WO2024018991A1 - Lactic acid-vinyl copolymer, binder composition, and paste for use in sintering - Google Patents

Lactic acid-vinyl copolymer, binder composition, and paste for use in sintering Download PDF

Info

Publication number
WO2024018991A1
WO2024018991A1 PCT/JP2023/025920 JP2023025920W WO2024018991A1 WO 2024018991 A1 WO2024018991 A1 WO 2024018991A1 JP 2023025920 W JP2023025920 W JP 2023025920W WO 2024018991 A1 WO2024018991 A1 WO 2024018991A1
Authority
WO
WIPO (PCT)
Prior art keywords
lactic acid
vinyl copolymer
vinyl
mass
viscosity
Prior art date
Application number
PCT/JP2023/025920
Other languages
French (fr)
Japanese (ja)
Inventor
孝徳 高橋
秀二 岡本
豪 宮本
Original Assignee
綜研化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 綜研化学株式会社 filed Critical 綜研化学株式会社
Publication of WO2024018991A1 publication Critical patent/WO2024018991A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08CTREATMENT OR CHEMICAL MODIFICATION OF RUBBERS
    • C08C19/00Chemical modification of rubber
    • C08C19/30Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule
    • C08C19/34Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups
    • C08C19/36Addition of a reagent which reacts with a hetero atom or a group containing hetero atoms of the macromolecule reacting with oxygen or oxygen-containing groups with carboxy radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F20/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F20/02Monocarboxylic acids having less than ten carbon atoms, Derivatives thereof
    • C08F20/10Esters
    • C08F20/26Esters containing oxygen in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a lactic acid-vinyl copolymer, a binder composition, and a baking paste.
  • Ethyl cellulose (EC) and polyvinyl butyral (PVB) are used as binders in inorganic particle-containing firing pastes used when manufacturing internal electrodes (for example, MLCCs (Multilayer Ceramic Capacitors)).
  • MLCCs Multilayer Ceramic Capacitors
  • Patent Document 1 discloses an invention related to a dry film for internal electrodes of a multilayer ceramic capacitor formed of a composition containing conductive powder and an organic binder resin, in which ethyl cellulose and polyvinyl butyral are used as the binder resin. It is disclosed that it includes. Further, Patent Document 2 discloses a paste composition containing an inorganic substance, a binder resin, and a solvent, wherein the binder resin is a homopolymer of lactic acid and a copolymer of lactic acid and a copolymerizable monomer. Disclosed is a paste composition characterized by comprising at least one (co)polymer selected from the following.
  • the present invention has been made in view of these circumstances, and has excellent firing properties, is soluble in a solvent without any visible insoluble matter, and has an effective rheology when mixed with a solvent.
  • the present invention provides a lactic acid-vinyl copolymer for use in a baking paste, which has characteristics and has less stringiness, a binder composition containing the lactic acid-vinyl copolymer, and a baking paste.
  • a lactic acid-vinyl copolymer containing a lactic acid unit derived from lactic acid and a vinyl monomer unit derived from a vinyl monomer, the lactic acid-vinyl copolymer being used for baking paste.
  • the present inventors conducted extensive studies and found that a lactic acid-vinyl copolymer containing a lactic acid unit derived from lactic acid and a vinyl monomer unit derived from a vinyl monomer has excellent sinterability and is It has been discovered that the binder for baking pastes can be dissolved in a solvent without visible insoluble matter, has effective rheological properties when mixed with a solvent, and has low stringiness, and the present invention has been made based on the present invention. has been completed.
  • the lactic acid-vinyl copolymer according to [1] which has a viscosity of 2.0 Pa ⁇ s or more as measured by the following method.
  • ⁇ Viscosity measurement method 1) Pour 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate or dihydroterpinyl acetate into a closed container, stir at 2000 rpm with a revolution-revolution mixer until there is no undissolved residue, After defoaming at 2200 rpm until no air bubbles disappear, leave it at 25°C for 1 day to prepare a lactic acid-vinyl copolymer solution 2) Add a Cone Plate with a diameter of 20 mm and a cone angle of 0.975° to the viscosity/viscoelasticity measuring device.
  • ⁇ Method for measuring viscosity A and viscosity B > 1) Pour 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate or dihydroterpinyl acetate into a closed container, stir at 2000 rpm with a revolution-revolution mixer until there is no undissolved residue, After defoaming at 2200 rpm until no air bubbles disappear, leave it at 25°C for 1 day to prepare a lactic acid-vinyl copolymer solution 2) Add a Cone Plate with a diameter of 20 mm and a cone angle of 0.975° to the viscosity/viscoelasticity measuring device.
  • [5] The lactic acid-vinyl copolymer according to any one of [1] to [4], wherein the micro residual carbon content of the lactic acid-vinyl copolymer is 2.00% by mass or less. Lactic acid-vinyl copolymer.
  • [6] The lactic acid-vinyl copolymer according to any one of [1] to [5], wherein the lactic acid-vinyl copolymer includes a vinyl polymer block, and the lactic acid-vinyl copolymer includes a vinyl polymer block.
  • lactic acid-vinyl copolymer according to any one of [1] to [8], wherein the vinyl monomer is at least one of (meth)acrylic acid and (meth)acrylic ester. lactic acid-vinyl copolymer, including one.
  • a lactic acid-vinyl copolymer containing 5.0% by mass to 99.9% by mass of the lactic acid unit.
  • a binder composition for preparing a baking paste comprising the lactic acid-vinyl copolymer according to any one of [1] to [13] and a solvent.
  • a binder composition for preparing a baking paste according to [14] wherein the ratio A'/B' of viscosity A' and viscosity B' measured by the following method is 3.0 or more.
  • binder composition binder composition.
  • Method for measuring viscosity A' and viscosity B'> A Cone Plate with a diameter of 20 mm and a cone angle of 0.975° was attached to the viscosity/viscoelasticity measuring device with a clearance of 23 ⁇ m, the binder composition was set in the measuring section, and the shear rate was set at a set temperature of 25° C. for 0.01 sec.
  • the material has excellent firing properties, is soluble in a solvent without any visible insoluble matter, has effective rheological properties when mixed with a solvent, and has no stringiness.
  • a small amount of lactic acid-vinyl copolymer for baking paste can be obtained.
  • the lactic acid-vinyl copolymer according to the present invention can be dissolved in a solvent without any visible insoluble matter, and can be used as a binder composition for preparing a baking paste in which the binder is uniformly dispersed.
  • a paste for baking can be obtained.
  • the lactic acid-vinyl copolymer according to the present invention has effective rheological properties when mixed with a solvent, that is, it has an appropriate viscosity and pseudoplasticity, so it can be used for baking with excellent coating properties.
  • a paste can be prepared.
  • the lactic acid-vinyl copolymer of the present invention, the binder composition for preparing a baking paste containing the lactic acid-vinyl copolymer, and the baking paste have excellent sinterability, and the residual carbon after the paste is sintered. None or very few.
  • the lactic acid-vinyl copolymer according to the present invention is mixed with a solvent to form a lactic acid-vinyl copolymer solution, it is possible to obtain a baking paste that has less stringiness and is less prone to problems such as extrusion during printing. be able to.
  • the lactic acid-vinyl copolymer according to the present invention is a lactic acid-vinyl copolymer for baking paste containing lactic acid units derived from lactic acid and vinyl monomer units derived from vinyl monomers.
  • Polylactic acid consisting only of lactic acid units has difficulty achieving solvent solubility, and polymers consisting only of vinyl monomer units have difficulty achieving appropriate viscosity and pseudoplasticity when mixed with a solvent. was difficult.
  • According to the present invention by containing both a lactic acid unit derived from lactic acid and a vinyl monomer unit derived from a vinyl monomer, it has excellent sinterability and can be dissolved in a solvent without visually recognizable insoluble matter. Thus, it is possible to obtain a lactic acid-vinyl copolymer for use in baking pastes that has effective rheological properties and less stringiness when mixed with a solvent.
  • the lactic acid-vinyl copolymer according to the present invention contains lactic acid units derived from lactic acid.
  • the lactic acid unit according to the present invention can contain at least one of an L-lactic acid unit and a D-lactic acid unit, and preferably contains an L-lactic acid unit and a D-lactic acid unit.
  • the lactic acid units can be derived from at least one of meso-lactide, L-lactide, and D-lactide.
  • the lactic acid-vinyl copolymer according to the present invention has a content of L-lactic acid units when the total of L-lactic acid units and D-lactic acid units contained in the lactic acid-vinyl copolymer is 100% by mass. , for example, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100% by mass, even if it is within the range between any two of the numerical values exemplified here. good.
  • the content of L-lactic acid units can be, for example, 30 to 70% by mass.
  • the content of D-lactic acid units can be, for example, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100% by mass, and any of the values exemplified here. It may be within a range between the two.
  • the content of D-lactic acid units can be, for example, 30 to 70% by mass.
  • the lactic acid-vinyl copolymer according to the present invention contains a vinyl monomer unit.
  • the vinyl monomer according to one embodiment of the present invention means a monomer containing at least one vinyl group (carbon-carbon unsaturated double bond).
  • the lactic acid-vinyl copolymer according to the present invention may contain one or more types of vinyl monomer units.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention includes unsaturated monocarboxylic acids such as (meth)acrylic acid, unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid, and esters thereof. , styrene, vinyl acetate, acrylonitrile, acrylamide, and derivatives thereof.
  • the lactic acid-vinyl copolymer preferably contains vinyl monomer units derived from at least one of (meth)acrylic acid and (meth)acrylic ester, and the vinyl monomer unit derived from (meth)acrylic ester.
  • it contains a mer unit, and it is even more preferable that it contains a vinyl monomer unit derived from a methacrylic acid ester.
  • a vinyl monomer unit derived from the above-mentioned vinyl monomer it is easy to obtain a binder that has better sinterability and better solvent solubility.
  • Vinyl monomers are usually used in the lactic acid-vinyl copolymer according to one embodiment of the present invention.
  • the vinyl monomer preferably contains a vinyl monomer containing an alkyl group having 1 to 22 carbon atoms, and more preferably contains a (meth)acrylic acid alkyl ester in which the number of carbon atoms in the alkyl group is within the above range. .
  • the number of carbon atoms in the alkyl group is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, and may be within the range between any two of the numerical values exemplified here.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention has monomer units derived from a vinyl monomer having an alkyl group having 1 to 7 carbon atoms (a vinyl monomer containing a short-chain alkyl group). It is more preferable to include a monomer unit derived from a vinyl monomer having an alkyl group having 8 to 18 carbon atoms (a vinyl monomer containing a long-chain alkyl group).
  • the carbon number of the short-chain alkyl group-containing vinyl monomer is, for example, 1, 2, 3, 4, 5, 6, or 7, and even if it is within the range between any two of the numerical values exemplified here. good.
  • the carbon number of the long-chain alkyl group-containing vinyl monomer is, for example, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and any two of the numerical values exemplified here. It may be within the range between.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention preferably contains a vinyl monomer unit derived from a vinyl monomer containing a functional group.
  • the functional group is preferably at least one selected from the group consisting of a hydroxyl group, a carbonyl group, an epoxy group, an amino group, an isocyanate group, a thiol group, and an alkoxysilyl group; It is preferable that there be.
  • the vinyl monomer containing a functional group is preferably at least one of (meth)acrylic acid and (meth)acrylic ester containing a functional group, such as 2-hydroxyethyl (meth)acrylate, 2- Hydroxyalkyl (meth)acrylates such as hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, glycidyl (meth)acrylate, 4-hydroxy-butyl (meth)acrylate - Epoxy group-containing vinyl monomers such as glycidyl ether.
  • a functional group such as 2-hydroxyethyl (meth)acrylate, 2- Hydroxyalkyl (meth)acrylates such as hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, glycidyl (meth)acrylate, 4-hydroxy-butyl (meth)acrylate - Epoxy group-containing
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention contains vinyl monomer units derived from vinyl monomers containing functional groups, the lactic acid monomer units bond (for example, a lactic acid-vinyl copolymer obtained by graft polymerization can also be obtained.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention may contain vinyl monomer units derived from vinyl monomers that do not contain functional groups (eg, the functional groups described above).
  • the vinyl monomer that does not contain a functional group is preferably at least one of (meth)acrylic acid and (meth)acrylic acid ester that does not contain a functional group, such as methyl (meth)acrylate, ethyl (meth)acrylate, etc.
  • acrylate n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate , n-heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, n-decyl (meth)acrylate ) acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, be
  • (meth)acrylic acid aryl esters (meth)acrylic acid aryloxyalkyl esters such as phenoxyethyl (meth)acrylate, (meth)acrylic acid aryloxyalkyl esters such as benzyl (meth)acrylate, and the like.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention includes vinyl monomer units derived from a vinyl monomer containing a functional group and vinyl monomer units derived from a vinyl monomer not containing a functional group. It is preferable to include. Note that the vinyl monomer containing a functional group may be a short-chain alkyl group-containing vinyl monomer, and the vinyl monomer not containing a functional group may be a long-chain alkyl group-containing vinyl monomer. Good too.
  • the lactic acid-vinyl copolymer contains 0 vinyl monomer units derived from vinyl monomers containing functional groups based on 100% by mass of the total vinyl monomer units contained in the lactic acid-vinyl copolymer.
  • the content of vinyl monomer units derived from vinyl monomers containing functional groups is, for example, 0.5, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60. , 65, and 70% by mass, and may be within a range between any two of the numerical values exemplified here.
  • the solvent solubility of the lactic acid-vinyl copolymer and other physical properties such as rheological properties are improved. It is easy to achieve both.
  • the lactic acid-vinyl copolymer is a polymer mainly composed of lactic acid units and vinyl monomer units, but it may be used as long as it does not impair the effects of the present invention. It may also contain components derived from other monomers depending on the situation. Examples of other monomers include monomers having functional groups, such as monomers having hydroxyl groups, carbonyl groups, epoxy groups, amino groups, isocyanate groups, thiol groups, and alkoxysilyl groups. In addition, other monomers can include a chain transfer agent used for molecular weight adjustment, and examples of chain transfer agents include chain transfer agents described later in "2. Method for producing lactic acid-vinyl copolymer". be able to.
  • a monomer having a functional group capable of reacting with a functional group of a vinyl monomer containing a functional group can be included.
  • diglycidyl ethers such as bisphenol A diglycidyl ether and polyalkylene oxide diglycidyl ether can be mentioned.
  • Other monomer units may be incorporated into the main chain of the vinyl polymer, or may be included as side chains by reacting with vinyl monomers having functional groups.
  • the lactic acid-vinyl copolymer according to the present invention contains monomer units other than lactic acid units and vinyl monomer units, for example, 0, 5, 10, It may be contained in an amount of 15 or 20% by mass, or within a range between any two of the numerical values exemplified here.
  • the lactic acid-vinyl copolymer according to the present invention may also consist of only lactic acid units and vinyl monomer units.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention has a lactic acid unit content of 5.0 to 99.0% based on 100% by mass of the lactic acid-vinyl copolymer.
  • the content is preferably 9% by mass.
  • the content of lactic acid units is, for example, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 55 .0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 99.0, 99.9% by mass, and examples are given here. It may be within the range between any two of the above values.
  • lactic acid monomer units By keeping the content of lactic acid monomer units below the above upper limit, solvent solubility can be easily maintained. Further, by setting the content of lactic acid units to the above lower limit or more, appropriate viscosity and pseudoplasticity can be obtained when mixed with a solvent. According to one embodiment of the present invention, even if the content of lactic acid monomer in the lactic acid-vinyl copolymer is extremely small, if the lactic acid monomer unit is contained, the lactic acid-vinyl copolymer Pseudoplasticity improves when the polymer is mixed with a solvent, and although the mechanism is not necessarily clear, it is assumed as follows.
  • the improvement in pseudoplasticity is thought to be related to the hydrogen bonding between the carboxylic acids of the lactic acid monomer units present at the ends of the lactic acid-vinyl copolymer, and even if the lactic acid monomer units contained in the entire lactic acid-vinyl copolymer Even if the content of mer units is small (for example, even if the polylactic acid block is short), it is presumed that pseudoplasticity can be maintained as long as the amount of lactic acid monomer units present at the terminals can be maintained to a certain extent.
  • the lactic acid-vinyl copolymer according to an embodiment of the present invention may contain 0.1 to 95.0% by mass of vinyl monomer units based on 100% by mass of the lactic acid-vinyl copolymer. preferable.
  • the content of vinyl monomer units is, for example, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45. 0, 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0% by mass, as exemplified here. It may be within a range between any two values.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention may include a vinyl polymer block.
  • the vinyl polymer block may be a vinyl polymer block consisting of one type of vinyl monomer unit, or may be a vinyl (co)polymer block consisting of two or more types of vinyl monomer units.
  • the vinyl polymer block includes at least one of a vinyl monomer unit derived from a vinyl monomer that includes a functional group and a vinyl monomer unit that is derived from a vinyl monomer that does not include a functional group.
  • a vinyl monomer unit derived from a vinyl monomer containing a functional group and a vinyl monomer unit derived from a vinyl monomer not containing a functional group, and these monomer units may be randomly polymerized polymer blocks.
  • the vinyl polymer block preferably has a glass transition temperature of 0 to 100°C.
  • the glass transition temperature is, for example, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100°C, and even if it is within the range between any two of the numerical values exemplified here. good.
  • the glass transition temperature of the vinyl polymer block is within the above numerical range, it is possible to improve the handling properties of a baking paste using a lactic acid-vinyl copolymer as a binder.
  • the glass transition temperature can be determined theoretically using the Fox equation based on the weight fraction of the monomers blended as raw materials and the glass transition temperature of the homopolymer of the monomers. It can be calculated using the method described in .
  • the vinyl polymer block preferably has a weight average molecular weight of 3,000 to 1,000,000, more preferably 8,000 to 700,000.
  • the weight average molecular weight is, for example, 3,000, 5,000, 8,000, 10,000, 20,000, 30,000, 50,000, 70,000, 100,000, 200,000, 300,000. , 500,000, 700,000, and 1,000,000, and may be within the range between any two of the numerical values exemplified here.
  • the solvent solubility, viscosity, and pseudoplasticity of the lactic acid-vinyl copolymer can be adjusted more appropriately.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention preferably has lactic acid units bonded to functional groups contained in vinyl monomers.
  • the functional group is preferably at least one functional group selected from the group consisting of a hydroxyl group, a carbonyl group, an epoxy group, an amino group, an isocyanate group, a thiol group, and an alkoxysilyl group.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention may contain a polylactic acid block.
  • the polylactic acid block may include lactic acid monomer units derived from at least one of meso-lactide, L-lactide, and D-lactide, and the polylactic acid block may include L-lactic acid units and D-lactic acid units. It may contain at least one of the units, and may be a polymer block in which L-lactic acid units and D-lactic acid units are randomly polymerized.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention may include a polylactic acid block and a vinyl polymer block.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention is a block copolymer (particularly a diblock copolymer) or a graft copolymer containing a polylactic acid block and a vinyl monomer block. can do.
  • a diblock copolymer it tends to be a lactic acid-vinyl copolymer with appropriate viscosity and pseudoplasticity.
  • graft copolymer it tends to be a lactic acid-vinyl copolymer with appropriate pseudoplasticity.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention can be a graft copolymer.
  • the graft copolymer can include a backbone chain containing vinyl monomer units and a branch chain containing lactic acid monomer units. Furthermore, the branch chain containing the lactic acid monomer unit can be bonded to a functional group contained in the vinyl monomer contained in the main chain.
  • the lactic acid-vinyl copolymer according to an embodiment of the present invention has a shear rate of It is preferable that the viscosity A of the lactic acid-vinyl copolymer solution at a speed of 1 sec -1 is 2.0 Pa ⁇ s or more.
  • the viscosity A of the lactic acid-vinyl copolymer solution is, for example, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 20.0, 30.0, 40.0, 50.0, 60. 0, 70.0, 80.0, 90.0, 100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1000.0 Pa ⁇ s, and may be within a range between any two of the numerical values exemplified here.
  • the binder composition can be used to prepare a baking paste with excellent coating properties.
  • the lactic acid-vinyl copolymer according to an embodiment of the present invention exhibits the following properties when the shear rate is increased at a constant rate of change from 0.01 sec -1 to 10,000 sec -1 over 150 seconds at 25°C.
  • the viscosity B of the lactic acid-vinyl copolymer solution at a shear rate of 9,000 sec -1 is preferably 0.05 to 2.0 Pa ⁇ s.
  • the viscosity B of the lactic acid-vinyl copolymer solution is, for example, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.1.0, 1.
  • the binder composition can be used to prepare a baking paste with excellent coating properties.
  • the lactic acid-vinyl copolymer solution according to one embodiment of the present invention has a shear rate of 0.01 sec -1 to 10,000 sec -1 at a constant rate of change over 150 seconds at 25°C.
  • the ratio A/B of viscosity A at a shear rate of 1 sec -1 to viscosity B at a shear rate of 9000 sec -1 is preferably 3.0 or more.
  • A/B is, for example, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0 , 8.5, 9.0, 9.5, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100 .0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1,000.0Pa ⁇ s, and the numerical values illustrated here It may be within the range between any two. That is, the lactic acid-vinyl copolymer solution according to one embodiment of the present invention preferably exhibits pseudoplasticity in which the higher the shear rate, the lower the viscosity.
  • the lactic acid-vinyl copolymer solution means a solution containing 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate or dihydroterpinyl acetate. That is, the lactic acid-vinyl copolymer according to one embodiment of the present invention preferably satisfies at least one of the following requirements. - The viscosity of the lactic acid-vinyl copolymer butyl carbitol acetate solution containing 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate satisfies the above requirements.
  • the viscosity of the lactic acid-vinyl copolymer dihydroterpinyl acetate solution containing 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of dihydroterpinyl acetate satisfies the above requirements. Further, the viscosities of both the lactic acid-vinyl copolymer butyl carbitol acetate solution and the lactic acid-vinyl copolymer dihydroterpinyl acetate solution may satisfy the above requirements.
  • the viscosity of the lactic acid-vinyl copolymer solution can be controlled by adjusting the types and amounts of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer, as well as the weight average molecular weight and structure. can.
  • the viscosity of the lactic acid-vinyl copolymer solution at each shear rate at 25°C can be measured using a rotational viscometer, such as a rheometer, and can be measured by the following method. can be measured by the method described in Examples.
  • ⁇ Method for measuring viscosity A and viscosity B > 1) Pour 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate or dihydroterpinyl acetate into a closed container, stir at 2000 rpm with a revolution-revolution mixer until there is no undissolved residue, After defoaming at 2200 rpm until no air bubbles disappear, leave it at 25°C for 1 day to prepare a lactic acid-vinyl copolymer solution 2) Add a Cone Plate with a diameter of 20 mm and a cone angle of 0.975° to the viscosity/viscoelasticity measuring device.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention preferably has a weight average molecular weight of 10,000 to 3,000,000.
  • the weight average molecular weight is, for example, 10,000, 50,000, 100,000, 200,000, 300,000, 500,000, 1,000,000, 2,000,000, 3,000,000. , it may be within the range between any two of the numerical values exemplified here. By setting the weight average molecular weight within the above numerical range, it is easy to achieve a balance between solvent solubility, viscosity, and pseudoplasticity of the lactic acid-vinyl copolymer.
  • the weight average molecular weight can be determined by the GPC method, and specifically can be measured under the conditions described in the Examples.
  • the weight average molecular weight can be controlled by adjusting the polymerization conditions.
  • a solvent for example, a lactic acid-vinyl copolymer containing 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate
  • a solvent for example, a lactic acid-vinyl copolymer containing 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate
  • a solvent for example, a lactic acid-vinyl copolymer containing 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate
  • a solvent for example, a lactic acid-vinyl copolymer containing 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate
  • Solvent solubility can be specifically evaluated under the conditions described in Examples. Solvent solubility can be controlled by adjusting the types and amounts of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer, as well as the weight average molecular weight and structure.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention preferably has a micro residual carbon content of 2.00% by mass or less.
  • the micro residual carbon content is, for example, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1. 10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00% by mass, and any of the numerical values exemplified here. It may be within a range between the two.
  • the micro residual carbon content refers to the residual carbon content determined by the micro method. Specifically, a sample was weighed in a test container, placed in a furnace, and heated to 500°C under specified conditions under a nitrogen atmosphere. After that, the test container is further maintained at 500° C. for 15 minutes, left to cool, and then weighed, and the residual carbon content is determined by calculating the percentage of mass decreased relative to the initial mass (% by mass). Specifically, the micro residual carbon content can be determined by the method described in Examples. The micro residual carbon content can be adjusted by controlling the types and amounts of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer.
  • the lactic acid-vinyl copolymer according to one embodiment of the present invention preferably has a 95% weight loss temperature (TD95) of less than 400°C.
  • TD95 is, for example, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395°C, less than 400°C, even if it is within the range between any two of the numerical values exemplified here. good.
  • TD95 means the temperature at which the weight decreases by 95% when the sample is heated at 10 ° C./min, and can be specifically determined by the method described in the Examples using a thermogravimetric differential thermal analyzer. Can be done. TD95 can be adjusted by controlling the types and amounts of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer solution.
  • the lactic acid-vinyl copolymer according to an embodiment of the present invention is prepared by sticking a glass rod into a lactic acid-vinyl copolymer solution adjusted to have a viscosity A of 5 Pa ⁇ s in an environment of 25°C and pulling it up 10 cm.
  • the time required for the thread-like solution existing between the solution surface and the glass rod to break is preferably 4 seconds or less.
  • stringiness can be determined by the method described in Examples.
  • the stringiness can be adjusted by controlling the types and amounts of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer.
  • the acid value of the lactic acid-vinyl copolymer toluene solution is preferably 0.1 mgKOH/g or more and 20.0 mgKOH/g or less.
  • the acid value is, for example, 0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0mgKOH/g, and the numerical values exemplified here. It may be within the range between any two.
  • the acid value is thought to be correlated with the amount of carboxylic acid in the lactic acid unit present at the end of the lactic acid-vinyl copolymer.
  • the acid value is correlated with the number of branch chains. It is thought that this is related.
  • the lactic acid-vinyl copolymer toluene solution may contain 25% by mass of the lactic acid-vinyl copolymer and 75% by mass of toluene.
  • the acid value can be measured by dissolving the sample in a solvent and performing potentiometric titration using a 0.1 mol/l potassium hydroxide ethanol solution. Specifically, it can be determined by the method described in the Examples. can. The acid value is determined by adjusting the type and amount of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer, as well as the polymerization conditions, and controlling the weight average molecular weight and structure of the lactic acid-vinyl copolymer. It can be adjusted by
  • the lactic acid-vinyl copolymer according to the present invention is a lactic acid-vinyl copolymer for baking paste, and can be suitably used as a binder for baking paste.
  • the lactic acid-vinyl copolymer according to the present invention has excellent sinterability due to the presence of lactic acid units and vinyl monomer units, and is soluble in solvents without any visible insoluble matter.
  • a firing paste in which the binder is uniformly dispersed has excellent coating properties, has little stringiness, and has little residual carbon during firing, and is suitable for manufacturing capacitors that have become smaller in recent years. Also, it is possible to form a pattern without causing any defects, and organic substances originating from the binder do not remain in the resulting capacitor, providing the advantage of reducing the risk of defects.
  • a method for producing a lactic acid-vinyl copolymer according to an embodiment of the present invention includes: A vinyl (co)polymerization step in which a raw material containing one or more vinyl monomers is polymerized to obtain a vinyl (co)polymer, and a raw material containing the vinyl (co)polymer and lactic acid. may include a lactic acid-vinyl copolymer polymerization step in which a lactic acid-vinyl copolymer is obtained by polymerizing the lactic acid-vinyl copolymer.
  • Vinyl (co)polymerization process In the vinyl (co)polymerization process, raw materials containing one or more types of vinyl monomers are polymerized to obtain a vinyl (co)polymer. In the vinyl (co)polymerization step, conventionally known polymerization methods such as solution polymerization, bulk polymerization, emulsion polymerization, and suspension polymerization can be employed, and among these, solution polymerization is preferred. .
  • a raw material containing one or more vinyl monomers and, if necessary, a chain transfer agent, a solvent, etc. are charged into a reaction vessel, and the reaction is carried out under an inert gas atmosphere such as nitrogen gas.
  • a polymerization initiator is added, and the reaction system is maintained at a temperature of usually 50 to 90°C, preferably 60 to 90°C, and the reaction is carried out for 2 to 20 hours. Further, during the polymerization reaction, a polymerization initiator, chain transfer agent, monomer, and solvent may be additionally added as appropriate.
  • the raw material can include a vinyl monomer containing a functional group and a vinyl monomer not containing a functional group, and specific examples of a vinyl monomer containing a functional group and a vinyl monomer not containing a functional group,
  • the blending ratio is as described above.
  • solvents examples include aromatic solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone, and cyclohexanone; ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate, and ethylene glycol diacetate; water, etc. can be used.
  • aromatic solvents such as toluene and xylene
  • ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone, and cyclohexanone
  • ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate, and ethylene glycol diacetate
  • water etc.
  • lactide such as meso-lactide, L-lactide, D-lactide, etc., which will be a raw material for
  • Examples of the polymerization initiator include azo initiators and peroxide polymerization initiators.
  • Examples of azo initiators include 2,2'-azobisisobutyronitrile, 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(2- cyclopropylpropionitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2-methylbutyronitrile), 1,1'-azobis(cyclohexane-1-carboxylic acid), nitrile), 2-(carbamoylazo)isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'- Azobis(N,N'-dimethyleneisobutyramidine), 2,2'-azobis[2-methyl-N-(2-hydroxyethyl
  • chain transfer agents include thiol compounds (mercaptans). Specifically, alkyl mercaptans such as n-octyl mercaptan, t- or n-dodecyl mercaptan, hydroxyl group-containing mercaptans such as 2-mercaptoethanol, thioglycerol, and 3-mercaptohexan-1-ol, thioglycolic acid, 2- Mercaptopropionic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, 6-mercaptohexanoic acid, 11-mercaptoundecanoic acid, 3-mercaptopyruvate, 2-mercaptobenzoic acid, 3-mercaptobenzoic acid, 4-mercapto Carboxyl group-containing mercaptans such as benzoic acid and thiomalic acid, alkoxysilanes such as 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldieth
  • mercaptans Mention may be made of mercaptans.
  • Other examples include polyfunctional thiols such as pentaerythritol tetrakis (3-mercaptopropionate), styrene dimers such as ⁇ -methylstyrene dimer, and naphthoquinone compounds.
  • a chain transfer agent it is preferably 0.01 to 5.00 parts by mass, more preferably 0.02 to 3.00 parts by mass, even more preferably 0.03 parts by mass, per 100 parts by mass of the monomer. Amounts within the range of 2.50 parts by weight can be used.
  • the polymerization initiator, chain transfer agent, and solvent may be used alone or in combination of two or more.
  • the weight average molecular weight of the vinyl (co)polymer can be adjusted by adjusting the type and amount of the polymerization initiator and chain transfer agent, and polymerization conditions such as polymerization temperature and time.
  • Lactic acid-vinyl copolymer polymerization step In the lactic acid-vinyl copolymer polymerization step, raw materials containing a vinyl (co)polymer and lactic acid are further polymerized to obtain a lactic acid-vinyl copolymer.
  • lactic acid-vinyl copolymerization step conventionally known polymerization methods such as solution polymerization, bulk polymerization, emulsion polymerization, and suspension polymerization can be employed, and among these, solution polymerization is preferred. .
  • lactide is ring-opening polymerized with tin octylate or the like.
  • raw materials containing a vinyl (co)polymer and lactic acid and a solvent as needed are placed in a reaction vessel, a catalyst is added under an inert gas atmosphere such as nitrogen gas, and the reaction vessel is heated.
  • the reaction is carried out at a temperature of 150 to 210°C, preferably 160 to 200°C, for 2 to 20 hours.
  • a catalyst, a monomer, and a solvent may be additionally added as appropriate.
  • the raw material containing lactic acid may contain lactide, which is a cyclic dimer, and may contain at least one of meso-lactide, L-lactide, and D-lactide.
  • a catalyst can be used for polymerization, and examples of the catalyst include tin lactate, tin tartrate, tin dicaprylate, tin dilaurate, tin dipaltimate, tin distearate, tin dioleate, ⁇ -tin naphetoate, and ⁇ .
  • - Organotin compounds such as tin naphetoate and tin octylate; powdered tin; zinc dust, zinc halide, zinc oxide, organozinc compounds; titanium compounds such as tetrapropyl titanate; zirconium compounds such as zirconium isopropoxide ;
  • antimony compounds such as antimony trioxide.
  • the amount of the catalyst added can be 0.001 to 1 part by mass, and can be 0.005 to 0.5 part by mass, based on a total of 100 parts by mass of the raw material, such as lactide.
  • a polylactic acid block is formed.
  • the vinyl (co)polymer used as a raw material has a functional group
  • the functional group has a polylactic acid block. It is thought that the structure is a combination of the two.
  • the type and amount of catalyst added, and polymerization conditions such as polymerization temperature and time, the weight average molecular weight and structure of polylactic acid block and lactic acid-vinyl copolymer, and the physical properties of lactic acid-vinyl copolymer can be adjusted. can do.
  • Binder Composition A binder composition according to one embodiment of the present invention contains the above-described lactic acid-vinyl copolymer and a solvent, and can be used to prepare a paste for baking.
  • the binder composition according to one embodiment of the present invention contains a lactic acid-vinyl copolymer as a binder, and may contain a binder other than the lactic acid-vinyl copolymer.
  • binders that the binder composition according to an embodiment of the present invention may include in addition to the lactic acid-vinyl copolymer include ethyl cellulose and polyvinyl butyral.
  • the binder composition according to an embodiment of the present invention preferably contains 50% by mass or more, and preferably 80% by mass or more of the lactic acid-vinyl copolymer, when the binder contained in the binder composition is 100% by mass. is preferable, and it is more preferable that the content is 90% by mass or more.
  • the content of the lactic acid-vinyl copolymer when the binder is 100% by mass is, for example, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100% by mass, where It may be within the range between any two of the illustrated numerical values.
  • the binder composition according to one embodiment of the present invention may contain only a lactic acid-vinyl copolymer as a binder.
  • the solvent that can be contained in the binder composition according to one embodiment of the present invention is not particularly limited, and any known solvent can be used.
  • the solvent preferably has excellent compatibility with the lactic acid-vinyl copolymer according to the present invention, and for example, a lactic acid-vinyl copolymer containing 30% by mass of the lactic acid-vinyl copolymer according to the present invention and 70% by mass of the solvent.
  • the boiling point of the solvent is preferably 150 to 300°C, more preferably 200 to 290°C, even more preferably 220 to 280°C.
  • the solvent include alcohol solvents and ester solvents.
  • alcoholic solvents include cycloalkanols such as cyclohexanol, terpineol (including ⁇ , ⁇ , and ⁇ isomers, or any mixture thereof), terpene alcohols (monoterpene alcohols, etc.) such as dihydroterpineol, dihydro Examples include terpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, sobrerol, verbenol, dipropylene glycol, butyl carbitol, and the like.
  • ester solvents examples include butyl carbitol acetate (BCA), dihydroterpinyl acetate (DHTA), butyl glycol acetate (BMGAC), diethylene glycol alkyl ether acetate (here, alkyl is ethyl, propyl, n- (Examples include butyl.
  • Acetates such as ethylene glycol alkyl ether acetate, ethylene glycol diacetate, propylene glycol alkyl ether acetate, 2,2,4-trimethylpentane-1,3-diol mono-iso- butyrate, 2,2,4-trimethylpentane-1,3-diol mono-iso-butyrate ether, dipropylene glycol monomethyl ether, diethylene glycol alkyl ether, ethylene glycol alkyl ether, dipropylene glycol alkyl ether, and the like.
  • the solvent contains at least one of the ester solvents. Moreover, it is more preferable that the solvent contains at least one of butyl carbitol acetate (BCA), butyl glycol acetate (BMGAC), dihydroterpinyl acetate (DHTA), terpineol, and dihydroterpineol, and butyl carbitol acetate ( Even more preferably, it contains at least one of BCA) and dihydroterpinyl acetate (DHTA).
  • BCA butyl carbitol acetate
  • BMGAC butyl glycol acetate
  • DHTA dihydroterpinyl acetate
  • DHTA dihydroterpinyl acetate
  • DHTA dihydroterpinyl acetate
  • the binder composition according to one embodiment of the present invention can contain 1 to 40% by mass of the binder when the binder composition is 100% by mass.
  • the binder content when the binder composition is 100% by mass is, for example, 1, 5, 10, 15, 20, 25, 30, 35, 40% by mass, and any 2 of the values exemplified here. It may be within the range between two.
  • the binder composition according to one embodiment of the present invention may also contain other additives as necessary within a range that does not impair the effects of the present invention.
  • Other additives include dispersants, surfactants, antioxidants, flame retardants, plasticizers, lubricants, mold release agents, and the like.
  • the binder composition according to one embodiment of the present invention has a shear rate of 1 sec when the shear rate is increased at a constant rate of change from 0.01 sec -1 to 10,000 sec -1 over 150 seconds at 25°C.
  • the viscosity A' at -1 is preferably 2.0 Pa ⁇ s or more.
  • the viscosity A' of the binder composition is, for example, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5.
  • the binder composition can be used to prepare a baking paste with excellent coating properties.
  • the binder composition according to an embodiment of the present invention has a shear rate of 9 when the shear rate is increased at a constant rate of change from 0.01 sec -1 to 10,000 sec -1 over 150 seconds at 25°C.
  • the viscosity B' at ,000 sec -1 is preferably 0.05 to 2.0 Pa ⁇ s.
  • the viscosity B' is, for example, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.1.0, 1.2, 1.3, 1 .4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 Pa ⁇ s, and may be within the range between any two of the numerical values exemplified here. .
  • the binder composition can be used to prepare a baking paste with excellent coating properties.
  • the binder composition according to one embodiment of the present invention has a shear rate of 1 sec when the shear rate is increased at a constant rate of change from 0.01 sec -1 to 10,000 sec -1 over 150 seconds at 25°C.
  • the ratio A'/B' of viscosity A' at -1 and viscosity B' at shear rate 9,000 sec -1 is preferably 3.0 or more.
  • A'/B' is, for example, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7 .0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0 , 80.0, 90.0, 100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1000.0Pa ⁇ s and may be within the range between any two of the numerical values exemplified here. That is, the binder composition according to one embodiment of the present invention preferably exhibits pseudoplasticity in which the viscosity decreases as the shear rate increases.
  • the viscosity of the binder composition can be controlled by adjusting the type, amount, and weight average molecular weight of each monomer unit in the lactic acid-vinyl copolymer, as well as the type and amount of the binder and solvent. .
  • the viscosity of the binder composition at each shear rate at 25° C. can be measured using a rotational viscometer, such as a rheometer, by the method described below, and specifically by the method described in the Examples. be able to.
  • ⁇ Method for measuring viscosity A' and viscosity B'> A Cone Plate with a diameter of 20 mm and a cone angle of 0.975° was attached to the viscosity/viscoelasticity measuring device with a clearance of 23 ⁇ m, the binder composition was set in the measuring section, and the shear rate was set at a set temperature of 25° C. for 0.01 sec. When increasing from -1 to 10,000 sec -1 at a constant rate of change over 150 seconds, measure the viscosity A' at a shear rate of 1 sec -1 and the viscosity B' at a shear rate of 9,000 sec -1 .
  • a viscosity/viscoelasticity measuring device “Discovery HR30” manufactured by TA Instruments can be used as the elasticity measuring device.
  • the binder composition according to one embodiment of the present invention has no visually recognizable insoluble matter of the binder.
  • the binder composition according to one embodiment of the present invention preferably has a micro residual carbon content of 2.00% by mass or less.
  • the micro residual carbon content is, for example, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1. 10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00% by mass, and any of the numerical values exemplified here. It may be within a range between the two.
  • the micro residual carbon content can be determined by the method described in Examples.
  • the binder composition according to one embodiment of the present invention preferably has a 95% weight loss temperature (TD95) of less than 400°C.
  • TD95 is, for example, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395°C, less than 400°C, even if it is within the range between any two of the numerical values exemplified here. good.
  • TD95 can be determined by the method described in Examples using a thermogravimetric differential thermal analyzer.
  • the binder composition according to one embodiment of the present invention is obtained by inserting a glass rod into a lactic acid-vinyl copolymer solution adjusted to have a viscosity A of 5 Pa ⁇ s in an environment of 25° C. and pulling it up by 10 cm. It is preferable that the time required for the thread-like solution existing between the solution surface and the glass rod to break is 4 seconds or less. Specifically, stringiness can be determined by the method described in Examples.
  • a baking paste according to one embodiment of the present invention contains the above binder composition and inorganic particles.
  • the inorganic particles known powders can be used depending on the purpose. Examples of inorganic particles include gold, silver, copper, nickel, palladium, ITO, alumina, zirconia, titanium oxide, barium titanate, aluminum nitride, silicon nitride, boron nitride, various glass powders, inorganic phosphors, and graphite powder. , solder powder, etc., and these can be used alone or in combination of two or more. For example, silver, copper, nickel, etc.
  • the firing paste according to one embodiment of the present invention can be used to prepare a firing paste used when printing a wiring pattern by screen printing, etc., and it is preferable to use nickel.
  • the firing paste according to one embodiment of the present invention can be used for multilayer ceramic capacitors (MLCCs), for example, for internal electrodes of MLCCs.
  • MLCCs multilayer ceramic capacitors
  • the firing paste according to one embodiment of the present invention can be used for internal electrodes and contains nickel as inorganic particles.
  • the composition of the firing paste is appropriately adjusted so that the firing paste has good applicability and the sintered body obtained by sintering the firing paste has various good properties.
  • the firing paste is molded into the desired shape by a known method such as screen printing, dispensing, or doctor blading. A molded body can be obtained.
  • the obtained molded body is heated and dried at an appropriate temperature as necessary, and then fired to remove the binder in the firing paste, sinter the inorganic powder, and form a sintered body. can be obtained.
  • the baking paste containing the lactic acid-vinyl copolymer according to the present invention has excellent coating properties, can be molded, for example, by the method described above, and has less stringiness, causing problems such as extrusion during printing. It is possible to obtain electrodes and conductor wiring with less residual carbon derived from the lactic acid-vinyl copolymer after firing and with less risk of defects.
  • a vinyl copolymer was prepared according to the following procedure.
  • ⁇ Manufacture example A-1> In a 1 liter flask equipped with a stirring device, a gas inlet tube, a thermometer and a reflux condenser, 50 parts by mass of isobutyl methacrylate (iBMA) and 50 parts by mass of 2-hydroxyethyl methacrylate (HEMA) were added as monomers.
  • iBMA isobutyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • a total of 200 parts by mass of a monomer and solvent mixture consisting of 100 parts by mass of methyl ethyl ketone (MEK) was charged as a solvent, and the mixture was stirred while flowing nitrogen gas into the flask from the gas introduction tube at a flow rate of 0.3 liters/min for 30 minutes.
  • MEK methyl ethyl ketone
  • the mixture in the flask was heated to 75°C.
  • V-601 dimethyl-2,2'-azobis(2-methylpropionate)
  • the temperature of the contents in the flask was maintained at 75° C. by adding .5 parts by mass and heating and cooling as appropriate.
  • Vinyl copolymer 1 was prepared by drying the obtained vinyl copolymer solution at 105° C. for 8 hours. The weight average molecular weight of the obtained vinyl copolymer 1 was 516,000.
  • iBMA isobutyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • EtAc ethyl acetate
  • TGL thioglycerol
  • Vinyl copolymer 3 was prepared in the same manner as in Example 1. The weight average molecular weight of the obtained vinyl copolymer 3 was 287,000.
  • Vinyl copolymer 4 was prepared in the same manner as in Example 1. The weight average molecular weight of the obtained vinyl copolymer 4 was 140,000.
  • ⁇ Manufacture example A-5> The monomer and solvent mixture was 90 parts by mass of isobutyl methacrylate (iBMA), 10 parts by mass of 2-hydroxyethyl methacrylate (HEMA), and 100 parts by mass of ethyl acetate (EtAc), and thioglycerol (TGL) was used as a chain transfer agent.
  • iBMA isobutyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • EtAc ethyl acetate
  • TGL thioglycerol
  • Vinyl copolymer 5 was prepared in the same manner as in Production Example A-1, except that the amount was 0.2 parts by mass, for a total of 200.2 parts by mass.
  • the weight average molecular weight of the obtained vinyl copolymer 5 was 63,000.
  • iBMA isobutyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • PVA polyvinyl alcohol
  • the mixture in the flask was heated to 75°C.
  • the mixture in the flask was heated and cooled to maintain the temperature at 75°C, and the reaction was continued for an additional 3 hours.
  • the mixture was cooled to room temperature to obtain a vinyl copolymer emulsion.
  • the obtained vinyl copolymer emulsion was cooled to room temperature, filtered, and then dried at 105° C. for 8 hours to prepare vinyl copolymer 6.
  • the weight average molecular weight of the obtained vinyl copolymer 6 was 440,000.
  • iBMA isobutyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • mLA meso-lactide
  • a vinyl copolymer 8/meso-lactide mixture reacted in the same manner as A-1 was prepared.
  • the weight average molecular weight of the obtained vinyl copolymer 8 was 193,000.
  • ⁇ Manufacture example A-10> The monomer and solvent mixture was made into 70 parts by mass of stearyl methacrylate (SMA), 30 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 80 parts by mass of ethyl acetate (EtAc), and 20 parts by mass of toluene (To), and further subjected to chain transfer.
  • Vinyl copolymer 10 was prepared in the same manner as in Production Example A-1, except that 0.1 part by mass of thioglycerol (TGL) was used as the agent for a total of 200.1 parts by mass.
  • TGL thioglycerol
  • the weight average molecular weight of the obtained vinyl copolymer 10 was 95,000.
  • ⁇ Manufacture example A-11> A total of 200 parts by mass of the monomer and solvent mixture, 90 parts by mass of stearyl methacrylate (SMA), 10 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 80 parts by mass of ethyl acetate (EtAc), and 20 parts by mass of toluene (To). Vinyl copolymer 11 was prepared in the same manner as in Production Example A-1 except that. The weight average molecular weight of the obtained vinyl copolymer 11 was 320,000.
  • ⁇ Manufacture example A-12> The monomer and solvent mixture was made into 96 parts by mass of stearyl methacrylate (SMA), 4 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 80 parts by mass of ethyl acetate (EtAc), and 20 parts by mass of toluene (To), and further subjected to chain transfer.
  • Vinyl copolymer 12 was prepared in the same manner as in Production Example A-1, except that 0.1 part by mass of thioglycerol (TGL) was used as the agent for a total of 194.1 parts by mass.
  • TGL thioglycerol
  • the weight average molecular weight of the obtained vinyl copolymer 12 was 74,000.
  • ⁇ Manufacture example A-13> The monomer and solvent mixture was mixed with 9096 parts by mass of stearyl methacrylate (SMA), 4 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 80 parts by mass of ethyl acetate (EtAc), and 20 parts by mass of toluene (To), for a total of 194 parts by mass.
  • Vinyl copolymer 13 was prepared in the same manner as in Production Example A-1 except that. The weight average molecular weight of the obtained vinyl copolymer 13 was 217,000.
  • iBMA isobutyl methacrylate
  • HEMA 2-hydroxyethyl methacrylate
  • mLA meso-lactide
  • a vinyl copolymer 13/meso-lactide mixture reacted in the same manner as A-1 was prepared.
  • the weight average molecular weight of the obtained vinyl copolymer 14 was 142,000.
  • a lactic acid-vinyl copolymer was prepared in the following procedure.
  • mLA meso-lactide
  • vinyl copolymer 1 was placed in a 1-liter flask equipped with a stirring device, a gas inlet tube, a thermometer, and a reflux condenser. A total of 100 parts by mass of was charged, and the contents of the flask were heated to 180° C. while flowing nitrogen gas into the flask from the gas introduction tube at a flow rate of 0.3 liters/min, and then stirred to perform nitrogen substitution.
  • tin octylate was added as a catalyst, and heating and cooling were performed to maintain the content in the flask at 180°C for an additional 3 Allowed time to react.
  • the mixture was cooled to room temperature to obtain lactic acid-vinyl copolymer 1.
  • the weight average molecular weight of the obtained lactic acid-vinyl copolymer 1 was 1,871,000.
  • Lactic acid-vinyl copolymer 2 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 2. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 2 was 136,000.
  • Lactic acid-vinyl copolymer 3 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 83 parts by mass of mLA and 17 parts by mass of vinyl copolymer 3. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer was 1,448,000.
  • Lactic acid-vinyl copolymer 4 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 4. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 4 was 374,000.
  • Lactic acid-vinyl copolymer 5 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 90 parts by mass of MLA and 10 parts by mass of vinyl copolymer 4. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 5 was 694,000.
  • lactic acid-vinyl copolymer was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 97.5 parts by mass of mLA and 2.5 parts by mass of vinyl copolymer 4. Polymer 6 was prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 6 was 1,055,000.
  • Lactic acid-vinyl copolymer 7 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 90 parts by mass of MLA and 10 parts by mass of vinyl copolymer 5. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 7 was 899,000.
  • Lactic acid-vinyl copolymer 8 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 70 parts by mass of mLA and 30 parts by mass of vinyl copolymer 6. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 8 was 1,292,000.
  • Lactic acid-vinyl copolymer 9 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 60 parts by mass of mLA and 40 parts by mass of vinyl copolymer 7. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 9 was 1,244,000.
  • lactic acid-vinyl Copolymer 10 was prepared.
  • the weight average molecular weight of the obtained lactic acid-vinyl copolymer 10 was 533,000.
  • Lactic acid-vinyl copolymer 11 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 90 parts by mass of MLA and 10 parts by mass of vinyl copolymer 9. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 11 was 1,122,000.
  • Lactic acid-vinyl copolymer 12 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 103 parts by mass, consisting of 90 parts by mass of MLA and 13 parts by mass of vinyl copolymer 10. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 12 was 531,000.
  • Lactic acid-vinyl copolymer 13 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 11. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 13 was 92,000.
  • Lactic acid-vinyl copolymer 14 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 9. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 14 was 193,000.
  • Lactic acid-vinyl copolymer 15 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 12. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 15 was 116,000.
  • Lactic acid-vinyl copolymer 16 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 13. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 16 was 578,000.
  • ⁇ Manufacture example B-17> The procedure was the same as in Production Example B-1, except that the monomer/polymer mixture was 100 parts by mass, consisting of 33.3 parts by mass of mLA and 66.7 parts by mass of vinyl copolymer 14/meso-lactide mixture. Lactic acid-vinyl copolymer 17 was prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 17 was 146,000.
  • a binder composition was prepared according to the following procedure.
  • Example 1 Pour 30 parts of lactic acid-vinyl copolymer 1 and 70 parts of BCA as a solvent into a closed container, stir at 2000 rpm until there is no undissolved residue, and stir at 2200 rpm until there are no bubbles left. After degassing until no more bubbles were removed, the mixture was allowed to stand at 25° C. for one day to obtain Binder Composition 1.
  • Table 3 shows the measurement results of each physical property of Binder Composition 1 and Lactic Acid-Vinyl Copolymer 1.
  • Binder composition 2 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 2 was used in place of lactic acid-vinyl copolymer 1, and DHTA was used in place of BCA.
  • Table 3 shows the measurement results of each physical property of Binder Composition 2 and Lactic Acid-Vinyl Copolymer 2.
  • Binder composition 3 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 3 was used in place of lactic acid-vinyl copolymer 1.
  • Table 3 shows the measurement results of each physical property of Binder Composition 3 and Lactic Acid-Vinyl Copolymer 3.
  • Binder composition 4 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 4 was used in place of lactic acid-vinyl copolymer 2.
  • Table 3 shows the measurement results of each physical property of Binder Composition 4 and Lactic Acid-Vinyl Copolymer 4.
  • Binder composition 5 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 5 was used in place of lactic acid-vinyl copolymer 1.
  • the measurement results of each physical property of Binder Composition 5 and Lactic Acid-Vinyl Copolymer 5 are shown in Table 3.
  • Binder composition 6 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 6 was used in place of lactic acid-vinyl copolymer 1.
  • Table 3 shows the measurement results of each physical property of Binder Composition 6 and Lactic Acid-Vinyl Copolymer 6.
  • Binder composition 7 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 7 was used in place of lactic acid-vinyl copolymer 1.
  • the measurement results of each physical property of Binder Composition 7 and Lactic Acid-Vinyl Copolymer 7 are shown in Table 3.
  • Binder composition 8 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 8 was used in place of lactic acid-vinyl copolymer 1.
  • Table 3 shows the measurement results of each physical property of Binder Composition 8 and Lactic Acid-Vinyl Copolymer 8.
  • Binder composition 9 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 9 was used in place of lactic acid-vinyl copolymer 2.
  • Table 3 shows the measurement results of each physical property of Binder Composition 9 and Lactic Acid-Vinyl Copolymer 9.
  • Binder composition 10 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 10 was used in place of lactic acid-vinyl copolymer 2.
  • Table 3 shows the measurement results of each physical property of binder composition 10 and lactic acid-vinyl copolymer 10.
  • Binder composition 11 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 11 was used in place of lactic acid-vinyl copolymer 1.
  • Table 3 shows the measurement results of each physical property of binder composition 11 and lactic acid-vinyl copolymer 11.
  • Binder composition 12 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 12 was used in place of lactic acid-vinyl copolymer 1.
  • Table 3 shows the measurement results of each physical property of Binder Composition 12 and Lactic Acid-Vinyl Copolymer 12.
  • Binder composition 13 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 13 was used in place of lactic acid-vinyl copolymer 2.
  • Table 3 shows the measurement results of each physical property of Binder Composition 13 and Lactic Acid-Vinyl Copolymer 13.
  • Binder composition 14 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 14 was used in place of lactic acid-vinyl copolymer 2.
  • Table 3 shows the measurement results of each physical property of Binder Composition 14 and Lactic Acid-Vinyl Copolymer 14.
  • Binder composition 15 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 15 was used in place of lactic acid-vinyl copolymer 2.
  • the measurement results of each physical property of Binder Composition 15 and Lactic Acid-Vinyl Copolymer 15 are shown in Table 3.
  • Binder composition 16 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 16 was used in place of lactic acid-vinyl copolymer 2.
  • Table 3 shows the measurement results of each physical property of Binder Composition 16 and Lactic Acid-Vinyl Copolymer 16.
  • Binder composition 17 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 17 was used in place of lactic acid-vinyl copolymer 2.
  • Table 3 shows the measurement results of each physical property of Binder Composition 17 and Lactic Acid-Vinyl Copolymer 17.
  • Binder composition 18 was obtained in the same manner as in Example 2, except that polyiBMA (PiBMA) was used in place of lactic acid-vinyl copolymer 2.
  • Table 3 shows the measurement results of each physical property of binder composition 18 and polyiBMA.
  • Binder composition 19 was obtained in the same manner as in Example 1, except that polylactic acid was used in place of lactic acid-vinyl copolymer 1. Table 3 shows the measurement results of each physical property of Binder Composition 19 and polylactic acid.
  • Tg Glass transition temperature (K) of vinyl copolymer
  • Tg i Glass transition temperature (K) of homopolymer of N types of vinyl monomers
  • Measuring device HLC-8120GPC (manufactured by Tosoh Corporation) GPC column configuration: The following 5 columns (all manufactured by Tosoh Corporation) (1)TSK-GEL G7000HXL (2) TSK-GEL GMHXL (3) TSK-GEL GMHXL (4)TSK-GEL G2500HXL Dilute with tetrahydrofuran so that sample concentration: 1.5 mg/cm3
  • Mobile phase solvent tetrahydrofuran Flow rate: 1 ml/min Column temperature: 40°C
  • ⁇ Solvent solubility> The solubility of each binder in DHTA (dihydroterpinyl acetate) and BCA (butyl carbitol acetate) was evaluated. 70 parts by mass of an organic solvent and 30 parts by mass of a binder were placed in a closed container, and the mixture was stirred for 20 minutes at 2000 rpm using a rotary-revolution mixer "Awatori Rentaro" manufactured by THINKY, and defoamed for 5 minutes at 2200 rpm. Thereafter, 10 g of the sample taken out from the sealed container was placed on a glass plate and spread to an area of about 5 cm 2 , and the solubility of the binder in the solvent was visually evaluated using the following evaluation criteria. ⁇ : The sample placed on the glass plate was uniformly dissolved in the organic solvent, and no undissolved substances were observed. ⁇ : Many insoluble substances were observed on the sample placed on the glass plate.
  • micro residual carbon content was measured using a micro residual carbon content tester (ACR-M3) manufactured by Tanaka Scientific Instruments Manufacturing Co., Ltd. Specifically, approximately 2.0000 g (mass M2) of the binder was weighed into a precisely weighed test container (glass diameter 20.8 mm x height 80 mm, capacity 10 mL, mass M1), and placed in the coking furnace of the test device. . Thereafter, nitrogen was flowed into the coking furnace for 10 minutes at a flow rate of 600 ml per minute to replace the inside of the furnace with a nitrogen atmosphere. Next, while flowing nitrogen at a flow rate of 150 ml/min, the temperature of the coking furnace was raised from room temperature to 500° C.
  • ACR-M3 micro residual carbon content tester
  • TD95 95% weight loss temperature
  • A (B ⁇ f ⁇ 5.611)/S
  • ⁇ Viscosities A, B and viscosity ratio at each shear rate> The viscosity of the lactic acid-vinyl copolymer solution (binder composition) of the present invention was measured using a viscosity/viscoelasticity measuring device "Discovery HR30" manufactured by TA Instruments. Specifically, with the measurement temperature set at 25° C., 0.1 g of the binder composition was set on a measuring section attached to a cone plate with a diameter of 20 mm and a cone angle of 0.975° with a clearance of 23 ⁇ m, and the shear rate was set at 0.
  • the viscosity A at a shear rate of 1 sec-1 and the viscosity B at a shear rate of 9,000 sec- 1 were measured when increasing from .01 sec -1 to 10,000 sec -1 at a constant rate of change over 150 seconds.
  • the viscosity ratio A/B was determined.
  • "increase the shear rate from 0.01 sec -1 to 10,000 sec -1 at a constant rate of change over 150 seconds” means to increase the shear rate so that the shear rate increases by 10 times every 25 seconds. For example, the shear rate 25 seconds after the start of measurement is 0.1 sec -1 , and the shear rate 50 seconds after the start of measurement is 1 sec -1 .

Abstract

Provided are: a lactic acid-vinyl copolymer that is for a paste for use in sintering, that has excellent sintering properties, that can be dissolved in a solvent without producing visually observable insoluble objects, and that, when being mixed with a solvent, has effective rheological properties and less stringiness; and a binder composition and a paste for use in sintering, which contain the lactic acid-vinyl copolymer. According to the present invention, provided is a lactic acid-vinyl copolymer that is for a paste for use in sintering, and that includes a lactic acid unit derived from lactic acid and a vinyl monomer unit derived from a vinyl monomer.

Description

乳酸-ビニル共重合体、バインダー組成物および焼成用ペーストLactic acid-vinyl copolymer, binder composition and baking paste
本発明は、乳酸-ビニル共重合体、バインダー組成物および焼成用ペーストに関する。 The present invention relates to a lactic acid-vinyl copolymer, a binder composition, and a baking paste.
内部電極(例えば、MLCC(積層セラミックコンデンサ、Multilayer Ceramic Capacitor))を製造する際に用いる無機粒子含有焼成用ペーストには、バインダーとしてエチルセルロース(EC)やポリビニルブチラール(PVB)が用いられている。 Ethyl cellulose (EC) and polyvinyl butyral (PVB) are used as binders in inorganic particle-containing firing pastes used when manufacturing internal electrodes (for example, MLCCs (Multilayer Ceramic Capacitors)).
特許文献1には、導電性粉末と有機バインダー樹脂とを含有する組成物で形成された、積層セラミックコンデンサの内部電極用乾燥膜に係る発明が開示されており、バインダー樹脂として、エチルセルロースおよびポリビニルブチラールを含むことが開示されている。
また、特許文献2には、無機物質、バインダー樹脂および溶剤を含有するペースト組成物であって、前記バインダー樹脂は、乳酸の単独重合体、および乳酸と共重合性単量体との共重合体から選ばれる少なくとも1種の(共)重合体であることを特徴とするペースト組成物が開示されている。
Patent Document 1 discloses an invention related to a dry film for internal electrodes of a multilayer ceramic capacitor formed of a composition containing conductive powder and an organic binder resin, in which ethyl cellulose and polyvinyl butyral are used as the binder resin. It is disclosed that it includes.
Further, Patent Document 2 discloses a paste composition containing an inorganic substance, a binder resin, and a solvent, wherein the binder resin is a homopolymer of lactic acid and a copolymer of lactic acid and a copolymerizable monomer. Disclosed is a paste composition characterized by comprising at least one (co)polymer selected from the following.
特開2019-121744号公報Japanese Patent Application Publication No. 2019-121744 特開平9-142938号公報Japanese Patent Application Publication No. 9-142938
従来の、例えば、エチルセルロース等を用いた無機粒子含有焼成用ペーストは、焼成後の残存炭素が多く、焼成性が低かった。また、特に近年のコンデンサの小型化に伴い、バインダーがペースト中に均一に分散し、塗工性に優れ、かつ、糸曳が少ない無機粒子含有焼成用ペーストや、このような焼成用ペーストを調製可能な焼成用ペースト用バインダーが求められているが、従来のバインダーおよび従来のバインダーを用いた焼成用ペーストは、これらのすべての特性を満たすことはできなかった。 Conventional firing pastes containing inorganic particles using, for example, ethyl cellulose, had a large amount of residual carbon after firing and had low firing properties. In addition, in particular, with the miniaturization of capacitors in recent years, we are preparing firing pastes containing inorganic particles, in which the binder is uniformly dispersed in the paste, has excellent coating properties, and has less stringiness, and such firing pastes. Although there is a need for a binder for a firing paste that can be used, conventional binders and firing pastes using conventional binders have not been able to meet all of these properties.
本発明はこのような事情に鑑みてなされたものであり、優れた焼成性を有し、目視で視認可能な不溶解物なく溶剤に溶解可能であって、溶剤と混合した際、有効なレオロジー特性を有し、かつ、糸曳が少ない、焼成用ペースト用の乳酸-ビニル共重合体、該乳酸-ビニル共重合体を含むバインダー組成物および焼成用ペーストを提供するものである。 The present invention has been made in view of these circumstances, and has excellent firing properties, is soluble in a solvent without any visible insoluble matter, and has an effective rheology when mixed with a solvent. The present invention provides a lactic acid-vinyl copolymer for use in a baking paste, which has characteristics and has less stringiness, a binder composition containing the lactic acid-vinyl copolymer, and a baking paste.
本発明によれば、乳酸由来の乳酸単位とビニル単量体由来のビニル単量体単位を含む乳酸-ビニル共重合体であって、焼成用ペースト用の乳酸-ビニル共重合体が提供される。 According to the present invention, there is provided a lactic acid-vinyl copolymer containing a lactic acid unit derived from lactic acid and a vinyl monomer unit derived from a vinyl monomer, the lactic acid-vinyl copolymer being used for baking paste. .
本発明者らは、鋭意検討を行ったところ、乳酸由来の乳酸単位とビニル単量体由来のビニル単量体単位を含む乳酸-ビニル共重合体が、優れた焼成性を有し、目視で視認可能な不溶解物なく溶剤に溶解可能であって、溶剤と混合した際、有効なレオロジー特性を有し、かつ、糸曳が少ない、焼成用ペースト用のバインダーとなることを見出し、本発明の完成に至った。 The present inventors conducted extensive studies and found that a lactic acid-vinyl copolymer containing a lactic acid unit derived from lactic acid and a vinyl monomer unit derived from a vinyl monomer has excellent sinterability and is It has been discovered that the binder for baking pastes can be dissolved in a solvent without visible insoluble matter, has effective rheological properties when mixed with a solvent, and has low stringiness, and the present invention has been made based on the present invention. has been completed.
以下、本発明の種々の実施形態を例示する。以下に示す実施形態は互いに組み合わせ可能である。
[1]乳酸由来の乳酸単位とビニル単量体由来のビニル単量体単位を含む乳酸-ビニル共重合体であって、焼成用ペースト用の乳酸-ビニル共重合体。
[2][1]に記載の乳酸-ビニル共重合体であって、以下の方法により測定した粘度が2.0Pa・s以上である、乳酸-ビニル共重合体。
<粘度測定方法>
1)密閉容器に前記乳酸-ビニル共重合体を30質量%、ブチルカルビトールアセテートまたはジヒドロターピニルアセテートを70質量%投入し、自公転式ミキサーにて2000rpmで溶け残りが無くなるまで撹拌し、2200rpmで気泡が無くなるまで脱泡後、25℃で1日静置して乳酸-ビニル共重合体溶液を調製
2)粘度・粘弾性測定装置に、直径20mm、コーン角度0.975°のCone Plateを、クリアランス23μmにて取り付け、1)で得られた乳酸-ビニル共重合体溶液0.1gを測定部にセットし、設定温度25℃においてせん断速度を0.01sec-1から10000sec-1まで150秒かけて一定の変化率で増加させたときのせん断速度1sec-1における粘度を測定
[3][1]または[2]に記載の乳酸-ビニル共重合体であって、以下の方法により測定した粘度Aと粘度Bとの比A/Bが3.0以上である、乳酸-ビニル共重合体。
<粘度A及び粘度Bの測定方法>
1)密閉容器に前記乳酸-ビニル共重合体を30質量%、ブチルカルビトールアセテートまたはジヒドロターピニルアセテートを70質量%投入し、自公転式ミキサーにて2000rpmで溶け残りが無くなるまで撹拌し、2200rpmで気泡が無くなるまで脱泡後、25℃で1日静置して乳酸-ビニル共重合体溶液を調製
2)粘度・粘弾性測定装置に、直径20mm、コーン角度0.975°のCone Plateを、クリアランス23μmにて取り付け、1)で得られた乳酸-ビニル共重合体溶液0.1gを測定部にセットし、設定温度25℃においてせん断速度を0.01sec-1から10000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度1sec-1における粘度A、せん断速度9,000sec-1における粘度Bを測定
[4][1]~[3]の何れか1つに記載の乳酸-ビニル共重合体であって、重量平均分子量が10,000~3,000,000である、乳酸-ビニル共重合体。
[5][1]~[4]の何れか1つに記載の乳酸-ビニル共重合体であって、前記乳酸-ビニル共重合体のミクロ残留炭素分が2.00質量%以下である、乳酸-ビニル共重合体。
[6][1]~[5]の何れか1つに記載の乳酸-ビニル共重合体であって、前記乳酸-ビニル共重合体は、ビニル重合体ブロックを含み、前記ビニル重合体ブロックのガラス転移温度が0~100℃である、乳酸-ビニル共重合体。
[7][1]~[6]の何れか1つに記載の乳酸-ビニル共重合体であって、前記乳酸単位が前記ビニル単量体に含まれる官能基と結合した、乳酸-ビニル共重合体。
[8][7]に記載の乳酸-ビニル共重合体であって、前記官能基が水酸基、カルボニル基、エポキシ基、アミノ基、イソシアネート基、チオール基およびアルコキシシリル基からなる群より選ばれる少なくとも1種以上の官能基である、乳酸-ビニル共重合体。
[9][1]~[8]の何れか1つに記載の乳酸-ビニル共重合体であって、前記ビニル単量体が、(メタ)アクリル酸および(メタ)アクリル酸エステルのうち少なくとも1つを含む、乳酸-ビニル共重合体。
[10][1]~[9]の何れか1つに記載の乳酸-ビニル共重合体であって、前記ビニル単量体は、炭素数1~22のアルキル基を含むビニル単量体を含む、乳酸-ビニル共重合体。
[11][1]~[10]の何れか1つに記載の乳酸-ビニル共重合体であって、前記乳酸-ビニル共重合体を25質量%、トルエンを75質量%含む、乳酸-ビニル共重合体トルエン溶液の酸価が0.1mgKOH/g以上、20.0mgKOH/g以下である乳酸-ビニル共重合体。
[12][1]~[11]の何れか1つに記載の乳酸-ビニル共重合体であって、前記乳酸-ビニル共重合体は、前記乳酸-ビニル共重合体100質量%に対して、前記乳酸単位を5.0質量%~99.9質量%含有する、乳酸-ビニル共重合体。
[13][1]~[12]の何れか1つに記載の乳酸-ビニル共重合体であって、前記乳酸-ビニル共重合体は、グラフト共重合体である、乳酸-ビニル共重合体。
[14][1]~[13]の何れか1つに記載の乳酸-ビニル共重合体、および溶剤を含む、焼成用ペースト調製用のバインダー組成物。
[15][14]に記載の焼成用ペースト調製用のバインダー組成物であって、以下の方法により測定した粘度A'と粘度B'との比A'/B'が3.0以上である、バインダー組成物。
<粘度A'及び粘度B'の測定方法>
粘度・粘弾性測定装置に、直径20mm、コーン角度0.975°のCone Plateを、クリアランス23μmにて取り付け、前記バインダー組成物を測定部にセットし、設定温度25℃においてせん断速度を0.01sec-1から10000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度1sec-1における粘度A'、せん断速度9,000sec-1における粘度B'を測定
[16][14]または[15]に記載の焼成用ペースト調製用のバインダー組成物と、無機粒子を含む、焼成用ペースト。
Various embodiments of the present invention will be illustrated below. The embodiments shown below can be combined with each other.
[1] A lactic acid-vinyl copolymer containing a lactic acid unit derived from lactic acid and a vinyl monomer unit derived from a vinyl monomer, the lactic acid-vinyl copolymer being used for baking paste.
[2] The lactic acid-vinyl copolymer according to [1], which has a viscosity of 2.0 Pa·s or more as measured by the following method.
<Viscosity measurement method>
1) Pour 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate or dihydroterpinyl acetate into a closed container, stir at 2000 rpm with a revolution-revolution mixer until there is no undissolved residue, After defoaming at 2200 rpm until no air bubbles disappear, leave it at 25°C for 1 day to prepare a lactic acid-vinyl copolymer solution 2) Add a Cone Plate with a diameter of 20 mm and a cone angle of 0.975° to the viscosity/viscoelasticity measuring device. was installed with a clearance of 23 μm, 0.1 g of the lactic acid-vinyl copolymer solution obtained in 1) was set in the measuring section, and the shear rate was adjusted from 0.01 sec -1 to 10000 sec -1 at a set temperature of 25°C. Measure the viscosity at a shear rate of 1 sec -1 when increasing at a constant rate of change over seconds [3] The lactic acid-vinyl copolymer described in [1] or [2], measured by the following method. A lactic acid-vinyl copolymer having a ratio A/B of viscosity A and viscosity B of 3.0 or more.
<Method for measuring viscosity A and viscosity B>
1) Pour 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate or dihydroterpinyl acetate into a closed container, stir at 2000 rpm with a revolution-revolution mixer until there is no undissolved residue, After defoaming at 2200 rpm until no air bubbles disappear, leave it at 25°C for 1 day to prepare a lactic acid-vinyl copolymer solution 2) Add a Cone Plate with a diameter of 20 mm and a cone angle of 0.975° to the viscosity/viscoelasticity measuring device. was installed with a clearance of 23 μm, 0.1 g of the lactic acid-vinyl copolymer solution obtained in 1) was set in the measuring section, and the shear rate was adjusted from 0.01 sec -1 to 10000 sec -1 at a set temperature of 25°C. Measure the viscosity A at a shear rate of 1 sec -1 and the viscosity B at a shear rate of 9,000 sec -1 when increasing at a constant rate of change over seconds [4] Any one of [1] to [3] The lactic acid-vinyl copolymer described in 1. The lactic acid-vinyl copolymer having a weight average molecular weight of 10,000 to 3,000,000.
[5] The lactic acid-vinyl copolymer according to any one of [1] to [4], wherein the micro residual carbon content of the lactic acid-vinyl copolymer is 2.00% by mass or less. Lactic acid-vinyl copolymer.
[6] The lactic acid-vinyl copolymer according to any one of [1] to [5], wherein the lactic acid-vinyl copolymer includes a vinyl polymer block, and the lactic acid-vinyl copolymer includes a vinyl polymer block. A lactic acid-vinyl copolymer having a glass transition temperature of 0 to 100°C.
[7] The lactic acid-vinyl copolymer according to any one of [1] to [6], wherein the lactic acid unit is bonded to a functional group contained in the vinyl monomer. Polymer.
[8] The lactic acid-vinyl copolymer according to [7], wherein the functional group is at least one selected from the group consisting of a hydroxyl group, a carbonyl group, an epoxy group, an amino group, an isocyanate group, a thiol group, and an alkoxysilyl group. A lactic acid-vinyl copolymer with one or more functional groups.
[9] The lactic acid-vinyl copolymer according to any one of [1] to [8], wherein the vinyl monomer is at least one of (meth)acrylic acid and (meth)acrylic ester. lactic acid-vinyl copolymer, including one.
[10] The lactic acid-vinyl copolymer according to any one of [1] to [9], wherein the vinyl monomer is a vinyl monomer containing an alkyl group having 1 to 22 carbon atoms. Contains lactic acid-vinyl copolymer.
[11] The lactic acid-vinyl copolymer according to any one of [1] to [10], which contains 25% by mass of the lactic acid-vinyl copolymer and 75% by mass of toluene. A lactic acid-vinyl copolymer whose toluene solution has an acid value of 0.1 mgKOH/g or more and 20.0 mgKOH/g or less.
[12] The lactic acid-vinyl copolymer according to any one of [1] to [11], wherein the lactic acid-vinyl copolymer contains 100% by mass of the lactic acid-vinyl copolymer. , a lactic acid-vinyl copolymer containing 5.0% by mass to 99.9% by mass of the lactic acid unit.
[13] The lactic acid-vinyl copolymer according to any one of [1] to [12], wherein the lactic acid-vinyl copolymer is a graft copolymer. .
[14] A binder composition for preparing a baking paste, comprising the lactic acid-vinyl copolymer according to any one of [1] to [13] and a solvent.
[15] A binder composition for preparing a baking paste according to [14], wherein the ratio A'/B' of viscosity A' and viscosity B' measured by the following method is 3.0 or more. , binder composition.
<Method for measuring viscosity A' and viscosity B'>
A Cone Plate with a diameter of 20 mm and a cone angle of 0.975° was attached to the viscosity/viscoelasticity measuring device with a clearance of 23 μm, the binder composition was set in the measuring section, and the shear rate was set at a set temperature of 25° C. for 0.01 sec. Measure the viscosity A' at a shear rate of 1 sec -1 and the viscosity B' at a shear rate of 9,000 sec -1 when increasing from -1 to 10,000 sec -1 at a constant rate of change over 150 seconds [16] [14] ] Or a baking paste containing the binder composition for preparing a baking paste according to [15] and inorganic particles.
本発明によれば、優れた焼成性を有し、目視で視認可能な不溶解物なく溶剤に溶解可能であって 、溶剤と混合した際、有効なレオロジー特性を有し、かつ、糸曳が少ない、焼成用ペースト用乳酸-ビニル共重合体を得ることができる。
より具体的には、本発明に係る乳酸-ビニル共重合体は、目視で視認可能な不溶解物なく溶剤に溶解可能であり、バインダーが均一に分散した焼成用ペースト調製用のバインダー組成物および焼成用ペーストを得ることができる。また、本発明に係る乳酸-ビニル共重合体は、溶剤と混合した際、有効なレオロジー特性を有し、すなわち、適度な粘度を有し、擬塑性を有するため、塗工性に優れる焼成用ペーストを調製可能である。また、本発明に係る乳酸-ビニル共重合体、該乳酸-ビニル共重合体を含む焼成用ペースト調製用のバインダー組成物および焼成用ペーストは、焼成性に優れ、ペーストを焼成した後の残存炭素がないかまたは極めて少ない。更に、本発明に係る乳酸-ビニル共重合体は溶剤と混合し、乳酸-ビニル共重合体溶液とした際糸曳が少なく、例えば、印刷時にはみ出し等の不具合が発生しにくい焼成用ペーストを得ることができる。
According to the present invention, the material has excellent firing properties, is soluble in a solvent without any visible insoluble matter, has effective rheological properties when mixed with a solvent, and has no stringiness. A small amount of lactic acid-vinyl copolymer for baking paste can be obtained.
More specifically, the lactic acid-vinyl copolymer according to the present invention can be dissolved in a solvent without any visible insoluble matter, and can be used as a binder composition for preparing a baking paste in which the binder is uniformly dispersed. A paste for baking can be obtained. In addition, the lactic acid-vinyl copolymer according to the present invention has effective rheological properties when mixed with a solvent, that is, it has an appropriate viscosity and pseudoplasticity, so it can be used for baking with excellent coating properties. A paste can be prepared. In addition, the lactic acid-vinyl copolymer of the present invention, the binder composition for preparing a baking paste containing the lactic acid-vinyl copolymer, and the baking paste have excellent sinterability, and the residual carbon after the paste is sintered. None or very few. Furthermore, when the lactic acid-vinyl copolymer according to the present invention is mixed with a solvent to form a lactic acid-vinyl copolymer solution, it is possible to obtain a baking paste that has less stringiness and is less prone to problems such as extrusion during printing. be able to.
以下、本発明の実施形態を例示して本発明について詳細な説明をする。本発明は、これらの記載によりなんら限定されるものではない。以下に示す本発明の実施形態の各特徴事項は、互いに組み合わせ可能である。また、各特徴事項について独立して発明が成立する。 Hereinafter, the present invention will be described in detail by illustrating embodiments of the present invention. The present invention is not limited in any way by these descriptions. Features of the embodiments of the present invention described below can be combined with each other. Further, the invention is established independently for each characteristic matter.
1.乳酸-ビニル共重合体
本発明に係る乳酸-ビニル共重合体は、乳酸由来の乳酸単位とビニル単量体由来のビニル単量体単位を含む、焼成用ペースト用の乳酸-ビニル共重合体である。乳酸単位のみからなるポリ乳酸は、溶剤溶解性を達成することが困難であり、また、ビニル単量体単位のみからなる重合体では、溶剤と混合した際、適度な粘度および擬塑性を得ることが難しかった。本発明によれば、乳酸由来の乳酸単位とビニル単量体由来のビニル単量体単位をともに含むことにより、優れた焼成性を有し、目視で視認可能な不溶解物なく溶剤に溶解可能であって、溶剤と混合した際、有効なレオロジー特性を有し、かつ、糸曳が少ない、焼成用ペースト用乳酸-ビニル共重合体を得ることができる。
1. Lactic acid-vinyl copolymer The lactic acid-vinyl copolymer according to the present invention is a lactic acid-vinyl copolymer for baking paste containing lactic acid units derived from lactic acid and vinyl monomer units derived from vinyl monomers. be. Polylactic acid consisting only of lactic acid units has difficulty achieving solvent solubility, and polymers consisting only of vinyl monomer units have difficulty achieving appropriate viscosity and pseudoplasticity when mixed with a solvent. was difficult. According to the present invention, by containing both a lactic acid unit derived from lactic acid and a vinyl monomer unit derived from a vinyl monomer, it has excellent sinterability and can be dissolved in a solvent without visually recognizable insoluble matter. Thus, it is possible to obtain a lactic acid-vinyl copolymer for use in baking pastes that has effective rheological properties and less stringiness when mixed with a solvent.
1.1 乳酸単位
本発明に係る乳酸-ビニル共重合体は、乳酸由来の乳酸単位を含む。本発明に係る乳酸単位は、L-乳酸単位、および、D-乳酸単位のうち少なくとも1つを含むことができ、L-乳酸単位、および、D-乳酸単位を含むことが好ましい。乳酸単位は、メソ-ラクチド、L-ラクチド、D-ラクチドのうち少なくとも1つに由来するものとできる。
1.1 Lactic Acid Unit The lactic acid-vinyl copolymer according to the present invention contains lactic acid units derived from lactic acid. The lactic acid unit according to the present invention can contain at least one of an L-lactic acid unit and a D-lactic acid unit, and preferably contains an L-lactic acid unit and a D-lactic acid unit. The lactic acid units can be derived from at least one of meso-lactide, L-lactide, and D-lactide.
本発明に係る乳酸-ビニル共重合体は、乳酸-ビニル共重合体に含まれるL-乳酸単位、および、D-乳酸単位の合計を100質量%としたとき、L-乳酸単位の含有率を、例えば、0、10、20、30、40、50、60、70、80、90、100質量%とすることができ、ここで例示した数値の何れか2つの間の範囲内であってもよい。L-乳酸単位の含有率は、一例として、30~70質量%とすることができる。また、D-乳酸単位の含有率を、例えば、0、10、20、30、40、50、60、70、80、90、100質量%とすることができ、ここで例示した数値の何れか2つの間の範囲内であってもよい。D-乳酸単位の含有率は、一例として、30~70質量%とすることができる。 The lactic acid-vinyl copolymer according to the present invention has a content of L-lactic acid units when the total of L-lactic acid units and D-lactic acid units contained in the lactic acid-vinyl copolymer is 100% by mass. , for example, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100% by mass, even if it is within the range between any two of the numerical values exemplified here. good. The content of L-lactic acid units can be, for example, 30 to 70% by mass. Further, the content of D-lactic acid units can be, for example, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100% by mass, and any of the values exemplified here. It may be within a range between the two. The content of D-lactic acid units can be, for example, 30 to 70% by mass.
1.2 ビニル単量体単位
本発明に係る乳酸-ビニル共重合体は、ビニル単量体単位を含む。本発明の一実施形態に係るビニル単量体とは、少なくとも1つのビニル基(炭素-炭素不飽和二重結合)を含む単量体を意味する。本発明に係る乳酸-ビニル共重合体は、1種類または2種類以上のビニル単量体単位を含むことができる。
1.2 Vinyl Monomer Unit The lactic acid-vinyl copolymer according to the present invention contains a vinyl monomer unit. The vinyl monomer according to one embodiment of the present invention means a monomer containing at least one vinyl group (carbon-carbon unsaturated double bond). The lactic acid-vinyl copolymer according to the present invention may contain one or more types of vinyl monomer units.
本発明の一実施形態に係る乳酸-ビニル共重合体は、(メタ)アクリル酸等の不飽和モノカルボン酸、および、マレイン酸、フマル酸、イタコン酸などの不飽和ジカルボン酸、及びこれらのエステル、スチレン、酢酸ビニル、アクリロニトリル、アクリルアミド、及びそれらの誘導体に由来するビニル単量体単位を含むことができる。乳酸-ビニル共重合体は、(メタ)アクリル酸および(メタ)アクリル酸エステルのうち少なくとも1つに由来するビニル単量体単位を含むことが好ましく、(メタ)アクリル酸エステルに由来するビニル単量体単位を含むことがより好ましく、メタクリル酸エステルに由来するビニル単量体単位を含むことが更により好ましい。上記のビニル単量体に由来するビニル単量体単位を有することで、より焼成性に優れ、より溶剤溶解性に優れるバインダーを得やすい。 The lactic acid-vinyl copolymer according to one embodiment of the present invention includes unsaturated monocarboxylic acids such as (meth)acrylic acid, unsaturated dicarboxylic acids such as maleic acid, fumaric acid, and itaconic acid, and esters thereof. , styrene, vinyl acetate, acrylonitrile, acrylamide, and derivatives thereof. The lactic acid-vinyl copolymer preferably contains vinyl monomer units derived from at least one of (meth)acrylic acid and (meth)acrylic ester, and the vinyl monomer unit derived from (meth)acrylic ester. It is more preferable that it contains a mer unit, and it is even more preferable that it contains a vinyl monomer unit derived from a methacrylic acid ester. By having a vinyl monomer unit derived from the above-mentioned vinyl monomer, it is easy to obtain a binder that has better sinterability and better solvent solubility.
本発明の一実施形態に係る乳酸-ビニル共重合体には、通常、ビニル単量体が使用される。ビニル単量体は、炭素数1~22のアルキル基を含むビニル単量体を含むことが好ましく、アルキル基の炭素数が前記した範囲である(メタ)アクリル酸アルキルエステルを含むことがより好ましい。アルキル基の炭素数は、例えば、1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。上記炭素数のアルキル基を含むビニル単量体を用いることにより、溶剤と混合した際、より適切な粘度のバインダー組成物となる。
また、本発明の一実施形態に係る乳酸-ビニル共重合体は、炭素数1~7のアルキル基を有するビニル単量体(短鎖アルキル基含有ビニル単量体)に由来する単量体単位および炭素数8~18のアルキル基を有するビニル単量体(長鎖アルキル基含有ビニル単量体)に由来する単量体単位を含むことがより好ましい。短鎖アルキル基含有ビニル単量体の炭素数は、例えば、1、2、3、4、5、6、7であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。長鎖アルキル基含有ビニル単量体の炭素数は、例えば、8、9、10、11、12、13、14、15、16、17、18であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。これらを併用することで、溶剤溶解性をより向上することができる。
Vinyl monomers are usually used in the lactic acid-vinyl copolymer according to one embodiment of the present invention. The vinyl monomer preferably contains a vinyl monomer containing an alkyl group having 1 to 22 carbon atoms, and more preferably contains a (meth)acrylic acid alkyl ester in which the number of carbon atoms in the alkyl group is within the above range. . The number of carbon atoms in the alkyl group is, for example, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 , 22, and may be within the range between any two of the numerical values exemplified here. By using a vinyl monomer containing an alkyl group having the above number of carbon atoms, a binder composition having a more appropriate viscosity when mixed with a solvent can be obtained.
Furthermore, the lactic acid-vinyl copolymer according to one embodiment of the present invention has monomer units derived from a vinyl monomer having an alkyl group having 1 to 7 carbon atoms (a vinyl monomer containing a short-chain alkyl group). It is more preferable to include a monomer unit derived from a vinyl monomer having an alkyl group having 8 to 18 carbon atoms (a vinyl monomer containing a long-chain alkyl group). The carbon number of the short-chain alkyl group-containing vinyl monomer is, for example, 1, 2, 3, 4, 5, 6, or 7, and even if it is within the range between any two of the numerical values exemplified here. good. The carbon number of the long-chain alkyl group-containing vinyl monomer is, for example, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, and any two of the numerical values exemplified here. It may be within the range between. By using these together, the solvent solubility can be further improved.
本発明の一実施形態に係る乳酸-ビニル共重合体は、官能基を含むビニル単量体に由来するビニル単量体単位を含むことが好ましい。官能基は、水酸基、カルボニル基、エポキシ基、アミノ基、イソシアネート基、チオール基およびアルコキシシリル基からなる群より選ばれる少なくとも1種以上であることが好ましく、水酸基およびエポキシ基のうち少なくとも1つであることが好ましい。官能基を含むビニル単量体は、官能基を含む(メタ)アクリル酸および(メタ)アクリル酸エステルのうち少なくとも1つであることが好ましく、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等の、ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸グリシジル、(メタ)アクリル酸4ヒドロキシ-ブチル-グリシジルエーテル等のエポキシ基含有ビニル単量体が挙げられる。本発明の一実施形態に係る乳酸-ビニル共重合体が、官能基を含むビニル単量体に由来するビニル単量体単位を含む場合、官能基を起点として、乳酸単量体単位が結合(例えばグラフト重合)した乳酸-ビニル共重合体を得ることもできる。 The lactic acid-vinyl copolymer according to one embodiment of the present invention preferably contains a vinyl monomer unit derived from a vinyl monomer containing a functional group. The functional group is preferably at least one selected from the group consisting of a hydroxyl group, a carbonyl group, an epoxy group, an amino group, an isocyanate group, a thiol group, and an alkoxysilyl group; It is preferable that there be. The vinyl monomer containing a functional group is preferably at least one of (meth)acrylic acid and (meth)acrylic ester containing a functional group, such as 2-hydroxyethyl (meth)acrylate, 2- Hydroxyalkyl (meth)acrylates such as hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate, glycidyl (meth)acrylate, 4-hydroxy-butyl (meth)acrylate - Epoxy group-containing vinyl monomers such as glycidyl ether. When the lactic acid-vinyl copolymer according to one embodiment of the present invention contains vinyl monomer units derived from vinyl monomers containing functional groups, the lactic acid monomer units bond ( For example, a lactic acid-vinyl copolymer obtained by graft polymerization can also be obtained.
本発明の一実施形態に係る乳酸-ビニル共重合体は、官能基(例えば、上記した官能基)を含まないビニル単量体に由来するビニル単量体単位を含むことができる。官能基を含まないビニル単量体は、官能基を含まない(メタ)アクリル酸および(メタ)アクリル酸エステルのうち少なくとも1つであることが好ましく、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、n-ヘプチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、n-オクチル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、n-デシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ウンデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、イソステアリル(メタ)アクリレート、ベヘニル(メタ)アクリレート等のアルキル(メタ)アクリレート、エチレンオキサイド変性(メタ)アクリレート、プロピレンオキサイド変性(メタ)アクリレート等のアルキレンオキサイド変性(メタ)アクリレート、シクロヘキシル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート、イソボルニル(メタ)アクリレート、(メタ)アクリル酸フェニル等の(メタ)アクリル酸アリールエステル、(メタ)アクリル酸フェノキシエチル等の(メタ)アクリル酸アリールオキシアルキルエステル、(メタ)アクリル酸ベンジル等の(メタ)アクリル酸アリールアルキルエステル等が挙げられる。 The lactic acid-vinyl copolymer according to one embodiment of the present invention may contain vinyl monomer units derived from vinyl monomers that do not contain functional groups (eg, the functional groups described above). The vinyl monomer that does not contain a functional group is preferably at least one of (meth)acrylic acid and (meth)acrylic acid ester that does not contain a functional group, such as methyl (meth)acrylate, ethyl (meth)acrylate, etc. ) acrylate, n-propyl (meth)acrylate, isopropyl (meth)acrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, t-butyl (meth)acrylate, pentyl (meth)acrylate, hexyl (meth)acrylate , n-heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, n-decyl (meth)acrylate ) acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, lauryl (meth)acrylate, stearyl (meth)acrylate, isostearyl (meth)acrylate, behenyl (meth)acrylate and other alkyl (meth)acrylates, ethylene oxide modified (meth)acrylate, alkylene oxide modified (meth)acrylate such as propylene oxide modified (meth)acrylate, cycloalkyl (meth)acrylate such as cyclohexyl (meth)acrylate, isobornyl (meth)acrylate, phenyl (meth)acrylate, etc. (meth)acrylic acid aryl esters, (meth)acrylic acid aryloxyalkyl esters such as phenoxyethyl (meth)acrylate, (meth)acrylic acid aryloxyalkyl esters such as benzyl (meth)acrylate, and the like.
本発明の一実施形態に係る乳酸-ビニル共重合体は、官能基を含むビニル単量体に由来するビニル単量体単位および官能基を含まないビニル単量体に由来するビニル単量体単位を含むことが好ましい。なお、官能基を含むビニル単量体は、短鎖アルキル基含有ビニル単量体であってもよく、官能基を含まないビニル単量体は、長鎖アルキル基含有ビニル単量体であってもよい。乳酸-ビニル共重合体は、乳酸-ビニル共重合体に含まれるビニル単量体単位の合計を100質量%に対して、官能基を含むビニル単量体に由来するビニル単量体単位を0.5~70質量%とできる。官能基を含むビニル単量体に由来するビニル単量体単位の含有率は、例えば、0.5、5、10、15、20、25、30、35、40、45、50、55、60、65、70質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。官能基を含むビニル単量体に由来するビニル単量体単位の含有率を上記数値範囲内であると、より、乳酸-ビニル共重合体の溶剤溶解性と、レオロジー特性等の他の物性との両立を達成し易い。 The lactic acid-vinyl copolymer according to one embodiment of the present invention includes vinyl monomer units derived from a vinyl monomer containing a functional group and vinyl monomer units derived from a vinyl monomer not containing a functional group. It is preferable to include. Note that the vinyl monomer containing a functional group may be a short-chain alkyl group-containing vinyl monomer, and the vinyl monomer not containing a functional group may be a long-chain alkyl group-containing vinyl monomer. Good too. The lactic acid-vinyl copolymer contains 0 vinyl monomer units derived from vinyl monomers containing functional groups based on 100% by mass of the total vinyl monomer units contained in the lactic acid-vinyl copolymer. .5 to 70% by mass. The content of vinyl monomer units derived from vinyl monomers containing functional groups is, for example, 0.5, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60. , 65, and 70% by mass, and may be within a range between any two of the numerical values exemplified here. When the content of vinyl monomer units derived from vinyl monomers containing functional groups is within the above numerical range, the solvent solubility of the lactic acid-vinyl copolymer and other physical properties such as rheological properties are improved. It is easy to achieve both.
1.3 その他の単量体単位
本発明において、乳酸-ビニル共重合体は、乳酸単位とビニル単量体単位を主体とする重合体であるが、本発明の効果を損なわない範囲で、必要に応じてその他の単量体に由来する構成成分を含んでいてもよい。その他の単量体としては、官能基を有する単量体、例えば、水酸基、カルボニル基、エポキシ基、アミノ基、イソシアネート基、チオール基およびアルコキシシリル基を有する単量体を挙げることができる。また、その他の単量体は、分子量調整に使われる連鎖移動剤を含むことができ、連鎖移動剤としては、「2.乳酸-ビニル共重合体の製造方法」で後述する連鎖移動剤を挙げることができる。また、官能基を含むビニル単量体の官能基と反応可能な官能基を有する単量体を含むことが出来る。具体的には、ビスフェノールA型ジグリシジルエーテル、ポリアルキレンオキサイドジグリシジルエーテルなどのジグリシジルエーテルを挙げることができる。その他の単量体単位は、ビニル重合体の主鎖に取り込まれていても良いし、官能基を有するビニル単量体と反応して側鎖として含んでいても良い。本発明に係る乳酸-ビニル共重合体は、乳酸-ビニル共重合体を100質量%としたとき、乳酸単位とビニル単量体単位以外の単量体単位を、例えば、0、5、10、15、20質量%含んでいてもよく、ここで例示した数値の何れか2つの間の範囲内含んでいてもよい。本発明に係る乳酸-ビニル共重合体は、乳酸単位とビニル単量体単位のみからなるものとすることもできる。
1.3 Other monomer units In the present invention, the lactic acid-vinyl copolymer is a polymer mainly composed of lactic acid units and vinyl monomer units, but it may be used as long as it does not impair the effects of the present invention. It may also contain components derived from other monomers depending on the situation. Examples of other monomers include monomers having functional groups, such as monomers having hydroxyl groups, carbonyl groups, epoxy groups, amino groups, isocyanate groups, thiol groups, and alkoxysilyl groups. In addition, other monomers can include a chain transfer agent used for molecular weight adjustment, and examples of chain transfer agents include chain transfer agents described later in "2. Method for producing lactic acid-vinyl copolymer". be able to. Furthermore, a monomer having a functional group capable of reacting with a functional group of a vinyl monomer containing a functional group can be included. Specifically, diglycidyl ethers such as bisphenol A diglycidyl ether and polyalkylene oxide diglycidyl ether can be mentioned. Other monomer units may be incorporated into the main chain of the vinyl polymer, or may be included as side chains by reacting with vinyl monomers having functional groups. The lactic acid-vinyl copolymer according to the present invention contains monomer units other than lactic acid units and vinyl monomer units, for example, 0, 5, 10, It may be contained in an amount of 15 or 20% by mass, or within a range between any two of the numerical values exemplified here. The lactic acid-vinyl copolymer according to the present invention may also consist of only lactic acid units and vinyl monomer units.
1.4 各単量体単位の含有率
本発明の一実施形態に係る乳酸-ビニル共重合体は、乳酸-ビニル共重合体を100質量%に対して、乳酸単位を5.0~99.9質量%含有することが好ましい。乳酸単位の含有率は、例えば、5.0、10.0、15.0、20.0、25.0、30.0、35.0、40.0、45.0、50.0、55.0、60.0、65.0、70.0、75.0、80.0、85.0、90.0、95.0、99.0、99.9質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。乳酸単量体単位の含有率を上記上限以下とすることにより、溶剤溶解性を維持しやすい。また、乳酸単位の含有率を上記下限以上とすることにより、溶剤と混合した際、適度な粘度および擬塑性を得ることができる。なお、本発明の一実施形態によれば、乳酸-ビニル共重合体中の乳酸単量体の含有率がごく微量であっても、乳酸単量体単位を含有すれば、該乳酸-ビニル共重合体を溶剤と混合した際の擬塑性が向上し、そのメカニズムは必ずしも明らかはないが、以下のように推測される。すなわち、擬塑性の向上は、乳酸-ビニル共重合体の末端に存在する乳酸単量体単位のカルボン酸間の水素結合に関連すると考えられ、たとえ乳酸-ビニル共重合体全体に含まれる乳酸単量体単位の含有率が少なくても(例えば、ポリ乳酸ブロックが短くても)、末端に存在する乳酸単量体単位の量をある程度維持できれば、擬塑性が維持できると推測される。
1.4 Content of each monomer unit The lactic acid-vinyl copolymer according to one embodiment of the present invention has a lactic acid unit content of 5.0 to 99.0% based on 100% by mass of the lactic acid-vinyl copolymer. The content is preferably 9% by mass. The content of lactic acid units is, for example, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 55 .0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0, 99.0, 99.9% by mass, and examples are given here. It may be within the range between any two of the above values. By keeping the content of lactic acid monomer units below the above upper limit, solvent solubility can be easily maintained. Further, by setting the content of lactic acid units to the above lower limit or more, appropriate viscosity and pseudoplasticity can be obtained when mixed with a solvent. According to one embodiment of the present invention, even if the content of lactic acid monomer in the lactic acid-vinyl copolymer is extremely small, if the lactic acid monomer unit is contained, the lactic acid-vinyl copolymer Pseudoplasticity improves when the polymer is mixed with a solvent, and although the mechanism is not necessarily clear, it is assumed as follows. In other words, the improvement in pseudoplasticity is thought to be related to the hydrogen bonding between the carboxylic acids of the lactic acid monomer units present at the ends of the lactic acid-vinyl copolymer, and even if the lactic acid monomer units contained in the entire lactic acid-vinyl copolymer Even if the content of mer units is small (for example, even if the polylactic acid block is short), it is presumed that pseudoplasticity can be maintained as long as the amount of lactic acid monomer units present at the terminals can be maintained to a certain extent.
本発明の一実施形態に係る乳酸-ビニル共重合体は、乳酸-ビニル共重合体を100質量%に対して、ビニル単量体単位を、0.1~95.0質量%含有することが好ましい。ビニル単量体単位の含有率は、例えば、0.0、5.0、10.0、15.0、20.0、25.0、30.0、35.0、40.0、45.0、50.0、55.0、60.0、65.0、70.0、75.0、80.0、85.0、90.0、95.0質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The lactic acid-vinyl copolymer according to an embodiment of the present invention may contain 0.1 to 95.0% by mass of vinyl monomer units based on 100% by mass of the lactic acid-vinyl copolymer. preferable. The content of vinyl monomer units is, for example, 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45. 0, 50.0, 55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0, 95.0% by mass, as exemplified here. It may be within a range between any two values.
1.5 乳酸-ビニル共重合体の構造
本発明の一実施形態に係る乳酸-ビニル共重合体は、ビニル重合体ブロックを含むことができる。
ビニル重合体ブロックは、1種類のビニル単量体単位からなるビニル重合体ブロックであってもよいし、2種類以上のビニル単量体単位からなるビニル(共)重合体ブロックであってもよい。一例として、ビニル重合体ブロックは、官能基を含むビニル単量体に由来するビニル単量体単位および官能基を含まないビニル単量体に由来するビニル単量体単位のうち少なくとも1つを含むことができ、官能基を含むビニル単量体に由来するビニル単量体単位および官能基を含まないビニル単量体に由来するビニル単量体単位を含むことが好ましく、これらの単量体単位がランダムに重合した重合体ブロックであってよい。
1.5 Structure of Lactic Acid-Vinyl Copolymer The lactic acid-vinyl copolymer according to one embodiment of the present invention may include a vinyl polymer block.
The vinyl polymer block may be a vinyl polymer block consisting of one type of vinyl monomer unit, or may be a vinyl (co)polymer block consisting of two or more types of vinyl monomer units. . As an example, the vinyl polymer block includes at least one of a vinyl monomer unit derived from a vinyl monomer that includes a functional group and a vinyl monomer unit that is derived from a vinyl monomer that does not include a functional group. It is preferable to include a vinyl monomer unit derived from a vinyl monomer containing a functional group and a vinyl monomer unit derived from a vinyl monomer not containing a functional group, and these monomer units may be randomly polymerized polymer blocks.
ビニル重合体ブロックはガラス転移温度が0~100℃であることが好ましい。ガラス転移温度は、例えば、0、10、20、30、40、50、60、70、80、90、100℃であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ビニル重合体ブロックのガラス転移温度が上記数値範囲内であることにより、乳酸-ビニル共重合体をバインダーとして用いた焼成用ペーストのハンドリング性を向上することができる。なお、ガラス転移温度は原料として配合した単量体の重量分率、単量体のホモポリマーのガラス転移温度により、Foxの式 を用いて理論的に求めることができ、具体的には実施例に記載の方法で算出することができる。 The vinyl polymer block preferably has a glass transition temperature of 0 to 100°C. The glass transition temperature is, for example, 0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100°C, and even if it is within the range between any two of the numerical values exemplified here. good. When the glass transition temperature of the vinyl polymer block is within the above numerical range, it is possible to improve the handling properties of a baking paste using a lactic acid-vinyl copolymer as a binder. The glass transition temperature can be determined theoretically using the Fox equation based on the weight fraction of the monomers blended as raw materials and the glass transition temperature of the homopolymer of the monomers. It can be calculated using the method described in .
ビニル重合体ブロックは、重量平均分子量が3,000~1,000,000であることが好ましく、8,000~700,000であることがより好ましい。重量平均分子量は、例えば、3,000、5,000、8,000、10,000、20,000、30,000、50,000、70,000、100,000、200,000、300,000、500,000、700,000、1,000,000であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ビニル重合体ブロックの重量平均分子量が上記数値範囲内であることにより、乳酸-ビニル共重合体の溶剤溶解性、粘度および擬塑性をより適切に調整することができる。 The vinyl polymer block preferably has a weight average molecular weight of 3,000 to 1,000,000, more preferably 8,000 to 700,000. The weight average molecular weight is, for example, 3,000, 5,000, 8,000, 10,000, 20,000, 30,000, 50,000, 70,000, 100,000, 200,000, 300,000. , 500,000, 700,000, and 1,000,000, and may be within the range between any two of the numerical values exemplified here. When the weight average molecular weight of the vinyl polymer block is within the above numerical range, the solvent solubility, viscosity, and pseudoplasticity of the lactic acid-vinyl copolymer can be adjusted more appropriately.
本発明の一実施形態に係る乳酸-ビニル共重合体は、乳酸単位がビニル単量体に含まれる官能基と結合したものであることが好ましい。また、官能基は、水酸基、カルボニル基、エポキシ基、アミノ基、イソシアネート基、チオール基およびアルコキシシリル基からなる群より選ばれる少なくとも1種以上の官能基であることが好ましい。 The lactic acid-vinyl copolymer according to one embodiment of the present invention preferably has lactic acid units bonded to functional groups contained in vinyl monomers. Further, the functional group is preferably at least one functional group selected from the group consisting of a hydroxyl group, a carbonyl group, an epoxy group, an amino group, an isocyanate group, a thiol group, and an alkoxysilyl group.
本発明の一実施形態に係る乳酸-ビニル共重合体は、ポリ乳酸ブロックを含むものとできる。ポリ乳酸ブロックは、メソ-ラクチド、L-ラクチド、D-ラクチドのうち少なくとも1つに由来する乳酸単量体単位を含むものとでき、ポリ乳酸ブロックは、L-乳酸単位、および、D-乳酸単位のうち少なくとも1つを含むことができ、L-乳酸単位、および、D-乳酸単位がランダムに重合した重合体ブロックであってよい。 The lactic acid-vinyl copolymer according to one embodiment of the present invention may contain a polylactic acid block. The polylactic acid block may include lactic acid monomer units derived from at least one of meso-lactide, L-lactide, and D-lactide, and the polylactic acid block may include L-lactic acid units and D-lactic acid units. It may contain at least one of the units, and may be a polymer block in which L-lactic acid units and D-lactic acid units are randomly polymerized.
本発明の一実施形態に係る乳酸-ビニル共重合体は、ポリ乳酸ブロックおよびビニル重合体ブロックを含むものとできる。本発明の一実施形態に係る乳酸-ビニル共重合体は、ポリ乳酸ブロックおよびビニル単量体ブロックを含む、ブロック共重合体(特には、ジブロック共重合体)、または、グラフト共重合体とすることができる。ジブロック共重合体である場合、粘度、擬塑性が適切な乳酸-ビニル共重合体になりやすい。グラフト共重合体である場合、擬塑性が適切な乳酸-ビニル共重合体になりやすい。 The lactic acid-vinyl copolymer according to one embodiment of the present invention may include a polylactic acid block and a vinyl polymer block. The lactic acid-vinyl copolymer according to one embodiment of the present invention is a block copolymer (particularly a diblock copolymer) or a graft copolymer containing a polylactic acid block and a vinyl monomer block. can do. When it is a diblock copolymer, it tends to be a lactic acid-vinyl copolymer with appropriate viscosity and pseudoplasticity. When it is a graft copolymer, it tends to be a lactic acid-vinyl copolymer with appropriate pseudoplasticity.
本発明の一実施形態に係る乳酸-ビニル共重合体は、グラフト共重合体とできる。グラフト共重合体は、ビニル単量体単位を含む幹鎖と、乳酸単量体単位を含む枝鎖を含むものとできる。また、乳酸単量体単位を含む枝鎖は、幹鎖に含まれるビニル単量体に含まれる官能基と結合したものとできる。 The lactic acid-vinyl copolymer according to one embodiment of the present invention can be a graft copolymer. The graft copolymer can include a backbone chain containing vinyl monomer units and a branch chain containing lactic acid monomer units. Furthermore, the branch chain containing the lactic acid monomer unit can be bonded to a functional group contained in the vinyl monomer contained in the main chain.
1.6 乳酸-ビニル共重合体の物性
<乳酸-ビニル共重合体溶液の粘度>
本発明の一実施形態に係る乳酸-ビニル共重合体は、25℃においてせん断速度を0.01sec-1から10,000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度1sec-1における、乳酸-ビニル共重合体溶液の粘度Aが、2.0Pa・s以上であることが好ましい。乳酸-ビニル共重合体溶液の粘度Aは、例えば、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、20.0、30.0、40.0、50.0、60.0、70.0、80.0、90.0、100.0、200.0、300.0、400.0、500.0、600.0、700.0、800.0、900.0、1000.0Pa・sであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。上記のような粘度を有することにより、塗工性に優れる焼成用ペーストを調製可能なバインダー組成物となる。
1.6 Physical properties of lactic acid-vinyl copolymer <Viscosity of lactic acid-vinyl copolymer solution>
The lactic acid-vinyl copolymer according to an embodiment of the present invention has a shear rate of It is preferable that the viscosity A of the lactic acid-vinyl copolymer solution at a speed of 1 sec -1 is 2.0 Pa·s or more. The viscosity A of the lactic acid-vinyl copolymer solution is, for example, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 20.0, 30.0, 40.0, 50.0, 60. 0, 70.0, 80.0, 90.0, 100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1000.0 Pa·s, and may be within a range between any two of the numerical values exemplified here. By having the above viscosity, the binder composition can be used to prepare a baking paste with excellent coating properties.
本発明の一実施形態に係る乳酸-ビニル共重合体は、25℃において、せん断速度を0.01sec-1から10,000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度9,000sec-1における乳酸-ビニル共重合体溶液の粘度Bが、0.05~2.0Pa・sであることが好ましい。乳酸-ビニル共重合体溶液の粘度Bは、例えば、0.05、0.1、0.2、0.3、0.5、0.8、1.0、1.1.0、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0Pa・sであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。上記のような粘度を有することにより、塗工性に優れる焼成用ペーストを調製可能なバインダー組成物となる。 The lactic acid-vinyl copolymer according to an embodiment of the present invention exhibits the following properties when the shear rate is increased at a constant rate of change from 0.01 sec -1 to 10,000 sec -1 over 150 seconds at 25°C. The viscosity B of the lactic acid-vinyl copolymer solution at a shear rate of 9,000 sec -1 is preferably 0.05 to 2.0 Pa·s. The viscosity B of the lactic acid-vinyl copolymer solution is, for example, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.1.0, 1. 2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0Pa・s, and between any two of the numerical values exemplified here. It may be within the range. By having the above viscosity, the binder composition can be used to prepare a baking paste with excellent coating properties.
本発明の一実施形態に係る乳酸-ビニル共重合体溶液は、25℃において、せん断速度を0.01sec-1から10,000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度1sec-1における粘度Aとせん断速度9000sec-1のときの粘度Bとの比A/Bが3.0以上であることが好ましい。A/Bは、例えば、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、20.0、30.0、40.0、50.0、60.0、70.0、80.0、90.0、100.0、200.0、300.0、400.0、500.0、600.0、700.0、800.0、900.0、1,000.0Pa・sであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。すなわち、本発明の一実施形態に係る乳酸-ビニル共重合体溶液は、せん断速度が高いほど粘度が低くなる擬塑性を示すことが好ましい。 The lactic acid-vinyl copolymer solution according to one embodiment of the present invention has a shear rate of 0.01 sec -1 to 10,000 sec -1 at a constant rate of change over 150 seconds at 25°C. The ratio A/B of viscosity A at a shear rate of 1 sec -1 to viscosity B at a shear rate of 9000 sec -1 is preferably 3.0 or more. A/B is, for example, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7.0, 7.5, 8.0 , 8.5, 9.0, 9.5, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0, 100 .0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1,000.0Pa・s, and the numerical values illustrated here It may be within the range between any two. That is, the lactic acid-vinyl copolymer solution according to one embodiment of the present invention preferably exhibits pseudoplasticity in which the higher the shear rate, the lower the viscosity.
ここで、乳酸-ビニル共重合体溶液は、乳酸-ビニル共重合体を30質量%、ブチルカルビトールアセテートまたはジヒドロターピニルアセテートを70質量%含む溶液を意味する。
すなわち、本発明の一実施形態に係る乳酸-ビニル共重合体は、下記の少なくともいずれか一方の要件を満たすことが好ましい。
・乳酸-ビニル共重合体を30質量%およびブチルカルビトールアセテート70質量%を含む乳酸-ビニル共重合体ブチルカルビトールアセテート溶液の粘度が上記要件を満たす。
・乳酸-ビニル共重合体を30質量%およびジヒドロターピニルアセテート70質量%を含む乳酸-ビニル共重合体ジヒドロターピニルアセテート溶液の粘度が上記要件を満たす。
また、乳酸-ビニル共重合体ブチルカルビトールアセテート溶液および乳酸-ビニル共重合体ジヒドロターピニルアセテート溶液の両方の粘度が上記要件を満たしても良い。
Here, the lactic acid-vinyl copolymer solution means a solution containing 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate or dihydroterpinyl acetate.
That is, the lactic acid-vinyl copolymer according to one embodiment of the present invention preferably satisfies at least one of the following requirements.
- The viscosity of the lactic acid-vinyl copolymer butyl carbitol acetate solution containing 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate satisfies the above requirements.
- The viscosity of the lactic acid-vinyl copolymer dihydroterpinyl acetate solution containing 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of dihydroterpinyl acetate satisfies the above requirements.
Further, the viscosities of both the lactic acid-vinyl copolymer butyl carbitol acetate solution and the lactic acid-vinyl copolymer dihydroterpinyl acetate solution may satisfy the above requirements.
乳酸-ビニル共重合体溶液の粘度は、乳酸-ビニル共重合体に含まれる乳酸単位とビニル単量体単位の種類、および量、並びに重量平均分子量や構造を調整することにより、制御することができる。25℃における各せん断速度のときの乳酸-ビニル共重合体溶液の粘度は、回転式粘度計、例えばレオメーターを用いて測定することができ、下記の方法で測定することができ、具体的には実施例に記載の方法で測定することができる。
<粘度A及び粘度Bの測定方法>
1)密閉容器に前記乳酸-ビニル共重合体を30質量%、ブチルカルビトールアセテートまたはジヒドロターピニルアセテートを70質量%投入し、自公転式ミキサーにて2000rpmで溶け残りが無くなるまで撹拌し、2200rpmで気泡が無くなるまで脱泡後、25℃で1日静置して乳酸-ビニル共重合体溶液を調製
2)粘度・粘弾性測定装置に、直径20mm、コーン角度0.975°のCone Plateを、クリアランス23μmにて取り付け、1)で得られた乳酸-ビニル共重合体溶液0.1gを測定部にセットし、設定温度25℃においてせん断速度を0.01sec-1から10000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度1sec-1における粘度A、せん断速度9,000sec-1における粘度Bを測定
なお、自公転式ミキサーとしては、THINKY製自公転式ミキサー「あわとり練太郎」を用いることができ、粘度・粘弾性測定装置としては、TAインスツルメンツ製粘度・粘弾性測定装置「Discovery HR30」を用いることができる。
The viscosity of the lactic acid-vinyl copolymer solution can be controlled by adjusting the types and amounts of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer, as well as the weight average molecular weight and structure. can. The viscosity of the lactic acid-vinyl copolymer solution at each shear rate at 25°C can be measured using a rotational viscometer, such as a rheometer, and can be measured by the following method. can be measured by the method described in Examples.
<Method for measuring viscosity A and viscosity B>
1) Pour 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate or dihydroterpinyl acetate into a closed container, stir at 2000 rpm with a revolution-revolution mixer until there is no undissolved residue, After defoaming at 2200 rpm until no air bubbles disappear, leave it at 25°C for 1 day to prepare a lactic acid-vinyl copolymer solution 2) Add a Cone Plate with a diameter of 20 mm and a cone angle of 0.975° to the viscosity/viscoelasticity measuring device. was installed with a clearance of 23 μm, 0.1 g of the lactic acid-vinyl copolymer solution obtained in 1) was set in the measuring section, and the shear rate was adjusted from 0.01 sec -1 to 10000 sec -1 at a set temperature of 25°C. Measure the viscosity A at a shear rate of 1 sec -1 and the viscosity B at a shear rate of 9,000 sec -1 when increasing at a constant rate of change over seconds. "Rentaro Foam" can be used, and as the viscosity/viscoelasticity measuring device, the viscosity/viscoelasticity measuring device "Discovery HR30" manufactured by TA Instruments can be used.
<重量平均分子量>
本発明の一実施形態に係る乳酸-ビニル共重合体は、重量平均分子量が10,000~3,000,000であることが好ましい。重量平均分子量は、例えば、10,000、50,000、100,000、200,000、300,000、500,000、1,000,000、2,000,000、3,000,000であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。重量平均分子量を上記数値範囲内とすることにより、乳酸-ビニル共重合体の溶剤溶解性、粘度および擬塑性の両立を図りやすい。
<Weight average molecular weight>
The lactic acid-vinyl copolymer according to one embodiment of the present invention preferably has a weight average molecular weight of 10,000 to 3,000,000. The weight average molecular weight is, for example, 10,000, 50,000, 100,000, 200,000, 300,000, 500,000, 1,000,000, 2,000,000, 3,000,000. , it may be within the range between any two of the numerical values exemplified here. By setting the weight average molecular weight within the above numerical range, it is easy to achieve a balance between solvent solubility, viscosity, and pseudoplasticity of the lactic acid-vinyl copolymer.
重量平均分子量は、GPC法で求めることができ、具体的には実施例に記載の条件で測定することができる。重量平均分子量は、重合条件を調整することで、制御することができる。 The weight average molecular weight can be determined by the GPC method, and specifically can be measured under the conditions described in the Examples. The weight average molecular weight can be controlled by adjusting the polymerization conditions.
<溶剤溶解性>
本発明の一実施形態に係る乳酸-ビニル共重合体は、溶剤に溶解したとき(例えば、乳酸-ビニル共重合体を30質量%およびブチルカルビトールアセテート70質量%を含む乳酸-ビニル共重合体ブチルカルビトールアセテート溶液を調製したとき、および/または、乳酸-ビニル共重合体を30質量%およびジヒドロターピニルアセテート70質量%を含む乳酸-ビニル共重合体ジヒドロターピニルアセテート溶液を調製したとき)、目視で視認可能な不溶解物がないことが好ましい。
<Solvent solubility>
The lactic acid-vinyl copolymer according to one embodiment of the present invention, when dissolved in a solvent (for example, a lactic acid-vinyl copolymer containing 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate) When preparing a butyl carbitol acetate solution, and/or when preparing a lactic acid-vinyl copolymer dihydroterpinyl acetate solution containing 30% by weight of lactic acid-vinyl copolymer and 70% by weight of dihydroterpinyl acetate. ), it is preferable that there is no visually visible undissolved matter.
溶剤溶解性は、具体的には実施例に記載の条件で評価することができる。溶剤溶解性は、乳酸-ビニル共重合体に含まれる乳酸単位とビニル単量体単位の種類、および量、並びに重量平均分子量や構造を調整することにより、制御することができる。 Solvent solubility can be specifically evaluated under the conditions described in Examples. Solvent solubility can be controlled by adjusting the types and amounts of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer, as well as the weight average molecular weight and structure.
<ミクロ残留炭素分>
本発明の一実施形態に係る乳酸-ビニル共重合体は、ミクロ残留炭素分が2.00質量%以下であることが好ましい。ミクロ残留炭素分は、例えば、0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.80、0.90、1.00、1.10、1.20、1.30、1.40、1.50、1.60、1.70、1.80、1.90、2.00質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<Micro residual carbon content>
The lactic acid-vinyl copolymer according to one embodiment of the present invention preferably has a micro residual carbon content of 2.00% by mass or less. The micro residual carbon content is, for example, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1. 10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00% by mass, and any of the numerical values exemplified here. It may be within a range between the two.
なお、ミクロ残留炭素分とは、ミクロ法による残留炭素分を意味し、具体的には、試料を試験容器にはかりとり、炉に入れて窒素雰囲気下の規定条件で、500℃まで昇温した後、更に500℃で15分間維持し、試験容器を放冷後、質量をはかり、初期質量に対して減少した質量の割合(質量%)を算出して求める、残留炭素分を意味する。ミクロ残留炭素分は、具体的には実施例に記載の方法で求めることができる。ミクロ残留炭素分は、乳酸-ビニル共重合体に含まれる乳酸単位とビニル単量体単位の種類、および量を制御することにより、調整することができる。 Note that the micro residual carbon content refers to the residual carbon content determined by the micro method. Specifically, a sample was weighed in a test container, placed in a furnace, and heated to 500°C under specified conditions under a nitrogen atmosphere. After that, the test container is further maintained at 500° C. for 15 minutes, left to cool, and then weighed, and the residual carbon content is determined by calculating the percentage of mass decreased relative to the initial mass (% by mass). Specifically, the micro residual carbon content can be determined by the method described in Examples. The micro residual carbon content can be adjusted by controlling the types and amounts of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer.
<95%重量減少温度(TD95)>
本発明の一実施形態に係る乳酸-ビニル共重合体は、95%重量減少温度(TD95)が400℃未満であることが好ましい。TD95は、例えば、350、355、360、365、370、375、380、385、390、395℃、400℃未満であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。
<95% weight loss temperature (TD95)>
The lactic acid-vinyl copolymer according to one embodiment of the present invention preferably has a 95% weight loss temperature (TD95) of less than 400°C. TD95 is, for example, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395°C, less than 400°C, even if it is within the range between any two of the numerical values exemplified here. good.
TD95は、試料を10℃/minで昇温した際に、重量が95%減少する温度を意味し、具体的には熱重量示差熱分析計を用いて、実施例に記載の方法で求めることができる。TD95は、乳酸-ビニル共重合体溶液に含まれる乳酸単位とビニル単量体単位の種類、および量を制御することにより、調整することができる。 TD95 means the temperature at which the weight decreases by 95% when the sample is heated at 10 ° C./min, and can be specifically determined by the method described in the Examples using a thermogravimetric differential thermal analyzer. Can be done. TD95 can be adjusted by controlling the types and amounts of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer solution.
<糸曳性>
本発明の一実施形態に係る乳酸-ビニル共重合体は、25℃の環境下において、粘度Aが5Pa・sとなるように調整した乳酸-ビニル共重合体溶液に、ガラス棒を突き刺し10cm引き上げた際に、溶液表面とガラス棒間に糸状で存在する溶液が切れるのに要する時間が、4秒以下であることが好ましい。
<Stringability>
The lactic acid-vinyl copolymer according to an embodiment of the present invention is prepared by sticking a glass rod into a lactic acid-vinyl copolymer solution adjusted to have a viscosity A of 5 Pa·s in an environment of 25°C and pulling it up 10 cm. The time required for the thread-like solution existing between the solution surface and the glass rod to break is preferably 4 seconds or less.
糸曳性は、具体的には実施例に記載の方法で求めることができる。糸曳性は、乳酸-ビニル共重合体に含まれる乳酸単位とビニル単量体単位の種類、および量を制御することにより、調整することができる。 Specifically, stringiness can be determined by the method described in Examples. The stringiness can be adjusted by controlling the types and amounts of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer.
<酸価>
本発明の一実施形態に係る乳酸-ビニル共重合体は、乳酸-ビニル共重合体トルエン溶液の酸価が、0.1mgKOH/g以上、20.0mgKOH/g以下であることが好ましい。酸価は、例えば、0.1、1.0、2.0、3.0、4.0、5.0、6.0、7.0、8.0、9.0、10.0、11.0、12.0、13.0、14.0、15.0、16.0、17.0、18.0、19.0、20.0mgKOH/gであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。酸価は、乳酸-ビニル共重合体の末端に存在する乳酸単位のカルボン酸の量と相関すると考えられ、例えば、乳酸-ビニル共重合体がグラフト共重合体である場合、枝鎖の数と関係すると考えられる。
<Acid value>
In the lactic acid-vinyl copolymer according to one embodiment of the present invention, the acid value of the lactic acid-vinyl copolymer toluene solution is preferably 0.1 mgKOH/g or more and 20.0 mgKOH/g or less. The acid value is, for example, 0.1, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0, 14.0, 15.0, 16.0, 17.0, 18.0, 19.0, 20.0mgKOH/g, and the numerical values exemplified here. It may be within the range between any two. The acid value is thought to be correlated with the amount of carboxylic acid in the lactic acid unit present at the end of the lactic acid-vinyl copolymer. For example, when the lactic acid-vinyl copolymer is a graft copolymer, the acid value is correlated with the number of branch chains. It is thought that this is related.
ここで、乳酸-ビニル共重合体トルエン溶液は、乳酸-ビニル共重合体を25質量%、トルエンを75質量%含むものとできる。酸価は、試料を溶剤に溶かして、0.1mol/l水酸化カリウムエタノール溶液を用いて電位差滴定を行うことにより測定することができ、具体的には実施例に記載の方法で求めることができる。酸価は、乳酸-ビニル共重合体に含まれる乳酸単位とビニル単量体単位の種類および量、並びに、重合条件を調整し、乳酸-ビニル共重合体の重量平均分子量や構造を制御することにより、調整することができる。 Here, the lactic acid-vinyl copolymer toluene solution may contain 25% by mass of the lactic acid-vinyl copolymer and 75% by mass of toluene. The acid value can be measured by dissolving the sample in a solvent and performing potentiometric titration using a 0.1 mol/l potassium hydroxide ethanol solution. Specifically, it can be determined by the method described in the Examples. can. The acid value is determined by adjusting the type and amount of lactic acid units and vinyl monomer units contained in the lactic acid-vinyl copolymer, as well as the polymerization conditions, and controlling the weight average molecular weight and structure of the lactic acid-vinyl copolymer. It can be adjusted by
本発明に係る乳酸-ビニル共重合体は、焼成用ペースト用乳酸-ビニル共重合体であり、焼成用ペーストのバインダーとして好適に用いることができる。上記したように、本発明に係る乳酸-ビニル共重合体は、乳酸単位とビニル単量体単位を有することにより、優れた焼成性を有し、目視で視認可能な不溶解物なく溶剤に溶解可能であって、溶剤と混合した際、有効なレオロジー特性を有し、かつ、糸曳が少ない、焼成用ペースト用のバインダーとなることを初めて見出しなされたものである。本発明によれば、バインダーが均一に分散し、塗工性に優れ、糸曳が少なく、焼成時の残存炭素が少ない焼成用ペーストを得ることができ、近年のさらに小型化したコンデンサの製造においても、不具合が生じることなくパターン形成が可能であり、かつ、得られるコンデンサに、バインダーに由来する有機物質が残留せず、欠陥のリスクを低減できる利益を供する。 The lactic acid-vinyl copolymer according to the present invention is a lactic acid-vinyl copolymer for baking paste, and can be suitably used as a binder for baking paste. As described above, the lactic acid-vinyl copolymer according to the present invention has excellent sinterability due to the presence of lactic acid units and vinyl monomer units, and is soluble in solvents without any visible insoluble matter. For the first time, it has been discovered that it is possible to create a binder for baking pastes which, when mixed with a solvent, has effective rheological properties and has low stringiness. According to the present invention, it is possible to obtain a firing paste in which the binder is uniformly dispersed, has excellent coating properties, has little stringiness, and has little residual carbon during firing, and is suitable for manufacturing capacitors that have become smaller in recent years. Also, it is possible to form a pattern without causing any defects, and organic substances originating from the binder do not remain in the resulting capacitor, providing the advantage of reducing the risk of defects.
2.乳酸-ビニル共重合体の製造方法
本発明に係る乳酸-ビニル共重合体の製造方法は特に限定されないが、例えば、以下の方法で製造することができる。
本発明の一実施形態に係る乳酸-ビニル共重合体の製造方法は、
 1種または2種以上のビニル単量体を含む原料を重合して、ビニル(共)重合体を得る、ビニル(共)重合体重合工程、および
 前記ビニル(共)重合体および乳酸を含む原料を重合して、乳酸-ビニル共重合体を得る、乳酸-ビニル共重合体重合工程
を含むことができる。
2. Method for producing lactic acid-vinyl copolymer The method for producing the lactic acid-vinyl copolymer according to the present invention is not particularly limited, but it can be produced, for example, by the following method.
A method for producing a lactic acid-vinyl copolymer according to an embodiment of the present invention includes:
A vinyl (co)polymerization step in which a raw material containing one or more vinyl monomers is polymerized to obtain a vinyl (co)polymer, and a raw material containing the vinyl (co)polymer and lactic acid. may include a lactic acid-vinyl copolymer polymerization step in which a lactic acid-vinyl copolymer is obtained by polymerizing the lactic acid-vinyl copolymer.
2.1 ビニル(共)重合体重合工程
ビニル(共)重合体重合工程では、1種または2種以上のビニル単量体を含む原料を重合して、ビニル(共)重合体を得る。
ビニル(共)重合体重合工程では、例えば、溶液重合法、塊状重合法、乳化重合法、懸濁重合法等の従来公知の重合法を採用することができ、これらの中でも溶液重合法が好ましい。
2.1 Vinyl (co)polymerization process In the vinyl (co)polymerization process, raw materials containing one or more types of vinyl monomers are polymerized to obtain a vinyl (co)polymer.
In the vinyl (co)polymerization step, conventionally known polymerization methods such as solution polymerization, bulk polymerization, emulsion polymerization, and suspension polymerization can be employed, and among these, solution polymerization is preferred. .
具体的には、反応容器内に1種または2種以上のビニル単量体を含む原料および必要に応じて連鎖移動剤、溶媒等を仕込み、例えば、窒素ガス等の不活性ガス雰囲気下で、重合開始剤を添加し、通常50~90℃、好ましくは60~90℃の温度に反応系を維持して、2~20時間反応させる。また、重合反応中に、重合開始剤、連鎖移動剤、単量体、溶媒を適宜追加添加してもよい。 Specifically, a raw material containing one or more vinyl monomers and, if necessary, a chain transfer agent, a solvent, etc. are charged into a reaction vessel, and the reaction is carried out under an inert gas atmosphere such as nitrogen gas. A polymerization initiator is added, and the reaction system is maintained at a temperature of usually 50 to 90°C, preferably 60 to 90°C, and the reaction is carried out for 2 to 20 hours. Further, during the polymerization reaction, a polymerization initiator, chain transfer agent, monomer, and solvent may be additionally added as appropriate.
原料は、官能基を含むビニル単量体および官能基を含まないビニル単量体を含むことができ、官能基を含むビニル単量体および官能基を含まないビニル単量体の具体例や、その配合比は上記した通りである。 The raw material can include a vinyl monomer containing a functional group and a vinyl monomer not containing a functional group, and specific examples of a vinyl monomer containing a functional group and a vinyl monomer not containing a functional group, The blending ratio is as described above.
溶媒としては、トルエン、キシレン等の芳香族系溶媒;メチルエチルケトン、アセトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;酢酸エチル、酢酸ブチル、酢酸イソプロピル、エチレングリコールジアセテート等のエステル系溶媒;水等を用いることができる。なお、ビニル(共)重合体重合工程時に、反応系内に次工程の原料となるメソ-ラクチド、L-ラクチド、D-ラクチド等のラクチドをあらかじめ仕込んでおいてもよい。この場合、ラクチドは重合反応には寄与しないものとできる。 Examples of solvents include aromatic solvents such as toluene and xylene; ketone solvents such as methyl ethyl ketone, acetone, methyl isobutyl ketone, and cyclohexanone; ester solvents such as ethyl acetate, butyl acetate, isopropyl acetate, and ethylene glycol diacetate; water, etc. can be used. Note that during the vinyl (co)polymerization step, lactide such as meso-lactide, L-lactide, D-lactide, etc., which will be a raw material for the next step, may be charged into the reaction system in advance. In this case, lactide may not contribute to the polymerization reaction.
重合開始剤としては、例えば、アゾ系開始剤、過酸化物系重合開始剤が挙げられる。
アゾ系開始剤としては、例えば、2,2'-アゾビスイソブチロニトリル、2,2'-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-シクロプロピルプロピオニトリル)、2,2'-アゾビス(2,4-ジメチルバレロニトリル)、2,2'-アゾビス(2-メチルブチロニトリル)、1,1'-アゾビス(シクロヘキサン-1-カルボニトリル)、2-(カルバモイルアゾ)イソブチロニトリル、2-フェニルアゾ-4-メトキシ-2,4-ジメチルバレロニトリル、2,2'-アゾビス(2-アミジノプロパン)ジヒドロクロリド、2,2'-アゾビス(N,N'-ジメチレンイソブチルアミジン)、2,2'-アゾビス〔2-メチル-N-(2-ヒドロキシエチル)-プロピオンアミド〕、2,2'-アゾビス(イソブチルアミド)ジヒドレート、4,4'-アゾビス(4-シアノペンタン酸)、2,2'-アゾビス(2-シアノプロパノール)、ジメチル-2,2'-アゾビス(2-メチルプロピオネート)等のアゾ化合物が挙げられる。
Examples of the polymerization initiator include azo initiators and peroxide polymerization initiators.
Examples of azo initiators include 2,2'-azobisisobutyronitrile, 2,2'-azobis(4-methoxy-2,4-dimethylvaleronitrile), 2,2'-azobis(2- cyclopropylpropionitrile), 2,2'-azobis(2,4-dimethylvaleronitrile), 2,2'-azobis(2-methylbutyronitrile), 1,1'-azobis(cyclohexane-1-carboxylic acid), nitrile), 2-(carbamoylazo)isobutyronitrile, 2-phenylazo-4-methoxy-2,4-dimethylvaleronitrile, 2,2'-azobis(2-amidinopropane) dihydrochloride, 2,2'- Azobis(N,N'-dimethyleneisobutyramidine), 2,2'-azobis[2-methyl-N-(2-hydroxyethyl)-propionamide], 2,2'-azobis(isobutyramide) dihydrate, 4 , 4'-azobis(4-cyanopentanoic acid), 2,2'-azobis(2-cyanopropanol), and dimethyl-2,2'-azobis(2-methylpropionate).
連鎖移動剤としては、チオール化合物(メルカプタン)を挙げることができる。具体的には、n-オクチルメルカプタン、t-またはn-ドデシルメルカプタンなどのアルキルメルカプタン、2-メルカプトエタノール、チオグリセロール、3-メルカプトヘキサン-1-オールなどの水酸基含有メルカプタン、チオグリコール酸、2-メルカプトプロピオン酸、3-メルカプトプロピオン酸、4-メルカプトブタン酸、6-メルカプトへキサン酸、11-メルカプトウンデカン酸、3-メルカプトピルビン酸、2-メルカプト安息香酸、3-メルカプト安息香酸、4-メルカプト安息香酸、チオリンゴ酸などのカルボキシル基含有メルカプタン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルメチルジエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトプロピルトリエトキシシラン、などのアルコキシシラン含有メルカプタンを挙げることができる。また、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)等の多官能チオール、α-メチルスチレンダイマー等のスチレンダイマー、ナフトキノン系化合物が挙げられる。連鎖移動剤を用いる場合には、単量体100質量部に対して、好ましくは0.01~5.00質量部、より好ましくは0.02~3.00質量部、さらに好ましくは0.03~2.50質量部の範囲内の量で使用することができる。 Examples of chain transfer agents include thiol compounds (mercaptans). Specifically, alkyl mercaptans such as n-octyl mercaptan, t- or n-dodecyl mercaptan, hydroxyl group-containing mercaptans such as 2-mercaptoethanol, thioglycerol, and 3-mercaptohexan-1-ol, thioglycolic acid, 2- Mercaptopropionic acid, 3-mercaptopropionic acid, 4-mercaptobutanoic acid, 6-mercaptohexanoic acid, 11-mercaptoundecanoic acid, 3-mercaptopyruvate, 2-mercaptobenzoic acid, 3-mercaptobenzoic acid, 4-mercapto Carboxyl group-containing mercaptans such as benzoic acid and thiomalic acid, alkoxysilanes such as 3-mercaptopropylmethyldimethoxysilane, 3-mercaptopropylmethyldiethoxysilane, 3-mercaptopropyltrimethoxysilane, and 3-mercaptopropyltriethoxysilane. Mention may be made of mercaptans. Other examples include polyfunctional thiols such as pentaerythritol tetrakis (3-mercaptopropionate), styrene dimers such as α-methylstyrene dimer, and naphthoquinone compounds. When using a chain transfer agent, it is preferably 0.01 to 5.00 parts by mass, more preferably 0.02 to 3.00 parts by mass, even more preferably 0.03 parts by mass, per 100 parts by mass of the monomer. Amounts within the range of 2.50 parts by weight can be used.
重合開始剤、連鎖移動剤、溶媒は、1種単独で用いてもよく、2種以上を用いてもよい。重合開始剤や連鎖移動剤の種類および添加量、並びに、重合温度および時間等の重合条件を調整することにより、ビニル(共)重合体の重量平均分子量を調整することができる。 The polymerization initiator, chain transfer agent, and solvent may be used alone or in combination of two or more. The weight average molecular weight of the vinyl (co)polymer can be adjusted by adjusting the type and amount of the polymerization initiator and chain transfer agent, and polymerization conditions such as polymerization temperature and time.
2.2 乳酸-ビニル共重合体重合工程
乳酸-ビニル共重合体重合工程では、さらに、ビニル(共)重合体および乳酸を含む原料を重合して、乳酸-ビニル共重合体を得る。
乳酸-ビニル共重合体重合工程では、例えば、溶液重合法、塊状重合法、乳化重合法、懸濁重合法等の従来公知の重合法を採用することができ、これらの中でも溶液重合法が好ましい。
2.2 Lactic acid-vinyl copolymer polymerization step In the lactic acid-vinyl copolymer polymerization step, raw materials containing a vinyl (co)polymer and lactic acid are further polymerized to obtain a lactic acid-vinyl copolymer.
In the lactic acid-vinyl copolymerization step, conventionally known polymerization methods such as solution polymerization, bulk polymerization, emulsion polymerization, and suspension polymerization can be employed, and among these, solution polymerization is preferred. .
本発明の一実施形態に係る乳酸-ビニル共重合体重合工程では、ラクチドをオクチル酸スズなどで開環重合させる。具体的には、反応容器内にビニル(共)重合体および乳酸を含む原料および必要に応じて溶媒を仕込み、例えば、窒素ガス等の不活性ガス雰囲気下で、触媒を添加し、反応容器内の温度を150~210℃、好ましくは160~200℃として、2~20時間反応させる。また、重合反応中に、触媒、単量体、溶媒を適宜追加添加してもよい。 In the lactic acid-vinyl copolymerization step according to one embodiment of the present invention, lactide is ring-opening polymerized with tin octylate or the like. Specifically, raw materials containing a vinyl (co)polymer and lactic acid and a solvent as needed are placed in a reaction vessel, a catalyst is added under an inert gas atmosphere such as nitrogen gas, and the reaction vessel is heated. The reaction is carried out at a temperature of 150 to 210°C, preferably 160 to 200°C, for 2 to 20 hours. Further, during the polymerization reaction, a catalyst, a monomer, and a solvent may be additionally added as appropriate.
乳酸を含む原料は、環状二量体であるラクチドを含むことができ、メソ-ラクチド、L-ラクチド、およびD-ラクチドのうち少なくとも1つを含むものとできる。 The raw material containing lactic acid may contain lactide, which is a cyclic dimer, and may contain at least one of meso-lactide, L-lactide, and D-lactide.
重合には、触媒を用いることができ、触媒としては、例えば、乳酸スズ、酒石酸スズ、ジカプリル酸スズ、ジラウリル酸スズ、ジパルチミン酸スズ、ジステアリン酸スズ、ジオレイン酸スズ、α-ナフエト酸スズ、β-ナフエト酸スズ、オクチル酸スズ等の有機スズ系化合物、粉末スズ;亜鉛末、ハロゲン化亜鉛、酸化亜鉛、有機亜鉛系化合物;テトラプロピルチタネート等のチタン化合物;ジルコニウムイソプロポキシド等のジルコニウム系化合物;三酸化アンチモン等のアンチモン系化合物を挙げることができる。触媒の添加量は、原料であるラクチド等の合計100質量部に対して、0.001~1質量部とすることができ、0.005~0.5質量部とすることができる。 A catalyst can be used for polymerization, and examples of the catalyst include tin lactate, tin tartrate, tin dicaprylate, tin dilaurate, tin dipaltimate, tin distearate, tin dioleate, α-tin naphetoate, and β. - Organotin compounds such as tin naphetoate and tin octylate; powdered tin; zinc dust, zinc halide, zinc oxide, organozinc compounds; titanium compounds such as tetrapropyl titanate; zirconium compounds such as zirconium isopropoxide ; Examples include antimony compounds such as antimony trioxide. The amount of the catalyst added can be 0.001 to 1 part by mass, and can be 0.005 to 0.5 part by mass, based on a total of 100 parts by mass of the raw material, such as lactide.
本発明の一実施形態に係る乳酸-ビニル共重合体重合工程では、ポリ乳酸ブロックが形成され、例えば、原料とするビニル(共)重合体が、官能基を有する場合、官能基にポリ乳酸ブロックが結合した構造となると考えられる。
触媒の種類および添加量、並びに、重合温度および時間等の重合条件を調整することにより、ポリ乳酸ブロックおよび乳酸-ビニル共重合体の重量平均分子量および構造、乳酸-ビニル共重合体の物性を調整することができる。
In the lactic acid-vinyl copolymer polymerization step according to one embodiment of the present invention, a polylactic acid block is formed. For example, when the vinyl (co)polymer used as a raw material has a functional group, the functional group has a polylactic acid block. It is thought that the structure is a combination of the two.
By adjusting the type and amount of catalyst added, and polymerization conditions such as polymerization temperature and time, the weight average molecular weight and structure of polylactic acid block and lactic acid-vinyl copolymer, and the physical properties of lactic acid-vinyl copolymer can be adjusted. can do.
3.バインダー組成物
本発明の一実施形態に係るバインダー組成物は、上記に記載の乳酸-ビニル共重合体、および溶剤を含み、焼成用ペースト調製用とできる。
3. Binder Composition A binder composition according to one embodiment of the present invention contains the above-described lactic acid-vinyl copolymer and a solvent, and can be used to prepare a paste for baking.
本発明の一実施形態に係るバインダー組成物は、乳酸-ビニル共重合体をバインダーとして含み、乳酸-ビニル共重合体以外のバインダーを含んでいても良い。本発明の一実施形態に係るバインダー組成物が、乳酸-ビニル共重合体の他に含み得るバインダーとしては、エチルセルロースおよびポリビニルブチラールを挙げることができる。本発明の一実施形態に係るバインダー組成物は、バインダー組成物が含むバインダーを100質量%としたときに、乳酸-ビニル共重合体を50質量%以上含むことが好ましく、80質量%以上含むことが好ましく、90質量%以上含むことがより好ましい。バインダーを100質量%としたときの乳酸-ビニル共重合体の含有率は、例えば、50、55、60、65、70、75、80、85、90、95、100質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。本発明の一実施形態に係るバインダー組成物は、バインダーとして、乳酸-ビニル共重合体のみを含むものとすることもできる。 The binder composition according to one embodiment of the present invention contains a lactic acid-vinyl copolymer as a binder, and may contain a binder other than the lactic acid-vinyl copolymer. Examples of binders that the binder composition according to an embodiment of the present invention may include in addition to the lactic acid-vinyl copolymer include ethyl cellulose and polyvinyl butyral. The binder composition according to an embodiment of the present invention preferably contains 50% by mass or more, and preferably 80% by mass or more of the lactic acid-vinyl copolymer, when the binder contained in the binder composition is 100% by mass. is preferable, and it is more preferable that the content is 90% by mass or more. The content of the lactic acid-vinyl copolymer when the binder is 100% by mass is, for example, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100% by mass, where It may be within the range between any two of the illustrated numerical values. The binder composition according to one embodiment of the present invention may contain only a lactic acid-vinyl copolymer as a binder.
3.1 溶媒
本発明の一実施形態に係るバインダー組成物が含み得る溶剤としては、特に制限はなく、公知の溶剤を用いることができる。溶剤は、本発明に係る乳酸-ビニル共重合体との相溶性に優れることが好ましく、例えば、本発明に係る乳酸-ビニル共重合体を30質量%、溶剤を70質量%含む、乳酸-ビニル共重合体溶液を調製した際、視認可能な溶け残りがないことが好ましい。また、溶剤の沸点は150~300℃であることが好ましく、200~290℃であることがより好ましく、220~280℃であることがさらに好ましい。溶剤としては、アルコール系溶剤、エステル系溶剤等を挙げることができる。
3.1 Solvent The solvent that can be contained in the binder composition according to one embodiment of the present invention is not particularly limited, and any known solvent can be used. The solvent preferably has excellent compatibility with the lactic acid-vinyl copolymer according to the present invention, and for example, a lactic acid-vinyl copolymer containing 30% by mass of the lactic acid-vinyl copolymer according to the present invention and 70% by mass of the solvent. When the copolymer solution is prepared, it is preferable that there is no visible undissolved residue. Further, the boiling point of the solvent is preferably 150 to 300°C, more preferably 200 to 290°C, even more preferably 220 to 280°C. Examples of the solvent include alcohol solvents and ester solvents.
アルコール系溶剤としては、例えば、シクロヘキサノール等のシクロアルカノール、テルピネオール(α、β、γ異性体、またはこれらの任意の混合物を含む。)、ジヒドロテルピネオール等のテルペンアルコール(モノテルペンアルコール等)、ジヒドロターピネオール、ミルテノール、ソブレロール、メントール、カルベオール、ペリリルアルコール、ピノカルベオール、ソブレロール、ベルベノール、ジプロピレングリコール、ブチルカルビトール等が挙げられる。 Examples of alcoholic solvents include cycloalkanols such as cyclohexanol, terpineol (including α, β, and γ isomers, or any mixture thereof), terpene alcohols (monoterpene alcohols, etc.) such as dihydroterpineol, dihydro Examples include terpineol, myrtenol, sobrerol, menthol, carveol, perillyl alcohol, pinocarveol, sobrerol, verbenol, dipropylene glycol, butyl carbitol, and the like.
エステル系溶剤としては、例えば、ブチルカルビトールアセテート(BCA)、ジヒドロターピニルアセテート(DHTA)、ブチルグリコールアセテート(BMGAC)、ジエチレングリコールアルキルエーテルアセテート(ここで、アルキルとしては、エチル、プロピル、n-ブチルなどが例示される。以下同じ。)エチレングリコールアルキルエーテルアセテート、エチレングリコールジアセテート、プロピレングリコールアルキルエーテルアセテート等のアセテート類、2,2,4-トリメチルペンタン-1,3-ジオールモノ-iso-ブチレート、2,2,4-トリメチルペンタン-1,3-ジオールモノ-iso-ブチレートエーテル、:ジプロピレングリコールモノメチルエーテル、ジエチレングリコールアルキルエーテル、エチレングリコールアルキルエーテル、ジプロピレングリコールアルキルエーテル等が挙げられる。 Examples of ester solvents include butyl carbitol acetate (BCA), dihydroterpinyl acetate (DHTA), butyl glycol acetate (BMGAC), diethylene glycol alkyl ether acetate (here, alkyl is ethyl, propyl, n- (Examples include butyl. The same applies hereinafter.) Acetates such as ethylene glycol alkyl ether acetate, ethylene glycol diacetate, propylene glycol alkyl ether acetate, 2,2,4-trimethylpentane-1,3-diol mono-iso- butyrate, 2,2,4-trimethylpentane-1,3-diol mono-iso-butyrate ether, dipropylene glycol monomethyl ether, diethylene glycol alkyl ether, ethylene glycol alkyl ether, dipropylene glycol alkyl ether, and the like.
上記の中でも、溶剤はエステル系溶剤のうちの少なくとも1つを含むことが好ましい。また、溶剤は、ブチルカルビトールアセテート(BCA)、ブチルグリコールアセテート(BMGAC)、ジヒドロターピニルアセテート(DHTA)、テルピネオール、ジヒドロターピネオールのうち少なくとも1つを含むことがより好ましく、ブチルカルビトールアセテート(BCA)およびジヒドロターピニルアセテート(DHTA)のうち少なくとも1つを含むことが更により好ましい。 Among the above, it is preferable that the solvent contains at least one of the ester solvents. Moreover, it is more preferable that the solvent contains at least one of butyl carbitol acetate (BCA), butyl glycol acetate (BMGAC), dihydroterpinyl acetate (DHTA), terpineol, and dihydroterpineol, and butyl carbitol acetate ( Even more preferably, it contains at least one of BCA) and dihydroterpinyl acetate (DHTA).
本発明の一実施形態に係るバインダー組成物は、バインダー組成物を100質量%としたとき、バインダーを1~40質量%含むことができる。バインダー組成物を100質量%としたときのバインダーの含有率は、例えば、1、5、10、15、20、25、30、35、40質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。 The binder composition according to one embodiment of the present invention can contain 1 to 40% by mass of the binder when the binder composition is 100% by mass. The binder content when the binder composition is 100% by mass is, for example, 1, 5, 10, 15, 20, 25, 30, 35, 40% by mass, and any 2 of the values exemplified here. It may be within the range between two.
本発明の一実施形態に係るバインダー組成物は、本発明の効果を損なわない範囲で、必要に応じて他の添加剤を含むこともできる。他の添加剤としては、分散剤、界面活性剤、酸化防止剤、難燃剤、可塑剤、滑剤、離型剤等を挙げることができる。 The binder composition according to one embodiment of the present invention may also contain other additives as necessary within a range that does not impair the effects of the present invention. Other additives include dispersants, surfactants, antioxidants, flame retardants, plasticizers, lubricants, mold release agents, and the like.
3.2 バインダー組成物の物性
<粘度>
本発明の一実施形態に係るバインダー組成物は、25℃において、せん断速度を0.01sec-1から10,000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度1sec-1における粘度A'が、2.0Pa・s以上であることが好ましい。バインダー組成物の粘度A'は、例えば、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、20.0、30.0、40.0、50.0、60.0、70.0、80.0、90.0、100.0、200.0、300.0、400.0、500.0、600.0、700.0、800.0、900.0、1000.0Pa・sであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。上記のような粘度を有することにより、塗工性に優れる焼成用ペーストを調製可能なバインダー組成物となる。
3.2 Physical properties of binder composition <viscosity>
The binder composition according to one embodiment of the present invention has a shear rate of 1 sec when the shear rate is increased at a constant rate of change from 0.01 sec -1 to 10,000 sec -1 over 150 seconds at 25°C. The viscosity A' at -1 is preferably 2.0 Pa·s or more. The viscosity A' of the binder composition is, for example, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5. , 7.0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70 .0, 80.0, 90.0, 100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1000.0Pa -s, and may be within the range between any two of the numerical values exemplified here. By having the above viscosity, the binder composition can be used to prepare a baking paste with excellent coating properties.
本発明の一実施形態に係るバインダー組成物は、25℃において、せん断速度を0.01sec-1から10,000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度9,000sec-1における粘度B'が、0.05~2.0Pa・sであることが好ましい。粘度B'は、例えば、0.05、0.1、0.2、0.3、0.5、0.8、1.0、1.1.0、1.2、1.3、1.4、1.5、1.6、1.7、1.8、1.9、2.0Pa・sであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。上記のような粘度を有することにより、塗工性に優れる焼成用ペーストを調製可能なバインダー組成物となる。 The binder composition according to an embodiment of the present invention has a shear rate of 9 when the shear rate is increased at a constant rate of change from 0.01 sec -1 to 10,000 sec -1 over 150 seconds at 25°C. The viscosity B' at ,000 sec -1 is preferably 0.05 to 2.0 Pa·s. The viscosity B' is, for example, 0.05, 0.1, 0.2, 0.3, 0.5, 0.8, 1.0, 1.1.0, 1.2, 1.3, 1 .4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0 Pa・s, and may be within the range between any two of the numerical values exemplified here. . By having the above viscosity, the binder composition can be used to prepare a baking paste with excellent coating properties.
本発明の一実施形態に係るバインダー組成物は、25℃において、せん断速度を0.01sec-1から10,000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度1sec-1における粘度A'とせん断速度9,000sec-1のときの粘度B'との比A'/B'が3.0以上であることが好ましい。A'/B'は、例えば、2.0、2.5、3.0、3.5、4.0、4.5、5.0、5.5、6.0、6.5、7.0、7.5、8.0、8.5、9.0、9.5、10.0、20.0、30.0、40.0、50.0、60.0、70.0、80.0、90.0、100.0、200.0、300.0、400.0、500.0、600.0、700.0、800.0、900.0、1000.0Pa・sであり、ここで例示した数値の何れか2つの間の範囲内であってもよい。すなわち、本発明の一実施形態に係るバインダー組成物は、せん断速度が高いほど粘度が低くなる擬塑性を示すことが好ましい。 The binder composition according to one embodiment of the present invention has a shear rate of 1 sec when the shear rate is increased at a constant rate of change from 0.01 sec -1 to 10,000 sec -1 over 150 seconds at 25°C. The ratio A'/B' of viscosity A' at -1 and viscosity B' at shear rate 9,000 sec -1 is preferably 3.0 or more. A'/B' is, for example, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, 5.0, 5.5, 6.0, 6.5, 7 .0, 7.5, 8.0, 8.5, 9.0, 9.5, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0 , 80.0, 90.0, 100.0, 200.0, 300.0, 400.0, 500.0, 600.0, 700.0, 800.0, 900.0, 1000.0Pa・s and may be within the range between any two of the numerical values exemplified here. That is, the binder composition according to one embodiment of the present invention preferably exhibits pseudoplasticity in which the viscosity decreases as the shear rate increases.
バインダー組成物の粘度は、乳酸-ビニル共重合体中の各単量体単位の種類、量、および重量平均分子量、並びに、バインダーおよび溶剤の種類および量を調整することにより、制御することができる。25℃における各せん断速度のときのバインダー組成物の粘度は、回転式粘度計、例えばレオメーターを用いて下記の方法で測定することができ、具体的には実施例に記載の方法で測定することができる。
<粘度A'及び粘度B'の測定方法>
粘度・粘弾性測定装置に、直径20mm、コーン角度0.975°のCone Plateを、クリアランス23μmにて取り付け、前記バインダー組成物を測定部にセットし、設定温度25℃においてせん断速度を0.01sec-1から10000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度1sec-1における粘度A'、せん断速度9,000sec-1における粘度B'を測定
なお、粘度・粘弾性測定装置としては、TAインスツルメンツ製粘度・粘弾性測定装置「Discovery HR30」を用いることができる。
The viscosity of the binder composition can be controlled by adjusting the type, amount, and weight average molecular weight of each monomer unit in the lactic acid-vinyl copolymer, as well as the type and amount of the binder and solvent. . The viscosity of the binder composition at each shear rate at 25° C. can be measured using a rotational viscometer, such as a rheometer, by the method described below, and specifically by the method described in the Examples. be able to.
<Method for measuring viscosity A' and viscosity B'>
A Cone Plate with a diameter of 20 mm and a cone angle of 0.975° was attached to the viscosity/viscoelasticity measuring device with a clearance of 23 μm, the binder composition was set in the measuring section, and the shear rate was set at a set temperature of 25° C. for 0.01 sec. When increasing from -1 to 10,000 sec -1 at a constant rate of change over 150 seconds, measure the viscosity A' at a shear rate of 1 sec -1 and the viscosity B' at a shear rate of 9,000 sec -1 . As the elasticity measuring device, a viscosity/viscoelasticity measuring device “Discovery HR30” manufactured by TA Instruments can be used.
<溶剤溶解性>
本発明の一実施形態に係るバインダー組成物は、目視で視認可能なバインダーの不溶解物がないことが好ましい。
<Solvent solubility>
It is preferable that the binder composition according to one embodiment of the present invention has no visually recognizable insoluble matter of the binder.
<ミクロ残留炭素分>
本発明の一実施形態に係るバインダー組成物は、ミクロ残留炭素分が2.00質量%以下であることが好ましい。ミクロ残留炭素分は、例えば、0.10、0.20、0.30、0.40、0.50、0.60、0.70、0.80、0.90、1.00、1.10、1.20、1.30、1.40、1.50、1.60、1.70、1.80、1.90、2.00質量%であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。ミクロ残留炭素分は、具体的には実施例に記載の方法で求めることができる。
<Micro residual carbon content>
The binder composition according to one embodiment of the present invention preferably has a micro residual carbon content of 2.00% by mass or less. The micro residual carbon content is, for example, 0.10, 0.20, 0.30, 0.40, 0.50, 0.60, 0.70, 0.80, 0.90, 1.00, 1. 10, 1.20, 1.30, 1.40, 1.50, 1.60, 1.70, 1.80, 1.90, 2.00% by mass, and any of the numerical values exemplified here. It may be within a range between the two. Specifically, the micro residual carbon content can be determined by the method described in Examples.
<95%重量減少温度(TD95)>
本発明の一実施形態に係るバインダー組成物は、95%重量減少温度(TD95)が400℃未満であることが好ましい。TD95は、例えば、350、355、360、365、370、375、380、385、390、395℃、400℃未満であり、ここで例示した数値の何れか2つの間の範囲内であってもよい。TD95は、具体的には熱重量示差熱分析計を用いて、実施例に記載の方法で求めることができる。
<95% weight loss temperature (TD95)>
The binder composition according to one embodiment of the present invention preferably has a 95% weight loss temperature (TD95) of less than 400°C. TD95 is, for example, 350, 355, 360, 365, 370, 375, 380, 385, 390, 395°C, less than 400°C, even if it is within the range between any two of the numerical values exemplified here. good. Specifically, TD95 can be determined by the method described in Examples using a thermogravimetric differential thermal analyzer.
<糸曳性>
本発明の一実施形態に係るバインダー組成物は、25℃の環境下において、粘度Aが5Pa・sとなるように調整した乳酸-ビニル共重合体溶液に、ガラス棒を突き刺し10cm引き上げた際に、溶液表面とガラス棒間に糸状で存在する溶液が切れるのに要する時間が、4秒以下であることが好ましい。糸曳性は、具体的には実施例に記載の方法で求めることができる。
<Stringability>
The binder composition according to one embodiment of the present invention is obtained by inserting a glass rod into a lactic acid-vinyl copolymer solution adjusted to have a viscosity A of 5 Pa·s in an environment of 25° C. and pulling it up by 10 cm. It is preferable that the time required for the thread-like solution existing between the solution surface and the glass rod to break is 4 seconds or less. Specifically, stringiness can be determined by the method described in Examples.
4.焼成用ペースト
本発明の一実施形態に係る焼成用ペーストは、上記のバインダー組成物と無機粒子を含む。無機粒子としては、用途に応じた公知の粉体を用いることができる。無機粒子としては、例えは、金、銀、銅、ニッケル、パラジウム、ITO、アルミナ、ジルコニア、酸化チタン、チタン酸バリウム、窒化アルミニウム、窒化珪素、窒化ホウ素、各種ガラス粉、無機蛍光体、黒鉛粉、はんだ粉などが挙げられ、これらを1種単独でまたは2種以上を組み合わせて用いることができる。例えば、配線パターンをスクリーン印刷などで印刷する場合に用いる焼成用ペーストの調製には、銀や銅、ニッケルなどが用いることでき、ニッケルを用いることが好ましい。本発明の一実施形態に係る焼成用ペーストは、積層セラミックコンデンサ(MLCC)用とすることができ、例えば、MLCCの内部電極用とできる。一例として、本発明の一実施形態に係る焼成用ペーストは、無機粒子としてニッケルを含む、内部電極用とすることができる。
4. Baking Paste A baking paste according to one embodiment of the present invention contains the above binder composition and inorganic particles. As the inorganic particles, known powders can be used depending on the purpose. Examples of inorganic particles include gold, silver, copper, nickel, palladium, ITO, alumina, zirconia, titanium oxide, barium titanate, aluminum nitride, silicon nitride, boron nitride, various glass powders, inorganic phosphors, and graphite powder. , solder powder, etc., and these can be used alone or in combination of two or more. For example, silver, copper, nickel, etc. can be used to prepare a firing paste used when printing a wiring pattern by screen printing, etc., and it is preferable to use nickel. The firing paste according to one embodiment of the present invention can be used for multilayer ceramic capacitors (MLCCs), for example, for internal electrodes of MLCCs. As an example, the firing paste according to one embodiment of the present invention can be used for internal electrodes and contains nickel as inorganic particles.
焼成用ペーストの配合は、焼成用ペーストの良好な塗布性や、焼成用ペーストを焼結させて得られる焼結体が、各種の良好な特性を有するように、適宜調整される。例えば、MLCC等に用いる内部電極や導体配線を形成する場合、焼成用ペーストを、公知の方法で、例えば、スクリーン印刷法、ディスペンス法、ドクターブレード法等の成形方法で成形し、所望の形状の成形体を得ることができる。続いて、得られた成形体を、必要に応じて適宜な温度で加熱乾燥させた後、焼成することで、焼成用ペースト中のバインダーが除去され、無機粉体が焼結し、焼結体を得ることができる。本発明に係る乳酸-ビニル共重合体を含む焼成用ペーストは、塗工性に優れ、例えば上記の方法での成形が可能であり、糸曳が少なく、例えば、印刷時にはみ出し等の不具合が発生しにくく、焼成後に乳酸-ビニル共重合体に由来する残存炭素が少なく欠陥のリスクが少ない電極、導体配線を得ることができる。 The composition of the firing paste is appropriately adjusted so that the firing paste has good applicability and the sintered body obtained by sintering the firing paste has various good properties. For example, when forming internal electrodes and conductor wiring for use in MLCCs, etc., the firing paste is molded into the desired shape by a known method such as screen printing, dispensing, or doctor blading. A molded body can be obtained. Next, the obtained molded body is heated and dried at an appropriate temperature as necessary, and then fired to remove the binder in the firing paste, sinter the inorganic powder, and form a sintered body. can be obtained. The baking paste containing the lactic acid-vinyl copolymer according to the present invention has excellent coating properties, can be molded, for example, by the method described above, and has less stringiness, causing problems such as extrusion during printing. It is possible to obtain electrodes and conductor wiring with less residual carbon derived from the lactic acid-vinyl copolymer after firing and with less risk of defects.
以下、実施例に基づいて本発明を更に詳細に説明するが、本発明はこれらに限定して解釈されるものではない。 EXAMPLES Hereinafter, the present invention will be explained in more detail based on Examples, but the present invention is not interpreted as being limited to these.
以下の手順で、ビニル共重合体を調製した。
<製造例A-1>
攪拌装置、ガス導入管、温度計および還流冷却管を備えた容量1リットルのフラスコに、単量体として、イソブチルメタクリレート(iBMA)50質量部と2-ヒドロキシエチルメタクリレート(HEMA)50質量部、および溶媒として、メチルエチルケトン(MEK)100質量部からなる単量体および溶媒混合物を計200質量部仕込み、ガス導入管からフラスコ内に窒素ガスを0.3リットル/minの流量で30分間流し込みながら、攪拌して窒素置換を行った後、フラスコの混合物を75℃まで昇温した。次いで、フラスコ内の混合物を75℃に維持しながら、重合開始剤としてV-601(ジメチル-2,2'-アゾビス(2-メチルプロピオネート))を30分おきに計5回、計0.5質量部添加し、適宜加熱および冷却を行うことで、フラスコ内の内容物の温度を75℃に維持した。初期の重合開始剤の添加から8時間後、室温まで冷却し、ビニル共重合体溶液を得た。得られたビニル共重合体溶液を、105℃で8時間乾燥することで、ビニル共重合体1を調製した。得られたビニル共重合体1の重量平均分子量は51.6万であった。
A vinyl copolymer was prepared according to the following procedure.
<Manufacture example A-1>
In a 1 liter flask equipped with a stirring device, a gas inlet tube, a thermometer and a reflux condenser, 50 parts by mass of isobutyl methacrylate (iBMA) and 50 parts by mass of 2-hydroxyethyl methacrylate (HEMA) were added as monomers. A total of 200 parts by mass of a monomer and solvent mixture consisting of 100 parts by mass of methyl ethyl ketone (MEK) was charged as a solvent, and the mixture was stirred while flowing nitrogen gas into the flask from the gas introduction tube at a flow rate of 0.3 liters/min for 30 minutes. After purging with nitrogen, the mixture in the flask was heated to 75°C. Next, while maintaining the mixture in the flask at 75°C, V-601 (dimethyl-2,2'-azobis(2-methylpropionate)) was added as a polymerization initiator every 30 minutes for a total of 5 times at a total of 0. The temperature of the contents in the flask was maintained at 75° C. by adding .5 parts by mass and heating and cooling as appropriate. Eight hours after the initial addition of the polymerization initiator, the mixture was cooled to room temperature to obtain a vinyl copolymer solution. Vinyl copolymer 1 was prepared by drying the obtained vinyl copolymer solution at 105° C. for 8 hours. The weight average molecular weight of the obtained vinyl copolymer 1 was 516,000.
<製造例A-2>
単量体および溶媒混合物を、イソブチルメタクリレート(iBMA)50質量部、2-ヒドロキシエチルメタクリレート(HEMA)50質量部、酢酸エチル(EtAc)100質量部とし、さらに、連鎖移動剤としてチオグリセロール(TGL)を2質量部の計202質量部とした以外は、製造例A-1と同様にしてビニル共重合体2を調製した。得られたビニル共重合体2の重量平均分子量は1.1万であった。
<Manufacture example A-2>
The monomer and solvent mixture was 50 parts by mass of isobutyl methacrylate (iBMA), 50 parts by mass of 2-hydroxyethyl methacrylate (HEMA), and 100 parts by mass of ethyl acetate (EtAc), and thioglycerol (TGL) was used as a chain transfer agent. Vinyl copolymer 2 was prepared in the same manner as in Production Example A-1, except that the total amount was 202 parts by mass (2 parts by mass). The weight average molecular weight of the obtained vinyl copolymer 2 was 11,000.
<製造例A-3>
単量体および溶媒混合物を、イソブチルメタクリレート(iBMA)80質量部、2-ヒドロキシエチルメタクリレート(HEMA)20質量部、酢酸エチル(EtAc)100質量部の計200質量部とした以外は、製造例A-1と同様にしてビニル共重合体3を調製した。得られたビニル共重合体3の重量平均分子量は28.7万であった。
<Manufacture example A-3>
Production Example A except that the monomer and solvent mixture was 200 parts by mass of 80 parts by mass of isobutyl methacrylate (iBMA), 20 parts by mass of 2-hydroxyethyl methacrylate (HEMA), and 100 parts by mass of ethyl acetate (EtAc). Vinyl copolymer 3 was prepared in the same manner as in Example 1. The weight average molecular weight of the obtained vinyl copolymer 3 was 287,000.
<製造例A-4>
単量体および溶媒混合物を、イソブチルメタクリレート(iBMA)90質量部、2-ヒドロキシエチルメタクリレート(HEMA)10質量部、酢酸エチル(EtAc)100質量部の計200質量部とした以外は、製造例A-1と同様にしてビニル共重合体4を調製した。得られたビニル共重合体4の重量平均分子量は14万であった。
<Manufacture example A-4>
Production Example A except that the monomer and solvent mixture was 200 parts by mass of 90 parts by mass of isobutyl methacrylate (iBMA), 10 parts by mass of 2-hydroxyethyl methacrylate (HEMA), and 100 parts by mass of ethyl acetate (EtAc). Vinyl copolymer 4 was prepared in the same manner as in Example 1. The weight average molecular weight of the obtained vinyl copolymer 4 was 140,000.
<製造例A-5>
単量体および溶媒混合物を、イソブチルメタクリレート(iBMA)90質量部、2-ヒドロキシエチルメタクリレート(HEMA)10質量部、酢酸エチル(EtAc)100質量部とし、さらに、連鎖移動剤としてチオグリセロール(TGL)0.2質量部の計200.2質量部とした以外は、製造例A-1と同様にしてビニル共重合体5を調製した。得られたビニル共重合体5の重量平均分子量は6.3万であった。
<Manufacture example A-5>
The monomer and solvent mixture was 90 parts by mass of isobutyl methacrylate (iBMA), 10 parts by mass of 2-hydroxyethyl methacrylate (HEMA), and 100 parts by mass of ethyl acetate (EtAc), and thioglycerol (TGL) was used as a chain transfer agent. Vinyl copolymer 5 was prepared in the same manner as in Production Example A-1, except that the amount was 0.2 parts by mass, for a total of 200.2 parts by mass. The weight average molecular weight of the obtained vinyl copolymer 5 was 63,000.
<製造例A-6>
攪拌装置、ガス導入管、温度計および還流冷却管を備えた容量1リットルのフラスコに単量体としてイソブチルメタクリレート(iBMA)90質量部と2-ヒドロキシエチルメタクリレート(HEMA)10質量部、高分子分散安定剤としてポリビニルアルコール(PVA)1質量部および溶媒として水200質量部からなる単量体および溶媒混合物を計300質量部、重合開始剤としてV-601を0.5質量部仕込み、ガス導入管からフラスコ内に窒素ガスを0.3リットル/minの流量で30分攪拌して窒素置換を行った後、フラスコの混合物を75℃まで昇温した。フラスコ内の混合物を75℃に維持するように加熱および冷却を行ってさらに3時間反応させた。開始剤の添加から3時間後、室温まで冷却し、ビニル共重合体乳化液を得た。得られたビニル共重合体乳化液を室温まで冷却、ろ過した後、105℃で8時間乾燥することで、ビニル共重合体6を調製した。得られたビニル共重合体6の重量平均分子量は44万であった。
<Manufacture example A-6>
90 parts by mass of isobutyl methacrylate (iBMA) and 10 parts by mass of 2-hydroxyethyl methacrylate (HEMA) as monomers were placed in a 1-liter flask equipped with a stirring device, a gas inlet tube, a thermometer, and a reflux condenser, and polymer dispersion. A total of 300 parts by mass of a monomer and solvent mixture consisting of 1 part by mass of polyvinyl alcohol (PVA) as a stabilizer and 200 parts by mass of water as a solvent, 0.5 parts by mass of V-601 as a polymerization initiator, and a gas introduction tube. After stirring nitrogen gas into the flask at a flow rate of 0.3 liters/min for 30 minutes to perform nitrogen substitution, the mixture in the flask was heated to 75°C. The mixture in the flask was heated and cooled to maintain the temperature at 75°C, and the reaction was continued for an additional 3 hours. Three hours after the addition of the initiator, the mixture was cooled to room temperature to obtain a vinyl copolymer emulsion. The obtained vinyl copolymer emulsion was cooled to room temperature, filtered, and then dried at 105° C. for 8 hours to prepare vinyl copolymer 6. The weight average molecular weight of the obtained vinyl copolymer 6 was 440,000.
<製造例A-7>
単量体および溶媒混合物を、イソブチルメタクリレート(iBMA)95質量部、2-ヒドロキシエチルメタクリレート(HEMA)5質量部、水200質量部の計300質量部とした以外は、製造例A-1と同様にしてビニル共重合体7を調製した。得られたビニル共重合体7の重量平均分子量は68.2万であった。
<Manufacture example A-7>
Same as Production Example A-1, except that the monomer and solvent mixture was 95 parts by mass of isobutyl methacrylate (iBMA), 5 parts by mass of 2-hydroxyethyl methacrylate (HEMA), and 200 parts by mass of water, for a total of 300 parts by mass. Vinyl copolymer 7 was prepared. The weight average molecular weight of the obtained vinyl copolymer 7 was 682,000.
<製造例A-8>
単量体および溶媒混合物を、イソブチルメタクリレート(iBMA)95質量部、2-ヒドロキシエチルメタクリレート(HEMA)5質量部、メソ-ラクチド(mLA)100質量部の計200質量部とした以外は、製造例A-1と同様に反応させたビニル共重合体8/メソ-ラクチド混合物を調製した。得られたビニル共重合体8の重量平均分子量は19.3万であった。
<Manufacture example A-8>
Production example except that the monomer and solvent mixture was 200 parts by mass of 95 parts by mass of isobutyl methacrylate (iBMA), 5 parts by mass of 2-hydroxyethyl methacrylate (HEMA), and 100 parts by mass of meso-lactide (mLA). A vinyl copolymer 8/meso-lactide mixture reacted in the same manner as A-1 was prepared. The weight average molecular weight of the obtained vinyl copolymer 8 was 193,000.
<製造例A-9>
単量体および溶媒混合物を、ステアリルメタクリレート(SMA)90質量部、2-ヒドロキシエチルメタクリレート(HEMA)10質量部、酢酸エチル(EtAc)90質量部とトルエン(To)10質量部とし、さらに連鎖移動剤としてチオグリセロール(TGL)0.1質量部の計200.1質量部とした以外は、製造例A-1と同様にしてビニル共重合体9を調製した。得られたビニル共重合体9の重量平均分子量は8.2万であった。
<Manufacture example A-9>
The monomer and solvent mixture was made into 90 parts by mass of stearyl methacrylate (SMA), 10 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 90 parts by mass of ethyl acetate (EtAc), and 10 parts by mass of toluene (To), and further subjected to chain transfer. Vinyl copolymer 9 was prepared in the same manner as in Production Example A-1, except that 0.1 part by mass of thioglycerol (TGL) was used as the agent for a total of 200.1 parts by mass. The weight average molecular weight of the obtained vinyl copolymer 9 was 82,000.
<製造例A-10>
単量体および溶媒混合物を、ステアリルメタクリレート(SMA)70質量部、2-ヒドロキシエチルメタクリレート(HEMA)30質量部、酢酸エチル(EtAc)80質量部、トルエン(To)20質量部とし、さらに連鎖移動剤としてチオグリセロール(TGL)0.1質量部の計200.1質量部とした以外は、製造例A-1と同様にしてビニル共重合体10を調製した。得られたビニル共重合体10の重量平均分子量は9.5万であった。
<Manufacture example A-10>
The monomer and solvent mixture was made into 70 parts by mass of stearyl methacrylate (SMA), 30 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 80 parts by mass of ethyl acetate (EtAc), and 20 parts by mass of toluene (To), and further subjected to chain transfer. Vinyl copolymer 10 was prepared in the same manner as in Production Example A-1, except that 0.1 part by mass of thioglycerol (TGL) was used as the agent for a total of 200.1 parts by mass. The weight average molecular weight of the obtained vinyl copolymer 10 was 95,000.
<製造例A-11>
単量体および溶媒混合物を、ステアリルメタクリレート(SMA)90質量部、2-ヒドロキシエチルメタクリレート(HEMA)10質量部、酢酸エチル(EtAc)80質量部、トルエン(To)20質量部の計200質量部とした以外は、製造例A-1と同様にしてビニル共重合体11を調製した。得られたビニル共重合体11の重量平均分子量は32.0万であった。
<Manufacture example A-11>
A total of 200 parts by mass of the monomer and solvent mixture, 90 parts by mass of stearyl methacrylate (SMA), 10 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 80 parts by mass of ethyl acetate (EtAc), and 20 parts by mass of toluene (To). Vinyl copolymer 11 was prepared in the same manner as in Production Example A-1 except that. The weight average molecular weight of the obtained vinyl copolymer 11 was 320,000.
<製造例A-12>
単量体および溶媒混合物を、ステアリルメタクリレート(SMA)96質量部、2-ヒドロキシエチルメタクリレート(HEMA)4質量部、酢酸エチル(EtAc)80質量部、トルエン(To)20質量部とし、さらに連鎖移動剤としてチオグリセロール(TGL)0.1質量部の計194.1質量部とした以外は、製造例A-1と同様にしてビニル共重合体12を調製した。得られたビニル共重合体12の重量平均分子量は7.4万であった。
<Manufacture example A-12>
The monomer and solvent mixture was made into 96 parts by mass of stearyl methacrylate (SMA), 4 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 80 parts by mass of ethyl acetate (EtAc), and 20 parts by mass of toluene (To), and further subjected to chain transfer. Vinyl copolymer 12 was prepared in the same manner as in Production Example A-1, except that 0.1 part by mass of thioglycerol (TGL) was used as the agent for a total of 194.1 parts by mass. The weight average molecular weight of the obtained vinyl copolymer 12 was 74,000.
<製造例A-13>
単量体および溶媒混合物を、ステアリルメタクリレート(SMA)9096質量部、2-ヒドロキシエチルメタクリレート(HEMA)4質量部、酢酸エチル(EtAc)80質量部、トルエン(To)20質量部の計194質量部とした以外は、製造例A-1と同様にしてビニル共重合体13を調製した。得られたビニル共重合体13の重量平均分子量は21.7万であった。
<Manufacture example A-13>
The monomer and solvent mixture was mixed with 9096 parts by mass of stearyl methacrylate (SMA), 4 parts by mass of 2-hydroxyethyl methacrylate (HEMA), 80 parts by mass of ethyl acetate (EtAc), and 20 parts by mass of toluene (To), for a total of 194 parts by mass. Vinyl copolymer 13 was prepared in the same manner as in Production Example A-1 except that. The weight average molecular weight of the obtained vinyl copolymer 13 was 217,000.
<製造例A-14>
単量体および溶媒混合物を、イソブチルメタクリレート(iBMA)99質量部、2-ヒドロキシエチルメタクリレート(HEMA)1質量部、メソ-ラクチド(mLA)50質量部の計150質量部とした以外は、製造例A-1と同様に反応させたビニル共重合体13/メソ-ラクチド混合物を調製した。得られたビニル共重合体14の重量平均分子量は14.2万であった。
<Manufacture example A-14>
Production example except that the monomer and solvent mixture was 150 parts by mass of 99 parts by mass of isobutyl methacrylate (iBMA), 1 part by mass of 2-hydroxyethyl methacrylate (HEMA), and 50 parts by mass of meso-lactide (mLA). A vinyl copolymer 13/meso-lactide mixture reacted in the same manner as A-1 was prepared. The weight average molecular weight of the obtained vinyl copolymer 14 was 142,000.
以上の手順で調製したビニル共重合体を用いて、以下の手順で乳酸-ビニル共重合体を調製した。
<製造例B-1>
攪拌装置、ガス導入管、温度計および還流冷却管を備えた容量1リットルのフラスコにメソ-ラクチド(mLA)96質量部とビニル共重合体1を4質量部からなる単量体/重合体混合物を計100質量部仕込み、フラスコの内容物をガス導入管からフラスコ内に窒素ガスを流量0.3リットル/minで流し込みながら180℃まで昇温した後に、攪拌して窒素置換を行った。次いで、フラスコ内の内容物を180℃に維持しながら、触媒としてオクチル酸スズ0.03質量部を添加し、フラスコ内の内容物を180℃に維持するように加熱および冷却を行ってさらに3時間反応させた。触媒の添加から3時間後、室温まで冷却し、乳酸-ビニル共重合体1を得た。得られた乳酸-ビニル共重合体1の重量平均分子量は187.1万であった。
Using the vinyl copolymer prepared in the above procedure, a lactic acid-vinyl copolymer was prepared in the following procedure.
<Manufacture example B-1>
A monomer/polymer mixture consisting of 96 parts by mass of meso-lactide (mLA) and 4 parts by mass of vinyl copolymer 1 was placed in a 1-liter flask equipped with a stirring device, a gas inlet tube, a thermometer, and a reflux condenser. A total of 100 parts by mass of was charged, and the contents of the flask were heated to 180° C. while flowing nitrogen gas into the flask from the gas introduction tube at a flow rate of 0.3 liters/min, and then stirred to perform nitrogen substitution. Next, while maintaining the content in the flask at 180°C, 0.03 parts by mass of tin octylate was added as a catalyst, and heating and cooling were performed to maintain the content in the flask at 180°C for an additional 3 Allowed time to react. Three hours after the addition of the catalyst, the mixture was cooled to room temperature to obtain lactic acid-vinyl copolymer 1. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 1 was 1,871,000.
<製造例B-2>
単量体/重合体混合物を、mLA50質量部とビニル共重合体2を50質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体2を調製した。得られた乳酸-ビニル共重合体2の重量平均分子量は13.6万であった。
<Production example B-2>
Lactic acid-vinyl copolymer 2 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 2. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 2 was 136,000.
<製造例B-3>
単量体/重合体混合物を、mLA83質量部とビニル共重合体3を17質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体3を調製した。得られた乳酸-ビニル共重合体の重量平均分子量は144.8万であった。
<Manufacture example B-3>
Lactic acid-vinyl copolymer 3 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 83 parts by mass of mLA and 17 parts by mass of vinyl copolymer 3. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer was 1,448,000.
<製造例B-4>
単量体/重合体混合物を、mLA50質量部とビニル共重合体4を50質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体4を調製した。得られた乳酸-ビニル共重合体4の重量平均分子量は37.4万であった。
<Manufacture example B-4>
Lactic acid-vinyl copolymer 4 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 4. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 4 was 374,000.
<製造例B-5>
単量体/重合体混合物を、mLA90質量部とビニル共重合体4を10質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体5を調製した。得られた乳酸-ビニル共重合体5の重量平均分子量は69.4万であった。
<Manufacture example B-5>
Lactic acid-vinyl copolymer 5 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 90 parts by mass of MLA and 10 parts by mass of vinyl copolymer 4. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 5 was 694,000.
<製造例B-6>
単量体/重合体混合物を、mLA97.5質量部とビニル共重合体4を2.5質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体6を調製した。得られた乳酸-ビニル共重合体6の重量平均分子量は105.5万であった。
<Manufacture example B-6>
A lactic acid-vinyl copolymer was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 97.5 parts by mass of mLA and 2.5 parts by mass of vinyl copolymer 4. Polymer 6 was prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 6 was 1,055,000.
<製造例B-7>
単量体/重合体混合物を、mLA90質量部とビニル共重合体5を10質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体7を調製した。得られた乳酸-ビニル共重合体7の重量平均分子量は89.9万であった。
<Manufacture example B-7>
Lactic acid-vinyl copolymer 7 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 90 parts by mass of MLA and 10 parts by mass of vinyl copolymer 5. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 7 was 899,000.
<製造例B-8>
単量体/重合体混合物を、mLA70質量部とビニル共重合体6を30質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体8を調製した。得られた乳酸-ビニル共重合体8の重量平均分子量は129.2万であった。
<Manufacture example B-8>
Lactic acid-vinyl copolymer 8 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 70 parts by mass of mLA and 30 parts by mass of vinyl copolymer 6. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 8 was 1,292,000.
<製造例B-9>
単量体/重合体混合物を、mLA60質量部とビニル共重合体7を40質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体9を調製した。得られた乳酸-ビニル共重合体9の重量平均分子量は124.4万であった。
<Manufacture example B-9>
Lactic acid-vinyl copolymer 9 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 60 parts by mass of mLA and 40 parts by mass of vinyl copolymer 7. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 9 was 1,244,000.
<製造例B-10>
単量体/重合体混合物を、mLA50質量部とビニル共重合体8/メソ-ラクチド混合物を50質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体10を調製した。得られた乳酸-ビニル共重合体10の重量平均分子量は53.3万であった。
<Manufacture example B-10>
lactic acid-vinyl Copolymer 10 was prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 10 was 533,000.
<製造例B-11>
単量体/重合体混合物を、mLA90質量部とビニル共重合体9を10質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体11を調製した。得られた乳酸-ビニル共重合体11の重量平均分子量は112.2万であった。
<Manufacture example B-11>
Lactic acid-vinyl copolymer 11 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 90 parts by mass of MLA and 10 parts by mass of vinyl copolymer 9. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 11 was 1,122,000.
<製造例B-12>
単量体/重合体混合物を、mLA90質量部とビニル共重合体10を13質量部からなる計103質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体12を調製した。得られた乳酸-ビニル共重合体12の重量平均分子量は53.1万であった。
<Manufacture example B-12>
Lactic acid-vinyl copolymer 12 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 103 parts by mass, consisting of 90 parts by mass of MLA and 13 parts by mass of vinyl copolymer 10. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 12 was 531,000.
<製造例B-13>
単量体/重合体混合物を、mLA50質量部とビニル共重合体11を50質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体13を調製した。得られた乳酸-ビニル共重合体13の重量平均分子量は9.2万であった。
<Manufacture example B-13>
Lactic acid-vinyl copolymer 13 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 11. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 13 was 92,000.
<製造例B-14>
単量体/重合体混合物を、mLA50質量部とビニル共重合体9を50質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体14を調製した。得られた乳酸-ビニル共重合体14の重量平均分子量は19.3万であった。
<Manufacture example B-14>
Lactic acid-vinyl copolymer 14 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 9. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 14 was 193,000.
<製造例B-15>
単量体/重合体混合物を、mLA50質量部とビニル共重合体12を50質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体15を調製した。得られた乳酸-ビニル共重合体15の重量平均分子量は11.6万であった。
<Manufacture example B-15>
Lactic acid-vinyl copolymer 15 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 12. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 15 was 116,000.
<製造例B-16>
単量体/重合体混合物を、mLA50質量部とビニル共重合体13を50質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体16を調製した。得られた乳酸-ビニル共重合体16の重量平均分子量は57.8万であった。
<Manufacture example B-16>
Lactic acid-vinyl copolymer 16 was prepared in the same manner as in Production Example B-1, except that the monomer/polymer mixture was changed to 100 parts by mass, consisting of 50 parts by mass of mLA and 50 parts by mass of vinyl copolymer 13. Prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 16 was 578,000.
<製造例B-17>
単量体/重合体混合物を、mLA33.3質量部とビニル共重合体14/メソ-ラクチド混合物を66.7質量部からなる計100質量部とした以外は、製造例B-1と同様にして乳酸-ビニル共重合体17を調製した。得られた乳酸-ビニル共重合体17の重量平均分子量は14.6万であった。
<Manufacture example B-17>
The procedure was the same as in Production Example B-1, except that the monomer/polymer mixture was 100 parts by mass, consisting of 33.3 parts by mass of mLA and 66.7 parts by mass of vinyl copolymer 14/meso-lactide mixture. Lactic acid-vinyl copolymer 17 was prepared. The weight average molecular weight of the obtained lactic acid-vinyl copolymer 17 was 146,000.
以上で得られた乳酸-ビニル共重合体および他の化合物をバインダーとして用い、以下の手順でバインダー組成物を調製した。 Using the lactic acid-vinyl copolymer obtained above and other compounds as a binder, a binder composition was prepared according to the following procedure.
[実施例1]
密閉容器に乳酸-ビニル共重合体1を30部、溶媒としてBCAを70部投入し、THINKY製自公転式ミキサー「あわとり練太郎」にて2000rpmで溶け残りが無くなるまで撹拌し、2200rpmで気泡が無くなるまで脱泡後、25℃で1日静置してバインダー組成物1を得た。バインダー組成物1および乳酸-ビニル共重合体1の各物性の測定結果を表3に示した。
[Example 1]
Pour 30 parts of lactic acid-vinyl copolymer 1 and 70 parts of BCA as a solvent into a closed container, stir at 2000 rpm until there is no undissolved residue, and stir at 2200 rpm until there are no bubbles left. After degassing until no more bubbles were removed, the mixture was allowed to stand at 25° C. for one day to obtain Binder Composition 1. Table 3 shows the measurement results of each physical property of Binder Composition 1 and Lactic Acid-Vinyl Copolymer 1.
[実施例2]
乳酸-ビニル共重合体1に代えて乳酸-ビニル共重合体2、およびBCAに代えてDHTAを用いた以外は、実施例1と同様の方法でバインダー組成物2を得た。バインダー組成物2および乳酸-ビニル共重合体2の各物性の測定結果を表3に示した。
[Example 2]
Binder composition 2 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 2 was used in place of lactic acid-vinyl copolymer 1, and DHTA was used in place of BCA. Table 3 shows the measurement results of each physical property of Binder Composition 2 and Lactic Acid-Vinyl Copolymer 2.
[実施例3]
乳酸-ビニル共重合体1に代えて乳酸-ビニル共重合体3を用いた以外は、実施例1と同様の方法でバインダー組成物3を得た。バインダー組成物3および乳酸-ビニル共重合体3の各物性の測定結果を表3に示した。
[Example 3]
Binder composition 3 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 3 was used in place of lactic acid-vinyl copolymer 1. Table 3 shows the measurement results of each physical property of Binder Composition 3 and Lactic Acid-Vinyl Copolymer 3.
[実施例4]
乳酸-ビニル共重合体2に代えて乳酸-ビニル共重合体4を用いた以外は、実施例2と同様の方法でバインダー組成物4を得た。バインダー組成物4および乳酸-ビニル共重合体4の各物性の測定結果を表3に示した。
[Example 4]
Binder composition 4 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 4 was used in place of lactic acid-vinyl copolymer 2. Table 3 shows the measurement results of each physical property of Binder Composition 4 and Lactic Acid-Vinyl Copolymer 4.
[実施例5]
乳酸-ビニル共重合体1に代えて乳酸-ビニル共重合体5を用いた以外は、実施例1と同様の方法でバインダー組成物5を得た。バインダー組成物5および乳酸-ビニル共重合体5の各物性の測定結果を表3に示した。
[Example 5]
Binder composition 5 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 5 was used in place of lactic acid-vinyl copolymer 1. The measurement results of each physical property of Binder Composition 5 and Lactic Acid-Vinyl Copolymer 5 are shown in Table 3.
[実施例6]
乳酸-ビニル共重合体1に代えて乳酸-ビニル共重合体6を用いた以外は、実施例1と同様の方法でバインダー組成物6を得た。バインダー組成物6および乳酸-ビニル共重合体6の各物性の測定結果を表3に示した。
[Example 6]
Binder composition 6 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 6 was used in place of lactic acid-vinyl copolymer 1. Table 3 shows the measurement results of each physical property of Binder Composition 6 and Lactic Acid-Vinyl Copolymer 6.
[実施例7]
乳酸-ビニル共重合体1に代えて乳酸-ビニル共重合体7を用いた以外は、実施例1と同様の方法でバインダー組成物7を得た。バインダー組成物7および乳酸-ビニル共重合体7の各物性の測定結果を表3に示した。
[Example 7]
Binder composition 7 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 7 was used in place of lactic acid-vinyl copolymer 1. The measurement results of each physical property of Binder Composition 7 and Lactic Acid-Vinyl Copolymer 7 are shown in Table 3.
[実施例8]
乳酸-ビニル共重合体1に代えて乳酸-ビニル共重合体8を用いた以外は、実施例1と同様の方法でバインダー組成物8を得た。バインダー組成物8および乳酸-ビニル共重合体8の各物性の測定結果を表3に示した。
[Example 8]
Binder composition 8 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 8 was used in place of lactic acid-vinyl copolymer 1. Table 3 shows the measurement results of each physical property of Binder Composition 8 and Lactic Acid-Vinyl Copolymer 8.
[実施例9]
乳酸-ビニル共重合体2に代えて乳酸-ビニル共重合体9を用いた以外は、実施例2と同様の方法でバインダー組成物9を得た。バインダー組成物9および乳酸-ビニル共重合体9の各物性の測定結果を表3に示した。
[Example 9]
Binder composition 9 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 9 was used in place of lactic acid-vinyl copolymer 2. Table 3 shows the measurement results of each physical property of Binder Composition 9 and Lactic Acid-Vinyl Copolymer 9.
[実施例10]
乳酸-ビニル共重合体2に代えて乳酸-ビニル共重合体10を用いた以外は、実施例2と同様の方法でバインダー組成物10を得た。バインダー組成物10および乳酸-ビニル共重合体10の各物性の測定結果を表3に示した。
[Example 10]
Binder composition 10 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 10 was used in place of lactic acid-vinyl copolymer 2. Table 3 shows the measurement results of each physical property of binder composition 10 and lactic acid-vinyl copolymer 10.
[実施例11]
乳酸-ビニル共重合体1に代えて乳酸-ビニル共重合体11を用いた以外は、実施例1と同様の方法でバインダー組成物11を得た。バインダー組成物11および乳酸-ビニル共重合体11の各物性の測定結果を表3に示した。
[Example 11]
Binder composition 11 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 11 was used in place of lactic acid-vinyl copolymer 1. Table 3 shows the measurement results of each physical property of binder composition 11 and lactic acid-vinyl copolymer 11.
[実施例12]
乳酸-ビニル共重合体1に代えて乳酸-ビニル共重合体12を用いた以外は、実施例1と同様の方法でバインダー組成物12を得た。バインダー組成物12および乳酸-ビニル共重合体12の各物性の測定結果を表3に示した。
[Example 12]
Binder composition 12 was obtained in the same manner as in Example 1, except that lactic acid-vinyl copolymer 12 was used in place of lactic acid-vinyl copolymer 1. Table 3 shows the measurement results of each physical property of Binder Composition 12 and Lactic Acid-Vinyl Copolymer 12.
[実施例13]
乳酸-ビニル共重合体2に代えて乳酸-ビニル共重合体13を用いた以外は、実施例2と同様の方法でバインダー組成物13を得た。バインダー組成物13および乳酸-ビニル共重合体13の各物性の測定結果を表3に示した。
[Example 13]
Binder composition 13 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 13 was used in place of lactic acid-vinyl copolymer 2. Table 3 shows the measurement results of each physical property of Binder Composition 13 and Lactic Acid-Vinyl Copolymer 13.
[実施例14]
乳酸-ビニル共重合体2に代えて乳酸-ビニル共重合体14を用いた以外は、実施例2と同様の方法でバインダー組成物14を得た。バインダー組成物14および乳酸-ビニル共重合体14の各物性の測定結果を表3に示した。
[Example 14]
Binder composition 14 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 14 was used in place of lactic acid-vinyl copolymer 2. Table 3 shows the measurement results of each physical property of Binder Composition 14 and Lactic Acid-Vinyl Copolymer 14.
[実施例15]
乳酸-ビニル共重合体2に代えて乳酸-ビニル共重合体15を用いた以外は、実施例2と同様の方法でバインダー組成物15を得た。バインダー組成物15および乳酸-ビニル共重合体15の各物性の測定結果を表3に示した。
[Example 15]
Binder composition 15 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 15 was used in place of lactic acid-vinyl copolymer 2. The measurement results of each physical property of Binder Composition 15 and Lactic Acid-Vinyl Copolymer 15 are shown in Table 3.
[実施例16]
乳酸-ビニル共重合体2に代えて乳酸-ビニル共重合体16を用いた以外は、実施例2と同様の方法でバインダー組成物16を得た。バインダー組成物16および乳酸-ビニル共重合体16の各物性の測定結果を表3に示した。
[Example 16]
Binder composition 16 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 16 was used in place of lactic acid-vinyl copolymer 2. Table 3 shows the measurement results of each physical property of Binder Composition 16 and Lactic Acid-Vinyl Copolymer 16.
[実施例17]
乳酸-ビニル共重合体2に代えて乳酸-ビニル共重合体17を用いた以外は、実施例2と同様の方法でバインダー組成物17を得た。バインダー組成物17および乳酸-ビニル共重合体17の各物性の測定結果を表3に示した。
[Example 17]
Binder composition 17 was obtained in the same manner as in Example 2, except that lactic acid-vinyl copolymer 17 was used in place of lactic acid-vinyl copolymer 2. Table 3 shows the measurement results of each physical property of Binder Composition 17 and Lactic Acid-Vinyl Copolymer 17.
[比較例1]
密閉容器にエチルセルロースを5部、溶媒にDHTAを95部に投入し、THINKY製自公転式ミキサー「あわとり練太郎」にて2000rpmで溶け残りが無くなるまで撹拌し、2200rpmで気泡が無くなるまで脱泡後、25℃で1日静置してバインダー組成物17を得た。バインダー組成物17およびECの各物性の測定結果を表3に示した。
[Comparative example 1]
Pour 5 parts of ethyl cellulose and 95 parts of DHTA as a solvent into a closed container, stir at 2000 rpm until there is no undissolved residue using a THINKY rotary-revolution mixer "Awatori Rentaro", and defoamer at 2200 rpm until there are no bubbles left. Thereafter, the mixture was allowed to stand at 25° C. for one day to obtain a binder composition 17. Table 3 shows the measurement results of each physical property of Binder Composition 17 and EC.
[比較例2]
乳酸-ビニル共重合体2に代えてポリiBMA(PiBMA)を用いた以外は、実施例2と同様の方法でバインダー組成物18を得た。バインダー組成物18およびポリiBMAの各物性の測定結果を表3に示す。
[Comparative example 2]
Binder composition 18 was obtained in the same manner as in Example 2, except that polyiBMA (PiBMA) was used in place of lactic acid-vinyl copolymer 2. Table 3 shows the measurement results of each physical property of binder composition 18 and polyiBMA.
[比較例3]
乳酸-ビニル共重合体1に代えてポリ乳酸を用いた以外は、実施例1と同様の方法でバインダー組成物19を得た。バインダー組成物19およびポリ乳酸の各物性の測定結果を表3に示した。
[Comparative example 3]
Binder composition 19 was obtained in the same manner as in Example 1, except that polylactic acid was used in place of lactic acid-vinyl copolymer 1. Table 3 shows the measurement results of each physical property of Binder Composition 19 and polylactic acid.
ビニル共重合体、乳酸-ビニル共重合体(バインダー)およびバインダー組成物の評価は、以下の手順で行った。
<ビニル共重合体のガラス転移温度>
ビニル共重合体のガラス転移温度は、原料として配合した単量体の重量分率、単量体のホモポリマーのガラス転移温度により、以下のFoxの式を用いて理論的に求めた。結果を表1に示す。
 1/Tg=w/Tg+w/Tg+...+w/Tg+...+w/Tg
Tg:ビニル共重合体のガラス転移温度(K)
Tg:N種類の各ビニル単量体のホモポリマーのガラス転移温度(K)
:N種類の各ビニル単量体の重量分率(なお、w+w+...+w+...+w=1)
Evaluations of the vinyl copolymer, lactic acid-vinyl copolymer (binder), and binder composition were performed according to the following procedure.
<Glass transition temperature of vinyl copolymer>
The glass transition temperature of the vinyl copolymer was theoretically determined using the following Fox equation based on the weight fraction of the monomers blended as raw materials and the glass transition temperature of the homopolymer of the monomers. The results are shown in Table 1.
1/Tg=w 1 /Tg 1 +w 2 /Tg 2 +...+w i /Tg i +...+w N /Tg N
Tg: Glass transition temperature (K) of vinyl copolymer
Tg i : Glass transition temperature (K) of homopolymer of N types of vinyl monomers
w i : Weight fraction of each of N types of vinyl monomers (w 1 +w 2 +...+w i +...+w N =1)
<重量平均分子量>
ビニル共重合体、乳酸-ビニル共重合体の重量平均分子量および分子量分布は、GPC(ゲル浸透クロマトグラフィー)を用いて、以下の条件で測定した。結果を表1および表2に示す。
測定装置:HLC-8120GPC(東ソー社製)
GPCカラム構成:以下の5連カラム(すべて東ソー社製)
(1)TSK-GEL G7000HXL
(2)TSK-GEL GMHXL
(3)TSK-GEL GMHXL
(4)TSK-GEL G2500HXL
サンプル濃度:1.5mg/cm3となるように、テトラヒドロフランで希釈
移動相溶媒:テトラヒドロフラン
流量:1ml/min
カラム温度:40℃
<Weight average molecular weight>
The weight average molecular weight and molecular weight distribution of the vinyl copolymer and lactic acid-vinyl copolymer were measured using GPC (gel permeation chromatography) under the following conditions. The results are shown in Tables 1 and 2.
Measuring device: HLC-8120GPC (manufactured by Tosoh Corporation)
GPC column configuration: The following 5 columns (all manufactured by Tosoh Corporation)
(1)TSK-GEL G7000HXL
(2) TSK-GEL GMHXL
(3) TSK-GEL GMHXL
(4)TSK-GEL G2500HXL
Dilute with tetrahydrofuran so that sample concentration: 1.5 mg/cm3 Mobile phase solvent: tetrahydrofuran Flow rate: 1 ml/min
Column temperature: 40℃
<溶剤溶解性>
各バインダーのDHTA(ジヒドロターピニルアセテート)に対する溶解性およびBCA(ブチルカルビトールアセテート)に対する溶解性を評価した。密閉容器に、有機溶剤70質量部とバインダー30質量部を投入し、THINKY製自公転式ミキサー「あわとり練太郎」にて、2000rpmで20分撹拌し、2200rpmで5分脱泡した。その後、前記密閉容器から取り出したサンプル10gをガラス板上にのせ約5cmに塗り広げた後、以下の評価基準で、目視でバインダーの溶剤への溶解性を評価した。
 ○:ガラス板上にのせたサンプルは有機溶剤中に均一に溶解しており、不溶解物は観察されなかった。
 ×:ガラス板上にのせたサンプルに不溶解物が多数観察された。
<Solvent solubility>
The solubility of each binder in DHTA (dihydroterpinyl acetate) and BCA (butyl carbitol acetate) was evaluated. 70 parts by mass of an organic solvent and 30 parts by mass of a binder were placed in a closed container, and the mixture was stirred for 20 minutes at 2000 rpm using a rotary-revolution mixer "Awatori Rentaro" manufactured by THINKY, and defoamed for 5 minutes at 2200 rpm. Thereafter, 10 g of the sample taken out from the sealed container was placed on a glass plate and spread to an area of about 5 cm 2 , and the solubility of the binder in the solvent was visually evaluated using the following evaluation criteria.
○: The sample placed on the glass plate was uniformly dissolved in the organic solvent, and no undissolved substances were observed.
×: Many insoluble substances were observed on the sample placed on the glass plate.
<ミクロ残留炭素分>
ミクロ残留炭素分の測定は、田中科学機器製作社製、ミクロ残留炭素分試験器(ACR-M3)を用いて行った。具体的には、精秤した試験容器(ガラス製φ20.8mm×高さ80mm、容量10mL、質量M1)に、バインダー約2.0000g(質量M2)を量り取り、試験器のコーキング炉に投入した。その後、コーキング炉へ窒素を毎分600mlの流量で10分間を流し、炉内部を窒素雰囲気に置換した。次に、窒素を毎分150mlの流量で流しながら、コーキング炉を昇温速度10℃/分で常温から500℃まで昇温した。その後、コーキング炉の温度を500℃±2℃に15分間保った後、加熱を停止し、窒素流量を毎分600mLにしてコーキング炉を冷却した。コーキング炉内の温度が250℃以下になった後、試験容器を取り出し、デシケータ中で室温まで放冷した。その後、加熱後のバインダーの入った試験容器の質量M3を精秤し、ミクロ残留炭素分(%)を下記式1により求めた。
 {(M3-M1)/M2}×100 (式1)
<Micro residual carbon content>
The micro residual carbon content was measured using a micro residual carbon content tester (ACR-M3) manufactured by Tanaka Scientific Instruments Manufacturing Co., Ltd. Specifically, approximately 2.0000 g (mass M2) of the binder was weighed into a precisely weighed test container (glass diameter 20.8 mm x height 80 mm, capacity 10 mL, mass M1), and placed in the coking furnace of the test device. . Thereafter, nitrogen was flowed into the coking furnace for 10 minutes at a flow rate of 600 ml per minute to replace the inside of the furnace with a nitrogen atmosphere. Next, while flowing nitrogen at a flow rate of 150 ml/min, the temperature of the coking furnace was raised from room temperature to 500° C. at a heating rate of 10° C./min. After that, the temperature of the coking furnace was maintained at 500° C.±2° C. for 15 minutes, then heating was stopped, and the nitrogen flow rate was set to 600 mL per minute to cool the coking furnace. After the temperature inside the coking furnace became 250° C. or lower, the test container was taken out and allowed to cool to room temperature in a desiccator. Thereafter, the mass M3 of the test container containing the heated binder was accurately weighed, and the micro residual carbon content (%) was determined using the following formula 1.
{(M3-M1)/M2}×100 (Formula 1)
<95%重量減少温度(TD95)>
アルミ製φ5mmの試料容器にバインダー約5.00mgを精秤し、日立ハイテク社製、熱重量示差熱分析装置(STA7300)にて窒素雰囲気下、30℃から500℃まで10℃/minで昇温し、温度と重量変化の関係を評価した。加熱前重量を100%とし、重量が95%減少したときの温度を95%重量減少温度(TD95)[℃]とした。
<95% weight loss temperature (TD95)>
Approximately 5.00 mg of binder was accurately weighed into an aluminum sample container with a diameter of 5 mm, and the temperature was raised at a rate of 10°C/min from 30°C to 500°C under a nitrogen atmosphere using a thermogravimetric differential thermal analyzer (STA7300) manufactured by Hitachi High-Tech. The relationship between temperature and weight change was then evaluated. The weight before heating was taken as 100%, and the temperature at which the weight decreased by 95% was taken as the 95% weight loss temperature (TD95) [° C.].
<糸曳性>
25℃の環境下において、粘度Aが5Pa・sとなるような配合でバインダーを表3に記載の溶剤(BCAまたはDHTA)へ溶解した溶液にガラス棒を突き刺し10cm引き上げた際に、溶液表面とガラス棒間に糸状で存在する溶液が切れるのに要する時間について測定を行ない、以下の基準で評価した。実施例1、3、5~8、11、12、比較例3では、溶剤としてBCAを用い、その他の実施例比較例では、溶剤として、DHTAを用いた。
 4秒以下の場合:○
 4秒を超える場合:×
<Stringability>
In an environment of 25°C, when a glass rod was inserted into a solution prepared by dissolving the binder in the solvent (BCA or DHTA) listed in Table 3 with a composition such that the viscosity A was 5 Pa·s and pulled up 10 cm, the surface of the solution and The time required for the thread-like solution to break between the glass rods was measured and evaluated based on the following criteria. In Examples 1, 3, 5 to 8, 11, 12, and Comparative Example 3, BCA was used as a solvent, and in other Examples and Comparative Examples, DHTA was used as a solvent.
If it is 4 seconds or less: ○
If it exceeds 4 seconds: ×
<酸価>
トルエン66質量%、エタノール34質量%の混合溶剤100mlに、バインダー25質量%、トルエン75質量%を含む、トルエン溶液を1g加えて、試料が完全になくなるまで調整し、東亜ディーケーケー製、自動滴定装置(AUT-701)を用いて、0.1mol/l水酸化カリウムエタノール溶液で電位差滴定を行い、得られた滴定曲線の変曲線を終点とした。酸価は下記式2に基づき計算した。
 A=(B×f×5.611)/S
 A:酸価
 B:滴定に用いた0.1mol/l水酸化カリウムエタノール溶液の量(ml)
 f:0.1mol/l水酸化カリウムエタノール溶液のファクター
 S:測定に用いたバインダーの質量(g)
<Acid value>
To 100 ml of a mixed solvent of 66% by mass of toluene and 34% by mass of ethanol, 1 g of toluene solution containing 25% by mass of binder and 75% by mass of toluene was added, and the mixture was adjusted until the sample was completely eliminated. (AUT-701), potentiometric titration was performed with a 0.1 mol/l potassium hydroxide ethanol solution, and the inflection curve of the obtained titration curve was taken as the end point. The acid value was calculated based on Formula 2 below.
A=(B×f×5.611)/S
A: Acid value B: Amount (ml) of 0.1 mol/l potassium hydroxide ethanol solution used for titration
f: Factor of 0.1 mol/l potassium hydroxide ethanol solution S: Mass (g) of binder used in measurement
<各せん断速度における粘度A、Bおよび粘度比>
本発明の乳酸-ビニル共重合体溶液(バインダー組成物)の粘度は、TAインスツルメンツ製粘度・粘弾性測定装置「Discovery HR30」を用いて行った。具体的には、測定温度25℃設定の下、バインダー組成物0.1gを直径20mm、コーン角度0.975°のCone plateを、クリアランス23μmにて取り付けた測定部にセットし、せん断速度を0.01sec-1から10,000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度1sec-1における粘度A、せん断速度9,000sec-1における粘度Bを測定した。また、粘度比A/Bを求めた。なお、「せん断速度を0.01sec-1から10,000sec-1まで150秒かけて一定の変化率で増加させる」とは、25秒毎にせん断速度が10倍になるようにせん断速度を増加させることを意味し、例えば、測定開始から25秒後のせん断速度は0.1sec-1であり、測定開始から50秒後のせん断速度は1sec-1となる。
<Viscosities A, B and viscosity ratio at each shear rate>
The viscosity of the lactic acid-vinyl copolymer solution (binder composition) of the present invention was measured using a viscosity/viscoelasticity measuring device "Discovery HR30" manufactured by TA Instruments. Specifically, with the measurement temperature set at 25° C., 0.1 g of the binder composition was set on a measuring section attached to a cone plate with a diameter of 20 mm and a cone angle of 0.975° with a clearance of 23 μm, and the shear rate was set at 0. The viscosity A at a shear rate of 1 sec-1 and the viscosity B at a shear rate of 9,000 sec- 1 were measured when increasing from .01 sec -1 to 10,000 sec -1 at a constant rate of change over 150 seconds. In addition, the viscosity ratio A/B was determined. In addition, "increase the shear rate from 0.01 sec -1 to 10,000 sec -1 at a constant rate of change over 150 seconds" means to increase the shear rate so that the shear rate increases by 10 times every 25 seconds. For example, the shear rate 25 seconds after the start of measurement is 0.1 sec -1 , and the shear rate 50 seconds after the start of measurement is 1 sec -1 .

Claims (16)

  1. 乳酸由来の乳酸単位とビニル単量体由来のビニル単量体単位を含む乳酸-ビニル共重合体であって、焼成用ペースト用の乳酸-ビニル共重合体。 A lactic acid-vinyl copolymer containing a lactic acid unit derived from lactic acid and a vinyl monomer unit derived from a vinyl monomer, the lactic acid-vinyl copolymer being used for baking paste.
  2. 請求項1に記載の乳酸-ビニル共重合体であって、
    以下の方法により測定した粘度が2.0Pa・s以上である、乳酸-ビニル共重合体。
    <粘度測定方法>
    1)密閉容器に前記乳酸-ビニル共重合体を30質量%、ブチルカルビトールアセテートまたはジヒドロターピニルアセテートを70質量%投入し、自公転式ミキサーにて2000rpmで溶け残りが無くなるまで撹拌し、2200rpmで気泡が無くなるまで脱泡後、25℃で1日静置して乳酸-ビニル共重合体溶液を調製
    2)粘度・粘弾性測定装置に、直径20mm、コーン角度0.975°のCone Plateを、クリアランス23μmにて取り付け、1)で得られた乳酸-ビニル共重合体溶液0.1gを測定部にセットし、設定温度25℃においてせん断速度を0.01sec-1から10000sec-1まで150秒かけて一定の変化率で増加させたときのせん断速度1sec-1における粘度を測定
    The lactic acid-vinyl copolymer according to claim 1,
    A lactic acid-vinyl copolymer having a viscosity of 2.0 Pa·s or more as measured by the following method.
    <Viscosity measurement method>
    1) Pour 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate or dihydroterpinyl acetate into a closed container, stir at 2000 rpm with a revolution-revolution mixer until there is no undissolved residue, After defoaming at 2200 rpm until no air bubbles disappear, leave it at 25°C for 1 day to prepare a lactic acid-vinyl copolymer solution 2) Add a Cone Plate with a diameter of 20 mm and a cone angle of 0.975° to the viscosity/viscoelasticity measuring device. was installed with a clearance of 23 μm, 0.1 g of the lactic acid-vinyl copolymer solution obtained in 1) was set in the measuring section, and the shear rate was adjusted from 0.01 sec -1 to 10000 sec -1 at a set temperature of 25°C. Measure the viscosity at a shear rate of 1 sec -1 when increasing at a constant rate of change over seconds
  3. 請求項1または請求項2に記載の乳酸-ビニル共重合体であって、
    以下の方法により測定した粘度Aと粘度Bとの比A/Bが3.0以上である、乳酸-ビニル共重合体。
    <粘度A及び粘度Bの測定方法>
    1)密閉容器に前記乳酸-ビニル共重合体を30質量%、ブチルカルビトールアセテートまたはジヒドロターピニルアセテートを70質量%投入し、自公転式ミキサーにて2000rpmで溶け残りが無くなるまで撹拌し、2200rpmで気泡が無くなるまで脱泡後、25℃で1日静置して乳酸-ビニル共重合体溶液を調製
    2)粘度・粘弾性測定装置に、直径20mm、コーン角度0.975°のCone Plateを、クリアランス23μmにて取り付け、1)で得られた乳酸-ビニル共重合体溶液0.1gを測定部にセットし、設定温度25℃においてせん断速度を0.01sec-1から10000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度1sec-1における粘度A、せん断速度9,000sec-1における粘度Bを測定
    The lactic acid-vinyl copolymer according to claim 1 or 2,
    A lactic acid-vinyl copolymer having a ratio A/B of viscosity A to viscosity B of 3.0 or more as measured by the following method.
    <Method for measuring viscosity A and viscosity B>
    1) Pour 30% by mass of the lactic acid-vinyl copolymer and 70% by mass of butyl carbitol acetate or dihydroterpinyl acetate into a closed container, stir at 2000 rpm with a revolution-revolution mixer until there is no undissolved residue, After defoaming at 2200 rpm until no air bubbles disappear, leave it at 25°C for 1 day to prepare a lactic acid-vinyl copolymer solution 2) Add a Cone Plate with a diameter of 20 mm and a cone angle of 0.975° to the viscosity/viscoelasticity measuring device. was installed with a clearance of 23 μm, 0.1 g of the lactic acid-vinyl copolymer solution obtained in 1) was set in the measuring section, and the shear rate was adjusted from 0.01 sec -1 to 10000 sec -1 at a set temperature of 25°C. Measure the viscosity A at a shear rate of 1 sec -1 and the viscosity B at a shear rate of 9,000 sec -1 when increasing at a constant rate of change over seconds.
  4. 請求項1または請求項2に記載の乳酸-ビニル共重合体であって、重量平均分子量が10,000~3,000,000である、乳酸-ビニル共重合体。 The lactic acid-vinyl copolymer according to claim 1 or 2, which has a weight average molecular weight of 10,000 to 3,000,000.
  5. 請求項1または請求項2に記載の乳酸-ビニル共重合体であって、前記乳酸-ビニル共重合体のミクロ残留炭素分が2.00質量%以下である、乳酸-ビニル共重合体。 The lactic acid-vinyl copolymer according to claim 1 or 2, wherein the lactic acid-vinyl copolymer has a micro residual carbon content of 2.00% by mass or less.
  6. 請求項1または請求項2に記載の乳酸-ビニル共重合体であって、
    前記乳酸-ビニル共重合体は、ビニル重合体ブロックを含み、
    前記ビニル重合体ブロックのガラス転移温度が0~100℃である、乳酸-ビニル共重合体。
    The lactic acid-vinyl copolymer according to claim 1 or 2,
    The lactic acid-vinyl copolymer includes a vinyl polymer block,
    A lactic acid-vinyl copolymer, wherein the vinyl polymer block has a glass transition temperature of 0 to 100°C.
  7. 請求項1または請求項2に記載の乳酸-ビニル共重合体であって、前記乳酸単位が前記ビニル単量体に含まれる官能基と結合した、乳酸-ビニル共重合体。 The lactic acid-vinyl copolymer according to claim 1 or 2, wherein the lactic acid unit is bonded to a functional group contained in the vinyl monomer.
  8. 請求項7記載の乳酸-ビニル共重合体であって、前記官能基が水酸基、カルボニル基、エポキシ基、アミノ基、イソシアネート基、チオール基およびアルコキシシリル基からなる群より選ばれる少なくとも1種以上の官能基である、乳酸-ビニル共重合体。 8. The lactic acid-vinyl copolymer according to claim 7, wherein the functional group is at least one selected from the group consisting of a hydroxyl group, a carbonyl group, an epoxy group, an amino group, an isocyanate group, a thiol group, and an alkoxysilyl group. A lactic acid-vinyl copolymer that is a functional group.
  9. 請求項1または請求項2に記載の乳酸-ビニル共重合体であって、前記ビニル単量体が、(メタ)アクリル酸および(メタ)アクリル酸エステルのうち少なくとも1つを含む、乳酸-ビニル共重合体。 The lactic acid-vinyl copolymer according to claim 1 or 2, wherein the vinyl monomer contains at least one of (meth)acrylic acid and (meth)acrylic ester. Copolymer.
  10. 請求項1または請求項2に記載の乳酸-ビニル共重合体であって、前記ビニル単量体は、炭素数1~22のアルキル基を含むビニル単量体を含む、乳酸-ビニル共重合体。 The lactic acid-vinyl copolymer according to claim 1 or 2, wherein the vinyl monomer includes a vinyl monomer containing an alkyl group having 1 to 22 carbon atoms. .
  11. 請求項1または請求項2に記載の乳酸-ビニル共重合体であって、前記乳酸-ビニル共重合体を25質量%、トルエンを75質量%含む、乳酸-ビニル共重合体トルエン溶液の酸価が0.1mgKOH/g以上、20.0mgKOH/g以下である乳酸-ビニル共重合体。 The lactic acid-vinyl copolymer according to claim 1 or 2, the acid value of a lactic acid-vinyl copolymer toluene solution containing 25% by mass of the lactic acid-vinyl copolymer and 75% by mass of toluene. A lactic acid-vinyl copolymer having 0.1 mgKOH/g or more and 20.0 mgKOH/g or less.
  12. 請求項1または請求項2に記載の乳酸-ビニル共重合体であって、前記乳酸-ビニル共重合体は、前記乳酸-ビニル共重合体100質量%に対して、前記乳酸単位を5.0~99.9質量%含有する、乳酸-ビニル共重合体。 3. The lactic acid-vinyl copolymer according to claim 1 or 2, wherein the lactic acid-vinyl copolymer contains 5.0 lactic acid units based on 100% by mass of the lactic acid-vinyl copolymer. A lactic acid-vinyl copolymer containing ~99.9% by mass.
  13. 請求項1または請求項2に記載の乳酸-ビニル共重合体であって、前記乳酸-ビニル共重合体は、グラフト共重合体である、乳酸-ビニル共重合体。 The lactic acid-vinyl copolymer according to claim 1 or 2, wherein the lactic acid-vinyl copolymer is a graft copolymer.
  14. 請求項1または請求項2に記載の乳酸-ビニル共重合体、および溶剤を含む、焼成用ペースト調製用のバインダー組成物。 A binder composition for preparing a baking paste, comprising the lactic acid-vinyl copolymer according to claim 1 or 2, and a solvent.
  15. 請求項14に記載の焼成用ペースト調製用のバインダー組成物であって、
    以下の方法により測定した粘度A'と粘度B'との比A'/B'が3.0以上である、バインダー組成物。
    <粘度A'及び粘度B'の測定方法>
    粘度・粘弾性測定装置に、直径20mm、コーン角度0.975°のCone Plateを、クリアランス23μmにて取り付け、前記バインダー組成物を測定部にセットし、設定温度25℃においてせん断速度を0.01sec-1から10000sec-1まで150秒かけて一定の変化率で増加させたときの、せん断速度1sec-1における粘度A'、せん断速度9,000sec-1における粘度B'を測定
    A binder composition for preparing a baking paste according to claim 14,
    A binder composition having a ratio of viscosity A' to viscosity B'A'/B' of 3.0 or more as measured by the following method.
    <Method for measuring viscosity A' and viscosity B'>
    A Cone Plate with a diameter of 20 mm and a cone angle of 0.975° was attached to the viscosity/viscoelasticity measuring device with a clearance of 23 μm, the binder composition was set in the measurement section, and the shear rate was set at 25° C. and the shear rate was set at 0.01 sec. Measure the viscosity A' at a shear rate of 1 sec -1 and the viscosity B' at a shear rate of 9,000 sec -1 when increasing from -1 to 10,000 sec -1 at a constant rate of change over 150 seconds.
  16. 請求項14に記載の焼成用ペースト調製用のバインダー組成物と、無機粒子を含む、焼成用ペースト。 A baking paste comprising the binder composition for preparing a baking paste according to claim 14 and inorganic particles.
PCT/JP2023/025920 2022-07-20 2023-07-13 Lactic acid-vinyl copolymer, binder composition, and paste for use in sintering WO2024018991A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022115318 2022-07-20
JP2022-115318 2022-07-20

Publications (1)

Publication Number Publication Date
WO2024018991A1 true WO2024018991A1 (en) 2024-01-25

Family

ID=89617642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025920 WO2024018991A1 (en) 2022-07-20 2023-07-13 Lactic acid-vinyl copolymer, binder composition, and paste for use in sintering

Country Status (1)

Country Link
WO (1) WO2024018991A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142938A (en) * 1995-11-17 1997-06-03 Japan Synthetic Rubber Co Ltd Pasty composition
US5952405A (en) * 1997-08-26 1999-09-14 National Starch And Chemical Investment Holding Corporation Lactide graft copolymers and hot melt adhesives prepared from same
JP2002097215A (en) * 2000-09-26 2002-04-02 Soken Chem & Eng Co Ltd Conductive paste resin composition and method for producing its sintered body
JP2004137593A (en) * 2002-10-17 2004-05-13 Kenji Shinohara Porous ceramic-water electrode
JP2006294559A (en) * 2005-04-14 2006-10-26 Aisin Chem Co Ltd Water repellent paste, fuel cell gas diffusion layer, and manufacturing method of the fuel dell gas diffusion layer
JP2007186562A (en) * 2006-01-12 2007-07-26 Three M Innovative Properties Co Resin composition-containing polylactic acid, film of resin containing polylactic acid and resin fiber
US20160096941A1 (en) * 2014-10-06 2016-04-07 The Regents Of The University Of Michigan Nanofibrous spongy microspheres
JP2019516541A (en) * 2016-04-01 2019-06-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Exhaust gas purification filter

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09142938A (en) * 1995-11-17 1997-06-03 Japan Synthetic Rubber Co Ltd Pasty composition
US5952405A (en) * 1997-08-26 1999-09-14 National Starch And Chemical Investment Holding Corporation Lactide graft copolymers and hot melt adhesives prepared from same
JP2002097215A (en) * 2000-09-26 2002-04-02 Soken Chem & Eng Co Ltd Conductive paste resin composition and method for producing its sintered body
JP2004137593A (en) * 2002-10-17 2004-05-13 Kenji Shinohara Porous ceramic-water electrode
JP2006294559A (en) * 2005-04-14 2006-10-26 Aisin Chem Co Ltd Water repellent paste, fuel cell gas diffusion layer, and manufacturing method of the fuel dell gas diffusion layer
JP2007186562A (en) * 2006-01-12 2007-07-26 Three M Innovative Properties Co Resin composition-containing polylactic acid, film of resin containing polylactic acid and resin fiber
US20160096941A1 (en) * 2014-10-06 2016-04-07 The Regents Of The University Of Michigan Nanofibrous spongy microspheres
JP2019516541A (en) * 2016-04-01 2019-06-20 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Exhaust gas purification filter

Similar Documents

Publication Publication Date Title
JP5385530B2 (en) Inorganic fine particle dispersed paste composition
JP2018104708A (en) Paste composition, and calcined body and production process for the same
EP3392225B1 (en) Binder for production of inorganic sintered body
CN113330043B (en) Polymer, conductive paste composition, binder resin for ceramics, ceramic slurry composition, and binder resin for conductive paste
TWI774774B (en) Polymers, paste compositions containing the polymers, binder resins for conductive pastes, conductive paste compositions, binder resins for ceramics, ceramic compositions and ceramic shaped body
KR102056557B1 (en) Copolymers and preparation methods thereof, and copolymer compositions
WO2024018991A1 (en) Lactic acid-vinyl copolymer, binder composition, and paste for use in sintering
JP6833179B2 (en) Conductive paste composition
JPWO2016132814A1 (en) Resin composition for fired paste and fired paste
KR101847790B1 (en) Readily thermally degradable organic resin binder
JP2007224363A (en) Sinterable paste composition containing dispersed inorganic fine particles
JP2008045044A (en) Paste composition containing dispersion of inorganic fine particles
JP2007031610A (en) Heat storage acrylic resin composition and heat storage sheet-shaped molded product using the composition
JP4516871B2 (en) Acrylic low temperature firing binder
JP6833178B2 (en) Polymer and paste composition containing it
JP2023130209A (en) Polylactic acid, binder composition, and sintering paste
JP5741837B2 (en) Paste composition
JP4516861B2 (en) Acrylic low temperature firing binder composition
JP6125290B2 (en) Resin composition for paste, paste composition and method for producing the same
JP7227558B2 (en) Binder resin and conductive paste composition
JP6195257B1 (en) Resin binder for firing and resin binder-containing composition for firing
JP4791031B2 (en) Low-temperature fired binder resin composition
JP2017186507A (en) Binder resin for inorganic fine particle dispersion paste composition, and inorganic fine particle dispersion paste composition
JP2000248224A (en) Acrylic-based binder resin composition
JP2015108069A (en) Pyrolytic resin binder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842914

Country of ref document: EP

Kind code of ref document: A1