WO2024043360A1 - Automatic vehicle frame measurement system - Google Patents

Automatic vehicle frame measurement system Download PDF

Info

Publication number
WO2024043360A1
WO2024043360A1 PCT/KR2022/012684 KR2022012684W WO2024043360A1 WO 2024043360 A1 WO2024043360 A1 WO 2024043360A1 KR 2022012684 W KR2022012684 W KR 2022012684W WO 2024043360 A1 WO2024043360 A1 WO 2024043360A1
Authority
WO
WIPO (PCT)
Prior art keywords
data
measurement
vehicle
vehicle body
measurement system
Prior art date
Application number
PCT/KR2022/012684
Other languages
French (fr)
Korean (ko)
Inventor
정현종
Original Assignee
정현종
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 정현종 filed Critical 정현종
Priority to PCT/KR2022/012684 priority Critical patent/WO2024043360A1/en
Publication of WO2024043360A1 publication Critical patent/WO2024043360A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J5/00Manipulators mounted on wheels or on carriages
    • B25J5/02Manipulators mounted on wheels or on carriages travelling along a guideway
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/16Measuring arrangements characterised by the use of optical techniques for measuring the deformation in a solid, e.g. optical strain gauge

Definitions

  • the present invention relates to an automatic vehicle frame measurement system.
  • This invention corresponds to the result of the project to develop an automatic measurement and damage analysis system for automobile body (frame) using task number D2121018 Lee Joo-sik Lift, sponsored by Gyeonggi-do Economic Science Promotion Agency.
  • Patent Registration No. 10-1657002 discloses a device for measuring the amount of collision deformation of an accident vehicle.
  • International Publication No. WO 2016/143750 discloses a vehicle specifications measurement device, a vehicle model determination device, and a vehicle specifications measurement method and program. In order to restore the vehicle condition, the condition of the damaged vehicle needs to be measured, and specifically, the shape of the frame must be measured. And such measurements need to be made automatically for measurement efficiency and error prevention.
  • the prior art does not disclose means capable of such precise measurement.
  • the present invention is intended to solve the problems of the prior art and has the following purposes.
  • the purpose of the present invention is to provide an automatic vehicle frame measurement system that automatically measures the deformation state of a vehicle that has been deformed due to various causes through a non-contact method, analyzes the level of damage, and enables vehicle repair based on that.
  • a vehicle frame automatic measurement system includes a path analysis setting module that sets a path for measurement; A measurement robot that moves along a set path and acquires image data and distance scan data for each part of the car body; and a data storage/analysis module that stores and analyzes data acquired by the measurement robot to generate vehicle body data.
  • the measurement robot includes a moving means capable of moving along a plane by a predetermined distance and a data acquisition module.
  • the moving means includes a motor and the data acquisition module includes a camera and a laser distance sensor.
  • the car body data becomes data about a damaged car body, and the damage level of the damaged car body is analyzed by comparing it with reference data of the vehicle.
  • the vehicle frame operation measurement system enables automatic measurement of the vehicle body by a measurement robot.
  • the measurement system according to the present invention allows the vehicle body or frame to be measured in a single work process while the vehicle is fixed to a portable lift to obtain related data.
  • work time can be shortened, and the automatic measurement process allows workers to perform other tasks during the measurement process, thereby improving work efficiency.
  • automatic measurement ensures measurement reliability, allows vehicle damage to be diagnosed based on the measurement results, and repairs can be made based on this.
  • the measurement system according to the present invention can be applied for various purposes and is not limited by vehicle type.
  • Figure 1 shows an embodiment of an automatic vehicle frame measurement system according to the present invention.
  • Figure 2 shows an embodiment of a measurement robot for a measurement system according to the present invention.
  • Figure 3 shows a detailed view of a measurement robot for a measurement system according to the present invention.
  • Figure 4 shows an example of a process in which a vehicle frame or body is measured in the measurement system according to the present invention.
  • Figure 5 shows an example of an image processing process in the system according to the present invention.
  • Figure 1 shows an embodiment of an automatic vehicle frame measurement system according to the present invention.
  • the vehicle frame automatic measurement system includes a path analysis setting module 11 that sets a path for measurement; A measurement robot 12 that acquires image data and distance scan data for each part of the vehicle body while moving along a set path; and a data storage/analysis module 13 that stores and analyzes data acquired by the measurement robot 12 to generate vehicle body data.
  • the vehicle may be, but is not limited to, a vehicle in which at least part of the body of the vehicle has been damaged due to an accident or other causes.
  • a path for acquiring data about the vehicle body frame may be analyzed and set by the path analysis setting module 11.
  • the path analysis setting module 11 can analyze and set a measurement path based on vehicle type, body shape, damage location, or similar vehicle data.
  • the path analysis setting module 11 can set a path by referring to data related to the vehicle body stored in the vehicle body data module 14.
  • the body data module 14 can store various data related to the vehicle, for example, the type of vehicle, dimensions for each part, structure of the vehicle, location of parts, or similar vehicle-related data.
  • the path analysis setting module 11 may set a path for measuring the vehicle body frame based on data stored in the vehicle data module 14 or data on the damage location of the vehicle.
  • the set path can be saved, and data for each part of the vehicle frame can be acquired as the measurement robot 12 moves along the set path.
  • the measurement robot 12 includes a moving means that moves a predetermined distance along a set path; Image acquisition means for acquiring images of each part of the vehicle body frame; And it may include a distance measuring means for obtaining the distance for each part. Image data and distance scan data for each part of the vehicle body can be obtained by such a measurement robot 12.
  • the measurement robot 12 can automatically acquire image data and distance scan data while moving along the path set by the path analysis setting module 11.
  • the robot control module 15 may be installed, and the operation of the measurement robot 12 may be controlled by the robot control module 15.
  • the robot control module 15 may be, for example, an operating program and may be installed on a computer such as a personal computer (PC).
  • the operation of the measurement robot 12 can be controlled by the robot control module 15, and the measurement robot 12 can acquire data by measuring each part of the car body frame using an automatic measurement method. In this way, data acquired by the measurement robot 12 can be transmitted to the data storage/analysis module 13.
  • the data storage/acquisition module 13 can store data acquired by the measurement robot 12 and analyze it to obtain data on the entire vehicle body frame. If necessary, the data storage/acquisition module 13 may generate a vehicle body model and generate vehicle body image data based on the generated data.
  • the data storage/analysis module 13 can generate data on the level of damage by comparing the acquired data with car body data before damage. Additionally, the area that needs to be restored, the level of restoration, or the type of restoration in relation to the damaged car body can be analyzed. In this way, data related to repair of the body frame, such as body frame data, damage type, damage level, or restoration level, may be analyzed and generated and transmitted to the management module 16.
  • the management module 16 can generate vehicle body diagnostic data according to the analysis results and take subsequent actions based on it. The management module 16 may take various actions as required for the damaged vehicle, but the present invention is not limited thereto.
  • Figure 2 shows an embodiment of a measurement robot for a measurement system according to the present invention.
  • the measurement robot includes a bed 21 having an overall rectangular plane shape; A pair of guide rails (22a, 22b) formed to extend along the longitudinal direction of the bed (21); a pair of base plates (23a, 23b) movable along guide rails (22a, 22b); Measurement paths (24a, 24b) formed on a pair of base plates (23a, 23b) to extend in a direction perpendicular to the direction of extension of the guide rails (22a, 22b); and measurement modules 26a, 26b movable along the measurement paths 24a, 24b.
  • the measurement robot may be placed underneath the vehicle while the vehicle is secured to a vehicle anchoring device such as a portable lift.
  • a bed 21 having a rectangular shape may be placed below the vehicle, and a pair of guide rails 22a and 22b may extend along the longitudinal direction of the vehicle.
  • Each base plate (23a, 23b) can be moved along each guide rail (22a, 22b), and each base plate (23a, 23b) is moved in a direction perpendicular to the extension direction of the bed 21. It can be an elongated rectangular shape.
  • Measurement paths 24a and 24b may be formed on the base plates 23a and 23b having this structure. The measurement paths 24a and 24b may extend in a direction perpendicular to the extension direction of the guide rails 22a and 22b.
  • Reference blocks (25a, 25b) may be formed on one side of the base plates (23a, 23b), and the relative positions of the bed 21 and the base plates (23a, 23b) can be confirmed by the reference blocks (25a, 25b). It can be.
  • the base plates 23a and 23b need to be aligned in a predetermined direction, and this alignment can be confirmed using the reference blocks 25a and 25b.
  • Measurement modules 26a, 26b may be placed on the upper surfaces of the base plates 23a, 23b, and the measurement modules 26a, 26b may be moved along the measurement paths 24a, 24b.
  • the measurement modules 26a and 26b can move along the XY-plane and measure the lower part of the vehicle body to generate vehicle body frame data.
  • the measurement modules 26a and 26b may include a distance measurement means and an image acquisition means, the distance measurement means may be a laser scanner or an ultrasonic scanner, and the image acquisition means may be a camera.
  • the measurement modules 26a and 26b can acquire distance data and image data for each part of the car body frame while moving along the XY-plane, and the acquired data is transmitted to the analysis module to obtain dimensional data and image data for the entire car body frame. Image data may be acquired.
  • the measurement modules 26a and 26b may include various means for measuring the vehicle body frame, and the present invention is not limited thereby.
  • Figure 3 shows a detailed view of a measurement robot for a measurement system according to the present invention.
  • the moving means includes motors 31a and 31b, and the data acquisition module includes cameras 33a and 33b and laser distance sensors 32a and 32b.
  • the motors 31a and 31b may be motors capable of measuring rotation angles, such as servo motors or step motors, and a rotation unit 37a such as a belt pulley may be coupled to the motors 31a and 31b.
  • a power transmission means such as a timing belt may be coupled to the rotation unit 37a to rotate the gears or similar rotation inducing units 39a and 39b.
  • the moving blocks 36a and 36b move a predetermined distance along the measurement paths 24a and 24b formed on the base plates 23a and 23b.
  • Movement of the movable blocks 36a and 36b along the base plates 23a and 23b according to the driving of the motors 31a and 31b can be accomplished in various ways and are not limited to the presented embodiment.
  • the moving blocks 36a and 36b may be plate-shaped, and laser distance sensors 32a and 32b and cameras 33a and 33b may be disposed on the moving blocks 36a and 36b.
  • the laser distance sensors 32a and 32b may be continuous distance measurement means such as laser scanners, and the cameras 33a and 33b may be aligned to face the same direction as the laser distance sensors 32a and 32b.
  • a cable carrier (34a, 34b) may be formed on one side of the base plates (23a, 23b), and a movement guidance means is connected to the cable carriers (34a, 34b) so that the base plates (23a, 23b) are guided by the guide rails (22a, 23b). It can be moved along 22b). In this way, a pair of measurement modules moves along a pair of guide rails 22a and 22b formed in parallel along the longitudinal direction and simultaneously moves in a random direction along the measurement paths 24a and 24b, respectively.
  • Image data and distance data of one side of the vehicle body frame can be obtained.
  • Each measurement module can be moved independently, and each can be automatically moved along a preset path as described above. Additionally, data can be automatically acquired during the movement process and transmitted to the analysis module. Below, this process is explained in detail.
  • Figure 4 shows an example of a process in which a vehicle frame or body is measured in the measurement system according to the present invention.
  • the car body data becomes data about the damaged car body, and the damage level of the damaged car body is analyzed by comparing it with the vehicle's reference data.
  • the measurement robot can be located below the vehicle and an image of the vehicle body can be acquired (P41).
  • XY movement coordinates for measurement can be set based on reference data for the car body and the car body image (P42), and this process can be carried out automatically on a remotely placed computer such as a PC.
  • the camera/laser distance sensor may operate (P43), and measurement of the vehicle body frame may proceed (P44).
  • the measurement robot 42 can continuously acquire distance data and image data of the underside of the vehicle body while moving along the XY-plane, as described above.
  • vehicle data 43 can be referenced, and the measurement results can be analyzed to analyze the level of damage (P45).
  • a diagnosis of body damage can be made (P48) and vehicle data (43) can be referenced.
  • P43 dimensional data for restoration of the vehicle body can be generated, and the parts that need to be repaired or the extent of repair can be determined.
  • a 2D model or 3D model of the vehicle frame can be created as needed.
  • a car body repair method can be determined (P46), and then repairs can be performed based on the measurement data (P47).
  • the damage level is progressed by a program based on the acquired data, thereby ensuring reliability of damage analysis of the vehicle frame and improving work efficiency.
  • Figure 5 shows an example of an image processing process in the system according to the present invention.
  • image and distance data can be acquired partially and continuously by a metrology robot, and such partial image and distance data need to be synthesized. Additionally, a 2D image or 3D image can be created based on distance data, and partial images need to be synthesized or made into an appropriate shape.
  • image synthesis includes the step of inputting a camera image (P51); Step where white balance is adjusted (P52); A step in which partial images are stitched (P53); A step in which an alpha value is input to create an alpha image (P54); And it can be synthesized through the step of generating a composite image (P55).
  • partial shapes or figures need to be searched and a matched image created based on them.
  • the process of generating such a registered image includes applying a histogram equalization function to equalize the image (P61); A step in which the smoothed image is binarized (P62); A step in which corners of the binarized image are extracted (P63); A step in which a partial shape is created based on the extracted corners (P64); and a step (P65) in which the figure position value is analyzed and generated.
  • Partial images acquired by a camera or generated by a laser distance sensor can be processed in various ways and combined to synthesize them, and are not limited to the presented embodiment.
  • the present invention relates to an automatic measurement system for car body frames and is used in various fields of the automobile industry.

Landscapes

  • Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

The present invention relates to an automatic vehicle frame measurement system. The automatic vehicle frame measurement system comprises: a route analysis and setting module (11) that sets a route for measurement; a measurement robot (12) that acquires image data and distance scan data for each portion of a vehicle body while being moved along the set route; and a data storage/analysis module (13) that stores and analyzes the data acquired by the measurement robot (12), and thereby generates vehicle body data.

Description

차량 프레임 자동 계측 시스템Vehicle frame automatic measurement system
본 발명은 차량 프레임 자동 계측 시스템에 관한 것이다. The present invention relates to an automatic vehicle frame measurement system.
본 발명은 경기도 경제과학진흥원의 주관에 의한 과제번호 D2121018 이주식 리트프를 활용한 자동차 차체(프레임) 자동 계측 및 파손 정도 분석 시스템 개발 사업에 따른 결과물에 해당한다. This invention corresponds to the result of the project to develop an automatic measurement and damage analysis system for automobile body (frame) using task number D2121018 Lee Joo-sik Lift, sponsored by Gyeonggi-do Economic Science Promotion Agency.
사고 차량은 자동차 정비소, 공업소 또는 이와 유사한 차량 수리소에서 수리가 될 수 있고, 수리 과정에서 외관, 차체 또는 다양한 작동 부품의 변형이 복원되어야 한다. 이와 같은 복원을 위하여 정상 상태의 차량 상태에 대한 정보가 요구되고, 이와 함께 변형 수준이 정확하게 계측될 필요가 있다. 이와 같은 변형 수준의 계측과 관련하여 특허등록번호 10-1657002는 사고 차량의 충돌 변형량 측정 장치에 대하여 개시한다. 또한 국제공개번호 WO 2016/143750은 차량 제원 계측 장치, 차종 판별 장치, 차량 제원 계측 방법 및 프로그램에 대하여 개시한다. 차량 상태 복원을 위하여 손상된 차량의 상태가 계측될 필요가 있고, 구체적으로 프레임의 형상이 계측되어야 한다. 그리고 이와 같은 계측은 계측 효율성 및 오차 방지를 위하여 자동으로 이루어질 필요가 있다. 그러나 선행기술은 이와 같은 정밀 계측이 가능한 수단에 대하여 개시하지 않는다. Accidental vehicles may be repaired at an automobile repair shop, industrial shop, or similar vehicle repair shop, and during the repair process, any deformation of the exterior, body, or various operating parts must be restored. For such restoration, information about the normal state of the vehicle is required, and the level of deformation needs to be accurately measured. In relation to measuring the level of deformation, Patent Registration No. 10-1657002 discloses a device for measuring the amount of collision deformation of an accident vehicle. In addition, International Publication No. WO 2016/143750 discloses a vehicle specifications measurement device, a vehicle model determination device, and a vehicle specifications measurement method and program. In order to restore the vehicle condition, the condition of the damaged vehicle needs to be measured, and specifically, the shape of the frame must be measured. And such measurements need to be made automatically for measurement efficiency and error prevention. However, the prior art does not disclose means capable of such precise measurement.
본 발명은 선행기술의 문제점을 해결하기 위한 것으로 아래와 같은 목적을 가진다. The present invention is intended to solve the problems of the prior art and has the following purposes.
본 발명의 목적은 다양한 원인으로 인하여 변형이 된 차량의 변형 상태를 비접촉 방식에 의하여 자동으로 계측하여 손상 수준을 분석하고 그에 기초하여 차량 수리가 가능하도록 하는 차량 프레임 자동 계측 시스템을 제공하는 것이다. The purpose of the present invention is to provide an automatic vehicle frame measurement system that automatically measures the deformation state of a vehicle that has been deformed due to various causes through a non-contact method, analyzes the level of damage, and enables vehicle repair based on that.
본 발명의 적절한 실시 형태에 따르면, 차량 프레임 자동 계측 시스템은 측정을 위한 경로를 설정하는 경로 분석 설정 모듈; 설정된 경로를 따라 이동되면서 차체의 각 부분에 대한 이미지 데이터 및 거리 스캔 데이터를 획득하는 계측 로봇; 및 계측 로봇에 의하여 획득된 데이터를 저장하고, 분석하여 차체 데이터를 생성하는 데이터 저장/분석 모듈을 포함한다. According to a preferred embodiment of the present invention, a vehicle frame automatic measurement system includes a path analysis setting module that sets a path for measurement; A measurement robot that moves along a set path and acquires image data and distance scan data for each part of the car body; and a data storage/analysis module that stores and analyzes data acquired by the measurement robot to generate vehicle body data.
본 발명의 다른 적절한 실시 형태에 따르면, 계측 로봇은 미리 결정된 거리만큼 평면을 따라 이동 가능한 이동 수단 및 데이터 획득 모듈을 포함한다. According to another suitable embodiment of the present invention, the measurement robot includes a moving means capable of moving along a plane by a predetermined distance and a data acquisition module.
본 발명의 또 다른 적절한 실시 형태에 따르면, 이동 수단은 모터를 포함하고, 데이터 획득 모듈은 카메라 및 레이저 거리 센서를 포함한다. According to another suitable embodiment of the invention, the moving means includes a motor and the data acquisition module includes a camera and a laser distance sensor.
본 발명의 또 다른 적절한 실시 형태에 따르면, 차체 데이터는 손상된 차체에 대한 데이터가 되고, 차량의 기준 데이터와 대비되어 손상된 차체의 파손 수준이 분석된다. According to another suitable embodiment of the present invention, the car body data becomes data about a damaged car body, and the damage level of the damaged car body is analyzed by comparing it with reference data of the vehicle.
본 발명에 따른 차량 프레임 작동 계측 시스템은 계측 로봇에 의하여 차체의 자동 계측이 가능하도록 한다. 예를 들어 본 발명에 따른 계측 시스템은 이주식 리프트에 차량이 고정된 상태에서 한 번의 작업 공정으로 차체 또는 프레임의 계측되어 관련 데이터가 획득되도록 한다. 이에 의하여 작업 시간을 단축시킬 수 있고, 자동 계측 과정으로 인하여 계측 과정에서 작업자가 다른 작업이 가능하여 작업 효율성이 향상되도록 한다. 또한 자동 계측으로 인하여 계측 신뢰도가 확보되도록 하면서 계측 결과에 따라 차량 손상 진단이 가능하고 이에 기초하여 수리가 가능하도록 한다. 본 발명에 따른 계측 시스템에 다양한 목적으로 적용될 수 있고, 차량 종류에 의하여 제한되지 않는다. The vehicle frame operation measurement system according to the present invention enables automatic measurement of the vehicle body by a measurement robot. For example, the measurement system according to the present invention allows the vehicle body or frame to be measured in a single work process while the vehicle is fixed to a portable lift to obtain related data. As a result, work time can be shortened, and the automatic measurement process allows workers to perform other tasks during the measurement process, thereby improving work efficiency. In addition, automatic measurement ensures measurement reliability, allows vehicle damage to be diagnosed based on the measurement results, and repairs can be made based on this. The measurement system according to the present invention can be applied for various purposes and is not limited by vehicle type.
도 1은 본 발명에 따른 차량 프레임 자동 계측 시스템의 실시 예를 도시한 것이다. Figure 1 shows an embodiment of an automatic vehicle frame measurement system according to the present invention.
도 2는 본 발명에 따른 계측 시스템을 위한 계측 로봇의 실시 예를 도시한 것이다. Figure 2 shows an embodiment of a measurement robot for a measurement system according to the present invention.
도 3은 본 발명에 따른 계측 시스템을 위한 계측 로봇의 상세도를 도시한 것이다. Figure 3 shows a detailed view of a measurement robot for a measurement system according to the present invention.
도 4는 본 발명에 따른 계측 시스템에서 차량 프레임 또는 차체가 계측되는 과정의 실시 예를 도시한 것이다. Figure 4 shows an example of a process in which a vehicle frame or body is measured in the measurement system according to the present invention.
도 5는 본 발명에 따른 시스템에서 이미지가 처리되는 과정의 실시 예를 도시한 것이다. Figure 5 shows an example of an image processing process in the system according to the present invention.
아래에서 본 발명은 첨부된 도면에 제시된 실시 예를 참조하여 상세하게 설명이 되지만 실시 예는 본 발명의 명확한 이해를 위한 것으로 본 발명은 이에 제한되지 않는다. 아래의 설명에서 서로 다른 도면에서 동일한 도면 부호를 가지는 구성요소는 유사한 기능을 가지므로 발명의 이해를 위하여 필요하지 않는다면 반복하여 설명이 되지 않으며 공지의 구성요소는 간략하게 설명이 되거나 생략이 되지만 본 발명의 실시 예에서 제외되는 것으로 이해되지 않아야 한다. Below, the present invention will be described in detail with reference to the embodiments shown in the attached drawings, but the examples are for a clear understanding of the present invention and the present invention is not limited thereto. In the description below, components having the same reference numerals in different drawings have similar functions, so unless necessary for understanding the invention, the description will not be repeated, and well-known components will be briefly described or omitted, but the present invention It should not be understood as being excluded from the embodiments.
도 1은 본 발명에 따른 차량 프레임 자동 계측 시스템의 실시 예를 도시한 것이다. Figure 1 shows an embodiment of an automatic vehicle frame measurement system according to the present invention.
도 1을 참조하면, 차량 프레임 자동 계측 시스템은 측정을 위한 경로를 설정하는 경로 분석 설정 모듈(11); 설정된 경로를 따라 이동되면서 차체의 각 부분에 대한 이미지 데이터 및 거리 스캔 데이터를 획득하는 계측 로봇(12); 및 계측 로봇(12)에 의하여 획득된 데이터를 저장하고, 분석하여 차체 데이터를 생성하는 데이터 저장/분석 모듈(13)을 포함한다.Referring to Figure 1, the vehicle frame automatic measurement system includes a path analysis setting module 11 that sets a path for measurement; A measurement robot 12 that acquires image data and distance scan data for each part of the vehicle body while moving along a set path; and a data storage/analysis module 13 that stores and analyzes data acquired by the measurement robot 12 to generate vehicle body data.
차량은 사고 또는 다른 원인으로 인하여 차체의 적어도 일부가 손상된 차량이 될 수 있지만 이에 제한되지 않는다. 차체 프레임에 대한 데이터를 획득하기 위한 경로가 경로 분석 설정 모듈(11)에 의하여 분석 및 설정될 수 있다. 경로 분석 설정 모듈(11)은 차량의 종류, 차체의 형태, 손상 위치 또는 이와 유사한 차량에 대한 데이터를 기준으로 계측 경로를 분석하여 설정할 수 있다. 경로 분석 설정 모듈(11)은 차체 데이터 모듈(14)에 저장된 차체와 관련된 데이터를 참조하여 경로를 설정할 수 있다. 차체 데이터 모듈(14)은 차량과 관련된 다양한 데이터를 저장할 수 있고, 예를 들어 차량의 종류, 각 부분에 대한 치수, 차량의 구조, 부품의 위치 또는 이와 유사한 차량 관련 데이터를 저장할 수 있다. 경로 분석 설정 모듈(11)은 차량 데이터 모듈(14)에 저장된 데이터 또는 차량의 손상 위치에 대한 데이터에 기초하여 차체 프레임의 계측을 위한 경로를 설정할 수 있다. 설정된 경로가 저장될 수 있고, 이와 같이 설정된 경로를 따라 계측 로봇(12)이 이동되면서 차량 프레임의 각 부분에 대한 데이터가 획득될 수 있다. 계측 로봇(12)은 설정된 경로를 따라 미리 정해진 거리만큼 이동되는 이동 수단; 차체 프레임의 각 부분의 이미지를 획득하는 영상 획득 수단; 및 각 부분에 대한 거리를 획득하는 거리 측정 수단을 포함할 수 있다. 이와 같은 계측 로봇(12)에 의하여 차체의 각 부분에 대한 이미지 데이터 및 거리 스캔 데이터가 획득될 수 있다. 계측 로봇(12)은 경로 분석 설정 모듈(11)에 의하여 설정된 경로를 따라 이동되면서 자동으로 이미지 데이터 및 거리 스캔 데이터를 획득할 수 있다. 구체적으로 로봇 제어 모듈(15)이 설치될 수 있고, 로봇 제어 모듈(15)에 의하여 계측 로봇(12)의 작동이 제어될 수 있다. 로봇 제어 모듈(15)은 예를 들어 작동 프로그램이 될 수 있고, PC(personal computer)와 같은 컴퓨터에 설치될 수 있다. 로봇 제어 모듈(15)에 의하여 계측 로봇(12)의 작동이 제어될 수 있고, 계측 로봇(12)은 자동 계측 방식으로 차체 프레임의 각 부분을 계측하여 데이터를 획득할 수 있다. 이와 같은 방법으로 계측 로봇(12)에 의하여 획득된 데이터가 데이터 저장/분석 모듈(13)로 전송될 수 있다. 데이터 저장/획득 모듈(13)은 계측 로봇(12)에 의하여 획득된 데이터를 저장하고, 이를 분석하여 차체 프레임 전체에 대한 데이터를 획득할 수 있다. 필요에 따라 데이터 저장/획득 모듈(13)은 차체 모델을 생성할 수 있고, 생성된 데이터에 기초하여 차체 이미지 데이터를 생성할 수 있다. 또한 데이터 저장/분석 모듈(13)은 획득된 데이터와 손상이 되기 전 차체 데이터를 비교하여 손상 수준에 대한 데이터를 생성할 수 있다. 또한 손상된 차체와 관련하여 복원이 되어야 하는 부위, 복원 수준 또는 복원 형태가 분석될 수 있다. 이와 같이 차체 프레임 데이터, 손상 형태, 손상 수준 또는 복원 수준과 같이 차체 프레임의 수리와 관련된 데이터가 분석되어 생성되면 관리 모듈(16)로 전송될 수 있다. 관리 모듈(16)은 분석 결과에 따라 차체 진단 데이터를 생성할 수 있고, 그에 기초하여 차후 조치를 취할 수 있다. 관리 모듈(16)은 손상된 차량에 대하여 요구되는 다양한 조치를 취할 수 있고 이에 의하여 본 발명은 제한되지 않는다. The vehicle may be, but is not limited to, a vehicle in which at least part of the body of the vehicle has been damaged due to an accident or other causes. A path for acquiring data about the vehicle body frame may be analyzed and set by the path analysis setting module 11. The path analysis setting module 11 can analyze and set a measurement path based on vehicle type, body shape, damage location, or similar vehicle data. The path analysis setting module 11 can set a path by referring to data related to the vehicle body stored in the vehicle body data module 14. The body data module 14 can store various data related to the vehicle, for example, the type of vehicle, dimensions for each part, structure of the vehicle, location of parts, or similar vehicle-related data. The path analysis setting module 11 may set a path for measuring the vehicle body frame based on data stored in the vehicle data module 14 or data on the damage location of the vehicle. The set path can be saved, and data for each part of the vehicle frame can be acquired as the measurement robot 12 moves along the set path. The measurement robot 12 includes a moving means that moves a predetermined distance along a set path; Image acquisition means for acquiring images of each part of the vehicle body frame; And it may include a distance measuring means for obtaining the distance for each part. Image data and distance scan data for each part of the vehicle body can be obtained by such a measurement robot 12. The measurement robot 12 can automatically acquire image data and distance scan data while moving along the path set by the path analysis setting module 11. Specifically, the robot control module 15 may be installed, and the operation of the measurement robot 12 may be controlled by the robot control module 15. The robot control module 15 may be, for example, an operating program and may be installed on a computer such as a personal computer (PC). The operation of the measurement robot 12 can be controlled by the robot control module 15, and the measurement robot 12 can acquire data by measuring each part of the car body frame using an automatic measurement method. In this way, data acquired by the measurement robot 12 can be transmitted to the data storage/analysis module 13. The data storage/acquisition module 13 can store data acquired by the measurement robot 12 and analyze it to obtain data on the entire vehicle body frame. If necessary, the data storage/acquisition module 13 may generate a vehicle body model and generate vehicle body image data based on the generated data. Additionally, the data storage/analysis module 13 can generate data on the level of damage by comparing the acquired data with car body data before damage. Additionally, the area that needs to be restored, the level of restoration, or the type of restoration in relation to the damaged car body can be analyzed. In this way, data related to repair of the body frame, such as body frame data, damage type, damage level, or restoration level, may be analyzed and generated and transmitted to the management module 16. The management module 16 can generate vehicle body diagnostic data according to the analysis results and take subsequent actions based on it. The management module 16 may take various actions as required for the damaged vehicle, but the present invention is not limited thereto.
도 2는 본 발명에 따른 계측 시스템을 위한 계측 로봇의 실시 예를 도시한 것이다. Figure 2 shows an embodiment of a measurement robot for a measurement system according to the present invention.
도 2를 참조하면, 계측 로봇은 전체적으로 사각 평면 형상이 되는 베드(21); 베드(21)의 길이 방향을 따라 연장되도록 형성된 한 쌍의 유도 레일(22a, 22b); 유도 레일(22a, 22b)을 따라 이동 가능한 한 쌍의 베이스 판(23a, 23b); 한 쌍의 베이스 판(23a, 23b)에 유도 레일(22a, 22b)의 연장 방향에 대하여 수직이 되는 방향으로 연장되도록 형성된 계측 경로(24a, 24b); 및 계측 경로(24a, 24b)를 따라 이동 가능한 측정 모듈(26a, 26b)을 포함한다. 계측 로봇은 차량이 이주식 리프트와 같은 차량 고정 설비에 고정된 상태에서 차량의 아래쪽에 배치될 수 있다. 구체적으로 직사각형 형상이 되는 베드(21)가 차량의 아래쪽에 배치될 수 있고, 한 쌍의 유도 레일(22a, 22b)은 차량의 길이 방향을 따라 연장될 수 있다. 각각의 유도 레일(22a, 22b)을 따라 각각의 베이스 판(23a, 23b)이 이동될 수 있고, 각각의 베이스 판(23a, 23b)이 베드(21)의 연장 방향에 대하여 수직이 되는 방향으로 연장되는 직사각형 형상이 될 수 있다. 이와 같은 구조를 가지는 베이스 판(23a, 23b)에 계측 경로(24a, 24b)가 형성될 수 있다. 계측 경로(24a, 24b)는 유도 레일(22a, 22b)의 연장 방향에 대하여 수직이 되는 방향으로 연장될 수 있다. 이와 같이 유도 레일(22a, 22b)과 계측 경로(24a, 24b)는 각각 XY-축 방향을 형성할 수 있다. 베이스 판(23a, 23b)의 한쪽 면에 기준 블록(25a, 25b)이 형성될 수 있고, 기준 블록(25a, 25b)에 의하여 베드(21)와 베이스 판(23a, 23b)이 상대적인 위치가 확인될 수 있다. 측정 과정에서 베이스 판(23a, 23b)은 정해진 방향으로 정렬될 필요가 있고, 이와 같은 정렬 상태가 기준 블록(25a, 25b)에 의하여 확인될 수 있다. 베이스 판(23a, 23b)의 위쪽 면에 측정 모듈(26a, 26b)이 배치될 수 있고, 측정 모듈(26a, 26b)은 계측 경로(24a, 24b)를 따라 이동될 수 있다. 이에 의하여 측정 모듈(26a, 26b)은 XY-평면을 따라 이동 가능하고, 차체의 아래쪽 부분을 계측하여 차체 프레임 데이터를 생성할 수 있다. 측정 모듈(26a, 26b)은 거리 측정 수단 및 이미지 획득 수단을 포함할 수 있고, 거리 측정 수단은 레이저 스캐너 또는 초음파 스캐너가 될 수 있고, 이미지 획득 수단은 카메라가 될 수 있다. 측정 모듈(26a, 26b)은 XY-평면을 따라 이동되면서 차체 프레임의 각 부분에 대한 거리 데이터 및 이미지 데이터를 획득할 수 있고, 획득된 데이터가 분석 모듈로 전송되어 차체 프레임 전체에 대한 치수 데이터 및 이미지 데이터가 획득될 수 있다. 측정 모듈(26a, 26b)은 차체 프레임의 측정을 위한 다양한 수단을 포함할 수 있고 이에 의하여 본 발명은 제한되지 않는다. Referring to FIG. 2, the measurement robot includes a bed 21 having an overall rectangular plane shape; A pair of guide rails (22a, 22b) formed to extend along the longitudinal direction of the bed (21); a pair of base plates (23a, 23b) movable along guide rails (22a, 22b); Measurement paths (24a, 24b) formed on a pair of base plates (23a, 23b) to extend in a direction perpendicular to the direction of extension of the guide rails (22a, 22b); and measurement modules 26a, 26b movable along the measurement paths 24a, 24b. The measurement robot may be placed underneath the vehicle while the vehicle is secured to a vehicle anchoring device such as a portable lift. Specifically, a bed 21 having a rectangular shape may be placed below the vehicle, and a pair of guide rails 22a and 22b may extend along the longitudinal direction of the vehicle. Each base plate (23a, 23b) can be moved along each guide rail (22a, 22b), and each base plate (23a, 23b) is moved in a direction perpendicular to the extension direction of the bed 21. It can be an elongated rectangular shape. Measurement paths 24a and 24b may be formed on the base plates 23a and 23b having this structure. The measurement paths 24a and 24b may extend in a direction perpendicular to the extension direction of the guide rails 22a and 22b. In this way, the guide rails 22a and 22b and the measurement paths 24a and 24b can each form the XY-axis direction. Reference blocks (25a, 25b) may be formed on one side of the base plates (23a, 23b), and the relative positions of the bed 21 and the base plates (23a, 23b) can be confirmed by the reference blocks (25a, 25b). It can be. During the measurement process, the base plates 23a and 23b need to be aligned in a predetermined direction, and this alignment can be confirmed using the reference blocks 25a and 25b. Measurement modules 26a, 26b may be placed on the upper surfaces of the base plates 23a, 23b, and the measurement modules 26a, 26b may be moved along the measurement paths 24a, 24b. Thereby, the measurement modules 26a and 26b can move along the XY-plane and measure the lower part of the vehicle body to generate vehicle body frame data. The measurement modules 26a and 26b may include a distance measurement means and an image acquisition means, the distance measurement means may be a laser scanner or an ultrasonic scanner, and the image acquisition means may be a camera. The measurement modules 26a and 26b can acquire distance data and image data for each part of the car body frame while moving along the XY-plane, and the acquired data is transmitted to the analysis module to obtain dimensional data and image data for the entire car body frame. Image data may be acquired. The measurement modules 26a and 26b may include various means for measuring the vehicle body frame, and the present invention is not limited thereby.
도 3은 본 발명에 따른 계측 시스템을 위한 계측 로봇의 상세도를 도시한 것이다. Figure 3 shows a detailed view of a measurement robot for a measurement system according to the present invention.
도 3을 참조하면, 이동 수단은 모터(31a, 31b)를 포함하고, 데이터 획득 모듈은 카메라(33a, 33b) 및 레이저 거리 센서(32a, 32b)를 포함한다. 모터(31a, 31b)는 서보 모터 또는 스텝 모터와 같이 회전 각도의 측정이 가능한 모터가 될 수 있고, 모터(31a, 31b)에 벨트 풀리와 같은 회전 유닛(37a)이 결합될 수 있다. 회전 유닛(37a)에 타이밍 벨트와 같은 동력 전달 수단이 결합되어 기어 또는 이와 유사한 회전 유도 유닛(39a, 39b)을 회전시킬 수 있다. 회전 유도 유닛(39a, 39b)의 회전에 따라 회전 축(38a)이 회전되면서 베이스 판(23a), 23b)에 형성된 계측 경로(24a, 24b)를 따라 이동 블록(36a, 36b)이 정해진 거리만큼 이동될 수 있다. 모터(31a, 31b)의 구동에 따른 베이스 판(23a, 23b)을 따른 이동 블록(36a, 36b)의 이동은 다양한 방법으로 이루어질 수 있고 제시된 실시 예에 제한되지 않는다. 이동 블록(36a, 36b)은 판 형상이 될 수 있고, 이동 블록(36a, 36b)에 레이저 거리 센서(32a, 32b) 및 카메라(33a, 33b)가 배치될 수 있다. 레이저 거리 센서(32a, 32b)는 레이저 스캐너와 같은 연속적인 거리 측정 수단이 될 수 있고, 카메라(33a, 33b)는 레이저 거리 센서(32a, 32b)와 동일한 방향을 향하도록 정렬될 수 있다. 베이스 판(23a, 23b)의 한쪽에 케이블 캐리어(34a, 34b)가 형성될 수 있고, 케이블 캐리어(34a, 34b)에 이동 유도 수단이 연결되어 베이스 판(23a, 23b)이 유도 레일(22a, 22b)을 따라 이동될 수 있다. 이와 같이 한 쌍의 한 쌍의 측정 모듈이 길이 방향을 따라 나란하게 형성된 한 쌍의 유도 레일(22a, 22b)을 따라 이동되면서 이와 동시에 계측 경로(24a, 24b)를 따라 임의의 방향으로 이동되면서 각각 차체 프레임의 한쪽의 이미지 데이터 및 거리 데이터를 획득할 수 있다. 각각의 측정 모듈은 독립적으로 이동될 수 있고, 각각 위에서 설명된 것처럼 미리 설정된 경로를 따라 자동으로 이동될 수 있다. 또한 이동 과정에서 자동으로 데이터를 획득하여 분석 모듈로 전송할 수 있다. 아래에서 이와 같은 과정에 대하여 구체적으로 설명된다. Referring to FIG. 3, the moving means includes motors 31a and 31b, and the data acquisition module includes cameras 33a and 33b and laser distance sensors 32a and 32b. The motors 31a and 31b may be motors capable of measuring rotation angles, such as servo motors or step motors, and a rotation unit 37a such as a belt pulley may be coupled to the motors 31a and 31b. A power transmission means such as a timing belt may be coupled to the rotation unit 37a to rotate the gears or similar rotation inducing units 39a and 39b. As the rotation axis 38a rotates according to the rotation of the rotation induction units 39a and 39b, the moving blocks 36a and 36b move a predetermined distance along the measurement paths 24a and 24b formed on the base plates 23a and 23b. can be moved Movement of the movable blocks 36a and 36b along the base plates 23a and 23b according to the driving of the motors 31a and 31b can be accomplished in various ways and are not limited to the presented embodiment. The moving blocks 36a and 36b may be plate-shaped, and laser distance sensors 32a and 32b and cameras 33a and 33b may be disposed on the moving blocks 36a and 36b. The laser distance sensors 32a and 32b may be continuous distance measurement means such as laser scanners, and the cameras 33a and 33b may be aligned to face the same direction as the laser distance sensors 32a and 32b. A cable carrier (34a, 34b) may be formed on one side of the base plates (23a, 23b), and a movement guidance means is connected to the cable carriers (34a, 34b) so that the base plates (23a, 23b) are guided by the guide rails (22a, 23b). It can be moved along 22b). In this way, a pair of measurement modules moves along a pair of guide rails 22a and 22b formed in parallel along the longitudinal direction and simultaneously moves in a random direction along the measurement paths 24a and 24b, respectively. Image data and distance data of one side of the vehicle body frame can be obtained. Each measurement module can be moved independently, and each can be automatically moved along a preset path as described above. Additionally, data can be automatically acquired during the movement process and transmitted to the analysis module. Below, this process is explained in detail.
도 4는 본 발명에 따른 계측 시스템에서 차량 프레임 또는 차체가 계측되는 과정의 실시 예를 도시한 것이다. Figure 4 shows an example of a process in which a vehicle frame or body is measured in the measurement system according to the present invention.
도 4를 참조하면, 차체 데이터는 손상된 차체에 대한 데이터가 되고, 차량의 기준 데이터와 대비되어 손상된 차체의 파손 수준이 분석된다. 리프트(41)에 차량이 고정되면, 차량의 아래쪽에 계측 로봇이 위치할 수 있고, 차체 이미지가 획득될 수 있다(P41). 차체에 대한 기준 데이터 및 차체 이미지에 기초하여 측정을 위한 XY 이동 좌표가 설정될 수 있고(P42), 이와 같은 과정은 원격으로 배치된 PC와 같은 컴퓨터에서 자동으로 진행될 수 있다. 계측 로봇(42)이 작동되면서 카메라/레이저 거리 센서가 작동될 수 있고(P43), 차체 프레임에 대한 계측이 진행될 수 있다(P44). 계측 로봇(42)은 위에서 설명된 것처럼, XY-평면을 따라 이동되면서 차체의 아래쪽의 거리 데이터 및 이미지 데이터를 연속적으로 획득할 수 있다. 차체 프레임의 계측 과정에서 차량 데이터(43)가 참조될 수 있고, 계측 결과가 분석되어 파손 수준이 분석될 수 있다(P45). 파손 수준 또는 손상 수준에 따라 차체 손상 진단이 이루어질 수 있고(P48), 차량 데이터(43)가 참조될 수 있다. 파손 수준이 분석되면(P43), 차체의 복원을 위한 치수 데이터가 생성될 수 있고, 수리가 되어야 하는 부분 또는 수리 정도가 결정될 수 있다. 이와 같은 과정에서 필요에 따라 차량 프레임이 2D 모델 또는 3D 모델이 만들어질 수 있다. 이와 같은 데이터에 기초하여 차체 수리 방법이 결정될 수 있고(P46), 이후 계측 데이터에 기초하여 수리가 진행될 수 있다(P47). 이와 같이 계측 로봇에 의하여 차체 프레임 데이터가 획득되면서 손상 수준이 획득된 데이터에 기초하여 프로그램에 의하여 진행되어 차량 프레임의 손상 분석에 대한 신뢰성이 확보되면서 작업 효율성의 향상될 수 있다.Referring to FIG. 4, the car body data becomes data about the damaged car body, and the damage level of the damaged car body is analyzed by comparing it with the vehicle's reference data. When the vehicle is fixed to the lift 41, the measurement robot can be located below the vehicle and an image of the vehicle body can be acquired (P41). XY movement coordinates for measurement can be set based on reference data for the car body and the car body image (P42), and this process can be carried out automatically on a remotely placed computer such as a PC. As the measurement robot 42 operates, the camera/laser distance sensor may operate (P43), and measurement of the vehicle body frame may proceed (P44). The measurement robot 42 can continuously acquire distance data and image data of the underside of the vehicle body while moving along the XY-plane, as described above. During the measurement process of the vehicle body frame, vehicle data 43 can be referenced, and the measurement results can be analyzed to analyze the level of damage (P45). Depending on the level of damage or damage, a diagnosis of body damage can be made (P48) and vehicle data (43) can be referenced. Once the level of damage is analyzed (P43), dimensional data for restoration of the vehicle body can be generated, and the parts that need to be repaired or the extent of repair can be determined. In this process, a 2D model or 3D model of the vehicle frame can be created as needed. Based on this data, a car body repair method can be determined (P46), and then repairs can be performed based on the measurement data (P47). In this way, as vehicle body frame data is acquired by the measuring robot, the damage level is progressed by a program based on the acquired data, thereby ensuring reliability of damage analysis of the vehicle frame and improving work efficiency.
도 5는 본 발명에 따른 시스템에서 이미지가 처리되는 과정의 실시 예를 도시한 것이다. Figure 5 shows an example of an image processing process in the system according to the present invention.
위에서 설명된 것처럼, 계측 로봇에 의하여 이미지 및 거리 데이터가 부분적으로 그리고 연속적으로 획득될 수 있고, 이와 같은 부분적인 이미지 및 거리 데이터가 합성될 필요가 있다. 또한 거리 데이터에 의하여 2D 이미지 또는 3D 이미지가 생성될 수 있고, 부분 이미지가 합성이 되거나, 적절한 형상으로 만들어질 필요가 있다. 도 5의 왼쪽을 참조하면, 이미지 합성은 카메라 이미지가 입력되는 단계(P51); 화이트 밸런스가 조절되는 단계(P52); 부분 이미지가 스티칭(stitching)이 되는 단계(P53); 알파 값이 입력되어 알파 이미지가 만들어지는 단계(P54); 및 합성 이미지가 생성되는 단계(P55)를 통하여 합성될 수 있다. 또한 카메라 이미지 또는 거리 데이터에 의하여 부분적인 이미지의 정합을 위하여 부분 형상 또는 도형이 탐색되고 이에 기초하여 정합 이미지가 만들어질 필요가 있다. 이와 같은 정합 이미지의 생성 과정은 히스토그램 평활화 함수가 적용되어 이미지 평활화가 되는 단계(P61); 평활화가 된 이미지가 이진화가 되는 단계(P62); 이진화가 된 이미지의 코너가 추출되는 단계(P63); 추출된 코너에 기초하여 부분 도형이 만들어지는 단계(P64); 및 도형 위치 값이 분석 생성되는 단계(P65)를 포함한다. 카메라에 의하여 획득되거나, 레이저 거리 센서에 의하여 생성된 부분 이미지는 다양한 방법으로 처리되어 서로 결합되어 합성될 수 있고 제시된 실시 예에 제한되지 않는다. As explained above, image and distance data can be acquired partially and continuously by a metrology robot, and such partial image and distance data need to be synthesized. Additionally, a 2D image or 3D image can be created based on distance data, and partial images need to be synthesized or made into an appropriate shape. Referring to the left side of FIG. 5, image synthesis includes the step of inputting a camera image (P51); Step where white balance is adjusted (P52); A step in which partial images are stitched (P53); A step in which an alpha value is input to create an alpha image (P54); And it can be synthesized through the step of generating a composite image (P55). Additionally, in order to match partial images using camera images or distance data, partial shapes or figures need to be searched and a matched image created based on them. The process of generating such a registered image includes applying a histogram equalization function to equalize the image (P61); A step in which the smoothed image is binarized (P62); A step in which corners of the binarized image are extracted (P63); A step in which a partial shape is created based on the extracted corners (P64); and a step (P65) in which the figure position value is analyzed and generated. Partial images acquired by a camera or generated by a laser distance sensor can be processed in various ways and combined to synthesize them, and are not limited to the presented embodiment.
위에서 본 발명은 제시된 실시 예를 참조하여 상세하게 설명이 되었지만 이 분야에서 통상의 지식을 가진 자는 제시된 실시 예를 참조하여 본 발명의 기술적 사상을 벗어나지 않는 범위에서 다양한 변형 및 수정 발명을 만들 수 있을 것이다. 본 발명은 이와 같은 변형 및 수정 발명에 의하여 제한되지 않으며 다만 아래에 첨부된 청구범위에 의하여 제한된다.Although the present invention has been described in detail above with reference to the presented embodiments, those skilled in the art will be able to make various variations and modifications without departing from the technical spirit of the present invention by referring to the presented embodiments. . The present invention is not limited by such variations and modifications, but is limited by the claims appended below.
본 발명은 차체 프레임의 자동 계측 시스템에 관한 것으로 다양한 자동차 산업 분야에서 이용된다. The present invention relates to an automatic measurement system for car body frames and is used in various fields of the automobile industry.

Claims (4)

  1. 측정을 위한 경로를 설정하는 경로 분석 설정 모듈(11);a path analysis setting module 11 that sets a path for measurement;
    설정된 경로를 따라 이동되면서 차체의 각 부분에 대한 이미지 데이터 및 거리 스캔 데이터를 획득하는 계측 로봇(12); 및 A measurement robot 12 that acquires image data and distance scan data for each part of the vehicle body while moving along a set path; and
    계측 로봇(12)에 의하여 획득된 데이터를 저장하고, 분석하여 차체 데이터를 생성하는 데이터 저장/분석 모듈(13)을 포함하는 차량 프레임 자동 계측 시스템. An automatic vehicle frame measurement system including a data storage/analysis module (13) that stores and analyzes data acquired by the measurement robot (12) to generate vehicle body data.
  2. 청구항 1에 있어서, 계측 로봇(12)은 미리 결정된 거리만큼 평면을 따라 이동 가능한 이동 수단 및 데이터 획득 모듈을 포함하는 차량 프레임 자동 계측 시스템. The automatic measurement system for a vehicle frame according to claim 1, wherein the measurement robot (12) includes a moving means capable of moving along a plane by a predetermined distance and a data acquisition module.
  3. 청구항 2에 있어서, 이동 수단은 모터(31a, 31b)를 포함하고, 데이터 획득 모듈은 카메라(33a, 33b) 및 레이저 거리 센서(32a, 32b)를 포함하는 차량 프레임 자동 계측 시스템. The automatic vehicle frame measurement system according to claim 2, wherein the moving means includes motors (31a, 31b), and the data acquisition module includes cameras (33a, 33b) and laser distance sensors (32a, 32b).
  4. 청구항 1에 있어서, 차체 데이터는 손상된 차체에 대한 데이터가 되고, 차량의 기준 데이터와 대비되어 손상된 차체의 파손 수준이 분석되는 것을 특징으로 하는 차량 프레임 자동 계측 시스템. The automatic measurement system for a vehicle frame according to claim 1, wherein the vehicle body data is data about a damaged vehicle body, and the damage level of the damaged vehicle body is analyzed by comparing it with reference data of the vehicle.
PCT/KR2022/012684 2022-08-24 2022-08-24 Automatic vehicle frame measurement system WO2024043360A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/012684 WO2024043360A1 (en) 2022-08-24 2022-08-24 Automatic vehicle frame measurement system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2022/012684 WO2024043360A1 (en) 2022-08-24 2022-08-24 Automatic vehicle frame measurement system

Publications (1)

Publication Number Publication Date
WO2024043360A1 true WO2024043360A1 (en) 2024-02-29

Family

ID=90013607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/012684 WO2024043360A1 (en) 2022-08-24 2022-08-24 Automatic vehicle frame measurement system

Country Status (1)

Country Link
WO (1) WO2024043360A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065580A (en) * 2012-11-16 2014-05-30 현대자동차주식회사 Door inspection system for vehicle
KR101657002B1 (en) * 2015-05-22 2016-09-12 홍익대학교세종캠퍼스산학협력단 Crush deformation measurement device of accident vehicle
KR101661665B1 (en) * 2016-03-21 2016-10-04 (주)디엠소프트 Device and method for inspecting welding quality using vision system
KR101782542B1 (en) * 2016-06-10 2017-10-30 주식회사 에이티엠 System and method for inspecting painted surface of automobile
US20210035169A1 (en) * 2018-03-29 2021-02-04 Twinner Gmbh Vehicle detection system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140065580A (en) * 2012-11-16 2014-05-30 현대자동차주식회사 Door inspection system for vehicle
KR101657002B1 (en) * 2015-05-22 2016-09-12 홍익대학교세종캠퍼스산학협력단 Crush deformation measurement device of accident vehicle
KR101661665B1 (en) * 2016-03-21 2016-10-04 (주)디엠소프트 Device and method for inspecting welding quality using vision system
KR101782542B1 (en) * 2016-06-10 2017-10-30 주식회사 에이티엠 System and method for inspecting painted surface of automobile
US20210035169A1 (en) * 2018-03-29 2021-02-04 Twinner Gmbh Vehicle detection system

Similar Documents

Publication Publication Date Title
CN111331367B (en) Intelligent assembly control system
CN102735166B (en) Spatial digitizer and robot system
CN109916333A (en) A kind of large scale target with high precision three-dimensional reconstruction system and method based on AGV
US7321841B2 (en) Three-dimensional shape measuring method and measuring apparatus thereof
CN212179808U (en) Automatic detection equipment for parts
CN112683215A (en) Method for generating information about a sensor chain of a coordinate measuring machine
CN112432610A (en) Train clearance detection device and detection method
CN109590952B (en) Intelligent detection method and detection workbench for complete process assembly plate
CN110837036A (en) Circuit board fault automatic detection system
CN108326879A (en) A kind of automatic processing system and its processing method of the robot based on 3D visions
JP6277468B2 (en) Vehicle power pole position inspection device
CN113544485A (en) Robotic target alignment for vehicle sensor calibration
CN112379605B (en) Bridge crane semi-physical simulation control experiment system and method based on visual servo
WO2024043360A1 (en) Automatic vehicle frame measurement system
JP2786070B2 (en) Inspection method and apparatus for transparent plate
KR20240028157A (en) A System for Measuring a Vehicle Frame Automatically
US20240070910A1 (en) Processing method and processing device for generating cross-sectional image from three-dimensional position information acquired by visual sensor
CN114923410B (en) On-line detection method and device for hole sites of longitudinal beams
CN107984333B (en) A kind of the optical manufacturing test machine control system and method for Wire driven robot
CN110057755A (en) A kind of complex optics detector
JP6937444B1 (en) Robot system positioning accuracy measurement method
KR101702517B1 (en) Apparatus for inspecting protrusion of outfittings
CN208497017U (en) A kind of automatic processing system of the robot based on 3D vision
KR20240084585A (en) A System for Processing a Data of a 3D Measuring Robot for Measuring a Vehicle Structure
Park et al. Augmented reality based cockpit module assembly system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22956566

Country of ref document: EP

Kind code of ref document: A1