alkali metal ions is detected. For example, the flame reaction, precipitation reaction, etc. of alkali metal ions are used to detect alkali metal ions.
  • the battery cell 20 includes a supplementary electrode 22.
  • the supplementary electrode 22 can not only supplement the loss of active alkali metal during use of the battery 10 including the battery cell 20, but also improve the service life of the battery 10. , and can also supplement the loss of active alkali metal in the battery 10 during the first charging process, thereby improving the energy density of the battery 10 .
  • the first side 221 of the supplementary electrode 22 facing the electrode assembly 21 is covered with an isolation film 23 to prevent the alkali metal ions of the supplementary electrode 22 from being released from the first side 221 facing the electrode assembly 21 and embedded in the electrode piece, resulting in
  • the electrode plates of the electrodes are locally excessively supplemented with alkali metal, resulting in local precipitation of alkali metal, thereby improving the safety of the battery 10 . Therefore, the technical solution of the present application can improve the performance of the battery 10 .
  • the battery cell 20 may further include a housing 241 and a cover 242 .
  • Housing 241 and cover 242 form a housing or battery 10 box.
  • the wall of the casing 241 and the cover 242 are both called the walls of the battery cell 20 .
  • the wall of the casing 241 includes a bottom wall and four side walls.
  • the housing 241 is determined according to the combined shape of one or more electrode assemblies 21.
  • the housing 241 can be a hollow rectangular parallelepiped, a cube, or a cylinder, and one surface of the housing 241 has an opening to accommodate one or more electrodes.
  • Component 21 may be placed within housing 241.
  • one of the planes of the housing 241 is an opening surface, that is, the plane does not have a wall so that the inside and outside of the housing 241 are connected.
  • the housing 241 can be a hollow cylinder
  • the end surface of the housing 241 is an open surface, that is, the end surface does not have a wall so that the inside and outside of the housing 241 are connected.
  • the cover plate 242 covers the opening and is connected with the housing 241 to form a closed cavity in which the electrode assembly 21 is placed.
  • the housing 241 is filled with electrolyte, such as electrolyte solution.
  • the battery cell 20 may further include two electrode terminals 243 , and the two electrode terminals 243 may be disposed on the cover 242 .
  • the cover plate 242 is usually in the shape of a flat plate, and two electrode terminals 243 are fixed on the flat surface of the cover plate 242.
  • the two electrode terminals 243 are respectively a positive electrode terminal 243a and a negative electrode terminal 243b.
  • Each electrode terminal 243 is provided with a corresponding connecting member 25 , which may also be called a current collecting member 25 . It is located between the cover plate 242 and the electrode assembly 21 and is used to electrically connect the electrode assembly 21 and the electrode terminal 243 .
  • each electrode assembly 21 has a first tab 211a and a second tab 212a.
  • the first tab 211a and the second tab 212a have opposite polarities.
  • the first tab 211a is a positive tab
  • the second tab 212a is a negative tab.
  • the first tab 211a of one or more electrode assemblies 21 is connected to one electrode terminal through a connecting member 25, and the second tab 212a of one or more electrode assemblies 21 is connected to another electrode terminal through another connecting member 25.
  • the positive electrode terminal 243a is connected to the positive electrode tab through one connecting member 25, and the negative electrode terminal 243b is connected to the negative electrode tab through the other connecting member 25.
  • a pressure relief mechanism 244 may also be provided on the battery cell 20 .
  • the pressure relief mechanism 244 is used to be activated to relieve the internal pressure or temperature when the internal pressure or temperature of the battery cell 20 reaches a threshold.
  • the pressure relief mechanism 244 can be a variety of possible pressure relief structures, which are not limited in the embodiments of the present application.
  • the pressure relief mechanism 244 may be a temperature-sensitive pressure relief mechanism configured to melt when the internal temperature of the battery cell 20 provided with the pressure relief mechanism 244 reaches a threshold; and/or the pressure relief mechanism 244 may be a pressure-sensitive pressure relief mechanism configured to rupture when the internal air pressure of the battery cell 20 provided with the pressure relief mechanism 244 reaches a threshold value.
  • the alkali metal ions may be lithium ions or sodium ions.
  • the supplementary electrode is an electrode including metallic lithium, which supplements lithium ions for the battery cell in the lithium-ion battery; in a sodium-ion battery, the supplementary electrode is an electrode including metallic sodium, which is used in the sodium-ion battery.
  • the battery cells in the battery replenish sodium ions.
  • Lithium-ion batteries are widely used due to their large capacity, strong charge retention ability, long cycle life, and high safety.
  • the electrode materials used in sodium-ion batteries are mainly sodium salts. Sodium salt raw materials are abundant and cheap. Due to the characteristics of sodium salts, low-concentration electrolytes are allowed to be used, which can reduce production costs. Moreover, sodium ions have good thermal stability. Sodium-ion batteries have good thermal stability. Security is guaranteed.
  • the first surface 221 is the surface with the largest surface area of the supplementary electrode 22 .
  • the surface of the supplementary electrode 22 with the largest surface area faces the electrode assembly 21, so that the supplementary electrode 22 and the electrode assembly 21 are more reasonably arranged, saving the internal space of the battery cell 20, reducing the volume of the battery cell 20, and improving the energy density of the battery 10.
  • the surface of the electrode assembly 21 includes a planar portion 213 , and the first surface 221 faces the planar portion 213 of the electrode assembly 21 .
  • the electrode assembly 21 includes a planar portion 213, which can better utilize the space of the battery cell 20, thereby improving the energy density of the battery 10; in addition, the first surface 221 of the supplementary electrode 22 faces the planar portion 213 of the electrode assembly 21, Arranging the supplementary electrode 22 and the electrode assembly 21 more rationally saves the internal space of the battery cell 20 , reduces the volume of the battery cell 20 , and further increases the energy density of the battery 10 .
  • the planar portion 213 is the side surface of the electrode assembly 21 with the largest surface area.
  • the side with the largest surface area of the electrode assembly 21 is opposite to the side with the largest surface area of the supplementary electrode 22 , further saving the internal space of the battery cell 20 , reducing the volume of the battery cell 20 , and increasing the energy density of the battery 10 .
  • the battery cell 20 includes at least two electrode assemblies 21 , the at least two electrode assemblies 21 are arranged along the first direction x, and the supplementary electrode 22 is disposed between the two adjacent electrode assemblies 21 , the first surface 221 is perpendicular to the first direction x.
  • FIG. 3 takes the example of two independent electrode assemblies 21 disposed in the battery cell 20 for illustration.
  • the supplementary electrode 22 includes two first surfaces 221 oppositely arranged along the first direction x.
  • the two first surfaces 221 are respectively connected with the two The electrode assemblies 21 face each other.
  • the supplementary electrode 22 is disposed between two adjacent electrode assemblies 21 to ensure that there are sufficient alkali metal ions in the battery cell 20 and to ensure that the alkali metal ion content of each electrode assembly 21 is similar to avoid
  • the local excess of alkali metal ions causes the phenomenon of local precipitation of alkali metal from the electrode pole piece, thereby improving the safety of the battery 10 .
  • the isolation film 23 is a polymer film resistant to electrolyte corrosion.
  • the isolation film 23 needs to be resistant to electrolyte corrosion, so as to avoid being corroded by the electrolyte and unable to effectively prevent alkali metal ions from passing through.
  • the polymer film is a polyester material film or a polyamide resin film.
  • Polyester material film is made of polyester material.
  • Polyester material is a polymer material obtained by polycondensation of polyols and polybasic acids. It has good fiber-forming properties, mechanical properties, wear resistance, corrosion resistance, and low water absorption. and electrical insulation properties. Polyester materials can include PET, polybutylene terephthalate (PBT), polyarylate, etc.
  • Polyamide resin film is made of polyamide resin material.
  • Polyamide resin commonly known as nylon, is a polycondensation polymer compound with a -CONH structure in the molecule. It is usually obtained by polycondensation of dibasic acid and diamine and has good mechanical properties. Strength, wear resistance, good corrosion resistance and electrical insulation properties.
  • Polyamide resins can include nylon 6, nylon 66, nylon 11, nylon 12, nylon 610, nylon 612, nylon 46, nylon 1010, etc.
  • the material of the polyamide resin film is PET.
  • PET has excellent electrical insulation, and its electrical properties are still good even at high temperatures and high frequencies.
  • the supplementary electrode 22 is in a sheet shape.
  • the supplementary electrode 22 may be in a block shape.
  • Figure 4 is a schematic top view of the battery cell 20.
  • Figure 5 is a partial cross-sectional structural diagram of the battery cell 20 shown in Figure 4 along AA'.
  • Figure 6 is a view of the battery cell 20 shown in Figure 5 at B. enlarged image of.
  • the supplementary electrode 22 includes a current collector 222 and an alkali metal 223 , and the alkali metal 223 is disposed on the surface of the current collector 222 .
  • the supplementary electrode 22 carries out current transmission with the positive electrode or the negative electrode of the battery cell 20 through the current collector 222 to convert the alkali metal into alkali metal ions, thereby supplementing the battery cell 20 with alkali metal ions.
  • An embodiment of the present application also provides a battery 10, which may include the battery cells 20 in the aforementioned embodiments.
  • the battery 10 may also include a box, a bus component, and other structures, which will not be described in detail here.
  • An embodiment of the present application also provides an electrical device, which may include the battery 10 in the previous embodiment.
  • the electrical equipment may be a vehicle 1, a ship, a spacecraft, etc., but the embodiment of the present application is not limited to this.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本申请实施例提供一种电池单体(20)、电池(10)和用电设备。该电池单体(20)包括:电极组件(21);补充电极(22),补充电极(22)用于为电池单体(20)补充碱金属离子;隔离膜(23),隔离膜(23)覆盖于补充电极(22)的第一面(221),第一面(221)为面向电极组件(21)的表面,隔离膜(23)用于阻止碱金属离子通过。本申请的技术方案,能够提高电池(10)容量,增强电池(10)的安全性,延长电池(10)的使用寿命,从而提高电池(10)的性能。

Description

电池单体、电池和用电设备 技术领域
本申请涉及电池技术领域,特别是涉及一种电池单体、电池和用电设备。
背景技术
节能减排是汽车产业可持续发展的关键。在这种情况下,电动车辆由于其节能环保的优势成为汽车产业可持续发展的重要组成部分。而对于电动车辆而言,电池技术又是关乎其发展的一项重要因素。
在电池技术的发展中,电池的性能是一个不可忽视的问题。电池的性能不仅影响电池电池相关产品的发展和应用,而且还影响消费者对电动车辆的接受度。因此,如何提高电池的性能,是一项亟待解决的问题。
发明内容
本申请实施例提供一种电池单体、电池和用电装置,能够提高电池容量,增强电池的安全性,延长电池的使用寿命,从而提高电池的性能。
第一方面,提供了一种电池单体,包括:电极组件;补充电极,所述补充电极用于为所述电池单体补充碱金属离子;隔离膜,所述隔离膜覆盖于所述补充电极的第一面,所述第一面为面向所述电极组件的表面,所述隔离膜用于阻止所述碱金属离子通过。
在本申请实施例中,电池单体包括补充电极,该补充电极不仅可以补充包括有该电池单体的电池在使用过程中的活性碱金属的损耗,提高了电池的使用寿命,并且还能补充电池在首次充电过程中的活性碱金属的 损失,提高了电池的能量密度。进一步地,在补充电极的面向电极组件的第一面上覆盖有隔离膜,以避免补充电极的碱金属离子从面向电极组件的第一面释放嵌入电极极片,导致的电极极片局部过度补充碱金属而产生局部析出碱金属的情况,提高电池的安全性。因此,本申请的技术方案,可以提高电池的性能。
在一些可能的实现方式中,所述碱金属离子为锂离子或钠离子。
锂离子电池因具有容量大、较强的电荷保持能力、长循环寿命、和安全性高等特性得到广泛应用。钠离子电池使用的电极材料主要是钠盐,钠盐原材料储量丰富,价格低廉,由于钠盐特性,允许使用低浓度电解液,可降低生产成本,且钠离子热稳定性好,钠离子电池的安全性有所保障。
在一些可能的实现方式中,所述第一面为所述补充电极的表面积最大的面。
补充电极表面积最大的面面向电极组件,使补充电极与电极组件更合理地排布,节省电池单体内部空间,减小电池单体体积,提高电池的能量密度。
在一些可能的实现方式中,所述电极组件的表面包括平面部,所述第一面面向所述电极组件的平面部。
电极组件包括平面部,能够将电池单体的空间更好地利用起来,因此能提高电池的能量密度;另外,补充电极的第一面面向电极组件的平面部,使补充电极与电极组件更合理地排布,节省电池单体内部空间,减小电池单体体积,进一步提高电池的能量密度。
在一些可能的实现方式中,所述平面部为所述电极组件的表面积最大的侧面。
电极组件的表面积最大的侧面与补充电极的表面积最大的面相对设置,进一步节省电池单体内部空间,减小电池单体体积,提高电池的能 量密度。
在一些可能的实现方式中,所述电池单体包括至少两个所述电极组件,所述至少两个所述电极组件沿第一方向排列,所述补充电极设置于相邻的两个所述电极组件之间,所述第一面垂直于所述第一方向。
补充电极设置于相邻的两个电极组件之间,可以保证电池单体中有充足的碱金属离子,且保证各电极组件附件的碱金属离子含量相近,避免电池单体中局部碱金属离子过剩而产生电极极片局部析出碱金属的现象,提高电池的安全性。
在一些可能的实现方式中,所述隔离膜为耐电解液腐蚀的聚合物膜。隔离膜需要耐电解液腐蚀,从而避免被电解液腐蚀而不能有效阻止碱金属离子通过。
在一些可能的实现方式中,所述聚合物膜为聚酯材料膜或聚酰胺树脂膜。
聚酯材料膜和聚酰胺树脂膜具有良好的电绝缘性,耐冲击性,耐腐蚀性。
在一些可能的实现方式中,所述聚酯材料膜的材料为聚对苯二甲酸乙二醇酯(Polyethylene terephthalate,PET)。
PET的电绝缘性优良,甚至在高温高频下,其电性能仍较好。
在一些可能的实现方式中,所述补充电极的形状为片状。
将补充电极的形状设置为片状,对电池单体的整体厚度影响较小,使得补充电极不会占用太多的电池单体的内部空间,有利于保证包括该电池单体的电池的能量密度。
在一些可能的实现方式中,所述补充电极包括集流体和碱金属,所述碱金属设置于所述集流体的表面。
补充电极通过集流体与电池单体的正极或负极进行电流传输,将 碱金属转化为碱金属离子,为电池单体补充碱金属离子。
第二方面,提供了一种电池,包括:上述第一方面或第一方面的任意可能的实现方式中的电池单体。
第三方面,提供了一种用电设备,包括:上述第二方面或第二方面的任意可能的实现方式中的电池,所述电池用于提供电能。
在本申请的技术方案中,电池单体包括补充电极,该补充电极不仅可以补充包括有该电池单体的电池在使用过程中的活性碱金属的损耗,提高了电池的使用寿命,并且还能补充电池在首次充电过程中的活性碱金属的损失,提高了电池的能量密度。进一步地,在补充电极的面向电极组件的第一面上覆盖有隔离膜,以避免补充电极的碱金属离子从面向电极组件的第一面释放嵌入电极极片,导致的电极极片局部过度补充碱金属而产生局部析出碱金属的情况,提高电池的安全性。因此,本申请的技术方案,可以提高电池的性能。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1是本申请一实施例公开的一种车辆的结构示意图;
图2是本申请一实施例公开的一种电池的结构示意图;
图3是本申请一实施例公开的一种电池单体的结构示意图;
图4是本申请实施例的电池单体的示意性俯视图;
图5是图4所示的电池单体沿A-A’的部分剖面结构示意图;
图6是图5所示的电池单体在B处的放大图。
在附图中,附图并未按照实际的比例绘制。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本申请中字符“/”,一般表示前后关联对象是一种“或”的关系。
除非另有定义,本申请所使用的所有的技术和科学术语与属于本 申请的技术领域的技术人员通常理解的含义相同;本申请中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序或主次关系。
在本申请中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本申请所描述的实施例可以与其它实施例相结合。
在本申请实施例中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括一个或多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装一个或多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体可以包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的集流体凸出于已涂覆正极 活性物质层的集流体,未涂敷正极活性物质层的集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的集流体凸出于已涂覆负极活性物质层的集流体,未涂敷负极活性物质层的集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为石墨、碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔膜的材质可以为聚丙烯(polypropylene,PP)或聚乙烯(polyethylene,PE)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率、安全性等。
电池目前存在的普遍问题是在首次充电过程中会消耗大量从正极脱出的碱金属离子以形成负极表面的固体电解质界面(solid electrolyte interphase,SEI)膜,首次充电过程中正极碱金属离子的不可逆消耗通常会超过10%,致使首周期充放电效率较低,从而会降低电池的能量密度。另一方面,电池在正常使用过程中也会持续消耗活性碱金属,导致电池的使用寿命大大减少。
鉴于此,本申请实施例提供了一种电池单体,该电池单体包括电极组件、补充电极和隔离膜。补充电极用于为电池单体补充碱金属离子,隔离膜覆盖于补充电极的第一面,该第一面为面向电极组件的表面,隔离膜用于阻止碱金属离子通过。在本申请的技术方案中,电池单体包括补充电极,该补充电极不仅可以补充包括有该电池单体的电池在使用过程中的活性碱金属的损耗,提高了电池的使用寿命,并且还能补充电池在首次充 电过程中的活性碱金属的损失,提高了电池的能量密度。进一步地,在补充电极的面向电极组件的第一面上覆盖有隔离膜,以避免补充电极的碱金属离子从面向电极组件的第一面释放嵌入电极极片,导致的电极极片局部过度补充碱金属而产生局部析出碱金属的情况,提高电池的安全性。因此,本申请的技术方案,可以提高电池的性能。
本申请实施例描述的技术方案均适用于各种使用电池的装置。例如,手机、便携式设备、笔记本电脑、电瓶车、电动玩具、电动工具、电动车辆、船舶和航天器等,例如,航天器包括飞机、火箭、航天飞机和宇宙飞船等。
应理解,本申请实施例描述的技术方案不仅仅局限适用于上述所描述的设备,还可以适用于所有使用电池的设备,但为描述简洁,下述实施例均以电动车辆为例进行说明。
例如,如图1所示,为本申请一个实施例的一种车辆1的结构示意图,车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部可以设置马达40,控制器30以及电池10,控制器30用来控制电池10为马达40的供电。例如,在车辆1的底部或车头或车尾可以设置电池10。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源,用于车辆1的电路系统,例如,用于车辆1的启动、导航和运行时的工作用电需求。在本申请的另一实施例中,电池10不仅仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,替代或部分地替代燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体。例如,如图2所示,为本申请一个实施例的一种电池10的结构示意图,电池10可以包括多个电池单体20。电池10还可以包括箱体11,箱体11内 部为中空结构,多个电池单体20容纳于箱体11内。例如,多个电池单体20相互并联或串联或混联组合后置于箱体11内。
可选地,电池10还可以包括其他结构,在此不再一一赘述。例如,该电池10还可以包括汇流部件,汇流部件用于实现多个电池单体20之间的电连接,例如并联或串联或混联。具体地,汇流部件可通过连接电池单体20的电极端子实现电池单体20之间的电连接。进一步地,汇流部件可通过焊接固定于电池单体20的电极端子。多个电池单体20的电能可进一步通过导电机构穿过箱体而引出。可选地,导电机构也可属于汇流部件。
根据不同的电力需求,电池单体20的数量可以设置为任意数值。多个电池单体20可通过串联、并联或混联的方式连接以实现较大的容量或功率。由于每个电池10中包括的电池单体20的数量可能较多,为了便于安装,可以将电池单体20分组设置,每组电池单体20组成电池模块。电池模块中包括的电池单体20的数量不限,可以根据需求设置。电池可以包括多个电池模块,这些电池模块可通过串联、并联或混联的方式进行连接。
如图3所示,为本申请一个实施例的一种电池单体20的结构示意图。该电池单体20包括电极组件21,补充电极22以及隔离膜23。其中,补充电极22用于为电池单体20补充碱金属离子,隔离膜23覆盖于补充电极22的第一面221,该第一面221为面向电极组件21的表面,该隔离膜23用于阻止补充电极22的碱金属离子通过。
隔离膜23是指不允许碱金属离子通过的一种隔离膜,在本申请实施例中,隔离膜23覆盖于补充电极22的第一面221,因此该隔离膜23只是保证补充电极22的碱金属离子不能从补充电极22的第一面221释放进入电解液中,而不会对补充电极22的碱金属离子在其他未覆盖隔离膜23的表面释放进入电解液产生影响。也就是说,本申请中的隔离膜23通过覆 盖补充电极22表面的特定位置,实现对碱金属离子释放路径的控制,避免电极极片局部过度补充碱金属导致的局部析出碱金属现象。
隔离膜23的隔离碱金属离子的性能可以通过化学反应来检测。具体地,用隔离膜23包覆烧杯的开口,将含有碱金属离子的溶液倒入开口包覆有隔离膜23的烧杯中,检测经过隔离膜23过滤后的溶液中是否含有碱金属离子。比如,利用碱金属离子的焰色反应,沉淀反应等来检测碱金属离子。
本申请实施例中,电池单体20包括补充电极22,该补充电极22不仅可以补充包括有该电池单体20的电池10在使用过程中的活性碱金属的损耗,提高了电池10的使用寿命,并且还能补充电池10在首次充电过程中的活性碱金属的损失,提高了电池10的能量密度。进一步地,在补充电极22的面向电极组件21的第一面221上覆盖有隔离膜23,以避免补充电极22的碱金属离子从面向电极组件21的第一面221释放嵌入电极极片,导致的电极极片局部过度补充碱金属而产生局部析出碱金属的情况,提高电池10的安全性。因此,本申请的技术方案,可以提高电池10的性能。
继续参考图3,电池单体20还可以包括壳体241和盖板242。壳体241和盖板242形成外壳或电池10盒。壳体241的壁以及盖板242均称为电池单体20的壁,其中对于长方体型电池单体20,壳体241的壁包括底壁和四个侧壁。壳体241根据一个或多个电极组件21组合后的形状而定,例如,壳体241可以为中空的长方体或正方体或圆柱体,且壳体241的其中一个面具有开口以便一个或多个电极组件21可以放置于壳体241内。例如,当壳体241为中空的长方体或正方体时,壳体241的其中一个平面为开口面,即该平面不具有壁体而使得壳体241内外相通。当壳体241可以为中空的圆柱体时,壳体241的端面为开口面,即该端面不具有壁体而使得壳体241内外相通。盖板242覆盖开口并且与壳体241连接,以形成放 置电极组件21的封闭的腔体。壳体241内填充有电解质,例如电解液。
该电池单体20还可以包括两个电极端子243,两个电极端子243可以设置在盖板242上。盖板242通常是平板形状,两个电极端子243固定在盖板242的平板面上,两个电极端子243分别为正电极端子243a和负电极端子243b。每个电极端子243各对应设置一个连接构件25,或者也可以称为集流构件25,其位于盖板242与电极组件21之间,用于将电极组件21和电极端子243实现电连接。
如图3所示,每个电极组件21具有第一极耳211a和第二极耳212a。第一极耳211a和第二极耳212a的极性相反。例如,当第一极耳211a为正极极耳时,第二极耳212a为负极极耳。一个或多个电极组件21的第一极耳211a通过一个连接构件25与一个电极端子连接,一个或多个电极组件21的第二极耳212a通过另一个连接构件25与另一个电极端子连接。例如,正电极端子243a通过一个连接构件25与正极极耳连接,负电极端子243b通过另一个连接构件25与负极极耳连接。
电池单体20上还可设置泄压机构244。泄压机构244用于电池单体20的内部压力或温度达到阈值时致动以泄放内部压力或温度。
泄压机构244可以为各种可能的泄压结构,本申请实施例对此并不限定。例如,泄压机构244可以为温敏泄压机构,温敏泄压机构被配置为在设有泄压机构244的电池单体20的内部温度达到阈值时能够熔化;和/或,泄压机构244可以为压敏泄压机构,压敏泄压机构被配置为在设有泄压机构244的电池单体20的内部气压达到阈值时能够破裂。
可选地,在本申请实施例中,碱金属离子可以为锂离子或钠离子。
具体地,在锂离子电池中,补充电极为包括金属锂的电极,为锂离子电池中的电池单体补充锂离子;在钠离子电池中,补充电极为包括金属钠的电极,为钠离子电池中的电池单体补充钠离子。
锂离子电池因具有容量大、较强的电荷保持能力、长循环寿命、和安全性高等特性得到广泛应用。钠离子电池使用的电极材料主要是钠盐,钠盐原材料储量丰富,价格低廉,由于钠盐特性,允许使用低浓度电解液,可降低生产成本,且钠离子热稳定性好,钠离子电池的安全性有所保障。
可选地,在本申请实施例中,第一面221为补充电极22的表面积最大的面。
补充电极22表面积最大的面面向电极组件21,使补充电极22与电极组件21更合理地排布,节省电池单体20内部空间,减小电池单体20体积,提高电池10的能量密度。
可选地,在本申请实施例中,电极组件21的表面包括平面部213,第一面221面向电极组件21的平面部213。
电极组件21包括平面部213,能够将电池单体20的空间更好地利用起来,因此能提高电池10的能量密度;另外,补充电极22的第一面221面向电极组件21的平面部213,使补充电极22与电极组件21更合理地排布,节省电池单体20内部空间,减小电池单体20体积,进一步提高电池10的能量密度。
可选地,在本申请实施例中,平面部213为电极组件21的表面积最大的侧面。
电极组件21的表面积最大的侧面与补充电极22的表面积最大的面相对设置,进一步节省电池单体20内部空间,减小电池单体20体积,提高电池10的能量密度。
可选地,在本申请实施例中,电池单体20包括至少两个电极组件21,至少两个电极组件21沿第一方向x排列,补充电极22设置于相邻的两个电极组件21之间,第一面221垂直于第一方向x,图3以电池单体20内设置两个独立的电极组件21为例进行说明。
应理解,补充电极22包括两个沿第一方向x相对设置的第一面221,当补充电极22设置于相邻的两个电极组件21之间时,两个第一面221分别与两个电极组件21相对。
补充电极22设置于相邻的两个电极组件21之间,可以保证电池单体20中有充足的碱金属离子,且保证各电极组件21附件的碱金属离子含量相近,避免电池单体20中局部碱金属离子过剩而产生电极极片局部析出碱金属的现象,提高电池10的安全性。
可选地,在本申请实施例中,隔离膜23为耐电解液腐蚀的聚合物膜。隔离膜23需要耐电解液腐蚀,从而避免被电解液腐蚀而不能有效阻止碱金属离子通过。
可选地,在本申请实施例中,聚合物膜为聚酯材料膜或聚酰胺树脂膜。
聚酯材料膜是由聚酯材料制成,聚酯材料是由多元醇和多元酸缩聚而得的聚合物材料,具有良好的成纤性、力学性能、耐磨性、耐腐蚀性、低吸水性以及电绝缘性能。聚酯材料可以包括PET,聚对苯二甲酸丁二酯(Polybutylene terephthalate,PBT)和聚芳酯等。
聚酰胺树脂膜是由聚酰胺树脂材料制成,聚酰胺树脂俗称尼龙,是分子中具有-CONH结构的缩聚型高分子化合物,通常由二元酸和二元胺通过缩聚得到,具有良好的机械强度、耐磨性、较好的耐腐蚀性以及电绝缘性能。聚酰胺树脂可以包括尼龙6、尼龙66、尼龙11、尼龙12、尼龙610、尼龙612、尼龙46、尼龙1010等。
可选地,在本申请实施例中,聚酰胺树脂膜的材料为PET。PET的电绝缘性优良,甚至在高温高频下,其电性能仍较好。
可选地,在本申请实施例中,补充电极22的形状为片状。
将补充电极22的形状设置为片状,对电池单体20的整体厚度影 响较小,使得补充电极22不会占用太多的电池单体20的内部空间,有利于保证包括该电池单体20的电池10的能量密度。
或者,补充电极22的形状可以为块状,通常情况下,补充电极22越厚,则补充碱金属效果越好,即将补充电极22设置为块状,能够保证补充电极22的补充碱金属的能力,极大地提高了补充电极22的补充碱金属的效果。
图4为电池单体20的示意性俯视图,图5为图4所示的电池单体20沿A-A’的部分剖面结构示意图,图6为图5所示的电池单体20在B处的放大图。
可选地,在本申请实施例中,如图6所示,补充电极22包括集流体222和碱金属223,碱金属223设置于集流体222的表面。
补充电极22通过集流体222与电池单体20的正极或负极进行电流传输,将碱金属转化为碱金属离子,为电池单体20补充碱金属离子。
本申请实施例还提供一种电池10,该电池10可以包括前述各实施例中的电池单体20。在一些实施例中,该电池10还可以包括箱体、汇流部件等其他结构,在此不再一一赘述。
本申请一个实施例还提供了一种用电设备,该用电设备可以包括前述实施例中的电池10。可选地,该用电设备可以为车辆1、船舶或航天器等,但本申请实施例对此并不限定。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (13)

  1. 一种电池单体(20),其特征在于,包括:
    电极组件(21);
    补充电极(22),所述补充电极(22)用于为所述电池单体(20)补充碱金属离子;
    隔离膜(23),所述隔离膜(23)覆盖于所述补充电极(22)的第一面(221),所述第一面(221)为面向所述电极组件(21)的表面,所述隔离膜(23)用于阻止所述碱金属离子通过。
  2. 根据权利要求1所述的电池单体(20),其特征在于,所述碱金属离子为锂离子或钠离子。
  3. 根据权利要求1或2所述的电池单体(20),其特征在于,所述第一面(221)为所述补充电极(22)的表面积最大的面。
  4. 根据权利要求3所述的电池单体(20),其特征在于,所述电极组件(21)的表面包括平面部(213),所述第一面(221)面向所述电极组件(21)的平面部(213)。
  5. 根据权利要求4所述的电池单体(20),其特征在于,所述平面部(213)为所述电极组件(21)的表面积最大的侧面。
  6. 根据权利要求1至5中任一项所述的电池单体(20),其特征在于,所述电池单体(20)包括至少两个所述电极组件(21),所述至少两个所述电极组件(21)沿第一方向(x)排列,所述补充电极(22)设置于相邻的两个所述电极组件(21)之间,所述第一面(221)垂直于所述第一方向(x)。
  7. 根据权利要求1至6中任一项所述的电池单体(20),其特征在于,所述隔离膜(23)为耐电解液腐蚀的聚合物膜。
  8. 根据权利要求7所述的电池单体(20),其特征在于,所述聚合物膜为聚酯材料膜或聚酰胺树脂膜。
  9. 根据权利要求8所述的电池单体(20),其特征在于,所述聚酯材料膜的材料为聚对苯二甲酸乙二醇酯PET。
  10. 根据权利要求1至9中任一项所述的电池单体(20),其特征在于,所述补充电极(22)的形状为片状。
  11. 根据权利要求1至10中任一项所述的电池单体(20),其特征在于,所述补充电极(22)包括集流体(222)和碱金属(223),所述碱金属(223)设置于所述集流体(222)的表面。
  12. 一种电池(10),其特征在于,包括:根据权利要求1至11中任一项所述的电池单体(20)。
  13. 一种用电设备,其特征在于,包括:根据权利要求12所述的电池(10),所述电池(10)用于提供电能。
PCT/CN2022/107772 2022-07-26 2022-07-26 电池单体、电池和用电设备 WO2024020764A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/107772 WO2024020764A1 (zh) 2022-07-26 2022-07-26 电池单体、电池和用电设备
CN202280057956.8A CN117941119A (zh) 2022-07-26 2022-07-26 电池单体、电池和用电设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107772 WO2024020764A1 (zh) 2022-07-26 2022-07-26 电池单体、电池和用电设备

Publications (1)

Publication Number Publication Date
WO2024020764A1 true WO2024020764A1 (zh) 2024-02-01

Family

ID=89704900

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107772 WO2024020764A1 (zh) 2022-07-26 2022-07-26 电池单体、电池和用电设备

Country Status (2)

Country Link
CN (1) CN117941119A (zh)
WO (1) WO2024020764A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026767A1 (ja) * 2018-07-30 2020-02-06 イビデン株式会社 非水系二次電池
CN113054162A (zh) * 2021-03-15 2021-06-29 蜻蜓实验室(深圳)有限公司 锂离子电池及锂离子电池组
CN214099829U (zh) * 2021-06-11 2021-08-31 合肥国轩高科动力能源有限公司 一种高能量密度及长寿命的锂离子电池
CN114122409A (zh) * 2020-08-27 2022-03-01 比亚迪股份有限公司 极片及锂离子电池
CN115149106A (zh) * 2021-08-27 2022-10-04 合肥国轩高科动力能源有限公司 一种锂离子电池预锂化方法及锂离子电池

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020026767A1 (ja) * 2018-07-30 2020-02-06 イビデン株式会社 非水系二次電池
CN114122409A (zh) * 2020-08-27 2022-03-01 比亚迪股份有限公司 极片及锂离子电池
CN113054162A (zh) * 2021-03-15 2021-06-29 蜻蜓实验室(深圳)有限公司 锂离子电池及锂离子电池组
CN214099829U (zh) * 2021-06-11 2021-08-31 合肥国轩高科动力能源有限公司 一种高能量密度及长寿命的锂离子电池
CN115149106A (zh) * 2021-08-27 2022-10-04 合肥国轩高科动力能源有限公司 一种锂离子电池预锂化方法及锂离子电池

Also Published As

Publication number Publication date
CN117941119A (zh) 2024-04-26

Similar Documents

Publication Publication Date Title
US11757161B2 (en) Battery cell, battery and electricity consuming device
CN216085053U (zh) 电池和用电设备
CN115425372B (zh) 电极极片、电极组件、电池单体、电池和用电设备
WO2023065923A1 (zh) 电池单体、电池和用电设备
WO2023246134A1 (zh) 极片、电极组件、电池单体、电池及用电设备
CN216872134U (zh) 电池和用电设备
WO2023240749A1 (zh) 电极组件、电池单体、电池和用电设备
US20230087166A1 (en) Electrode assembly, battery cell, battery and electrical device
CN217606982U (zh) 电池和用电设备
CN216872133U (zh) 一种电池和用电设备
CN220155580U (zh) 电池和用电设备
WO2023160034A1 (zh) 电池箱体上盖、电池箱体、电池及用电设备
WO2024020764A1 (zh) 电池单体、电池和用电设备
CN218414891U (zh) 电池的箱体、电池、用电装置和制备电池的装置
CN115968515A (zh) 电池、用电设备、制备电池的方法和设备
CN115966816A (zh) 电池单体、电池和用电装置
WO2023065366A1 (zh) 电池、用电设备、制备电池单体的方法和设备
CN220934350U (zh) 电池单体和具有其的电池及用电设备
WO2024000366A1 (zh) 电池单体、电池和用电装置
WO2024000367A1 (zh) 电池单体、电池和用电装置
WO2023197133A1 (zh) 电池单体的壳体、电池单体、电池以及用电装置
CN220439759U (zh) 电池和用电设备
WO2024040503A1 (zh) 电极组件、制备方法、电池单体、电池及用电装置
CN117199644B (zh) 电池单体、电池以及用电装置
CN220400841U (zh) 电池连接巴片、电池和用电装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280057956.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952230

Country of ref document: EP

Kind code of ref document: A1