WO2024020749A1 - 充电方法、装置和移动载体 - Google Patents

充电方法、装置和移动载体 Download PDF

Info

Publication number
WO2024020749A1
WO2024020749A1 PCT/CN2022/107709 CN2022107709W WO2024020749A1 WO 2024020749 A1 WO2024020749 A1 WO 2024020749A1 CN 2022107709 W CN2022107709 W CN 2022107709W WO 2024020749 A1 WO2024020749 A1 WO 2024020749A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging
battery pack
temperature
duration
time
Prior art date
Application number
PCT/CN2022/107709
Other languages
English (en)
French (fr)
Inventor
胡峰伟
刘利梁
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2022/107709 priority Critical patent/WO2024020749A1/zh
Publication of WO2024020749A1 publication Critical patent/WO2024020749A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/62Monitoring or controlling charging stations in response to charging parameters, e.g. current, voltage or electrical charge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/60Monitoring or controlling charging stations
    • B60L53/64Optimising energy costs, e.g. responding to electricity rates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/24Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries for controlling the temperature of batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present application relates to the field of batteries, and more specifically, to a charging method, device and mobile carrier.
  • This application provides a charging method, device and mobile carrier, which can reasonably use the heat generated during the charging process of the battery pack to preheat the battery pack, save the energy consumption required to preheat the battery pack before using the battery pack, and help To save user costs.
  • a charging method may include: obtaining the usage moment of the battery pack and the first temperature of the battery pack at the end of charging; determining that the temperature of the battery pack is adjusted from the first temperature to a preset value. The first duration required within the temperature range; the starting moment for charging the battery pack is determined based on the first duration and the moment of use.
  • the heat generated during the charging process of the mobile carrier's battery pack can be reasonably used to heat the battery pack, or enough cooling time is reserved for the battery pack, so that When starting to use the battery pack, the battery pack is in a better operating temperature range, which can save the energy consumption required for heating and cooling the battery pack and help save user costs.
  • this method can be executed by the computing platform of the mobile carrier, where the mobile carrier includes the battery pack; or it can also be executed by the computing platform of the cloud. More specifically, the method can also be executed by a chip or circuit used in the above-mentioned computing platform, which is not limited in this application.
  • the usage moment of the battery pack and the first temperature of the battery pack at the end of charging are obtained; and it is determined that the temperature of the battery pack is adjusted from the first temperature to the first required first temperature within the preset temperature range. Duration; determine the termination moment of charging of the battery pack based on the first duration and the usage moment. Further, the start time of charging is determined based on the end time of charging and the charging target.
  • the charging target of the battery pack, the usage time of the battery pack, and the first temperature of the battery pack at the end of charging are obtained; and it is determined based on the charging target that the temperature of the battery pack is adjusted from the first temperature to The first time required within the preset temperature range; the starting time for charging the battery pack is determined based on the charging time, the first time and the time of use.
  • the charging target includes a target charging amount and/or charging time of the battery pack.
  • the battery pack may be a battery pack of a mobile carrier.
  • the usage time of the battery pack may be obtained from an application associated with the mobile carrier, or may be obtained from a vehicle-mounted terminal of the mobile carrier. of.
  • the charging target of the battery pack can also be obtained from the application associated with the mobile carrier, or can also be obtained from the vehicle-mounted terminal of the mobile carrier.
  • the power information of the charging pile used to charge the battery pack may include the charging power supported by the charging pile.
  • the charging pile has only one power mode, and the charging time is determined based on the power and the remaining power.
  • the charging pile may have multiple power modes, and the battery pack can match two or more power modes among the multiple power modes. Then the charging time in the multiple power modes can be calculated separately.
  • the charging time can be determined based on the remaining power of the battery pack, the target power and the charging power; or the charging time can also be a time set by the user of the mobile carrier; or the charging time can also be determined by other means.
  • the first temperature may be determined according to thermodynamic parameters of the battery pack.
  • thermodynamic parameters may include the specific heat capacity c of the battery pack cell and the battery pack cell mass m.
  • the total heat generated during the charging process can be determined based on the power information of the charging pile and the charging time, and then based on the total heat, the specific heat capacity c of the battery pack cells, the battery pack cell mass m and the environment Temperature information determines the temperature of the battery pack corresponding to different charging termination moments.
  • the thermodynamic parameter may also include the entropy heat coefficient of the battery pack
  • the characteristic information may also include the internal resistance of the battery pack cell. Then the total heat generated during the charging process can be determined based on the charging current, battery pack cell internal resistance, and battery pack entropy heat coefficient, and then based on the total heat, the specific heat capacity c of the battery pack cell, the battery pack cell mass m and The ambient temperature information determines the temperature of the battery pack corresponding to the battery pack at different charging termination moments.
  • the preset temperature range may be a preferred operating temperature range of the battery pack.
  • the "optimal operating temperature range” can be a temperature range in which the battery discharge process will not cause irreversible damage to the performance of the power battery.
  • the preferred operating temperature range can be 10 to 25 degrees Celsius, or it can also be 10 to 35 degrees Celsius. degrees Celsius, or other temperature ranges.
  • the first temperature may also be determined in combination with thermal management information of the battery pack.
  • the thermal management information of the battery pack may include heating function information and cooling function information of the battery pack cells.
  • the heating function information may include when the battery pack temperature is within a certain range, and/or the charging power is within a certain range.
  • the cooling function information may include the information to activate the battery pack cooling function when the battery pack temperature is within a certain range, and/or when the charging power is within a certain range. Then, the temperature of the battery pack corresponding to the battery pack at different charging termination moments can be determined based on the thermal management information of the battery pack.
  • the first duration may be determined based on a natural convection heat transfer model based on the first temperature, the preset temperature range, and the temperature of the environment where the battery pack is located at the moment of use.
  • charging reservation can be made according to the starting time of charging, so that the charging pile charges the battery pack at the starting time.
  • the termination moment of charging can also be determined.
  • charging reservation information can be generated based on the starting time and ending time and sent to the battery management system (battery management system, BMS).
  • BMS battery management system
  • the BMS sends an opening command to the battery pack relay at the starting time based on the charging reservation information.
  • the battery pack relay receives the turn-on command and turns on the relay to start charging; the BMS controls the battery pack relay to turn off at the end of charging based on the charging reservation information.
  • this method can be executed by the BMS, and the BMS can directly send an opening command to the battery pack relay according to the starting time to control the battery pack relay to turn on the relay and start charging at the starting time.
  • the method further includes: obtaining electricity price information; determining a starting time for charging the battery pack based on the first duration and the usage moment, including: based on the electricity price The information, the first duration and the time of use determine the starting time.
  • the determined first time period may also include multiple time periods. Then a duration can be determined based on the electricity price information, and then the starting time can be determined based on the duration and the usage time, so that charging can be carried out in a range with lower electricity prices.
  • the external ambient temperature within a period of time before and after the battery pack is used is within the optimal operating temperature range of the battery pack. For example, within 6 hours before use and within 2 hours after use, the external ambient temperature is within the optimal operating temperature range of the battery pack. It can be understood that even if the time interval between the time of charging completion and the time of use is long, as long as the time of completion of charging is within 6 hours before the time of use, the temperature of the battery pack at the time of use will definitely be in a better working state. within the temperature range. In this case, the charging end time has little impact on the temperature of the battery pack at the time of use, so the electricity price information can be further combined to optimize the charging start and end times.
  • the current time is 1 a.m. on x month x
  • the determined charging time is 4 hours
  • the time when the mobile carrier is used is 10 a.m.
  • optimizing the starting time of charging based on electricity price information can help further save users' costs in using mobile carriers.
  • the method further includes: obtaining power information of the charging pile; when the power information indicates that the charging pile supports multiple charging powers, determining the first power according to the electricity price information.
  • Charging power, the plurality of charging powers include the first charging power; sending instruction information to the charging pile, the instruction information being used to instruct the charging pile to use the first charging power to charge the battery pack at the starting moment.
  • the charging pile has multiple power modes
  • the battery pack can be matched with two or more power modes among the multiple power modes.
  • the current time is 1 a.m. on x month x day. Further, it is determined that the charging time under the first power of the charging pile is 4 hours, and the charging time under the second power of the charging pile is 2 hours. Using a mobile carrier The time is 10 a.m. on x month x, and the temperature from 3 a.m. to 10 a.m. on x month x is within the optimal operating temperature range of the battery pack. According to the electricity price information, it is determined that the electricity price from 22:00 in the evening to 4:00 in the morning is relatively cheap, then it can be determined to use the second power of the charging pile for charging, and the charging start time is 2:00 in the morning, and the charging end time is 4:00 in the morning.
  • the charging power is optimized based on the electricity price information, which helps to further save charging costs.
  • the first temperature is determined according to the model of the battery pack and a battery pack temperature characteristic library.
  • the battery pack temperature characteristic library is used to indicate the charging process of different battery packs. temperature changes in.
  • the battery pack temperature characteristic library includes empirical values of the total heat generated during charging of one or more models of battery packs.
  • determining the first temperature based on the battery pack temperature characteristic library can reduce computational complexity; based on empirical values, the accuracy of the predicted temperature at the time of use of the battery pack can be improved.
  • the method further includes: obtaining a second time period, the second time period being a time period for suspending charging during charging of the battery pack;
  • the usage time determines the starting time for charging the battery pack, including: determining the starting time based on the first duration, the second duration and the usage time.
  • the preset temperature can be 50 degrees Celsius, or 55 degrees Celsius, or the preset temperature can be The temperature for turning on the battery cooling function during charging for the TMS system, or other temperatures.
  • the second duration may be a preset duration, such as 5 minutes or 10 minutes.
  • the preset time period may change as the external environment temperature changes; or the second time period may also be a calculated time period, for example, calculated based on the external environment temperature and the above-mentioned preset temperature. The time required for the temperature to drop to the external ambient temperature, or the time required for the preset temperature to drop to the optimal operating temperature range of the battery pack, calculated based on the external ambient temperature and the above-mentioned preset temperature.
  • charging to the battery pack is controlled at the initial moment.
  • the battery pack temperature reaches a preset temperature, charging is suspended for a second period of time, and then the battery pack is controlled to be charged. Continue charging.
  • the charging process may be paused multiple times, and the duration of each pause is the second duration.
  • the starting moment of charging is determined based on the pause duration, which can save the time required for the TMS to cool the battery during the charging process. energy consumption, helping to further save user costs.
  • the method before determining the starting time of charging the battery pack based on the first duration and the usage time, the method further includes: determining the end time of charging and the usage time. The duration between moments is greater than or equal to the preset threshold.
  • the preset threshold can be 30 minutes, or it can be 20 minutes, or the preset threshold can also change with changes in the external environment temperature. For example, when the temperature is below zero, the preset threshold can be 5 minutes. ; Or the preset threshold can also be other values, which are not specifically limited in the embodiments of this application.
  • the difference between the charging end time and the battery pack usage time is less than or equal to the preset threshold, it means that the time between the current time and the battery pack usage time cannot allow the battery pack to be charged to the target power; or, without the help of When extra energy is used to heat or cool the battery pack, and the time between the completion of charging and the use of the battery pack is not enough to heat or cool the battery pack to the optimal operating temperature range of the battery pack, charging will start from the current moment. .
  • a charging device may include: an acquisition unit to acquire the usage moment of the battery pack and the first temperature of the battery pack at the end of charging; and a processing unit to determine the temperature of the battery pack from The first time period required to adjust the first temperature to a preset temperature range; and determine the starting time of charging the battery pack based on the first time period and the usage time.
  • the acquisition unit is further configured to: acquire electricity price information; the processing unit is specifically configured to determine the start time based on the electricity price information, the first duration and the usage moment. time.
  • the device further includes a transceiver unit
  • the acquisition unit is further configured to: acquire the power information of the charging pile
  • the processing unit is further configured to: when the power information indicates the When the charging pile supports multiple charging powers, the first charging power is determined according to the electricity price information, and the multiple charging powers include the first charging power
  • the transceiver unit is used to send indication information to the charging pile, and the indication information is used to indicate The charging pile uses the first charging power to charge the battery pack at the starting moment.
  • the first temperature is determined according to the model of the battery pack and a battery pack temperature characteristic library.
  • the battery pack temperature characteristic library is used to indicate the charging process of different battery packs. temperature changes in.
  • the acquisition unit is further configured to: acquire a second duration, which is the duration of suspension of charging during the charging process of the battery pack; the processing unit is also configured to: The starting time is determined based on the first duration, the second duration and the usage time.
  • the processing unit is further configured to: before determining the starting time and the ending time of charging the battery pack according to the first duration and the usage moment, according to the The charging duration determines that the duration between the charging termination moment and the usage moment is greater than or equal to the preset threshold.
  • the acquisition unit is further configured to: acquire temperature information of the environment in which the battery pack is located, and the processing unit is further configured to determine based on the temperature information and the first temperature. The first duration.
  • a charging device in a third aspect, includes: a memory for storing a program; a processor for executing the program stored in the memory. When the program stored in the memory is executed, the processor is configured to execute the first aspect. method in any of the possible implementations.
  • a fourth aspect provides a battery management system, which includes the device in any possible implementation of the second aspect or the device in any implementation of the third aspect.
  • the fifth aspect provides a mobile carrier, which includes the device in any possible implementation manner of the above-mentioned second aspect or the device in any possible implementation manner of the above-mentioned third aspect, or includes the above-mentioned fourth aspect.
  • a battery management system in any of the possible implementations.
  • a sixth aspect provides a server, which includes the device in any possible implementation manner of the above-mentioned second aspect or the device in any possible implementation manner of the above-mentioned third aspect.
  • a seventh aspect provides a terminal device, which includes the device in any possible implementation manner of the above-mentioned second aspect or the device in any one of the possible implementation modes of the above-mentioned third aspect.
  • a computer program product includes: computer program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the method in any of the possible implementation modes of the first aspect. .
  • the above computer program code may be stored in whole or in part on the first storage medium, where the first storage medium may be packaged together with the processor, or may be packaged separately from the processor. This is not the case in the embodiments of this application. Specific limitations.
  • a computer-readable medium stores program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute any of the possible implementation methods of the first aspect. method.
  • a tenth aspect provides a chip, which includes a processor for calling a computer program or computer instructions stored in a memory, so that the processor executes the method in any of the possible implementations of the first aspect.
  • the processor is coupled with the memory through an interface.
  • the chip system further includes a memory, and a computer program or computer instructions are stored in the memory.
  • Figure 1 is a schematic diagram of an implementation scenario of a charging method provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of the architecture of a charging system provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a charging method provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of a charging method provided by an embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a charging device provided by an embodiment of the present application.
  • Figure 6 is another schematic block diagram of a charging device provided by an embodiment of the present application.
  • Prefixes such as “first” and “second” are used in the embodiments of this application only to distinguish different description objects, and have no limiting effect on the position, order, priority, quantity or content of the described objects.
  • the use of ordinal words and other prefixes used to distinguish the described objects does not limit the described objects.
  • Words constitute redundant restrictions.
  • plural means two or more.
  • mobile carriers may include road vehicles, water vehicles, air vehicles, industrial equipment, agricultural equipment, or entertainment equipment, etc.
  • the mobile carrier can be a vehicle, which is a vehicle in a broad sense, and can be a means of transportation (such as commercial vehicles, passenger cars, motorcycles, flying vehicles, trains, etc.), industrial vehicles (such as forklifts, trailers, tractors, etc.) etc.), engineering vehicles (such as excavators, bulldozers, cranes, etc.), agricultural equipment (such as lawn mowers, harvesters, etc.), amusement equipment, toy vehicles, etc.
  • the embodiments of this application do not specifically limit the types of vehicles.
  • the mobile carrier can be a vehicle such as an airplane or a ship.
  • the vehicle may include an electric vehicle, which is a mobile carrier suitable for driving by an electric drive.
  • Electric vehicles can be pure electric vehicles (pure electric vehicle/battery electric vehicle, pure EV/battery EV), hybrid electric vehicles (HEV), extended range electric vehicles (range extended electric vehicle, REEV), plug-in Hybrid electric vehicle (plug-in hybrid electric vehicle, PHEV) or new energy vehicle (new energy vehicle, NEV), etc.
  • external power sources such as charging piles, etc.
  • PTC heating or cooling For example, through the cooperation between preheating systems, control circuits, cost estimation and other modules, the battery pack is heated until the preset temperature.
  • the heating system enable signal is sent out at the appropriate moment, and the preheating system is started to start heating.
  • the above solution still requires additional energy consumption, requires the user to bear additional costs, and fails to effectively utilize the heat generated during the charging process.
  • embodiments of the present application provide a charging method, device and mobile carrier, which can plan the start and end time of charging based on the current power of the battery pack, battery pack characteristics, charging target and other information, so that when the user uses the mobile carrier, the battery pack
  • the temperature is within the optimal working temperature range, which is conducive to saving the energy required for battery pack insulation, heating and cooling, and saving vehicle costs.
  • Figure 1 shows a schematic diagram of an implementation scenario of a charging method provided by an embodiment of the present application.
  • a mobile carrier 100 a charging pile 200, a cloud 300 and a terminal 400 may be involved.
  • the terminal 400 is a device associated with the mobile carrier 100, and the mobile carrier 100 includes a battery pack.
  • BMS thermal management system
  • TMS thermal management system
  • the above-mentioned "association" may include but is not limited to: the accounts logged in to the two devices are the same; or, although the accounts logged in to the two devices are different, they are both accounts of authorized users of the mobile carrier 100 .
  • the mobile carrier 100 and/or the terminal 400 sends battery pack power information and charging target information to the cloud 300 (S1).
  • the battery pack power information includes the remaining power (or remaining cruising range) of the battery pack
  • the charging target information includes the start time of use and target power (or target cruising range).
  • the BMS sends the battery pack characteristic information and the charging pile power information to the cloud 300 (S2)
  • the TMS sends the battery pack thermal management information to the cloud 300 (S2).
  • the battery pack characteristic information is sent by the battery pack to the BMS (S2), including but not limited to the battery pack model, state of charge (SOC), power state (state of power, SOP), battery pack current Temperature and thermodynamic characteristics such as the specific heat capacity c of the battery pack cells and the mass m of the battery pack cells;
  • the charging pile power information can be determined based on the available power sent by the charging pile to the BMS;
  • the battery pack thermal management information can include the battery pack cells Heating function information and cooling function information.
  • heating function information may include information about starting the battery pack heating function when the battery pack temperature is in a certain range and/or when the charging power is in a certain range; cooling function information may be included in Information about starting the battery pack cooling function when the battery pack temperature is within a certain range and/or when the charging power is within a certain range. Further, the cloud 300 determines the charging time based on the charging target information, battery pack power information, and charging pile power information.
  • the cloud 300 further determines the start and end time of charging based on the battery pack thermal management information, battery pack characteristic information, and ambient temperature information, and The charging start and end times are sent to the BMS (S3), and the BMS controls the battery pack relay to turn on or off according to the charging start and end times (S4); the charging pile inputs power to the battery pack at the beginning of charging, and stops inputting power to the battery pack at the end of charging ( S4).
  • starting time of use can be understood as the time when the battery pack is used, and for example, it can be the time when the battery pack is used to drive the mobile carrier.
  • the cloud 300 can also obtain a battery pack temperature characteristic library, which can include multiple models of battery pack information and empirical data on battery pack temperature changes during charging in different environments, and/ Or information on the thermodynamic properties of different battery pack cells, as well as empirical data on battery pack temperature changes when charging in different environments. Further, the cloud 300 can look up the table in the battery pack temperature characteristic library to determine the charging start and end time based on the battery pack characteristic information of the mobile carrier 100 .
  • a battery pack temperature characteristic library can include multiple models of battery pack information and empirical data on battery pack temperature changes during charging in different environments, and/ Or information on the thermodynamic properties of different battery pack cells, as well as empirical data on battery pack temperature changes when charging in different environments. Further, the cloud 300 can look up the table in the battery pack temperature characteristic library to determine the charging start and end time based on the battery pack characteristic information of the mobile carrier 100 .
  • the cloud 300 can also obtain electricity price information, which includes electricity price information that changes over time, and the cloud 300 can optimize the charging start and end times based on changes in electricity prices.
  • the steps of determining the battery pack charging duration and/or charging start and end times can also be completed by the computing platform of the mobile carrier 100 . That is, the computing platform of the mobile carrier 100 obtains the battery pack power information, charging target information, battery pack characteristic information, charging pile power information, and battery pack thermal management information, and then determines based on the charging target information, battery pack power information, and charging pile power information. Charging duration; further, the computing platform of the mobile carrier 100 determines the start and end times of charging based on the battery pack thermal management information, battery pack characteristic information, and ambient temperature information.
  • the computing platform of the mobile carrier 100 can also obtain the battery pack temperature characteristic library and/or electricity price information, and then determine the charging start and end time based on the battery pack temperature characteristic library, and optimize the charging start and end time based on the electricity price information.
  • the computing platform may include one or more processors.
  • a processor is a circuit with signal processing capabilities.
  • a processor may be a circuit with instruction reading and execution capabilities, such as a central processing unit ( central processing unit (CPU), microprocessor, graphics processing unit (GPU) (can be understood as a microprocessor), or digital signal processor (digital signal processor, DSP), etc.; in another
  • the processor can realize certain functions through the logical relationship of the hardware circuit. The logical relationship of the hardware circuit is fixed or can be reconstructed.
  • the processor is an application-specific integrated circuit (ASIC) or programmable.
  • ASIC application-specific integrated circuit
  • a hardware circuit implemented by a programmable logic device such as a field programmable gate array (FPGA).
  • PLD programmable logic device
  • FPGA field programmable gate array
  • the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as a neural network processing unit (NPU), tensor processing unit (TPU), deep learning processing Unit (deep learning processing unit, DPU), etc.
  • the computing platform may also include a memory, which is used to store instructions. Some or all processors in the computing platform may call instructions in the memory and execute the instructions to implement corresponding functions.
  • FIG. 2 shows a schematic block diagram of a charging system provided by an embodiment of the present application.
  • the charging system may include a charging information acquisition module, a charging duration calculation module, a judgment module, a temperature characteristic acquisition module, a temperature calculation module at the end of charging time, a cost optimization calculation module, and a charging module.
  • the charging information acquisition module is used to obtain the above-mentioned battery pack power information, charging target information, and charging pile power information;
  • the charging time calculation module is used to calculate the required charging time based on the information obtained by the charging information acquisition module;
  • the judgment module is used to Based on the current time and the charging time calculated by the charging time calculation module, determine whether the charging end time is before the use time;
  • the temperature characteristic acquisition module is used to obtain information that affects the temperature of the battery pack, including the above-mentioned battery pack thermal management information and battery pack characteristic information.
  • the temperature characteristic acquisition module can also be used to obtain the battery pack temperature characteristic library; the temperature calculation module at the end of charging is used to calculate the end of charging at different times based on the information obtained by the temperature characteristic acquisition module and the charging time.
  • the charging system can be set up in the cloud 300; or it can be set up in the mobile carrier 100; more specifically, it can be set up in the computing platform of the cloud 300 or the mobile carrier 100; or the charging system Some of the modules may be arranged in the mobile carrier 100, and the remaining modules may be arranged in the cloud 300. This is not specifically limited in the embodiment of the present application.
  • each module shown in Figure 2 is just an example. In actual applications, each of the above modules may have different names, or the above modules may be added or deleted according to actual needs. For example, in some possible implementations, the cost optimization calculation module can be deleted.
  • FIG 3 shows a schematic flow chart of a charging method provided by an embodiment of the present application.
  • This method can be executed by the cloud 300 shown in Figure 1, or can also be executed by the mobile carrier 100 shown in Figure 1, or also This can be performed by the charging system shown in Figure 2.
  • the method When the method is executed by the mobile carrier 100, it may be executed by the BMS in the mobile carrier 100.
  • the method 300 may include:
  • the current power and target power of the battery pack can be obtained from a vehicle-mounted terminal of the mobile carrier, such as a communication box (telematics BOX, T-Box); or, the current power and target power of the battery pack can also be obtained from an application (application, APP) associated with the mobile carrier. Get the current power and target power of the battery pack.
  • the APP associated with the mobile carrier can be a car owner APP, or it can also be other applications that can provide mobile carrier control for legally authorized users of the mobile carrier, and/or provide legal authorized users of the vehicle with information about the mobile carrier. status information and other service applications.
  • the usage time of the battery pack can also be obtained from the mobile carrier or an APP associated with the mobile carrier. It should be understood that the usage time may be the "start usage time" in the above embodiment, and the time when users of the mobile carrier need to use the mobile carrier may be preset.
  • the charging pile power information can be obtained through the BMS of the mobile carrier.
  • the charging pile may be a DC charging pile, an AC charging pile, or other charging piles, which are not specifically limited in the embodiments of the present application.
  • the current electric quantity and the target electric quantity can be characterized by SOC, or can also be characterized by the remaining mileage, which is not specifically limited in the embodiment of the present application.
  • the target electric quantity can be a default value, that is, only the current electric quantity and charging pile power information are obtained in S301.
  • the target power level can be a default value, the battery is charged to a state where the SOC is 100% by default.
  • the charging time is determined based on the current power of the battery pack, the target power, and the power information of the charging pile.
  • the charging pile has only one power mode, and the charging time is determined based on this power.
  • the charging pile may have multiple power modes, and the battery pack can match two or more power modes among the multiple power modes. Then the charging time in the two or more power modes can be calculated separately.
  • charging time (target power - current power) / charging pile power.
  • the battery pack when the mobile carrier is in a low-temperature environment, the battery pack needs to be preheated in advance before charging, and the calculated charging time may also include the time required for preheating; or, when the mobile carrier is in a high temperature If the battery pack needs to be cooled down in advance before charging, the calculated charging time can also include the time required for cooling. It should be understood that the above-mentioned low temperature is lower than the lower limit temperature of the battery pack's preferred operating temperature range, and the above-mentioned high temperature is higher than the upper limit temperature of the battery pack's preferred operating temperature range.
  • the charging completion time can be determined based on the charging duration and the current time.
  • S303 Determine whether the difference between the charging completion time and the usage time is greater than a preset threshold.
  • the preset threshold can be 30 minutes, or it can be 20 minutes, or the preset threshold can also change with changes in the external environment temperature. For example, when the temperature is below zero, the preset threshold can be 5 minutes; Or the preset threshold can also be other values, which are not specifically limited in the embodiments of this application.
  • the difference between the charging completion time and the use time may be a negative number, that is, the charging completion time is later than the use time; if the difference between the charging completion time and the use time is less than or equal to the preset threshold, it represents the current time to the use time
  • the time between the time when the charging is completed and the time of use is not enough to charge the battery pack to the target capacity; or, without the use of additional energy to heat or cool the battery pack, the time between the completion of charging and the time of use is not enough to charge the battery pack of the mobile carrier. Raise or cool the temperature to the optimal operating temperature range of the battery pack. Then charging starts from the current moment.
  • a turn-on command is sent to the battery pack relay.
  • the battery pack relay turns on the relay to start charging.
  • S305 Obtain the battery pack temperature characteristic library, battery pack characteristic information, battery pack thermal management information and ambient temperature.
  • the battery pack temperature characteristic library may be the battery pack temperature characteristic library in the above embodiment
  • the battery pack characteristic information may be the battery pack characteristic information in the above embodiment
  • the battery pack thermal management information may be the battery pack thermal management information in the above embodiment.
  • the battery pack thermal management information in , the ambient temperature may be the ambient temperature information in the above embodiment.
  • the "ambient temperature information” involved in this application may include the temperature at the current moment as well as the information on the predicted changes in ambient temperature over time within a period of time in the future.
  • the “future period” may be 12 hours in the future, or may be 24 hours in the future, which is not specifically limited in the embodiments of this application.
  • the ambient temperature information can be obtained from weather forecasts.
  • only the ambient temperature can be obtained; or, only the battery pack thermal management information and the ambient temperature can be obtained.
  • this method is executed by the BMS of the mobile carrier, since the battery pack characteristic information is stored in the BMS, the battery pack characteristic information can no longer be obtained.
  • only the battery pack characteristic information and ambient temperature can also be obtained.
  • the battery pack characteristic information can be obtained through the BMS of the mobile carrier. Obtain the ambient temperature through other means.
  • the battery pack characteristic information can be obtained through the BMS of the mobile carrier
  • the battery pack thermal management information can be obtained through the TMS of the mobile carrier.
  • S306 Determine the battery pack temperature at different times of use at different charging end times.
  • different charging end times are determined according to the charging duration and different charging start times.
  • a table lookup and comparison is performed in the battery pack temperature characteristic library according to the battery pack characteristic information. For example, according to the battery pack model, and/or the battery pack cell specific heat capacity and mass, the corresponding value is found in the battery pack temperature characteristic library. Battery pack and its temperature changes during charging.
  • the time of use is determined. Battery pack temperature.
  • the battery pack temperature at the moment of use can also be determined based on the battery pack characteristic information and the ambient temperature.
  • the total heat generated q during the charging process of the battery pack can be calculated using the following Bernadi formula:
  • t represents the charging time
  • V b is the battery cell volume
  • I is the charging current
  • R r is the internal resistance of the battery pack cell
  • T is the battery temperature
  • It is the entropy heat coefficient of the battery pack, which generally changes with the battery SOC.
  • the battery pack temperature when charging is completed can be determined based on the battery pack cell mass m and specific heat capacity c.
  • T f is the battery pack temperature when charging is completed
  • T s is the battery pack temperature at the beginning of charging.
  • the battery pack temperature at the time of use can be determined based on the time difference between the end of charging and the time of use, the temperature at the end of charging, and the ambient temperature from the end of charging to the time of use.
  • the above method of calculating the battery pack temperature when charging is completed is only an illustrative description.
  • the working conditions of the battery may be more complex. For example, when the battery pack temperature exceeds a certain threshold during the charging process, It may be necessary to start the battery cooling process.
  • the heat loss during the battery cooling process needs to be taken into account. For example, the battery pack temperature at the time of use is determined based on the battery pack characteristic information, battery pack thermal management information, and ambient temperature.
  • the charging start and end time is selected as the charging start and end time that can make the temperature of the battery pack at the time of use be in a better operating temperature range.
  • the above-mentioned preferred operating temperature range may be 10 to 25 degrees Celsius.
  • S307 Obtain the electricity price information, and determine the charging start and end time based on the electricity price information and the battery pack temperature when charging is completed at different charging start times.
  • the charging start and end time includes the start time of charging and the end time of charging.
  • the target power level is the default value, that is, when the battery pack is charged to a state where the SOC is 100% by default
  • the BMS automatically controls the battery pack relay to close after detecting that the battery pack is fully charged. At this time, there is no need to indicate the end time of battery pack charging.
  • the charging start and end times can be determined based on the electricity price information, so that the charging can be carried out in a range with a lower electricity price. Charge.
  • the external ambient temperature within a period of time before and after the battery pack is used is within the optimal operating temperature range of the battery pack. For example, within 6 hours before use and within 2 hours after use, the external ambient temperature is within the optimal operating temperature range of the battery pack. It can be predicted that even if the time interval between the time of charging completion and the time of use is long, as long as the time of completion of charging is within 6 hours before the time of use, the temperature of the battery pack at the time of use will definitely be in the optimal operating temperature range. Within the range, you can choose a range with lower electricity prices for charging based on electricity price information.
  • the determined charging start and end time messages can be sent to the BMS. Further, the BMS controls the battery pack relay to turn on at the charging start time and controls the battery pack relay to turn off at the charging end time.
  • the BMS automatically controls the battery pack relay to close after detecting that the battery pack is fully charged. It can also only determine the charging start time and charge according to the charging start time.
  • the steps or operations of the charging method shown in FIG. 3 are only examples, and embodiments of the present application may also perform other operations or modifications of each operation in FIG. 3 . Additionally, the various steps in FIG. 3 may be performed in a different order than presented in FIG. 3 , and not all operations in FIG. 3 may be performed. In one example, S307 may not be executed, but the starting time of charging may be directly determined based on the battery pack temperature at the time of use at different charging end times, and charging may be controlled from this starting time.
  • the charging method provided by the embodiment of the present application can automatically set the charging start time and end time according to the remaining power of the battery pack, the thermal characteristics of the battery pack and the charging target, and use the heat generated during the charging process to reasonably use the heat of the battery pack , so that when the battery pack is started to be used, the battery pack is in a better operating temperature range, which can save the energy consumption required for heating and cooling the battery pack, and help save the user's cost of using mobile carriers.
  • the start and end times of charging can also be optimized based on electricity price information, which can further save users the cost of using mobile carriers.
  • FIG. 4 shows a schematic flow chart of a charging method provided by an embodiment of the present application.
  • the method 400 can be applied to the mobile carrier 100 shown in FIG. 1 .
  • the method can be implemented by the mobile carrier 100 shown in FIG. 1
  • the computing platform executes, or the computing platform in the cloud 300 shown in FIG. 1 may execute the system execution as shown. This is not specifically limited in the embodiment of the present application.
  • the method 400 includes:
  • the battery pack is the battery pack of the mobile carrier 100 in the above embodiment
  • the first temperature may be the temperature at the end moment of charging of the battery pack predicted in the above embodiment.
  • the first temperature is determined before obtaining the first temperature.
  • the specific method of determining the first temperature may refer to the description in the above embodiment, such as the description in S306 of method 300, which will not be described again here.
  • S402. Determine a first time period required for the temperature of the battery pack to be adjusted from the first temperature to within the preset temperature range.
  • the preset temperature range may be the "preferred operating temperature range" in the above embodiment.
  • the temperature range may be 10 to 25 degrees Celsius, or it may be 15 to 35 degrees Celsius, or it may be other temperature ranges. .
  • S403 Determine the starting time of charging the battery pack based on the first duration and the usage time.
  • charging reservation can be made according to the starting time of charging, so that the charging pile charges the battery pack at the starting time.
  • the termination moment of charging can also be determined. Further, charging reservation can be made based on the starting time and ending time of charging, so that the charging pile charges the battery pack at the starting time and ends the charging process of the battery pack at the ending time.
  • the method further includes: obtaining electricity price information; determining the starting time of charging the battery pack according to the first duration and the usage moment.
  • the method may be: determining according to the electricity price information, the first duration and the usage moment. The starting time.
  • the method further includes: obtaining the power information of the charging pile; when the power information indicates that the charging pile supports multiple charging powers, and the multiple charging powers all match the battery pack, determining the third charging station based on the electricity price information.
  • a charging power, the first charging power is used to charge the battery pack, and the plurality of charging powers include the first charging power.
  • the power information of the charging pile may be the power information of the charging pile in the above embodiment.
  • the method of obtaining this information may refer to the description in the above embodiment, which will not be described again here.
  • the first temperature is determined according to the model of the battery pack and a battery pack temperature characteristic library.
  • the battery pack temperature characteristic library is used to indicate temperature changes of different battery packs during charging.
  • the model of the battery pack may be included in the battery pack characteristic information in the above embodiment;
  • the battery pack temperature characteristic library may be the battery pack temperature characteristic library in the above embodiment.
  • the method of determining the first temperature according to the model and the battery pack temperature characteristic library may refer to the description in the above embodiment, for example, refer to the description in S306 of method 300, which will not be described again here.
  • the method further includes: before determining the starting moment of charging the battery pack, determining that the time between the charging termination moment and the usage moment is greater than or equal to a preset threshold.
  • the preset threshold may be the preset threshold in the above embodiment.
  • the method of determining that the duration between the termination moment and the usage moment is greater than or equal to the preset threshold may refer to the description in the above embodiment, for example, refer to the description in S303 in method 300, which will not be described again here.
  • the method further includes: obtaining a second duration, which is the duration of suspension of charging during the charging process of the battery pack; and determining a starting time for charging the battery pack based on the first duration and the usage moment. , including: determining the starting time based on the first duration, the second duration and the usage time.
  • the preset temperature can be 50 degrees Celsius, or 55 degrees Celsius, or the preset temperature can be The temperature at which the TMS system turns on the battery cooling function during charging, or it can be other temperatures.
  • the second duration may be a preset duration, such as 5 minutes or 10 minutes.
  • the preset time period may change as the external environment temperature changes; or the second time period may also be a calculated time period, for example, calculated based on the external environment temperature and the above-mentioned preset temperature. The time required for the temperature to drop to the external ambient temperature, or the time required for the preset temperature to drop to the optimal operating temperature range of the battery pack, calculated based on the external ambient temperature and the above-mentioned preset temperature.
  • charging to the battery pack is controlled at the initial moment.
  • the battery pack temperature reaches a preset temperature, charging is suspended for a second period of time, and then the battery pack is controlled to be charged. Continue charging.
  • the charging process may be paused multiple times, and the duration of each pause is the second duration.
  • the charging method provided by the embodiment of the present application can rationally use the heat generated during the charging process of the battery pack of the mobile carrier to heat the battery pack, and/or enable the battery pack to be started to be used by reasonably setting the charging start time. At this time, the temperature of the battery pack is in the optimal operating temperature range, which can save the energy consumption required for heating and cooling the battery pack and help save user costs.
  • FIG. 5 shows a schematic block diagram of a communication device 2000 provided by an embodiment of the present application.
  • the device 2000 includes a transceiver unit 2010 and a processing unit 2020.
  • the device 2000 may also include a storage unit, which may be used to store instructions and/or data, and the processing unit 2020 may read the instructions and/or data in the storage unit, so that the device implements the foregoing method embodiments. .
  • the device 2000 may include units for performing the methods in Figures 3 and 4. Moreover, each unit in the device 2000 and the above-mentioned other operations and/or functions are respectively intended to implement the corresponding processes of the method embodiments in Figures 3 and 4.
  • the acquisition unit 2010 can be used to execute S401 in the method 400
  • the processing unit 2020 can be used to execute S402 to S404 in the method 400.
  • the device 2000 includes: an acquisition unit 2010, which acquires the usage moment of the battery pack and the first temperature of the battery pack at the end of charging; a processing unit 2020, which is used to determine that the temperature of the battery pack is adjusted from the first temperature to The first duration required within the preset temperature range; the starting moment for charging the battery pack is determined based on the first duration and the usage moment.
  • the acquisition unit 2010 is also configured to: acquire electricity price information; the processing unit 2020 is specifically configured to determine the starting time based on the electricity price information, the first duration and the usage time.
  • the device further includes a transceiver unit.
  • the acquisition unit 2010 is further configured to: acquire the power information of the charging pile;
  • the processing unit 2020 is further configured to: when the power information indicates that the charging pile supports multiple charging powers, according to The electricity price information determines the first charging power, and the plurality of charging powers include the first charging power;
  • the transceiver unit is used to send instruction information to the charging pile, and the instruction information is used to instruct the charging pile to use the charging station at the starting moment.
  • the first charging power charges the battery pack.
  • the acquisition unit 2010 is further configured to: acquire a second duration, which is the duration of suspension of charging during charging of the battery pack; the processing unit 2020 is further configured to: acquire a second duration according to the first duration, the second duration The duration and the time of use determine the starting time.
  • the obtaining unit 2010 is also configured to obtain the model of the battery pack; the processing unit 2020 is specifically configured to determine the first temperature according to the model and the battery pack temperature characteristic library.
  • the processing unit 2020 is further configured to: before determining the starting time and the ending time of charging the battery pack based on the first duration and the usage time, and determining the charging termination time and the usage time based on the charging duration.
  • the duration is greater than or equal to the preset threshold.
  • the acquisition unit 2010 is further configured to acquire temperature information of the environment in which the battery pack is located, and the processing unit 2020 is further configured to determine the first duration based on the temperature information and the first temperature.
  • each unit in the above device is only a division of logical functions.
  • the units may be fully or partially integrated into a physical entity, or may be physically separated.
  • the unit in the device can be implemented in the form of a processor calling software; for example, the device includes a processor, the processor is connected to a memory, instructions are stored in the memory, and the processor calls the instructions stored in the memory to implement any of the above methods.
  • the processor is, for example, a general-purpose processor, such as a CPU or a microprocessor
  • the memory is a memory within the device or a memory outside the device.
  • the units in the device can be implemented in the form of hardware circuits, and some or all of the functions of the units can be implemented through the design of the hardware circuits, which can be understood as one or more processors; for example, in one implementation,
  • the hardware circuit is an ASIC, which realizes the functions of some or all of the above units through the design of the logical relationship of the components in the circuit; for another example, in another implementation, the hardware circuit can be implemented through PLD, taking FPGA as an example. It can include a large number of logic gate circuits, and the connection relationships between the logic gate circuits can be configured through configuration files to realize the functions of some or all of the above units. All units of the above device may be fully realized by the processor calling software, or may be fully realized by hardware circuits, or part of the units may be realized by the processor calling software, and the remaining part may be realized by hardware circuits.
  • the processor is a circuit with signal processing capabilities.
  • the processor may be a circuit with instruction reading and execution capabilities, such as a CPU, a microprocessor, a GPU, or DSP, etc.; in another implementation, the processor can realize certain functions through the logical relationship of the hardware circuit. The logical relationship of the hardware circuit is fixed or can be reconstructed.
  • the processor is a hardware circuit implemented by ASIC or PLD. For example, FPGA.
  • the process of the processor loading the configuration file and realizing the hardware circuit configuration can be understood as the process of the processor loading instructions to realize the functions of some or all of the above units.
  • it can also be a hardware circuit designed for artificial intelligence, which can be understood as an ASIC, such as NPU, TPU, DPU, etc.
  • each unit in the above device can be one or more processors (or processing circuits) configured to implement the above method, such as: CPU, GPU, NPU, TPU, DPU, microprocessor, DSP, ASIC, FPGA , or a combination of at least two of these processor forms.
  • processors or processing circuits
  • each unit in the above device may be integrated together in whole or in part, or may be implemented independently. In one implementation, these units are integrated together and implemented as a system-on-a-chip (SOC).
  • SOC may include at least one processor for implementing any of the above methods or implementing the functions of each unit of the device.
  • the at least one processor may be of different types, such as a CPU and an FPGA, or a CPU and an artificial intelligence processor. CPU and GPU etc.
  • FIG. 6 is a schematic block diagram of a charging device according to an embodiment of the present application.
  • the device 2100 shown in FIG. 6 may include: a processor 2110, a transceiver 2120, and a memory 2130.
  • the processor 2110, the transceiver 2120 and the memory 2130 are connected through an internal connection path.
  • the memory 2130 is used to store instructions, and the processor 2110 is used to execute the instructions stored in the memory 2130, so that the transceiver 2120 receives/sends some parameters.
  • the memory 2130 can be coupled with the processor 2110 through an interface or integrated with the processor 2110 .
  • transceiver 2120 may include but is not limited to a transceiver device such as an input/output interface to realize communication between the device 2100 and other devices or communication networks.
  • each step of the above method can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 2110 .
  • the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware processor for execution, or can be executed by a combination of hardware and software modules in the processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 2130.
  • the processor 2110 reads the information in the memory 2130 and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor 2110 can use a general-purpose CPU, microprocessor, ASIC, GPU or one or more integrated circuits to execute relevant programs to implement the communication method of the method embodiment of the present application.
  • the processor 2110 may also be an integrated circuit chip with signal processing capabilities.
  • each step of the communication method of the present application can be completed by instructions in the form of hardware integrated logic circuits or software in the processor 2110 .
  • the above-mentioned processor 2110 can also be a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component.
  • Each method, step and logical block diagram disclosed in the embodiment of this application can be implemented or executed.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • the steps of the method disclosed in conjunction with the embodiments of the present application can be directly implemented by a hardware decoding processor, or executed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, registers and other mature storage media in this field.
  • the storage medium is located in the memory 2130.
  • the processor 2110 reads the information in the memory 2130 and executes the communication method of the method embodiment of the present application in conjunction with its hardware.
  • the memory 2130 may be a read-only memory (ROM), a static storage device, a dynamic storage device or a random access memory (RAM).
  • ROM read-only memory
  • RAM random access memory
  • the transceiver 2120 uses a transceiver device such as but not limited to a transceiver to implement communication between the device 2100 and other devices or communication networks.
  • An embodiment of the present application also provides a battery management system, which may include the above device 2000 or the above device 2100.
  • An embodiment of the present application also provides a mobile carrier, which may include the above device 2000 or the above device 2100.
  • the mobile carrier may be the mobile carrier 100 shown in FIG. 1 .
  • This embodiment of the present application also provides a server, which may include the above device 2000 or the above device 2100.
  • the server may be a server provided in the cloud 300 shown in FIG. 1 .
  • This embodiment of the present application also provides a terminal device, which may include the above device 2000 or the above device 2100.
  • Embodiments of the present application also provide a computer-readable medium.
  • the computer-readable medium stores program code.
  • the computer program code When the computer program code is run on a computer, it causes the computer to execute the method in Figure 3 or Figure 4. .
  • An embodiment of the present application further provides a chip, including: at least one processor and a memory, the at least one processor being coupled to the memory and configured to read and execute instructions in the memory to execute the above-mentioned Figure 3 or Method in Figure 4.
  • the size of the sequence numbers of the above-mentioned processes does not mean the order of execution.
  • the execution order of each process should be determined by its functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in various embodiments of the present application may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to execute all or part of the steps of the methods described in various embodiments of this application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本申请提供了一种充电方法、装置和移动载体,该方法可以包括:获取电池包的使用时刻和该电池包在充电结束时的第一温度;确定该电池包的温度从该第一温度调整至预设温度范围内所需的第一时长;根据该第一时长和该使用时刻确定该电池包充电的起始时刻。本申请的充电方法,可以应用于新能源汽车等需要对电池预热或预冷的场景中,有助于节约能源和用户成本。

Description

充电方法、装置和移动载体 技术领域
本申请涉及电池领域,更具体地,涉及一种充电方法、装置和移动载体。
背景技术
由于随着环境温度降低,电动汽车的动力电池放电容量、放电效率均降低,可能影响影响用车体验。在极低温度下,放电过程还会对动力电池性能造成不可逆损坏。因此,在环境温度较低的场景下使用电动汽车时,需要对动力电池进行预热。在当前技术背景下,电动汽车普遍采用外部电源(如充电桩等)通过正温度系数热敏电阻(positive temperature coefficient,PTC)加热等方式来给动力电池预热,这将增加用户的用车成本,且不利于节约能源。
发明内容
本申请提供一种充电方法、装置和移动载体,能够将对电池包充电过程中产生的热量合理地用于电池包预热,能够节省使用电池包之前对电池包预热需能耗,有助于节约用户成本。
第一方面,提供了一种充电方法,该方法可以包括:获取电池包的使用时刻和该电池包在充电结束时的第一温度;确定该电池包的温度从该第一温度调整至预设温度范围内所需的第一时长;根据该第一时长和该使用时刻确定该电池包充电的起始时刻。
在上述技术方案中,通过合理设定充电起始时刻,能够将对移动载体的电池包充电过程中产生的热量合理地用于电池包加热,或者为电池包预留足够多的冷却时长,使得开始使用电池包时,电池包处于较佳工作温度区间,能够节省对电池包加热、冷却所需能耗,有助于节约用户成本。
需要说明的是,该方法可以由移动载体的计算平台执行,其中,该移动载体包括该电池包;或者也可以由云端的计算平台执行。更具体地,该方法也可以由用于上述计算平台中的芯片或电路执行,本申请对此不作限定。
在一些可能的实现方式中,获取电池包的使用时刻和该电池包在充电结束时的第一温度;确定该电池包的温度从该第一温度调整至预设温度范围内所需的第一时长;根据该第一时长和该使用时刻确定该电池包充电的终止时刻。进一步地,根据该充电的终止时刻和充电目标确定充电的起始时刻。
在一些可能的实现方式中,获取电池包的充电目标、电池包的使用时刻和该电池包在充电结束时的第一温度;根据该充电目标确定该电池包的温度从该第一温度调整至预设温度范围内所需的第一时长;根据该充电时长、该第一时长和该使用时刻确定该电池包充电的起始时刻。
示例性地,充电目标包括电池包的目标充电量和/或充电时长。
示例性地,该电池包可以为移动载体的电池包。
示例性地,以该电池包是移动载体的电池包为例,该电池包的使用时刻可以是从与移动载体关联的应用程序处获取的,或者也可以是从移动载体的车载终端处或获取的。该电池包的充电目标也可以是从与移动载体关联的应用程序处获取的,或者也可以是从移动载体的车载终端处或获取的
在一些可能的实现方式中,还需获取用于给电池包充电的充电桩的功率信息,该充电桩的功率信息可以包括充电桩支持的充电功率。
在一些可能的实现方式中,充电桩只有一种功率模式,则根据该功率和剩余电量确定充电时长。或者,充电桩可能具有多种功率模式,且电池包可以与多种功率模式中的两种及以上功率模式相匹配,则可以分别计算多种功率模式下的充电时长。
在一些可能的实现方式中,可以根据电池包剩余电量、目标电量和充电功率确定充电时长;或者,该充电时长也可以是移动载体的用户自行设定的时长;或者,该充电时长也可以是通过其他方式确定的。
在一些可能的实现方式中,可以根据电池包的热力学参数确定第一温度。
示例性地,该热力学参数可以包括的电池包电芯的比热容c和电池包电芯质量m。
在一些可能的实现方式中,可以根据充电桩的功率信息和充电时长确定充电过程中产生的总热量,进而根据该总热量、电池包电芯的比热容c、电池包电芯质量m和该环境温度信息,确定电池包在不同的充电的终止时刻对应的电池包的温度。
在一些可能的实现方式中,该热力学参数还可以包括该电池包的熵热系数,该特性信息还可以包括电池包电芯内阻。则可以根据以根据充电电流、电池包电芯内阻、电池包熵热系数确定充电过程中产生的总热量,进而根据该总热量、电池包电芯的比热容c、电池包电芯质量m和该环境温度信息,确定电池包在不同的充电的终止时刻对应的电池包的温度。
示例性地,该预设温度范围可以为该电池包的较佳工作温度区间。其中,该“较佳工作温度区间”可以为电池放电过程不会对动力电池性能造成不可逆损坏的温度区间,例如,该较佳工作温度区间可以为10至25摄氏度,或者也可以为10至35摄氏度,或者也可以为其他温度区间。
在一些可能的实现方式中,还可以结合电池包的热管理信息确定第一温度。
示例性地,该电池包的热管理信息可以包括电池包电芯的加热功能信息和冷却功能信息,例如,加热功能信息可以包括在电池包温度处于某一范围时,和/或充电功率处于某一范围时,启动电池包加热功能的信息;冷却功能信息可以包括在电池包温度处于某一范围时,和/或充电功率处于某一范围时,启动电池包冷却功能的信息。则可以结合电池包的热管理信息,确定电池包在不同的充电的终止时刻对应的电池包的温度。
示例性地,可以基于自然对流换热模型,根据第一温度、预设温度范围和使用时刻的电池包所处环境的温度确定第一时长。
进一步地,可以根据该充电的起始时刻进行充电预约,使得该充电桩在该起始时刻对电池包进行充电。
在一些可能的实现方式中,还可以确定充电的终止时刻。示例性地,可以根据该起始时刻和终止时刻生成充电预约信息,并发送给电池管理系统(battery management system,BMS),BMS根据该充电预约信息,在起始时刻向电池包继电器发送开启命令,电池包 继电器接收到开启命令即开启继电器开始充电;BMS根据该充电预约信息,在充电终止时刻控制电池包继电器关闭。
在一些可能的实现方式中,该方法可以由BMS执行,则BMS可以直接根据该起始时刻,向电池包继电器发送开启命令,以控制电池包继电器在该起始时刻开启继电器开始充电。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:获取电价信息;该根据该第一时长和该使用时刻确定该电池包充电的起始时刻,包括:根据该电价信息、该第一时长和该使用时刻确定该起始时刻。
应理解,由于预设温度范围包括多个温度值,因此确定的第一时长也可能包括多个时长。则可以结合电价信息确定一个时长,进而根据该时长和该使用时刻确定该起始时刻,以使得在电价较低的区间内进行充电。
在一些可能的实现方式中,该电池包使用时刻前后一段时长内的外界环境温度处于电池包的较佳工作温度区间。例如,使用时刻之前6小时内,以及使用时刻之后2小时内,外界环境温度均处于电池包的较佳工作温度区间。则可以理解的是,即使充电完成时刻与使用时刻之间的时长间隔较长,但只要充电完成时刻处于使用时刻之前的6小时内,该电池包在使用时刻的温度就一定会处于较佳工作温度区间内。在这种情况下,充电结束时刻对电池包使用时刻的温度影响不大,因此可以进一步结合电价信息,优化充电起始和终止时刻。
一示例,当前时刻为x月x日凌晨1点,确定的充电时长为4小时,使用移动载体的时刻为x月x日上午10点,且x月x日凌晨3点至10点温度均处电池包的较佳工作温度区间。根据电价信息确定晚上22点至凌晨4点的电价较为便宜,则可以确定充电起始时刻为凌晨1点,充电终止时刻为凌晨5点。
在上述技术方案中,根据电价信息优化充电的起始时刻,有助于进一步节省用户使用移动载体的成本。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:获取充电桩的功率信息;在该功率信息指示该充电桩支持多个充电功率时,根据该电价信息确定第一充电功率,该多个充电功率包括该第一充电功率;向该充电桩发送指示信息,该指示信息用于指示该充电桩在该起始时刻使用该第一充电功率对该电池包充电。
示例性地,充电桩具有多种功率模式,且电池包可以与多种功率模式中的两种及以上功率模式相匹配。
一示例,当前时刻为x月x日凌晨1点,进一步地,确定在充电桩第一功率下的充电时长为4小时,在充电桩第二功率下的充电时长为2小时,使用移动载体的时刻为x月x日上午10点,且x月x日凌晨3点至10点温度均处电池包的较佳工作温度区间。根据电价信息确定晚上22点至凌晨4点的电价较为便宜,则可以确定使用充电桩的第二功率进行充电,且充电起始时刻为凌晨2点,充电终止时刻为凌晨4点。
在上述技术方案中,充电桩具有多个功率的情况下,根据电价信息对充电功率进行优化,有助于进一步节省充电成本。
结合第一方面,在第一方面的某些实现方式中,该第一温度为根据该电池包的型号和电池包温度特性库确定,该电池包温度特性库用于指示不同电池包在充电过程中的温度变化。
应理解,该电池包温度特性库包括一个或多个型号的电池包充电过程中产生的总热量的经验值。
在上述技术方案中,基于电池包温度特性库确定第一温度,能够减少计算复杂度;基于经验数值,能够提高预测的电池包使用时刻的温度的准确度。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:获取第二时长,该第二时长为对该电池包充电过程中暂停充电的时长;该根据该第一时长和该使用时刻确定该电池包充电的起始时刻,包括:根据该第一时长、该第二时长和该使用时刻确定该起始时刻。
在一些可能的实现方式中,在电池包充电过程中,电池包温度达到预设温度时,暂停充电,示例性地,该预设温度可以为50摄氏度,或者55摄氏度,或者该预设温度可以为TMS系统开启充电过程中电池冷却功能的温度,或者也可以为其他温度。
示例性地,该第二时长可以为预设时长,例如5分钟,或者10分钟。在一些可能的实现方式中,该预设时长可以随外界环境温度变化而改变;或者,该第二时长也可以为计算的时长,例如,根据外界环境温度和上述预设温度计算出的,预设温度降至外界环境温度所需的时长,或者,根据外界环境温度和上述预设温度计算出的,预设温度降至电池包较佳工作温度区间所需的时长。
在一些可能的实现方式中,在起始时刻控制向电池包充电,未充至目标电量时,电池包温度达到预设温度,则暂停充电,暂停时长为第二时长,之后再控制向电池包继续充电。
在一些可能的实现方式中,在充电过程中,可能暂停多次,每次暂停时长为第二时长。
在上述技术方案中,在充电过程中,在电池包温度达到一定温度时,暂停充电,进一步地,基于该暂停时长确定充电的起始时刻,能够节省在充电过程中TMS为电池降温所需的能耗,有助于进一步节约用户成本。
结合第一方面,在第一方面的某些实现方式中,该根据该第一时长和该使用时刻确定该电池包充电的起始时刻之前,该方法还包括:确定充电的终止时刻与该使用时刻之间的时长大于或等于预设阈值。
示例性地,该预设阈值可以为30分钟,或者也可以为20分钟,或者该预设阈值也可以随外界环境温度变化而改变,例如,温度低于零度时,预设阈值可以为5分钟;或者该预设阈值也可以为其他数值,本申请实施例对此不作具体限定。
应理解,若充电结束时刻与电池包的使用时刻之间差值小于或等于预设阈值,代表当前时刻至电池包使用时刻之间的时长无法使电池包充至目标电量;或者,在不借助额外能量对电池包进行加热或冷却的情况下,充电完成时刻与电池包的使用时刻之间的时长,不足以使电池包升温或降温至电池包最佳工作温度区间,则从当前时刻开始充电。
第二方面,提供了一种充电装置,该装置可以包括:获取单元,获取电池包的使用时刻和该电池包在充电结束时的第一温度;处理单元,用于确定该电池包的温度从该第一温度调整至预设温度范围内所需的第一时长;根据该第一时长和该使用时刻确定该电池包充电的起始时刻。
结合第二方面,在第二方面的某些实现方式中,该获取单元还用于:获取电价信息;该处理单元具体用于根据该电价信息、该第一时长和该使用时刻确定该起始时刻。
结合第二方面,在第二方面的某些实现方式中,该装置还包括收发单元,该获取单元还用于:获取充电桩的功率信息;该处理单元还用于:在该功率信息指示该充电桩支持多 个充电功率时,根据该电价信息确定第一充电功率,该多个充电功率包括该第一充电功率;该收发单元用于向该充电桩发送指示信息,该指示信息用于指示该充电桩在该起始时刻使用该第一充电功率对该电池包充电。
结合第二方面,在第二方面的某些实现方式中,该第一温度为根据该电池包的型号和电池包温度特性库确定,该电池包温度特性库用于指示不同电池包在充电过程中的温度变化。
结合第二方面,在第二方面的某些实现方式中,该获取单元还用于:获取第二时长,该第二时长为对该电池包充电过程中暂停充电的时长;该处理单元还用于根据该第一时长、该第二时长和该使用时刻确定该起始时刻。
结合第二方面,在第二方面的某些实现方式中,该处理单元还用于:该根据该第一时长和该使用时刻确定该电池包充电的起始时刻和该终止时刻之前,根据该充电时长确定充电终止时刻与该使用时刻之间的时长大于或等于预设阈值。
结合第二方面,在第二方面的某些实现方式中,该获取单元还用于:获取该电池包所处环境的温度信息,该处理单元还用于根据该温度信息和该第一温度确定该第一时长。
第三方面,提供了一种充电装置,该装置包括:存储器,用于存储程序;处理器,用于执行存储器存储的程序,当存储器存储的程序被执行时,处理器用于执行上述第一方面中任一种可能实现方式中的方法。
第四方面,提供了一种电池管理系统,该电池管理系统包括上述第二方面中任一种可能实现方式中的装置或者上述第三方面中任一种实现方式中的装置。
第五方面,提供了一种移动载体,该移动载体包括上述第二方面中任一种可能实现方式中的装置或者上述第三方面中任一种实现方式中的装置,或者包括上述第四方面中任一种可能实现方式中的电池管理系统。
第六方面,提供了一种服务器,该服务器包括上述第二方面中任一种可能实现方式中的装置或者上述第三方面中任一种实现方式中的装置。
第七方面,提供了一种终端设备,该终端设备包括上述第二方面中任一种可能实现方式中的装置或者上述第三方面中任一种实现方式中的装置。
第八方面,提供了一种计算机程序产品,上述计算机程序产品包括:计算机程序代码,当上述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法。
需要说明的是,上述计算机程序代码可以全部或部分存储在第一存储介质上,其中第一存储介质可以与处理器封装在一起的,也可以与处理器单独封装,本申请实施例对此不作具体限定。
第九方面,提供了一种计算机可读介质,上述计算机可读介质存储由程序代码,当上述计算机程序代码在计算机上运行时,使得计算机执行上述第一方面中任一种可能实现方式中的方法。
第十方面,提供了一种芯片,该芯片包括处理器,用于调用存储器中存储的计算机程序或计算机指令,以使得该处理器执行上述第一方面中任一种可能实现方式中的方法。
结合第十方面,在一种可能的实现方式中,该处理器通过接口与存储器耦合。
结合第十方面,在一种可能的实现方式中,该芯片系统还包括存储器,该存储器中存储有计算机程序或计算机指令。
附图说明
图1是本申请实施例提供的一种充电方法实施场景的示意图。
图2是本申请实施例提供的一种充电系统架构示意图。
图3是本申请实施例提供的一种充电方法的示意性流程图。
图4是本申请实施例提供的一种充电方法的示意性流程图。
图5是本申请实施例提供的一种充电装置的示意性框图。
图6是本申请实施例提供的一种充电装置的又一示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本申请实施例中采用诸如“第一”、“第二”的前缀词,仅仅为了区分不同的描述对象,对被描述对象的位置、顺序、优先级、数量或内容等没有限定作用。本申请实施例中对序数词等用于区分描述对象的前缀词的使用不对所描述对象构成限制,对所描述对象的陈述参见权利要求或实施例中上下文的描述,不应因为使用这种前缀词而构成多余的限制。此外,在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请提供的充电方法、装置和移动载体适用于移动载体,也适用于其他电池需要预热的场景中。在本申请中,移动载体可以包括路上交通工具、水上交通工具、空中交通工具、工业设备、农业设备、或娱乐设备等。例如移动载体可以为车辆,该车辆为广义概念上的车辆,可以是交通工具(如商用车、乘用车、摩托车、飞行车、火车等),工业车辆(如:叉车、挂车、牵引车等),工程车辆(如挖掘机、推土车、吊车等),农用设备(如割草机、收割机等),游乐设备,玩具车辆等,本申请实施例对车辆的类型不作具体限定。再如,移动载体可以为飞机、或轮船等交通工具。车辆可以包括电动汽车,上述电动汽车是一种适用电驱器驱动行驶的移动载体。电动汽车可以为纯电动汽车(pure electric vehicle/battery electric vehicle,pure EV/battery EV)、混合动力汽车(hybrid electric vehicle,HEV)、增程式电动汽车(range extended electric vehicle,REEV)、插电式混合动力汽车(plug-in hybrid electric vehicle,PHEV)或新能源汽车(new energy vehicle,NEV)等。
如上所述,当前技术背景下,在需要对移动载体的电池包进行预热或预冷的场景中,普遍采用外部电源(如充电桩等)通过PTC加热或冷却等方式来给电池包预热或预冷。例如,通过预热系统、控制电路、成本估算等模块间的配合,来加热电池包直到预设温度。如根据计划使用移动载体的时间,在适当的时刻发出加热系统使能信号,启动预热系统开始加热。但是上述方案仍需要额外消耗能量,需要用户承担额外成本,未能有效利用充电过程中产生的热量。鉴于此,本申请实施例提供一种充电方法、装置和移动载体,能够根据电池包当前电量、电池包特性、充电目标等信息规划充电起止时刻,以使用户在使用移动载体时,电池包的温度处于较佳工作温度区间,有利于节省电池包保温加热、冷却所需的能量,节约用车成本。
图1所示为本申请实施例提供的一种充电方法实施场景的示意图。具体地,如图1所 示,在充电过程中,可能涉及移动载体100、充电桩200、云端300和终端400,其中,终端400是与移动载体100相关联的设备,移动载体100包括电池包、BMS、热管理系统(thermal management system,TMS)。示例性地,上述的“相关联”可以包括但不限于:登录两个设备的账号相同;或者,登录两个设备的账号虽然不同,但均为移动载体100的授权用户的账号。
在一些可能的实现方式中,首先,移动载体100和/或终端400向云端300发送电池包电量信息和充电目标信息(S1),电池包电量信息包括电池包剩余电量(或剩余续航里程),充电目标信息包括开始使用时刻和目标电量(或目标续航里程)。进一步地,BMS向云端300发送电池包特性信息和充电桩功率信息(S2),TMS向云端300发送电池包热管理信息(S2)。其中,电池包特性信息是电池包向BMS发送的(S2),包括但不限于电池包的型号、荷电状态(state of charge,SOC)、功率状态(state of power,SOP)、电池包当前温度、热力学特性如电池包电芯的比热容c和电池包电芯质量m;充电桩功率信息可以为根据充电桩向BMS发送的可用功率确定的;电池包热管理信息可以包括电池包电芯的加热功能信息和冷却功能信息,例如,加热功能信息可以包括在电池包温度处于某一范围时,和/或充电功率处于某一范围时,启动电池包加热功能的信息;冷却功能信息可以包括在电池包温度处于某一范围时,和/或充电功率处于某一范围时,启动电池包冷却功能的信息。进一步地,云端300根据充电目标信息、电池包电量信息、充电桩功率信息确定充电时长,云端300进一步地根据电池包热管理信息、电池包特性信息以及环境温度信息确定充电的起止时刻,并将充电起止时刻发送给BMS(S3),BMS根据充电起止时刻控制电池包继电器开启或关闭(S4);充电桩在充电起始时刻向电池包输入功率,在充电结束时刻停止向电池包输入功率(S4)。
需要说明的是,上述“开始使用时刻”可以理解使用电池包的时刻,示例性地,可以为使用电池包驱动移动载体行驶的时刻。
在一些可能的实现方式中,云端300还可以获取电池包温度特性库,该电池包温度特性库可以包含多种型号电池包信息以及在不同环境下充电时电池包温度变化的经验数据,和/或不同电池包电芯的热力学特性信息,以及在不同环境下充电时电池包温度变化的经验数据。进一步地,云端300可以根据移动载体100的电池包特性信息在电池包温度特性库中查表确定充电起止时刻。
在一些可能的实现方式中,云端300还可以获取电价信息,该电价信息包括随时间变化的电价信息,云端300可以根据电价变化情况优化充电起止时刻。
在一些可能的实现方式中,确定电池包充电时长和/或充电起止时刻的步骤也可以由移动载体100的计算平台完成。即,移动载体100的计算平台获取电池包电量信息、充电目标信息、电池包特性信息、充电桩功率信息、电池包热管理信息,进而根据充电目标信息、电池包电量信息、充电桩功率信息确定充电时长;进一步地,移动载体100的计算平台根据电池包热管理信息、电池包特性信息以及环境温度信息确定充电的起止时刻。在一些可能的实现方式中,移动载体100的计算平台也可以获取电池包温度特性库和/或电价信息,进而可以根据电池包温度特性库确定充电起止时刻,根据电价信息优化充电起止时刻。
应理解,移动载体100的部分或所有功能可以由移动载体100的计算平台控制。该计算平台可包括一个或多个处理器,处理器是一种具有信号的处理能力的电路,在一种实现 中,处理器可以是具有指令读取与运行能力的电路,例如中央处理单元(central processing unit,CPU)、微处理器、图形处理器(graphics processing unit,GPU)(可以理解为一种微处理器)、或数字信号处理器(digital signal processor,DSP)等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为专用集成电路(application-specific integrated circuit,ASIC)或可编程逻辑器件(programmable logic device,PLD)实现的硬件电路,例如现场可编辑逻辑门阵列(filed programmable gate array,FPGA)。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如神经网络处理单元(neural network processing unit,NPU)、张量处理单元(tensor processing unit,TPU)、深度学习处理单元(deep learning processing unit,DPU)等。此外,计算平台还可以包括存储器,存储器用于存储指令,计算平台中的部分或全部处理器可以调用存储器中的指令,执行指令,以实现相应的功能。
图2示出了本申请实施例提供的一种充电系统的示意性框图。如图2所示,该充电系统可以包括充电信息获取模块、充电时长计算模块、判断模块、温度特性获取模块、结束充电时刻温度计算模块、成本优化计算模块、充电模块。示例性地,充电信息获取模块用于获取上述电池包电量信息、充电目标信息、充电桩功率信息;充电时长计算模块用于根据充电信息获取模块获取的信息计算充电所需时长;判断模块用于根据当前时刻和充电时长计算模块计算出的充电时长,判断充电结束时刻是否在使用时刻之前;温度特性获取模块用于获取影响电池包温度的信息,包括上述电池包热管理信息、电池包特性信息以及环境温度信息,温度特性获取模块还可以用于获取电池包温度特性库;结束充电时刻温度计算模块用于,根据温度特性获取模块获取到的信息和充电时长计算在不同时刻结束充电时,使用时刻的电池包温度;成本优化计算模块用于根据电价信息对充电起止时刻进行优化;充电预约模块用于根据结束充电时刻温度计算模块计算的结果,和/或成本优化计算模块的优化结果,和/或判断模块的判断结果进行充电预约。在一些可能的实现方式中,该充电系统可以设置于云端300中;或者也可以设置于移动载体100中,更具体地,可以设置于云端300或移动载体100的计算平台中;或者,充电系统中的部分模块可以设置于移动载体100中,剩余部分模块可以设置在云端300中,本申请实施例对此不作具体限定。
应理解,图2所示的各个模块只是一个示例,实际应用中,上述各个模块可以具有不同的名称,或者也可以根据实际需要对上述模块进行增添或者删除。例如,在一些可能的实现方式中,可以删除成本优化计算模块。
图3示出了本申请实施例提供的一种充电方法的示意性流程图,该方法可以由图1所示的云端300执行,或者也可以由图1所示的移动载体100执行,或者还可以由图2所示的充电系统执行。在该方法由移动载体100执行时,可以由移动载体100中的BMS执行。具体地,该方法300可以包括:
S301,获取电池包当前电量、目标电量和充电桩功率信息。
示例性地,可以从移动载体的车载终端,如通讯盒子(telematics BOX,T-Box)处获取电池包当前电量和目标电量;或者,也可以从与移动载体关联的应用程序(application,APP)处获取电池包当前电量和目标电量。示例性地,与移动载体关联的APP可以为车主APP,或者也可以为其他能够为移动载体的合法授权用户提供移动载体控制的应用程序, 和/或为车辆的合法授权用户提供了解该移动载体的状况信息等服务的应用程序。示例性地,还可以从移动载体处或与移动载体关联的APP处获取电池包的使用时刻。应理解,使用时刻可以为上述实施例中的“开始使用时刻”,可以为移动载体的用户预先设定需要使用移动载体的时刻。
示例性地,该方法由云端的计算平台执行时,可以通过移动载体的BMS获取充电桩功率信息。该充电桩可以为直流充电桩、交流充电桩,或者也可以为其他充电桩,本申请实施例对此不作具体限定。
示例性地,当前电量和目标电量可以通过SOC表征,或者也可以通过剩余里程数表征,本申请实施例对此不作具体限定。
在一些可能的实现方式中,该目标电量可以为缺省值,即,在S301中只获取当前电量和充电桩功率信息。在目标电量可以为缺省值时,默认充电至SOC为100%的状态。
S302,确定充电时长和/或充电完成时刻。
示例性地,根据电池包当前电量、目标电量、充电桩功率信息确定充电时长。
在一些可能的实现方式中,充电桩只有一种功率模式,则根据该功率确定充电时长。或者,充电桩可能具有多种功率模式,且电池包可以与多种功率模式中的两种及以上功率模式相匹配,则可以分别计算两种及以上功率模式下的充电时长。
示例性地,充电时长=(目标电量-当前电量)/充电桩功率。
在一些可能的实现方式中,在移动载体处于低温环境时,在进行充电前需要提前对电池包进行预热,则计算的充电时长还可以包括预热所需时长;或者,在移动载体处于高温环境时,在进行充电前需要提前对电池包进行降温,则计算的充电时长还可以包括降温所需时长。应理解,上述低温低于电池包较佳工作温度区间的下限温度,上述高温高于电池包较佳工作温度区间的上限温度。
进一步地,可以根据充电时长和当前时刻确定充电完成时刻。
S303,判断充电完成时刻与使用时刻之间差值是否大于预设阈值。
具体地,若充电完成时刻与使用时刻之间差值小于或等于预设阈值,则执行S304;否则,执行S305。
示例性地,预设阈值可以为30分钟,或者也可以为20分钟,或者该预设阈值也可以随外界环境温度变化而改变,例如,温度低于零度时,预设阈值可以为5分钟;或者该预设阈值也可以为其他数值,本申请实施例对此不作具体限定。
应理解,充电完成时刻与使用时刻之间差值可能为负数,即充电完成时刻晚于使用时刻;若充电完成时刻与使用时刻之间差值小于或等于预设阈值,代表当前时刻至使用时刻之间的时长无法使电池包充至目标电量;或者,在不借助额外能量对电池包进行加热或冷却的情况下,充电完成时刻与使用时刻之间的时长,不足以使移动载体的电池包升温或降温至电池包较佳工作温度区间。则从当前时刻开始充电。
S304,控制从当前时刻开始充电。
示例性地,在当前时刻向电池包继电器发送开启命令,电池包继电器接收到开启命令即开启继电器开始充电。
S305,获取电池包温度特性库、电池包特性信息、电池包热管理信息以及环境温度。
应理解,该电池包温度特性库可以为上述实施例中的电池包温度特性库,该电池包特性信息可以为上述实施例中的电池包特性信息,该电池包热管理信息可以为上述实施例中 的电池包热管理信息,该环境温度可以为上述实施例中的环境温度信息。
应理解,本申请中涉及的“环境温度信息”可以包括当前时刻的温度以及预测的未来一段时长内,环境温度随时间变化的信息。示例性地,该“未来一段时长”可以为未来12小时,或者也可以为未来24小时,本申请实施例对此不作具体限定。在一些可能的实现方式中,可以从天气预报获取该环境温度信息。
在一些可能的实现方式中,可以只获取环境温度;或者,只获取电池包热管理信息和环境温度。例如,该方法由移动载体的BMS执行时,由于BMS中保存有电池包特性信息,则可以不再获取电池包特性信息。
在一些可能的实现方式中,也可以只获取电池包特性信息和环境温度。示例性地,该方法由云端的计算平台执行时,可以通过移动载体的BMS获取该电池包特性信息。通过其他途径获取环境温度。
在一些可能的实现方式中,也可以只获取电池包特性信息、电池包热管理信息以及环境温度。示例性地,该方法由云端的计算平台执行时,可以分别通过移动载体的BMS获取该电池包特性信息,通过移动载体的TMS获取该电池包热管理信息。
S306,确定不同充电结束时刻下,使用时刻的电池包温度。
示例性地,根据充电时长和不同的充电起始时刻确定不同的充电结束时刻。
在一些可能实现方式中,根据电池包特性信息在电池包温度特性库进行查表对比,例如,根据电池包的型号,和/或电池包电芯比热容、质量在电池包温度特性库查找到对应电池包,及其在充电时的温度变化情况。
示例性地,可以根据电池包的型号在电池包温度特性库进行查表,确定本电池包在不同充电功率下由当前电量充至目标电量所需充电时长,和/或,在不同充电功率、充电时长下电池包充电结束时的电池包的温度。
进一步地,根据环境温度以及充电结束时的温度,基于自然对流换热模型,根据充电结束时刻和使用时刻的时间差、充电结束时的温度以及充电结束时刻至使用时刻的环境温度,确定使用时刻的电池包温度。
在一些可能实现方式中,还可以根据电池包特性信息以及环境温度确定使用时刻的电池包温度。
示例性地,以电池包为锂离子电池为例,考虑不可逆电阻热和可逆反应熵热(混合热和相变热产热率较小,因此本申请实施例忽略混合热和相变热),则电池包充电过程中的总产热量q可以使用如下Bernadi公式计算:
Figure PCTCN2022107709-appb-000001
其中,t代表充电时间,V b为电池单体体积,I为充电电流,R r为电池包电芯内阻,T为电池温度,
Figure PCTCN2022107709-appb-000002
为电池包的熵热系数,一般随电池SOC变化。
进一步地,可以根据电池包电芯质量m和比热容c确定充电完成时的电池包温度。
Figure PCTCN2022107709-appb-000003
其中,T f为充电完成时的电池包温度,T s为充电开始时刻的电池包温度。进一步地,可以基于自然对流换热模型,根据充电结束时刻和使用时刻的时间差、充电结束时的温度以及充电结束时刻至使用时刻的环境温度,确定使用时刻的电池包温度。
应理解,上述计算充电完成时的电池包温度的方法仅为示例性说明,在具体实现过程 中,电池的工况可能更为复杂,例如,在充电过程中电池包温度超过某一阈值时,可能需要启动电池降温流程,则在计算充电完成时的电池包温度时,需将电池降温过程的热量损失考虑进去。例如,根据电池包特性信息、电池包热管理信息以及环境温度确定使用时刻的电池包温度。
应理解,选择能够使电池包使用时刻的温度处于较佳工作温度区间的充电起止时刻作为充电的起止时刻。示例性地,上述较佳工作温度区间可以为10至25摄氏度。
S307,获取电价信息,根据电价信息和不同充电起始时刻下结束充电时的电池包温度确定充电起止时刻。
应理解,该充电起止时刻包括充电的起始时刻和充电的终止时刻。在一些可能的实现方式中,在此步骤中,可以只确定充电的起始时刻。例如,目标电量为缺省值时,即默认充电至SOC为100%的状态时,BMS在检测到电池包电量充满后,自动控制电池包继电器关闭,此时无需指示电池包充电的终止时刻。
在一些可能的实现方式中,在不同充电起始时刻下结束充电时的电池包温度均处于较佳工作温度区间,则可以结合电价信息确定充电起止时刻,以使得在电价较低的区间内进行充电。
或者,电池包使用时刻前后一段时长内的外界环境温度处于电池包的较佳工作温度区间。例如,使用时刻之前6小时内,以及使用时刻之后2小时内,外界环境温度均处于电池包的较佳工作温度区间。则可以预见,即便充电完成时刻与使用时刻之间的时长间隔较长,但只要充电完成时刻处于使用时刻之前的6小时内,该电池包在使用时刻的温度就一定会处于较佳工作温度区间内,则可以根据电价信息选择电价较低的区间进行充电。
S308,根据充电起止时刻充电。
示例性地,可以将确定的充电起止时刻消息发送给BMS,进一步地,BMS在充电开始时刻控制电池包继电器开启,在充电终止时刻控制电池包继电器关闭。
在一些可能的实现方式中,BMS在检测到电池包电量充满后,自动控制电池包继电器关闭,则也可以只确定充电起始时刻,并根据充电起始时刻充电。
图3示出充电方法的步骤或操作仅是示例,本申请实施例还可以执行其他操作或者图3中的各个操作的变形。此外,图3中的各个步骤可以按照与图3呈现的不同的顺序来执行,并且有可能并非要执行图3中的全部操作。一示例中,可以不执行S307,直接根据不同充电结束时刻下使用时刻的电池包温度确定充电的起始时刻,并控制从该起始时刻进行充电。
本申请实施例提供的一种充电方法,能够根据电池包剩余电量、电池包热学特性以及充电目标,自动设定充电开始时刻及结束时刻,将充电过程中产生的热量合理地用于电池包加热,使得开始使用电池包时,电池包处于较佳工作温度区间内,能够节省对电池包加热、冷却所需能耗,有助于节约用户使用移动载体的成本。在一些场景下,还可以根据电价信息对充电起止时刻进行优化,能够进一步节约用户使用移动载体的成本。
图4示出本申请实施例提供的一种充电方法的示意性流程图,该方法400可以应用于图1所示的移动载体100中,该方法可以由图1所示的移动载体100中的计算平台执行,或者也可以由图1所示的云端300中的计算平台执行所示的系统执行,本申请实施例对此不作具体限定。该方法400包括:
S401,获取电池包的使用时刻和该电池包在充电结束时的第一温度。
示例性地,该电池包为上述实施例中移动载体100的电池包;该第一温度可以为上述实施例中预测的电池包充电的终止时刻的温度。
更具体地,获取该电池包的使用时刻的方法流程可以参考上述实施例中的描述,例如方法300中S301中的描述,在此不再赘述。
在一些可能的实现方式中,在获取该第一温度之前,确定该第一温度。示例性地,确定该第一温度的具体方法可以参考上述实施例中的描述,例如方法300中S306中的描述,在此不再赘述。
S402,确定该电池包的温度从该第一温度调整至该预设温度范围内所需的第一时长。
示例性地,预设温度范围可以为上述实施例中的“较佳工作温度区间”,例如,该温度区间为10至25摄氏度,或者也可以为15至35摄氏度,或者也可以为其他温度区间。
S403,根据该第一时长和该使用时刻确定该电池包充电的起始时刻。
进一步地,可以根据该充电的起始时刻进行充电预约,使得该充电桩在该起始时刻对电池包进行充电。
在一些可能的实现方式中,还可以确定充电的终止时刻。进一步地,可以根据该充电的起始时刻和终止时刻进行充电预约,使得该充电桩在该起始时刻对电池包进行充电,在该终止时刻结束对电池包的充电过程。
可选地,该方法还包括:获取电价信息;根据该第一时长和该使用时刻确定该电池包充电的起始时刻,具体可以为:根据该电价信息、该第一时长和该使用时刻确定该起始时刻。
示例性地,根据该电价信息、该第一时长和该使用时刻确定该起始时刻的具体方法可以参考上述实施例中的描述,例如,可以参考方法300中S307中的描述,在此不再赘述。
可选地,该方法还包括:获取充电桩的功率信息;在该功率信息指示该充电桩支持多个充电功率,且该多个充电功率均与该电池包匹配时,根据该电价信息确定第一充电功率,该第一充电功率用于对该电池包充电,该多个充电功率包括该第一充电功率。
示例性地,该充电桩的功率信息可以为上述实施例中的充电桩功率信息,获取该信息的方法可以参考上述实施例中的描述,在此不再赘述。
可选地,该第一温度为根据该电池包的型号和电池包温度特性库确定,该电池包温度特性库用于指示不同电池包在充电过程中的温度变化。
示例性地,该电池包的型号可以包括在上述实施例中的电池包特性信息中;该电池包温度特性库可以为上述实施例中的电池包温度特性库。
示例性地,根据该型号和电池包温度特性库确定该第一温度的方法可以参考上述施例中的描述,例如参考方法300中S306中的描述,在此不再赘述。
可选地,该方法还包括:在确定该电池包充电的起始时刻之前,确定充电终止时刻与该使用时刻之间的时长大于或等于预设阈值。
示例性地,该预设阈值可以为上述实施例中的预设阈值。
示例性地,确定该终止时刻与该使用时刻之间的时长大于或等于预设阈值的方法可以参考上述施例中的描述,例如参考方法300中S303中的描述,在此不再赘述。
可选地,该方法还包括:获取第二时长,该第二时长为对该电池包充电过程中暂停充电的时长;该根据该第一时长和该使用时刻确定该电池包充电的起始时刻,包括:根据该第一时长、该第二时长和该使用时刻确定该起始时刻。
在一些可能的实现方式中,在电池包充电过程中,电池包温度达到预设温度时,暂停充电,示例性地,该预设温度可以为50摄氏度,或者55摄氏度,或者该预设温度可以为TMS系统开启充电过程中电池冷却功能的温度,或者也可以为其他温度。
示例性地,该第二时长可以为预设时长,例如5分钟,或者10分钟。在一些可能的实现方式中,该预设时长可以随外界环境温度变化而改变;或者,该第二时长也可以为计算的时长,例如,根据外界环境温度和上述预设温度计算出的,预设温度降至外界环境温度所需的时长,或者,根据外界环境温度和上述预设温度计算出的,预设温度降至电池包较佳工作温度区间所需的时长。
在一些可能的实现方式中,在起始时刻控制向电池包充电,未充至目标电量时,电池包温度达到预设温度,则暂停充电,暂停时长为第二时长,之后再控制向电池包继续充电。
在一些可能的实现方式中,在充电过程中,可能暂停多次,每次暂停时长为第二时长。
本申请实施例提供的一种充电方法,通过合理设定充电起始时刻,能够将对移动载体的电池包充电过程中产生的热量合理地用于电池包加热,和/或使得开始使用电池包时,电池包的温度处于较佳工作温度区间,能够节省对电池包加热、冷却所需能耗,有助于节约用户成本。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,各个实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
上文中结合图1至图4详细说明了本申请实施例提供的方法。下面将结合图5和图6详细说明本申请实施例提供的装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,这里不再赘述。
图5示出了本申请实施例提供的一种通信装置2000的示意性框图,该装置2000包括收发单元2010和处理单元2020。
可选地,该装置2000还可以包括存储单元,该存储单元可以用于存储指令和/或数据,处理单元2020可以读取存储单元中的指令和/或数据,以使得装置实现前述方法实施例。
该装置2000可以包括用于执行图3、图4中的方法的单元。并且,该装置2000中的各单元和上述其他操作和/或功能分别为了实现图3、图4的方法实施例的相应流程。
其中,当该装置2000用于执行图4中的方法400时,获取单元2010可用于执行方法400中的S401,处理单元2020可用于执行方法400中的S402至S404。
具体地,该装置2000包括:获取单元2010,获取电池包的使用时刻和该电池包在充电结束时的第一温度;处理单元2020,用于确定该电池包的温度从该第一温度调整至预设温度范围内所需的第一时长;根据该第一时长和该使用时刻确定该电池包充电的起始时刻。
可选地,该获取单元2010还用于:获取电价信息;该处理单元2020具体用于根据该电价信息、该第一时长和该使用时刻确定该起始时刻。
可选地,该装置还包括收发单元,该获取单元2010还用于:获取充电桩的功率信息;该处理单元2020还用于:在该功率信息指示该充电桩支持多个充电功率时,根据该电价信息确定第一充电功率,该多个充电功率包括该第一充电功率;该收发单元用于向该充电桩发送指示信息,该指示信息用于指示该充电桩在该起始时刻使用该第一充电功率对该电池包充电。
可选地,该获取单元2010还用于:获取第二时长,该第二时长为对该电池包充电过程中暂停充电的时长;该处理单元2020还用于根据该第一时长、该第二时长和该使用时刻确定该起始时刻。
可选地,该获取单元2010还用于:获取该电池包的型号;该处理单元2020具体用于:根据该型号和电池包温度特性库确定该第一温度。
可选地,该处理单元2020还用于:该根据该第一时长和该使用时刻确定该电池包充电的起始时刻和该终止时刻之前,根据该充电时长确定充电终止时刻与该使用时刻之间的时长大于或等于预设阈值。
可选地,该获取单元2010还用于:获取该电池包所处环境的温度信息,该处理单元2020还用于根据该温度信息和该第一温度确定该第一时长。
应理解,以上装置中各单元的划分仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。此外,装置中的单元可以以处理器调用软件的形式实现;例如装置包括处理器,处理器与存储器连接,存储器中存储有指令,处理器调用存储器中存储的指令,以实现以上任一种方法或实现该装置各单元的功能,其中处理器例如为通用处理器,例如CPU或微处理器,存储器为装置内的存储器或装置外的存储器。或者,装置中的单元可以以硬件电路的形式实现,可以通过对硬件电路的设计实现部分或全部单元的功能,该硬件电路可以理解为一个或多个处理器;例如,在一种实现中,该硬件电路为ASIC,通过对电路内元件逻辑关系的设计,实现以上部分或全部单元的功能;再如,在另一种实现中,该硬件电路为可以通过PLD实现,以FPGA为例,其可以包括大量逻辑门电路,通过配置文件来配置逻辑门电路之间的连接关系,从而实现以上部分或全部单元的功能。以上装置的所有单元可以全部通过处理器调用软件的形式实现,或全部通过硬件电路的形式实现,或部分通过处理器调用软件的形式实现,剩余部分通过硬件电路的形式实现。
在本申请实施例中,处理器是一种具有信号的处理能力的电路,在一种实现中,处理器可以是具有指令读取与运行能力的电路,例如CPU、微处理器、GPU、或DSP等;在另一种实现中,处理器可以通过硬件电路的逻辑关系实现一定功能,该硬件电路的逻辑关系是固定的或可以重构的,例如处理器为ASIC或PLD实现的硬件电路,例如FPGA。在可重构的硬件电路中,处理器加载配置文档,实现硬件电路配置的过程,可以理解为处理器加载指令,以实现以上部分或全部单元的功能的过程。此外,还可以是针对人工智能设计的硬件电路,其可以理解为一种ASIC,例如NPU、TPU、DPU等。
可见,以上装置中的各单元可以是被配置成实施以上方法的一个或多个处理器(或处理电路),例如:CPU、GPU、NPU、TPU、DPU、微处理器、DSP、ASIC、FPGA,或这些处理器形式中至少两种的组合。
此外,以上装置中的各单元可以全部或部分可以集成在一起,或者可以独立实现。在一种实现中,这些单元集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。该SOC中可以包括至少一个处理器,用于实现以上任一种方法或实现该装置各单元的功能,该至少一个处理器的种类可以不同,例如包括CPU和FPGA,CPU和人工智能处理器,CPU和GPU等。
图6是本申请实施例的一种充电装置的示意性框图。图6所示的装置2100可以包括:处理器2110、收发器2120以及存储器2130。其中,处理器2110、收发器2120以及存储 器2130通过内部连接通路相连,该存储器2130用于存储指令,该处理器2110用于执行该存储器2130存储的指令,以收发器2120接收/发送部分参数。可选地,存储器2130既可以和处理器2110通过接口耦合,也可以和处理器2110集成在一起。
需要说明的是,上述收发器2120可以包括但不限于输入/输出接口(input/output interface)一类的收发装置,来实现装置2100与其他设备或通信网络之间的通信。
在实现过程中,上述方法的各步骤可以通过处理器2110中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2130,处理器2110读取存储器2130中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
处理器2110可以采用通用的CPU,微处理器,ASIC,GPU或者一个或多个集成电路,用于执行相关程序,以实现本申请方法实施例的通信方法。处理器2110还可以是一种集成电路芯片,具有信号的处理能力。在具体实现过程中,本申请的通信方法的各个步骤可以通过处理器2110中的硬件的集成逻辑电路或者软件形式的指令完成。上述处理器2110还可以是通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器2130,处理器2110读取存储器2130中的信息,结合其硬件执行本申请方法实施例的通信方法。
存储器2130可以是只读存储器(read only memory,ROM),静态存储设备,动态存储设备或者随机存取存储器(random access memory,RAM)。
收发器2120使用例如但不限于收发器一类的收发装置,来实现装置2100与其他设备或通信网络之间的通信。
本申请实施例还提供一种电池管理系统,该电池管理系统可以包括上述装置2000,或者上述装置2100。
本申请实施例还提供一种移动载体,该移动载体可以包括上述装置2000,或者上述装置2100。
示例性地,该移动载体可以为图1所示的移动载体100。
本申请实施例还提供一种服务器,该服务器可以包括上述装置2000,或者上述装置2100。
示例性地,该服务器可以为设置在图1所示的云端300中的服务器。
本申请实施例还提供一种终端设备,该终端设备可以包括上述装置2000,或者上述装置2100。
本申请实施例还提供一种计算机可读介质,所述计算机可读介质存储有程序代码,当所述计算机程序代码在计算机上运行时,使得所述计算机执行上述图3或图4中的方法。
本申请实施例还提供一种芯片,包括:至少一个处理器和存储器,所述至少一个处理 器与所述存储器耦合,用于读取并执行所述存储器中的指令,以执行上述图3或图4中的方法。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (18)

  1. 一种充电方法,其特征在于,包括:
    获取电池包的使用时刻和所述电池包在充电结束时的第一温度;
    确定所述电池包的温度从所述第一温度调整至预设温度范围内所需的第一时长;
    根据所述第一时长和所述使用时刻确定所述电池包充电的起始时刻。
  2. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    获取电价信息;
    所述根据所述第一时长和所述使用时刻确定所述电池包充电的起始时刻,包括:
    根据所述电价信息、所述第一时长和所述使用时刻确定所述起始时刻。
  3. 如权利要求2所述的方法,其特征在于,所述方法还包括:
    获取充电桩的功率信息;
    在所述功率信息指示所述充电桩支持多个充电功率时,根据所述电价信息确定第一充电功率,所述多个充电功率包括所述第一充电功率;
    向所述充电桩发送指示信息,所述指示信息用于指示所述充电桩在所述起始时刻使用所述第一充电功率对所述电池包充电。
  4. 如权利要求1至3中任一项所述的方法,其特征在于,所述第一温度为根据所述电池包的型号和电池包温度特性库确定,所述电池包温度特性库用于指示不同电池包在充电过程中的温度变化。
  5. 如权利要求1至4中任一项所述的方法,其特征在于,所述方法还包括:
    获取第二时长,所述第二时长为对所述电池包充电过程中暂停充电的时长;
    所述根据所述第一时长和所述使用时刻确定所述电池包充电的起始时刻,包括:
    根据所述第一时长、所述第二时长和所述使用时刻确定所述起始时刻。
  6. 如权利要求1至5中任一项所述的方法,其特征在于,所述方法还包括:
    获取所述电池包所处环境的温度信息;
    所述确定所述电池包的温度从所述第一温度调整至预设温度范围内所需的第一时长,包括:
    根据所述温度信息和所述第一温度确定所述第一时长。
  7. 一种充电装置,其特征在于,包括:
    获取单元,用于获取电池包的使用时刻和所述电池包在充电结束时的第一温度;
    处理单元,用于确定所述电池包的温度从所述第一温度调整至预设温度范围内所需的第一时长;
    根据所述第一时长和所述使用时刻确定所述电池包充电的起始时刻。
  8. 如权利要求7所述的装置,其特征在于,所述获取单元还用于:
    获取电价信息;
    所述处理单元具体用于根据所述电价信息、所述第一时长和所述使用时刻确定所述起始时刻。
  9. 如权利要求7或8所述的装置,其特征在于,所述装置还包括收发单元,所述获取单元还用于:
    获取充电桩的功率信息;
    所述处理单元还用于:在所述功率信息指示所述充电桩支持多个充电功率,根据所述电价信息确定第一充电功率,所述多个充电功率包括所述第一充电功率;
    所述收发单元用于向所述充电桩发送指示信息,所述指示信息用于指示所述充电桩在所述起始时刻使用所述第一充电功率对所述电池包充电。
  10. 如权利要求7至9中任一项所述的装置,其特征在于,所述第一温度为根据所述电池包的型号和电池包温度特性库确定,所述电池包温度特性库用于指示不同电池包在充电过程中的温度变化。
  11. 如权利要求7至10中任一项所述的装置,其特征在于,所述获取单元还用于:
    获取第二时长,所述第二时长为对所述电池包充电过程中暂停充电的时长;
    所述处理单元具体用于根据所述第一时长、所述第二时长和所述使用时刻确定所述起始时刻。
  12. 如权利要求7至11中任一项所述的装置,其特征在于,所述获取单元还用于:
    获取所述电池包所处环境的温度信息;
    所述处理单元具体用于根据所述温度信息和所述第一温度确定所述第一时长。
  13. 一种充电装置,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述存储器中存储的计算机程序,以使得所述装置执行如权利要求1至6中任一项所述的方法。
  14. 一种电池管理系统,包括如权利要求7至13中任一项所述的装置。
  15. 一种移动载体,其特征在于,包括权利要求7至13中任一项所述的装置,或者如权利要求14所述的电池管理系统。
  16. 一种服务器,其特征在于,包括如权利要求7至13中任一项所述的装置。
  17. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被计算机执行时,以使得实现如权利要求1至6中任一项所述的方法。
  18. 一种芯片,其特征在于,所述芯片包括处理器与数据接口,所述处理器通过所述数据接口读取存储器上存储的指令,以执行如权利要求1至6中任一项所述的方法。
PCT/CN2022/107709 2022-07-25 2022-07-25 充电方法、装置和移动载体 WO2024020749A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107709 WO2024020749A1 (zh) 2022-07-25 2022-07-25 充电方法、装置和移动载体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107709 WO2024020749A1 (zh) 2022-07-25 2022-07-25 充电方法、装置和移动载体

Publications (1)

Publication Number Publication Date
WO2024020749A1 true WO2024020749A1 (zh) 2024-02-01

Family

ID=89704888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107709 WO2024020749A1 (zh) 2022-07-25 2022-07-25 充电方法、装置和移动载体

Country Status (1)

Country Link
WO (1) WO2024020749A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044813A (ja) * 2010-08-20 2012-03-01 Denso Corp 車両用電源装置
CN107972499A (zh) * 2016-10-21 2018-05-01 法乐第(北京)网络科技有限公司 一种动力电池管理系统和包括其的电动汽车
CN111605417A (zh) * 2020-05-12 2020-09-01 宁波吉利汽车研究开发有限公司 预约充电方法、系统及计算机可读取存储介质
CN114750649A (zh) * 2022-05-16 2022-07-15 一汽解放汽车有限公司 纯电动车辆电池加热方法、装置、计算机设备和存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012044813A (ja) * 2010-08-20 2012-03-01 Denso Corp 車両用電源装置
CN107972499A (zh) * 2016-10-21 2018-05-01 法乐第(北京)网络科技有限公司 一种动力电池管理系统和包括其的电动汽车
CN111605417A (zh) * 2020-05-12 2020-09-01 宁波吉利汽车研究开发有限公司 预约充电方法、系统及计算机可读取存储介质
CN114750649A (zh) * 2022-05-16 2022-07-15 一汽解放汽车有限公司 纯电动车辆电池加热方法、装置、计算机设备和存储介质

Similar Documents

Publication Publication Date Title
US20200247269A1 (en) Multiple chemistry battery systems for electric vehicles
Budde-Meiwes et al. A review of current automotive battery technology and future prospects
EP2675001B1 (en) Apparatus and method for controlling connection of battery packs
CN110549905B (zh) 用于车辆的能量共享系统和方法
US10189362B2 (en) Vehicle charging station having degraded energy storage units for charging an incoming vehicle and methods thereof
US20180118047A1 (en) System and method for electric vehicle charging analysis and feedback
CN105680541B (zh) 一种低温充电策略的充电方法
US11515587B2 (en) Physics-based control of battery temperature
US10483770B2 (en) Vehicle charging station having degraded energy storage units and methods thereof
CN110927592B (zh) 一种电池峰值功率的估计方法及装置
Rahman et al. Wireless battery management system of electric transport
CN112224092A (zh) 一种电电混动系统及其电池温度提升方法
WO2023092999A1 (zh) 电池加热系统、电池包和用电装置
CN104786863B (zh) 一种汽车用三电压电源系统及其控制方法
WO2024104019A1 (zh) 电动车辆动力电池的加热装置以及相关设备
WO2024020749A1 (zh) 充电方法、装置和移动载体
KR101241489B1 (ko) 외부 배터리 셀을 이용하여 셀 밸런싱을 수행하는 전원 공급 장치 및 그의 셀 밸런싱 방법
WO2023207444A1 (zh) 用电装置及其加热的控制方法、装置及介质
EP4068562A1 (en) Battery management system, battery management method, battery pack, and electric vehicle
US11247571B2 (en) Intelligent energy management system for a vehicle and corresponding method
WO2023029048A1 (zh) 电池加热装置及其控制方法、控制电路和动力装置
JP7450590B2 (ja) 電力調整装置
WO2023245570A1 (zh) 用电装置及其电池的充电时间计算方法、装置及介质
KR102364026B1 (ko) 배터리 수명 추정 시스템 및 방법
CN114670719B (zh) 一种燃料电池的功率修正方法及相关装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952216

Country of ref document: EP

Kind code of ref document: A1