WO2024020740A1 - 背光模组及其驱动方法、显示面板、显示装置 - Google Patents

背光模组及其驱动方法、显示面板、显示装置 Download PDF

Info

Publication number
WO2024020740A1
WO2024020740A1 PCT/CN2022/107689 CN2022107689W WO2024020740A1 WO 2024020740 A1 WO2024020740 A1 WO 2024020740A1 CN 2022107689 W CN2022107689 W CN 2022107689W WO 2024020740 A1 WO2024020740 A1 WO 2024020740A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
brightness
frame
initial
backlight
Prior art date
Application number
PCT/CN2022/107689
Other languages
English (en)
French (fr)
Inventor
徐飞
耿李广
孙思佳
刘晓鹏
马韬
王小丽
朱成兵
孙海威
Original Assignee
京东方科技集团股份有限公司
合肥京东方瑞晟科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥京东方瑞晟科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2022/107689 priority Critical patent/WO2024020740A1/zh
Priority to CN202280002351.9A priority patent/CN117769737A/zh
Publication of WO2024020740A1 publication Critical patent/WO2024020740A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]

Definitions

  • the present disclosure relates to the field of display technology, and specifically, to a backlight module and a driving method thereof, a display panel, and a display device.
  • the purpose of this disclosure is to provide a backlight module and its driving method, a display panel, and a display device that can reduce the flickering phenomenon.
  • a backlight module including:
  • Backlight panel including multiple light-emitting units
  • a backlight driving circuit is electrically connected to a plurality of the light-emitting units, and is configured to respond to a first timing signal received in a first sequence frame to output a first brightness signal to drive a plurality of the light-emitting units to emit light, and the backlight panel emits light.
  • the brightness is the first brightness; and, in response to the second timing signal received in the second sequence frame, to output a second brightness signal to drive a plurality of the light-emitting units to emit light, and the luminous brightness of the backlight panel is the second brightness, so
  • the first sequence of frames and the second sequence of frames are alternately arranged, and the first brightness and the second brightness are different.
  • the backlight driving circuit includes a first driving circuit and a second driving circuit
  • the first driving circuit and the second driving circuit are both electrically connected to a plurality of the light-emitting units, and the first driving circuit is used to respond to the first timing signal received by the first sequence frame to output a first
  • the brightness signal drives a plurality of the light-emitting units to emit light
  • the second driving circuit is configured to respond to the second timing signal received in the second sequence frame to output a second brightness signal to drive the plurality of light-emitting units to emit light.
  • the backlight driving circuit includes a third driving circuit and a compensation circuit
  • the third driving circuit is electrically connected to the compensation circuit, and the compensation circuit is electrically connected to a plurality of the light-emitting units;
  • the third driving circuit is configured to output a loading signal to the compensation circuit, and the compensation circuit is configured to respond to a first timing signal received in an odd frame to output the loading signal as the first brightness signal to a plurality of the A light-emitting unit; and, configured to amplify the loading signal in response to the second timing signal received in the even-numbered frame, and output the amplified loading signal as the second brightness signal to a plurality of the light-emitting units.
  • the backlight module further includes a multi-channel selection circuit
  • the multiplex selection circuit is electrically connected to the backlight drive circuit and a plurality of the light-emitting units respectively.
  • the multiplex selection circuit is used to respond to the first multiplexing signal to the Nth multiplexing signal to connect the backlight in sequence.
  • the first sequence of frames is an odd-numbered frame
  • the second sequence of frames is an even-numbered frame
  • a method for driving a backlight module includes a backlight panel and a backlight drive circuit.
  • the backlight panel includes a plurality of light-emitting units. The method includes:
  • the backlight driving circuit acquires a first brightness signal and a second brightness signal
  • the backlight driving circuit When the backlight driving circuit receives the first timing signal, it outputs the first brightness signal to a plurality of the light-emitting units.
  • the luminous brightness of the backlight panel is the first brightness
  • the first timing signal is for displaying the first sequence frame.
  • the backlight driving circuit When the backlight driving circuit receives the second timing signal, it outputs the second brightness signal to a plurality of the light-emitting units.
  • the luminous brightness of the backlight panel is the second brightness
  • the second timing signal is for displaying the first sequence frame.
  • the timing signals are sent when the frame pictures are in, the first sequence frames and the second sequence frames are alternately arranged, and the first brightness and the second brightness are different.
  • the backlight driving circuit includes a third driving circuit and a compensation circuit
  • the backlight driving circuit acquiring the first brightness signal and the second brightness signal includes:
  • the third driving circuit obtains the loading signal and outputs it to the compensation circuit
  • the compensation circuit When the compensation circuit receives the first timing signal, it determines the loading signal as the first brightness signal. When the compensation circuit receives the second timing signal, it amplifies the loading signal and The amplified loading signal serves as the second brightness signal.
  • the first sequence of frames is an odd-numbered frame
  • the second sequence of frames is an even-numbered frame
  • the backlight driving circuit before the backlight driving circuit acquires the first brightness signal and the second brightness signal, it further includes:
  • the first initial signal and the second initial signal are compensated to obtain a first adjustment signal and a second adjustment signal;
  • the first adjustment signal is used as the first initial signal
  • the second adjustment signal is used as the The second initial signal uses the positive frame adjusted picture brightness as the positive frame initial picture brightness, the negative frame adjusted picture brightness as the negative frame initial picture brightness, and returns to the above-mentioned pairing of the first initial signal.
  • the first adjustment signal is determined as the first brightness signal
  • the second adjustment signal is The adjustment signal is determined to be the second brightness signal
  • the first initial signal and the second initial signal are compensated based on the positive frame initial picture brightness and the negative frame initial picture brightness to obtain a first adjustment signal and a second adjustment signal, including:
  • the initial signal corresponding to the darker picture brightness among the positive frame initial picture brightness and the negative frame initial picture brightness is determined as the signal to be compensated, and the sum of the signal to be compensated and the compensation signal is determined as the corresponding adjustment signal;
  • the initial signal corresponding to the brighter picture brightness among the positive frame initial picture brightness and the negative frame initial picture brightness is determined as a non-compensated signal, and the non-compensated signal is determined as a corresponding adjustment signal.
  • the first initial signal and the second initial signal are compensated based on the positive frame initial picture brightness and the negative frame initial picture brightness to obtain a first adjustment signal and a second adjustment signal, including:
  • the initial signal corresponding to the brighter picture brightness among the initial picture brightness of the positive frame and the initial picture brightness of the negative frame is determined as the signal to be compensated, and the sum of the signal to be compensated and the compensation signal is determined as the corresponding signal. adjustment signal.
  • the compensation signal is a compensation current
  • the compensation current is greater than or equal to 1.2 microamps and less than or equal to 39 microamps.
  • the compensation current is 20 microamps.
  • the reference brightness difference is less than or equal to 98 nits.
  • a display panel which includes the backlight module described in the above aspect.
  • a display device which includes the display panel described in yet another aspect.
  • the first brightness signal when displaying the frames of the first sequence of frames, is output to the plurality of light-emitting units through the backlight driving circuit, so that the luminous brightness of the backlight panel is the first brightness.
  • the second brightness signal When displaying the second sequence of frames, When framing a picture, the second brightness signal is output to the plurality of light-emitting units through the backlight drive circuit, so that the luminous brightness of the backlight panel is the second brightness. Due to the difference between the first brightness and the second brightness, the backlight panel can be adjusted in different sequence frames. The adjustment of the luminous brightness can realize the adjustment of the overall brightness of the entire display screen and reduce the phenomenon of screen flickering.
  • Figure 1 is a schematic diagram of the brightness of a frame provided by the related art.
  • FIG. 2 is a schematic structural diagram of a backlight module provided by an embodiment of the present disclosure.
  • FIG. 3 is a timing diagram of a backlight driving circuit provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of the brightness of a frame provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of another backlight module provided by an embodiment of the present disclosure.
  • FIG. 6 is a timing diagram of another backlight driving circuit provided by an embodiment of the present disclosure.
  • FIG. 7 is a timing diagram of yet another backlight driving circuit provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a driving method of a backlight module provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a method for determining a brightness signal provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a main frame picture provided by an embodiment of the present disclosure.
  • Figure 11 is a schematic diagram of a negative frame picture provided by an embodiment of the present disclosure.
  • Example embodiments will now be described more fully with reference to the accompanying drawings.
  • Example embodiments may, however, be embodied in various forms and should not be construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete and will fully convey the concepts of the example embodiments.
  • the same reference numerals in the drawings indicate the same or similar structures, and thus their detailed descriptions will be omitted.
  • the drawings are merely schematic illustrations of the present disclosure and are not necessarily drawn to scale.
  • An embodiment of the present disclosure provides a display device, which may be a liquid crystal display device.
  • the display device includes a display panel.
  • the display panel includes a backlight module, a driving substrate located on one side of the backlight module, a color filter substrate located on one side of the driving substrate, and liquid crystal molecules located between the driving substrate and the color filter substrate.
  • the backlight module includes a backlight panel 1, and the backlight panel 1 includes a plurality of light emitting units LED.
  • the driving substrate includes a plurality of scan lines distributed along the first direction and a plurality of data lines distributed along the second direction, as well as a plurality of pixel circuits and a plurality of pixel electrodes corresponding to the plurality of pixel circuits.
  • the color filter substrate includes a common electrode.
  • a pixel circuit includes a thin film transistor and a parasitic capacitance.
  • the gate of the thin film transistor is electrically connected to a scan line.
  • the source of the thin film transistor is electrically connected to a data line.
  • the parasitic capacitance is connected in series between the drain of the thin film transistor and the corresponding pixel electrode. , the scanning line is used to control the on and off of the thin film transistor, and the data line is used to control the voltage loaded on the pixel electrode.
  • multiple light-emitting unit LEDs When displaying a picture, multiple light-emitting unit LEDs continue to emit light of the same brightness.
  • the thin film transistor is controlled to turn on through the scan line, and after voltage is applied to the pixel electrode through the data line, the liquid crystal molecules in the corresponding area of the pixel electrode are deflected. In order to realize the adjustment of light transmittance, and thereby achieve different luminous brightness in different areas of the display panel.
  • the voltage loaded on the pixel electrode by the data line is adjusted to realize the periodic reversal of the liquid crystal molecules. For example, in an odd-numbered frame, a data line applies a positive frame voltage to the pixel electrode, and the liquid crystal molecules deflect clockwise; in an even-numbered frame, a data line applies a negative frame voltage to the pixel electrode, and the liquid crystal molecules deflect counterclockwise.
  • a display panel which includes a backlight module described in the following embodiments.
  • the backlight module includes: a backlight panel 1 and a backlight drive circuit 2.
  • the backlight panel 1 includes a plurality of light-emitting unit LEDs.
  • the backlight drive circuit 2 is electrically connected to the plurality of light-emitting unit LEDs and is used to respond to the first
  • the first timing signal VSYN1 received in the sequence frame is used to output the first brightness signal I1 to drive the plurality of light-emitting units LED to emit light, and the luminous brightness of the backlight panel 1 is the first brightness; and, in response to the second timing signal received in the second sequence frame
  • the signal VSYN2 outputs the second brightness signal I2 to drive multiple light-emitting units LED to emit light, and the luminous brightness of the backlight panel 1 is the second brightness.
  • the first sequence frame and the second sequence frame are alternately arranged, and the first brightness and the second brightness are different. .
  • the first brightness signal I1 is output to the plurality of light-emitting unit LEDs through the backlight drive circuit 2, so that the luminous brightness of the backlight panel 1 is the first brightness.
  • the second brightness signal I2 is output to the plurality of light-emitting unit LEDs through the backlight drive circuit 2, so that the luminous brightness of the backlight panel 1 is the second brightness. Due to the difference between the first brightness and the second brightness , thereby realizing the adjustment of the luminous brightness of the backlight panel 1 in different sequence frames, thereby realizing the adjustment of the overall brightness of the entire display screen, and reducing the phenomenon of screen flickering.
  • the first brightness signal I1 and the second brightness signal I2 can be determined in advance and written into the backlight driving circuit 2 .
  • the specific determination method of the first brightness signal I1 and the second brightness signal I2 may refer to the implementation described in the following driving method of the backlight module. For example, assuming that the frames in the first sequence of frames are all positive frames, and the frames in the second sequence of frames are all negative frames, if the light transmittance of the liquid crystal molecules is greater when the positive frame is displayed than when the negative frame is displayed.
  • the first brightness of the backlight plate 1 is less than the second brightness; if the light transmittance of the liquid crystal molecules is displayed when the main frame picture is displayed is less than the light transmittance of the liquid crystal molecules when displaying the negative frame picture, then after the first brightness signal I1 and the second brightness signal I2 drive the plurality of light-emitting unit LEDs to emit light, the first brightness of the backlight panel 1 is greater than the second brightness.
  • the sum of the frames of the first sequence of frames and the second sequence of frames refers to the period of deflection of the liquid crystal molecules when displaying the picture, that is, one of the frames of the first sequence of frames and the frame of the second sequence of frames is positive.
  • frame picture the other is a negative frame picture.
  • positive frame images and negative frame images for positive frame images and negative frame images, for example, when displaying a positive frame image, the voltage loaded on the first pixel electrode is the positive frame voltage, and the voltage loaded on the second pixel electrode is the negative frame voltage; while when displaying the positive frame image, the voltage loaded on the first pixel electrode is the positive frame voltage.
  • the voltage applied to the first pixel electrode switches to the negative frame voltage, and the voltage applied to the second pixel electrode switches to the positive frame voltage.
  • a plurality of pixel electrodes are distributed in an array, and the first pixel electrode and the second pixel electrode are distinguished in rows or columns.
  • each pixel electrode in the odd-numbered rows of the plurality of pixel electrodes is a first electrode
  • each pixel electrode in an even-numbered row is a second electrode.
  • each pixel electrode in odd-numbered rows is loaded with a positive frame voltage, and each pixel electrode in even-numbered rows is loaded with a negative frame voltage; or each pixel electrode in odd-numbered rows among the plurality of pixel electrodes is loaded with a negative frame voltage, and each pixel electrode in even-numbered rows is loaded with a positive frame voltage.
  • each pixel electrode in the odd-numbered columns among the plurality of pixel electrodes is a first electrode, and each pixel electrode in an even-numbered column is a second electrode.
  • each pixel electrode in odd-numbered columns is loaded with a positive frame voltage
  • each pixel electrode in even-numbered columns is loaded with a negative frame voltage.
  • each pixel electrode in odd-numbered columns among multiple pixel electrodes is loaded with a negative frame voltage
  • each pixel electrode in even-numbered columns is loaded with a positive frame voltage.
  • first pixel electrode and the second pixel electrode can also be distinguished in a dot matrix manner. For example, assuming that one pixel electrode among the plurality of pixel electrodes is the first pixel electrode, then the four pixel electrodes above, below, left, and right The pixel electrodes are all second pixel electrodes.
  • the total number of frames in the first sequence of frames and the total number of frames in the second sequence of frames may be the same or different.
  • the details may be determined according to the material of the liquid crystal molecules included in the display panel, as long as the liquid crystal molecules are in the frames of the first sequence of frames. It is sufficient that no damage occurs during the display of the picture and the frame pictures of the second sequence of frames, which is not limited in the embodiment of the present application.
  • the total number of frames in the first sequence of frames is the same as the total number of frames in the second sequence of frames.
  • the first sequence of frames includes the n-th frame and the n+1-th frame
  • the second sequence of frames includes the n+2-th frame and the n+3-th frame
  • n is an integer greater than or equal to 1; for another example, the first sequence of frames is an odd-numbered frame, and the second sequence frame is an even-numbered frame.
  • the timing diagram of the backlight driving circuit 2 outputting the first brightness signal I1 and the second brightness signal I2 is as shown in FIG. 3 .
  • VSYN refers to the timing signal received by the backlight drive circuit 2, including the first timing signal VSYN1 corresponding to the odd-numbered frame and the second timing signal VSYN2 corresponding to the even-numbered frame.
  • I1 refers to the timing signal received by the backlight drive circuit 2.
  • the first brightness signal I1 and the second brightness signal I2 output by the backlight drive circuit 2 to the light-emitting unit include a head signal Head Ichx, a middle signal Center and a tail signal Tail Ichx.
  • the overall brightness of the display panel includes the light transmittance of the pixel unit and the brightness of the backlight panel 1 .
  • the backlight driving circuit 2 drives multiple light-emitting unit LEDs to emit light
  • the multiple light-emitting unit LEDs can be driven to emit light in an active driving manner, or the multiple light-emitting unit LEDs can be driven to emit light in a passive driving manner.
  • other driving methods can also be used to drive multiple light-emitting unit LEDs to emit light.
  • the timing sequence of the backlight driving circuit 2 is as shown in FIG. 3 .
  • the backlight module also includes a multi-channel selection circuit MUX, which is connected to the backlight drive circuit 2 and the multi-channel selection circuit MUX respectively.
  • the light-emitting units LED are electrically connected, and the multiplex selection circuit MUX is used to respond to the first multiplexing signal MUX1 to the N-th multiplexing signal MUXN to sequentially connect the backlight driving circuit 2 with the multiple light-emitting unit LEDs.
  • the backlight drive circuit 2 drives multiple light-emitting units LED to emit light in a passive drive manner, and the backlight drive circuit 2 outputs the first brightness signal I1 and the timing diagram of the second brightness signal I2 is shown in Figure 6.
  • VSYN refers to the timing signal received by the backlight drive circuit 2, including the first timing signal VSYN1 corresponding to the odd-numbered frame and the second timing signal VSYN2 corresponding to the even-numbered frame
  • MUXn refers to the multiplex selection circuit MUX received
  • the multiplexed signals received include the first multiplexed signal MUX1, the second multiplexed signal MUX2,..., and the eighth multiplexed signal MUX8.
  • the first brightness signal I2 of each light-emitting unit LED refers to the second brightness signal output to the plurality of light-emitting unit LEDs when the backlight driving circuit 2 receives the second timing signal VSYN2.
  • the backlight drive circuit 2 when the backlight drive circuit 2 outputs the first brightness signal I1 or the second brightness signal I2 to multiple light-emitting units LED, in order to ensure the timing of the first brightness signal I1 and the second brightness signal I2, different way to control.
  • the backlight driving circuit 2 includes a first driving circuit IC1 and a second driving circuit IC2.
  • the first driving circuit IC1 and the second driving circuit IC2 are connected to a plurality of light emitting units LED. Electrical connection.
  • the first driving circuit IC1 is used to respond to the first timing signal VSYN1 received in the first sequence frame to output the first brightness signal I1 to drive the plurality of light-emitting units LED to emit light.
  • the second driving circuit IC2 is used to respond to the second sequence signal VSYN1 received in the second sequence frame.
  • the timing signal VSYN2 drives the plurality of light-emitting units LED to emit light by outputting the second brightness signal I2.
  • the first driving circuit IC1 and the second driving circuit IC2 can be controlled to work alternately through the timing signal, that is, the first driving circuit IC1 works during the first sequence frame, the second driving circuit IC2 does not work, and during the second sequence frame , the first driving circuit IC1 does not work, and the second driving circuit IC2 works.
  • the first brightness signal I1 can be written in the first driving circuit IC1 in advance
  • the second brightness signal I2 can be written in the second driving circuit IC2 in advance.
  • the first driving circuit IC1 when receiving the first timing signal VSYN1, the first driving circuit IC1 outputs the first brightness signal I1 to the plurality of light-emitting units LED, and when receiving the second timing signal VSYN2, the second driving circuit IC2 outputs the first brightness signal I1 to the plurality of light-emitting units LED.
  • the two brightness signals I2 are sent to the plurality of light-emitting units LED, thereby achieving independent control of the first brightness signal I1 and the second brightness signal I2, effectively improving the effectiveness of the control of the first brightness signal I1 and the second brightness signal I2.
  • both the first driving circuit IC1 and the second driving circuit IC2 drive multiple light-emitting units LED to emit light in a passive driving manner.
  • the timing diagram of the driving circuit IC1 and the second driving circuit IC2 outputting the first brightness signal I1 and the second brightness signal I2 is shown in FIG. 7 .
  • VSYN1 refers to the first timing signal corresponding to the odd frame received by the first driving circuit IC1
  • VSYN2 refers to the second timing signal corresponding to the even frame received by the second driving circuit IC2
  • MUXn is Refers to the multiplexed signal received by the multiplexing circuit MUX, including the first multiplexed signal MUX1, the second multiplexed signal MUX2,..., the eighth multiplexed signal MUX8, I1 refers to the first drive circuit IC1 receiving
  • the first timing signal VSYN1 is a first brightness signal output to the plurality of light-emitting unit LEDs
  • I2 refers to a second brightness signal output by the second driving circuit IC2 to the plurality of light-emitting unit LEDs when receiving the second timing signal VSYN2.
  • the backlight driving circuit 2 includes a third driving circuit and a compensation circuit, the third driving circuit is electrically connected to the compensation circuit, and the compensation circuit is electrically connected to a plurality of light emitting units LED.
  • the third driving circuit is used to output the loading signal to the compensation circuit.
  • the compensation circuit is used to respond to the first timing signal VSYN1 received in the odd frame to output the loading signal as the first brightness signal I1 to the plurality of light-emitting units LED; and, to respond to the even number.
  • the second timing signal VSYN2 received by the frame is used to amplify the loading signal, and the amplified loading signal is output to the plurality of light-emitting units LED as the second brightness signal I2. In this way, when the first brightness signal I1 and the second brightness signal I2 are alternately outputted to the plurality of light-emitting unit LEDs in the above manner, the third driving circuit does not need to perform timing control, thereby simplifying the circuit structure.
  • the loading signal can be written into the third driving circuit in advance, and the amplification factor of the compensation circuit can be written into the compensation circuit.
  • the loading signal is the first brightness signal I1
  • the amplification factor of the compensation circuit is the ratio of the second brightness signal I2 to the first brightness signal I1.
  • the compensation circuit if the brightness signal is a current signal, the compensation circuit is a current compensation circuit; if the brightness signal is a voltage signal, the compensation circuit is a voltage compensation circuit.
  • the compensation circuit is an amplification circuit controlled by timing. That is, when the compensation circuit receives the first timing signal VSYN1, it does not amplify the input loading signal, that is, it directly outputs the input loading signal as the first brightness signal I1 to multiple Light-emitting unit LED; when the compensation circuit receives the second timing signal VSYN2, it amplifies the input loading signal, and then outputs the amplified loading signal as the second brightness signal I2 to the multiple light-emitting unit LEDs.
  • An embodiment of the present disclosure also provides a driving method for a backlight module.
  • the backlight module includes a backlight panel and a backlight drive circuit.
  • the backlight panel includes a plurality of light-emitting units. As shown in FIG. 8 , the method includes the following steps S110 to S130.
  • Step S110 The backlight driving circuit obtains the first brightness signal and the second brightness signal.
  • Step S120 When the backlight driving circuit receives the first timing signal, it outputs the first brightness signal to the plurality of light-emitting units.
  • the luminous brightness of the backlight panel is the first brightness
  • the first timing signal is the timing sent when displaying the frames of the first sequence of frames. Signal.
  • Step S130 When the backlight driving circuit receives the second timing signal, it outputs a second brightness signal to the plurality of light-emitting units.
  • the luminous brightness of the backlight panel is the second brightness
  • the second timing signal is the timing sent when displaying the frames of the first sequence of frames.
  • the first sequence of frames and the second sequence of frames are alternately arranged, and the first brightness and the second brightness are different.
  • the first brightness signal when displaying the frames of the first sequence of frames, is output to the plurality of light-emitting units through the backlight driving circuit, so that the luminous brightness of the backlight panel is the first brightness.
  • the second brightness signal When displaying the second sequence of frames, When framing a picture, the second brightness signal is output to the plurality of light-emitting units through the backlight drive circuit, so that the luminous brightness of the backlight panel is the second brightness. Due to the difference between the first brightness and the second brightness, the backlight panel can be adjusted in different sequence frames. The adjustment of the luminous brightness can realize the adjustment of the overall brightness of the entire display screen and reduce the phenomenon of screen flickering.
  • the first brightness signal and the second brightness signal can be pre-written into the backlight driving circuit. Subsequently, for each frame of the picture, when driving multiple light-emitting units to emit light, the first brightness signal and the second brightness signal can be directly called. That's it, thereby avoiding multiple repeated acquisitions and causing waste of resources, and at the same time improving the driving efficiency of the light-emitting unit.
  • the backlight driving circuit includes a first driving circuit and a second driving circuit, or a third driving circuit and a compensation circuit.
  • the backlight driving circuit includes a first driving circuit and a second driving circuit
  • the first brightness signal can be pre-written into the first driving circuit
  • the second brightness signal can be pre-written into the second driving circuit.
  • the first brightness signal can be directly called by the first driving circuit
  • the second brightness signal can be directly called by the second driving circuit.
  • the backlight driving circuit includes a third driving circuit and a compensation circuit
  • the third driving circuit obtains the loading signal and outputs it to the compensation circuit;
  • the compensation circuit receives the first timing signal, it determines the loading signal as the first brightness signal, and the compensation circuit receives
  • the loading signal is amplified during the second timing signal, and the amplified loading signal is used as the second brightness signal.
  • the loading signal is the first brightness signal
  • the amplification factor of the compensation circuit is the ratio of the second brightness signal to the first brightness signal.
  • the loading signal can be written into the third driving circuit in advance, and the amplification factor of the compensation circuit can be written into the compensation circuit.
  • the loading signal can be directly called by the third driving circuit, and the amplification factor can be directly called by the compensation circuit in step S130.
  • first sequence of frames and the second sequence of frames involved in the above-mentioned steps S120 and S130 reference may be made to the above-mentioned embodiments, and the embodiments of the present disclosure will not elaborate on this.
  • first sequence of frames is an odd-numbered frame
  • second sequence of frames is an even-numbered frame.
  • the first brightness signal and the second brightness signal may be determined through the following steps S210 to S270.
  • Step S210 Determine the first initial signal and the second initial signal.
  • Step S220 Obtain the initial picture brightness of the positive frame when the first initial signal is loaded in the preset picture, and the initial picture brightness of the negative frame when the second initial signal is loaded.
  • Step S230 Compensate the first initial signal and the second initial signal based on the initial picture brightness of the positive frame and the initial picture brightness of the negative frame to obtain a first adjustment signal and a second adjustment signal.
  • Step S240 Obtain the positive frame adjustment picture brightness when the first adjustment signal is loaded in the preset picture and the negative frame adjustment picture brightness when the second adjustment signal is loaded.
  • Step S250 Determine whether the difference between the brightness of the positive frame adjustment picture and the brightness of the negative frame adjustment picture is less than or equal to the reference brightness difference.
  • Step S260 if not, use the first adjustment signal as the first initial signal, the second adjustment signal as the second initial signal, the positive frame adjustment screen brightness as the positive frame initial screen brightness, and the negative frame adjustment screen brightness as the negative frame. Frame initial picture brightness, and return to the above step S230.
  • Step S270 If yes, determine the first adjustment signal as the first brightness signal, and determine the second adjustment signal as the second brightness signal.
  • the first initial signal and the second initial signal may be the same or different.
  • the first initial signal and the second initial signal are preset initial brightness signals loaded on the plurality of light-emitting units of the backlight panel.
  • the brightness of the screen can be detected by an optical detector.
  • the frame images of the first sequence of frames may be defined as positive frame images, as shown in FIG. 10 for example, and the frame images of the second sequence of frames may be defined as negative frame images, as shown in FIG. 11 for example.
  • the first adjustment signal determined in subsequent step S270 is the first brightness signal
  • the second adjustment signal is the second brightness signal.
  • the frames of the first sequence of frames can also be defined as negative frame images
  • the frames of the second sequence of frames can be defined as positive frame images.
  • the first adjustment signal determined in subsequent step S270 is the second brightness signal.
  • the second adjustment signal is the first brightness signal, which is not limited in the embodiments of the present disclosure.
  • the default picture can be any preset picture to be displayed.
  • the positive frame voltage and the negative frame voltage can be loaded in a column loading manner, or the positive frame voltage and negative frame voltage can be loaded in a row manner.
  • the preset picture can also be loaded with positive frame voltage and negative frame voltage in a dot matrix manner.
  • At least one of the first initial signal and the second initial signal may be adjusted through step compensation.
  • the initial signal corresponding to the darker one of the initial picture brightness of the positive frame and the initial picture brightness of the negative frame can be increased and adjusted; or the initial signal corresponding to the darker one of the initial picture brightness of the positive frame and the initial picture brightness of the negative frame can be increased and adjusted.
  • the corresponding initial signal is reduced and adjusted.
  • a compensation signal is obtained; the initial signal corresponding to the darker picture brightness among the initial picture brightness of the positive frame and the initial picture brightness of the negative frame is determined as the signal to be compensated, and the sum of the signal to be compensated and the compensation signal is determined. is the corresponding adjustment signal; the initial signal corresponding to the brighter picture brightness among the initial picture brightness of the positive frame and the initial picture brightness of the negative frame is determined as the non-compensated signal, and the non-compensated signal is determined as the corresponding adjustment signal.
  • a compensation signal is obtained; the initial signal corresponding to the darker picture brightness among the initial picture brightness of the positive frame and the initial picture brightness of the negative frame is determined as the non-compensated signal, and the non-compensated signal is determined as the corresponding adjustment signal. ; Determine the initial signal corresponding to the brighter picture brightness among the initial picture brightness of the positive frame and the initial picture brightness of the negative frame as the signal to be compensated, and determine the sum of the signal to be compensated and the compensation signal as the corresponding adjustment signal.
  • the compensation signal can be a compensation current or a compensation voltage.
  • the compensation current is greater than or equal to 1.2 microamps and less than or equal to 39 microamps.
  • the compensation current is 20 microamps.
  • the magnitude relationship between the brightness difference between the positive frame adjustment picture brightness, the negative frame adjustment picture brightness and the reference brightness difference is determined. Since the smaller the brightness difference between the two frames is, the smaller the flickering phenomenon will be. Therefore, optionally, the reference brightness difference is less than or equal to 98 nits. For example, the reference brightness difference is 85 nits, 80 nits, 75 nits, etc.
  • steps of the driving method of the backlight module in the present disclosure are described in a specific order in FIG. 8 , this does not require or imply that these steps must be performed in this specific order, or that the steps must be performed. All steps shown are required to achieve the desired results. Additionally or alternatively, certain steps may be omitted, multiple steps may be combined into one step for execution, and/or one step may be decomposed into multiple steps for execution, etc.

Abstract

一种背光模组及其驱动方法、显示面板、显示装置。背光模组包括:背光板(1);背光驱动电路(2),用于响应第一时序信号以输出第一亮度信号驱动背光板(1)发光;以及,用于响应第二时序信号以输出第二亮度信号驱动背光板(1)发光。对于第一序列帧的帧画面,输出第一亮度信号(I1)以驱动背光板(1)发光,对于第二序列帧的帧画面,输出第二亮度信号(I2)以驱动背光板(1)发光,由于背光板(1)在不同帧画面的发光亮度不同,从而实现对背光板(1)的发光亮度的调节,进而实现对不同帧画面的整体亮度的调整,减小出现闪屏的现象。

Description

背光模组及其驱动方法、显示面板、显示装置 技术领域
本公开涉及显示技术领域,具体而言,涉及一种背光模组及其驱动方法、显示面板、显示装置。
背景技术
在液晶显示装置的制造过程中,需要实现对液晶的控制,从而使液晶显示装置在使用过程中,随着图像的显示时时进行反转,从而防止液晶分子由于长时间保持同一极性而导致损坏。目前的液晶显示装置在制造过程中,为了避免液晶分子的损坏,对于液晶分子的控制,往往采用奇偶帧交替的方式进行反转。然而采用奇偶帧交替的方式进行反转时,必然会出现闪屏的现象,从而降低液晶显示装置的画面显示效果。
需要说明的是,在上述背景技术部分公开的信息仅用于加强对本公开的背景的理解,因此可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种背光模组及其驱动方法、显示面板、显示装置,能够减小闪屏的现象。
根据本公开的一方面,提供一种背光模组,包括:
背光板,包括多个发光单元;
背光驱动电路,与多个所述发光单元电连接,且用于响应第一序列帧接收的第一时序信号以输出第一亮度信号驱动多个所述发光单元发光,且所述背光板的发光亮度为第一亮度;以及,用于响应第二序列帧接收的第二时序信号以输出第二亮度信号驱动多个所述发光单元发光,且所述背光板的发光亮度为第二亮度,所述第一序列帧和所述第二序列帧交替排布,所述第一亮度和所述第二亮度不同。
根据本公开任一所述的背光模组,所述背光驱动电路包括第一驱动电路和第二驱动电路;
所述第一驱动电路、所述第二驱动电路均与多个所述发光单元电连接,且所述第一驱动电路用于响应所述第一序列帧接收的第一时序信号以输出第一 亮度信号驱动多个所述发光单元发光,所述第二驱动电路用于响应所述第二序列帧接收的第二时序信号以输出第二亮度信号驱动多个所述发光单元发光。
根据本公开任一所述的背光模组,所述背光驱动电路包括第三驱动电路和补偿电路;
所述第三驱动电路与所述补偿电路电连接,所述补偿电路与多个所述发光单元电连接;
所述第三驱动电路用于输出加载信号至所述补偿电路,所述补偿电路用于响应奇数帧接收的第一时序信号以将所述加载信号作为所述第一亮度信号输出至多个所述发光单元;以及,用于响应偶数帧接收的第二时序信号以对所述加载信号进行放大,并将放大后的所述加载信号作为所述第二亮度信号输出至多个所述发光单元。
根据本公开任一所述的背光模组,所述背光模组还包括多路选择电路;
所述多路选择电路分别与所述背光驱动电路和多个所述发光单元电连接,所述多路选择电路用于响应第一复用信号至第N复用信号,以依次连通所述背光驱动电路与多个所述发光单元。
根据本公开任一所述的背光模组,所述第一序列帧为奇数帧,所述第二序列帧为偶数帧。
根据本公开的另一方面,提供一种背光模组的驱动方法,所述背光模组包括背光板和背光驱动电路,所述背光板包括多个发光单元,所述方法包括:
所述背光驱动电路获取第一亮度信号和第二亮度信号;
所述背光驱动电路接收到第一时序信号时输出所述第一亮度信号至多个所述发光单元,所述背光板的发光亮度为第一亮度,所述第一时序信号为显示第一序列帧的帧画面时发送的时序信号;
所述背光驱动电路接收到第二时序信号时输出所述第二亮度信号至多个所述发光单元,所述背光板的发光亮度为第二亮度,所述第二时序信号为显示第一序列帧的帧画面时发送的时序信号,所述第一序列帧和所述第二序列帧交替排布,且所述第一亮度与所述第二亮度不同。
根据本公开任一所述的方法,所述背光驱动电路包括第三驱动电路和补偿电路,所述所述背光驱动电路获取第一亮度信号和第二亮度信号包括:
所述第三驱动电路获取加载信号,并输出至所述补偿电路;
所述补偿电路接收到所述第一时序信号时将所述加载信号确定为所述第一亮度信号,所述补偿电路接收到所述第二时序信号时对所述加载信号进行放大,并将放大后的所述加载信号作为所述第二亮度信号。
根据本公开任一所述的方法,所述第一序列帧为奇数帧,所述第二序列帧为偶数帧。
根据本公开任一所述的方法,所述背光驱动电路获取第一亮度信号和第二亮度信号之前,还包括:
确定第一初始信号和第二初始信号;
获取预设画面加载所述第一初始信号时的正帧初始画面亮度,以及加载所述第二初始信号时的负帧初始画面亮度;
基于所述正帧初始画面亮度和所述负帧初始画面亮度,对所述第一初始信号和所述第二初始信号进行补偿,得到第一调整信号和第二调整信号;
获取所述预设画面加载所述第一调整信号时的正帧调整画面亮度,以及加载所述第二调整信号时的负帧调整画面亮度;
若所述正帧调整画面亮度与所述负帧调整画面亮度的差值大于参考亮度差,则将所述第一调整信号作为所述第一初始信号,将所述第二调整信号作为所述第二初始信号,将所述正帧调整画面亮度作为所述正帧初始画面亮度,将所述负帧调整画面亮度作为所述负帧初始画面亮度,并返回至上述对所述第一初始信号和所述第二初始信号进行补偿的步骤;
若所述正帧调整画面亮度与所述负帧调整画面亮度的差值小于或等于所述参考亮度差,则将所述第一调整信号确定为所述第一亮度信号,将所述第二调整信号确定为所述第二亮度信号。
根据本公开任一所述的方法,所述基于所述正帧初始画面亮度和所述负帧初始画面亮度,对所述第一初始信号和所述第二初始信号进行补偿,得到第一调整信号和第二调整信号,包括:
获取补偿信号;
将所述正帧初始画面亮度和所述负帧初始画面亮度中画面亮度较暗时对应的初始信号确定为待补偿信号,并将所述待补偿信号与所述补偿信号之和,确定为对应的调整信号;
将所述正帧初始画面亮度和所述负帧初始画面亮度中画面亮度较亮时对应的初始信号确定为非补偿信号,并将所述非补偿信号确定为对应的调整信号。
根据本公开任一所述的方法,所述基于所述正帧初始画面亮度和所述负帧初始画面亮度,对所述第一初始信号和所述第二初始信号进行补偿,得到第一调整信号和第二调整信号,包括:
获取补偿信号;
将所述正帧初始画面亮度和所述负帧初始画面亮度中画面亮度较暗时对应的初始信号确定为非补偿信号,并将所述非补偿信号确定为对应的调整信号;
将所述正帧初始画面亮度和所述负帧初始画面亮度中画面亮度较亮时对应的初始信号确定为待补偿信号,并将所述待补偿信号与所述补偿信号之和,确定为对应的调整信号。
根据本公开任一所述的方法,所述补偿信号为补偿电流,所述补偿电流大于或等于1.2微安,且小于或等于39微安。
根据本公开任一所述的方法,所述补偿电流为20微安。
根据本公开任一所述的方法,所述参考亮度差小于或等于98尼特。
根据本公开的又一方面,提供一种显示面板,所述显示面板包括上述一方面所述的背光模组。
根据本公开的再一个方面,提供一种显示装置,所述显示装置包括上述又一方面所述的显示面板。
本公开实施方式至少包括以下技术效果:
本公开实施方式中,在显示第一序列帧的帧画面时,通过背光驱动电路输出第一亮度信号至多个发光单元,以使背光板的发光亮度为第一亮度,在显示第二序列帧的帧画面时,通过背光驱动电路输出第二亮度信号至多个发光单元,以使背光板的发光亮度为第二亮度,由于第一亮度与第二亮度的不同,从而实现在不同序列帧对背光板的发光亮度的调节,进而实现对整个显示画面的整体亮度的调整,减小出现闪屏的现象。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为相关技术提供的一种帧画面的亮度示意图。
图2为本公开实施方式提供的一种背光模组的结构示意图。
图3为本公开实施方式提供的一种背光驱动电路驱动的时序图。
图4为本公开实施方式提供的一种帧画面的亮度示意图。
图5为本公开实施方式提供的另一种背光模组的结构示意图。
图6为本公开实施方式提供的另一种背光驱动电路驱动的时序图。
图7为本公开实施方式提供的又一种背光驱动电路驱动的时序图。
图8为本公开实施方式提供的一种背光模组的驱动方法的流程示意图。
图9为本公开实施方式提供的一种亮度信号的确定方法的流程示意图。
图10为本公开实施方式提供的一种正帧画面的示意图。
图11为本公开实施方式提供的一种负帧画面的示意图。
具体实施方式
现在将参考附图更全面地描述示例实施方式。然而,示例实施方式能够以多种形式实施,且不应被理解为限于在此阐述的实施方式;相反,提供这些实施方式使得本公开将全面和完整,并将示例实施方式的构思全面地传达给本领域的技术人员。图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。此外,附图仅为本公开的示意性图解,并非一定是按比例绘制。
用语“一个”、“一”、“该”、“所述”和“至少一个”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等;用语“第一”、“第二”和“第三”等仅作为标记使用,不是对其对象的数量限制。
本公开实施方式提供了一种显示装置,该显示装置可以为液晶显示装置。 该显示装置包括显示面板。
显示面板包括背光模组、位于背光模组一侧的驱动基板、位于驱动基板一侧的彩膜基板,以及位于驱动基板和彩膜基板之间的液晶分子。
其中,背光模组包括背光板1,且背光板1包括多个发光单元LED。驱动基板包括沿第一方向分布的多个扫描线和沿第二方向分布的多个数据线,以及多个像素电路和与多个像素电路一一对应的多个像素电极,彩膜基板包括公共电极。
一个像素电路包括薄膜晶体管和寄生电容,薄膜晶体管的栅极与一扫描线电连接,薄膜晶体管的源极与一数据线电连接,寄生电容串联在薄膜晶体管的漏极与对应的像素电极之间,扫描线用于控制薄膜晶体管的导通与断开,数据线用于控制加载在像素电极上的电压。
在显示画面时,多个发光单元LED持续发出同样亮度的光,同时通过扫描线控制薄膜晶体管导通,并通过数据线在像素电极加载电压后,此时像素电极对应区域的液晶分子发生偏转,以实现透光率的调整,进而实现显示面板不同区域的发光亮度不同。
而在液晶分子偏转时,为了避免液晶分子长时间保持同一极性而导致损坏的问题,相关技术中通过调整数据线加载在像素电极上的电压,而实现液晶分子的周期性反转。示例地,在奇数帧时一数据线在像素电极上加载正帧电压后液晶分子沿顺时针偏转,在偶数帧时一数据线在像素电极上加载负帧电压后液晶分子逆时针偏转。
而当一数据线加载在像素电极上的电压由正帧电压切换至负帧电压时,像素电极对应的像素电路包括的寄生电容会产生漏电流,从而导致加载在像素电极上的实际电压偏小,如此液晶分子在奇数帧时的偏转角度与在偶数帧时的偏转角度不同,从而造成液晶分子在奇数帧和偶数帧时的透光率不同,如此容易造成闪屏的现象。示例地,如图1所示,连续三帧画面呈现出亮、暗、亮的效果,从而出现闪屏的现象。
本公开实施方式中,为了减小闪屏的现象,提出了一种显示面板,该显示面板包括下述实施方式所述的背光模组。
如图2所示,该背光模组包括:背光板1和背光驱动电路2,背光板1包括多个发光单元LED,背光驱动电路2与多个发光单元LED电连接,且用于 响应第一序列帧接收的第一时序信号VSYN1以输出第一亮度信号I1驱动多个发光单元LED发光,且背光板1的发光亮度为第一亮度;以及,用于响应第二序列帧接收的第二时序信号VSYN2以输出第二亮度信号I2驱动多个发光单元LED发光,且背光板1的发光亮度为第二亮度,第一序列帧和第二序列帧交替排布,第一亮度和第二亮度不同。
如此,本公开实施方式中,在显示第一序列帧的帧画面时,通过背光驱动电路2输出第一亮度信号I1至多个发光单元LED,以使背光板1的发光亮度为第一亮度,在显示第二序列帧的帧画面时,通过背光驱动电路2输出第二亮度信号I2至多个发光单元LED,以使背光板1的发光亮度为第二亮度,由于第一亮度与第二亮度的不同,从而实现在不同序列帧对背光板1的发光亮度的调节,进而实现对整个显示画面的整体亮度的调整,减小出现闪屏的现象。
其中,第一亮度信号I1和第二亮度信号I2可预先进行确定,并写入背光驱动电路2中。第一亮度信号I1和第二亮度信号I2的具体确定方式可参考下述背光模组的驱动方法所述的实施方式。示例地,假设第一序列帧的帧画面均为正帧画面,第二序列帧的帧画面均为负帧画面,若显示正帧画面时液晶分子的透光率大于显示负帧画面时液晶分子的透光率,则第一亮度信号I1、第二亮度信号I2驱动多个发光单元LED发光后,背光板1的第一亮度小于第二亮度;若显示正帧画面时液晶分子的透光率小于显示负帧画面时液晶分子的透光率,则第一亮度信号I1、第二亮度信号I2驱动多个发光单元LED发光后,背光板1的第一亮度大于第二亮度。
其中,第一序列帧和第二序列帧的帧画面总和是指显示画面时液晶分子偏转的周期,也即是第一序列帧的帧画面和第二序列帧的帧画面中的一者为正帧画面,另一者为负帧画面。另外,对于正帧画面和负帧画面,示例地,在显示正帧画面时,第一像素电极上加载的电压为正帧电压,第二像素电极上加载的电压为负帧电压;而在显示负帧画面时,第一像素电极上加载的电压切换为负帧电压,第二像素电极上加载的电压切换为正帧电压。
结合上述驱动基板的解释,多个像素电极呈阵列分布,第一像素电极和第二像素电极按照行或列方式区别。当第一像素电极和第二像素电极按照行方式区分时,多个像素电极中的奇数行的各像素电极为第一电极,偶数行的各像素电极为第二电极,即多个像素电极中奇数行的各像素电极加载正帧电压,偶数 行的各像素电极加载负帧电压,或者多个像素电极中奇数行的各像素电极加载负帧电压,偶数行的各像素电极加载正帧电压。当第一像素电极和第二像素电极按照列方式区分时,多个像素电极中的奇数列的各像素电极为第一电极,偶数列的各像素电极为第二电极,即多个像素电极中奇数列的各像素电极加载正帧电压,偶数列的各像素电极加载负帧电压,或者多个像素电极中奇数列的各像素电极加载负帧电压,偶数列的各像素电极加载正帧电压。
当然,第一像素电极和第二像素电极也可以按照点阵方式区分,示例地,假设多个像素电极中的一个像素电极为第一像素电极,则其上、下、左、右的四个像素电极均为第二像素电极。
其中,第一序列帧的帧画面总数与第二序列帧的帧画面总数可以相同,也可以不同,具体可根据显示面板包括的液晶分子的材料而定,只要液晶分子在第一序列帧的帧画面和第二序列帧的帧画面的显示过程中,不会发生损坏即可,本申请实施方式对此不做限定。
示例地,第一序列帧的帧画面总数与第二序列帧的帧画面总数相同。比如,第一序列帧包括第n帧和第n+1帧,第二序列帧包括第n+2帧和第n+3帧,n为大于或等于1的整数;再比如,第一序列帧为奇数帧,第二序列帧为偶数帧。
以第一序列帧为奇数帧,第二序列帧为偶数帧为例,此时背光驱动电路2输出第一亮度信号I1和第二亮度信号I2的时序图如图3所示。其中,如图3所示,VSYN是指背光驱动电路2接收的时序信号,包括奇数帧对应的第一时序信号VSYN1和偶数帧对应的第二时序信号VSYN2,I1是指背光驱动电路2在接收到第一时序信号VSYN1时输出至多个发光单元LED的第一亮度信号,I2是指背光驱动电路2在接收到第二时序信号VSYN2时输出至多个发光单元LED的第二亮度信号。如图3所示,背光驱动电路2输出至发光单元的第一亮度信号I1、第二亮度信号I2均包括头部信号Head Ichx、中间信号Center和尾部信号Tail Ichx。
进一步地,对于包括该背光模组的显示面板,进行背光板1的发光亮度调节后,以第一序列帧为奇数帧,第二序列帧为偶数帧为例,如图4所示,对于每一帧画面,显示面板的画面整体亮度包括像素单元的透光率和背光板1的亮度。
其中,如图4所示,若像素单元的透光率小,则背光板1的发光亮度需要 调亮,若像素单元的透光率大,则背光板1的发光亮度需要调暗,如此,以保证每一帧画面的整体亮度之间的亮度差不会太大,从而减小出现闪屏的现象。
本公开实施方式中,通过背光驱动电路2驱动多个发光单元LED发光时,可通过有源驱动的方式驱动多个发光单元LED发光,也可以通过无源驱动的方式驱动多个发光单元LED发光。当然也可以通过其他驱动方式驱动多个发光单元LED发光。
当背光驱动电路2以有源驱动的方式驱动多个发光单元LED发光时,背光驱动电路2的时序如图3所示。当背光驱动电路2以无源驱动的方式驱动多个发光单元LED发光时,如图5所示,背光模组还包括多路选择电路MUX,多路选择电路MUX分别与背光驱动电路2和多个发光单元LED电连接,多路选择电路MUX用于响应第一复用信号MUX1至第N复用信号MUXN,以依次连通背光驱动电路2与多个发光单元LED。
继续以第一序列帧为奇数帧,第二序列帧为偶数帧为例,此时背光驱动电路2以无源驱动的方式驱动多个发光单元LED发光,背光驱动电路2输出第一亮度信号I1和第二亮度信号I2的时序图如图6所示。其中,如图6所示,VSYN是指背光驱动电路2接收的时序信号,包括奇数帧对应的第一时序信号VSYN1和偶数帧对应的第二时序信号VSYN2,MUXn是指多路选择电路MUX接收到的复用信号,包括第一复用信号MUX1、第二复用信号MUX2、···、第八复用信号MUX8,I1是指背光驱动电路2在接收到第一时序信号VSYN1时输出至多个发光单元LED的第一亮度信号,I2是指背光驱动电路2在接收到第二时序信号VSYN2时输出至多个发光单元LED的第二亮度信号。
本公开实施方式中,背光驱动电路2输出第一亮度信号I1或第二亮度信号I2至多个发光单元LED时,为了保证第一亮度信号I1和第二亮度信号I2的时序性,可通过不同的方式进行控制。
在一些实施方式中,如图5或图6所示,背光驱动电路2包括第一驱动电路IC1和第二驱动电路IC2,第一驱动电路IC1、第二驱动电路IC2均与多个发光单元LED电连接。第一驱动电路IC1用于响应第一序列帧接收的第一时序信号VSYN1以输出第一亮度信号I1驱动多个发光单元LED发光,第二驱动电路IC2用于响应第二序列帧接收的第二时序信号VSYN2以输出第二亮度信号I2驱动多个发光单元LED发光。
如此,可通过时序信号控制第一驱动电路IC1和第二驱动电路IC2交替工作,即在第一序列帧时第一驱动电路IC1工作,第二驱动电路IC2不工作,而在第二序列帧时,第一驱动电路IC1不工作,第二驱动电路IC2工作。
其中,可预先将第一亮度信号I1预先写入第一驱动电路IC1,将第二亮度信号I2预先写入第二驱动电路IC2。
本公开实施方式中,在接收到第一时序信号VSYN1时由第一驱动电路IC1输出第一亮度信号I1至多个发光单元LED,在接收到第二时序信号VSYN2时由第二驱动电路IC2输出第二亮度信号I2至多个发光单元LED,从而实现第一亮度信号I1和第二亮度信号I2的单独控制,有效提高第一亮度信号I1和第二亮度信号I2控制的有效性。
继续以第一序列帧为奇数帧,第二序列帧为偶数帧为例,此时第一驱动电路IC1、第二驱动电路IC2均以无源驱动的方式驱动多个发光单元LED发光,第一驱动电路IC1、第二驱动电路IC2输出第一亮度信号I1和第二亮度信号I2的时序图如图7所示。其中,如图7所示,VSYN1是指第一驱动电路IC1接收到的奇数帧对应的第一时序信号,VSYN2是指第二驱动电路IC2接收到的偶数帧对应的第二时序信号,MUXn是指多路选择电路MUX接收到的复用信号,包括第一复用信号MUX1、第二复用信号MUX2、···、第八复用信号MUX8,I1是指第一驱动电路IC1在接收到第一时序信号VSYN1时输出至多个发光单元LED的第一亮度信号,I2是指第二驱动电路IC2在接收到第二时序信号VSYN2时输出至多个发光单元LED的第二亮度信号。
在另一些实施方式中,背光驱动电路2包括第三驱动电路和补偿电路,第三驱动电路与补偿电路电连接,补偿电路与多个发光单元LED电连接。
第三驱动电路用于输出加载信号至补偿电路,补偿电路用于响应奇数帧接收的第一时序信号VSYN1以将加载信号作为第一亮度信号I1输出至多个发光单元LED;以及,用于响应偶数帧接收的第二时序信号VSYN2以对加载信号进行放大,并将放大后的加载信号作为第二亮度信号I2输出至多个发光单元LED。如此,在通过上述方式交替输出第一亮度信号I1和第二亮度信号I2至多个发光单元LED时,第三驱动电路并不需要进行时序控制,从而简化了电路结构。
其中,可预先将加载信号写入第三驱动电路,将补偿电路的放大倍数写入 补偿电路。加载信号即为第一亮度信号I1,补偿电路的放大倍数即为第二亮度信号I2与第一亮度信号I1的比值。
其中,对于补偿电路,若亮度信号为电流信号,则补偿电路为电流补偿电路;若亮度信号为电压信号,则补偿电路为电压补偿电路。补偿电路为受时序控制的放大电路,即当补偿电路接收到第一时序信号VSYN1时,不对输入的加载信号进行放大处理,也即是直接将输入的加载信号作为第一亮度信号I1输出至多个发光单元LED;当补偿电路接收到第二时序信号VSYN2时,对输入的加载信号进行放大处理,进而将放大后的加载信号作为第二亮度信号I2输出至多个发光单元LED。
本公开实施方式还提供了一种背光模组的驱动方法。背光模组包括背光板和背光驱动电路,背光板包括多个发光单元,如图8所示,该方法包括包括如下步骤S110-步骤S130。
步骤S110、背光驱动电路获取第一亮度信号和第二亮度信号。
步骤S120、背光驱动电路接收到第一时序信号时输出第一亮度信号至多个发光单元,背光板的发光亮度为第一亮度,第一时序信号为显示第一序列帧的帧画面时发送的时序信号。
步骤S130、背光驱动电路接收到第二时序信号时输出第二亮度信号至多个发光单元,背光板的发光亮度为第二亮度,第二时序信号为显示第一序列帧的帧画面时发送的时序信号,第一序列帧和第二序列帧交替排布,且第一亮度和第二亮度不同。
本公开实施方式中,在显示第一序列帧的帧画面时,通过背光驱动电路输出第一亮度信号至多个发光单元,以使背光板的发光亮度为第一亮度,在显示第二序列帧的帧画面时,通过背光驱动电路输出第二亮度信号至多个发光单元,以使背光板的发光亮度为第二亮度,由于第一亮度与第二亮度的不同,从而实现在不同序列帧对背光板的发光亮度的调节,进而实现对整个显示画面的整体亮度的调整,减小出现闪屏的现象。
上述步骤S110中,第一亮度信号和第二亮度信号可预先写入背光驱动电路,后续对于每一帧画面,在驱动多个发光单元发光时,可直接调用第一亮度信号、第二亮度信号即可,从而避免多次重复获取,造成资源的浪费,同时提 高对发光单元的驱动效率。
另外,结合上述实施方式所述的背光模组,背光驱动电路包括第一驱动电路和第二驱动电路,或者包括第三驱动电路和补偿电路。
当背光驱动电路包括第一驱动电路和第二驱动电路时,则可预先将第一亮度信号预先写入第一驱动电路,将第二亮度信号预先写入第二驱动电路,如此,在后续步骤S120中,可由第一驱动电路直接调用第一亮度信号,在后续步骤S130中,可由第二驱动电路直接调用第二亮度信号。
当背光驱动电路包括第三驱动电路和补偿电路,第三驱动电路获取加载信号,并输出至补偿电路;补偿电路接收到第一时序信号时将加载信号确定为第一亮度信号,补偿电路接收到第二时序信号时对加载信号进行放大,并将放大后的加载信号作为第二亮度信号。
其中,加载信号即为第一亮度信号,补偿电路的放大倍数即为第二亮度信号与第一亮度信号的比值。另外,可预先将加载信号写入第三驱动电路,将补偿电路的放大倍数写入补偿电路。以在后续步骤S120和步骤S130中,可由第三驱动电路直接调用加载信号,以及在步骤S130中由补偿电路直接调用放大倍数。
上述步骤S120和步骤S130中,对于涉及的第一序列帧和第二序列帧的具体解释,可参考上述实施方式所述,本公开实施方式对此不在赘述。示例地,第一序列帧为奇数帧,第二序列帧为偶数帧。
本公开实施方式中,在上述步骤S110获取第一亮度信号和第二亮度信号之前,如图9所示,可通过如下步骤S210-步骤S270确定第一亮度信号和第二亮度信号。
步骤S210、确定第一初始信号和第二初始信号。
步骤S220、获取预设画面加载第一初始信号时的正帧初始画面亮度,以及加载第二初始信号时的负帧初始画面亮度。
步骤S230、基于正帧初始画面亮度和负帧初始画面亮度,对第一初始信号和第二初始信号进行补偿,得到第一调整信号和第二调整信号。
步骤S240、获取预设画面加载第一调整信号时的正帧调整画面亮度,以及加载第二调整信号时的负帧调整画面亮度。
步骤S250、确定正帧调整画面亮度与负帧调整画面亮度的差值是否小于 或等等于参考亮度差。
步骤S260、若否,则将第一调整信号作为第一初始信号,将第二调整信号作为第二初始信号,将正帧调整画面亮度作为正帧初始画面亮度,将负帧调整画面亮度作为负帧初始画面亮度,并返回至上述步骤S230。
步骤S270、若是,则将第一调整信号确定为第一亮度信号,将第二调整信号确定为第二亮度信号。
上述步骤S210中,第一初始信号和第二初始信号可以相同,也可以不同。第一初始信号和第二初始信号是预先设定的加载在背光板的多个发光单元上的初始亮度信号。
上述步骤S220和步骤S240中,可通过光学检测仪检测画面的亮度。
上述步骤S220中,第一序列帧的帧画面可以定义为正帧画面,示例地如图10所示,第二序列帧的帧画面可以定义为负帧画面,示例地如图11所示。此时后续步骤确S270确定的第一调整信号即为第一亮度信号,第二调整信号即为第二亮度信号。当然,也可以将第一序列帧的帧画面定义为负帧画面,将第二序列帧的帧画面定义为正帧画面,此时后续步骤确S270确定的第一调整信号即为第二亮度信号,第二调整信号即为第一亮度信号,本公开实施方式对此不做限定。
预设画面可以是预先设定的任一幅待显示的画面。在加载第一初始信号或第二初始信号时,可以按照列加载方式加载正帧电压、负帧电压,也可以按照行方式加载正帧电压、负帧电压。当然,预设画面还可以按照点阵方式加载正帧电压、负帧电压。具体可参考上述实施方式所述的像素电极加载电压的方式,本公开实施方式对此不做限定。
上述步骤S230中,可通过步进补偿的方式对第一初始信号、第二初始信号中的至少一者进行调整。示例地,可以对正帧初始画面亮度、负帧初始画面亮度中,亮度较暗的一者对应的初始信号进行增大调整;或者对正帧初始画面亮度、负帧初始画面亮度中,亮度较亮的一者对应的初始信号进行减小调整;再或者对正帧初始画面亮度、负帧初始画面亮度中,亮度较暗的一者对应的初始信号进行增大调整,亮度较亮的一者对应的初始信号进行减小调整。
在一些实施方式中,获取补偿信号;将正帧初始画面亮度和负帧初始画面亮度中画面亮度较暗时对应的初始信号确定为待补偿信号,并将待补偿信号与 补偿信号之和,确定为对应的调整信号;将正帧初始画面亮度和负帧初始画面亮度中画面亮度较亮时对应的初始信号确定为非补偿信号,并将非补偿信号确定为对应的调整信号。
在另一些实施方式中,获取补偿信号;将正帧初始画面亮度和负帧初始画面亮度中画面亮度较暗时对应的初始信号确定为非补偿信号,并将非补偿信号确定为对应的调整信号;将正帧初始画面亮度和负帧初始画面亮度中画面亮度较亮时对应的初始信号确定为待补偿信号,并将待补偿信号与补偿信号之和,确定为对应的调整信号。
上述两种实施方式中,补偿信号可以补偿电流,也可以为补偿电压。以补偿信号为补偿电流为例,补偿电流大于或等于1.2微安,且小于或等于39微安。示例地,补偿电流为20微安。
上述步骤S250中,通过确定正帧调整画面亮度、负帧调整画面亮度的亮度差与参考亮度差之间的大小关系。由于两帧画面的亮度差越小,则出现闪屏的现象越小。因此,可选地,参考亮度差小于或等于98尼特。示例地,参考亮度差为85尼特、80尼特、75尼特等。
需要说明的是,尽管在图8中以特定顺序描述了本公开中背光模组的驱动方法方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由所附的权利要求指出。

Claims (16)

  1. 一种背光模组,其中,包括:
    背光板,包括多个发光单元;
    背光驱动电路,与多个所述发光单元电连接,且用于响应第一序列帧接收的第一时序信号以输出第一亮度信号驱动多个所述发光单元发光,且所述背光板的发光亮度为第一亮度;以及,用于响应第二序列帧接收的第二时序信号以输出第二亮度信号驱动多个所述发光单元发光,且所述背光板的发光亮度为第二亮度,所述第一序列帧和所述第二序列帧交替排布,所述第一亮度和所述第二亮度不同。
  2. 如权利要求1所述的背光模组,其中,所述背光驱动电路包括第一驱动电路和第二驱动电路;
    所述第一驱动电路、所述第二驱动电路均与多个所述发光单元电连接,且所述第一驱动电路用于响应所述第一序列帧接收的第一时序信号以输出第一亮度信号驱动多个所述发光单元发光,所述第二驱动电路用于响应所述第二序列帧接收的第二时序信号以输出第二亮度信号驱动多个所述发光单元发光。
  3. 如权利要求1所述的背光模组,其中,所述背光驱动电路包括第三驱动电路和补偿电路;
    所述第三驱动电路与所述补偿电路电连接,所述补偿电路与多个所述发光单元电连接;
    所述第三驱动电路用于输出加载信号至所述补偿电路,所述补偿电路用于响应奇数帧接收的第一时序信号以将所述加载信号作为所述第一亮度信号输出至多个所述发光单元;以及,用于响应偶数帧接收的第二时序信号以对所述加载信号进行放大,并将放大后的所述加载信号作为所述第二亮度信号输出至多个所述发光单元。
  4. 如权利要求1-3任一所述的背光模组,其中,所述背光模组还包括多路选择电路;
    所述多路选择电路分别与所述背光驱动电路和多个所述发光单元电连接,所述多路选择电路用于响应第一复用信号至第N复用信号,以依次连通所述背光驱动电路与多个所述发光单元。
  5. 如权利要求1-3任一所述的背光模组,其中,所述第一序列帧为奇数帧, 所述第二序列帧为偶数帧。
  6. 一种背光模组的驱动方法,其中,所述背光模组包括背光板和背光驱动电路,所述背光板包括多个发光单元,所述方法包括:
    所述背光驱动电路获取第一亮度信号和第二亮度信号;
    所述背光驱动电路接收到第一时序信号时输出所述第一亮度信号至多个所述发光单元,所述背光板的发光亮度为第一亮度,所述第一时序信号为显示第一序列帧的帧画面时发送的时序信号;
    所述背光驱动电路接收到第二时序信号时输出所述第二亮度信号至多个所述发光单元,所述背光板的发光亮度为第二亮度,所述第二时序信号为显示第一序列帧的帧画面时发送的时序信号,所述第一序列帧和所述第二序列帧交替排布,且所述第一亮度与所述第二亮度不同。
  7. 如权利要求6所述的方法,其中,所述背光驱动电路包括第三驱动电路和补偿电路,所述所述背光驱动电路获取第一亮度信号和第二亮度信号包括:
    所述第三驱动电路获取加载信号,并输出至所述补偿电路;
    所述补偿电路接收到所述第一时序信号时将所述加载信号确定为所述第一亮度信号,所述补偿电路接收到所述第二时序信号时对所述加载信号进行放大,并将放大后的所述加载信号作为所述第二亮度信号。
  8. 如权利要求6所述的方法,其中,所述第一序列帧为奇数帧,所述第二序列帧为偶数帧。
  9. 如权利要求6-7任一所述的方法,其中,所述背光驱动电路获取第一亮度信号和第二亮度信号之前,还包括:
    确定第一初始信号和第二初始信号;
    获取预设画面加载所述第一初始信号时的正帧初始画面亮度,以及加载所述第二初始信号时的负帧初始画面亮度;
    基于所述正帧初始画面亮度和所述负帧初始画面亮度,对所述第一初始信号和所述第二初始信号进行补偿,得到第一调整信号和第二调整信号;
    获取所述预设画面加载所述第一调整信号时的正帧调整画面亮度,以及加载所述第二调整信号时的负帧调整画面亮度;
    若所述正帧调整画面亮度与所述负帧调整画面亮度的差值大于参考亮度差,则将所述第一调整信号作为所述第一初始信号,将所述第二调整信号作为 所述第二初始信号,将所述正帧调整画面亮度作为所述正帧初始画面亮度,将所述负帧调整画面亮度作为所述负帧初始画面亮度,并返回至上述对所述第一初始信号和所述第二初始信号进行补偿的步骤;
    若所述正帧调整画面亮度与所述负帧调整画面亮度的差值小于或等于所述参考亮度差,则将所述第一调整信号确定为所述第一亮度信号,将所述第二调整信号确定为所述第二亮度信号。
  10. 如权利要求9所述的方法,其中,所述基于所述正帧初始画面亮度和所述负帧初始画面亮度,对所述第一初始信号和所述第二初始信号进行补偿,得到第一调整信号和第二调整信号,包括:
    获取补偿信号;
    将所述正帧初始画面亮度和所述负帧初始画面亮度中画面亮度较暗时对应的初始信号确定为待补偿信号,并将所述待补偿信号与所述补偿信号之和,确定为对应的调整信号;
    将所述正帧初始画面亮度和所述负帧初始画面亮度中画面亮度较亮时对应的初始信号确定为非补偿信号,并将所述非补偿信号确定为对应的调整信号。
  11. 如权利要求9所述的方法,其中,所述基于所述正帧初始画面亮度和所述负帧初始画面亮度,对所述第一初始信号和所述第二初始信号进行补偿,得到第一调整信号和第二调整信号,包括:
    获取补偿信号;
    将所述正帧初始画面亮度和所述负帧初始画面亮度中画面亮度较暗时对应的初始信号确定为非补偿信号,并将所述非补偿信号确定为对应的调整信号;
    将所述正帧初始画面亮度和所述负帧初始画面亮度中画面亮度较亮时对应的初始信号确定为待补偿信号,并将所述待补偿信号与所述补偿信号之和,确定为对应的调整信号。
  12. 如权利要求10或11所述的方法,其中,所述补偿信号为补偿电流,所述补偿电流大于或等于1.2微安,且小于或等于39微安。
  13. 如权利要求12所述的方法,其中,所述补偿电流为20微安。
  14. 如权利要求9所述的方法,其中,所述参考亮度差小于或等于98尼特。
  15. 一种显示面板,其中,所述显示面板包括上述权利要求1-5任一所述的背光模组。
  16. 一种显示装置,其中,所述显示装置包括上述权利要求15所述的显示面板。
PCT/CN2022/107689 2022-07-25 2022-07-25 背光模组及其驱动方法、显示面板、显示装置 WO2024020740A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/107689 WO2024020740A1 (zh) 2022-07-25 2022-07-25 背光模组及其驱动方法、显示面板、显示装置
CN202280002351.9A CN117769737A (zh) 2022-07-25 2022-07-25 背光模组及其驱动方法、显示面板、显示装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/107689 WO2024020740A1 (zh) 2022-07-25 2022-07-25 背光模组及其驱动方法、显示面板、显示装置

Publications (1)

Publication Number Publication Date
WO2024020740A1 true WO2024020740A1 (zh) 2024-02-01

Family

ID=89704826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107689 WO2024020740A1 (zh) 2022-07-25 2022-07-25 背光模组及其驱动方法、显示面板、显示装置

Country Status (2)

Country Link
CN (1) CN117769737A (zh)
WO (1) WO2024020740A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134112A (ja) * 2007-11-30 2009-06-18 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置および液晶表示装置の駆動方法
CN101751866A (zh) * 2008-12-16 2010-06-23 恩益禧电子股份有限公司 用于面板显示装置的背光亮度控制
CN108320713A (zh) * 2018-02-09 2018-07-24 京东方科技集团股份有限公司 背光驱动电路及其驱动方法、背光模组及显示装置
CN111640405A (zh) * 2020-06-30 2020-09-08 京东方科技集团股份有限公司 液晶模组驱动控制方法及装置、液晶显示器
CN114078450A (zh) * 2021-11-19 2022-02-22 京东方科技集团股份有限公司 显示驱动方法、显示驱动装置、显示装置及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009134112A (ja) * 2007-11-30 2009-06-18 Toshiba Matsushita Display Technology Co Ltd 液晶表示装置および液晶表示装置の駆動方法
CN101751866A (zh) * 2008-12-16 2010-06-23 恩益禧电子股份有限公司 用于面板显示装置的背光亮度控制
CN108320713A (zh) * 2018-02-09 2018-07-24 京东方科技集团股份有限公司 背光驱动电路及其驱动方法、背光模组及显示装置
CN111640405A (zh) * 2020-06-30 2020-09-08 京东方科技集团股份有限公司 液晶模组驱动控制方法及装置、液晶显示器
CN114078450A (zh) * 2021-11-19 2022-02-22 京东方科技集团股份有限公司 显示驱动方法、显示驱动装置、显示装置及存储介质

Also Published As

Publication number Publication date
CN117769737A (zh) 2024-03-26

Similar Documents

Publication Publication Date Title
JP5256552B2 (ja) 液晶表示装置、該液晶表示装置に用いられる駆動制御回路及び駆動方法
US8169556B2 (en) Liquid crystal display and method for driving same
CN107993629B (zh) 液晶显示装置的驱动方法
US8816953B2 (en) Liquid crystal display and scanning back light driving method thereof
US20060262077A1 (en) Liquid crystal display device
TWI680446B (zh) 液晶顯示裝置及其驅動方法
JP2000321551A (ja) 液晶表示装置
JP2007219469A (ja) マルチプレクサ、ディスプレイパネル及び電子装置
KR100430454B1 (ko) 액정 디스플레이의 구동 방법
US8723786B2 (en) Liquid crystal display device, and method of driving liquid crystal display device
US20060187176A1 (en) Display panels and display devices using the same
JP2004094014A (ja) 表示装置
JP2002202758A (ja) 表示装置
US7012598B2 (en) Liquid crystal display device and method for operating the same
KR101021202B1 (ko) 저온 온도보상 구동회로를 구비한 에프에스씨 모드액정표시장치 및 그 구동방법
US8373809B2 (en) Display apparatus having an input gradation set to have a relationship along a gamma curve
US20240038188A1 (en) Driving method for flicker suppression of display panel and driving circuit thereof
JP2001296838A (ja) 液晶表示装置
WO2024020740A1 (zh) 背光模组及其驱动方法、显示面板、显示装置
US20080001879A1 (en) Driving method of liquid crystal display device
KR20100131742A (ko) 발광 장치 및 그 구동 방법
KR101359922B1 (ko) 표시 장치
KR102323772B1 (ko) 액정표시장치
KR101687804B1 (ko) 액정 표시장치 및 구동방법
US8384645B2 (en) Method for driving LCD panel and LCD using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22952207

Country of ref document: EP

Kind code of ref document: A1