JPH1143799A - Preparation of titanium oxide film having bio-affinity - Google Patents

Preparation of titanium oxide film having bio-affinity

Info

Publication number
JPH1143799A
JPH1143799A JP9198685A JP19868597A JPH1143799A JP H1143799 A JPH1143799 A JP H1143799A JP 9198685 A JP9198685 A JP 9198685A JP 19868597 A JP19868597 A JP 19868597A JP H1143799 A JPH1143799 A JP H1143799A
Authority
JP
Japan
Prior art keywords
film
oxide film
titanium oxide
titanium
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9198685A
Other languages
Japanese (ja)
Inventor
Hitoshi Ishizawa
均 石沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP9198685A priority Critical patent/JPH1143799A/en
Publication of JPH1143799A publication Critical patent/JPH1143799A/en
Pending legal-status Critical Current

Links

Landscapes

  • Materials For Medical Uses (AREA)
  • Dental Prosthetics (AREA)

Abstract

PROBLEM TO BE SOLVED: To readily prepare a titanium oxide film having an excellent bio- affinity by subjecting an anodically oxidized Ti-substrate to hydrothermal treat ment to make the titanium oxide film highly porous and to make contact angle of the oxide film with water below a specific value. SOLUTION: The porous film having quite fine pores is prepared by subjecting the oxide film to hydrothermal treatment so as to dissolve the soluble substances into a liquid medium which substances have been incorporated from the electrolytes into the film during anodic oxidation. Glycerophosphoric acid, sulfuric acid, etc. can be used as the suitable electrolyte, and the oxide film containing phosphorus or sulfur is prepared by the anodic oxidation in the bath containing these electrolytes. The content of phosphorus or sulfur in the film can be increased markedly by the addition of a metal acetate, etc., into the electrolytic liquid containing the above electrolytes and then phosphorus or sulfur and the added metal included in the film are dissolved as inons by the hydrothermal treatment. The size of the pore thus obtained increases with increasing quantity of dissolving materials. The above treatment makes it possible to obtain a film having a contact angle with water below 20 deg. and to improve the wettability of the film to water.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、人工歯根や人工関
節などのインプラントとして用いられるチタン材料にお
いて、その表面に形成される酸化チタン皮膜の製造方法
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a titanium oxide film formed on the surface of a titanium material used as an implant for an artificial tooth root or an artificial joint.

【0002】[0002]

【従来の技術】酸化チタンは人体に対して無害であるこ
とから、食品添加物としても用いられている。金属チタ
ンが高い生体親和性をもつのは、その表面に、大気中で
自然に酸化されて生成した非常に薄い酸化チタン皮膜が
形成されているためであると考えられている。従って、
金属チタンの表面に人工的に酸化皮膜を形成すれば、チ
タンの構造材料としての特性と相まって、高性能の人工
歯根や人工関節等が得られる。金属チタンの表面に人工
的に酸化皮膜を形成する方法としては、大気中でチタン
を加熱する加熱酸化法や、電解溶液中で電界をかける陽
極酸化法が知られている。特に、陽極酸化法は、酸化物
皮膜の生成速度が速く、皮膜の性質も優れていることか
ら、工業的に有用な成膜方法である。陽極酸化法は、複
雑な形状のチタン基材であっても、均一な酸化皮膜が得
られ、しかも基材から剥離しにくい。チタン基材を高電
圧で陽極酸化すると、表面で発生した火花放電によって
多数の放電痕が形成され多孔質になることがわかってい
る。酸化チタン皮膜を多孔質にして、実質の表面積を増
大させれば、表面の活性は高まる。表面の活性を簡便に
知る方法として、水に対する接触角を測定する方法があ
る。一般に、接触角が小さいほど表面活性は高く、生体
となじみやすくなる。表面活性が高いと生体タンパク質
などが吸着して表面を覆い、骨細胞の付着と増殖が起こ
りやすくなる。その結果、骨組織に対する親和性が著し
く向上し、表面処理されたインプラントはより多くの骨
組織に囲まれる。一方、最近ではチタンの骨に対する親
和性を更に向上させる方法として、骨の無機成分と同じ
アパタイト膜をコ−ティングすることが行われている。
2. Description of the Related Art Titanium oxide is harmless to the human body and is therefore used as a food additive. It is thought that the reason why titanium metal has high biocompatibility is that a very thin titanium oxide film formed by being naturally oxidized in the air is formed on the surface thereof. Therefore,
When an oxide film is artificially formed on the surface of titanium metal, a high-performance artificial root, artificial joint, or the like can be obtained in combination with the properties of titanium as a structural material. As a method of artificially forming an oxide film on the surface of titanium metal, a heating oxidation method of heating titanium in the air and an anodic oxidation method of applying an electric field in an electrolytic solution are known. In particular, the anodic oxidation method is an industrially useful film forming method because the formation rate of the oxide film is high and the properties of the film are excellent. In the anodization method, a uniform oxide film can be obtained even on a titanium substrate having a complicated shape, and it is hard to peel off from the substrate. It has been found that when a titanium base material is anodized at a high voltage, a large number of discharge marks are formed due to spark discharge generated on the surface and the titanium base material becomes porous. If the titanium oxide film is made porous to increase the substantial surface area, the surface activity is increased. As a method of easily knowing the activity of the surface, there is a method of measuring a contact angle with water. In general, the smaller the contact angle is, the higher the surface activity is, and the more easily it is compatible with the living body. If the surface activity is high, bioproteins and the like are adsorbed and cover the surface, and attachment and proliferation of bone cells are likely to occur. As a result, the affinity for bone tissue is significantly improved, and the surface-treated implant is surrounded by more bone tissue. On the other hand, recently, as a method of further improving the affinity of titanium for bone, coating of an apatite film which is the same as the inorganic component of bone has been performed.

【0003】[0003]

【発明が解決しようとする課題】しかし、チタン基材に
直接にアパタイト膜をコ−ティングすると、両者の熱膨
張率や結晶構造の違いなどのために、アパタイト膜が剥
離しやすいという問題があった。また、上記の加熱酸化
法では、酸化皮膜を多孔質にすることはできなかった。
However, when an apatite film is coated directly on a titanium substrate, there is a problem that the apatite film is easily peeled off due to a difference in thermal expansion coefficient and a difference in crystal structure between the two. Was. Further, the oxide film could not be made porous by the above heat oxidation method.

【0004】従来の陽極酸化法では、放電痕が形成され
て多孔質化した酸化チタン皮膜が得られるが、放電痕の
直径は数μm程度と大きいので、皮膜の表面積を見かけ
の面積より著しく大きくすることはできず、表面活性を
高める効果はあまり高くなかった。本発明は、チタン表
面に形成された酸化チタン皮膜に対して、無数の微細な
細孔を付与し、生体親和性に優れた多孔質酸化チタン皮
膜を簡単に得る方法を提供するものである。
In the conventional anodic oxidation method, a porous titanium oxide film is obtained by forming discharge marks, but the diameter of the discharge marks is as large as about several μm, so that the surface area of the film is significantly larger than the apparent area. The effect of increasing the surface activity was not so high. The present invention provides a method for easily obtaining a porous titanium oxide film having excellent biocompatibility by imparting countless fine pores to the titanium oxide film formed on the titanium surface.

【0005】[0005]

【課題を解決するための手段】発明者は鋭意研究の結
果、ある特定の電解質を用いてチタンを陽極酸化する
と、液体に可溶な物質を含むチタン陽極酸化皮膜が形成
され、次にこの陽極酸化皮膜を水熱処理することによっ
てそれらを溶出させると上述の問題が解決されることを
見い出した。液体に可溶な物質を溶出させて生じた孔
は、非常に微細であり、皮膜表面の活性を飛躍的に高め
ることができる。すなわち、本発明は、チタン基板を電
解質を含む溶液中で陽極酸化し、該基板の表面に酸化チ
タン皮膜を形成した後に、この陽極酸化されたチタン基
板を水中または水蒸気中で水熱処理し、酸化チタン皮膜
に無数の微小な細孔を形成させる。そして、酸化チタン
皮膜を多孔質化するとともに水に対する接触角を20°
以下にする。
Means for Solving the Problems As a result of intensive studies, the inventors have found that when titanium is anodized using a specific electrolyte, a titanium anodic oxide film containing a substance soluble in a liquid is formed. It has been found that elution of the oxide films by hydrothermal treatment solves the above problem. The pores formed by eluting the substance soluble in the liquid are very fine, and can greatly enhance the activity of the film surface. That is, according to the present invention, a titanium substrate is anodized in a solution containing an electrolyte, a titanium oxide film is formed on the surface of the substrate, and then the anodized titanium substrate is subjected to hydrothermal treatment in water or steam to oxidize the titanium substrate. Innumerable fine pores are formed on the titanium film. The titanium oxide film is made porous and the contact angle with water is set to 20 °.
Do the following.

【0006】[0006]

【発明の実施の形態】本発明では、陽極酸化の際に電解
質から皮膜に取り込まれた可溶性物質を、水熱処理によ
って液体中に溶出させることによって、非常に微細な細
孔を形成して酸化チタン皮膜を多孔質とする。陽極酸化
法は、電解溶液中で陽極金属であるチタンと任意の金属
からなる陰極との間に電界をかけることにより、陽極金
属の表面上に数μmの酸化チタン皮膜を作製する技術で
ある。以下本発明について詳細に説明する。本発明にお
いては、電解溶液に含まれている物質が陽極酸化と同時
に皮膜に取り込まれれば、どのような電解質を用いても
かまわない。ただし、膜厚を数μm程度に厚くしたい場
合には、グリセロリン酸塩、リン酸、硫酸あるいはリン
酸と硫酸の混酸などを電解質に用いることが好ましい。
グリセロリン酸塩としてはグリセロリン酸ナトリウム、
グリセロリン酸カルシウムなどがあるが、水に非常に溶
けやすいことからグリセロリン酸ナトリウムが最も好ま
しい。このような電解質を用いて陽極酸化すると、リン
または硫黄が含まれた陽極酸化膜が形成される。しか
し、これらの電解溶液に金属の酢酸塩、炭酸塩、水酸化
物、乳酸塩、クエン酸塩、グルコン酸塩、プロピオン酸
塩、グリセロリン酸塩、サリチル酸塩、シュウ酸塩、マ
ロン酸塩、安息香酸塩、マレイン酸塩、ギ酸塩、ケイ酸
塩、チオシアン酸塩、酒石酸塩、ピルビン酸塩、ホウ酸
塩、フッ化物のうち少なくとも1種類を添加して陽極酸
化すると、陽極酸化膜中のリンまたは硫黄の含有量を大
幅に高くすることができる。金属酢酸塩としては、アル
カリ金属(リチウム、ナトリウム、カリウム、ルビジウ
ム、セシウム)の酢酸塩、アルカリ土類金属(マグネシ
ウム、カルシウム、ストロンチウム、バリウム)の酢酸
塩、さらに酢酸ランタンなどは、グリセロリン酸塩の水
溶液に非常によく溶け、しかも高い電圧まで安定に陽極
酸化できるので最も好ましいが、これらに限定されるも
のではない。このように、電解溶液に金属化合物を添加
して陽極酸化すると、グリセロリン酸塩、リン酸、硫
酸、あるいはリン酸と硫酸の混酸を単独で用いるより
も、陽極酸化膜に多量のリンまたは硫黄を含有させるこ
とができる。さらに、添加された金属化合物に対応する
金属も含有させることができる。その結果、水熱処理に
よって皮膜からリンまたは硫黄と添加された金属化合物
に対応する金属がイオンとなって溶出するが、その溶出
量が多いほど陽極酸化皮膜に形成される気孔の径が大き
くなる。従って、皮膜中の可溶性物質の割合すなわち電
解質濃度によって、気孔径をコントロ−ルすることがで
きる。これらの電解質を用いて陽極酸化を始める前に、
あらかじめ最高到達電圧を設定しておく。陽極酸化を開
始すると電圧は徐々に上昇し、その最高電圧に到達する
と電流が流れなくなって陽極酸化が終了する。陽極酸化
にかかる時間は、電流密度を高くして速く昇圧するほど
短時間で終了させることができるが、5〜10分程度と
比較的短くする。皮膜の厚さは電圧に比例するので、多
孔質酸化チタン皮膜の単位面積当たりの表面積を増大さ
せるには、高電圧で陽極酸化して膜厚を大きくするとよ
い。しかし、膜厚が大きすぎると安定して陽極酸化でき
なくなるので 500V程度が限界である。電圧が 100Vを
越えたあたりから、陽極酸化皮膜の表面で火花放電が発
生し、酸化皮膜が局所的に非常に高い温度に加熱され
る。このような皮膜に対する加熱が無数に繰り返された
結果、陽極酸化膜全体が結晶化され、結晶性の高い酸化
チタン皮膜が形成される。また、電解質から陽極酸化皮
膜への可溶性物質の取り込みも、火花放電による加熱に
よって行われる。陽極酸化法では、チタンインプラント
基材が複雑な形状をしていても、厚さが均一な酸化チタ
ン皮膜を形成させることができる。1回の反応時間は数
分程度と比較的短時間で終了する。また、特殊な装置を
必要とせず、室温の水溶液中で処理できる。陽極酸化皮
膜に含まれる可溶性物質を溶出させるには、オ−トクレ
−ブなどの密閉容器に入れられた液体中又はその蒸気中
で、陽極酸化されたチタンを 100〜500℃の温度範囲で
加熱する。加熱温度が 100℃より低いと可溶性物質はほ
とんど溶出しない。また、オ−トクレ−ブを 500℃より
高い温度に加熱することは、装置が非常に大がかりにな
り一般的でない。液体としては一般的に純水が用いられ
るが、それだけに限定されるものではなく、皮膜からの
溶出を促進させるために、酸性またはアルカリ性にする
こともある。また、液体を攪拌しながら加熱処理する
と、溶出が促進される。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, very fine pores are formed by dissolving a soluble substance taken into a film from an electrolyte during anodization into a liquid by hydrothermal treatment. Make the coating porous. The anodic oxidation method is a technique in which an electric field is applied between titanium as an anode metal and a cathode made of an arbitrary metal in an electrolytic solution to form a titanium oxide film having a thickness of several μm on the surface of the anode metal. Hereinafter, the present invention will be described in detail. In the present invention, any electrolyte may be used as long as the substance contained in the electrolytic solution is incorporated into the film simultaneously with the anodic oxidation. However, when it is desired to increase the film thickness to about several μm, it is preferable to use glycerophosphate, phosphoric acid, sulfuric acid or a mixed acid of phosphoric acid and sulfuric acid for the electrolyte.
As glycerophosphate, sodium glycerophosphate,
There are calcium glycerophosphate and the like, but sodium glycerophosphate is most preferred because it is very soluble in water. When anodizing is performed using such an electrolyte, an anodized film containing phosphorus or sulfur is formed. However, in these electrolytic solutions, metal acetate, carbonate, hydroxide, lactate, citrate, gluconate, propionate, glycerophosphate, salicylate, oxalate, malonate, benzoate When at least one of acid salts, maleates, formates, silicates, thiocyanates, tartrate, pyruvates, borates, and fluorides is added and anodized, phosphorus in the anodic oxide film is removed. Alternatively, the sulfur content can be significantly increased. As metal acetates, alkali metal (lithium, sodium, potassium, rubidium, cesium) acetates, alkaline earth metal (magnesium, calcium, strontium, barium) acetates, and lanthanum acetate are glycerophosphates. It is most preferred because it is very well soluble in aqueous solutions and can be stably anodized up to high voltages, but is not limited thereto. Thus, when a metal compound is added to the electrolytic solution and anodized, a larger amount of phosphorus or sulfur is added to the anodized film than when glycerophosphate, phosphoric acid, sulfuric acid, or a mixed acid of phosphoric acid and sulfuric acid is used alone. It can be contained. Further, a metal corresponding to the added metal compound can be contained. As a result, the metal corresponding to the metal compound added with phosphorus or sulfur is eluted as ions from the film by the hydrothermal treatment. The larger the amount of elution, the larger the diameter of pores formed in the anodic oxide film. Therefore, the pore size can be controlled by the ratio of the soluble substance in the film, that is, the electrolyte concentration. Before starting anodizing with these electrolytes,
Set the highest attainable voltage in advance. When the anodization is started, the voltage gradually increases. When the voltage reaches the maximum voltage, no current flows and the anodization ends. The time required for anodic oxidation can be completed in a shorter time as the current density is increased and the pressure is increased faster, but is relatively short, about 5 to 10 minutes. Since the thickness of the film is proportional to the voltage, the surface area per unit area of the porous titanium oxide film may be increased by anodizing at a high voltage to increase the film thickness. However, if the film thickness is too large, anodic oxidation cannot be performed stably, so the limit is about 500 V. When the voltage exceeds about 100 V, a spark discharge occurs on the surface of the anodic oxide film, and the oxide film is locally heated to a very high temperature. As a result of repeating the heating of the film innumerably, the entire anodic oxide film is crystallized, and a titanium oxide film having high crystallinity is formed. Also, the incorporation of soluble substances from the electrolyte into the anodic oxide film is performed by heating by spark discharge. In the anodic oxidation method, a titanium oxide film having a uniform thickness can be formed even if the titanium implant substrate has a complicated shape. One reaction time is completed in a relatively short time of about several minutes. Further, the treatment can be performed in an aqueous solution at room temperature without requiring a special device. In order to elute the soluble substances contained in the anodized film, the anodized titanium is heated in a temperature range of 100 to 500 ° C. in a liquid or a vapor contained in a closed container such as an autoclave. I do. If the heating temperature is lower than 100 ° C, the soluble substance hardly elutes. Heating the autoclave to a temperature above 500 DEG C. is also uncommon, as the equipment becomes very large. Pure water is generally used as the liquid, but is not limited thereto, and may be acidic or alkaline in order to promote elution from the film. When the liquid is heated while being stirred, elution is promoted.

【0007】〔第1の実施形態〕濃度が0.005mol/lのβ
−グリセロリン酸ナトリウムと0.09mol/l の酢酸カルシ
ウムからなる電解水溶液中でチタンを 350Vまで陽極酸
化した。電解溶液温度は40℃、電流密度は50mA/cm2
した。陽極酸化皮膜に含まれるカルシウムとリンは皮膜
が成長するとともに電解質から取り込まれたものであ
る。この陽極酸化皮膜をオ−トクレ−ブを用いて高圧水
中 180℃で4時間水熱処理すると、皮膜中のカルシウム
とリンはほとんど水中に溶出してしまい、その跡には数
nmの非常に微細な細孔が形成され、陽極酸化皮膜全体と
しては多孔質になっていた。また、皮膜を構成する酸化
チタン微粒子の粒径は、約40nmと非常に微細であった。
この様に、まず陽極酸化皮膜にカルシウムとリンを含有
させ、次いで、これらを水熱処理によって溶出させるこ
とにより、多孔質な酸化チタン皮膜を形成することがで
きた。水熱処理を行っていない陽極酸化皮膜の水に対す
る接触角は50°であったが、水熱処理後には7°に低下
した。皮膜が多孔質になったため、水に対する濡れ性が
著しく向上した。この多孔質酸化チタン皮膜は、ネジの
ような複雑な形状のチタン製インプラントもしくはチタ
ンのプラズマ溶射面のような凹凸の激しい面にも均一に
形成することができた。
[First Embodiment] β having a concentration of 0.005 mol / l
Titanium was anodized to 350 V in an aqueous electrolytic solution consisting of sodium glycerophosphate and 0.09 mol / l calcium acetate. The electrolytic solution temperature was 40 ° C., and the current density was 50 mA / cm 2 . Calcium and phosphorus contained in the anodized film are taken in from the electrolyte as the film grows. When this anodic oxide film is subjected to hydrothermal treatment in high-pressure water at 180 ° C for 4 hours using an autoclave, calcium and phosphorus in the film are almost eluted into the water, and traces of the calcium and phosphorus remain.
Very fine pores of nm were formed, and the entire anodic oxide film was porous. The particle size of the titanium oxide fine particles constituting the film was as very small as about 40 nm.
As described above, calcium and phosphorus were first contained in the anodic oxide film, and then these were eluted by hydrothermal treatment, whereby a porous titanium oxide film could be formed. The contact angle with water of the anodic oxide film not subjected to the hydrothermal treatment was 50 °, but decreased to 7 ° after the hydrothermal treatment. Since the film became porous, the wettability to water was significantly improved. This porous titanium oxide film could be uniformly formed on a titanium implant having a complicated shape such as a screw or a surface with severe irregularities such as a plasma sprayed surface of titanium.

【0008】〔第2の実施形態〕濃度が0.005mol/lのβ
−グリセロリン酸ナトリウムと0.13mol/lの酢酸ナトリ
ウムからなる電解水溶液中で、第1の実施形態1と同様
に、チタンを 350Vまで陽極酸化した。陽極酸化皮膜に
はリンだけが含まれていたが、これは陽極酸化皮膜が成
長するとともに電解質から取り込まれたものである。こ
の陽極酸化皮膜をオ−トクレ−ブを用いて高圧水中 180
℃で4時間水熱処理すると、皮膜中のとリンはほとんど
水中に溶出してしまい、その跡には数nmの非常に微細な
細孔が形成され、皮膜全体としては多孔質になってい
た。また、皮膜を構成する酸化チタン微粒子の粒径は、
約40nmと非常に微細であった。水熱処理前には、陽極酸
化膜の水に対する接触角は54°であったが、水熱処理後
には10°に低下した。皮膜が多孔質になったため、水に
対する濡れ性が著しく向上した。
[Second Embodiment] β having a concentration of 0.005 mol / l
In the same manner as in the first embodiment, titanium was anodized to 350 V in an electrolytic aqueous solution comprising sodium glycerophosphate and 0.13 mol / l sodium acetate. The anodized film contained only phosphorus, which was taken in from the electrolyte as the anodized film grew. This anodic oxide film is applied to high-pressure water 180
After hydrothermal treatment at 4 ° C. for 4 hours, most phosphorus in the film was eluted in water, and very fine pores of several nm were formed in the trace, and the film was porous as a whole. Also, the particle size of the titanium oxide fine particles constituting the film is
It was very fine, about 40 nm. Before the hydrothermal treatment, the contact angle of the anodic oxide film with water was 54 °, but after the hydrothermal treatment, it decreased to 10 °. Since the film became porous, the wettability to water was significantly improved.

【0009】〔第3の実施形態〕濃度が0.26mol/lのリ
ン酸水溶液に0.1mol/lの酢酸カルシウムを加えた溶液を
用いて、チタンを 250Vまで陽極酸化した。陽極酸化皮
膜にはカルシウムとリンが含まれていたが、これらは陽
極酸化皮膜が成長するとともに電解質から取り込まれた
ものである。この陽極酸化皮膜をオ−トクレ−ブを用い
て高圧水中 180℃で4時間水熱処理すると、皮膜中のと
カルシウムとリンはほとんど水中に溶出してしまい、そ
の跡には数nmの非常に微細な細孔が形成され、皮膜全体
としては多孔質になっていた。また、皮膜を構成する酸
化チタン微粒子の粒径は、約30nmと非常に微細であっ
た。電解質にリン酸だけを用いるより、リン酸水溶液に
微量の酢酸カルシウムを加えると、陽極酸化皮膜中のリ
ンの含有量は大きく増加し、その結果、皮膜をより多孔
質にすることができた。水熱処理前には、陽極酸化皮膜
の水に対する接触角は48°であったが、水熱処理後には
8°に低下した。皮膜が多孔質になったため、水に対す
る濡れ性が著しく向上した。
Third Embodiment Titanium was anodized to 250 V using a solution obtained by adding 0.1 mol / l calcium acetate to a phosphoric acid aqueous solution having a concentration of 0.26 mol / l. The anodized film contained calcium and phosphorus, which were taken in from the electrolyte as the anodized film grew. When this anodized film is hydrothermally treated with high pressure water at 180 ° C. for 4 hours using an autoclave, calcium and phosphorus in the film are almost eluted into the water, and the trace shows very fine particles of several nm. Fine pores were formed, and the film as a whole was porous. The particle size of the titanium oxide fine particles constituting the film was as very small as about 30 nm. When a trace amount of calcium acetate was added to the phosphoric acid aqueous solution rather than using only phosphoric acid as the electrolyte, the phosphorus content in the anodic oxide film was greatly increased, and as a result, the film could be made more porous. Before the hydrothermal treatment, the contact angle of the anodic oxide film with water was 48 °, but after the hydrothermal treatment, it decreased to 8 °. Since the film became porous, the wettability to water was significantly improved.

【0010】[0010]

【発明の効果】以上の通り、チタンを陽極酸化し、次い
で水熱処理することにより、皮膜に含まれていた可溶性
物質を溶出させると、多孔質酸化チタン皮膜が形成され
る。この皮膜は水に対する濡れ性が非常に良いため、イ
ンプラントの表面として用いると、生体蛋白質の吸着ま
たは細胞の付着が容易になるため、結果的に生体組織に
対する親和性が非常に高くなる。陽極酸化法は成膜速度
が速く、また複雑な形状のチタンでも表面に均一な厚さ
の皮膜を形成することができる。また、電解質濃度や電
圧などの比較的少ないパラメ−タ−を管理するだけで、
再現性良く一定の品質を持った多孔質酸化チタン皮膜を
製造できる。
As described above, when titanium is anodized and then subjected to hydrothermal treatment to elute the soluble substance contained in the film, a porous titanium oxide film is formed. Since this film has very good wettability with water, if it is used as a surface of an implant, adsorption of a biological protein or attachment of cells becomes easy, and as a result, affinity with a biological tissue is extremely increased. The anodic oxidation method has a high film forming rate, and can form a film having a uniform thickness on the surface even with titanium having a complicated shape. Also, by managing relatively few parameters such as electrolyte concentration and voltage,
A porous titanium oxide film having a certain quality with good reproducibility can be manufactured.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 チタン基板を電解溶液中で陽極酸化し、
該基板の表面に酸化チタン皮膜を形成する工程と、 陽極酸化されたチタン基板を水中または水蒸気中で水熱
処理し、前記酸化チタン皮膜に無数の微小な細孔を形成
させて多孔質化し、水に対する接触角を20°以下にす
る工程と、 から成ることを特徴とする生体親和性酸化チタン皮膜の
製造方法。
1. Anodizing a titanium substrate in an electrolytic solution,
A step of forming a titanium oxide film on the surface of the substrate, and hydrothermally treating the anodized titanium substrate in water or water vapor to form countless fine pores in the titanium oxide film to make the titanium oxide film porous. A contact angle to 20 ° or less, and a method for producing a biocompatible titanium oxide film.
【請求項2】 前記電解溶液は、グリセロリン酸塩、リ
ン酸、硫酸、あるいはリン酸と硫酸の混酸のうちのいず
れかであることを特徴とする、請求項1に記載の生体親
和性酸化チタン皮膜の製造方法。
2. The biocompatible titanium oxide according to claim 1, wherein the electrolytic solution is any one of glycerophosphate, phosphoric acid, sulfuric acid, and a mixed acid of phosphoric acid and sulfuric acid. Manufacturing method of the film.
【請求項3】 前記電解溶液は、グリセロリン酸塩、リ
ン酸、硫酸、あるいはリン酸と硫酸の混酸のうちのいず
れかを主成分とする溶液に、金属の酢酸塩、炭酸塩、水
酸化物、乳酸塩、クエン酸塩、グルコン酸塩、プロピオ
ン酸塩、グリセロリン酸塩、サリチル酸塩、シュウ酸
塩、マロン酸塩、安息香酸塩、マレイン酸塩、ギ酸塩、
ケイ酸塩、チオシアン酸塩、酒石酸塩、ピルビン酸塩、
ホウ酸塩、フッ化物のうち少なくとも1種類を添加した
電解溶液であることを特徴とする、請求項1に記載の生
体親和性酸化チタン皮膜の製造方法。
3. The electrolytic solution according to claim 1, wherein the electrolytic solution is a solution mainly composed of glycerophosphate, phosphoric acid, sulfuric acid, or a mixed acid of phosphoric acid and sulfuric acid. Lactate, citrate, gluconate, propionate, glycerophosphate, salicylate, oxalate, malonate, benzoate, maleate, formate,
Silicate, thiocyanate, tartrate, pyruvate,
The method for producing a biocompatible titanium oxide film according to claim 1, wherein the electrolytic solution is an electrolytic solution to which at least one of borate and fluoride is added.
【請求項4】 前記金属酢酸塩は、アルカリ金属の酢酸
塩、アルカリ土類金属の酢酸塩、酢酸ランタンのうちの
いずれかであること特徴とする、請求項3に記載の生体
親和性酸化チタン皮膜の製造方法。
4. The biocompatible titanium oxide according to claim 3, wherein the metal acetate is any one of an alkali metal acetate, an alkaline earth metal acetate, and lanthanum acetate. Manufacturing method of the film.
JP9198685A 1997-07-24 1997-07-24 Preparation of titanium oxide film having bio-affinity Pending JPH1143799A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9198685A JPH1143799A (en) 1997-07-24 1997-07-24 Preparation of titanium oxide film having bio-affinity

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9198685A JPH1143799A (en) 1997-07-24 1997-07-24 Preparation of titanium oxide film having bio-affinity

Publications (1)

Publication Number Publication Date
JPH1143799A true JPH1143799A (en) 1999-02-16

Family

ID=16395353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9198685A Pending JPH1143799A (en) 1997-07-24 1997-07-24 Preparation of titanium oxide film having bio-affinity

Country Status (1)

Country Link
JP (1) JPH1143799A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005095584A (en) * 2003-09-02 2005-04-14 National Institute Of Advanced Industrial & Technology Implantation material compatible with organism and method for preparation thereof
WO2007069532A1 (en) * 2005-12-12 2007-06-21 Nakashima Propeller Co., Ltd. Bone-compatible implant and method of producing the same
WO2007088013A1 (en) * 2006-01-31 2007-08-09 Holger Zipprich Process for producing a metal body and metal bodies
CN100368600C (en) * 2003-12-09 2008-02-13 中南大学 Method for preparing bioceramic membrane
WO2008041563A1 (en) * 2006-09-26 2008-04-10 National Institute Of Advanced Industrial Science And Technology Biomaterial, method of constructing the same and use thereof
JP2008080102A (en) * 2006-08-29 2008-04-10 Nagasaki Univ Implant
JP2008518098A (en) * 2004-10-25 2008-05-29 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Articles of manufacture and processes for anodizing aluminum and / or titanium with ceramic oxide
JP2009000546A (en) * 1999-05-31 2009-01-08 Nobel Biocare Ab (Publ) Layer arranged on implant for bone or tissue structure, such implant, and method for application of the layer
JP2010524606A (en) * 2007-04-23 2010-07-22 ノベル バイオケア サーヴィシィズ アーゲー Dental implant and dental element connection
JP2010533708A (en) * 2007-07-19 2010-10-28 オステオフィル カンパニー,リミテッド Method for producing implant with modified surface and implant produced thereby
WO2011093414A1 (en) 2010-01-27 2011-08-04 国立大学法人東京医科歯科大学 Metal oxide, metal material, biocompatible material, and method for producing metal oxide
WO2011114998A1 (en) * 2010-03-19 2011-09-22 独立行政法人産業技術総合研究所 Transparent thin film of transition metal oxide having a large diameter nano-spaces, method for producing same and dye-sensitized device electrode
JP2012518502A (en) * 2009-02-26 2012-08-16 ノベル バイオケア サーヴィシィズ アーゲー Device for indicating the position and orientation of a dental implant
US8361630B2 (en) 2001-10-02 2013-01-29 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
AU2011211399B2 (en) * 2004-10-25 2013-05-16 Henkel Kommanditgesellschaft Auf Aktien Article of manufacturing and process for anodically coating aluminum and/or titanium with ceramic oxides
CN103536371A (en) * 2013-10-21 2014-01-29 中国科学院上海硅酸盐研究所 Dental implant and preparation method thereof
JP2014506728A (en) * 2011-02-08 2014-03-17 ケンブリッジ ナノサーム リミティド Insulated metal substrate
WO2014195027A2 (en) * 2013-06-07 2014-12-11 Straumann Holding Ag Abutment
JP2015511666A (en) * 2012-03-02 2015-04-20 シンセス・ゲーエムベーハーSynthes GmbH Anodized titanium apparatus and related methods
US9023481B2 (en) 2001-10-02 2015-05-05 Henkel Ag & Co. Kgaa Anodized coating over aluminum and aluminum alloy coated substrates and coated articles
CN105671612A (en) * 2015-08-21 2016-06-15 北京大学第三医院 Porous metal implant with micro-arc oxidation coating and preparation method
WO2017002884A1 (en) * 2015-07-02 2017-01-05 新日鐵住金株式会社 Titanium material
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
FR3059342A1 (en) * 2016-11-28 2018-06-01 Institut De Recherche Technologique Materiaux, Metallurgie, Procedes PIECES WITH CERAMIC COATING ON TITANIUM OR TITANIUM ALLOY SURFACES, OBTAINED BY MICRO-ARC ANODIZATION AND ELECTROLYTE SUITABLE FOR OBTAINING THEM
US10246791B2 (en) 2014-09-23 2019-04-02 General Cable Technologies Corporation Electrodeposition mediums for formation of protective coatings electrochemically deposited on metal substrates

Cited By (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009000546A (en) * 1999-05-31 2009-01-08 Nobel Biocare Ab (Publ) Layer arranged on implant for bone or tissue structure, such implant, and method for application of the layer
US8152856B2 (en) 1999-05-31 2012-04-10 Nobel Biocare Ab (Publ.) Layer arranged on implant for bone or tissue structure, such an implant, and a method for application of the layer
US8361630B2 (en) 2001-10-02 2013-01-29 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating an aluminum substrate with ceramic oxides prior to polytetrafluoroethylene or silicone coating
US8663807B2 (en) * 2001-10-02 2014-03-04 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating aluminum and/or titanium with ceramic oxides
US20100000870A1 (en) * 2001-10-02 2010-01-07 Henkel Ag & Co. Kgaa Article of manufacture and process for anodically coating aluminum and/or titanium with ceramic oxides
US9023481B2 (en) 2001-10-02 2015-05-05 Henkel Ag & Co. Kgaa Anodized coating over aluminum and aluminum alloy coated substrates and coated articles
JP2005095584A (en) * 2003-09-02 2005-04-14 National Institute Of Advanced Industrial & Technology Implantation material compatible with organism and method for preparation thereof
CN100368600C (en) * 2003-12-09 2008-02-13 中南大学 Method for preparing bioceramic membrane
KR20150063602A (en) * 2004-10-25 2015-06-09 헨켈 아게 운트 코. 카게아아 Article of manufacture and process for anodically coating aluminum and/or titanium with ceramic oxides
AU2011211399B2 (en) * 2004-10-25 2013-05-16 Henkel Kommanditgesellschaft Auf Aktien Article of manufacturing and process for anodically coating aluminum and/or titanium with ceramic oxides
JP2008518098A (en) * 2004-10-25 2008-05-29 ヘンケル・コマンディットゲゼルシャフト・アウフ・アクチエン Articles of manufacture and processes for anodizing aluminum and / or titanium with ceramic oxide
KR101286142B1 (en) * 2004-10-25 2013-07-15 헨켈 아게 운트 코. 카게아아 Article of manufacture and process for anodically coating aluminum and/or titanium with ceramic oxides
WO2007069532A1 (en) * 2005-12-12 2007-06-21 Nakashima Propeller Co., Ltd. Bone-compatible implant and method of producing the same
JP2007159685A (en) * 2005-12-12 2007-06-28 Okayama Univ Bone seeking implant and its manufacturing method
US8257445B2 (en) 2005-12-12 2012-09-04 Nakashima Medical Co., Ltd. Bone-compatible implant and method of producing the same
WO2007088013A1 (en) * 2006-01-31 2007-08-09 Holger Zipprich Process for producing a metal body and metal bodies
US7951285B2 (en) 2006-01-31 2011-05-31 Holger Zipprish Process for producing a metal body and metal bodies
JP2008080102A (en) * 2006-08-29 2008-04-10 Nagasaki Univ Implant
WO2008041563A1 (en) * 2006-09-26 2008-04-10 National Institute Of Advanced Industrial Science And Technology Biomaterial, method of constructing the same and use thereof
JP2008104866A (en) * 2006-09-26 2008-05-08 National Institute Of Advanced Industrial & Technology Biomaterial, method of constructing the same and use thereof
JP2010524606A (en) * 2007-04-23 2010-07-22 ノベル バイオケア サーヴィシィズ アーゲー Dental implant and dental element connection
JP2010533708A (en) * 2007-07-19 2010-10-28 オステオフィル カンパニー,リミテッド Method for producing implant with modified surface and implant produced thereby
JP2012518502A (en) * 2009-02-26 2012-08-16 ノベル バイオケア サーヴィシィズ アーゲー Device for indicating the position and orientation of a dental implant
US9701177B2 (en) 2009-04-02 2017-07-11 Henkel Ag & Co. Kgaa Ceramic coated automotive heat exchanger components
EP2532621A1 (en) * 2010-01-27 2012-12-12 National University Corporation Tokyo Medical and Dental University Metal oxide, metal material, biocompatible material, and method for producing metal oxide
JPWO2011093414A1 (en) * 2010-01-27 2013-06-06 国立大学法人 東京医科歯科大学 Metal oxide, metal material, biocompatible material, and method for producing metal oxide
EP2532621A4 (en) * 2010-01-27 2014-07-09 Nat Univ Corp Tokyo Med & Dent Metal oxide, metal material, biocompatible material, and method for producing metal oxide
WO2011093414A1 (en) 2010-01-27 2011-08-04 国立大学法人東京医科歯科大学 Metal oxide, metal material, biocompatible material, and method for producing metal oxide
WO2011114998A1 (en) * 2010-03-19 2011-09-22 独立行政法人産業技術総合研究所 Transparent thin film of transition metal oxide having a large diameter nano-spaces, method for producing same and dye-sensitized device electrode
US9551082B2 (en) 2011-02-08 2017-01-24 Cambridge Nanotherm Limited Insulated metal substrate
JP2014506728A (en) * 2011-02-08 2014-03-17 ケンブリッジ ナノサーム リミティド Insulated metal substrate
US9677187B2 (en) 2011-02-08 2017-06-13 Cambridge Nanolitic Limited Non-metallic coating and method of its production
JP2015511666A (en) * 2012-03-02 2015-04-20 シンセス・ゲーエムベーハーSynthes GmbH Anodized titanium apparatus and related methods
WO2014195027A3 (en) * 2013-06-07 2015-04-09 Straumann Holding Ag Abutment with nanostructured surface
WO2014195027A2 (en) * 2013-06-07 2014-12-11 Straumann Holding Ag Abutment
CN103536371A (en) * 2013-10-21 2014-01-29 中国科学院上海硅酸盐研究所 Dental implant and preparation method thereof
US10246791B2 (en) 2014-09-23 2019-04-02 General Cable Technologies Corporation Electrodeposition mediums for formation of protective coatings electrochemically deposited on metal substrates
WO2017002884A1 (en) * 2015-07-02 2017-01-05 新日鐵住金株式会社 Titanium material
JPWO2017002884A1 (en) * 2015-07-02 2017-06-29 新日鐵住金株式会社 Titanium material, separator, cell and polymer electrolyte fuel cell
CN105671612A (en) * 2015-08-21 2016-06-15 北京大学第三医院 Porous metal implant with micro-arc oxidation coating and preparation method
FR3059342A1 (en) * 2016-11-28 2018-06-01 Institut De Recherche Technologique Materiaux, Metallurgie, Procedes PIECES WITH CERAMIC COATING ON TITANIUM OR TITANIUM ALLOY SURFACES, OBTAINED BY MICRO-ARC ANODIZATION AND ELECTROLYTE SUITABLE FOR OBTAINING THEM

Similar Documents

Publication Publication Date Title
JPH1143799A (en) Preparation of titanium oxide film having bio-affinity
US5478237A (en) Implant and method of making the same
CA2557029C (en) Metal implants
JP4403283B2 (en) Apatite-coated metal material, its production method and use
TWI480026B (en) Bio-implant having screw body selectively formed with nanoporous in spiral groove and method of making the same
CN108079381A (en) A kind of preparation method of medical titanium alloy surface biological Piezoelectric anisotropy coating
Ishizawa et al. Thin hydroxyapatite layers formed on porous titanium using electrochemical and hydrothermal reaction
JP2661451B2 (en) Implant and method of manufacturing the same
Zhu et al. Characterization of hydrothermally treated anodic oxides containing Ca and P on titanium
CN104922727B (en) A kind of bioactivity, porous titanium medical embedded material and preparation method thereof
TWI532883B (en) Titanium or titanium alloy having antibacterial surface and method for manufacturing the same
JPH119679A (en) Production of implant
KR20030031664A (en) An electrochemical surface treating method for implants comprising metallic titanium or titanium alloys
KR100487119B1 (en) Osseoinductive magnesium-titanate implant and method of manufacturing the same
CN108103551B (en) A kind of method of hydroxylapatite crystal in promotion differential arc oxidation film layer
JP3129041B2 (en) Implant and manufacturing method thereof
KR20200104121A (en) dental implant having dual function surface using electrochemical treatment and manufacturing method thereof
JPH116098A (en) Manufacture of titanium oxide film containing metallic element
CN113416994A (en) Surface modification method of metal material
JP2000178792A (en) Production of oxide film
Chuan et al. Effect of applied voltage on surface properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)
Lee Surface properties, crystallinity and optical properties of anodised titanium in mixture of β-glycerophosphate (β-GP) and calcium acetate (CA)
JPH10110293A (en) Production of strontium apatite coating
KR102150326B1 (en) Method for surface treatment of biocompatible affinity metal material
JPH0747115A (en) Implant and its manufacture