WO2024019494A1 - Method for identifying real-time state of housing structure, device for identifying state of housing structure, program for performing method, and computer-readable recording medium - Google Patents

Method for identifying real-time state of housing structure, device for identifying state of housing structure, program for performing method, and computer-readable recording medium Download PDF

Info

Publication number
WO2024019494A1
WO2024019494A1 PCT/KR2023/010328 KR2023010328W WO2024019494A1 WO 2024019494 A1 WO2024019494 A1 WO 2024019494A1 KR 2023010328 W KR2023010328 W KR 2023010328W WO 2024019494 A1 WO2024019494 A1 WO 2024019494A1
Authority
WO
WIPO (PCT)
Prior art keywords
housing structure
collision
checking
condition
check
Prior art date
Application number
PCT/KR2023/010328
Other languages
French (fr)
Korean (ko)
Inventor
이은호
심영대
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2024019494A1 publication Critical patent/WO2024019494A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0033Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by determining damage, crack or wear
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M5/00Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings
    • G01M5/0083Investigating the elasticity of structures, e.g. deflection of bridges or air-craft wings by measuring variation of impedance, e.g. resistance, capacitance, induction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/24Probes
    • G01N29/2437Piezoelectric probes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to a technology for checking damage or remaining life of a housing structure of a mobility system in real time. More specifically, a method for checking damage to a housing structure based on signals generated by a collision and non-destructive testing signals, and It's about the device.
  • housing structures for transportation vehicles such as automobiles, aircraft, and ships require safety and durability. Therefore, in order to ensure the stability of these means of transportation, it is important to accurately check in real time whether there is damage to the housing structure of the means of transportation.
  • the technical problem to be solved by the present invention is to provide a method and device for accurately checking in real time damage to the housing structure caused by events such as collision.
  • Another technical problem to be solved by the present invention is to provide a method and device that can quantitatively analyze the state of damage by analyzing elastic waves and non-destructive testing signals generated by events such as collisions.
  • a method for checking the state of a housing structure includes detecting a collision signal generated by a collision between the housing structure and an object, confirming a collision location where the collision occurred using the detected collision signal, and generating a collision signal and a non-destructive testing signal. Confirming the damage state of the housing structure for the detected collision signal using a cumulative damage model in which information necessary to determine the damage state of the housing structure has been learned; and providing the damage state of the housing structure. Includes steps.
  • a device for checking the status of a housing structure includes a housing structure, at least one sensor that detects a collision signal generated by a collision between the housing structure and an object, a computer-readable storage medium including one or a plurality of instructions, and the computer-readable storage. and a processor that executes the one or more instructions contained in a medium, wherein the processor executes the one or more instructions, and the collision occurs using the collision signal provided from the at least one sensor.
  • a computer-readable recording medium is provided.
  • the computer-readable recording medium is a computer-readable recording medium storing a computer program, and the computer program, when executed by a processor, includes instructions for causing the processor to perform a method of checking the state of the housing structure. do.
  • a computer program is provided.
  • the computer program is a computer program stored in a computer-readable recording medium, and when executed by a processor, the computer program includes instructions for causing the processor to perform a method of checking the state of the housing structure.
  • the state of the housing structure can be confirmed simply and accurately by utilizing the elastic wave energy generated by the collision of an unidentified object and additional real-time non-destructive testing when necessary.
  • the state of the housing structure can be checked immediately after a collision event occurs without using a separate non-destructive testing device, and the accuracy of status confirmation can be increased by additionally utilizing real-time non-destructive testing when necessary.
  • quantitative plastic strain is calculated by analyzing elastic wave propagation characteristics and real-time eddy current non-destructive testing according to material damage, and material life is calculated through a material damage model based on the calculated plastic strain, so quantitative It has the advantage of being able to evaluate the condition.
  • the state of the housing structure can be checked in real time in a mobility device or mobility system where a collision of an unidentified object may occur.
  • the housing structure by checking the status of the housing structure in real time in a mobility device or mobility system, it is possible to detect a dangerous situation caused by a collision of an unidentified object or to actively respond to a dangerous situation.
  • FIG. 1 is a block diagram showing a device for checking the state of a housing structure according to an embodiment of the present invention.
  • Figure 2 is a block diagram conceptually illustrating the function of a program for checking the status of a housing structure according to an embodiment of the present invention.
  • FIG. 3 is a block diagram conceptually showing detailed functions of the damage state confirmation unit of Figure 2.
  • 4A and 4B are diagrams illustrating the configuration of a device for checking the state of a housing structure according to a first embodiment of the present invention.
  • 5A and 5B are diagrams illustrating the configuration of a device for checking the state of a housing structure according to a second embodiment of the present invention.
  • 6A and 6B are flowcharts illustrating the sequence of a method for checking the state of a housing structure according to an embodiment of the present invention.
  • the housing structure may include various structures that can generate impact by contact with another object.
  • the housing structure may include a housing provided on the outside of a battery pack of an electric vehicle.
  • the housing structure may include the exterior steel plate of an automobile or aircraft.
  • the car is a vehicle used for special purposes (eg, military) and may include a military vehicle, military armored vehicle, or military tank.
  • FIG. 1 is a block diagram showing a device for checking the state of a housing structure according to an embodiment of the present invention.
  • the device 100 for checking the state of the housing structure may include a sensor module 110, a processor 120, and a memory 130.
  • the sensor module 110 may include at least one sensor (110-1, 110-2, 110-n), and detects using at least one sensor (110-1, 110-2, 110-n).
  • the signal can be input to the processor 120.
  • the signal detected using at least one sensor (110-1, 110-2, 110-n) is stored in the memory 130 and transmitted to the processor 120, or directly to the processor 120. It may be passed on.
  • At least one sensor 110-1, 110-2, and 110-n may include an acoustic emission sensor that measures an acoustic emission signal.
  • the acoustic emission sensor may be mounted on one side of the housing structure, or may be mounted proximate to the housing structure.
  • At least one sensor may include a piezoelectric sensor that converts wave energy generated in the housing structure into a current value and measures it.
  • the piezoelectric sensor may be mounted on one side of the housing structure, and may be mounted at a predetermined distance apart along the horizontal or vertical direction.
  • the processor 120 may generally control the operation of the device 100 for checking the state of the housing structure.
  • the memory 130 may store the housing structure status check program 200 and information necessary for execution of the housing structure status check program 200.
  • the program 200 for checking the state of the housing structure may refer to software including instructions programmed to check the state of the housing structure.
  • the processor 120 loads information necessary for execution of the housing structure status check program 200 and the housing structure status check program 200 from the memory 130 in order to execute the housing structure status check program 200. You can.
  • the processor 120 may execute the status check program 200 of the housing structure to generate status information of the housing structure.
  • the status information of the housing structure divides the housing structure into predetermined size units, and includes at least one of the plastic strain for each divided region, the degree of damage for each region, and the remaining life for each region. May contain information.
  • housing structure status check program 200 The function and/or operation of the housing structure status check program 200 will be examined in detail with reference to FIG. 2.
  • Figure 2 is a block diagram conceptually illustrating the function of a program for checking the status of a housing structure according to an embodiment of the present invention.
  • the state confirmation program 200 of the housing structure includes a collision signal confirmation unit 210, a collision position confirmation unit 220, a damage state confirmation unit 230, and a damage state provision unit 240. ) may include.
  • the collision signal confirmation unit 210 may process a collision signal detected from at least one sensor (110-1, 110-2, and 110-n).
  • the collision signal may include an acoustic emission signal or a current value received by a piezoelectric sensor as energy propagating to the surface of the housing structure.
  • the collision signal check unit 210 includes at least one sensor 110-1, 110-2. , 110-n), a signal generated by object collision may be detected and provided.
  • the collision signal confirmation unit 210 checks the strength of the signal detected from at least one sensor (110-1, 110-2, 110-n), and when a signal exceeding a predetermined threshold is detected, A signal detected from at least one sensor (110-1, 110-2, 110-n) may be provided to the collision location confirmation unit 220 and the damage state confirmation unit 230.
  • the collision signal confirmation unit 210 checks the amount of change in the signal detected from at least one sensor (110-1, 110-2, 110-n), and when the amount of change greater than a predetermined threshold is detected , the signal detected from at least one sensor (110-1, 110-2, 110-n) may be provided to the collision location confirmation unit 220.
  • the collision position confirmation unit 220 may confirm the collision position within the housing structure using a signal provided from the collision signal confirmation unit 210.
  • the collision location confirmation unit 220 may configure a coordinate area by dividing the housing structure into predetermined size units in the first direction and the second direction, and may confirm and manage the collision location in units of the coordinate area. there is.
  • the damage state confirmation unit 230 may check the damage state of the housing structure corresponding to the collision signal using a previously learned cumulative damage model. The detailed operation of the damage status checker 230 detecting the damage status of the housing structure will be described in detail with reference to FIGS. 3, 4A, 4B, 5A, and 5B below.
  • the damage status provider 240 may provide the damage status of the housing structure using a signal that can be recognized by the user. As an example, the damage status provider 240 may divide the housing structure into predetermined size units in the above-described first and second directions and construct a damage map that displays the damage status in coordinate area units, The damage map can be configured as visual information and output through a display, etc.
  • the damage status providing unit 240 operates a notification device (e.g., warning light, buzzer, etc.) provided in the status confirmation device of the housing structure. It may be notified that the damage state of the housing structure has reached a critical value.
  • a notification device e.g., warning light, buzzer, etc.
  • FIG. 3 is a block diagram conceptually showing detailed functions of the damage state confirmation unit 230 of FIG. 2.
  • the damage state check unit 230 may include a plastic strain check unit 230a, a plastic strain amount check unit 230b, and a state check unit 230c.
  • the damage state confirmation unit 230 may include a previously learned cumulative damage model 230m.
  • the previously learned cumulative damage model (230m) is a machine learning model learned by using the collision signal included in the learning data as the input of the cumulative damage model and setting the damage state of the housing structure included in the learning data as the output. You can.
  • the collision signal included in the learning data may be an acoustic emission signal measured by an acoustic emission sensor or a current value detected from a piezoelectric sensor, and the damage state used as output learning data may include the plastic strain of the housing structure. there is.
  • the cumulative damage model (230m) be learned by reflecting the material and size of the housing structure.
  • the plastic strain confirmation unit 230a may check the plastic strain of the housing structure using the cumulative damage model 230m. For example, the plastic strain checking unit 230a may input the collision signal provided from the collision signal checking unit 210 into the cumulative damage model 230m and check the plastic strain of the housing structure as a corresponding output. Additionally, the plastic strain confirmation unit 230a may provide the confirmed plastic strain confirmation unit 230b.
  • the plastic strain confirmation unit 230b may check the plastic strain by applying the plastic strain to the housing structure.
  • the amount of plastic deformation may be information that quantifies the extent to which the housing structure is deformed when an object collides with the housing structure.
  • the status check unit 230c can accumulate and manage the amount of plastic deformation for the entire area of the housing structure, and can accumulate and update the amount of plastic deformation for the collision position whenever a collision occurs between objects. To this end, the status check unit 230c may receive information indicating the dispatch position (e.g., coordinate area of the crash position) from the collision position check unit 220, and cumulatively apply the amount of plastic deformation to the collision position to determine the housing.
  • the corruption status of a structure can be updated.
  • the damage state confirmation unit 230 may further include a collision area confirmation unit 230d that checks the range of the collision area, and the collision area confirmation unit 230d reflects the strength of the collision signal to determine the collision area.
  • An area for the position can be set, and the set area of the collision position can be provided to the plastic strain confirmation unit 230a.
  • the plastic strain confirmation unit 230a may be configured to check the plastic strain in the area of the set collision position.
  • FIGS. 4A and 4B are diagrams illustrating the configuration of a device for checking the state of a housing structure according to a first embodiment of the present invention.
  • FIG. 4A illustrates the configuration of a sensor module
  • FIG. 4B shows a confirmation of the damage state provided in the processor. Illustrates the composition of wealth.
  • the device for checking the state of the housing structure includes at least one sensor 410, such as an Acoustic Emission Sensor or a piezoelectric sensor that measures an acoustic emission signal. can do.
  • the sensor 410 may be attached to one surface of the housing structure 400 or may be attached close to the housing structure 400.
  • the embodiment of the present invention illustrates that a single sensor 410 is provided in the housing structure 400, the present disclosure is not limited thereto, and the number of sensors 410 may vary.
  • the device 405 for checking the state of the housing structure may include a sensor 410 and a processor 420 connected to the sensor 410 .
  • the processor 420 may generally control the operation of the device 405 for checking the status of the housing structure. It may be configured to check the damage state of the housing structure by performing the above-described state checking program 200 of the housing structure.
  • the processor 420 monitors the signal detected from the sensor 410, and when a signal exceeding a predetermined threshold is detected, the collision location can be confirmed using the detected signal. At this time, the processor 420 can check the speed of sound using the signal detected from the sensor 410 and determine the collision location based on the confirmed speed of sound.
  • the processor 420 may input the signal detected from the sensor 410 into a previously learned cumulative damage model and check the plastic strain output through the cumulative damage model. As the plastic strain is confirmed by the cumulative damage model, the processor 420 can confirm the amount of plastic strain by applying the plastic strain to the housing structure. At this time, the processor 420 may check the amount of plastic deformation by applying the plastic strain rate to the confirmed collision location (e.g., coordinate area), and may accumulate and update the amount of plastic deformation for the collision location.
  • the processor 420 may input the signal detected from the sensor 410 into a previously learned cumulative damage model and check the plastic strain output through the cumulative damage model. As the plastic strain is confirmed by the cumulative damage model, the processor 420 can confirm the amount of plastic strain by applying the plastic strain to the housing structure. At this time, the processor 420 may check the amount of plastic deformation by applying the plastic strain rate to the confirmed collision location (e.g., coordinate area), and may accumulate and update the amount of plastic deformation for the collision location.
  • the confirmed collision location e.g., coordinate area
  • the deformed area may exhibit physical characteristics that are different from the surfaces of other housing structures. Additionally, since these physical characteristics may appear differently depending on the degree of damage to the area, the remaining lifespan of the area can be confirmed by checking the physical characteristics. In consideration of this, the processor 420 may further confirm the damage state of the housing structure using the impedance value of the surface of the housing structure.
  • the state checking device 405 of the housing structure may further include an eddy current scanning device 450 for scanning the impedance value of the surface of the housing structure, and the processor 420 may use the eddy current scanning device 450
  • the impedance map scanned through can be received, and the state of the housing structure can be checked by matching the impedance map and the amount of plastic deformation of the housing structure.
  • the processor 420 may be configured to check the amount of plastic deformation of the housing structure and, if the amount of plastic deformation in a specific area exceeds a predetermined threshold, check an impedance map scanned through an eddy current scanning device. To this end, the processor 420 checks the amount of plastic deformation of the housing structure, and when the amount of plastic deformation in a specific area exceeds a predetermined threshold, the processor 420 requests operation of the eddy current scan device 450. You can check the input impedance map through . Additionally, the processor 420 can calculate the remaining lifespan of the corresponding area using the impedance value confirmed through the impedance map.
  • FIGS. 5A and 5B are diagrams illustrating the configuration of a device for checking the state of a housing structure according to a second embodiment of the present invention.
  • FIG. 5A illustrates the configuration of a sensor module
  • FIG. 5B shows a confirmation of the damage state provided in the processor. Illustrates the composition of wealth.
  • the device for checking the state of the housing structure may include at least one sensor, a piezoelectric sensor 510 or 520, which measures energy propagated to the surface of the housing structure as a current value.
  • the piezoelectric sensors 510 and 520 may be mounted on one surface of the housing structure 500, and may be mounted at a predetermined distance apart along the first or second direction (horizontal or vertical direction). there is.
  • piezoelectric sensors 510 and 520 are provided as at least one sensor for detecting a collision signal, but the present disclosure is not limited thereto, and the sensor generated as the object collides with the housing structure Various sensors capable of detecting physical characteristics may be provided.
  • the device 505 for checking the state of the housing structure includes a plurality of piezoelectric sensors 510 and 520 arranged in a first or second direction (horizontal or vertical direction), and a plurality of piezoelectric sensors 510 and 520. It may include a processor 530 connected to the sensors 510 and 520.
  • the processor 530 may generally control the operation of the device 505 for checking the status of the housing structure. It may be configured to check the damage state of the housing structure by performing the above-described state checking program 200 of the housing structure.
  • the processor 530 monitors signals detected from the plurality of piezoelectric sensors 510 and 520, and when a signal exceeding a predetermined threshold is detected, the collision location can be confirmed using the detected signal. At this time, the processor 530 may use signals detected from the plurality of piezoelectric sensors 510 and 520 and determine the collision position based on the arrangement relationship of the plurality of piezoelectric sensors 510 and 520.
  • the processor 530 may input signals detected from the plurality of piezoelectric sensors 510 and 520 into a previously learned cumulative damage model and check the plastic strain output through the cumulative damage model. As the plastic strain is confirmed by the cumulative damage model, the processor 530 can confirm the amount of plastic strain by applying the plastic strain to the housing structure. At this time, the processor 530 may check the amount of plastic deformation by applying the plastic strain rate to the confirmed collision location (e.g., coordinate area), and may accumulate and update the amount of plastic deformation for the collision location.
  • the processor 530 may input signals detected from the plurality of piezoelectric sensors 510 and 520 into a previously learned cumulative damage model and check the plastic strain output through the cumulative damage model. As the plastic strain is confirmed by the cumulative damage model, the processor 530 can confirm the amount of plastic strain by applying the plastic strain to the housing structure. At this time, the processor 530 may check the amount of plastic deformation by applying the plastic strain rate to the confirmed collision location (e.g., coordinate area), and may accumulate and update the amount of plastic deformation for
  • the deformed area may exhibit physical characteristics that are different from the surfaces of other housing structures. Additionally, since these physical characteristics may appear differently depending on the degree of damage to the area, the remaining lifespan of the area can be confirmed by checking the physical characteristics. In consideration of this, the processor 530 may further confirm the damage state of the housing structure using the impedance value of the surface of the housing structure.
  • the state checking device 505 of the housing structure may further include an eddy current scanning device 550 for scanning the impedance value of the surface of the housing structure, and the processor 530 may use the eddy current scanning device 550
  • the impedance map scanned through can be received, and the state of the housing structure can be checked by matching the impedance map and the amount of plastic deformation of the housing structure.
  • the processor 530 may be configured to check the amount of plastic deformation of the housing structure and, when the amount of plastic deformation of a specific area exceeds a predetermined threshold, check an impedance map scanned through an eddy current scanning device. To this end, the processor 530 checks the amount of plastic deformation of the housing structure, and when the amount of plastic deformation in a specific area exceeds a predetermined threshold, the processor 530 requests operation of the eddy current scan device 550. You can check the input impedance map through . Additionally, the processor 530 can calculate the remaining lifespan of the corresponding area using the impedance value confirmed through the impedance map.
  • 6A and 6B are flowcharts illustrating the sequence of a method for checking the state of a housing structure according to an embodiment of the present invention.
  • the method for checking the state of the housing structure may be performed by the above-described state checking device 100 (see FIG. 1).
  • the state checking device of the housing structure is referred to as 'state'. It is referred to as a ‘verification device’.
  • the status check device can check a collision signal detected from at least one sensor (S601).
  • the collision signal may include an acoustic emission signal or a current value measured by energy propagated to the surface of the housing structure detected by a piezoelectric sensor.
  • the status check device detects the signal generated by the collision event of the object among the signals detected from at least one sensor can be provided.
  • the status check device may check the strength of a signal detected from at least one sensor and, if a signal exceeding a predetermined threshold is detected, determine that a collision event has occurred.
  • the status check device may check the amount of change in a signal detected from at least one sensor, and if the amount of change greater than a predetermined threshold is detected, it may determine that a collision event has occurred.
  • the status check device can confirm the collision location within the housing structure (S603).
  • the status check device can configure a coordinate area by dividing the housing structure into predetermined size units in the first direction and the second direction, and can check and manage the collision location in units of the coordinate area.
  • the status checking device may check the damage state of the housing structure corresponding to the collision signal using a previously learned cumulative damage model.
  • the previously learned cumulative damage model may be a machine learning model learned by using the collision signal included in the learning data as the input of the cumulative damage model and setting the damage state of the housing structure included in the learning data as the output.
  • the collision signal included in the learning data may be an acoustic emission signal measured by an acoustic emission sensor or a current value detected from a piezoelectric sensor
  • the damage state used as output learning data may include the plastic strain of the housing structure. there is.
  • the plastic strain may vary depending on the physical characteristics of the housing structure, it is desirable that the cumulative damage model be learned by reflecting the material and size of the housing structure.
  • the health check device can check the plastic strain of the housing structure using the cumulative damage model (S604).
  • the status checking device may input the collision signal confirmed in step S601 into the cumulative damage model and check the plastic strain of the housing structure as a corresponding output.
  • the status check device can further confirm the range of the collision area, and in step S604, sets the area for the collision location by reflecting the strength of the collision signal, and sets the plastic strain for the area of the set collision location. It can be configured to check.
  • the status confirmation device can confirm the amount of plastic deformation by applying the plastic deformation rate to the housing structure (S605).
  • the amount of plastic deformation may be information that quantifies the extent to which the housing structure is deformed when an object collides with the housing structure.
  • the status check device can accumulate and manage the amount of plastic deformation for the entire area of the housing structure, and can accumulate and update the amount of plastic deformation for the collision position whenever a collision of an object occurs.
  • the status checking device updates the damage state of the housing structure by cumulatively applying the amount of plastic deformation to the collision location based on the information indicating the dispatch location (e.g., coordinate area of the collision location) confirmed in step S603. You can.
  • the status check device can provide the damaged state of the housing structure using a signal that can be recognized by the user (S610).
  • the status check device may divide the housing structure into predetermined size units in the above-described first and second directions to construct a damage map that displays the damage state in coordinate area units, and may construct a damage map that displays the damage state in units of coordinate areas. It can be composed of visual information and output through a display, etc.
  • the status check device when the value indicating the damage state of the housing structure exceeds a predetermined threshold, the status check device operates a notification device (e.g., warning light, buzzer, etc.) provided in the status check device of the housing structure to It can be notified that the damage state of the structure has reached a critical value.
  • a notification device e.g., warning light, buzzer, etc.
  • condition checking device may further include an eddy current scanning device for scanning the impedance value of the surface of the housing structure to further confirm the damage state of the housing structure using the impedance value of the surface of the housing structure.
  • the status checking device may further perform an operation to check the damage state of the housing structure based on the impedance value of the surface of the housing structure after checking the amount of plastic deformation due to the collision signal.
  • the amount of plastic deformation of the housing structure is checked, and if the amount of plastic deformation in a specific area exceeds a predetermined threshold (S606-Y), the operation of the eddy current scan device is requested (S607), and the eddy current scan device is The impedance map input can be received through (S608). And, the status checking device can calculate the remaining lifespan of the corresponding area using the impedance value confirmed through the impedance map (S609).
  • Combinations of each block of the block diagram and each step of the flow diagram attached to the present invention may be performed by computer program instructions. Since these computer program instructions can be mounted on the encoding processor of a general-purpose computer, special-purpose computer, or other programmable data processing equipment, the instructions performed through the encoding processor of the computer or other programmable data processing equipment are included in each block or block of the block diagram. Each step of the flowchart creates a means to perform the functions described.
  • These computer program instructions may also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular way, so that the computer-usable or computer-readable memory
  • the instructions stored in can also produce manufactured items containing instruction means that perform the functions described in each block of the block diagram or each step of the flow diagram.
  • Computer program instructions can also be mounted on a computer or other programmable data processing equipment, so that a series of operational steps are performed on the computer or other programmable data processing equipment to create a process that is executed by the computer, thereby generating a process that is executed by the computer or other programmable data processing equipment. Instructions that perform processing equipment may also provide steps for executing functions described in each block of the block diagram and each step of the flow diagram.
  • each block or each step may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). Additionally, it should be noted that in some alternative embodiments it is possible for the functions mentioned in blocks or steps to occur out of order. For example, two blocks or steps shown in succession may in fact be performed substantially simultaneously, or the blocks or steps may sometimes be performed in reverse order depending on the corresponding function.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Electrochemistry (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Acoustics & Sound (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)

Abstract

The present invention relates to a method for identifying the state of a housing structure, the method comprising the steps of: detecting a collision signal generated by collision between the housing structure and an object; using the detected collision signal to identify a collision location where the collision occurred; identifying the damaged state of the housing structure in response to the detected collision signal by using a cumulative damage model trained with information necessary for identifying the damaged state of the housing structure in response to the collision signal; and providing the damaged state of the housing structure.

Description

하우징 구조체의 실시간 상태 확인 방법, 하우징 구조체의 상태 확인 장치, 상기 방법을 수행하는 프로그램, 및 컴퓨터 판독 가능한 기록 매체Method for checking real-time status of housing structure, apparatus for checking status of housing structure, program for performing the method, and computer-readable recording medium
본 발명은 모빌리티 시스템의 하우징 구조체의 손상이나 잔여 수명을 실시간으로 확인하는 기술에 관한 것으로, 더욱 상세하게는, 충돌에 의해 발생되는 신호 및 비파괴검사 신호를 기반으로 하우징 구조체의 손상을 확인하는 방법 및 장치에 대한 것이다. The present invention relates to a technology for checking damage or remaining life of a housing structure of a mobility system in real time. More specifically, a method for checking damage to a housing structure based on signals generated by a collision and non-destructive testing signals, and It's about the device.
본 연구는 2020년도 산업통상자원부(정부)의 재원으로 한국산업기술평가관리원의 지원을 받아 수행된 산업기술거점센터육성시범사업의 복합재료 동시설계 산업기술거점센터(과제고유번호: 1415184586, 과제번호: 20013794)와 관련된다.This study was carried out with the support of the Korea Evaluation Institute of Industrial Technology with funding from the Ministry of Trade, Industry and Energy (government) in 2020. : 20013794).
최근 자동차나 항공기, 선박과 같은 운송수단의 하우징 구조체는 해당 구조물의 안전성과 내구성이 요구된다. 따라서, 이러한 운송수단의 안정성을 확보하기 위해서는, 운송수단의 하우징 구조체에 대한 파손 여부를 실시간으로 정확하게 확인하는 것이 중요하다. Recently, housing structures for transportation vehicles such as automobiles, aircraft, and ships require safety and durability. Therefore, in order to ensure the stability of these means of transportation, it is important to accurately check in real time whether there is damage to the housing structure of the means of transportation.
하지만, 종래의 기술들은 대부분 재료 자체의 결함이나 이물질을 확인하는 방법을 제시하거나, 재료의 열화 혹은 가공경화 등과 같은 재료 자체의 상태를 평가하는 방법만을 제시하고 있을 뿐, 충돌 등의 이벤트에 의해 발생되는 운송수단의 하우징 구조체의 파손을 실시간으로 확인하는 방법은 제시되고 있지 않다.However, most of the conventional technologies only present methods to identify defects or foreign substances in the material itself, or to evaluate the state of the material itself, such as material deterioration or work hardening, and do not occur due to events such as collisions. There is no method proposed to confirm damage to the housing structure of the transportation vehicle in real time.
본 발명이 해결하고자 하는 기술적 과제는 충돌 등의 이벤트에 의해 발생되는 하우징 구조체의 파손을 실시간으로 정확하게 확인하는 방법 및 장치를 제공하는 것이다.The technical problem to be solved by the present invention is to provide a method and device for accurately checking in real time damage to the housing structure caused by events such as collision.
또한, 본 발명이 해결하고자 하는 다른 기술적 과제는 충돌 등의 이벤트에 의해 발생되는 탄성파 및 비파괴검사 신호를 분석하여 파손 상태를 정량적으로 분석할 수 있는 방법 및 장치를 제공하는 것이다.In addition, another technical problem to be solved by the present invention is to provide a method and device that can quantitatively analyze the state of damage by analyzing elastic waves and non-destructive testing signals generated by events such as collisions.
다만, 본 발명이 해결하고자 하는 과제는 이상에서 언급한 것으로 제한되지 않으며, 언급되지 않은 또 다른 해결하고자 하는 과제는 아래의 기재로부터 본 발명이 속하는 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.However, the problems to be solved by the present invention are not limited to those mentioned above, and other problems to be solved that are not mentioned can be clearly understood by those skilled in the art to which the present invention pertains from the description below. will be.
본 발명의 일 측면에 따르면, 하우징 구조체의 상태를 확인하는 방법이 제시된다. 상기 방법은, 상기 하우징 구조체와 객체의 충돌에 의해 발생되는 충돌 신호를 검출하는 단계와, 상기 검출된 충돌 신호를 사용하여 상기 충돌이 발생된 충돌 위치를 확인하는 단계와, 충돌 신호 및 비파괴검사 신호에 대한 하우징 구조체의 손상 상태를 확인하는데 필요한 정보가 학습된 누적 손상 모델을 사용하여, 상기 검출된 충돌 신호에 대한 상기 하우징 구조체의 손상 상태를 확인하는 단계와, 상기 하우징 구조체의 손상 상태를 제공하는 단계를 포함한다. According to one aspect of the present invention, a method for checking the state of a housing structure is provided. The method includes detecting a collision signal generated by a collision between the housing structure and an object, confirming a collision location where the collision occurred using the detected collision signal, and generating a collision signal and a non-destructive testing signal. Confirming the damage state of the housing structure for the detected collision signal using a cumulative damage model in which information necessary to determine the damage state of the housing structure has been learned; and providing the damage state of the housing structure. Includes steps.
본 발명의 다른 측면에 따르면, 하우징 구조체의 상태 확인 장치가 제공된다. 상기 장치는, 하우징 구조체와, 상기 하우징 구조체와 객체의 충돌에 의해 발생되는 충돌 신호를 검출하는 적어도 하나의 센서와, 하나 또는 복수의 명령어들을 포함하는 컴퓨터 판독 가능한 저장매체와, 상기 컴퓨터 판독 가능한 저장매체에 수록된 상기 하나 또는 복수의 명령어들을 실행하는 프로세서를 포함하고, 상기 프로세서는 상기 하나 또는 복수의 명령어들을 실행하여, 상기 적어도 하나의 센서로부터 제공되는 상기 충돌 신호를 사용하여 상기 충돌이 발생된 충돌 위치를 확인하고, 충돌위치에 필요 시 추가적인 센서를 활용하여 실시간 비파괴검사를 수행하고, 신호를 종합하고 하우징 구조체의 손상 상태를 확인하는데 필요한 정보가 학습된 누적 손상 모델을 사용하여, 상기 검출된 충돌 신호에 대한 상기 하우징 구조체의 손상 상태를 확인하고, 상기 하우징 구조체의 손상 상태를 제공한다. According to another aspect of the present invention, a device for checking the status of a housing structure is provided. The device includes a housing structure, at least one sensor that detects a collision signal generated by a collision between the housing structure and an object, a computer-readable storage medium including one or a plurality of instructions, and the computer-readable storage. and a processor that executes the one or more instructions contained in a medium, wherein the processor executes the one or more instructions, and the collision occurs using the collision signal provided from the at least one sensor. Confirm the location, perform real-time non-destructive testing using additional sensors when necessary at the collision location, synthesize the signals, and use a cumulative damage model in which the information necessary to confirm the damage state of the housing structure is learned, and the detected collision Check the damage state of the housing structure for a signal and provide the damage state of the housing structure.
본 발명의 또 다른 측면에 따르면, 컴퓨터 판독 가능한 기록매체가 제공된다. 상기 컴퓨터 판독 가능한 기록매체는, 컴퓨터 프로그램을 저장하고 있는 컴퓨터 판독 가능 기록매체로서, 상기 컴퓨터 프로그램은, 프로세서에 의해 실행되면, 하우징 구조체의 상태를 확인하는 방법을 프로세서가 수행하도록 하기 위한 명령어를 포함한다. According to another aspect of the present invention, a computer-readable recording medium is provided. The computer-readable recording medium is a computer-readable recording medium storing a computer program, and the computer program, when executed by a processor, includes instructions for causing the processor to perform a method of checking the state of the housing structure. do.
본 발명의 또 다른 측면에 따르면, 컴퓨터 프로그램이 제공된다. 상기 컴퓨터 프로그램은, 컴퓨터 판독 가능한 기록매체에 저장되어 있는 컴퓨터 프로그램으로서, 상기 컴퓨터 프로그램은, 프로세서에 의해 실행되면, 하우징 구조체의 상태를 확인하는 방법을 상기 프로세서가 수행하도록 하기 위한 명령어를 포함한다. According to another aspect of the invention, a computer program is provided. The computer program is a computer program stored in a computer-readable recording medium, and when executed by a processor, the computer program includes instructions for causing the processor to perform a method of checking the state of the housing structure.
본 발명의 실시 예에 의하면, 미확인 물체의 충돌로 발생된 탄성파 에너지와 필요 시 추가적 실시간 비파괴 검사를 활용하여 간단하고 정확하게 하우징 구조체의 상태를 확인할 수 있다. According to an embodiment of the present invention, the state of the housing structure can be confirmed simply and accurately by utilizing the elastic wave energy generated by the collision of an unidentified object and additional real-time non-destructive testing when necessary.
본 발명의 실시 예에 의하면, 별도의 비파괴 검사 장치를 사용하지 않고, 충돌 발생 이벤트 발생 즉시 하우징 구조체의 상태를 확인할 수 있고, 필요시에 추가적으로 실시간 비파괴 검사를 활용하여 상태 확인의 정확도를 높일 수 있다. According to an embodiment of the present invention, the state of the housing structure can be checked immediately after a collision event occurs without using a separate non-destructive testing device, and the accuracy of status confirmation can be increased by additionally utilizing real-time non-destructive testing when necessary. .
본 발명의 실시 예에 의하면, 재료 손상에 따른 탄성파 전파 특성 및 실시간 와전류 비파괴 검사를 분석하여 정량적인 소성 변형률을 산출하고, 산출된 소성 변형률을 바탕으로 재료 손상모델을 통해 재료 수명을 계산하므로, 정량적으로 상태를 평가를 할 수 있다는 장점이 있다.According to an embodiment of the present invention, quantitative plastic strain is calculated by analyzing elastic wave propagation characteristics and real-time eddy current non-destructive testing according to material damage, and material life is calculated through a material damage model based on the calculated plastic strain, so quantitative It has the advantage of being able to evaluate the condition.
본 발명의 실시 예에 의하면, 미확인 물체의 충돌이 발생될 수 있는 모빌리티 장치 또는 모빌리티 시스템에서 하우징 구조체의 상태를 실시간으로 확인할 수 있다. According to an embodiment of the present invention, the state of the housing structure can be checked in real time in a mobility device or mobility system where a collision of an unidentified object may occur.
또한, 본 발명의 실시 예에 의하면, 모빌리티 장치 또는 모빌리티 시스템에서 하우징 구조체의 상태를 실시간으로 확인함으로써, 미확인 물체의 충돌에 의해 발생되는 위험 상황을 감지하거나, 위험 상황에 능동적으로 대응할 수 있다. Additionally, according to an embodiment of the present invention, by checking the status of the housing structure in real time in a mobility device or mobility system, it is possible to detect a dangerous situation caused by a collision of an unidentified object or to actively respond to a dangerous situation.
도 1은 본 발명의 실시예에 따른 하우징 구조체의 상태 확인 장치를 나타내는 블록도이다.1 is a block diagram showing a device for checking the state of a housing structure according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 하우징 구조체의 상태 확인 프로그램의 기능을 개념적으로 나타내는 블록도이다.Figure 2 is a block diagram conceptually illustrating the function of a program for checking the status of a housing structure according to an embodiment of the present invention.
도 3은 도 2의 손상상태 확인부의 세부 기능을 개념적으로 나타내는 블록도이다.Figure 3 is a block diagram conceptually showing detailed functions of the damage state confirmation unit of Figure 2.
도 4a 및 도 4b는 본 발명의 제1실시예에 따른 하우징 구조체의 상태 확인 장치의 구성을 예시하는 도면이다.4A and 4B are diagrams illustrating the configuration of a device for checking the state of a housing structure according to a first embodiment of the present invention.
도 5a 및 도 5b는 본 발명의 제2실시예에 따른 하우징 구조체의 상태 확인 장치의 구성을 예시하는 도면이다.5A and 5B are diagrams illustrating the configuration of a device for checking the state of a housing structure according to a second embodiment of the present invention.
도 6a 및 도 6b는 본 발명의 일 실시예에 따른 하우징 구조체의 상태 확인 방법의 순서를 예시하는 흐름도이다.6A and 6B are flowcharts illustrating the sequence of a method for checking the state of a housing structure according to an embodiment of the present invention.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.The advantages and features of the present invention and methods for achieving them will become clear by referring to the embodiments described in detail below along with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various different forms. The present embodiments are merely provided to ensure that the disclosure of the present invention is complete and to provide common knowledge in the technical field to which the present invention pertains. It is provided to fully inform those who have the scope of the invention, and the present invention is only defined by the scope of the claims.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing embodiments of the present invention, if it is determined that a detailed description of a known function or configuration may unnecessarily obscure the gist of the present invention, the detailed description will be omitted. The terms described below are terms defined in consideration of functions in embodiments of the present invention, and may vary depending on the intention or custom of the user or operator. Therefore, the definition should be made based on the contents throughout this specification.
본 개시의 일 실시예에서, 하우징 구조체는 다른 객체와의 접촉에 의해 충격일 발생될 수 있는 다양한 구조체를 포함할 수 있다. 일 예로, 하우징 구조체는 전기 자동차의 배터리 팩(Battery Pack)의 외부에 마련되는 하우징을 포함함 수 있다. 다른 예로서, 하우징 구조체는 자동차 또는 비행체의 외부 강판을 포함할 수 있다. 이때, 자동차는 특수한 목적(예, 군사용)으로 사용되는 차량으로서, 군용 차량, 군용 장갑차, 또는 군용 탱크 등을 포함할 수 있다. In one embodiment of the present disclosure, the housing structure may include various structures that can generate impact by contact with another object. As an example, the housing structure may include a housing provided on the outside of a battery pack of an electric vehicle. As another example, the housing structure may include the exterior steel plate of an automobile or aircraft. At this time, the car is a vehicle used for special purposes (eg, military) and may include a military vehicle, military armored vehicle, or military tank.
도 1은 본 발명의 실시예에 따른 하우징 구조체의 상태 확인 장치를 나타내는 블록도이다.1 is a block diagram showing a device for checking the state of a housing structure according to an embodiment of the present invention.
도 1을 참조하면, 하우징 구조체의 상태 확인 장치(100)는 센서 모듈(110), 프로세서(120), 및 메모리(130)를 포함할 수 있다.Referring to FIG. 1 , the device 100 for checking the state of the housing structure may include a sensor module 110, a processor 120, and a memory 130.
센서 모듈(110)은 적어도 하나의 센서(110-1, 110-2, 110-n)를 포함할 수 있으며, 적어도 하나의 센서(110-1, 110-2, 110-n)를 사용하여 검출되는 신호를 프로세서(120)로 입력할 수 있다. 이때, 적어도 하나의 센서(110-1, 110-2, 110-n)를 사용하여 검출되는 신호는, 메모리(130)에 저장되어 프로세서(120)에 전달되거나, 또는 프로세서(120)에 직접적으로 전달될 수도 있다.The sensor module 110 may include at least one sensor (110-1, 110-2, 110-n), and detects using at least one sensor (110-1, 110-2, 110-n). The signal can be input to the processor 120. At this time, the signal detected using at least one sensor (110-1, 110-2, 110-n) is stored in the memory 130 and transmitted to the processor 120, or directly to the processor 120. It may be passed on.
일 예로, 적어도 하나의 센서(110-1, 110-2, 110-n)는 음향 방출 신호(Acoustic Emission Signal)를 측정하는 음향 방출 센서(Acoustic Emission Sensor)를 포함할 수 있다. 음향 방출 센서는 하우징 구조체의 일면에 장착되거나, 또는 하우징 구조체에 근접하게 장착될 수 있다.As an example, at least one sensor 110-1, 110-2, and 110-n may include an acoustic emission sensor that measures an acoustic emission signal. The acoustic emission sensor may be mounted on one side of the housing structure, or may be mounted proximate to the housing structure.
다른 예로서, 적어도 하나의 센서(110-1, 110-2, 110-n)는 하우징 구조체에 발생한 파동에너지를 전류값으로 변환하여 측정하는 압전센서를 포함할 수 있다. 일 예로, 압전센서는, 하우징 구조체의 일면에 장착될 수 있는데, 가로 또는 세로 방향을 따라 미리 정해진 거리만큼 이격되어 장착될 수 있다. As another example, at least one sensor (110-1, 110-2, 110-n) may include a piezoelectric sensor that converts wave energy generated in the housing structure into a current value and measures it. As an example, the piezoelectric sensor may be mounted on one side of the housing structure, and may be mounted at a predetermined distance apart along the horizontal or vertical direction.
프로세서(120)는 하우징 구조체의 상태 확인 장치(100)의 동작을 전반적으로 제어할 수 있다.The processor 120 may generally control the operation of the device 100 for checking the state of the housing structure.
메모리(130)는 하우징 구조체의 상태 확인 프로그램(200) 및 하우징 구조체의 상태 확인 프로그램(200)의 실행에 필요한 정보를 저장할 수 있다.The memory 130 may store the housing structure status check program 200 and information necessary for execution of the housing structure status check program 200.
본 개시의 일 실시예에서, 하우징 구조체의 상태 확인 프로그램(200)은 하우징 구조체의 상태를 확인하도록 프로그램된 명령어들을 포함하는 소프트웨어를 의미할 수 있다.In one embodiment of the present disclosure, the program 200 for checking the state of the housing structure may refer to software including instructions programmed to check the state of the housing structure.
프로세서(120)는 하우징 구조체의 상태 확인 프로그램(200)을 실행하기 위하여 메모리(130)에서 하우징 구조체의 상태 확인 프로그램(200) 및 하우징 구조체의 상태 확인 프로그램(200)의 실행에 필요한 정보를 로드할 수 있다.The processor 120 loads information necessary for execution of the housing structure status check program 200 and the housing structure status check program 200 from the memory 130 in order to execute the housing structure status check program 200. You can.
프로세서(120)는, 하우징 구조체의 상태 확인 프로그램(200)을 실행하여, 하우징 구조체의 상태정보를 생성할 수 있다. 이때, 하우징 구조체의 상태정보는 하우징 구조체를 미리 정해진 크기 단위로 구분하고, 구분된 각각의 영역에 대한 소성 변형률, 각각의 영역에 대한 손상 정도, 및 각각의 영역에 대한 잔여 수명 중, 적어도 하나의 정보를 포함할 수 있다. The processor 120 may execute the status check program 200 of the housing structure to generate status information of the housing structure. At this time, the status information of the housing structure divides the housing structure into predetermined size units, and includes at least one of the plastic strain for each divided region, the degree of damage for each region, and the remaining life for each region. May contain information.
하우징 구조체의 상태 확인 프로그램(200)의 기능 및/또는 동작에 대해서는 도 2를 통해 상세하게 살펴보기로 한다.The function and/or operation of the housing structure status check program 200 will be examined in detail with reference to FIG. 2.
도 2는 본 발명의 일 실시예에 따른 하우징 구조체의 상태 확인 프로그램의 기능을 개념적으로 나타내는 블록도이다.Figure 2 is a block diagram conceptually illustrating the function of a program for checking the status of a housing structure according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 하우징 구조체의 상태 확인 프로그램(200)은 충돌 신호 확인부(210), 충돌 위치 확인부(220), 손상상태 확인부(230), 및 손상상태 제공부(240)를 포함할 수 있다.Referring to Figures 1 and 2, the state confirmation program 200 of the housing structure includes a collision signal confirmation unit 210, a collision position confirmation unit 220, a damage state confirmation unit 230, and a damage state provision unit 240. ) may include.
충돌 신호 확인부(210)는, 적어도 하나의 센서(110-1, 110-2, 110-n)로부터 검출되는 충돌 신호를 처리할 수 있다. 충돌 신호는, 음향 방출 신호, 또는 하우징 구조체의 표면에 전파되는 에너지를 압전센서로 수신한 전류값을 포함할 수 있다. The collision signal confirmation unit 210 may process a collision signal detected from at least one sensor (110-1, 110-2, and 110-n). The collision signal may include an acoustic emission signal or a current value received by a piezoelectric sensor as energy propagating to the surface of the housing structure.
하우징 구조체의 상태 확인 프로그램(200)은, 객체의 충돌에 의해 발생되는 신호만을 선별적으로 검출할 필요가 있으므로, 충돌 신호 확인부(210)는, 적어도 하나의 센서(110-1, 110-2, 110-n)로부터 검출되는 신호 중, 객체의 충돌에 의해 발생되는 신호를 검출하여 제공할 수 있다. 일 예로, 충돌 신호 확인부(210)는, 적어도 하나의 센서(110-1, 110-2, 110-n)로부터 검출되는 신호의 세기를 확인하고, 미리 정해진 임계값 이상의 신호가 검출되는 경우, 적어도 하나의 센서(110-1, 110-2, 110-n)로부터 검출된 신호를 충돌 위치 확인부(220) 및 손상상태 확인부(230)로 제공할 수 있다. Since the housing structure status check program 200 needs to selectively detect only signals generated by object collisions, the collision signal check unit 210 includes at least one sensor 110-1, 110-2. , 110-n), a signal generated by object collision may be detected and provided. As an example, the collision signal confirmation unit 210 checks the strength of the signal detected from at least one sensor (110-1, 110-2, 110-n), and when a signal exceeding a predetermined threshold is detected, A signal detected from at least one sensor (110-1, 110-2, 110-n) may be provided to the collision location confirmation unit 220 and the damage state confirmation unit 230.
다른 예로서, 충돌 신호 확인부(210)는, 적어도 하나의 센서(110-1, 110-2, 110-n)로부터 검출되는 신호의 변화량을 확인하고, 미리 정해진 임계값 이상의 변화량이 감지되는 경우, 적어도 하나의 센서(110-1, 110-2, 110-n)로부터 검출된 신호를 충돌 위치 확인부(220)로 제공할 수 있다.As another example, the collision signal confirmation unit 210 checks the amount of change in the signal detected from at least one sensor (110-1, 110-2, 110-n), and when the amount of change greater than a predetermined threshold is detected , the signal detected from at least one sensor (110-1, 110-2, 110-n) may be provided to the collision location confirmation unit 220.
충돌 위치 확인부(220)는, 충돌 신호 확인부(210)로부터 제공되는 신호를 사용하여, 하우징 구조체 내에서의 충돌 위치를 확인할 수 있다. 예컨대, 충돌 위치 확인부(220)는, 하우징 구조체를 제1방향 및 제2방향으로 미리 정해진 크기 단위로 분할하여 좌표 영역을 구성할 수 있으며, 충돌 위치를 좌표 영역의 단위로 확인 및 관리할 수 있다. The collision position confirmation unit 220 may confirm the collision position within the housing structure using a signal provided from the collision signal confirmation unit 210. For example, the collision location confirmation unit 220 may configure a coordinate area by dividing the housing structure into predetermined size units in the first direction and the second direction, and may confirm and manage the collision location in units of the coordinate area. there is.
손상상태 확인부(230)는, 기 학습된 누적 손상 모델을 사용하여, 충돌 신호에 대응되는 하우징 구조체의 손상 상태를 확인할 수 있다. 손상상태 확인부(230)가 하우징 구조체의 손상 상태를 검출하는 세부 동작은 하기의 도 3, 도 4a, 도 4b, 도 5a, 및 도 5b를 통해 상세히 설명한다.The damage state confirmation unit 230 may check the damage state of the housing structure corresponding to the collision signal using a previously learned cumulative damage model. The detailed operation of the damage status checker 230 detecting the damage status of the housing structure will be described in detail with reference to FIGS. 3, 4A, 4B, 5A, and 5B below.
손상상태 제공부(240)는 하우징 구조체의 손상 상태를 사용자가 인지할 수 수 있는 신호를 사용하여 제공할 수 있다. 일 예로, 손상상태 제공부(240)는 하우징 구조체에 대하여, 전술한 제1방향 및 제2방향으로 미리 정해진 크기 단위로 분할하여 좌표 영역 단위로 손상 상태를 표시한 손상 맵을 구성할 수 있으며, 손상 맵을 시각적인 정보로 구성하고, 디스플레이 등을 통해 출력할 수 있다. The damage status provider 240 may provide the damage status of the housing structure using a signal that can be recognized by the user. As an example, the damage status provider 240 may divide the housing structure into predetermined size units in the above-described first and second directions and construct a damage map that displays the damage status in coordinate area units, The damage map can be configured as visual information and output through a display, etc.
또한, 손상상태 제공부(240)는 하우징 구조체의 손상 상태를 나타내는 값이 미리 정해진 임계값을 초과할 경우, 하우징 구조체의 상태 확인 장치에 구비된 알림장치(예, 경고등, 부저 등)를 동작하여 하우징 구조체의 손상 상태가 임계치에 도달했음을 통지할 수 있다. In addition, when the value representing the damage state of the housing structure exceeds a predetermined threshold, the damage status providing unit 240 operates a notification device (e.g., warning light, buzzer, etc.) provided in the status confirmation device of the housing structure. It may be notified that the damage state of the housing structure has reached a critical value.
도 3은 도 2의 손상상태 확인부(230)의 세부 기능을 개념적으로 나타내는 블록도이다.FIG. 3 is a block diagram conceptually showing detailed functions of the damage state confirmation unit 230 of FIG. 2.
도 1 내지 도 3을 참조하면, 우선, 손상상태 확인부(230)는 소성 변형률 확인부(230a), 소성 변형량 확인부(230b), 및 상태 확인부(230c)를 포함할 수 있다. Referring to FIGS. 1 to 3 , first, the damage state check unit 230 may include a plastic strain check unit 230a, a plastic strain amount check unit 230b, and a state check unit 230c.
또한, 손상상태 확인부(230)는, 기 학습된 누적 손상 모델(230m)을 포함할 수 있다. 여기서, 기 학습된 누적 손상 모델(230m)은, 학습 데이터에 포함된 충돌 신호를 누적 손상 모델의 입력으로 하고, 학습 데이터에 포함된 하우징 구조체의 손상 상태를 출력으로 설정하여 학습된 기계학습 모델일 수 있다. 구체적으로, 학습 데이터에 포함된 충돌 신호는 음향 방출 센서에 의해 측정되는 음향 방출 신호 또는 압전센서로부터 검출되는 전류값일 수 있으며, 출력 학습 데이터로 사용되는 손상 상태는 하우징 구조체의 소성 변형률을 포함할 수 있다. Additionally, the damage state confirmation unit 230 may include a previously learned cumulative damage model 230m. Here, the previously learned cumulative damage model (230m) is a machine learning model learned by using the collision signal included in the learning data as the input of the cumulative damage model and setting the damage state of the housing structure included in the learning data as the output. You can. Specifically, the collision signal included in the learning data may be an acoustic emission signal measured by an acoustic emission sensor or a current value detected from a piezoelectric sensor, and the damage state used as output learning data may include the plastic strain of the housing structure. there is.
나아가, 하우징 구조체의 물리적인 특성에 따라 소성 변형률이 다르게 나타날 수 있으므로, 누적 손상 모델(230m)은 하우징 구조체의 재질, 크기 등을 반영하여 학습되는 것이 바람직하다. Furthermore, since the plastic strain rate may vary depending on the physical characteristics of the housing structure, it is desirable that the cumulative damage model (230m) be learned by reflecting the material and size of the housing structure.
소성 변형률 확인부(230a)는, 누적 손상 모델(230m)을 사용하여 하우징 구조체의 소성 변형률을 확인할 수 있다. 예컨대, 소성 변형률 확인부(230a)는, 충돌 신호 확인부(210)로부터 제공되는 충돌 신호를 누적 손상 모델(230m)에 입력하고, 그에 대응되는 출력으로서 하우징 구조체의 소성 변형률을 확인할 수 있다. 그리고, 소성 변형률 확인부(230a)는, 확인된 소성 변형률을 소성 변형량 확인부(230b)에 제공할 수 있다. The plastic strain confirmation unit 230a may check the plastic strain of the housing structure using the cumulative damage model 230m. For example, the plastic strain checking unit 230a may input the collision signal provided from the collision signal checking unit 210 into the cumulative damage model 230m and check the plastic strain of the housing structure as a corresponding output. Additionally, the plastic strain confirmation unit 230a may provide the confirmed plastic strain confirmation unit 230b.
소성 변형량 확인부(230b)는, 하우징 구조체에 소성 변형률을 적용하여 소성 변형량을 확인할 수 있다. 소성 변형량은 하우징 구조체에 객체가 충돌함으로써 어느 정도만큼 하우징 구조체의 변형이 발생되었는지를 수치화하여 나타낸 정보일 수 있다. The plastic strain confirmation unit 230b may check the plastic strain by applying the plastic strain to the housing structure. The amount of plastic deformation may be information that quantifies the extent to which the housing structure is deformed when an object collides with the housing structure.
상태 확인부(230c)는, 하우징 구조체의 전체 영역에 대하여 소성 변형량을 누적하여 관리할 수 있으며, 객체의 충돌이 발생할 때마다, 충돌 위치에 대한 소성 변형량을 누적하여 업데이트할 수 있다. 이를 위해, 상태 확인부(230c)는, 충돌 위치 확인부(220)로부터 출동 위치를 나타내는 정보(예, 충돌 위치의 좌표 영역)를 제공받을 수 있으며, 해당 충돌 위치에 소성 변형량을 누적 적용하여 하우징 구조체의 손상 상태를 업데이트할 수 있다. The status check unit 230c can accumulate and manage the amount of plastic deformation for the entire area of the housing structure, and can accumulate and update the amount of plastic deformation for the collision position whenever a collision occurs between objects. To this end, the status check unit 230c may receive information indicating the dispatch position (e.g., coordinate area of the crash position) from the collision position check unit 220, and cumulatively apply the amount of plastic deformation to the collision position to determine the housing. The corruption status of a structure can be updated.
나아가, 객체의 충돌 세기에 따라, 하우징 구조체의 변형이 발생되는 영역이 다르게 나타날 수 있다. 이를 고려하여, 손상상태 확인부(230)는, 충돌 영역의 범위를 확인하는 충돌 영역 확인부(230d)를 더 포함할 수 있으며, 충돌 영역 확인부(230d)는 충돌 신호의 세기를 반영하여 충돌 위치에 대한 영역을 설정하고, 설정된 충돌 위치의 영역을 소성 변형률 확인부(230a)로 제공할 수 있다. 이에 대응하여, 소성 변형률 확인부(230a)는, 설정된 충돌 위치의 영역을 대상으로 소성 변형률을 확인하도록 구성될 수 있다. Furthermore, depending on the collision intensity of the object, the area where deformation of the housing structure occurs may appear differently. In consideration of this, the damage state confirmation unit 230 may further include a collision area confirmation unit 230d that checks the range of the collision area, and the collision area confirmation unit 230d reflects the strength of the collision signal to determine the collision area. An area for the position can be set, and the set area of the collision position can be provided to the plastic strain confirmation unit 230a. Correspondingly, the plastic strain confirmation unit 230a may be configured to check the plastic strain in the area of the set collision position.
도 4a 및 도 4b는 본 발명의 제1실시예에 따른 하우징 구조체의 상태 확인 장치의 구성을 예시하는 도면으로써, 도 4a는 센서 모듈의 구성을 예시하고, 도 4b는 프로세서에 구비된 손상상태 확인부의 구성을 예시한다. FIGS. 4A and 4B are diagrams illustrating the configuration of a device for checking the state of a housing structure according to a first embodiment of the present invention. FIG. 4A illustrates the configuration of a sensor module, and FIG. 4B shows a confirmation of the damage state provided in the processor. Illustrates the composition of wealth.
우선, 도 4a를 참조하면, 하우징 구조체의 상태 확인 장치는 적어도 하나의 센서(410)로서, 음향 방출 신호(Acoustic Emission Signal)를 측정하는 음향 방출 센서(Acoustic Emission Sensor), 혹은 압전센서 등을 구비할 수 있다. 센서(410)는 하우징 구조체(400)의 일면에 부착되거나, 또는 하우징 구조체(400)에 근접하게 부착될 수 있다. 비록, 본 발명의 실시예에서 단일의 센서(410)가 하우징 구조체(400)에 구비되는 것을 예시하였으나, 본 개시가 이를 한정하는 것은 아니며, 센서(410)의 개수는 다양하게 변경될 수 있다.First, referring to FIG. 4A, the device for checking the state of the housing structure includes at least one sensor 410, such as an Acoustic Emission Sensor or a piezoelectric sensor that measures an acoustic emission signal. can do. The sensor 410 may be attached to one surface of the housing structure 400 or may be attached close to the housing structure 400. Although the embodiment of the present invention illustrates that a single sensor 410 is provided in the housing structure 400, the present disclosure is not limited thereto, and the number of sensors 410 may vary.
도 2 및 도 4b를 참조하면, 하우징 구조체의 상태 확인 장치(405)는 센서(410)와, 센서(410)에 연결되는 프로세서(420)를 포함할 수 있다. Referring to FIGS. 2 and 4B , the device 405 for checking the state of the housing structure may include a sensor 410 and a processor 420 connected to the sensor 410 .
프로세서(420)는 하우징 구조체의 상태 확인 장치(405)의 동작을 전반적으로 제어할 수 있다. 전술한 하우징 구조체의 상태 확인 프로그램(200)을 수행하여 하우징 구조체의 손상 상태를 확인하도록 구성될 수 있다. The processor 420 may generally control the operation of the device 405 for checking the status of the housing structure. It may be configured to check the damage state of the housing structure by performing the above-described state checking program 200 of the housing structure.
구체적으로, 프로세서(420)는 센서(410)로부터 검출되는 신호를 모니터링하며, 미리 정해진 임계값 이상의 신호가 검출되는 경우, 검출된 신호를 사용하여 충돌 위치를 확인할 수 있다. 이때, 프로세서(420)는 센서(410)로부터 검출되는 신호를 사용하여 음속을 확인하고, 확인된 음속에 의한 충돌 위치를 결정할 수 있다. Specifically, the processor 420 monitors the signal detected from the sensor 410, and when a signal exceeding a predetermined threshold is detected, the collision location can be confirmed using the detected signal. At this time, the processor 420 can check the speed of sound using the signal detected from the sensor 410 and determine the collision location based on the confirmed speed of sound.
또한, 프로세서(420)는 센서(410)로부터 검출되는 신호를 기 학습된 누적 손상 모델에 입력하고, 누적 손상 모델을 통해 출력되는 소성 변형률을 확인할 수 있다. 누적 손상 모델에 의해 소성 변형률이 확인됨에 따라, 프로세서(420)는 하우징 구조체에 소성 변형률을 적용하여 소성 변형량을 확인할 수 있다. 이때, 프로세서(420)는 확인된 충돌 위치(예, 좌표 영역)에 소성 변형률을 적용하여 소성 변형량을 확인하고, 충돌 위치에 대한 소성 변형량을 누적하여 업데이트할 수 있다.Additionally, the processor 420 may input the signal detected from the sensor 410 into a previously learned cumulative damage model and check the plastic strain output through the cumulative damage model. As the plastic strain is confirmed by the cumulative damage model, the processor 420 can confirm the amount of plastic strain by applying the plastic strain to the housing structure. At this time, the processor 420 may check the amount of plastic deformation by applying the plastic strain rate to the confirmed collision location (e.g., coordinate area), and may accumulate and update the amount of plastic deformation for the collision location.
추가적으로, 하우징 구조체의 변형이 발생될 경우, 변형이 발생된 영역은 다른 하우징 구조체의 표면과 다른 물리적 특성이 나타날 수 있다. 또한, 이러한 물리적 특성은 해당 영역에 손상이 발생된 정도에 따라 다르게 나타날 수 있으므로, 물리적 특성을 확인하여 해당 영역의 잔존 수명을 확인할 수 있다. 이를 고려하여, 프로세서(420)는, 하우징 구조체의 표면의 임피던스 값을 사용하여 하우징 구조체의 손상 상태를 더 확인할 수 있다. 이를 위해, 하우징 구조체의 상태 확인 장치(405)는 하우징 구조체의 표면의 임피던스 값을 스캔하기 위한, 와전류 스캔 장치(450)를 더 포함할 수 있으며, 프로세서(420)는, 와전류 스캔 장치(450)를 통해 스캔되는 임피던스 맵을 수신할 수 있으며, 임피던스 맵과, 하우징 구조체의 소성 변형량을 매칭하여 하우징 구조체의 상태를 확인할 수 있다. Additionally, when deformation of the housing structure occurs, the deformed area may exhibit physical characteristics that are different from the surfaces of other housing structures. Additionally, since these physical characteristics may appear differently depending on the degree of damage to the area, the remaining lifespan of the area can be confirmed by checking the physical characteristics. In consideration of this, the processor 420 may further confirm the damage state of the housing structure using the impedance value of the surface of the housing structure. To this end, the state checking device 405 of the housing structure may further include an eddy current scanning device 450 for scanning the impedance value of the surface of the housing structure, and the processor 420 may use the eddy current scanning device 450 The impedance map scanned through can be received, and the state of the housing structure can be checked by matching the impedance map and the amount of plastic deformation of the housing structure.
일 예로, 프로세서(420)는, 하우징 구조체의 소성 변형량을 확인하고, 특정 영역의 소성 변형량이 미리 정해진 임계값을 초과할 경우, 와전류 스캔 장치를 통해 스캔되는 임피던스 맵을 확인하도록 구성될 수 있다. 이를 위해, 프로세서(420)는 하우징 구조체의 소성 변형량을 확인하고, 특정 영역의 소성 변형량이 미리 정해진 임계값을 초과할 경우, 와전류 스캔 장치(450)의 동작을 요청학고, 와전류 스캔 장치(450)를 통해 입력되는 임피던스 맵을 확인할 수 있다. 그리고, 프로세서(420)는 임피던스 맵을 통해 확인된 임피던스 값을 사용하여 해당 영역의 잔존 수명을 산출할 수 있다. As an example, the processor 420 may be configured to check the amount of plastic deformation of the housing structure and, if the amount of plastic deformation in a specific area exceeds a predetermined threshold, check an impedance map scanned through an eddy current scanning device. To this end, the processor 420 checks the amount of plastic deformation of the housing structure, and when the amount of plastic deformation in a specific area exceeds a predetermined threshold, the processor 420 requests operation of the eddy current scan device 450. You can check the input impedance map through . Additionally, the processor 420 can calculate the remaining lifespan of the corresponding area using the impedance value confirmed through the impedance map.
도 5a 및 도 5b는 본 발명의 제2실시예에 따른 하우징 구조체의 상태 확인 장치의 구성을 예시하는 도면으로써, 도 5a는 센서 모듈의 구성을 예시하고, 도 5b는 프로세서에 구비된 손상상태 확인부의 구성을 예시한다. FIGS. 5A and 5B are diagrams illustrating the configuration of a device for checking the state of a housing structure according to a second embodiment of the present invention. FIG. 5A illustrates the configuration of a sensor module, and FIG. 5B shows a confirmation of the damage state provided in the processor. Illustrates the composition of wealth.
우선, 도 5a를 참조하면, 하우징 구조체의 상태 확인 장치는 적어도 하나의 센서로서 하우징 구조체의 표면에 전파되는 에너지를 전류값으로 측정하는 압전센서(510, 520)를 포함할 수 있다. 일 예로, 압전센서(510, 520)는, 하우징 구조체(500)의 일면에 장착될 수 있는데, 제1방향 또는 제2방향(가로 방향 또는 세로 방향)을 따라 미리 정해진 거리만큼 이격되어 장착될 수 있다.First, referring to FIG. 5A, the device for checking the state of the housing structure may include at least one sensor, a piezoelectric sensor 510 or 520, which measures energy propagated to the surface of the housing structure as a current value. As an example, the piezoelectric sensors 510 and 520 may be mounted on one surface of the housing structure 500, and may be mounted at a predetermined distance apart along the first or second direction (horizontal or vertical direction). there is.
본 개시의 일 실시예에서, 충돌 신호를 감지하는 적어도 하나의 센서로서 압전센서(510, 520)가 구비되는 것을 예시하였으나, 본 개시가 이를 한정하는 것은 아니며, 객체가 하우징 구조체에 충돌함에 따라 발생되는 물리적 특성을 검출할 수 있는 다양한 센서가 구비될 수 있다. In one embodiment of the present disclosure, it is illustrated that piezoelectric sensors 510 and 520 are provided as at least one sensor for detecting a collision signal, but the present disclosure is not limited thereto, and the sensor generated as the object collides with the housing structure Various sensors capable of detecting physical characteristics may be provided.
도 2 및 도 5b를 참조하면, 하우징 구조체의 상태 확인 장치(505)는 제1방향 또는 제2방향(가로 방향 또는 세로 방향)으로 배열된 복수의 압전센서(510, 520)와, 복수의 압전센서(510, 520)에 연결되는 프로세서(530)를 포함할 수 있다. Referring to FIGS. 2 and 5B, the device 505 for checking the state of the housing structure includes a plurality of piezoelectric sensors 510 and 520 arranged in a first or second direction (horizontal or vertical direction), and a plurality of piezoelectric sensors 510 and 520. It may include a processor 530 connected to the sensors 510 and 520.
프로세서(530)는 하우징 구조체의 상태 확인 장치(505)의 동작을 전반적으로 제어할 수 있다. 전술한 하우징 구조체의 상태 확인 프로그램(200)을 수행하여 하우징 구조체의 손상 상태를 확인하도록 구성될 수 있다. The processor 530 may generally control the operation of the device 505 for checking the status of the housing structure. It may be configured to check the damage state of the housing structure by performing the above-described state checking program 200 of the housing structure.
구체적으로, 프로세서(530)는 복수의 압전센서(510, 520)로부터 검출되는 신호를 모니터링하며, 미리 정해진 임계값 이상의 신호가 검출되는 경우, 검출된 신호를 사용하여 충돌 위치를 확인할 수 있다. 이때, 프로세서(530)는 복수의 압전센서(510, 520)로부터 검출되는 신호를 사용하되, 복수의 압전센서(510, 520)의 배열 관계를 기준으로, 충돌 위치를 결정할 수 있다. Specifically, the processor 530 monitors signals detected from the plurality of piezoelectric sensors 510 and 520, and when a signal exceeding a predetermined threshold is detected, the collision location can be confirmed using the detected signal. At this time, the processor 530 may use signals detected from the plurality of piezoelectric sensors 510 and 520 and determine the collision position based on the arrangement relationship of the plurality of piezoelectric sensors 510 and 520.
또한, 프로세서(530)는 복수의 압전센서(510, 520)로부터 검출되는 신호를 기 학습된 누적 손상 모델에 입력하고, 누적 손상 모델을 통해 출력되는 소성 변형률을 확인할 수 있다. 누적 손상 모델에 의해 소성 변형률이 확인됨에 따라, 프로세서(530)는 하우징 구조체에 소성 변형률을 적용하여 소성 변형량을 확인할 수 있다. 이때, 프로세서(530)는 확인된 충돌 위치(예, 좌표 영역)에 소성 변형률을 적용하여 소성 변형량을 확인하고, 충돌 위치에 대한 소성 변형량을 누적하여 업데이트할 수 있다.Additionally, the processor 530 may input signals detected from the plurality of piezoelectric sensors 510 and 520 into a previously learned cumulative damage model and check the plastic strain output through the cumulative damage model. As the plastic strain is confirmed by the cumulative damage model, the processor 530 can confirm the amount of plastic strain by applying the plastic strain to the housing structure. At this time, the processor 530 may check the amount of plastic deformation by applying the plastic strain rate to the confirmed collision location (e.g., coordinate area), and may accumulate and update the amount of plastic deformation for the collision location.
추가적으로, 하우징 구조체의 변형이 발생될 경우, 변형이 발생된 영역은 다른 하우징 구조체의 표면과 다른 물리적 특성이 나타날 수 있다. 또한, 이러한 물리적 특성은 해당 영역에 손상이 발생된 정도에 따라 다르게 나타날 수 있으므로, 물리적 특성을 확인하여 해당 영역의 잔존 수명을 확인할 수 있다. 이를 고려하여, 프로세서(530)는, 하우징 구조체의 표면의 임피던스 값을 사용하여 하우징 구조체의 손상 상태를 더 확인할 수 있다. 이를 위해, 하우징 구조체의 상태 확인 장치(505)는 하우징 구조체의 표면의 임피던스 값을 스캔하기 위한, 와전류 스캔 장치(550)를 더 포함할 수 있으며, 프로세서(530)는, 와전류 스캔 장치(550)를 통해 스캔되는 임피던스 맵을 수신할 수 있으며, 임피던스 맵과, 하우징 구조체의 소성 변형량을 매칭하여 하우징 구조체의 상태를 확인할 수 있다. Additionally, when deformation of the housing structure occurs, the deformed area may exhibit physical characteristics that are different from the surfaces of other housing structures. Additionally, since these physical characteristics may appear differently depending on the degree of damage to the area, the remaining lifespan of the area can be confirmed by checking the physical characteristics. In consideration of this, the processor 530 may further confirm the damage state of the housing structure using the impedance value of the surface of the housing structure. To this end, the state checking device 505 of the housing structure may further include an eddy current scanning device 550 for scanning the impedance value of the surface of the housing structure, and the processor 530 may use the eddy current scanning device 550 The impedance map scanned through can be received, and the state of the housing structure can be checked by matching the impedance map and the amount of plastic deformation of the housing structure.
일 예로, 프로세서(530)는, 하우징 구조체의 소성 변형량을 확인하고, 특정 영역의 소성 변형량이 미리 정해진 임계값을 초과할 경우, 와전류 스캔 장치를 통해 스캔되는 임피던스 맵을 확인하도록 구성될 수 있다. 이를 위해, 프로세서(530)는 하우징 구조체의 소성 변형량을 확인하고, 특정 영역의 소성 변형량이 미리 정해진 임계값을 초과할 경우, 와전류 스캔 장치(550)의 동작을 요청학고, 와전류 스캔 장치(550)를 통해 입력되는 임피던스 맵을 확인할 수 있다. 그리고, 프로세서(530)는 임피던스 맵을 통해 확인된 임피던스 값을 사용하여 해당 영역의 잔존 수명을 산출할 수 있다. As an example, the processor 530 may be configured to check the amount of plastic deformation of the housing structure and, when the amount of plastic deformation of a specific area exceeds a predetermined threshold, check an impedance map scanned through an eddy current scanning device. To this end, the processor 530 checks the amount of plastic deformation of the housing structure, and when the amount of plastic deformation in a specific area exceeds a predetermined threshold, the processor 530 requests operation of the eddy current scan device 550. You can check the input impedance map through . Additionally, the processor 530 can calculate the remaining lifespan of the corresponding area using the impedance value confirmed through the impedance map.
도 6a 및 도 6b는 본 발명의 일 실시예에 따른 하우징 구조체의 상태 확인 방법의 순서를 예시하는 흐름도이다.6A and 6B are flowcharts illustrating the sequence of a method for checking the state of a housing structure according to an embodiment of the present invention.
본 발명의 일 실시예에 따른 하우징 구조체의 상태 확인 방법은, 전술한 하우징 구조체의 상태 확인 장치(100, 도 1 참조)에 의해 수행될 수 있으며, 이하에서, 하우징 구조체의 상태 확인 장치는 '상태 확인 장치'로 지칭한다.The method for checking the state of the housing structure according to an embodiment of the present invention may be performed by the above-described state checking device 100 (see FIG. 1). Hereinafter, the state checking device of the housing structure is referred to as 'state'. It is referred to as a ‘verification device’.
도 6을 참조하면, 상태 확인 장치는, 적어도 하나의 센서로부터 검출되는 충돌 신호를 확인할 수 있다(S601). 이때, 충돌 신호는, 음향 방출 신호, 또는 압전센서에 의해 검출되는 하우징 구조체의 표면에 전파되는 에너지를 측정한 전류값을 포함할 수 있다. Referring to FIG. 6, the status check device can check a collision signal detected from at least one sensor (S601). At this time, the collision signal may include an acoustic emission signal or a current value measured by energy propagated to the surface of the housing structure detected by a piezoelectric sensor.
객체의 충돌 이벤트에 의해 발생되는 신호만을 선별적으로 검출할 필요가 있으므로, S601 단계에서, 상태 확인 장치는, 적어도 하나의 센서로부터 검출되는 신호 중, 객체의 충돌 이벤트에 의해 발생되는 신호를 검출하여 제공할 수 있다. 일 예로, 상태 확인 장치는, 적어도 하나의 센서로부터 검출되는 신호의 세기를 확인하고, 미리 정해진 임계값 이상의 신호가 검출되는 경우, 충돌 이벤트가 발생된 것으로 결정할 수 있다. Since it is necessary to selectively detect only the signal generated by the collision event of the object, in step S601, the status check device detects the signal generated by the collision event of the object among the signals detected from at least one sensor can be provided. As an example, the status check device may check the strength of a signal detected from at least one sensor and, if a signal exceeding a predetermined threshold is detected, determine that a collision event has occurred.
다른 예로서, 상태 확인 장치는, 적어도 하나의 센서로부터 검출되는 신호의 변화량을 확인하고, 미리 정해진 임계값 이상의 변화량이 감지되는 경우, 충돌 이벤트가 발생된 것으로 결정할 수도 있다. As another example, the status check device may check the amount of change in a signal detected from at least one sensor, and if the amount of change greater than a predetermined threshold is detected, it may determine that a collision event has occurred.
충돌 이벤트가 발생된 것으로 확인될 경우(S602-Y), 상태 확인 장치는, 하우징 구조체 내에서의 충돌 위치를 확인할 수 있다(S603). 예컨대, 상태 확인 장치는, 하우징 구조체를 제1방향 및 제2방향으로 미리 정해진 크기 단위로 분할하여 좌표 영역을 구성할 수 있으며, 충돌 위치를 좌표 영역의 단위로 확인 및 관리할 수 있다. When it is confirmed that a collision event has occurred (S602-Y), the status check device can confirm the collision location within the housing structure (S603). For example, the status check device can configure a coordinate area by dividing the housing structure into predetermined size units in the first direction and the second direction, and can check and manage the collision location in units of the coordinate area.
이후, 상태 확인 장치는, 기 학습된 누적 손상 모델을 사용하여, 충돌 신호에 대응되는 하우징 구조체의 손상 상태를 확인할 수 있다. Thereafter, the status checking device may check the damage state of the housing structure corresponding to the collision signal using a previously learned cumulative damage model.
구체적으로, 기 학습된 누적 손상 모델은, 학습 데이터에 포함된 충돌 신호를 누적 손상 모델의 입력으로 하고, 학습 데이터에 포함된 하우징 구조체의 손상 상태를 출력으로 설정하여 학습된 기계학습 모델일 수 있다. 구체적으로, 학습 데이터에 포함된 충돌 신호는 음향 방출 센서에 의해 측정되는 음향 방출 신호 또는 압전센서로부터 검출되는 전류값일 수 있으며, 출력 학습 데이터로 사용되는 손상 상태는 하우징 구조체의 소성 변형률을 포함할 수 있다. 나아가, 하우징 구조체의 물리적인 특성에 따라 소성 변형률이 다르게 나타날 수 있으므로, 누적 손상 모델은 하우징 구조체의 재질, 크기 등을 반영하여 학습되는 것이 바람직하다. Specifically, the previously learned cumulative damage model may be a machine learning model learned by using the collision signal included in the learning data as the input of the cumulative damage model and setting the damage state of the housing structure included in the learning data as the output. . Specifically, the collision signal included in the learning data may be an acoustic emission signal measured by an acoustic emission sensor or a current value detected from a piezoelectric sensor, and the damage state used as output learning data may include the plastic strain of the housing structure. there is. Furthermore, since the plastic strain may vary depending on the physical characteristics of the housing structure, it is desirable that the cumulative damage model be learned by reflecting the material and size of the housing structure.
상태 확인 장치는, 누적 손상 모델을 사용하여 하우징 구조체의 소성 변형률을 확인할 수 있다(S604). 예컨대, 상태 확인 장치는, S601 단계에서 확인된 충돌 신호를 누적 손상 모델에 입력하고, 그에 대응되는 출력으로서 하우징 구조체의 소성 변형률을 확인할 수 있다. The health check device can check the plastic strain of the housing structure using the cumulative damage model (S604). For example, the status checking device may input the collision signal confirmed in step S601 into the cumulative damage model and check the plastic strain of the housing structure as a corresponding output.
나아가, 객체의 출동 세기에 따라, 하우징 구조체의 변형이 발생되는 영역이 다르게 나타날 수 있다. 이를 고려하여, 상태 확인 장치는, 충돌 영역의 범위를 더 확인할 수 있으며, S604 단계에서, 충돌 신호의 세기를 반영하여 충돌 위치에 대한 영역을 설정하고, 설정된 충돌 위치의 영역을 대상으로 소성 변형률을 확인하도록 구성될 수 있다. Furthermore, depending on the intensity of the object's movement, the area where deformation of the housing structure occurs may appear differently. In consideration of this, the status check device can further confirm the range of the collision area, and in step S604, sets the area for the collision location by reflecting the strength of the collision signal, and sets the plastic strain for the area of the set collision location. It can be configured to check.
이후, 상태 확인 장치는, 하우징 구조체에 소성 변형률을 적용하여 소성 변형량을 확인할 수 있다(S605). 소성 변형량은 하우징 구조체에 객체가 충돌함으로써 어느 정도만큼 하우징 구조체의 변형이 발생되었는지를 수치화하여 나타낸 정보일 수 있다. Thereafter, the status confirmation device can confirm the amount of plastic deformation by applying the plastic deformation rate to the housing structure (S605). The amount of plastic deformation may be information that quantifies the extent to which the housing structure is deformed when an object collides with the housing structure.
나아가, 상태 확인 장치는, 하우징 구조체의 전체 영역에 대하여 소성 변형량을 누적하여 관리할 수 있으며, 객체의 충돌이 발생할 때마다, 충돌 위치에 대한 소성 변형량을 누적하여 업데이트할 수 있다. 이를 위해, 상태 확인 장치는, S603 단계에서 확인된 출동 위치를 나타내는 정보(예, 충돌 위치의 좌표 영역)에 기초하여, 해당 충돌 위치에 소성 변형량을 누적 적용함으로써, 하우징 구조체의 손상 상태를 업데이트할 수 있다. Furthermore, the status check device can accumulate and manage the amount of plastic deformation for the entire area of the housing structure, and can accumulate and update the amount of plastic deformation for the collision position whenever a collision of an object occurs. To this end, the status checking device updates the damage state of the housing structure by cumulatively applying the amount of plastic deformation to the collision location based on the information indicating the dispatch location (e.g., coordinate area of the collision location) confirmed in step S603. You can.
상태 확인 장치는, 하우징 구조체의 손상 상태를 사용자가 인지할 수 있는 신호를 사용하여 제공할 수 있다(S610). 일 예로, 상태 확인 장치는, 하우징 구조체에 대하여, 전술한 제1방향 및 제2방향으로 미리 정해진 크기 단위로 분할하여 좌표 영역 단위로 손상 상태를 표시한 손상 맵을 구성할 수 있으며, 손상 맵을 시각적인 정보로 구성하고, 디스플레이 등을 통해 출력할 수 있다. The status check device can provide the damaged state of the housing structure using a signal that can be recognized by the user (S610). As an example, the status check device may divide the housing structure into predetermined size units in the above-described first and second directions to construct a damage map that displays the damage state in coordinate area units, and may construct a damage map that displays the damage state in units of coordinate areas. It can be composed of visual information and output through a display, etc.
다른 예로서, 상태 확인 장치는, 하우징 구조체의 손상 상태를 나타내는 값이 미리 정해진 임계값을 초과할 경우, 하우징 구조체의 상태 확인 장치에 구비된 알림장치(예, 경고등, 부저 등)를 동작하여 하우징 구조체의 손상 상태가 임계치에 도달했음을 통지할 수 있다. As another example, when the value indicating the damage state of the housing structure exceeds a predetermined threshold, the status check device operates a notification device (e.g., warning light, buzzer, etc.) provided in the status check device of the housing structure to It can be notified that the damage state of the structure has reached a critical value.
추가적으로, 하우징 구조체의 변형이 발생될 경우, 변형이 발생된 영역은 다른 하우징 구조체의 표면과 다른 물리적 특성이 나타날 수 있다. 또한, 이러한 물리적 특성은 해당 영역에 손상이 발생된 정도에 따라 다르게 나타날 수 있으므로, 물리적 특성을 확인하여 해당 영역의 잔존 수명을 확인할 수 있다. 이를 고려하여, 상태 확인 장치는, 하우징 구조체의 표면의 임피던스 값을 사용하여 하우징 구조체의 손상 상태를 더 확인하기 위하여, 하우징 구조체의 표면의 임피던스 값을 스캔하기 위한, 와전류 스캔 장치를 더 포함할 수 있다. Additionally, when deformation of the housing structure occurs, the deformed area may exhibit physical characteristics that are different from the surfaces of other housing structures. Additionally, since these physical characteristics may appear differently depending on the degree of damage to the area, the remaining lifespan of the area can be confirmed by checking the physical characteristics. In consideration of this, the condition checking device may further include an eddy current scanning device for scanning the impedance value of the surface of the housing structure to further confirm the damage state of the housing structure using the impedance value of the surface of the housing structure. there is.
또한, 상태 확인 장치는, 충돌 신호에 의한 소성 변형량을 확인한 후, 하우징 구조체의 표면의 임피던스 값을 기반으로 하우징 구조체의 손상 상태를 확인하는 동작을 더 수행할 수 있다. Additionally, the status checking device may further perform an operation to check the damage state of the housing structure based on the impedance value of the surface of the housing structure after checking the amount of plastic deformation due to the collision signal.
도 6b를 참조하면, 하우징 구조체의 소성 변형량을 확인하고, 특정 영역의 소성 변형량이 미리 정해진 임계값을 초과할 경우(S606-Y), 와전류 스캔 장치의 동작을 요청하고(S607), 와전류 스캔 장치를 통해 입력되는 임피던스 맵을 수신할 수 있다(S608). 그리고, 상태 확인 장치는, 임피던스 맵을 통해 확인된 임피던스 값을 사용하여 해당 영역의 잔존 수명을 산출할 수 있다(S609). Referring to Figure 6b, the amount of plastic deformation of the housing structure is checked, and if the amount of plastic deformation in a specific area exceeds a predetermined threshold (S606-Y), the operation of the eddy current scan device is requested (S607), and the eddy current scan device is The impedance map input can be received through (S608). And, the status checking device can calculate the remaining lifespan of the corresponding area using the impedance value confirmed through the impedance map (S609).
본 발명에 첨부된 블록도의 각 블록과 흐름도의 각 단계의 조합들은 컴퓨터 프로그램 인스트럭션들에 의해 수행될 수도 있다. 이들 컴퓨터 프로그램 인스트럭션들은 범용 컴퓨터, 특수용 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 인코딩 프로세서에 탑재될 수 있으므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비의 인코딩 프로세서를 통해 수행되는 그 인스트럭션들이 블록도의 각 블록 또는 흐름도의 각 단계에서 설명된 기능들을 수행하는 수단을 생성하게 된다. 이들 컴퓨터 프로그램 인스트럭션들은 특정 방법으로 기능을 구현하기 위해 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 지향할 수 있는 컴퓨터 이용 가능 또는 컴퓨터 판독 가능 메모리에 저장되는 것도 가능하므로, 그 컴퓨터 이용가능 또는 컴퓨터 판독 가능 메모리에 저장된 인스트럭션들은 블록도의 각 블록 또는 흐름도 각 단계에서 설명된 기능을 수행하는 인스트럭션 수단을 내포하는 제조 품목을 생산하는 것도 가능하다. 컴퓨터 프로그램 인스트럭션들은 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에 탑재되는 것도 가능하므로, 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비 상에서 일련의 동작 단계들이 수행되어 컴퓨터로 실행되는 프로세스를 생성해서 컴퓨터 또는 기타 프로그램 가능한 데이터 프로세싱 장비를 수행하는 인스트럭션들은 블록도의 각 블록 및 흐름도의 각 단계에서 설명된 기능들을 실행하기 위한 단계들을 제공하는 것도 가능하다.Combinations of each block of the block diagram and each step of the flow diagram attached to the present invention may be performed by computer program instructions. Since these computer program instructions can be mounted on the encoding processor of a general-purpose computer, special-purpose computer, or other programmable data processing equipment, the instructions performed through the encoding processor of the computer or other programmable data processing equipment are included in each block or block of the block diagram. Each step of the flowchart creates a means to perform the functions described. These computer program instructions may also be stored in computer-usable or computer-readable memory that can be directed to a computer or other programmable data processing equipment to implement a function in a particular way, so that the computer-usable or computer-readable memory The instructions stored in can also produce manufactured items containing instruction means that perform the functions described in each block of the block diagram or each step of the flow diagram. Computer program instructions can also be mounted on a computer or other programmable data processing equipment, so that a series of operational steps are performed on the computer or other programmable data processing equipment to create a process that is executed by the computer, thereby generating a process that is executed by the computer or other programmable data processing equipment. Instructions that perform processing equipment may also provide steps for executing functions described in each block of the block diagram and each step of the flow diagram.
또한, 각 블록 또는 각 단계는 특정된 논리적 기능(들)을 실행하기 위한 하나 이상의 실행 가능한 인스트럭션들을 포함하는 모듈, 세그먼트 또는 코드의 일부를 나타낼 수 있다. 또, 몇 가지 대체 실시 예들에서는 블록들 또는 단계들에서 언급된 기능들이 순서를 벗어나서 발생하는 것도 가능함을 주목해야 한다. 예컨대, 잇달아 도시되어 있는 두 개의 블록들 또는 단계들은 사실 실질적으로 동시에 수행되는 것도 가능하고 또는 그 블록들 또는 단계들이 때때로 해당하는 기능에 따라 역순으로 수행되는 것도 가능하다.Additionally, each block or each step may represent a module, segment, or portion of code that includes one or more executable instructions for executing specified logical function(s). Additionally, it should be noted that in some alternative embodiments it is possible for the functions mentioned in blocks or steps to occur out of order. For example, two blocks or steps shown in succession may in fact be performed substantially simultaneously, or the blocks or steps may sometimes be performed in reverse order depending on the corresponding function.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 품질에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 균등한 범위 내에 있는 모든 기술사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely an illustrative explanation of the technical idea of the present invention, and those skilled in the art will be able to make various modifications and variations without departing from the essential quality of the present invention. Accordingly, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention, but rather to explain it, and the scope of the technical idea of the present invention is not limited by these embodiments. The scope of protection of the present invention shall be interpreted in accordance with the claims below, and all technical ideas within the scope equivalent thereto shall be construed as being included in the scope of rights of the present invention.

Claims (20)

  1. 하우징 구조체의 상태를 확인하는 방법에 있어서,In a method of checking the status of the housing structure,
    상기 하우징 구조체와 객체의 충돌에 의해 발생되는 충돌 신호를 검출하는 단계와,detecting a collision signal generated by a collision between the housing structure and an object;
    상기 검출된 충돌 신호를 사용하여 상기 충돌이 발생된 충돌 위치를 확인하는 단계와,Confirming the collision location where the collision occurred using the detected collision signal;
    충돌 신호에 대한 하우징 구조체의 손상 상태를 확인하는데 필요한 정보가 학습된 누적 손상 모델을 사용하여, 상기 검출된 충돌 신호에 대한 상기 하우징 구조체의 손상 상태를 확인하는 단계와,Confirming the damage state of the housing structure in response to the detected collision signal using a cumulative damage model in which information necessary to determine the damage state of the housing structure in response to the collision signal has been learned;
    상기 하우징 구조체의 손상 상태를 제공하는 단계를 포함하는,Providing a damage state of the housing structure,
    하우징 구조체의 상태 확인 방법.How to check the condition of the housing structure.
  2. 제1항에 있어서,According to paragraph 1,
    상기 하우징 구조체의 손상 상태를 확인하는 단계는,The step of checking the damage state of the housing structure is,
    상기 충돌 신호를 상기 누적 손상 모델에 입력하고, 상기 누적 손상 모델을 통해 출력되는 소성 변형률을 확인하는 단계와,Inputting the collision signal into the cumulative damage model and checking the plastic strain output through the cumulative damage model;
    상기 소성 변형률과 상기 하우징 구조체의 손상 상태 사이의 관계를 기반으로, 상기 소성 변형률에 대응되는 상기 하우징 구조체의 소성 변형량을 확인하는 단계를 포함하는,Based on the relationship between the plastic strain and the damage state of the housing structure, confirming the amount of plastic deformation of the housing structure corresponding to the plastic strain.
    하우징 구조체의 상태 확인 방법.How to check the condition of the housing structure.
  3. 제1항에 있어서,According to paragraph 1,
    상기 충돌 신호를 검출하는 단계는,The step of detecting the collision signal is,
    적어도 하나의 음향 방출 센서(Acoustic Emission Sensor)를 사용하여 음향 방출 신호(Acoustic Emission Signal)를 측정하는 단계를 포함하는Comprising measuring an acoustic emission signal using at least one acoustic emission sensor.
    하우징 구조체의 상태 확인 방법.How to check the condition of the housing structure.
  4. 제3항에 있어서,According to paragraph 3,
    상기 누적 손상 모델은,The cumulative damage model is,
    상기 음향 방출 신호의 입력에 대하여 상기 소성 변형률을 출력하도록 학습된 기계학습 모델인,A machine learning model learned to output the plastic strain with respect to the input of the acoustic emission signal,
    하우징 구조체의 상태 확인 방법.How to check the condition of the housing structure.
  5. 제1항에 있어서,According to paragraph 1,
    상기 충돌 신호는, The collision signal is,
    적어도 하나의 음향 방출 센서(Acoustic Emission Sensor)를 사용하여 측정된 음향 방출 신호(Acoustic Emission Signal)를 포함하고,Comprising an acoustic emission signal measured using at least one acoustic emission sensor,
    상기 하우징 구조체의 손상 상태를 확인하는 단계는,The step of checking the damage state of the housing structure is,
    상기 음향 방출 신호를 상기 누적 손상 모델에 입력하고, 상기 누적 손상 모델을 통해 출력되는 소성 변형률을 확인하는 단계와,Inputting the acoustic emission signal into the cumulative damage model and confirming the plastic strain output through the cumulative damage model;
    상기 소성 변형률과 상기 하우징 구조체의 소성 변형량 사이의 관계를 기반으로, 상기 소성 변형률에 대응되는 상기 하우징 구조체의 소성 변형량을 확인하는 단계를 포함하는,Based on the relationship between the plastic strain rate and the plastic deformation amount of the housing structure, determining the amount of plastic deformation of the housing structure corresponding to the plastic strain rate,
    하우징 구조체의 상태 확인 방법.How to check the condition of the housing structure.
  6. 제5항에 있어서,According to clause 5,
    상기 하우징 구조체의 손상 상태를 확인하는 단계는,The step of checking the damage state of the housing structure is,
    상기 하우징 구조체의 소성 변형량이 미리 정해진 임계값을 초과함에 따라, 상기 하우징 구조체의 표면의 임피던스 값을 측정하는 와전류 측정 장치의 동작을 요청하는 단계와, When the amount of plastic deformation of the housing structure exceeds a predetermined threshold, requesting operation of an eddy current measuring device that measures the impedance value of the surface of the housing structure;
    상기 와전류 측정 장치로부터 상기 하우징 구조체의 표면의 임피던스 값을 수신하는 단계와,Receiving an impedance value of the surface of the housing structure from the eddy current measuring device;
    상기 하우징 구조체의 표면의 임피던스 값과 상기 하우징 구조체의 잔여 수명과의 관계를 기반으로, 상기 하우징 구조체의 표면의 임피던스 값에 대응되는 상기 하우징 구조체의 잔여 수명을 확인하는 단계를 포함하는,Based on the relationship between the impedance value of the surface of the housing structure and the remaining life of the housing structure, determining the remaining life of the housing structure corresponding to the impedance value of the surface of the housing structure,
    하우징 구조체의 상태 확인 방법.How to check the condition of the housing structure.
  7. 제1항에 있어서,According to paragraph 1,
    상기 충돌 신호를 검출하는 단계는,The step of detecting the collision signal is,
    상기 하우징 구조체에 구비된 적어도 하나의 압전센서를 사용하여, 상기 하우징 구조체의 표면에 전파되는 에너지를 측정한 전류값을 측정하는 단계를 포함하는,Comprising the step of measuring a current value by measuring the energy propagated to the surface of the housing structure using at least one piezoelectric sensor provided in the housing structure,
    하우징 구조체의 상태 확인 방법.How to check the condition of the housing structure.
  8. 제7항에 있어서,In clause 7,
    상기 충돌이 발생된 충돌 위치를 확인하는 단계는,The step of checking the collision location where the collision occurred,
    상기 적어도 하나의 압전센서를 사용하여 측정된 상기 전류값에 기초하여, 상기 충돌 위치를 결정하는 것인,Determining the collision position based on the current value measured using the at least one piezoelectric sensor,
    하우징 구조체의 상태 확인 방법.How to check the condition of the housing structure.
  9. 제1항에 있어서,According to paragraph 1,
    상기 충돌 신호는, The collision signal is,
    상기 하우징 구조체에 구비된 적어도 하나의 압전센서를 통해 측정된 상기 하우징 구조체의 표면에 전파한 에너지를 측정한 전류값을 포함하고,It includes a current value measuring the energy propagated to the surface of the housing structure measured through at least one piezoelectric sensor provided in the housing structure,
    상기 하우징 구조체의 손상 상태를 확인하는 단계는,The step of checking the damage state of the housing structure is,
    상기 하우징 구조체의 표면의 전류값을 상기 누적 손상 모델에 입력하고, 상기 누적 손상 모델을 통해 출력되는 소성 변형률을 확인하는 단계와,Inputting the current value of the surface of the housing structure into the cumulative damage model and checking the plastic strain output through the cumulative damage model;
    상기 소성 변형률과 상기 하우징 구조체의 소성 변형량 사이의 관계를 기반으로, 상기 소성 변형률에 대응되는 상기 하우징 구조체의 소성 변형량을 확인하는 단계를 포함하는,Based on the relationship between the plastic strain rate and the plastic deformation amount of the housing structure, determining the amount of plastic deformation of the housing structure corresponding to the plastic strain rate,
    하우징 구조체의 상태 확인 방법.How to check the condition of the housing structure.
  10. 제9항에 있어서,According to clause 9,
    상기 하우징 구조체의 손상 상태를 확인하는 단계는,The step of checking the damage state of the housing structure is,
    상기 하우징 구조체의 소성 변형량이 미리 정해진 임계값을 초과함에 따라, 상기 하우징 구조체의 표면의 임피던스 값을 측정하는 와전류 측정 장치의 동작을 요청하는 단계와, When the amount of plastic deformation of the housing structure exceeds a predetermined threshold, requesting operation of an eddy current measuring device that measures the impedance value of the surface of the housing structure;
    상기 와전류 측정 장치로부터 상기 하우징 구조체의 표면의 임피던스 값을 수신하는 단계와,Receiving an impedance value of the surface of the housing structure from the eddy current measuring device;
    상기 하우징 구조체의 표면의 임피던스 값과 상기 하우징 구조체의 잔여 수명과의 관계를 기반으로, 상기 하우징 구조체의 표면의 임피던스 값에 대응되는 상기 하우징 구조체의 잔여 수명을 확인하는 단계를 포함하는,Based on the relationship between the impedance value of the surface of the housing structure and the remaining life of the housing structure, determining the remaining life of the housing structure corresponding to the impedance value of the surface of the housing structure,
    하우징 구조체의 상태 확인 방법.How to check the condition of the housing structure.
  11. 하우징 구조체와,a housing structure,
    상기 하우징 구조체와 객체의 충돌에 의해 발생되는 충돌 신호를 검출하는 적어도 하나의 센서와,At least one sensor that detects a collision signal generated by a collision between the housing structure and an object;
    하나 또는 복수의 명령어들을 포함하는 컴퓨터 판독 가능한 저장매체와,A computer-readable storage medium containing one or more instructions,
    상기 컴퓨터 판독 가능한 저장매체에 수록된 상기 하나 또는 복수의 명령어들을 실행하는 프로세서를 포함하고,Comprising a processor that executes the one or more instructions stored in the computer-readable storage medium,
    상기 프로세서는 상기 하나 또는 복수의 명령어들을 실행하여,The processor executes the one or more instructions,
    상기 적어도 하나의 센서로부터 제공되는 상기 충돌 신호를 사용하여 상기 충돌이 발생된 충돌 위치를 확인하고, 충돌 신호에 대한 하우징 구조체의 손상 상태를 확인하는데 필요한 정보가 학습된 누적 손상 모델을 사용하여, 상기 검출된 충돌 신호에 대한 상기 하우징 구조체의 손상 상태를 확인하고, 상기 하우징 구조체의 손상 상태를 제공하는,Using the collision signal provided from the at least one sensor, the collision location where the collision occurred is confirmed, and information necessary to determine the damage state of the housing structure for the collision signal is learned using a cumulative damage model, Confirming the damage state of the housing structure with respect to the detected collision signal and providing the damage state of the housing structure,
    하우징 구조체의 상태 확인 장치.A device for checking the condition of the housing structure.
  12. 제11항에 있어서,According to clause 11,
    상기 프로세서는,The processor,
    상기 충돌 신호를 상기 누적 손상 모델에 입력하고, 상기 누적 손상 모델을 통해 출력되는 소성 변형률을 확인하고,Input the collision signal into the cumulative damage model, check the plastic strain output through the cumulative damage model,
    상기 소성 변형률과 상기 하우징 구조체의 소성 변형량 사이의 관계를 기반으로, 상기 소성 변형률에 대응되는 상기 하우징 구조체의 소성 변형량을 확인하는,Based on the relationship between the plastic strain rate and the plastic deformation amount of the housing structure, confirming the plastic deformation amount of the housing structure corresponding to the plastic strain rate,
    하우징 구조체의 상태 확인 장치.A device for checking the condition of the housing structure.
  13. 제12항에 있어서,According to clause 12,
    상기 적어도 하나의 센서는,The at least one sensor is,
    음향 방출 신호(Acoustic Emission Signal)를 검출하는 음향 방출 센서(Acoustic Emission Sensor)를 포함하는,Including an Acoustic Emission Sensor that detects an acoustic emission signal,
    하우징 구조체의 상태 확인 장치.A device for checking the condition of the housing structure.
  14. 제14항에 있어서,According to clause 14,
    상기 누적 손상 모델은,The cumulative damage model is,
    상기 음향 방출 신호의 입력에 대하여 상기 소성 변형률을 출력하도록 학습된 기계학습 모델인,A machine learning model learned to output the plastic strain with respect to the input of the acoustic emission signal,
    하우징 구조체의 상태 확인 장치.A device for checking the condition of the housing structure.
  15. 제13항에 있어서,According to clause 13,
    상기 적어도 하나의 센서는,The at least one sensor is,
    음향 방출 신호(Acoustic Emission Signal)를 검출하는 음향 방출 센서(Acoustic Emission Sensor)를 포함하고,It includes an acoustic emission sensor that detects an acoustic emission signal,
    상기 프로세서는,The processor,
    상기 음향 방출 신호를 상기 누적 손상 모델에 입력하고, 상기 누적 손상 모델을 통해 출력되는 소성 변형률을 확인하고,Input the acoustic emission signal into the cumulative damage model, check the plastic strain output through the cumulative damage model,
    상기 소성 변형률과 하우징 구조체의 소성 변형량 사이의 관계를 기반으로, 상기 소성 변형률에 대응되는 상기 하우징 구조체의 소성 변형량을 확인하는,Based on the relationship between the plastic strain rate and the plastic deformation amount of the housing structure, confirming the plastic deformation amount of the housing structure corresponding to the plastic strain rate,
    하우징 구조체의 상태 확인 장치.A device for checking the condition of the housing structure.
  16. 제11항에 있어서,According to clause 11,
    상기 적어도 하나의 센서는,The at least one sensor is,
    상기 하우징 구조체에 마련되면, 상기 하우징 구조체의 표면에 전파하는 에너지를 전류값으로 측정하는 압전센서를 포함하는,When provided in the housing structure, it includes a piezoelectric sensor that measures energy propagating to the surface of the housing structure as a current value,
    하우징 구조체의 상태 확인 장치.A device for checking the condition of the housing structure.
  17. 제16항에 있어서,According to clause 16,
    상기 프로세서는,The processor,
    상기 압전센서를 사용하여 측정된 상기 전류값에 기초하여, 상기 충돌 위치를 결정하는,Determining the collision position based on the current value measured using the piezoelectric sensor,
    하우징 구조체의 상태 확인 장치.A device for checking the condition of the housing structure.
  18. 제12항에 있어서,According to clause 12,
    상기 하우징 구조체의 표면의 임피던스 값을 측정하는 와전류 측정 장치를 더 포함하는,Further comprising an eddy current measuring device that measures the impedance value of the surface of the housing structure,
    하우징 구조체의 상태 확인 장치.A device for checking the condition of the housing structure.
  19. 제18항에 있어서,According to clause 18,
    상기 프로세서는,The processor,
    상기 하우징 구조체의 소성 변형량이 미리 정해진 임계값을 초과함에 따라, 상기 하우징 구조체의 표면의 임피던스 값을 측정하는 와전류 측정 장치의 동작을 요청하고,As the amount of plastic deformation of the housing structure exceeds a predetermined threshold, requesting the operation of an eddy current measurement device that measures the impedance value of the surface of the housing structure,
    상기 와전류 측정 장치로부터 상기 하우징 구조체의 표면의 임피던스 값을 수신하고,Receiving an impedance value of the surface of the housing structure from the eddy current measuring device,
    상기 하우징 구조체의 표면의 임피던스 값과 상기 하우징 구조체의 잔여 수명과의 관계를 기반으로, 상기 하우징 구조체의 표면의 임피던스 값에 대응되는 상기 하우징 구조체의 잔여 수명을 확인하는,Based on the relationship between the impedance value of the surface of the housing structure and the remaining life of the housing structure, confirming the remaining life of the housing structure corresponding to the impedance value of the surface of the housing structure,
    하우징 구조체의 상태 확인 장치.A device for checking the condition of the housing structure.
  20. 컴퓨터 프로그램을 실행 가능한 하나 또는 복수의 명령어들을 저장하고 있는 비 일시적 컴퓨터 판독 가능 기록매체로서,A non-transitory computer-readable recording medium storing one or more instructions capable of executing a computer program,
    상기 하나 또는 복수의 명령어들은, 프로세서에 의해 실행되면,When the one or more instructions are executed by the processor,
    하우징 구조체와 객체의 충돌에 의해 발생되는 충돌 신호를 검출하는 단계와,detecting a collision signal generated by a collision between the housing structure and the object;
    상기 검출된 충돌 신호를 사용하여 상기 충돌이 발생된 충돌 위치를 확인하는 단계와,Confirming the collision location where the collision occurred using the detected collision signal;
    충돌 신호에 대한 하우징 구조체의 손상 상태를 확인하는데 필요한 정보가 학습된 누적 손상 모델을 사용하여, 상기 검출된 충돌 신호에 대한 상기 하우징 구조체의 손상 상태를 확인하는 단계와,Confirming the damage state of the housing structure in response to the detected collision signal using a cumulative damage model in which information necessary to determine the damage state of the housing structure in response to the collision signal has been learned;
    상기 하우징 구조체의 손상 상태를 제공하는 단계를 포함하는 하우징 구조체의 상태 확인 방법을 프로세서가 수행하도록 하기 위한 명령어를 포함하는Comprising instructions for causing a processor to perform a method for checking the state of a housing structure, including providing a damage state of the housing structure.
    비 일시적 컴퓨터 판독 가능한 기록매체.A non-transitory computer-readable recording medium.
PCT/KR2023/010328 2022-07-20 2023-07-18 Method for identifying real-time state of housing structure, device for identifying state of housing structure, program for performing method, and computer-readable recording medium WO2024019494A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0089794 2022-07-20
KR1020220089794A KR20240012186A (en) 2022-07-20 2022-07-20 Method for determining state of housing structure at real-time, apparatus for determining state of housing structure at real-time, computer program for performing the method, and computer readable storage medium inlcuding executions causing processor to perform the method

Publications (1)

Publication Number Publication Date
WO2024019494A1 true WO2024019494A1 (en) 2024-01-25

Family

ID=89618153

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010328 WO2024019494A1 (en) 2022-07-20 2023-07-18 Method for identifying real-time state of housing structure, device for identifying state of housing structure, program for performing method, and computer-readable recording medium

Country Status (2)

Country Link
KR (1) KR20240012186A (en)
WO (1) WO2024019494A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842301A (en) * 1988-09-02 1989-06-27 General Motors Corporation Acoustic emission automotive crash sensor
JP2005147983A (en) * 2003-11-19 2005-06-09 Honda Motor Co Ltd Collision-detecting device for vehicle
JP2009274588A (en) * 2008-05-14 2009-11-26 Mitsubishi Heavy Ind Ltd Aircraft soundness diagnostic device, method, and program
US20160259873A1 (en) * 2015-03-02 2016-09-08 General Electric Company Method of evaluating a part
US20210183180A1 (en) * 2017-12-05 2021-06-17 Bayerische Motoren Werke Aktiengesellschaft Method for Determining Damage Which Occurs to a Vehicle in the Event of an Accident Between a Vehicle and a Collision Partner

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4842301A (en) * 1988-09-02 1989-06-27 General Motors Corporation Acoustic emission automotive crash sensor
JP2005147983A (en) * 2003-11-19 2005-06-09 Honda Motor Co Ltd Collision-detecting device for vehicle
JP2009274588A (en) * 2008-05-14 2009-11-26 Mitsubishi Heavy Ind Ltd Aircraft soundness diagnostic device, method, and program
US20160259873A1 (en) * 2015-03-02 2016-09-08 General Electric Company Method of evaluating a part
US20210183180A1 (en) * 2017-12-05 2021-06-17 Bayerische Motoren Werke Aktiengesellschaft Method for Determining Damage Which Occurs to a Vehicle in the Event of an Accident Between a Vehicle and a Collision Partner

Also Published As

Publication number Publication date
KR20240012186A (en) 2024-01-29

Similar Documents

Publication Publication Date Title
WO2017204490A1 (en) Railway vehicle monitoring device and monitoring method using same
WO2020116030A1 (en) Road monitoring system, road monitoring device, road monitoring method, and non-transitory computer-readable medium
WO2018203594A1 (en) Apparatus and method for inspecting welding of secondary battery
CN115808324B (en) Light safety management monitoring method and system for small and medium span bridges
EP3961183A1 (en) Impact speed control method and apparatus, storage medium and electronic device
CN207851175U (en) A kind of electromagnetic compatibility free field anti-interference testing network communication monitoring system
WO2024019494A1 (en) Method for identifying real-time state of housing structure, device for identifying state of housing structure, program for performing method, and computer-readable recording medium
LeBlanc et al. Structural health monitoring of helicopter hard landing using 3D digital image correlation
AU2017375903B2 (en) Safety workbench, mobile laboratory and method
JP6664776B1 (en) Abnormality determination method and abnormality determination system for structure
CN203616644U (en) Portable LKJ monitoring system tester
CN113447283B (en) Failure detection method and device for under-train shock absorber
KR102262398B1 (en) System and method for diagnosing safety of facility using rfid communication
KR20100003648A (en) Crack monitoring system, crack monitoring method and computer readable medium on which crack monitoring program is recorded
Cao et al. Damage localization for prefabricated bridges group using the area-ratio of the strain time-history curve
CN113626936A (en) Method and device for predicting automobile friction abnormal sound risk
ATE352788T1 (en) METHOD AND DEVICE FOR DETERMINING THE COORDINATES OF THE POINTS OF AN OBJECT WITH RESPECT TO A REFERENCE SYSTEM USING ULTRASONIC IMPULSES
WO2019182200A1 (en) Coupling strength inspection device and coupling strength inspection system including same
JP6828130B1 (en) Rope inspection methods, rope inspection systems, and programs
JP7357272B2 (en) Information board anomaly detection system
CN109308040A (en) A kind of petroleum chemical enterprise's intelligent patrol detection device
WO2024043360A1 (en) Automatic vehicle frame measurement system
KR102213699B1 (en) A sensor unit of non-destructive inspection system
RU31006U1 (en) Aircraft Missile Launcher Diagnostic System
US20150170353A1 (en) Method and device for assessing the surface condition of rubber or plastic strands

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843340

Country of ref document: EP

Kind code of ref document: A1