WO2024019344A1 - Selective apatite film forming method using laser and selective apatite film forming apparatus - Google Patents

Selective apatite film forming method using laser and selective apatite film forming apparatus Download PDF

Info

Publication number
WO2024019344A1
WO2024019344A1 PCT/KR2023/008674 KR2023008674W WO2024019344A1 WO 2024019344 A1 WO2024019344 A1 WO 2024019344A1 KR 2023008674 W KR2023008674 W KR 2023008674W WO 2024019344 A1 WO2024019344 A1 WO 2024019344A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
selective
apatite
screw thread
Prior art date
Application number
PCT/KR2023/008674
Other languages
French (fr)
Korean (ko)
Inventor
이상윤
Original Assignee
주식회사 덴탈알파고
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 덴탈알파고 filed Critical 주식회사 덴탈알파고
Publication of WO2024019344A1 publication Critical patent/WO2024019344A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61CDENTISTRY; APPARATUS OR METHODS FOR ORAL OR DENTAL HYGIENE
    • A61C8/00Means to be fixed to the jaw-bone for consolidating natural teeth or for fixing dental prostheses thereon; Dental implants; Implanting tools
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/02Inorganic materials
    • A61L27/04Metals or alloys
    • A61L27/06Titanium or titanium alloys
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range

Definitions

  • the present invention relates to a method and device for forming an apatite film, and more specifically, to a method for forming apatite films of different thicknesses on screw threads and screw bones by controlling the focal position of a laser, and to a device using the same.
  • Titanium-based alloy which is the most widely used medical metal material, is reported to be superior to previously used biomedical metals, including low elastic modulus, excellent corrosion resistance and excellent biocompatibility.
  • bioinert because it is bioinert, it does not directly induce bone formation, requires a considerable amount of treatment time to achieve bone integration, and the naturally formed oxidized powder is thin, so it disappears quickly and does not lead to regeneration of adjacent bone tissue. It has problems.
  • bioactivity is given to the implant through surface treatment.
  • the surface of titanium which is used as the main material of implants, is treated physically and chemically to further improve bioactivity, thereby shortening the healing period after implants are placed in the human body. Research for more effective surface treatment is continuously conducted. There is a situation.
  • hydroxyapatite is used as a surface treatment material for the surface of titanium.
  • Hydroxyapatite (hydroxyapatite) is a basic component of hard tissue in the human body and is also used as a bone tissue transplant or bone regeneration material.
  • the chemical structure of hydroxyapatite is Ca10(PO4)6(OH)2.
  • Hydroxyapatite in human tooth enamel is mainly distributed in the outermost enamel, which is approximately 1-2 mm thick. It is known that such hydroxyapatite can exhibit a remineralization effect and thus has the function of directly filling micropores in demineralized enamel.
  • anodizing in order to film hydroxyapatite on the surface of a substrate such as titanium through surface treatment, anodizing, sol-gel, plasma spraying, chemical vapor deposition (CVD), and plasma electrolysis are used.
  • Various methods such as oxidation (PEO-Plasma Electrolytic Oxidation) are being used.
  • anodizing is a method of forming relatively thick oxides and metal salts on the surface of a metal using an external power source.
  • the metal for which an oxide layer is to be formed is installed on the anode, and another insoluble metal is brought into contact with the cathode to create an electric current in the electrolyte.
  • an electric current is applied for anodization by flowing , the metal hydroxide forms a fine film at a very low voltage, and when a voltage of about 10V is applied, a metal oxide layer is formed.
  • the resistance increases and internal stress is concentrated in the metal oxide layer, and the oxide layer is destroyed at 70V.
  • the voltage is raised again, a second porous oxide layer is formed.
  • the sol-gel method is to prepare a solution that becomes a gel through hydrolysis and polymerization with alcohol, water, and acid to produce a film.
  • a homogeneous solution is described in a state of relatively low viscosity.
  • Wet coating methods such as dip-coating, which applies the sol-gel method by coating on a substrate and gelling it to form a film, are low-temperature processes and allow coating regardless of area and control the thickness and microstructure of the film.
  • a post-heat treatment process for crystallization is added, the formation of a flat film is limited, and an adhesive to strengthen the adhesion must be inserted into the middle layer in order for the film to have sufficient bonding strength with the base material.
  • Plasma spraying is a field of thermal spraying and refers to a process of welding materials with high melting points, such as ceramics, which are metals and non-metals, on a substrate in a molten or semi-molten state.
  • materials and size of the base material there are no restrictions on the material and size of the base material, there is no deformation of the base material, on-site construction is possible, thick film coating is possible, the film thickness is easy to control, and there are various types of coating materials, but the advantages are that the porosity of the tissue is low. It occurs in 06 ⁇ 15% and has the disadvantage of being weak to impact when titanium ceramic coating is made of a mechanical bond rather than a metallic bond, and its application to implants is difficult because its adhesion to the base material is weak.
  • Plasma electrolytic film surface treatment is a surface treatment method that forms a dense and mechanically stable film layer by inducing microdischarge on the surface of a metal material immersed in an electrolyte solution.
  • the characteristics of the film layer formed by the plasma electrolytic coating method are controlled by various process variables, including the electrolyte.
  • the electrolyte conditions and the amount of current density are the most important factors affecting the formation and physical properties of the film layer.
  • the electrolyte used at this time is generally potassium phosphate, sodium phosphate, glycerol phosphate, and stannate.
  • the purpose of the present invention is to provide a method for forming apatite films of different thicknesses on screw threads and screw bones by adjusting the focal position of a laser, and a device using the same.
  • the method of forming a selective apatite film using a laser includes (a) supporting a substrate for implant in a precursor solution for forming apatite containing Ca 2+ ions and PO 4 3- ions. step; (b) irradiating a laser beam to the implant substrate supported in the precursor solution; (c) positioning the focus of the laser beam on a specific part of the implant base to generate a difference in energy density of the laser beam reaching the screw thread portion and the screw bone portion; and (d) forming an apatite film in the area irradiated with the laser beam by activating the reaction of Ca 2+ ions and PO 4 3- ions in the precursor solution.
  • step (c) it is preferable to focus the laser beam on the threaded portion of the implant base.
  • step (d) is preferably performed by rotating the implant base at a constant speed in the axial direction and scanning the laser beam in accordance with the speed of the screw thread.
  • step (b) may include a step performed by a first laser beam irradiated so as to perpendicularly contact the top of the screw thread, and a step performed by a second laser beam irradiated in a slope direction of the screw thread.
  • step (b) may further include a step performed by a third laser beam irradiated to the slope of the thread opposite to where the second laser beam is irradiated.
  • a selective apatite film forming device using a laser includes a solution receiving portion that accommodates a precursor solution for forming apatite containing Ca 2+ ions and PO 4 3- ions; a laser irradiation unit that irradiates a laser beam to the implant substrate supported in the precursor solution; and a base rotating unit that rotates the implant base supported in the precursor solution.
  • the laser irradiation unit focuses the laser beam on a specific part of the implant substrate to generate a difference in energy density of the laser beam reaching the screw thread portion and the screw bone portion.
  • the laser irradiation unit may focus the laser beam on the threaded portion of the implant base.
  • the base rotating unit rotates the implant base at a constant speed in the axial direction so that the laser beam scans the screw thread portion, and preferably advances in accordance with the progress of the screw thread.
  • the laser irradiation unit includes a first laser that irradiates a laser beam to perpendicularly contact the top of the screw thread; a second laser beam that irradiates a laser beam in the direction of the slope of the screw thread; And it may include a third laser that irradiates a laser to the slope of the thread opposite to where the laser beam of the second laser is irradiated.
  • the energy density of the laser beam can be increased at the top or valley of the screw thread, so it is possible to form a thicker amatite film in a specific part as needed.
  • FIG. 1 is a flowchart explaining a method of selectively forming an apatite film using a laser according to the present invention.
  • Figure 2 is a block diagram of a selective apatite film forming device using a laser according to the present invention.
  • Figure 3 explains that an attapite film is formed at a selective thickness on the screw thread due to a difference in the density of the laser beam.
  • Figure 4 illustrates another embodiment of the present invention, where an attapite film is formed at a selective thickness on the screw thread due to a difference in density of the laser beam.
  • Figure 5 illustrates that an attapite film is formed at a selective thickness in the screw valley area due to a difference in the density of the laser beam.
  • Figure 6 illustrates another embodiment of the present invention in which an attapite film is formed at a selective thickness in the screw valley area due to a difference in the density of the laser beam.
  • Figure 1 is a flowchart explaining a method of selectively forming an apatite film using a laser according to the present invention
  • Figure 2 is a block diagram of a selective apatite film forming apparatus using a laser according to the present invention
  • Figure 3 is the density of the laser beam. It is a diagram explaining the formation of an attapite film at a selective thickness on a screw thread due to a difference
  • Figure 4 is another embodiment of the present invention, showing an attapite film being formed at a selective thickness on a screw thread due to a difference in the density of a laser beam.
  • Figure 5 explains that an attapite film is formed with a selective thickness in the screw valley area due to the difference in density of the laser beam
  • Figure 6 is another embodiment of the present invention, showing the difference in density of the laser beam. This explains the formation of an attapite film with a selective thickness in the screw groove area.
  • the apatite film forming apparatus 1000 includes a laser irradiation unit 100, a solution receiving unit 200, and a base rotation unit 300.
  • the solution receiving portion 200 accommodates a precursor solution (W) for forming apatite containing Ca 2+ ions and PO 4 3- ions.
  • the laser irradiation unit 100 radiates a laser beam (L) to the implant substrate (I) supported in the precursor solution (W).
  • the apatite forming precursor solution (W) containing Ca 2+ ions and PO 4 3- ions reacts with the energy of the laser beam (L) to generate apatite on the surface of the implant substrate (I).
  • the substrate rotating unit 300 rotates the implant substrate (I) supported in the precursor solution (W).
  • the base rotating part 300 has a shape including a bracket 310 that fixes the implant base (I).
  • the bracket 310 is shown as fixing the screw portion of the implant base (I), but this is only for simplification, and the shape and rotation method of the bracket 310 are similar to those of the implant base (I). It can be implemented in various ways depending on the form.
  • the present invention is intended to form a thicker apatite film (A) on the screw bone portion of the screw thread (N) of the implant base (I), and has the feature of using the difference in density of the laser beam (L).
  • the thread portion or the screw valley portion can be selectively thickened as needed.
  • the laser irradiation unit 100 focuses the laser beam (L) on a specific part of the implant base (I) (that is, on the top of the screw thread (N) (see FIG. 3) or the screw bone (see FIG. 5) of the screw thread (N). By positioning it, a difference in energy density of the laser beam reaching the screw thread portion and the screw bone portion is generated.
  • the energy density of the laser beam (L) is high at the top of the screw thread (N), so the production rate of the apatite film (A) is high, and the laser beam (L) is generated at the valley of the screw thread (N). Since it is dispersed and the energy density is lowered, the formation rate of the apatite film (A) is low and it is deposited in a thin layer.
  • the energy density of the laser beam (L) is high in the valley part of the screw thread (N), so the production rate of the apatite film (A) is high and deposited thickly in the valley part, and the apatite film (A) is thickly deposited in the valley part.
  • the laser beam (L) is dispersed and the energy density is lowered, so the apatite film (A) is deposited in a thin layer due to a low production rate.
  • the base rotation unit 300 is used to create an apatite film (A) along all surfaces of the screw thread (N) - that is, to expose all screw surfaces to the laser beam (L). Rotate at a constant speed in the axial direction. Because of this, the laser beam (L) can be scanned as if the screw thread (360°) rotates.
  • the base rotating unit 300 may operate by advancing the implant base (I).
  • the laser irradiation unit 100 is fixed and the substrate rotating unit 300 rotates the implant substrate (I) by 360° and moves forward to form the apatite film (A).
  • the base rotation unit 300 simply rotates the implant base (I) by 360°, and the laser irradiation unit 100 may be carried out by moving the position of the laser beam (L) and scanning it.
  • the laser irradiation unit 100 may use a plurality of laser beams L1, L2, and L3 to generate a difference in energy density of the laser beam reaching the screw thread portion and the screw bone portion.
  • the laser irradiation unit 100 includes a first laser 110, a second laser 120, and a third laser 130.
  • the first laser 110 is arranged to irradiate the laser beam (L1) so as to perpendicularly contact the top of the screw thread (N), and the second laser 120 radiates the laser beam (L2) in the direction of the slope of the screw thread (N).
  • the third laser 130 may be arranged to irradiate the laser beam L3 in the direction of the slope opposite to the screw thread N.
  • 4 and 6 show three lasers 110, 120, and 130, but depending on the embodiment, the laser irradiation unit 100 may be implemented using only two lasers 120 and 130.
  • Figure 1 is a flowchart explaining the method of selectively forming an apatite film using a laser according to the present invention. Even when the selective apatite film forming apparatus 1000 described in FIGS. 2 to 6 is implemented in time series, it corresponds to the present embodiment, so the laser irradiation unit 100, the solution receiving unit 200, and the substrate rotating unit 300. The parts described herein also apply to this embodiment.
  • the method of selectively forming an apatite film using a laser includes an implant base (I) detection step (S100), a laser beam irradiation step (S200), a density difference generation step of the laser beam (S300), and an apatite film forming step. Includes (S400).
  • step S100 the substrate for implant (I) is supported in the precursor solution (W) for forming apatite containing Ca 2+ ions and PO 4 3- ions.
  • step S100 is performed by placing the implant substrate (I) on the substrate rotating unit 300 and injecting the apatite forming precursor solution (W) into the solution receiving unit 200.
  • step S200 a laser beam is irradiated to the implant substrate (I) supported in the precursor solution (W).
  • step S300 the focus of the laser beam (L) is placed on a specific part (the top or the screw bone part of the screw thread (N)) of the implant base (I), and the laser beam reaches the screw thread (N) part and the screw bone part. (L) creates an energy density difference.
  • step S400 the reaction of Ca 2+ ions and PO 4 3- ions in the precursor solution (W) is activated in the area where the laser beam (L) is irradiated, thereby forming an apatite film (A).
  • step S300 it is desirable to position the focus of the laser beam (L) on the thread (N) portion of the implant base (I).
  • step S400 it is desirable to rotate the implant substrate (I) in the axial direction at a constant speed and scan the laser beam (L) in accordance with the advancing speed of the screw thread (N).
  • step S200 the step is performed by the first laser beam L1 irradiated to perpendicularly contact the top of the screw thread N, and the second laser beam irradiated in the slope direction of the screw thread N 2. It includes a step performed by a laser beam (L2), and further includes a step performed by a third laser beam (L3) irradiated to the slope of the screw line (N) opposite to which the second laser beam (L2) is irradiated. You can.
  • the laser beam irradiation step (S200), the laser beam density difference generation step (S300), and the apatite film formation step (S400) are described separately.
  • steps S200, S300, and S400 are steps that proceed simultaneously.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Dentistry (AREA)
  • Materials For Medical Uses (AREA)
  • Combustion & Propulsion (AREA)
  • Ceramic Engineering (AREA)

Abstract

The present invention provides a selective apatite film forming method using a laser and a selective apatite film forming apparatus, the selective apatite film forming method comprising the steps of: (a) immersing an implant substrate in an apatite-forming precursor solution including Ca2+ ions and PO4 3- ions; (b) irradiating laser beams to the implant substrate immersed in the precursor solution; (c) generating a difference in the energy density of the laser beams that reach screw crest portions and screw root portions by positioning the foci of the laser beams on a specific part of the implant substrate; and (d) forming an apatite film in areas into which the laser beams are irradiated as the reaction of Ca2+ ions and PO4 3- ions in the precursor solution is activated.

Description

레이저를 이용한 선별적 아파타이트 피막 형성 방법 및 선별적 아파타이트 피막 형성 장치Selective apatite film forming method and selective apatite film forming device using a laser
본 발명은 아파타이트 피막 형성 방법 및 그 장치에 관한 것으로서, 구체적으로는 레이저의 촛점 위치를 조절하여 나사산과 나사골에 각기 다른 두께의 아파타이트 피막을 형성하는 방법 및 이를 이용한 장치에 관한 것이다.The present invention relates to a method and device for forming an apatite film, and more specifically, to a method for forming apatite films of different thicknesses on screw threads and screw bones by controlling the focal position of a laser, and to a device using the same.
의료용 금속 소재로 가장 널리 사용되는 티타늄계 합금은 낮은 탄성률과 생체 적합성이 뛰어난 내식성 등 기존에 사용되던 생체용 금속에 비해 우수한 것으로 보고되고 있다. 그러나 생체불활성하기 때문에 골형성을 직접적으로 유도하지 않으며, 골결합을 이루기 위해 상당한 치료시간이 오래 걸리고, 자연적으로 형성된 산화분말은 두께가 얇아 소실이 빨리 진행되어 인접한 골 조직의 재생을 이끌어내지 못하는 등의 문제점들을 가지고 있다.Titanium-based alloy, which is the most widely used medical metal material, is reported to be superior to previously used biomedical metals, including low elastic modulus, excellent corrosion resistance and excellent biocompatibility. However, because it is bioinert, it does not directly induce bone formation, requires a considerable amount of treatment time to achieve bone integration, and the naturally formed oxidized powder is thin, so it disappears quickly and does not lead to regeneration of adjacent bone tissue. It has problems.
따라서, 상기의 문제점인 임플란트가 골과 직접적인 결합을 하지 못하는 것을 해결하고, 골 결합 기간을 단축시키기 위해서 이완되는 단점을 해결하기 위해 임플란트 표면처리를 통하여 생체활성도를 부여하고 있다. 임플란트의 주재료로 사용되는 티타늄의 표면에 물리, 화학적으로 표면처리를 실시하여 생체활성을 더욱 향상시킴으로써 임플란트를 인체에 식립 후 치유기간을 단축시키고 있으며, 더 효과적인 표면처리를 위한 연구는 지속적으로 진행되고 있는 실정이다.Therefore, in order to solve the above-mentioned problem of the implant not being able to directly combine with bone and to solve the disadvantage of loosening in order to shorten the period of bone integration, bioactivity is given to the implant through surface treatment. The surface of titanium, which is used as the main material of implants, is treated physically and chemically to further improve bioactivity, thereby shortening the healing period after implants are placed in the human body. Research for more effective surface treatment is continuously conducted. There is a situation.
이때, 티타늄의 표면에 표면처리를 하는 물질로서 하이드록시아파타이트가 사용되고 있다. 하이드록시아파타이트(hydroxyapatite, 수산화인회석)는 인체의 경조직을 구성하는 기본적인 성분으로 골조직의 이식이나 골 재생 재료로써도 활용되고 있다. 하이드록시아파타이트의 화학구조는 Ca10(PO4)6(OH)2로 사람의 치아 법랑질 내의 하이드록시아파타이트는 대략 1-2 ㎜ 두께의 최외각 법랑질에 주로 분포되고 있다. 이러한 하이드록시아파타이트는 재광화 효과를 나타낼 수 있어서 탈회된 법랑질의 미세 공극을 직접 메워주는 기능을 나타낸다고 알려져 있다.At this time, hydroxyapatite is used as a surface treatment material for the surface of titanium. Hydroxyapatite (hydroxyapatite) is a basic component of hard tissue in the human body and is also used as a bone tissue transplant or bone regeneration material. The chemical structure of hydroxyapatite is Ca10(PO4)6(OH)2. Hydroxyapatite in human tooth enamel is mainly distributed in the outermost enamel, which is approximately 1-2 mm thick. It is known that such hydroxyapatite can exhibit a remineralization effect and thus has the function of directly filling micropores in demineralized enamel.
이에 티타늄 등의 기재의 표면에 표면처리를 통하여 하이드록시아파타이트를 피막하기 위하여 양극산화(Anodizing), 졸-겔법(Sol-gel), 플라즈마분사(Plasma spraying), 화학기상증착법(CVD) 및 플라즈마 전해 산화(PEO-Plasma Electrolytic Oxidation)등 다양한 방법이 사용되고 있다.Accordingly, in order to film hydroxyapatite on the surface of a substrate such as titanium through surface treatment, anodizing, sol-gel, plasma spraying, chemical vapor deposition (CVD), and plasma electrolysis are used. Various methods such as oxidation (PEO-Plasma Electrolytic Oxidation) are being used.
먼저, 양극산화(Anodizing)는 외부전원을 이용하여 금속 표면에 산화물 및 금속염을 비교적 두껍게 형성시키는 방법으로 산화층을 형성시키고자 하는 금속을 양극에 설치하고, 다른 불용성 금속을 음극에 접촉시켜 전해액 내에 전류를 흐르게 하는 것으로 양극산화를 하기 위해 전류를 걸게 되면 아주 낮은 전압에서 금속의 수산화물이 미세한 막을 형성하며, 약 10V 의 전압이 걸리게 되면 금속 산화층이 형성된다. 그러나 일단 산화층이 형성되면 저항이 증가되어 금속 산화층에 내부 응력이 집중되고, 70V에서 산화층이 파괴되며, 다시 전압을 올려주면 제2 의 다공성 산화층이 형성되는데 이러한 공정중에 스파크가 발생하게 되며, 강제적으로 전기를 걸어 산화층을 형성하므로 전기효율이 나쁘고, 스파크가 난 국소부위는 열응력을 받아 티타늄 물성에 나쁜 영향을 줄뿐만 아니라 접착력이 떨어져 최종 물성을 떨어뜨리는 문제점이 있다.First, anodizing is a method of forming relatively thick oxides and metal salts on the surface of a metal using an external power source. The metal for which an oxide layer is to be formed is installed on the anode, and another insoluble metal is brought into contact with the cathode to create an electric current in the electrolyte. When an electric current is applied for anodization by flowing , the metal hydroxide forms a fine film at a very low voltage, and when a voltage of about 10V is applied, a metal oxide layer is formed. However, once the oxide layer is formed, the resistance increases and internal stress is concentrated in the metal oxide layer, and the oxide layer is destroyed at 70V. When the voltage is raised again, a second porous oxide layer is formed. During this process, sparks are generated and forced Electricity is applied to form an oxide layer, so electrical efficiency is poor, and the local area where the spark is exposed to thermal stress not only has a negative effect on the physical properties of titanium, but also has a problem of poor adhesion, which deteriorates the final physical properties.
졸-겔법(Sol-gel)은 피막막을 제조하기 위해서 알코올, 물 및 산 등에 의해 가수분해, 중합반응에 의하여 겔(gel)로 되는 용액을 제조하는 것으로 균질한 용액을 비교적 낮은 점도의 상태로 기재에 피막하여, 기재 위에서 겔화시켜 막으로 하는 것으로 졸-겔법을 응용하는 dip-coating 등과 같은 습식 피막법은 저온 공정이며, 면적에 관계없이 피막 할 수 있고, 막의 두께 및 미세구조를 제어할 수 있는 장점이 있으나 결정화를 위한 후열처리 공정이 부가되고, 평판 형상의 피막형성이 제한되며, 피막이 모재와의 충분한 결합력을 가지기 위해서 접착력을 강하게 하기 위한 접착제가 중간층에 삽입되어야 하는 단점이 있다.The sol-gel method is to prepare a solution that becomes a gel through hydrolysis and polymerization with alcohol, water, and acid to produce a film. A homogeneous solution is described in a state of relatively low viscosity. Wet coating methods such as dip-coating, which applies the sol-gel method by coating on a substrate and gelling it to form a film, are low-temperature processes and allow coating regardless of area and control the thickness and microstructure of the film. There are advantages, but there are disadvantages that a post-heat treatment process for crystallization is added, the formation of a flat film is limited, and an adhesive to strengthen the adhesion must be inserted into the middle layer in order for the film to have sufficient bonding strength with the base material.
플라즈마분사(Plasma spraying)는 열 분무 중의 한 분야로 모재(substrate) 위에 금속과 비금속 재료인 세라믹과 같은 녹는점이 높은 물질을 용융된 상태 혹은 반 용융된 상태로 용착하는 공정을 말한다. 모재의 재질 및 크기에 제한이 없으며 모재에 변형을 초래하지 않고, 현장 시공이 가능하며, 후막피막이 가능하고, 피막두께 조절이 용이하다는 점과 피막재료의 종류가 다양하다는 점이 장점이나 조직에 기공률이 06~15%까지 나타나며 금속적 결합이 아니 기계적인 결합으로 티타늄의 세라믹 피막 시 충격에 약하다는 단점이 있고, 모재와의 접합성이 약하기 때문에 임플란트 적용이 어려운 실정이다.Plasma spraying is a field of thermal spraying and refers to a process of welding materials with high melting points, such as ceramics, which are metals and non-metals, on a substrate in a molten or semi-molten state. There are no restrictions on the material and size of the base material, there is no deformation of the base material, on-site construction is possible, thick film coating is possible, the film thickness is easy to control, and there are various types of coating materials, but the advantages are that the porosity of the tissue is low. It occurs in 06~15% and has the disadvantage of being weak to impact when titanium ceramic coating is made of a mechanical bond rather than a metallic bond, and its application to implants is difficult because its adhesion to the base material is weak.
플라즈마 전해 피막 표면처리는 전해액 내에 침지한 금속 소재의 표면에 미세 방전을 유도함으로써 치밀하고 기계적 안정성이 뛰어난 피막층을 형성시키는 표면처리 방법이다. 이처럼 플라즈마 전해 피막법에 의해 형성된 피막층의 특성은 전해액을 포함한 다양한 공정 변수에 의해 제어되며, 특히 티타늄 및 티타늄 합금에 있어 전해액 조건 및 전류밀도의 양은 피막층의 형성 및 물성에 미치는 가장 중요한 인자이다. 이때 사용되는 전해액은 인산칼륨, 인산나트륨, 인산글리세롤, 주산염 계열로 하는 것이 일반적이다. 그러나 이와 같은 첨가제는 일반적으로 전기 전도도와 pH를 높여 플라즈마 전해산화 공정을 원활하게 하는 역할을 하지만, 하이드록시아파타이트와 반응하여 순도를 낮추고 다른 화합물을 형성할 수 있으며, 이에 따라 임플란트의 표면에 하이드록시아파타이트의 결정성(crystallinity) 및 피막층 내 함유량이 매우 적은 문제점이 있다.Plasma electrolytic film surface treatment is a surface treatment method that forms a dense and mechanically stable film layer by inducing microdischarge on the surface of a metal material immersed in an electrolyte solution. In this way, the characteristics of the film layer formed by the plasma electrolytic coating method are controlled by various process variables, including the electrolyte. In particular, for titanium and titanium alloys, the electrolyte conditions and the amount of current density are the most important factors affecting the formation and physical properties of the film layer. The electrolyte used at this time is generally potassium phosphate, sodium phosphate, glycerol phosphate, and stannate. However, such additives generally play a role in facilitating the plasma electrolytic oxidation process by increasing electrical conductivity and pH, but they can react with hydroxyapatite to lower its purity and form other compounds, thereby forming hydroxyapatite on the surface of the implant. There is a problem with the crystallinity of apatite and its content in the film layer being very low.
본 발명은 레이저의 촛점 위치를 조절하여 나사산과 나사골에 각기 다른 두께로 아파타이트 피막을 형성하는 방법 및 이를 이용한 장치의 제공을 목적으로 한다.The purpose of the present invention is to provide a method for forming apatite films of different thicknesses on screw threads and screw bones by adjusting the focal position of a laser, and a device using the same.
상기의 과제를 해결하기 위하여 본 발명에 따른 레이저를 이용한 선별적 아파타이트 피막 형성 방법은, (a) Ca2+ 이온 및 PO4 3-이온을 포함하는 아파타이트 형성용 전구체 용액에 임플란트용 기재를 담지하는 단계; (b) 상기 전구체 용액 내에 담지된 상기 임플란트용 기재에 레이저빔을 조사하는 단계; (c) 상기 레이저빔의 촛점을 상기 임플란트용 기재의 특정 부분에 위치시켜 나사산 부분과 나사골 부분에 도달하는 레이저빔의 에너지 밀도 차이를 발생 시키는 단계; 및 (d) 상기 레이저빔이 조사된 영역에 상기 전구체 용액 내 Ca2+이온 및 PO4 3- 이온의 반응이 활성화되면서 아파타이트 피막을 형성하는 단계를 포함한다.In order to solve the above problems, the method of forming a selective apatite film using a laser according to the present invention includes (a) supporting a substrate for implant in a precursor solution for forming apatite containing Ca 2+ ions and PO 4 3- ions. step; (b) irradiating a laser beam to the implant substrate supported in the precursor solution; (c) positioning the focus of the laser beam on a specific part of the implant base to generate a difference in energy density of the laser beam reaching the screw thread portion and the screw bone portion; and (d) forming an apatite film in the area irradiated with the laser beam by activating the reaction of Ca 2+ ions and PO 4 3- ions in the precursor solution.
이때, 상기 (c) 단계는, 상기 레이저빔의 촛점을 상기 임플란트용 기재의 나사산 부분에 위치시키는 것이 바람직하다.At this time, in step (c), it is preferable to focus the laser beam on the threaded portion of the implant base.
또한, 상기 (d) 단계는, 상기 임플란트용 기재를 축 방향으로 일정 속도로 회전시키되, 나사산의 진행 속도에 맞추어 레이저빔을 스캔하는 방식으로 진행하는 것이 바람직하다.In addition, step (d) is preferably performed by rotating the implant base at a constant speed in the axial direction and scanning the laser beam in accordance with the speed of the screw thread.
한편, 상기 (b) 단계는, 상기 나사산의 정상에 수직으로 접하도록 조사되는 제1 레이저빔에 의해 수행되는 단계 및 상기 나사산의 비탈 방향으로 조사되는 제2 레이저빔에 의해 수행되는 단계를 포함할 수 있다.On the other hand, step (b) may include a step performed by a first laser beam irradiated so as to perpendicularly contact the top of the screw thread, and a step performed by a second laser beam irradiated in a slope direction of the screw thread. You can.
아울러, 상기 (b) 단계는, 상기 제2 레이저빔이 조사되는 반대편 나사선의 비탈면에 조사되는 제3 레이저빔 의해 수행되는 단계를 더 포함할 수 있다.In addition, step (b) may further include a step performed by a third laser beam irradiated to the slope of the thread opposite to where the second laser beam is irradiated.
상기의 과제를 해결하기 위하여 본 발명에 따른 레이저를 이용한 선별적 아파타이트 피막 형성 장치는, Ca2+ 이온 및 PO4 3-이온을 포함하는 아파타이트 형성용 전구체 용액을 수용하는 용액 수용부; 상기 전구체 용액 내에 담지된 임플란트용 기재에 레이저빔을 조사하는 레이저 조사부; 및 상기 전구체 용액 내에 담지된 임플란트용 기재를 회전시키는 기재 회전부를 포함한다.In order to solve the above problem, a selective apatite film forming device using a laser according to the present invention includes a solution receiving portion that accommodates a precursor solution for forming apatite containing Ca 2+ ions and PO 4 3- ions; a laser irradiation unit that irradiates a laser beam to the implant substrate supported in the precursor solution; and a base rotating unit that rotates the implant base supported in the precursor solution.
이때, 상기 레이저 조사부는, 레이저빔의 촛점을 상기 임플란트용 기재의 특정 부분에 위치시켜 나사산 부분과 나사골 부분에 도달하는 레이저빔의 에너지 밀도 차이를 발생 시키는 것이 바람직하다.At this time, it is preferable that the laser irradiation unit focuses the laser beam on a specific part of the implant substrate to generate a difference in energy density of the laser beam reaching the screw thread portion and the screw bone portion.
또한, 상기 레이저 조사부는, 상기 레이저빔의 촛점을 상기 임플란트용 기재의 나사산 부분에 위치시킬 수 있다.Additionally, the laser irradiation unit may focus the laser beam on the threaded portion of the implant base.
한편, 상기 기재 회전부는, 상기 레이저빔이 상기 나사산 부분을 스캔하도록 상기 임플란트용 기재를 축 방향으로 일정 속도로 회전시키되, 나사산의 진행 속도에 맞추어 전진시키는 것이 바람직하다.Meanwhile, the base rotating unit rotates the implant base at a constant speed in the axial direction so that the laser beam scans the screw thread portion, and preferably advances in accordance with the progress of the screw thread.
아울러, 상기 레이저 조사부는, 상기 나사산의 정상에 수직으로 접하도록 레이저빔을 조사하는 제1 레이저; 상기 나사산의 비탈면 방향으로 레이저빔을 조사하는 제2 레이저빔; 및 상기 제2 레이저의 레이저빔이 조사되는 반대편 나사선의 비탈면에 레이저를 조사하는 제3 레이저를 포함할 수 있다.In addition, the laser irradiation unit includes a first laser that irradiates a laser beam to perpendicularly contact the top of the screw thread; a second laser beam that irradiates a laser beam in the direction of the slope of the screw thread; And it may include a third laser that irradiates a laser to the slope of the thread opposite to where the laser beam of the second laser is irradiated.
본 발명에 따른 레이저를 이용한 선별적 아파타이트 피막 형성 방법에 의하면,According to the method of selective apatite film formation using a laser according to the present invention,
첫째, 나사산의 특정 부분에 레이저빔의 촛점을 위치시키므로 나사산의 나사 골 부분에보다 두터운 아마타이트 피막의 형성이 가능하다.First, by focusing the laser beam on a specific part of the screw thread, it is possible to form a thicker amatite film on the corrugated part of the screw thread.
둘째, 복수의 레이저를 이용하여 나사산의 정상 부분 또는 나사 골 부분에 레이저빔의 에너지 밀도를 높일수 있으므로 필요에 따라 특정 부분에 보다 두터운 아마타이트 피막의 형성이 가능하다. Second, by using multiple lasers, the energy density of the laser beam can be increased at the top or valley of the screw thread, so it is possible to form a thicker amatite film in a specific part as needed.
도 1은 본 발명에 따른 레이저를 이용한 선별적 아파타이트 피막 형성 방법을 설명하는 순서도이다.1 is a flowchart explaining a method of selectively forming an apatite film using a laser according to the present invention.
도 2는 본 발명에 따른 레이저를 이용한 선별적 아파타이트 피막 형성 장치의 블록도이다.Figure 2 is a block diagram of a selective apatite film forming device using a laser according to the present invention.
도 3은 레이저빔의 밀도 차이에 의해 나사산에 선별적 두께로 아타파이트 피막이 형성되는 것을 설명한다.Figure 3 explains that an attapite film is formed at a selective thickness on the screw thread due to a difference in the density of the laser beam.
도 4는 본 발명의 다른 실시예로서, 레이저빔의 밀도 차이에 의해 나사산에 선별적 두께로 아타파이트 피막이 형성되는 것을 설명한다.Figure 4 illustrates another embodiment of the present invention, where an attapite film is formed at a selective thickness on the screw thread due to a difference in density of the laser beam.
도 5는 레이저빔의 밀도 차이에 의해 나사 골 부분에 선별적 두께로 아타파이트 피막이 형성되는 것을 설명한다.Figure 5 illustrates that an attapite film is formed at a selective thickness in the screw valley area due to a difference in the density of the laser beam.
도 6은 본 발명의 또 다른 실시예로서, 레이저빔의 밀도 차이에 의해 나사 골 부분에 선별적 두께로 아타파이트 피막이 형성되는 것을 설명한다.Figure 6 illustrates another embodiment of the present invention in which an attapite film is formed at a selective thickness in the screw valley area due to a difference in the density of the laser beam.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세히 설명한다. 이때, 첨부된 도면에서 동일한 구성 요소는 가능한 동일한 부호로 나타내고 있음에 유의한다. 또한, 본 발명의 요지를 흐리게 할 수 있는 공지 기능 및 구성에 대한 상세한 설명은 생략할 것이다. 마찬가지 이유로 첨부 도면에 있어서 일부 구성요소는 과장되거나 생략되거나 개략적으로 도시되었다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the attached drawings. At this time, note that in the attached drawings, identical components are indicated by identical symbols whenever possible. Additionally, detailed descriptions of well-known functions and configurations that may obscure the gist of the present invention will be omitted. For the same reason, some components are exaggerated, omitted, or schematically shown in the accompanying drawings.
도 1은 본 발명에 따른 레이저를 이용한 선별적 아파타이트 피막 형성 방법을 설명하는 순서도이고, 도 2는 본 발명에 따른 레이저를 이용한 선별적 아파타이트 피막 형성 장치의 블록도이고, 도 3은 레이저빔의 밀도 차이에 의해 나사산에 선별적 두께로 아타파이트 피막이 형성되는 것을 설명하는 도면이고, 도 4는 본 발명의 다른 실시예로서, 레이저빔의 밀도 차이에 의해 나사산에 선별적 두께로 아타파이트 피막이 형성되는 것을 설명하는 도면이고, 도 5는 레이저빔의 밀도 차이에 의해 나사 골 부분에 선별적 두께로 아타파이트 피막이 형성되는 것을 설명하고, 도 6은 본 발명의 또 다른 실시예로서, 레이저빔의 밀도 차이에 의해 나사 골 부분에 선별적 두께로 아타파이트 피막이 형성되는 것을 설명한다.Figure 1 is a flowchart explaining a method of selectively forming an apatite film using a laser according to the present invention, Figure 2 is a block diagram of a selective apatite film forming apparatus using a laser according to the present invention, and Figure 3 is the density of the laser beam. It is a diagram explaining the formation of an attapite film at a selective thickness on a screw thread due to a difference, and Figure 4 is another embodiment of the present invention, showing an attapite film being formed at a selective thickness on a screw thread due to a difference in the density of a laser beam. It is an explanatory drawing, and Figure 5 explains that an attapite film is formed with a selective thickness in the screw valley area due to the difference in density of the laser beam, and Figure 6 is another embodiment of the present invention, showing the difference in density of the laser beam. This explains the formation of an attapite film with a selective thickness in the screw groove area.
먼저, 도 2 내지 도 6을 참조하여 본 발명에 따른 레이저를 이용한 선별적 아파타이트 피막 형성 장치(1000)에 대해 설명하기로 한다. 본 발명에 따른 아파타이트 피막 형성 장치(1000)는 레이저 조사부(100), 용액 수용부(200) 및 기재 회전부(300)를 포함한다.First, the apparatus 1000 for selective apatite film formation using a laser according to the present invention will be described with reference to FIGS. 2 to 6. The apatite film forming apparatus 1000 according to the present invention includes a laser irradiation unit 100, a solution receiving unit 200, and a base rotation unit 300.
용액 수용부(200)는 Ca2+ 이온 및 PO4 3-이온을 포함하는 아파타이트 형성용 전구체 용액(W)을 수용한다.The solution receiving portion 200 accommodates a precursor solution (W) for forming apatite containing Ca 2+ ions and PO 4 3- ions.
레이저 조사부(100)는 전구체 용액(W)에 담지된 임플란트용 기재(I)에 레이저빔(L)을 조사한다. 레이저빔(L)의 에너지에 의해 Ca2+ 이온 및 PO4 3-이온을 포함하는 아파타이트 형성용 전구체 용액(W)이 반응하여 임플란트용 기재(I)의 표면에 아파타이트가 생성된다.The laser irradiation unit 100 radiates a laser beam (L) to the implant substrate (I) supported in the precursor solution (W). The apatite forming precursor solution (W) containing Ca 2+ ions and PO 4 3- ions reacts with the energy of the laser beam (L) to generate apatite on the surface of the implant substrate (I).
기재 회전부(300)는 전구체 용액(W) 내에 담지된 임플란트용 기재(I)를 회전시킨다. 기재 회전부(300)는 임플란트용 기재(I)를 고정하는 브라켓(310)을 포함하는 형태를 가진다. 도시에서는 브라켓(310)이 임플란트용 기재(I)의 나사 부분을 고정하는 것 처럼되어 있으나, 이는 간결한 도시를 위한 것 뿐으로서, 브라켓(310)의 형태 및 회전 방식은 임플란트용 기재(I)의 형태에 따라 다양한 방식으로 실시될 수 있다.The substrate rotating unit 300 rotates the implant substrate (I) supported in the precursor solution (W). The base rotating part 300 has a shape including a bracket 310 that fixes the implant base (I). In the illustration, the bracket 310 is shown as fixing the screw portion of the implant base (I), but this is only for simplification, and the shape and rotation method of the bracket 310 are similar to those of the implant base (I). It can be implemented in various ways depending on the form.
본 발명은 임플란트용 기재(I)의 나사산(N)의 나사 골 부분에 더 두터운 아파타이트 피막(A)을 형성시키기 위한 것으로서, 레이저빔(L)의 밀도 차이를 이용하는 특징을 가진다. 즉, 필요에 따라서 나사산 부분 또는 나사 골 부분을 선택적으로 두텁게 할 수 있다.The present invention is intended to form a thicker apatite film (A) on the screw bone portion of the screw thread (N) of the implant base (I), and has the feature of using the difference in density of the laser beam (L). In other words, the thread portion or the screw valley portion can be selectively thickened as needed.
레이저 조사부(100)는 레이저빔(L)의 촛점을 임플란트용 기재(I)의 특정 부분(즉, 나사산(N)의 정상(도 3참조) 또는 나사산(N)의 나사골(도 5참조)에 위치시켜 나사산 부분과 나사골 부분에 도달하는 레이저빔의 에너지 밀도 차이를 발생 시킨다. The laser irradiation unit 100 focuses the laser beam (L) on a specific part of the implant base (I) (that is, on the top of the screw thread (N) (see FIG. 3) or the screw bone (see FIG. 5) of the screw thread (N). By positioning it, a difference in energy density of the laser beam reaching the screw thread portion and the screw bone portion is generated.
도 3의 실시 형태의 경우 나사산(N)의 정상에서는 레이저빔(L)의 에너지 밀도가 높으므로, 아파타이트 피막(A)의 생성율이 높고, 나사산(N)의 골 부분에서는 레이저빔(L)이 분산되어 에너지 밀도가 낮아지므로 아파타이트 피막(A)의 생성율이 낮아 얇은 두께로 층착되게 된다.In the case of the embodiment of FIG. 3, the energy density of the laser beam (L) is high at the top of the screw thread (N), so the production rate of the apatite film (A) is high, and the laser beam (L) is generated at the valley of the screw thread (N). Since it is dispersed and the energy density is lowered, the formation rate of the apatite film (A) is low and it is deposited in a thin layer.
도 5의 실시 형태의 경우 나사산(N)의 나사 골 부분에서 레이저빔(L)의 에너지 밀도가 높으므로, 아파타이트 피막(A)의 생성율이 높아 골 부분에서 두텁게 증착되고, 나사산(N)의 나사산에서는 레이저빔(L)이 분산되어 에너지 밀도가 낮아지므로 아파타이트 피막(A)의 생성율이 낮아 얇은 두께로 층착된다.In the case of the embodiment of FIG. 5, the energy density of the laser beam (L) is high in the valley part of the screw thread (N), so the production rate of the apatite film (A) is high and deposited thickly in the valley part, and the apatite film (A) is thickly deposited in the valley part. In this case, the laser beam (L) is dispersed and the energy density is lowered, so the apatite film (A) is deposited in a thin layer due to a low production rate.
기재 회전부(300)는 아파타이트 피막(A)이 나사산(N)의 모든 면을 따라 생성시키기 위해-즉, 모든 나사산 면을 레이저빔(L)에 노출시키기 위해, 임플란트용 기재(I)를 나사의 축 방향으로 일정 속도로 회전 시킨다. 이로 인하여 레이저빔(L)이 나사산 부분(360°) 회전하는 것 처럼 스캔할 수 있다.The base rotation unit 300 is used to create an apatite film (A) along all surfaces of the screw thread (N) - that is, to expose all screw surfaces to the laser beam (L). Rotate at a constant speed in the axial direction. Because of this, the laser beam (L) can be scanned as if the screw thread (360°) rotates.
기재 회전부(300)는 임플란트용 기재(I)를 전진시키는 방식으로 동작할 수 있다. 레이저 조사부(100)가 고정되고 기재 회전부(300)는 임플란트용 기재(I)를 360°회전시켜가며 전진하는 방식으로 아파타이트 피막(A)을 형성할 수 있다.The base rotating unit 300 may operate by advancing the implant base (I). The laser irradiation unit 100 is fixed and the substrate rotating unit 300 rotates the implant substrate (I) by 360° and moves forward to form the apatite film (A).
단순하게는 기재 회전부(300)는 임플란트용 기재(I)를 360°회전시키기만 하고, 레이저 조사부(100)가 레이저빔(L)의 위치를 옮겨 스캔하는 방식으로 실시될 수도 있다.Simply, the base rotation unit 300 simply rotates the implant base (I) by 360°, and the laser irradiation unit 100 may be carried out by moving the position of the laser beam (L) and scanning it.
본 발명의 다른 실시형태에 따르면, 레이저 조사부(100)는 복수개의 레이저빔(L1, L2, L3)을 사용하여 나사산 부분과 나사골 부분에 도달하는 레이저빔의 에너지 밀도 차이를 발생 시킬 수 있다.According to another embodiment of the present invention, the laser irradiation unit 100 may use a plurality of laser beams L1, L2, and L3 to generate a difference in energy density of the laser beam reaching the screw thread portion and the screw bone portion.
도 4 및 도 6을 참조하면, 레이저 조사부(100)는 제1 레이저(110), 제2 레이저(120) 및 제3 레이저(130)를 포함한다.Referring to FIGS. 4 and 6 , the laser irradiation unit 100 includes a first laser 110, a second laser 120, and a third laser 130.
제1 레이저(110)는 나사산(N)의 정상에 수직으로 접하도록 레이저빔(L1)을 조사하도록 배치되고, 제2 레이저(120)는 나사산(N)의 비탈면 방향으로 레이저빔(L2)을 조사하도록 배치되고, 제3 레이저(130)는 나사산(N)의 반대편 비탈면 방향으로 레이저빔(L3)을 조사하도록 배치될 수 있다.The first laser 110 is arranged to irradiate the laser beam (L1) so as to perpendicularly contact the top of the screw thread (N), and the second laser 120 radiates the laser beam (L2) in the direction of the slope of the screw thread (N). The third laser 130 may be arranged to irradiate the laser beam L3 in the direction of the slope opposite to the screw thread N.
나사산(N)의 정상부분에 세 개의 레이저빔(L1, L2, L3)이 중첩되어 이 부분의 아마타이트 피막(A)을 두껍게 생성할 수 있다. 도 4 및 도 6에서는 3개의 레이저(110, 120, 130)를 도시하였으나, 실시 형태에 따라서는 두 개의 레이저(120, 130)만을 사용하는 방식으로 레이저 조사부(100)를 구현할 수도 있다.Three laser beams (L1, L2, L3) overlap on the top part of the screw thread (N) to create a thick amatite film (A) in this part. 4 and 6 show three lasers 110, 120, and 130, but depending on the embodiment, the laser irradiation unit 100 may be implemented using only two lasers 120 and 130.
도 1은 본 발명에 따른 레이저를 이용한 선별적 아파타이트 피막 형성 방법을 설명하는 순서도이다. 도 2 내지 도 6에서 설명된 선별적 아파타이트 피막 형성 장치(1000)를 시계열적으로 구현한 경우에도 본 실시에에 해당하므로 레이저 조사부(100), 용액 수용부(200) 및 기재 회전부(300)에 대하여 설명된 부분은 본 실시예에서도 그대로 적용된다.Figure 1 is a flowchart explaining the method of selectively forming an apatite film using a laser according to the present invention. Even when the selective apatite film forming apparatus 1000 described in FIGS. 2 to 6 is implemented in time series, it corresponds to the present embodiment, so the laser irradiation unit 100, the solution receiving unit 200, and the substrate rotating unit 300. The parts described herein also apply to this embodiment.
일 실시예에 따른 레이저를 이용한 선별적 아파타이트 피막 형성 방법은 임플란드 기재(I) 탐지 단계(S100), 레이저빔 조사 단계(S200), 레이저 빔의 밀도차이 발생 단계(S300) 및 아파타이트 피막 형성 단계(S400)를 포함한다.The method of selectively forming an apatite film using a laser according to an embodiment includes an implant base (I) detection step (S100), a laser beam irradiation step (S200), a density difference generation step of the laser beam (S300), and an apatite film forming step. Includes (S400).
S100 단계에서, Ca2+ 이온 및 PO4 3-이온을 포함하는 아파타이트 형성용 전구체 용액(W)에 임플란트용 기재(I)를 담지한다.In step S100, the substrate for implant (I) is supported in the precursor solution (W) for forming apatite containing Ca 2+ ions and PO 4 3- ions.
구체적으로는, 기재 회전부(300)에 임플란트용 기재(I)를 거치하고, 용액 수용부(200)에 아파타이트 형성용 전구체 용액(W)을 주입하는 방식으로 S100 단계가 수행된다.Specifically, step S100 is performed by placing the implant substrate (I) on the substrate rotating unit 300 and injecting the apatite forming precursor solution (W) into the solution receiving unit 200.
이어서, S200 단계에서, 전구체 용액(W) 내에 담지된 임플란트용 기재(I)에 레이저빔을 조사한다.Next, in step S200, a laser beam is irradiated to the implant substrate (I) supported in the precursor solution (W).
이어서, S300 단계에서, 레이저빔(L)의 촛점을 임플란트용 기재(I)의 특정 부분(나사산(N)의 정상 또는 나사골 부분)에 위치시켜 나사산(N) 부분과 나사골 부분에 도달하는 레이저빔(L)의 에너지 밀도 차이를 발생시킨다.Subsequently, in step S300, the focus of the laser beam (L) is placed on a specific part (the top or the screw bone part of the screw thread (N)) of the implant base (I), and the laser beam reaches the screw thread (N) part and the screw bone part. (L) creates an energy density difference.
이어서, S400 단계에서, 레이저빔(L)이 조사된 영역에 전구체 용액(W) 내 Ca2+이온 및 PO4 3- 이온의 반응이 활성화되면서 아파타이트 피막(A)이 형성된다.Subsequently, in step S400, the reaction of Ca 2+ ions and PO 4 3- ions in the precursor solution (W) is activated in the area where the laser beam (L) is irradiated, thereby forming an apatite film (A).
이때, S300 단계에서, 레이저빔(L)의 촛점을 임플란트용 기재(I)의 나사산(N) 부분에 위치시키는 것이 바람직하다.At this time, in step S300, it is desirable to position the focus of the laser beam (L) on the thread (N) portion of the implant base (I).
이때, S400 단계에서, 임플란트용 기재(I)를 축 방향으로 일정 속도로 회전시키되, 나사산(N)의 진행 속도에 맞추어 레이저빔(L)을 스캔하는 방식으로 진행하는 것이 바람직하다.At this time, in step S400, it is desirable to rotate the implant substrate (I) in the axial direction at a constant speed and scan the laser beam (L) in accordance with the advancing speed of the screw thread (N).
한편, 도 4에서 설명되는 바와 같이, S200 단계에서 나사산(N)의 정상에 수직으로 접하도록 조사되는 제1 레이저빔(L1)에 의해 수행되는 단계 및 나사산(N)의 비탈 방향으로 조사되는 제2 레이저빔(L2)에 의해 수행되는 단계를 포함하고, 제2 레이저빔(L2)이 조사되는 반대편 나사선(N)의 비탈면에 조사되는 제3 레이저빔(L3) 의해 수행되는 단계를 더 포함할 수 있다. Meanwhile, as explained in FIG. 4, in step S200, the step is performed by the first laser beam L1 irradiated to perpendicularly contact the top of the screw thread N, and the second laser beam irradiated in the slope direction of the screw thread N 2. It includes a step performed by a laser beam (L2), and further includes a step performed by a third laser beam (L3) irradiated to the slope of the screw line (N) opposite to which the second laser beam (L2) is irradiated. You can.
설명의 편의를 위해서 레이저빔 조사 단계(S200), 레이저 빔의 밀도차이 발생 단계(S300) 및 아파타이트 피막 형성 단계(S400)를 구분하여 기재하였으나, 레이저빔(L)의 조사가 시작되면 Ca2+ 이온 및 PO4 3-이온을 포함하는 아파타이트 형성용 전구체 용액(W)이 활성화 되어 이온 반응에 의해 아파타이트 피막(A)에 형성되므로, S200 단계, S300 단계 및 S400 단계는 동시에 진행되는 단계이다.For convenience of explanation, the laser beam irradiation step (S200), the laser beam density difference generation step (S300), and the apatite film formation step (S400) are described separately. However, when irradiation of the laser beam (L) begins, Ca 2+ Since the precursor solution (W) for forming apatite containing ions and PO 4 3- ions is activated and formed on the apatite film (A) by ionic reaction, steps S200, S300, and S400 are steps that proceed simultaneously.
본 명세서와 도면에 개시된 본 발명의 실시예들은 본 발명의 기술 내용을 쉽게 설명하고 본 발명의 이해를 돕기 위해 특정 예를 제시한 것일 뿐이며, 본 발명의 범위를 한정하고자 하는 것은 아니다. 여기에 개시된 실시예들 이외에도 본 발명의 기술적 사상에 바탕을 둔 다른 변형 예들이 실시 가능하다는 것은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명한 것이다.The embodiments of the present invention disclosed in the specification and drawings are merely provided as specific examples to easily explain the technical content of the present invention and to facilitate understanding of the present invention, and are not intended to limit the scope of the present invention. It is obvious to those skilled in the art that in addition to the embodiments disclosed herein, other modifications based on the technical idea of the present invention can be implemented.

Claims (10)

  1. (a) Ca2+ 이온 및 PO4 3-이온을 포함하는 아파타이트 형성용 전구체 용액에 임플란트용 기재를 담지하는 단계;(a) supporting a substrate for implant in a precursor solution for forming apatite containing Ca 2+ ions and PO 4 3- ions;
    (b) 상기 전구체 용액 내에 담지된 상기 임플란트용 기재에 레이저빔을 조사하는 단계;(b) irradiating a laser beam to the implant substrate supported in the precursor solution;
    (c) 상기 레이저빔의 촛점을 상기 임플란트용 기재의 특정 부분에 위치시켜 나사산 부분과 나사골 부분에 도달하는 레이저빔의 에너지 밀도 차이를 발생 시키는 단계; 및(c) positioning the focus of the laser beam on a specific part of the implant base to generate a difference in energy density of the laser beam reaching the screw thread portion and the screw bone portion; and
    (d) 상기 레이저빔이 조사된 영역에 상기 전구체 용액 내 Ca2+이온 및 PO4 3- 이온의 반응이 활성화되면서 아파타이트 피막을 형성하는 단계를 포함하는 레이저를 이용한 선별적 아파타이트 피막 형성 방법.(d) A method of forming an apatite film selectively using a laser, comprising the step of forming an apatite film by activating the reaction of Ca 2+ ions and PO 4 3- ions in the precursor solution in the area irradiated with the laser beam.
  2. 청구항 1에 있어서,In claim 1,
    상기 (c) 단계는,In step (c),
    상기 레이저빔의 촛점을 상기 임플란트용 기재의 나사 골 부분에 위치시키는 것을 특징으로 하는 레이저를 이용한 선별적 아파타이트 피막 형성 방법.A method of forming a selective apatite film using a laser, characterized in that the focus of the laser beam is placed on the screw bone portion of the implant substrate.
  3. 청구항 2에 있어서,In claim 2,
    상기 (d) 단계는,In step (d),
    상기 임플란트용 기재를 축 방향으로 일정 속도로 회전시키되, 나사산의 진행 속도에 맞추어 레이저빔을 스캔하는 방식으로 진행하는 것을 특징으로 하는 레이저를 이용한 선별적 아파타이트 피막 형성 방법.A method of forming a selective apatite film using a laser, characterized in that the implant substrate is rotated at a constant speed in the axial direction and the laser beam is scanned in accordance with the progress of the screw thread.
  4. 청구항 3에 있어서,In claim 3,
    상기 (b) 단계는,In step (b),
    상기 나사산의 정상에 수직으로 접하도록 조사되는 제1 레이저빔에 의해 수행되는 단계 및 상기 나사산의 비탈 방향으로 조사되는 제2 레이저빔에 의해 수행되는 단계를 포함하는 것을 특징으로 하는 레이저를 이용한 선별적 아파타이트 피막 형성 방법.A selective method using a laser comprising a step performed by a first laser beam irradiated so as to perpendicularly contact the top of the screw thread, and a step performed by a second laser beam irradiated in a slope direction of the screw thread. Apatite film formation method.
  5. 청구항 4에 있어서,In claim 4,
    상기 (b) 단계는,In step (b),
    상기 제2 레이저빔이 조사되는 반대편 나사선의 비탈면에 조사되는 제3 레이저빔 의해 수행되는 단계를 더 포함하는 것을 특징으로 하는 레이저를 이용한 선별적 아파타이트 피막 형성 방법.A method of forming a selective apatite film using a laser, characterized in that it further comprises a step performed by a third laser beam irradiated on the slope of the thread opposite to where the second laser beam is irradiated.
  6. Ca2+ 이온 및 PO4 3-이온을 포함하는 아파타이트 형성용 전구체 용액을 수용하는 용액 수용부;A solution receiving portion that accommodates a precursor solution for forming apatite containing Ca 2+ ions and PO 4 3- ions;
    상기 전구체 용액 내에 담지된 임플란트용 기재에 레이저빔을 조사하는 레이저 조사부; 및 a laser irradiation unit that irradiates a laser beam to the implant substrate supported in the precursor solution; and
    상기 전구체 용액 내에 담지된 임플란트용 기재를 회전시키는 기재 회전부를 포함하는 레이저를 이용한 선별적 아파타이트 피막 형성 장치. A selective apatite film forming device using a laser including a base rotating unit that rotates the implant base supported in the precursor solution.
  7. 청구항 6에 있어서,In claim 6,
    상기 레이저 조사부는,The laser irradiation unit,
    레이저빔의 촛점을 상기 임플란트용 기재의 특정 부분에 위치시켜 나사산 부분과 나사골 부분에 도달하는 레이저빔의 에너지 밀도 차이를 발생 시키는 것을 특징으로 하는 레이저를 이용한 선별적 아파타이트 피막 형성 장치.A selective apatite film forming device using a laser, characterized in that the focus of the laser beam is placed on a specific part of the implant substrate to generate a difference in the energy density of the laser beam reaching the screw thread portion and the screw bone portion.
  8. 청구항 7에 있어서,In claim 7,
    상기 레이저 조사부는,The laser irradiation unit,
    상기 레이저빔의 촛점을 상기 임플란트용 기재의 나사 골 부분에 위치시키는 것을 특징으로 하는 레이저를 이용한 선별적 아마타이트 피막 형성 장치.A selective amatite film forming device using a laser, characterized in that the focus of the laser beam is placed on the screw bone portion of the implant substrate.
  9. 청구항 8에 있어서,In claim 8,
    상기 기재 회전부는,The base rotating part,
    상기 레이저빔이 상기 나사산 부분을 스캔하도록 상기 임플란트용 기재를 축 방향으로 일정 속도로 회전시키되, 나사산의 진행 속도에 맞추어 전진시키는 것을 특징으로 하는 레이저를 이용한 선별적 아마타이트 피막 형성 장치.A selective amatite film forming device using a laser, characterized in that the implant substrate is rotated at a constant speed in the axial direction so that the laser beam scans the screw thread portion, and is advanced in accordance with the advancing speed of the screw thread.
  10. 청구항 7에 있어서,In claim 7,
    상기 레이저 조사부는,The laser irradiation unit,
    상기 나사산의 정상에 수직으로 접하도록 레이저빔을 조사하는 제1 레이저;a first laser that irradiates a laser beam to perpendicularly contact the top of the screw thread;
    상기 나사산의 비탈면 방향으로 레이저빔을 조사하는 제2 레이저빔; 및a second laser beam that irradiates a laser beam in the direction of the slope of the screw thread; and
    상기 제2 레이저의 레이저빔이 조사되는 반대편 나사선의 비탈면에 레이저를 조사하는 제3 레이저를 포함하는 것을 특징으로 하는 레이저를 이용한 선별적 아파타이트 피막 형성 장치.A selective apatite film forming device using a laser, comprising a third laser that irradiates a laser to the slope of the thread opposite to where the laser beam of the second laser is irradiated.
PCT/KR2023/008674 2022-07-19 2023-06-22 Selective apatite film forming method using laser and selective apatite film forming apparatus WO2024019344A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220088677A KR102480199B1 (en) 2022-07-19 2022-07-19 Selective coating method of apatite using laser and selective coating device of that
KR10-2022-0088677 2022-07-19

Publications (1)

Publication Number Publication Date
WO2024019344A1 true WO2024019344A1 (en) 2024-01-25

Family

ID=84578341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/008674 WO2024019344A1 (en) 2022-07-19 2023-06-22 Selective apatite film forming method using laser and selective apatite film forming apparatus

Country Status (2)

Country Link
KR (1) KR102480199B1 (en)
WO (1) WO2024019344A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102480199B1 (en) * 2022-07-19 2022-12-22 주식회사 덴탈알파고 Selective coating method of apatite using laser and selective coating device of that

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144273B1 (en) * 2010-02-05 2012-05-11 (주) 케이제이 메디텍 Laser surface treated Method for Dental implants having the improved coefficient of surface friction and Dental implants thereby
JP2016202709A (en) * 2015-04-24 2016-12-08 国立研究開発法人産業技術総合研究所 Method for manufacturing medical device material, and medical device material
KR101904017B1 (en) * 2017-08-29 2018-10-04 주식회사 디오 ultraviolet irradiation apparatus for surface treatment of dental implant
KR20200026475A (en) * 2018-09-03 2020-03-11 한국과학기술연구원 The coating method of apatite using laser
KR102322536B1 (en) * 2020-06-05 2021-11-09 한국과학기술연구원 The coating method of apatite using laser
KR102480199B1 (en) * 2022-07-19 2022-12-22 주식회사 덴탈알파고 Selective coating method of apatite using laser and selective coating device of that

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5817956B2 (en) 2010-07-29 2015-11-18 国立研究開発法人産業技術総合研究所 Calcium phosphate film formation method using liquid phase laser method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101144273B1 (en) * 2010-02-05 2012-05-11 (주) 케이제이 메디텍 Laser surface treated Method for Dental implants having the improved coefficient of surface friction and Dental implants thereby
JP2016202709A (en) * 2015-04-24 2016-12-08 国立研究開発法人産業技術総合研究所 Method for manufacturing medical device material, and medical device material
KR101904017B1 (en) * 2017-08-29 2018-10-04 주식회사 디오 ultraviolet irradiation apparatus for surface treatment of dental implant
KR20200026475A (en) * 2018-09-03 2020-03-11 한국과학기술연구원 The coating method of apatite using laser
KR102322536B1 (en) * 2020-06-05 2021-11-09 한국과학기술연구원 The coating method of apatite using laser
KR102480199B1 (en) * 2022-07-19 2022-12-22 주식회사 덴탈알파고 Selective coating method of apatite using laser and selective coating device of that

Also Published As

Publication number Publication date
KR102480199B1 (en) 2022-12-22

Similar Documents

Publication Publication Date Title
WO2024019344A1 (en) Selective apatite film forming method using laser and selective apatite film forming apparatus
WO2020050579A1 (en) Method for forming apatite film by using laser
EP1196110B1 (en) Implant
CN101570874B (en) In situ formation method of gradient film containing TiO*/HA/CaCO*
US7040892B2 (en) Laser instrument for endodontic treatment
CN101575726B (en) Method for preparing bioactive gradient film of fluor-hydroxyapatite
CN101461964A (en) Bioactivity surface modification method of biological medical degradable magnesium alloy
PT2212453E (en) Method of forming a bioactive coating
US6544288B2 (en) Biocompatible titanium implant for medical use
JPH1143799A (en) Preparation of titanium oxide film having bio-affinity
RU2445409C1 (en) Method of obtaining anticorrosion calcium-containing coatings on magnesium alloys
US11434570B2 (en) Coating method of apatite using laser
RU2206642C2 (en) Method for modifying medical products (alternatives)
Mousa et al. Surface modification of magnesium and its alloys using anodization for orthopedic implant application
CN106544714B (en) A kind of preparation method of medical magnesium alloy surface coating
RU2677271C1 (en) Method of manufacturing micro-nanostructured porous layer on titanium implant surface
CN110541099A (en) Magnesium alloy surface degradable composite film layer and preparation method and application thereof
KR20090051652A (en) Bio materials structure and fabricating method thereof
KR101015462B1 (en) Titanium dioxide ceramics for implant and fabricating method thereof
JPH0731627A (en) Implant and manufacture thereof
RU2686092C1 (en) Method for application of zirconium-based bioinert coatings on titanium implants
CN110724991A (en) Method for depositing hydroxyapatite on metal surface and metal implant
RU2687792C1 (en) Method for making an intraosseous implant
KR20120133659A (en) Method for treating surface of dental alloy
RU2732959C2 (en) Method for laser structuring of titanium dental implants surface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23843196

Country of ref document: EP

Kind code of ref document: A1