WO2024019467A1 - 냉각부를 포함하는 전지 모듈 및 전지 팩 - Google Patents

냉각부를 포함하는 전지 모듈 및 전지 팩 Download PDF

Info

Publication number
WO2024019467A1
WO2024019467A1 PCT/KR2023/010251 KR2023010251W WO2024019467A1 WO 2024019467 A1 WO2024019467 A1 WO 2024019467A1 KR 2023010251 W KR2023010251 W KR 2023010251W WO 2024019467 A1 WO2024019467 A1 WO 2024019467A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
battery cell
elastic member
battery
battery pack
Prior art date
Application number
PCT/KR2023/010251
Other languages
English (en)
French (fr)
Inventor
최진영
이정훈
유재욱
지호준
김두승
엄태기
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020230092580A external-priority patent/KR20240011107A/ko
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Publication of WO2024019467A1 publication Critical patent/WO2024019467A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/64Heating or cooling; Temperature control characterised by the shape of the cells
    • H01M10/647Prismatic or flat cells, e.g. pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/211Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for pouch cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/238Flexibility or foldability
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • H01M50/242Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions adapted for protecting batteries against vibrations, collision impact or swelling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a battery module and a battery pack including a cooling unit, and specifically, to accommodate the refrigerant inside the refrigerant accommodation space to prevent thermal runaway phenomenon by quickly supplying refrigerant for ignition of the battery cell. It relates to a battery module and a battery pack including an elastic member capable of contracting and expanding.
  • Secondary batteries are attracting attention as a power source for electric vehicles, hybrid electric vehicles, and plug-in hybrid electric vehicles, which are being proposed as a solution to air pollution from existing vehicles and diesel vehicles that use fossil fuels.
  • While small mobile devices use one or two to three or four battery cells per device, medium to large devices such as cars use medium to large battery modules that electrically connect multiple battery cells due to the need for high output and large capacity.
  • rectangular batteries and pouch-type batteries that can be packed with high integration and have a small weight-to-capacity battery are mainly used as battery cells for medium-to-large battery modules.
  • the battery cells that make up these medium-to-large battery modules are composed of secondary batteries capable of charging and discharging, such high-output, large-capacity secondary batteries generate a large amount of heat during the charging and discharging process.
  • a medium-to-large battery pack for a vehicle or a medium-to-large battery pack for a power storage device which includes multiple medium-to-large battery modules and is a high-output, large-capacity battery, requires a cooling system to cool the battery cells built into it.
  • FIG. 12 and 13 are vertical cross-sectional views of a battery module or battery pack 10 according to the prior art.
  • the refrigerant (coolant) stored in the refrigerant receiving member 220 water tank
  • the refrigerant in the refrigerant receiving member 220 Pressure water pressure gradually decreases. Therefore, as time passes, the rate at which refrigerant is injected into the battery cell 103 slows down.
  • the pressure of the coolant in the coolant accommodating member 220 is generally proportional to the height of the coolant.
  • the coolant accommodating member 220 water tank
  • the coolant accommodating member Since the height is lower than the width of 220, the pressure of the refrigerant injected into the battery cell 103 is bound to be lower. This becomes a factor that hinders rapid refrigerant injection.
  • the refrigerant is supplied from the upper refrigerant receiving member 220 to the lower battery cell stack by gravity along the open through hole 230 . Therefore, the coolant receiving member 220 has no choice but to be located only at the top of the battery cell stack, and there is a limitation in that the coolant receiving member 220 cannot be provided at the bottom. 12 and 13 show a case in which no refrigerant accommodation space is provided in the lower part and only a heat sink 211 is provided.
  • the present invention is intended to solve the above problem.
  • the refrigerant for the cooling unit provided inside the battery module and/or battery pack ignites.
  • a structure that can quickly and directly inject the refrigerant into the battery cells, overcomes the limitation of refrigerant injection from a ramp, and effectively suppresses the thermal runaway phenomenon of the battery cells while minimizing the increase in volume of the battery module and/or battery pack.
  • the purpose is to provide a battery module and/or battery pack including a cooling unit made of.
  • a battery pack includes a battery cell stack in which a plurality of battery cells are stacked; A frame for storing the battery cell stack; and a cooling unit on the battery cell stack, wherein the cooling unit includes: a coolant receiving member including an upper plate and a lower plate; an elastic member disposed in the inner space of the refrigerant receiving member; and a sealing member that seals at least one through hole formed in the refrigerant receiving member and is meltable by an increase in the temperature of the battery cell, wherein the refrigerant is accommodated inside the elastic member, and as the refrigerant is accommodated, the refrigerant is accommodated in the elastic member.
  • the elastic member can be expanded.
  • the elastic member accommodates the refrigerant therein and expands to the maximum, thereby covering the entire interior space of the refrigerant accommodating member.
  • the sealing member When the temperature of the battery cell rises, the sealing member is melted by high-temperature gas or sparks emitted from the battery cell, and simultaneously or subsequently, a portion of the elastic member adjacent to the sealing member is melted, causing the elastic member to melt.
  • the refrigerant inside may leak into the battery cell stack.
  • the pressure with which the coolant presses the elastic member gradually decreases, and the elastic member may gradually contract.
  • Refrigerant may not be accommodated in the space between the refrigerant accommodating member and the elastic member.
  • An adhesive for adhering the elastic member may be applied to a portion of the inner surface of the refrigerant receiving member, including around the through hole.
  • the adhesive may be an acrylic adhesive, silicone adhesive, rubber adhesive, or hot melt adhesive.
  • the refrigerant accommodating member is a water tank, and coolant can be accommodated inside the elastic member.
  • the at least one partition wall disposed across the internal space to separate the internal space of the refrigerant receiving member into a plurality of zones, wherein the at least one partition wall is disposed perpendicular to the heat sink, and of the battery cell. It is arranged in the longitudinal direction, and the elastic member may be provided in each of the plurality of zones.
  • a pressing member having elastic force is provided between the inner surface of the cooling unit and the outer surface of the elastic member, and when a refrigerant is accommodated inside the elastic member, the pressing member is compressed due to the pressure due to the refrigerant. , When the elastic member is gradually contracted as the refrigerant is supplied to the battery cell through the through hole, the pressing member presses the outer surface of the elastic member by the restoring force of the compressed pressing member, causing the elastic member to The member may be in close contact around the through hole.
  • the pressing member may be a spring.
  • the sealing member may be made of thermoplastic polymer resin.
  • the elastic member may be made of natural rubber, synthetic rubber (SBR), oil-resistant rubber (NBR), or polyurethane rubber.
  • a surface of the coolant accommodating member adjacent to the battery cell stack may be a heat sink.
  • the frame includes: a top plate disposed on top of the battery cell stack; a lower plate disposed below the battery cell stack; and a side plate disposed on a side of the battery cell stack between the upper plate and the lower plate, wherein the cooling unit is disposed on at least one of the upper plate and the lower plate, and the heat sink of the coolant receiving member is
  • the refrigerant accommodating member may be formed at a predetermined distance from the frame.
  • a battery pack according to another embodiment of the present invention may include a plurality of the battery cell stacks, and the cooling unit may be disposed on the plurality of battery cell stacks.
  • the battery module and/or battery pack according to the present invention accommodates the refrigerant in the internal space of the cooling unit and includes an elastic member capable of contracting and expanding, thereby rapidly igniting the battery cell when the battery cell is ignited. It can be cooled. Additionally, even if the refrigerant receiving space is disposed at an angle, all of the refrigerant in the refrigerant receiving space can be supplied to the ignited battery cell. The thermal runaway phenomenon of battery cells can be efficiently suppressed while minimizing the increase in volume of the battery module and/or battery pack.
  • the coolant is directly injected from the cooling unit into the battery cell, thereby quickly lowering the temperature of the battery cell.
  • FIG. 1 is a schematic diagram of a battery module or battery pack according to an embodiment of the present invention.
  • Figure 2 is a vertical cross-sectional view of a battery module or battery pack according to an embodiment of the present invention.
  • FIG. 3 shows a case where the battery cell is cooled by the elastic member provided in the cooling unit of FIG. 2 when the battery cell is ignited.
  • FIG. 4 shows a case in which a pressing member is further included in the cooling unit of FIG. 2 .
  • Figure 5 is a vertical cross-sectional view of a battery module or battery pack according to another embodiment of the present invention.
  • Figure 6 is a plan view of embodiments of a heat sink applicable to the cooling units of Figures 2 to 5.
  • Figure 7 is a partial enlarged view of Figure 2.
  • Figure 8 is an enlarged vertical cross-section of a battery module or battery pack in which a sealing member is added to a heat sink in which a groove is formed.
  • Figure 9 is a vertical cross-sectional view of a state in which a sealing member is added to a heat sink in which a groove is formed.
  • Figure 10 schematically shows a case in which a plurality of battery cell stacks (cell module assemblies) are stored in a battery pack according to an embodiment of the present invention.
  • FIG. 11 is a vertical cross-sectional view of the battery pack according to an embodiment of the present invention of FIG. 10 , illustrating a case where a cooling unit is included on the plurality of battery cell stacks of FIG. 10 .
  • 12 and 13 are vertical cross-sectional views of a battery module or battery pack according to the prior art.
  • a part of a layer, membrane, region, plate, etc. is said to be “on” or “on” another part, this includes not only cases where it is “directly above” another part, but also cases where there is another part in between. . Conversely, when a part is said to be “right on top” of another part, it means that there is no other part in between.
  • being “on” or “on” a reference part means being located above or below the reference part, and it does not necessarily mean being located “above” or “on” the direction opposite to gravity. no.
  • top/bottom or top/bottom of a specific member may be judged differently depending on which direction it is based on, throughout the specification, “top” and “bottom” refer to the two faces of the member facing each other on the z-axis. And, “upper” and “lower” are defined as being located in opposite directions on the z-axis in the relevant member.
  • FIG. 1 is a schematic diagram of a battery module or battery pack according to the present invention.
  • the battery module or battery pack within the meaning of the specification of the present invention has only a difference in scale, but is the same in that a cooling unit described in detail below is provided on at least one side of the upper and lower sides of the battery cell stack.
  • a battery module or battery pack 100 includes a frame that accommodates therein a battery cell stack 101 in which a plurality of battery cells are stacked, and a frame of the battery cell stack 101. It includes a cooling unit disposed on the upper and lower surfaces.
  • Figure 1 shows bidirectional pouch-type battery cells in which the electrode leads 102 protrude in opposite directions.
  • a unidirectional pouch-type battery in which the positive and negative electrode leads protrude in the same direction is shown.
  • cells can be used.
  • the battery cells may be pouch-shaped battery cells, but the present invention is not limited to the above-mentioned battery cells, and various modifications and changes are possible, such as being applicable to prismatic battery cells or cylindrical battery cells.
  • the battery module or battery pack frame (hereinafter referred to as “frame”) includes an upper plate 110 disposed on top of the battery cell stack 101, a lower plate 120 disposed below the battery cell stack, and a side plate 130 disposed between the upper plate 110 and the lower plate 120 and disposed on a side of the battery cell stack 101.
  • an end plate (not shown) is combined with the upper plate 110, lower plate 120, and side plate 130 to assemble the frame.
  • the shape of the frame is not limited to the structure shown in FIG. 1, and, unlike what is shown in FIG. 1, the frame may be in the form of a mono frame or a U frame. That is, in some cases, the upper plate 110 may not be provided separately, and the upper surface of the cooling unit, which will be described later, may replace the upper plate of the frame.
  • Figure 2 is a vertical cross-sectional view of a battery module or battery pack according to an embodiment of the present invention.
  • the battery module or battery pack includes a battery cell stack 101 in which a plurality of battery cells are stacked and housed within a frame including an upper plate 110 and a lower plate 120.
  • the cooling unit 200a includes a heat sink 210 and a refrigerant accommodating member 220 that accommodates the refrigerant.
  • the heat sink 210 is coupled to the upper plate 110 at a spaced apart from each other, and the space formed by the space becomes the refrigerant accommodating member 220. Accordingly, the upper plate 110, the heat sink 210, and the refrigerant receiving member 220 become an integrated structure.
  • the cooling unit 200a is integrally coupled with the top plate 110 and is located at the top of the battery cell stack 101.
  • the present invention is not limited to the above.
  • the top plate 110 of the frame to form the coolant receiving member 220 need not necessarily be a component of the coolant receiving member 220. It does not matter as long as the refrigerant receiving member 220 itself has a shape capable of storing refrigerant, as long as it has a shape and structure that is coupled to the battery cell stack 101 with a heat sink 210 including a through hole 230, which will be described later, interposed therebetween. Suffice.
  • the cooling unit 200a' includes a heat sink 210 and a coolant receiving member 220 that accommodates the coolant.
  • the heat sink 210 is coupled to the lower plate 120 at a spaced apart from each other, and the space formed by the space becomes the refrigerant accommodating member 220. Accordingly, the lower plate 120, the heat sink 210, and the refrigerant receiving member 220 become an integrated structure.
  • the cooling unit 200a' is integrally coupled with the lower plate 120 and is located at the lower part of the battery cell stack 101.
  • the bottom plate 120 of the frame does not necessarily form the refrigerant receiving member 220. It does not matter if the coolant receiving member 220 itself has a shape that stores the coolant, and any shape and structure that is coupled to the battery cell stack with a heat sink 210 including a through hole 230, which will be described later, in between is sufficient.
  • a through hole 230 is formed in the heat sink 210, and a sealing member 240 is added to the through hole 230.
  • the sealing member 240 is made of a material that melts by high-temperature gas or sparks emitted from the battery cell. That is, when the battery cell is in a normal state, the sealing member 240 maintains the sealed state of the penetration hole 230, but when the temperature rises or ignition occurs, as in the case of the battery cell 103, the sealing member 240 melts and penetrates. Sphere 230 is opened. The refrigerant in the refrigerant receiving member is directly injected into the battery cell stack 101 through the open through hole 230. Through this process, the expansion of thermal runaway can be quickly prevented by quickly cooling overheated or ignited battery cells.
  • the sealing member 240 is a material that melts in high-temperature gas or sparks ejected by venting of a battery cell with an increased temperature, and a thermoplastic polymer resin with a melting point of about 200° C. or lower may be applied, for example.
  • thermoplastic polymer resins may be materials with a melting point of approximately 100°C or higher and 200°C or lower, such as polyethylene or polypropylene.
  • the additives contained in the coolant do not contain flammable substances.
  • the amount of the additive may be sufficient to prevent secondary explosion of the battery cell and at the same time, may be used as an antifreeze to prevent the coolant from freezing.
  • the refrigerant containing member 220 is a structure (eg, a water tank) that stores refrigerant therein.
  • the cooling unit 200a according to the present invention includes an elastic member 250 capable of contracting/expanding in the internal space of the refrigerant receiving member 220, and accommodates the refrigerant inside the elastic member 250. do.
  • the space between the elastic member 250 and the refrigerant accommodating member 220 is an empty space and does not accommodate refrigerant.
  • FIG. 2 shows a case where the refrigerant is accommodated as much as possible inside the elastic member 250 and the refrigerant expands as much as possible to cover the entire inner surface of the refrigerant receiving member 220.
  • the elastic member 250 is also made of a material that is melted by high-temperature gas or sparks emitted from the battery cell 101.
  • the portion of the elastic member 250 adjacent to the through hole 230 of the heat sink 210 is smaller than other portions of the elastic member 250. It may be formed relatively thinly or of a material with a lower melting point.
  • the sealing member 240 added to the through hole 230 of the heat sink 210 is melted by high-temperature gas or sparks emitted from the battery cell 103 whose temperature has risen.
  • the elastic member 250 is also opened by high-temperature gas or spark transmitted through the opened through hole 230. Accordingly, the refrigerant contained within the elastic member 250 is supplied to the battery cell 103 through the opening 255 and the open through hole 230 when a portion of the elastic member 250 is melted.
  • the elastic member 250 has expanded to the maximum due to the internal pressure of the refrigerant, and as shown in FIG. 3, the refrigerant contained within the elastic member 250 escapes and the refrigerant flows out of the elastic member ( As the pressure pressing 250) gradually decreases, the elastic member 250 gradually contracts.
  • the refrigerant in the elastic member 250 located within the refrigerant receiving member 220 flows into the battery cell ( 103). Additionally, the refrigerant in the elastic member 250 can be supplied to the battery cell 103 without any residue.
  • the elastic member 250 is made of a material that is melted by high-temperature gas or sparks emitted from the battery cell 101.
  • the elastic member 250 is also a material that melts in high-temperature gas or sparks ejected by venting of a battery cell with an increased temperature, and is a material that has elasticity capable of shrinking and expanding.
  • As the elastic member 250 for example, natural rubber, synthetic rubber (SBR), oil-resistant rubber (NBR), polyurethane rubber, etc. can be used.
  • the elastic member 250 may be shaped like a rubber balloon.
  • the elastic member 250 contracts, due to the reaction of the force by which the refrigerant escapes from the elastic member 250, the elastic member 250 and the opening 255 of the elastic member 250 become the through hole 230. There may be cases where it moves toward the upper plate 110, which is opposite to .
  • an adhesive for adhering the elastic member 250 may be applied to the entire side of the heat sink 210 facing the elastic member 250 or around the through hole 230.
  • the adhesive may not be an adhesive that permanently adheres the elastic member 250, but may be an adhesive that allows the elastic member 250 to be separated from the heat sink 210 as the elastic member 250 contracts.
  • the adhesive may be, for example, an acrylic adhesive, a silicone adhesive, a rubber adhesive, or a hot melt adhesive.
  • the inner surface of the cooling unit 200a and the outer surface of the elastic member 250 A pressing member 260 with elastic force may be provided therebetween.
  • the pressing member 260 may be a spring, for example.
  • the elastic member 250 When the refrigerant is contained inside the elastic member 250, the elastic member 250 is expanded inside the cooling unit 200a due to the pressure due to the refrigerant, and the pressing member 260 is compressed accordingly. . Meanwhile, when the elastic member 250 gradually contracts as the refrigerant is supplied to the battery cell 103 through the through hole 230, the pressing member 260 becomes elastic due to the restoring force of the compressed pressing member 260. The outer surface of the member 250 is pressed. Accordingly, the elastic member 250 can be in close contact with the periphery of the through hole 230.
  • the present invention is not limited to the above, and one of the cooling unit 200a located at the top of the battery cell stack and the cooling unit 200a' located at the bottom of the battery cell stack includes only the heat sink 210, Various modifications and changes are possible, such as not including the refrigerant accommodating member 220.
  • FIG. 5 is a vertical cross-sectional view of a battery module or battery pack according to another embodiment of the present invention, showing a cooling unit 200b partially modified from the cooling unit 200a of FIG. 2.
  • the partition wall 215 may cross the refrigerant accommodating member 220 in the vertical direction to partition the internal space.
  • the partition wall 215 may have a plate shape that connects the heat sink 210 and the top plate and is arranged parallel to the side plate 130 (see FIG. 1).
  • each battery cell of the battery cell stack 101 may be arranged parallel to the longitudinal direction.
  • the refrigerant receiving member 220 is divided into a plurality of zones arranged in a row in the transverse direction with respect to the partition wall 215.
  • An elastic member 250 is provided in each of the plurality of zones defined within the refrigerant accommodating member 220, and the refrigerant is accommodated in each of the plurality of elastic members 250.
  • the number of partition walls 215 is not limited to that shown in FIG. 5, and may be one or plural, and may include a plurality of partition walls 250a to suit the environment in which the present invention is implemented. Various variations and changes are possible.
  • FIG. 6 shows embodiments of the heat sink 210 applicable to the cooling units of FIGS. 2 to 5 in a plan view.
  • Figure 6(a) shows a state in which a through hole 230 is formed in the heat sink 210.
  • through-holes 230 which are circular in plan, are arranged to be spaced apart at regular intervals along the horizontal and vertical directions.
  • a through hole must be formed in a location where coolant can be supplied to the ignited battery cell. That is, it is preferable that at least one through hole is disposed in each battery cell so that coolant can be supplied to all battery cells. Therefore, the number and spacing of through holes can be adjusted depending on the number and size of the battery cells.
  • FIGS. 6(b) and 6(c) are plan views of a partially modified embodiment of the heat sink 210 of FIG. 6(a).
  • the shape of the through holes 230' and 230'' formed in the heat sink 210 is different from the shape of the through hole 230 in FIG. 6.
  • the through hole 230' has one through hole 230'.
  • the sphere is formed obliquely to cover two or more battery cells, and the through hole 230'' is oriented perpendicular to the longitudinal direction (L) of the battery cells to cover two or more battery cells. It is formed.
  • Figure 7 is a partial enlarged view of Figure 2.
  • a space may appear between the battery cell stack 101 and the heat sink 210, and for each individual battery cell, a difference may occur in the distance between the battery cell and the heat sink 210. In this way, the space formed between the battery cell stack 101 and the heat sink 210 reduces the heat dissipation ability to discharge heat inside the battery module and/or battery pack to the outside.
  • a thermal interface material (TIM) 390 may be filled in the space between the battery cell stack 101 and the heat sink 210.
  • heat transfer material 390 widens the thermal contact point between the battery cell stack and the heat sink, heat energy generated in the battery cell stack can be quickly discharged.
  • the sealing member may not reach the melting temperature. Therefore, addition of the heat transfer material can be omitted.
  • the heat transfer material may not be formed in the lower part of the through hole of the heat sink and may be added only to other parts. In this case, even if a heat transfer material is added, the heat energy of the vented battery cell can be directly transferred to the sealing member without being lost, and the sealing member can be melted to supply refrigerant to the vented battery cell.
  • a sealing member 240 is added to the through hole 230 penetrating the heat sink 210.
  • the sealing member 240 fills the through hole 230 and the inner surface of the heat sink ( 211) and an extension portion 241 extending further outward around the through hole 230 on the outer surface 212 of the heat sink.
  • the extension portion 241 is formed in the sealing member 240, it is possible to prevent the sealing member 240 from being removed by the pressure of the coolant flowing through the refrigerant receiving member and opening the through hole.
  • Figure 8 is an enlarged vertical cross-section of a battery module or battery pack in which a sealing member is added to a heat sink in which a groove is formed.
  • a coolant receiving member 320 is formed between the upper plate 110 and the heat sink 310, and a sealing member 340 is added to the through hole of the heat sink 310.
  • the sealing member 340 includes an extension portion 341, and a groove 314 is formed in a portion of the inner surface 311 of the heat sink and the outer surface 312 of the heat sink where the extension portion 341 is formed.
  • a part of the sealing member constituting the extension portion 341 is inserted into the groove 314 to form the insertion portion 345, which more effectively prevents the sealing member from being removed by the water pressure of the coolant and opening the through hole. can do.
  • an insert injection method can be used to manufacture a heat sink with a groove by importing a resin for the sealing member.
  • the portion of the sealing member that passes through the through hole may be prepared by preparing a central portion of the sealing member having a shape and size corresponding to the shape and size of the through hole, and adding a separate member to the central portion of the sealing member to form an extension. You can.
  • the joining method of the center of the sealing member and the separately added extension is not limited, such as adhesion with an adhesive material, screw fastening, or interference fitting.
  • the central portion of the sealing member may be made of a thermoplastic polymer resin that melts at high temperatures, and the material of the separately added extension portion may be made of a material that does not melt at high temperatures.
  • Figure 9 is a vertical cross-sectional view of a state in which a sealing member is added to a heat sink in which a groove is formed.
  • sealing members 440, 540, and 640 are added to each of the heat sinks 410, 510, and 610.
  • Each of the heat sinks 410, 510, and 610 has grooves 414, 514, and 614 formed at the portions where it meets the extension portion, and insertion portions 445, 545, and 645 are formed inside the grooves 414, 514, and 614. This is formed.
  • the vertical cross-section of the portion of the heat sink (410, 510, 610) where the grooves (414, 514, 614) are formed is in one or more shapes selected from the group consisting of polygons including triangles, trapezoids, etc., semicircles, and semiovals. It can be formed, and it can be formed by mixing them.
  • the thickness of the central portion 641 of the sealing member 640 is formed to be thinner than the thickness of the central portion of the sealing member 410 and the thickness of the central portion of the sealing member 510. In this way, when the thickness of the part that seals the through hole is formed relatively thin, the time until the sealing member melts and the through hole opens can be shortened, so the supply of refrigerant to the battery cell can be quickly achieved. .
  • the heat sink may form a water tank coupled to the upper and lower plates of the frame, and the heat sink may form the other side facing one side of the water tank coupled to the upper and lower plates.
  • the battery module or battery pack including one battery cell stack 101 according to the present invention and the cooling unit included therein have been described with reference to the drawings.
  • the cooling unit according to embodiments of the present invention includes a plurality of The same method can be applied to a battery pack including a battery cell stack (101, cell module assembly).
  • FIGS. 10 and 11 schematically shows a case where a plurality of battery cell stacks 101 are accommodated in a battery pack 100' according to an embodiment of the present invention.
  • FIG. 11 is a vertical cross-sectional view of the battery pack according to an embodiment of the present invention of FIG. 10, showing a case where a cooling unit 200 is included on the plurality of battery cell stacks 101 of FIG. 10.
  • 10 and 11 illustrate a case where one cooling unit 200 is placed on a plurality of battery cell stacks 101.
  • the cooling unit described above in FIGS. 1 to 9 can be applied in the same manner to the battery pack 100' in which a plurality of battery cell stacks 101 are stacked.
  • a cooling unit 200 may be located on a plurality of battery cell stacks 101 (cell module assemblies).
  • the frame includes an upper plate 110 disposed on top of the plurality of battery cell stacks 101, a lower plate 120 disposed on the lower part of the plurality of battery cell stacks 101, and the upper plate 110 and the lower plate ( 120) and includes side plates (not shown) disposed on both sides of the plurality of battery cell stacks 101. Additionally, a cross beam 140 may be included between the plurality of battery cell stacks 101.
  • the form of the frame including the upper plate 110, lower plate 120, and side plates is not limited to the structure shown in Figures 10 and 11, and can be modified and changed in various ways to suit the environment in which the present invention is implemented. It can be implemented.
  • the upper plate 110 and the lower plate 120 respectively refer to the upper plate of the frame and the lower plate of the frame, and are abbreviated as the upper plate 110 and the lower plate 120 for convenience. This should be understood as a separate concept from the upper plate of the refrigerant accommodating member 220 and the lower plate of the refrigerant accommodating member 220 based on the refrigerant accommodating member 220.
  • the cooling unit 200 includes a refrigerant accommodating member 220 that accommodates the refrigerant.
  • One surface of the refrigerant receiving member 220 is disposed on at least one surface of the plurality of battery cell stacks 101.
  • One surface of the refrigerant receiving member 220 may be a heat sink 210.
  • the other side facing one side of the refrigerant receiving member 220 may be the upper plate 110 of the frame. That is, when the coolant accommodating member 220 is provided on the upper part of the plurality of battery cell stacks 101, the top plate of the coolant accommodating member 220 may be the top plate 110 of the frame.
  • the heat sink 210 includes a plurality of through holes 230.
  • the through hole 230 is sealed with a sealing member 240.
  • the coolant accommodating member 220 of the battery pack 100' of FIG. 11 is disposed on the plurality of battery cell stacks 101, while the coolant accommodating member 220a of the battery module or battery pack 100 of FIG. 2 ) is different in that it is disposed on one battery cell stack 101, but the detailed components of the coolant receiving member 220 of FIG. 11 are the coolant receiving member of the battery module or battery pack 100 of FIG. 2 ( It is the same as the detailed components of 220a).
  • the description of the detailed components of the refrigerant receiving member 220 of FIG. 11 overlaps with the description of the detailed components of the refrigerant receiving member 220a of the battery module or battery pack 100 of FIG. 2, so other For explanation, refer to what was described above in FIGS. 1 to 9.
  • the description of the part indicated by A in FIG. 11 also overlaps with the part described in FIG. 7, refer to the above-described part.
  • Figure 11 shows the case where the cooling unit 200 is disposed on the plurality of battery cell stacks 101, but in some cases, the cooling unit 200 is located below the plurality of battery cell stacks 101.
  • the partition wall 215 may be applied to the cooling unit 220.
  • the battery cell when using the battery module and/or battery pack according to the present invention and the cooling unit included therein, the battery cell can be quickly cooled even if the battery cell ignites. Additionally, even if the refrigerant receiving space is disposed at an angle, all of the refrigerant in the refrigerant receiving space can be supplied to the ignited battery cell. The thermal runaway phenomenon of battery cells can be efficiently suppressed while minimizing the increase in volume of the battery module and/or battery pack.
  • sealing member 240, 268, 268', 340, 440, 540, 640: sealing member

Abstract

본 발명의 일 실시예에 따른 전지 팩은 복수의 전지 셀들이 적층된 전지 셀 적층체; 상기 전지 셀 적층체를 수납하는 프레임; 및 상기 전지 셀 적층체 상에 냉각부를 포함하고, 상기 냉각부는: 상부판과 하부판을 포함하는 냉매 수용 부재; 상기 냉매 수용 부재의 내부 공간에 배치되는 탄성 부재; 및 상기 냉매 수용 부재에 형성된 적어도 하나의 관통구를 밀봉하고, 상기 전지 셀의 온도 상승에 의해 용융 가능한 밀봉 부재를 포함하고, 상기 탄성 부재의 내부에 냉매가 수용되고, 상기 냉매가 수용됨에 따라 상기 탄성 부재는 팽창된다.

Description

냉각부를 포함하는 전지 모듈 및 전지 팩
관련 출원(들)과의 상호 인용
본 출원은 2022년 07월 18일자 한국 특허 출원 제10-2022-0088258호 및 2023년 7월 17일자 한국 특허 출원 제10-2023-0092580호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
본원 발명은 냉각부를 포함하는 전지 모듈 및 전지 팩에 대한 것으로서, 구체적으로, 전지 셀의 발화에 신속하게 냉매를 공급함으로써 열폭주 현상이 일어나는 것을 방지할 수 있도록 냉매 수용 공간에 내부에 냉매를 수용하고 수축 팽창이 가능한 탄성 부재를 포함하는 전지 모듈 및 전지 팩에 대한 것이다.
이차 전지는 화석 연료를 사용하는 기존의 차량, 디젤 차량 등의 대기 오염 등을 해결하기 위한 방안으로 제시되고 있는 전기 자동차, 하이브리드 전기 자동차, 플러그-인 하이브리드 전기 자동차 등의 동력원으로서 주목받고 있다.
소형 모바일 기기들에는 디바이스 한 대당 하나 또는 두서너 개의 전지 셀들이 사용됨에 반해, 자동차 등과 같은 중대형 디바이스에는 고출력 대용량의 필요성으로 인해, 다수의 전지 셀을 전기적으로 연결한 중대형 전지 모듈이 사용된다.
중대형 전지 모듈은 가능하면 작은 크기와 중량으로 제조되는 것이 바람직하므로, 높은 집적도로 충적될 수 있고, 용량 대비 중량이 작은 각형 전지, 파우치형 전지 등이 중대형 전지 모듈의 전지 셀로서 주로 사용되고 있다.
이러한 중대형 전지 모듈을 구성하는 전지 셀들은 충방전이 가능한 이차 전지로 구성되어 있으므로, 이와 같은 고출력 대용량 이차 전지는 충방전 과정에서 다량의 열을 발생시킨다.
충방전 과정에서 발생한 전지 모듈의 열이 효과적으로 제거되지 못하면, 열축적이 일어나고 결과적으로 전지 모듈의 열화를 촉진하며, 경우에 따라서는 발화 또는 폭발을 유발할 수 있다. 따라서, 중대형 전지 모듈 다수 개를 포함하고 고출력 대용량의 전지인 차량용 중대형 전지 팩이나 전력 저장 장치용 중대형 전지 팩에는 그것에 내장되어 있는 전지 셀들을 냉각시키는 냉각 시스템이 필요하다.
도 12 및 도 13는 종래 기술에 따른 전지 모듈 또는 전지 팩(10)의 수직 단면도이다. 도 12를 참조하면, 냉매 수용 부재(220)(워터 탱크)에 저장된 냉매(냉각수)가 관통구(230)를 통하여 발화된 전지 셀(103)에 공급되면서, 냉매 수용 부재(220) 내의 냉매의 압력(수압)이 점차 낮아진다. 따라서, 시간이 지남에 따라, 전지 셀(103)로 냉매가 주입되는 속도가 느려진다.
또한, 냉매 수용 부재(220) 내의 냉매의 압력은 냉매의 높이에 대체로 비례하는데, 통상적으로 냉매 수용 부재(220)(워터 탱크)는 전지 셀 적층체의 수납 방향을 따라 형성되므로, 냉매 수용 부재(220)의 폭보다도 높이가 낮은 편이므로, 전지 셀(103)로 주입되는 냉매의 압력이 더욱 낮을 수밖에 없다. 이는 신속한 냉매 주입을 저해하는 요인이 된다.
또한, 전지 팩을 탑재한 차량이 경사면 등에 위치하여, 전지 팩의 냉매 수용 부재(220)도 같이 경사지게 위치하면, 도 13과 같이 냉매 수용 부재(220) 내의 냉매의 전부가 전지 셀 적층체로 공급되지 못하는 경우가 발생할 수도 있다.
또한, 도 12 및 도 13에 도시된 바와 같이, 냉매는 개방된 관통구(230)를 따라 중력에 의하여 상부의 냉매 수용 부재(220)에서 하부의 전지 셀 적층체로 공급된다. 따라서, 냉매 수용 부재(220)는 전지 셀 적층체의 상부에만 위치할 수밖에 없고, 하부에는 냉매 수용 부재(220)를 마련되지 못하는 제약도 있다. 도 12 및 도 13에서는 하부에 냉매 수용 공간을 마련하지 못하고, 방열판(211)만 구비하는 경우를 도시한다.
본원 발명은 상기와 같은 문제를 해결하기 위한 것으로서, 전지 셀의 발화 및 폭발시 인접하는 전지 셀들로 열에너지가 전달되는 것을 방지하기 위하여, 전지 모듈 및/또는 전지 팩 내부에 구비되는 냉각부용 냉매가 발화된 전지 셀들로 신속하게 직접 주입할 수 있고, 경사로에서 냉매 주입이 어려운 제약을 극복하면서도, 전지 모듈 및/또는 전지 팩의 부피 증가를 최소화하면서 전지 셀의 열 폭주 현상을 효율적으로 억제할 수 있는 구조로 이루어진 냉각부를 포함하는 전지 모듈 및/또는 전지 팩을 제공하는 것을 목적으로 한다.
그러나, 본 발명의 실시예들이 해결하고자 하는 과제는 상술한 과제에 한정되지 않고 본 발명에 포함된 기술적 사상의 범위에서 다양하게 확장될 수 있다.
본 발명의 일 실시예에 따른 전지 팩은 복수의 전지 셀들이 적층된 전지 셀 적층체; 상기 전지 셀 적층체를 수납하는 프레임; 및 상기 전지 셀 적층체 상에 냉각부를 포함하고, 상기 냉각부는: 상부판과 하부판을 포함하는 냉매 수용 부재; 상기 냉매 수용 부재의 내부 공간에 배치되는 탄성 부재; 및 상기 냉매 수용 부재에 형성된 적어도 하나의 관통구를 밀봉하고, 상기 전지 셀의 온도 상승에 의해 용융 가능한 밀봉 부재를 포함하고, 상기 탄성 부재의 내부에 냉매가 수용되고, 상기 냉매가 수용됨에 따라 상기 탄성 부재는 팽창될 수 있다.
상기 탄성 부재의 용융 전에는, 상기 탄성 부재는 내부에 상기 냉매를 수용하여 최대로 팽창되어, 상기 냉매 수용 부재의 내부 공간의 전면을 커버할 수 있다.
상기 전지 셀의 온도 상승 시, 상기 전지 셀에서 방출하는 고온 가스 또는 스파크에 의해 상기 밀봉 부재가 용융되고, 동시에 또는 후속으로, 상기 탄성 부재 중 상기 밀봉 부재에 인접한 부분이 용융되어, 상기 탄성 부재의 내부의 상기 냉매가 상기 전지 셀 적층체로 유출될 수 있다.
상기 냉매가 상기 전지 셀 적층체로 유출되면서, 상기 냉매가 상기 탄성 부재를 가압하던 압력이 점차 감소함에 따라 상기 탄성 부재가 점차 수축할 수 있다.
상기 냉매 수용 부재와 상기 탄성 부재 사이의 공간에 냉매가 수용되지 않을 수 있다.
상기 냉매 수용 부재의 내부면 중에서 상기 관통구 주변을 포함한 부분에 상기 탄성 부재를 접착하는 접착제가 도포될 수 있다.
상기 접착제는 아크릴계 접착제, 실리콘계 접착제, 고무계 접착제, 또는 핫멜트계 접착제일 수 있다.
상기 냉매 수용 부재는 워터 탱크이고, 상기 탄성 부재의 내부에 냉각수가 수용될 수 있다.
상기 냉매 수용 부재의 내부 공간을 복수 개의 구역들로 분리하도록, 상기 내부 공간을 가로 질러 배치되는 적어도 하나의 격벽을 포함하고, 상기 적어도 하나의 격벽은 상기 방열판에 수직하게 배치되고, 상기 전지 셀의 길이 방향으로 배치되고, 상기 복수 개의 구역들 각각에 상기 탄성 부재가 각각 구비될 수 있다.
상기 냉각부의 내부면과 상기 탄성 부재의 외부면 사이에 탄성력을 갖는 가압 부재가 구비되고, 상기 탄성 부재 내부에 냉매가 수용되어 있는 경우에는, 상기 냉매로 인한 압력으로 인하여, 가압 부재는 압축되어 있고, 상기 관통구를 통해 상기 냉매가 상기 전지 셀로 공급되면서 상기 탄성 부재가 점차 수축하게 되면, 상기 압축되어 있던 가압 부재의 복원력에 의해, 상기 가압 부재는 상기 탄성 부재의 외부면을 가압하여, 상기 탄성 부재는 상기 관통구 주변에 밀착될 수 있다.
상기 가압 부재는 스프링일 수 있다.
상기 밀봉 부재는 열가소성의 고분자 수지로 이루어질 수 있다.
상기 탄성 부재는 천연 고무, 합성 고무(SBR), 내유 고무(NBR), 또는 폴리우레탄 고무로 이루어질 수 있다.
상기 냉매 수용 부재의 상기 전지 셀 적층체에 인접한 면은 방열판일 수 있다.
상기 프레임은: 상기 전지 셀 적층체의 상부에 배치되는 상부판; 상기 전지 셀 적층체의 하부에 배치되는 하부판; 및 상기 상부판과 하부판 사이에, 상기 전지 셀 적층체의 측면에 배치되는 측면판을 포함하고, 상기 냉각부는 상기 상부판 및 상기 하부판 중 적어도 하나에 배치되고, 상기 냉매 수용 부재의 상기 방열판은 상기 프레임과 소정 거리의 이격 간격을 두어 상기 냉매 수용 부재를 형성할 수 있다.
본 발명의 다른 일 실시예에 따른 전지 팩은 상기 전지 셀 적층체를 복수 개로 구비하고, 상기 냉각부는 상기 복수 개의 전지 셀 적층체 상에 배치될 수 있다.
이상에서 설명한 바와 같이, 본원 발명에 따른 전지 모듈 및/또는 전지 팩은 냉각부의 내부 공간에 냉매를 수용하고 수축 팽창이 가능한 탄성 부재를 구비함으로써, 전지 셀의 발화 시에 신속하게 발화된 전지 셀을 냉각할 수 있다. 또한, 냉매 수용 공간이 경사지게 배치되더라도 냉매 수용 공간 내의 냉매 전부를 발화된 전지 셀로 공급할 수 있다. 전지 모듈 및/또는 전지 팩의 부피 증가를 최소화하면서 전지 셀의 열 폭주 현상을 효율적으로 억제할 수 있다.
부가적으로, 높은 전지 셀의 온도에 의해 냉각부에 부가된 밀봉 부재가 용융되면, 상기 냉각부에서 전지 셀로 직접 냉매가 주입되기 때문에, 빠르게 전지 셀의 온도를 낮출 수 있다.
도 1은 본 발명의 일 실시예에 따른 전지 모듈 또는 전지 팩의 모식도이다.
도 2는 본 발명의 일 실시예에 따른 전지 모듈 또는 전지 팩의 수직 단면도이다.
도 3은, 전지 셀의 발화 시에, 도 2의 냉각부에 구비된 탄성 부재에 의하여 전지 셀을 냉각하는 경우를 도시한다.
도 4는 도 2의 냉각부에 가압 부재가 더 포함된 경우를 도시한다.
도 5는 본 발명의 다른 실시예에 따른 전지 모듈 또는 전지 팩의 수직 단면도이다.
도 6는 도 2 내지 도 5의 냉각부들에 적용할 수 있는 방열판의 실시예들의 평면도이다.
도 7은 도 2의 부분 확대도이다.
도 8은 홈이 형성된 방열판에 밀봉 부재가 부가된 전지 모듈 또는 전지 팩의 수직 단면 확대도이다.
도 9는 홈이 형성된 방열판에 밀봉 부재가 부가된 상태의 수직 단면도이다.
도 10은 본 발명의 일 실시예에 따른 전지 팩에서 복수 개의 전지 셀 적층체(셀 모듈 어셈블리)가 수납되는 경우를 개략적으로 도시한다.
도 11은 도 10의 본 발명의 일 실시예에 따른 전지 팩의 수직 단면도로서, 도 10의 복수 개의 전지 셀 적층체 위에 냉각부를 포함하는 경우를 도시한다.
도 12 및 도 13은 종래 기술에 따른 전지 모듈 또는 전지 팩의 수직 단면도이다.
이하, 첨부한 도면을 참고로 하여 본 발명의 여러 실시예들에 대하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 상세히 설명한다. 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예들에 한정되지 않는다.
또한, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다. 도면에서 여러 층 및 영역을 명확하게 표현하기 위하여 두께를 확대하여 나타내었다. 그리고 도면에서, 설명의 편의를 위해, 일부 층 및 영역의 두께를 과장되게 나타내었다.
또한, 층, 막, 영역, 판 등의 부분이 다른 부분 "위에" 또는 “상에” 있다고 할 때, 이는 다른 부분 "바로 위에" 있는 경우뿐 아니라 그 중간에 또 다른 부분이 있는 경우도 포함한다. 반대로 어떤 부분이 다른 부분 "바로 위에" 있다고 할 때에는 중간에 다른 부분이 없는 것을 뜻한다. 또한, 기준이 되는 부분 "위에" 또는 “상에”있다고 하는 것은 기준이 되는 부분의 위 또는 아래에 위치하는 것이고, 반드시 중력 반대 방향을 향하여 “위에” 또는 “상에” 위치하는 것을 의미하는 것은 아니다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
또한, 명세서 전체에서, "평면상"이라 할 때, 이는 대상 부분을 위에서 보았을 때를 의미하며, "단면상"이라 할 때, 이는 대상 부분을 수직으로 자른 단면을 옆에서 보았을 때를 의미한다.
또한, 특정 부재의 상면/하면 또는 상부/하부는 어느 방향을 기준으로 하느냐에 따라서 상이하게 판단될 수 있으므로, 명세서 전체에서, “상면” 및 “하면”은 해당 부재에서 z축상 마주보는 두 면을 의미하고, “상부” 및 “하부”는 해당 부재에서 z축상 서로 반대 방향으로 위치하는 것으로 정의한다.
도 1은 본 발명에 따른 전지 모듈 또는 전지 팩의 모식도이다.
본 발명의 명세서에서 의미하는 전지 모듈 또는 전지 팩은 스케일의 차이가 있을 뿐, 전지 셀 적층체의 상부 및 하부 중 적어도 하나의 면에 이하에서 상세히 기술하는 냉각부가 구비되는 점은 동일하다.
도 1을 참조하면, 본 발명에 따른 전지 모듈 또는 전지 팩(100)은 복수의 전지 셀들이 적층된 전지 셀 적층체(101)를 내부에 수용하는 프레임과, 상기 전지 셀 적층체(101)의 상면 및 하면에 배치되는 냉각부를 포함한다.
복수의 전지 셀들로서, 도 1에는 전극 리드(102)가 서로 반대 방향으로 돌출되는 양방향 파우치형 전지 셀들이 도시되어 있으나, 이와 달리, 양극 리드 및 음극 리드가 서로 같은 방향으로 돌출되는 단방향 파우치형 전지 셀들이 사용될 수 있음은 물론이다. 또한, 전지 셀들은 파우치형 전지 셀들일 수도 있지만, 본 발명은 상술한 바에 한정되지 않고, 각형 전지 셀들이나 원통형 전지 셀들에 적용될 수 있는 등 다양한 변형, 변경이 가능하다.
전지 모듈 또는 전지 팩 프레임(이하, “프레임”이라 한다)은 상기 전지 셀 적층체(101)의 상부에 배치되는 상부판(110), 상기 전지 셀 적층체의 하부에 배치되는 하부판(120), 및 상기 상부판(110)과 하부판(120) 사이에 배치되며, 상기 전지 셀 적층체(101)의 측면에 배치되는 측면판(130)을 포함한다.
또한, 전지 셀들의 전극 리드(102)가 돌출된 방향의 외측에는 엔드 플레이트(도시하지 않음)가 상부판(110), 하부판(120) 및 측면판(130)과 결합되어 프레임이 조립될 수 있다.
또한, 프레임의 형태는 도 1에 도시된 구조로 한정되지 않으며, 도 1에 도시된 바와 달리, 프레임은, 모노 프레임 형태 또는 U 프레임 형태의 프레임이 사용될 수 있다. 즉, 경우에 따라서는, 상부판(110)이 별도로 구비되지 않고, 후술할 냉각부의 상부면이 프레임의 상부판을 대체하는 것일 수도 있다.
도 2는 본 발명의 일 실시예에 따른 전지 모듈 또는 전지 팩의 수직 단면도이다.
도 2를 참조하면, 전지 모듈 또는 전지 팩은 복수의 전지 셀들이 적층된 전지 셀 적층체(101)가 상부판(110) 및 하부판(120)을 포함하는 프레임 내에 수납되어 있다.
냉각부(200a)는 방열판(210), 및 냉매를 수용하는 냉매 수용 부재(220)를 포함한다. 방열판(210)은 상부판(110)과 이격 간격을 두고 결합되고, 상기 이격 간격이 형성하는 공간이 냉매 수용 부재(220)가 된다. 따라서, 상부판(110), 방열판(210) 및 냉매 수용 부재(220)가 일체형 구조가 된다. 냉각부(200a)는 상부판(110)과 일체형으로 결합되어 전지 셀 적층체(101)의 상부에 위치한다.
그러나, 본 발명은 상술한 바에 한정되지 않는다. 가령, 냉매 수용 부재(220)를 형성하도록 프레임의 상부판(110)이 반드시 냉매 수용 부재(220)의 일 구성요소일 필요는 없다. 냉매 수용 부재(220) 자체가 냉매를 저장할 수 있는 형상이면 상관 없고, 후술할 관통구(230)를 포함하는 방열판(210)을 사이에 두고 전지 셀 적층체(101)에 결합되는 형상 및 구조이면 충분하다.
또한, 냉각부(200a')는 방열판(210), 및 냉매를 수용하는 냉매 수용 부재(220)를 포함한다. 방열판(210)은 하부판(120)과 이격 간격을 두고 결합되고, 상기 이격 간격이 형성하는 공간이 냉매 수용 부재(220)가 된다. 따라서, 하부판(120), 방열판(210) 및 냉매 수용 부재(220)가 일체형 구조가 된다.
즉, 냉각부(200a')는 하부판(120)과 일체형으로 결합되어 전지 셀 적층체(101)의 하부에 위치한다. 마찬가지로, 프레임의 하부판(120)이 냉매 수용 부재(220)를 반드시 형성할 필요는 없다. 냉매 수용 부재(220) 자체가 냉매를 저장하는 형상이면 상관없고, 후술할 관통구(230)를 포함하는 방열판(210)을 사이에 두고 전지 셀 적층체에 결합되는 형상 및 구조이면 충분하다. 방열판(210)에는 관통구(230)가 형성되어 있고, 관통구(230)에는 밀봉 부재(240)가 부가된다.
밀봉 부재(240)는 전지 셀에서 방출하는 고온 가스 또는 스파크에 의해 용융되는 소재로 이루어진다. 즉, 전지 셀이 정상 상태에서는 밀봉 부재(240)가 관통구(230)를 밀봉한 상태를 유지하지만, 전지 셀(103)과 같이 온도가 올라가거나 발화 발생시에는 밀봉 부재(240)가 용융되어 관통구(230)가 개방된다. 개방된 관통구(230)를 통해 냉매 수용 부재의 냉매가 전지 셀 적층체(101)로 직접 주입된다. 이와 같은 과정에 의해, 과열 또는 발화된 전지 셀을 빠르게 냉각시킴으로써 열 폭주가 확대되는 것을 신속하게 방지할 수 있다.
밀봉 부재(240)는, 온도가 증가한 전지 셀의 벤팅(venting)에 의해 분출되는 고온의 가스 또는 스파크에 용융되는 소재인 바, 용융점이 약 200 ℃ 이하인 열가소성의 고분자 수지가 적용될 수 있으며, 예를 들어, 열가소성의 고분자 수지는 폴리에틸렌, 폴리프로필렌 등 용융점이 약 100 ℃ 이상 200℃ 이하인 물질들이 사용될 수 있다.
한편, 냉매로서 냉각수가 적용되는 경우로서, 상기 냉각수가 전지 셀 내부로 직접 주입되는 점을 고려할 때, 상기 냉각수의 주입으로 인하여 상기 전지 셀의 화염이 커지거나 폭발이 일어나는 것을 방지할 필요가 있다. 따라서, 상기 냉각수에 포함되는 첨가제로는 가연성 물질이 포함되지 않는 것이 바람직하다. 또는, 상기 첨가제로서 가연성 물질이 포함되는 경우로서, 상기 첨가제의 양은 전지 셀에 대한 2차 폭발을 방지할 수 있는 정도인 동시에, 상기 냉각수의 어는 것을 방지하기 위해 부동액으로 사용되는 정도일 수 있다.
한편, 냉매 수용 부재(220)는 내부에 냉매를 저장하는 구조(예로서, 워터 탱크)이다. 보다 구체적으로는, 본 발명에 따른 냉각부(200a)는 냉매 수용 부재(220)의 내부 공간에 수축/팽창이 가능한 탄성 부재(250)를 포함하고, 탄성 부재(250)의 내부에 냉매를 수용한다. 탄성 부재(250)와 냉매 수용 부재(220) 사이의 공간은 빈 공간으로서, 냉매가 수용되지 않는다. 도 2의 실시예에서는, 탄성 부재(250) 내부에 최대한 냉매를 수용하여 냉매가 최대한 팽창하여 냉매 수용 부재(220)의 내부면 전체를 커버하는 경우를 도시한다.
탄성 부재(250)도 전지 셀(101)에서 방출하는 고온 가스 또는 스파크에 의해 용융되는 소재로 이루어진다. 전지 셀(101)의 온도 상승 시 탄성 부재(250)의 용융이 보다 용이하도록, 탄성 부재(250) 중 방열판(210)의 관통구(230)에 인접한 부분은 탄성 부재(250)의 다른 부분보다 상대적으로 얇게 형성되거나 용융점이 보다 낮은 물질로 형성될 수도 있다. 전지 셀(101)의 온도 상승 시, 온도가 상승된 전지 셀(103)에서 방출하는 고온 가스 또는 스파크에 의해, 방열판(210)의 관통구(230)에 부가된 밀봉 부재(240)가 용융된다. 이어서, 개방된 관통구(230)를 통해 전달되는 고온 가스 또는 스파크에 의해 탄성 부재(250)도 개방된다. 따라서, 탄성 부재(250)의 내부에 수용된 냉매가 탄성 부재(250)의 일부가 용융되어 개방된 개구부(255) 및 개방된 관통구(230)를 통해 전지 셀(103)로 공급된다.
도 2에 도시된 바와 같이 냉매의 내부 압력으로 최대한 팽창하였던 탄성 부재(250)는, 도 3에 도시된 바와 같이, 탄성 부재(250)의 내부에 수용되었던 냉매가 빠져나가면서 냉매가 탄성 부재(250)를 가압하던 압력이 점차 감소하면서, 탄성 부재(250)가 점차 수축하게 된다. 종래 기술에 관한 도 12 및 도 13에서의 경우와 달리, 탄성 부재(250)의 수축으로 인한 압력으로, 냉매 수용 부재(220) 내에 위치한 탄성 부재(250) 내의 냉매가 보다 빠른 속도로 전지 셀(103)로 공급될 수 있다. 또한, 탄성 부재(250) 내의 냉매가 남김 없이 전지 셀(103)로 공급될 수 있다.
탄성 부재(250)는 전지 셀(101)에서 방출하는 고온 가스 또는 스파크에 의해 용융되는 소재로 이루어진다. 탄성 부재(250)도 온도가 증가한 전지 셀의 벤팅에 의해 분출되는 고온의 가스 또는 스파크에 용융되는 소재이면서, 수축 팽창이 가능한 탄성력이 있는 소재이다. 탄성 부재(250)로서는, 예를 들어, 천연 고무, 합성 고무(SBR), 내유 고무(NBR), 폴리우레탄 고무 등이 사용될 수 있다. 일 예시로서, 탄성 부재(250)는 고무로 된 풍선 형상일 수도 있다.
한편, 탄성 부재(250)가 수축할 때, 냉매가 탄성 부재(250)로부터 빠져나오는 힘의 반작용으로 인하여, 탄성 부재(250) 및 탄성 부재(250)의 개구부(255)가 관통구(230)의 반대편인 상부판(110)쪽으로 이동하는 경우가 있을 수 있다.
이를 방지하도록, 방열판(210)의 양면 중 탄성 부재(250)쪽으로 향하는 일면의 전부 또는 관통구(230) 주변 등에 탄성 부재(250)를 접착하는 접착제가 도포되어 있을 수 있다. 접착제는 탄성 부재(250)를 영구히 접착하는 성분의 접착제는 아니고, 탄성 부재(250)의 수축에 따라 탄성 부재(250)가 방열판(210)으로부터 떼어질 수 있는 성분의 접착제일 수 있다. 접착제는 예를 들면, 아크릴계 접착제, 실리콘계 접착제, 고무계 접착제, 또는 핫멜트계 접착제일 수 있다.또는, 도 4에 도시된 바와 같이, 냉각부(200a)의 내부면과 탄성 부재(250)의 외부면 사이에 탄성력이 있는 가압 부재(260)가 구비되어 있을 수도 있다. 가압 부재(260)는 예를 들어 스프링일 수 있다. 탄성 부재(250) 내부에 냉매가 수용되어 있는 경우에는, 냉매로 인한 압력으로 인하여, 탄성 부재(250)는 냉각부(200a) 내부에 팽창되어 있고, 그에 따라 가압 부재(260)는 압축되어 있다. 한편, 관통구(230)를 통해 냉매가 전지 셀(103)로 공급되면서 탄성 부재(250)가 점차 수축하게 되면, 압축되어 있던 가압 부재(260)의 복원력에 의해, 가압 부재(260)가 탄성 부재(250)의 외부면을 가압하게 된다. 그에 따라, 탄성 부재(250)가 관통구(230) 주변에 그대로 밀착될 수 있게 된다.
본 발명은 상술한 바에 한정되지 않고, 전지 셀 적층체의 상부에 위치한 냉각부(200a) 및 전지 셀 적층체의 하부에 위치한 냉각부(200a') 중 어느 하나는 방열판(210)만 구비하고, 냉매 수용 부재(220)는 구비하지 않을 수 있는 등 다양한 변형, 변경이 가능하다.
도 5는 본 발명의 또 다른 실시예에 따른 전지 모듈 또는 전지 팩의 수직 단면도로서, 도 2의 냉각부(200a)를 일부 변형한 냉각부(200b)를 도시한다. 도 5의 냉각부(200b) 중 도 2의 냉각부(200a)와 중복되는 구성요소에 관한 설명은 도 2에 관한 설명을 참조한다.
도 5의 실시예에서는, 격벽(215)은 냉매 수용 부재(220)를 상하 방향으로 가로 질러 내부 공간을 구획할 수 있다. 격벽(215)은 예를 들면, 방열판(210) 및 상부판을 연결하고 측면판(130)(도 1 참조)과는 평행하게 배치되는 플레이트 형상일 수 있다. 이러한 경우, 전지 셀 적층체(101)의 각각의 전지 셀의 길이 방향에 평행하게 배치될 수 있다.
냉매 수용 부재(220)는 격벽(215)을 기준으로 횡방향으로 일렬로 배치된 복수 개의 구역으로 분리된다. 냉매 수용 부재(220) 내부에 구획된 복수 개의 구역 각각에 탄성 부재(250)가 구비되고, 복수 개의 탄성 부재(250) 각각에 냉매가 수용된다. 전지 셀(103)의 온도가 올라가거나 발화 발생시에 냉매를 수차례 나누어 공급할 수 있도록 한다.
격벽(215)의 개수는 도 5에 도시된 바에 한정되지 않고, 한 개일 수도 있고, 복수 개로 구비될 수도 있는 등, 본 발명이 구현되는 환경에 맞게 격벽(250a)이 복수 개로 구비될 수 있는 등 다양한 변형, 변경이 가능하다.
격벽(215)의 형상도 냉매 수용 부재(220)의 내부 공간을 분리하여 구획할 수 있는 것이면 충분하고, 반드시 편평한 평면 형상일 필요는 없고, 다양한 변형, 변경이 가능하다. 도 6은 도 2 내지 도 5의 냉각부들에 적용할 수 있는 방열판(210)의 실시예들을 평면도로 도시한다. 도 6(a)에서는 방열판(210)에 관통구(230)가 형성된 상태를 도시하고 있다.
방열판(210)에는 평면상 원형으로 이루어진 관통구들(230)이 가로 방향 및 세로 방향을 따라 일정한 간격으로 이격되도록 배치되어 있다.
어떠한 전지 셀이 발화하더라도, 상기 발화한 전지 셀에 대한 냉각수의 공급이 가능한 위치에 관통구가 형성되어야 한다. 즉, 모든 전지 셀들에 대해 냉각수가 공급될 수 있도록 모든 전지 셀들마다 적어도 1개의 관통구가 배치되는 것이 바람직하다. 따라서, 상기 전지 셀의 개수 및 크기에 따라 관통구의 개수 및 간격이 조절될 수 있다.
도 6(b) 및 도 6(c)는 도 6(a)의 방열판(210)을 일부 변형한 실시예의 평면도이다.
도 6(b) 및 도 6(c)를 참조하면, 방열판(210)에 형성된 관통구들(230', 230'')의 형태는 도 6의 관통구(230) 형태와 차이가 있다.
도 6(b) 및 도 6(c)에 도시된 방열판(210)의 단축 방향과 전지 셀의 길이 방향(L)이 평행하도록 전지 셀이 배치될 때, 관통구(230')는 1개의 관통구가 2개 이상의 전지 셀들을 커버할 수 있도록 비스듬하게 형성되어 있고, 관통구(230'')는 2개 이상의 전지 셀들을 커버할 수 있도록 전지 셀의 길이 방향(L)에 대해 수직인 방향으로 형성되어 있다.
이와 같은 형태의 관통구가 형성되는 경우에는, 어느 하나의 전지 셀의 발열 및 폭발에 의해 밀봉 부재가 용융되면, 관통구가 크게 형성되기 때문에, 발열 및 폭발한 전지 셀과 인접하게 위치하지만 발열 및 폭발하지 않은 전지 셀 표면에도 냉각수가 부가될 수 있다. 따라서, 상기 발열 및 폭발하지 않은 전지 셀의 온도를 낮춤으로써 열 폭주 현상이 일어나는 것을 방지할 수 있다.
도 7는 도 2의 부분 확대도이다. 전지 셀 적층체(101)와 방열판(210) 사이에 공간이 생길 수 있고, 개별 전지 셀들마다, 전지 셀과 방열판(210) 간의 거리에 편차가 발생할 수 있다. 이와 같이 전지 셀 적층체(101)와 방열판(210) 사이에 형성되는 공간에 의해 전지 모듈 및/또는 전지 팩 내부의 열을 외부로 배출하는 방열성이 저하된다.
이와 같은 문제를 방지하기 위하여, 전지 셀 적층체(101)와 방열판(210) 사이 공간에 열전달물질(Thermal interface material, TIM)(390)을 충진할 수 있다.
열전달물질(390)은 전지 셀 적층체와 방열판 간의 열 접점을 넓히기 때문에, 전지 셀 적층체에서 발생한 열에너지를 빠르게 배출할 수 있다.
다만, 전지 셀에서 방출된 열 에너지가 열전달물질(390)에 의해 상기 밀봉 부재에 직접 닿지 못하는 경우, 상기 밀봉 부재가 용융온도에 도달하지 못할 수 있다. 따라서, 상기 열전달물질의 부가를 생략할 수 있다.
또는, 상기 열전달물질은 방열판의 관통구 하부에는 미형성되고, 그 외의 부분에만 부가되는 형태일 수 있다. 이와 같은 경우, 열전달물질이 부가되더라도 벤팅된 전지 셀의 열 에너지가 손실되지 않고 상기 밀봉 부재로 직접 전달될 수 있는 바, 밀봉 부재가 용융되어 상기 벤팅된 전지 셀에 대한 냉매 공급이 이루어질 수 있다.
한편, 방열판(210)을 관통하는 관통구(230)에는 밀봉 부재(240)가 부가되어 있는 바, 예를 들어, 밀봉 부재(240)는 관통구(230)를 채우고 있으며, 방열판의 내측면(211) 및 방열판의 외측면(212)에서 관통구(230)의 둘레에서 외측으로 더 연장된 연장부(241)를 포함한다.
밀봉 부재(240)에 연장부(241)가 형성되기 때문에, 냉매 수용 부재를 흐르는 냉각수 압력에 의해 밀봉 부재(240)가 제거되어 관통구가 개방되는 것을 방지할 수 있다.
도 8은 홈이 형성된 방열판에 밀봉 부재가 부가된 전지 모듈 또는 전지 팩의 수직 단면 확대도이다.
도 8을 참조하면, 상부판(110)과 방열판(310)의 사이에 냉매 수용 부재(320)가 형성되고, 방열판(310)의 관통구에는 밀봉 부재(340)가 부가되어 있다.
밀봉 부재(340)는 연장부(341)를 포함하며, 방열판의 내측면(311) 및 방열판의 외측면(312) 가운데 연장부(341)가 형성된 부분에는 홈(314)이 형성되어 있다.
홈(314)에는 연장부(341)를 구성하는 밀봉 부재의 일부가 삽입되어 삽입부(345)를 형성하고 있는 바, 냉각수의 수압에 의해 밀봉 부재가 제거되어 관통구가 개방되는 것을 더욱 효과적으로 방지할 수 있다.
이와 같이 연장부를 포함하는 밀봉 부재를 제조하기 위하여, 홈이 형성된 방열판에 대해 밀봉 부재용 수지를 수입하여 제조하는 인서트 사출 방법을 사용할 수 있다. 또는, 밀봉 부재 중 관통구를 통과하는 부분은 상기 관통구의 형태 및 크기에 대응되는 형태 및 크기를 갖는 밀봉 부재의 중심부를 준비하고, 상기 밀봉 부재의 중심부에 별도의 부재를 부가하여 연장부를 형성할 수 있다. 이 때 상기 밀봉 부재의 중심부와 별도로 부가된 연장부의 결합은 접착물질에 의한 접착, 나사 체결, 억지 끼움 방식 등 그 결합 방법이 한정되지 않는다. 또한, 상기 밀봉 부재의 중심부는 고온에서 용융되는 열가소성 고분자 수지로 이루어지고, 상기 별도로 부가된 연장부의 소재는 고온에서 용융되지 않는 소재로 이루어질 수 있다.
도 9은 홈이 형성된 방열판에 밀봉 부재가 부가된 상태의 수직 단면도이다.
도 9을 참조하면, 방열판(410, 510, 610) 각각에는 밀봉 부재(440, 540, 640)가 부가되어 있다.
방열판들(410, 510, 610) 각각에는 연장부와 만나는 부분에 홈들(414, 514, 614)이 형성되어 있고, 홈들(414, 514, 614)의 내부에는 삽입부들(445, 545, 645)이 형성된다.
방열판(410, 510, 610)에서 홈들(414, 514, 614)이 형성된 부분의 수직 단면은, 삼각형, 사다리꼴 등을 포함하는 다각형, 반원, 및 반타원형으로 이루어진 군에서 선택되는 어느 하나 이상의 형태로 형성될 수 있으며, 이들이 혼합되어 형성될 수 있다.
도 9에서 도 9(c)를 참조하면, 밀봉 부재(640)의 중심부(641)의 두께는 밀봉 부재(410)의 중심부의 두께 및 밀봉 부재(510)의 중심부의 두께 보다 얇게 형성된다. 이와 같이 관통구를 밀봉하는 부분의 두께가 상대적으로 얇게 형성되는 경우에는 밀봉 부재가 용융되어 관통구가 개방되기까지의 시간이 단축될 수 있으므로, 전지 셀에 대한 냉매의 공급이 신속하게 이루어질 수 잇다.
또한, 상기 방열판은, 프레임의 상부판 및 하부판과 결합하는 워터 탱크를 구성하고, 상기 방열판은 상기 상부판 및 하부판과 결합하는 워터탱크의 일측면과 대면하는 타측면을 구성할 수 있다.
이상, 본 발명에 따른 하나의 전지 셀 적층체(101)를 포함하는 전지 모듈 또는 전지 팩 및 이에 포함된 냉각부를 중심으로 도면들을 참조하여 기술하였지만, 본 발명의 실시예들에 따른 냉각부는 복수 개의 전지 셀 적층체(101, 셀 모듈 어셈블리)를 포함하는 전지 팩에도 동일한 방식으로 적용할 수 있다.
복수 개의 전지셀 적층체(101, 셀 모듈 어셈블리)가 적층되어 전지 팩을 구성하는 경우에 관하여는, 도 10 및 도 11을 참조하여 기술한다. 도 10은 본 발명의 일 실시예에 따른 전지 팩(100’)에서 복수 개의 전지셀 적층체(101)가 수납되는 경우를 개략적으로 도시한다. 도 11은 도 10의 본 발명의 일 실시예에 따른 전지 팩의 수직 단면도로서, 도 10의 복수 개의 전지셀 적층체(101) 위에 냉각부(200)를 포함하는 경우를 도시한다. 도 10 및 도 11의 전지 팩(100’)에서는 복수 개의 전지셀 적층체(101) 위에 하나의 냉각부(200)를 두는 경우를 도시한다. 냉각부에 도 1 내지 도 9에서 상술한 냉각부를 복수 개의 전지셀 적층체(101)가 적층된 전지 팩(100’)에도 동일한 방식으로 적용할 수 있다.
도 11을 참조하면, 복수 개의 전지셀 적층체(101, 셀 모듈 어셈블리) 위에 냉각부(200)가 위치할 수 있다.
프레임은 복수 개의 전지셀 적층체(101)의 상부에 배치되는 상부판(110), 복수 개의 전지셀 적층체(101)의 하부에 배치되는 하부판(120), 및 상부판(110)과 하부판(120) 사이에 배치되며, 복수 개의 전지셀 적층체(101)의 양 측면에 배치되는 측면판(미도시)을 포함한다. 추가적으로, 복수 개의 전지셀 적층체(101) 사이에 크로스 빔(140)을 포함할 수 있다. 상부판(110), 하부판(120), 및 측면판을 포함하는 프레임의 형태는 도 10 및 도 11에 도시된 구조로 한정되지 않으며, 본 발명이 구현되는 환경에 맞게 다양한 방식으로 변형, 변경하여 구현될 수 있다.
참고로, 도 11에서도 상부판(110), 하부판(120) 각각은 프레임의 상부판, 프레임의 하부판을 의미하며, 편의상 줄여서 상부판(110), 하부판(120)이라 칭하였다. 이는, 냉매 수용 부재(220)를 기준으로 한 냉매 수용 부재(220)의 상부판 및 냉매 수용 부재(220)의 하부판과는 별개의 개념으로 이해하여야 한다.
도 11에서, 냉각부(200)는 냉매를 수용하는 냉매 수용 부재(220)를 포함한다. 냉매 수용 부재(220)의 일면은 복수 개의 전지셀 적층체(101)의 적어도 일면에 배치된다. 냉매 수용 부재(220)의 일면은 방열판(210)일 수 있다. 냉매 수용 부재(220)의 일면과 마주보는 타면은 프레임의 상부판(110)일 수 있다. 즉, 냉매 수용 부재(220)가 복수 개의 전지셀 적층체(101)의 상부에 구비된 경우, 냉매 수용 부재(220)의 상부판은 프레임의 상부판(110)일 수 있다. 방열판(210)은 복수 개의 관통구(230)를 포함한다. 관통구(230)는 밀봉 부재(240)로 밀봉되어 있다.
한편, 도 11의 전지 팩(100’)의 냉매 수용 부재(220)는 복수 개의 전지셀 적층체(101) 위에 배치된 반면, 도 2의 전지 모듈 또는 전지 팩(100)의 냉매 수용 부재(220a)는 하나의 전지 셀 적층체(101) 위에 배치된 점에서 차이가 있지만, 도 11의 냉매 수용 부재(220)의 세부 구성요소는 도 2의 전지 모듈 또는 전지 팩(100)의 냉매 수용 부재(220a)의 세부 구성요소와 동일하다.
따라서, 도 11의 냉매 수용 부재(220)의 세부 구성요소에 관한 설명은 도 2의 전지 모듈 또는 전지 팩(100)의 냉매 수용 부재(220a)의 세부 구성요소에 관한 설명과 중복이므로, 그 밖의 설명은 도 1 내지 도 9에서 상술한 바를 참조한다. 또한, 도 11의 A로 표기된 부분에 관한 설명도 각각 도 7에서 설명한 부분과 중복이므로, 해당 부분에서 상술한 바를 참조한다.
또한, 도 11에서는 냉각부(200)가 복수 개의 전지셀 적층체(101) 위에 배치된 경우를 도시하였지만, 경우에 따라서는 냉각부(200)가 복수 개의 전지셀 적층체(101)의 아래에 배치될 수도 있는 등 다양한 변형, 변경이 가능하다. 물론, 도 5의 실시예에서 상술한 바와 같이 격벽(215)을 냉각부(220)에 적용할 수도 있다.
이와 같이, 본 발명에 따른 전지 모듈 및/또는 전지 팩 및 이에 포함된 냉각부를 사용하는 경우에는, 전지 셀이 발화되더라도, 신속하게 전지 셀을 냉각시킬 수 있다. 또한, 냉매 수용 공간이 경사지게 배치되더라도 냉매 수용 공간 내의 냉매 전부를 발화된 전지 셀로 공급할 수 있다. 전지 모듈 및/또는 전지 팩의 부피 증가를 최소화하면서 전지 셀의 열 폭주 현상을 효율적으로 억제할 수 있다.
본원 발명이 속한 분야에서 통상의 지식을 가진 자라면 상기 내용을 바탕으로 본원 발명의 범주내에서 다양한 응용 및 변형을 수행하는 것이 가능할 것이다.
이상에서 본 발명의 바람직한 실시예에 대하여 상세하게 설명하였지만 본 발명의 권리범위는 이에 한정되는 것은 아니고 다음의 청구범위에서 정의하고 있는 본 발명의 기본 개념을 이용한 당업자의 여러 변형 및 개량 형태 또한 본 발명의 권리범위에 속하는 것이다.
[부호의 설명]
101: 전지 셀 적층체
110: 상부판
120: 하부판
130: 측면판
200a, 200a', 200b, 200b': 냉각부
210, 310, 410, 510, 610: 방열판
215: 격벽
220, 320: 냉매 수용 부재
230, 230', 230'', 267, 267', 330: 관통구
240, 268, 268', 340, 440, 540, 640: 밀봉 부재
250: 탄성 부재
260: 가압 부재

Claims (16)

  1. 복수의 전지 셀들이 적층된 전지 셀 적층체;
    상기 전지 셀 적층체를 수납하는 프레임; 및
    상기 전지 셀 적층체 상에 냉각부를 포함하고,
    상기 냉각부는:
    상부판과 하부판을 포함하는 냉매 수용 부재;
    상기 냉매 수용 부재의 내부 공간에 배치되는 탄성 부재; 및
    상기 냉매 수용 부재에 형성된 적어도 하나의 관통구를 밀봉하고, 상기 전지 셀의 온도 상승에 의해 용융 가능한 밀봉 부재를 포함하고,
    상기 탄성 부재의 내부에 냉매가 수용되고, 상기 냉매가 수용됨에 따라 상기 탄성 부재는 팽창되는, 전지 팩.
  2. 제1 항에 있어서,
    상기 탄성 부재의 용융 전에는, 상기 탄성 부재는 내부에 상기 냉매를 수용하여 최대로 팽창되어, 상기 냉매 수용 부재의 내부 공간의 전면을 커버하는, 전지 팩.
  3. 제1 항에 있어서,
    상기 전지 셀의 온도 상승 시, 상기 전지 셀에서 방출하는 고온 가스 또는 스파크에 의해 상기 밀봉 부재가 용융되고, 동시에 또는 후속으로, 상기 탄성 부재 중 상기 밀봉 부재에 인접한 부분이 용융되어, 상기 탄성 부재의 내부의 상기 냉매가 상기 전지 셀 적층체로 유출되는, 전지 팩.
  4. 제3 항에 있어서,
    상기 냉매가 상기 전지 셀 적층체로 유출되면서, 상기 냉매가 상기 탄성 부재를 가압하던 압력이 점차 감소함에 따라 상기 탄성 부재가 점차 수축하는, 전지 팩.
  5. 제1 항에 있어서,
    상기 냉매 수용 부재와 상기 탄성 부재 사이의 공간에 냉매가 수용되지 않는, 전지 팩.
  6. 제1 항에 있어서,
    상기 냉매 수용 부재의 내부면 중에서 상기 관통구 주변을 포함한 부분에 상기 탄성 부재를 접착하는 접착제가 도포되는, 전지 팩.
  7. 제6 항에 있어서,
    상기 접착제는 아크릴계 접착제, 실리콘계 접착제, 고무계 접착제, 또는 핫멜트계 접착제인, 전지 팩.
  8. 제1 항에 있어서,
    상기 냉매 수용 부재는 워터 탱크이고, 상기 탄성 부재의 내부에 냉각수가 수용되는, 전지 팩.
  9. 제1 항에 있어서,
    상기 냉매 수용 부재의 내부 공간을 복수 개의 구역들로 분리하도록, 상기 내부 공간을 가로 질러 배치되는 적어도 하나의 격벽을 포함하고,
    상기 적어도 하나의 격벽은 상기 방열판에 수직하게 배치되고, 상기 전지 셀의 길이 방향으로 배치되고,
    상기 복수 개의 구역들 각각에 상기 탄성 부재가 각각 구비되는, 전지 팩.
  10. 제1 항에 있어서,
    상기 냉각부의 내부면과 상기 탄성 부재의 외부면 사이에 탄성력을 갖는 가압 부재가 구비되고,
    상기 탄성 부재 내부에 냉매가 수용되어 있는 경우에는, 상기 냉매로 인한 압력으로 인하여, 가압 부재는 압축되어 있고,
    상기 관통구를 통해 상기 냉매가 상기 전지 셀로 공급되면서 상기 탄성 부재가 점차 수축하게 되면, 상기 압축되어 있던 가압 부재의 복원력에 의해, 상기 가압 부재는 상기 탄성 부재의 외부면을 가압하여, 상기 탄성 부재는 상기 관통구 주변에 밀착되는, 전지 팩.
  11. 제10 항에 있어서,
    상기 가압 부재는 스프링인, 전지 팩.
  12. 제1 항에 있어서,
    상기 밀봉 부재는 열가소성의 고분자 수지로 이루어진, 전지 팩.
  13. 제1 항에 있어서,
    상기 탄성 부재는 천연 고무, 합성 고무(SBR), 내유 고무(NBR), 또는 폴리우레탄 고무로 이루어진, 전지 팩.
  14. 제1 항에 있어서,
    상기 냉매 수용 부재의 상기 전지 셀 적층체에 인접한 면은 방열판인, 전지 팩.
  15. 제14 항에 있어서,
    상기 프레임은:
    상기 전지 셀 적층체의 상부에 배치되는 상부판;
    상기 전지 셀 적층체의 하부에 배치되는 하부판; 및
    상기 상부판과 하부판 사이에, 상기 전지 셀 적층체의 측면에 배치되는 측면판을 포함하고,
    상기 냉각부는 상기 상부판 및 상기 하부판 중 적어도 하나에 배치되고,
    상기 냉매 수용 부재의 상기 방열판은 상기 프레임과 소정 거리의 이격 간격을 두어 상기 냉매 수용 부재를 형성하는, 전지 팩.
  16. 제1 항에 있어서,
    상기 전지 셀 적층체를 복수 개로 구비하고,
    상기 냉각부는 상기 복수 개의 전지 셀 적층체 상에 배치되는, 전지 팩.
PCT/KR2023/010251 2022-07-18 2023-07-18 냉각부를 포함하는 전지 모듈 및 전지 팩 WO2024019467A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20220088258 2022-07-18
KR10-2022-0088258 2022-07-18
KR10-2023-0092580 2023-07-17
KR1020230092580A KR20240011107A (ko) 2022-07-18 2023-07-17 냉각부를 포함하는 전지 모듈 및 전지 팩

Publications (1)

Publication Number Publication Date
WO2024019467A1 true WO2024019467A1 (ko) 2024-01-25

Family

ID=89618205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/010251 WO2024019467A1 (ko) 2022-07-18 2023-07-18 냉각부를 포함하는 전지 모듈 및 전지 팩

Country Status (1)

Country Link
WO (1) WO2024019467A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120342A (ja) * 2004-10-19 2006-05-11 Nissan Motor Co Ltd 燃料電池システム
KR20190107400A (ko) * 2018-03-12 2019-09-20 박상웅 에너지 저장장치용 배터리 팩
KR20210122998A (ko) * 2020-04-02 2021-10-13 주식회사 하드웍 배터리 냉각장치
KR20220001227A (ko) * 2020-06-29 2022-01-05 주식회사 엘지에너지솔루션 방열부재를 포함하는 전지모듈 및 상기 방열부재의 제조방법
KR20220023224A (ko) * 2020-08-20 2022-03-02 에스케이온 주식회사 배터리 모듈

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120342A (ja) * 2004-10-19 2006-05-11 Nissan Motor Co Ltd 燃料電池システム
KR20190107400A (ko) * 2018-03-12 2019-09-20 박상웅 에너지 저장장치용 배터리 팩
KR20210122998A (ko) * 2020-04-02 2021-10-13 주식회사 하드웍 배터리 냉각장치
KR20220001227A (ko) * 2020-06-29 2022-01-05 주식회사 엘지에너지솔루션 방열부재를 포함하는 전지모듈 및 상기 방열부재의 제조방법
KR20220023224A (ko) * 2020-08-20 2022-03-02 에스케이온 주식회사 배터리 모듈

Similar Documents

Publication Publication Date Title
WO2022004972A1 (ko) 방열부재를 포함하는 전지모듈 및 상기 방열부재의 제조방법
WO2021107336A1 (ko) 배터리 모듈, 배터리 팩, 및 자동차
WO2015160115A1 (ko) 배터리 모듈 및 이를 포함하는 배터리 팩
WO2017160029A1 (ko) 배터리 모듈
WO2022108286A1 (ko) 열확산 억제 구조를 포함하는 전지팩
WO2021177761A1 (ko) 배터리 랙 및 이러한 배터리 랙을 포함하는 전력 저장 장치
WO2021085911A1 (ko) 배터리 모듈, 이러한 배터리 모듈을 포함하는 배터리 랙 및 전력 저장 장치
WO2022108285A1 (ko) 열확산 억제 구조를 포함하는 전지팩
WO2021201408A1 (ko) 전지 모듈 및 이를 포함하는 전지팩
WO2022203278A1 (ko) 냉각수를 활용한 배터리 셀의 열확산 방지 구조를 갖춘 배터리 모듈 및 이를 포함하는 배터리 팩
WO2024019467A1 (ko) 냉각부를 포함하는 전지 모듈 및 전지 팩
WO2022108290A1 (ko) 열확산 억제 구조를 포함하는 전지팩
WO2020060055A1 (ko) 모듈 하우징을 포함하는 배터리 모듈
WO2024019473A1 (ko) 냉각부를 포함하는 전지 모듈 및 전지 팩
WO2022173231A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
WO2022177395A1 (ko) 배터리 팩 및 이를 포함하는 자동차
WO2022045783A1 (ko) 배터리 모듈, 이를 포함하는 배터리 팩 및 자동차
WO2022108284A1 (ko) 열확산 억제 구조를 포함하는 전지팩
WO2022108289A1 (ko) 열확산 억제 구조를 포함하는 전지팩
WO2022108291A1 (ko) 열확산 억제 구조를 포함하는 전지팩
WO2022108288A1 (ko) 열확산 억제 구조를 포함하는 전지팩
WO2024019414A1 (ko) 전지 팩 및 이를 포함하는 디바이스
KR20240011107A (ko) 냉각부를 포함하는 전지 모듈 및 전지 팩
WO2024058578A1 (ko) 배터리 팩 케이스 및 이를 포함하는 배터리 팩
WO2024063485A1 (ko) 배터리 팩 및 이를 포함하는 전력 저장 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843313

Country of ref document: EP

Kind code of ref document: A1