WO2024018977A1 - Heat exchanger and refrigerant cycle device - Google Patents

Heat exchanger and refrigerant cycle device Download PDF

Info

Publication number
WO2024018977A1
WO2024018977A1 PCT/JP2023/025812 JP2023025812W WO2024018977A1 WO 2024018977 A1 WO2024018977 A1 WO 2024018977A1 JP 2023025812 W JP2023025812 W JP 2023025812W WO 2024018977 A1 WO2024018977 A1 WO 2024018977A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow path
heat
heat exchanger
heat transfer
opening
Prior art date
Application number
PCT/JP2023/025812
Other languages
French (fr)
Japanese (ja)
Inventor
航 寺井
知恵 江村
健 佐藤
信哉 田端
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2024018977A1 publication Critical patent/WO2024018977A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/02Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the heat-exchange media travelling at an angle to one another
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/08Elements constructed for building-up into stacks, e.g. capable of being taken apart for cleaning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/22Arrangements for directing heat-exchange media into successive compartments, e.g. arrangements of guide plates

Definitions

  • a heat exchanger that includes a heat transfer member in which a plurality of heat exchange passages for exchanging heat with a fluid and branch passages for distributing the fluid to each heat exchange passage are formed. .
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2016-90157 discloses a plate fin type including a metal plate in which a plurality of heat exchange channels and a pair of branch channels connected to both ends of the heat exchange channels are formed.
  • a heat exchanger is disclosed.
  • the fluid introduced into the heat exchanger is divided into all heat exchange channels by branch channels near the inlet of the heat exchanger, and the fluid is divided into branch channels near the outlet of the heat exchanger. They are joined by roads. Therefore, the number and cross-sectional area of heat exchange channels are often constant from near the inlet to near the outlet of the heat exchanger.
  • pressure loss may increase in the heat exchange channel near the inlet through which the gaseous fluid flows, and the performance of the heat exchanger may deteriorate.
  • the flow velocity of the fluid may decrease in the heat exchange channel near the outlet through which the liquid fluid flows, and the heat transfer efficiency may decrease.
  • the heat exchanger of the first aspect is a heat exchanger in which a fluid flows in a first direction between a first opening and a second opening.
  • the heat exchanger is a member that forms N flow path areas (N is an integer of 2 or more) that are arranged adjacent to each other along the first direction between the first opening and the second opening. Equipped with.
  • N is an integer of 2 or more
  • Each of the N channel regions has a channel through which fluid flows.
  • the number of channels and the cross-sectional area of the first channel region are different from the number of channels and the cross-sectional area of the Nth channel region.
  • the first channel region is located first from the first opening side in the first direction among the N channel regions.
  • the Nth channel region is located Nth from the first opening side in the first direction among the N channel regions.
  • the flow path through which the fluid flows is formed so that a suitable fluid flow rate is achieved according to the phase change (density change) of the fluid flowing inside the heat exchanger. Therefore, the performance of the heat exchanger is prevented from deteriorating due to an increase in pressure loss in the flow path near the inlet through which the gaseous fluid flows. Furthermore, a decrease in heat transfer efficiency due to a decrease in the flow velocity of the fluid in the flow path near the outlet through which the liquid fluid flows is suppressed.
  • the heat exchanger according to the second aspect is the heat exchanger according to the first aspect, in which the number of channels in the i-th channel region is smaller than the number of channels in the j-th channel region, and the number of channels in the i-th channel region is smaller than the number of channels in the j-th channel region.
  • the cross-sectional area of the flow path in the flow path region is larger than the cross-sectional area of the flow path in the j-th flow path region.
  • the i-th channel region is located i-th from the first opening side in the first direction among the N channel regions.
  • the j-th flow path area is located at the j-th position from the first opening side in the first direction among the N flow path areas (i, j are integers satisfying 1 ⁇ i ⁇ j ⁇ N). do.
  • the cross-sectional area of the flow path gradually decreases from the gas side (inlet side) to the liquid side (outlet side), so the pressure loss on the gas side is reduced, and the pressure loss on the liquid side is reduced.
  • the fluid flow rate is ensured. Furthermore, since the number of flow paths gradually increases from the gas side to the liquid side, even if the cross-sectional area of the flow paths decreases from the gas side to the liquid side, the reduction in the heat transfer area of the fluid can be suppressed.
  • the heat exchanger of the third aspect is the heat exchanger of the first aspect or the second aspect, and the number of channels in the first channel region is one.
  • the heat exchanger of the fourth aspect is the heat exchanger of the third aspect, and the distance L1 and the distance L0 satisfy the relational expression 0.2 ⁇ L0 ⁇ L1 ⁇ 0.8 ⁇ L0.
  • the distance L1 is the distance in the first direction between the boundary between the second flow path area and the first flow path area and the first opening.
  • the distance L0 is the distance in the first direction between the first opening and the second opening.
  • the second channel region is located second from the first opening side in the first direction among the N channel regions.
  • the heat exchanger of the fifth aspect is the heat exchanger of the fourth aspect, and the distance L2 and the distance L0 satisfy the relational expression 0.2 ⁇ L0 ⁇ L2 ⁇ 0.8 ⁇ L0.
  • the distance L2 is the distance in the first direction between the first opening and the boundary between two flow path regions adjacent in the first direction among the N flow path regions.
  • the distance L0 is the distance in the first direction between the first opening and the second opening.
  • the heat exchanger according to the sixth aspect is the heat exchanger according to any one of the first to fifth aspects, and the flow path is branched at the boundary between the kth flow path region and the k+1th flow path region.
  • the number of channels in the k+1th channel region is twice to four times the number of channels in the k-th channel region.
  • the k-th flow path region is located at the k-th (k is an integer satisfying 1 ⁇ k ⁇ N ⁇ 1) from the first opening side in the first direction among the N flow path regions.
  • the (k+1)th flow path area is located at the (k+1)th position from the first opening side in the first direction among the N flow path areas.
  • the heat exchanger according to the seventh aspect is the heat exchanger according to any one of the first to sixth aspects, and the length in the first direction of each of the N flow path regions is the same as that between the first opening and the second opening. It is 10% to 50% of the distance in the first direction from the opening.
  • the heat exchanger according to the eighth aspect is the heat exchanger according to any one of the first to seventh aspects, and includes a plurality of members stacked in a second direction intersecting the first direction. N flow path regions are formed between adjacent members in the second direction.
  • the heat exchanger according to the ninth aspect is the heat exchanger according to the eighth aspect, and includes N flow path areas each having a flow path through which a first medium, which is a fluid, flows, and a flow path through which a second medium, which is a fluid, flows. N flow path regions having N flow path regions are alternately stacked in the second direction. The first medium flows through the channel from the first opening toward the second opening. The second medium flows through the channel from the second opening toward the first opening.
  • a refrigerant cycle device includes the heat exchanger according to any one of the first to ninth aspects.
  • FIG. 1 is a schematic configuration diagram of a refrigerant cycle device 1 including a heat exchanger 100.
  • FIG. 1 is an exploded perspective view of a heat exchanger 100.
  • FIG. 1 is a cross-sectional view of a heat exchanger 100.
  • FIG. 3 is a plan view of the first heat transfer plate 110.
  • FIG. 3 is a plan view of the second heat transfer plate 120.
  • FIG. 3 is a plan view of the second heat transfer plate 120.
  • FIG. 7 is a plan view of a second heat transfer plate 120 in modification A.
  • FIG. 7 is a plan view of a second heat transfer plate 120 in modification B.
  • FIG. 1 is an exploded perspective view of a heat exchanger 100.
  • FIG. 1 is a cross-sectional view of a heat exchanger 100.
  • FIG. 3 is a plan view of the first heat transfer plate 110.
  • FIG. 3 is a plan view of the second heat transfer plate 120.
  • FIG. 3 is a plan view of the second
  • Refrigerant cycle device 1 A refrigerant cycle device 1 including a heat exchanger 100 according to an embodiment of the present disclosure will be described.
  • the refrigerant cycle device 1 is a dual refrigeration device that cools an air-conditioned space (not shown) such as an indoor room of a building by executing a vapor compression cycle.
  • the refrigerant cycle device 1 includes a heat source side cycle 10 and a utilization side cycle 20.
  • the heat source side cycle 10 is a vapor compression type cycle that circulates a refrigerant.
  • the refrigerant is, for example, R1234ze.
  • the utilization side cycle 20 is a vapor compression type cycle that circulates a heat medium that is a fluid with a lower boiling point than the refrigerant.
  • the heat medium is, for example, carbon dioxide. Heat exchange between the refrigerant and the heat medium is performed in the heat exchanger 100.
  • the heat exchanger 100 is a cascade condenser that exchanges heat between a refrigerant and a heat medium.
  • the heat exchanger 100 functions as a refrigerant evaporator and a heat medium condenser.
  • the heat exchanger 100 has a first inlet pipe 150a, a first outlet pipe 150b, a second inlet pipe 160a, a second outlet pipe 160b, a first flow path 111, and a second flow path 121.
  • the first flow path 111 is a flow path through which the refrigerant flows.
  • the first flow path 111 is formed between the first introduction pipe 150a and the first outlet pipe 150b.
  • the second flow path 121 is a flow path through which a heat medium flows.
  • the second flow path 121 is formed between the second introduction pipe 160a and the second outlet pipe 160b.
  • the heat source side cycle 10 includes a heat source side compressor 11, a heat source side heat exchanger 12, a heat source side expansion valve 13, a first inlet pipe 150a of the heat exchanger 100, a first outlet pipe 150b, and a first flow path. 111.
  • the heat source side cycle 10 is installed outside the air-conditioned space.
  • the heat source side compressor 11 sucks the low-pressure gas-phase refrigerant in the heat-source side cycle 10 from the first suction part 11a, compresses it, and discharges it as a high-pressure gas-phase refrigerant from the first discharge part 11b.
  • the heat source side heat exchanger 12 functions as a condenser, and exchanges heat between the refrigerant and the outside air (air outside the air-conditioned space).
  • the heat source side expansion valve 13 adjusts the flow rate of the refrigerant circulating through the heat source side cycle 10.
  • the heat source side expansion valve 13 functions as a pressure reducing device that reduces the pressure of the refrigerant.
  • the first discharge part 11b of the heat source side compressor 11 is connected to one end of the heat source side heat exchanger 12.
  • the other end of the heat source side heat exchanger 12 is connected to one end of the heat source side expansion valve 13.
  • the other end of the heat source side expansion valve 13 is connected to the first introduction pipe 150a of the heat exchanger 100.
  • the first outlet pipe 150b of the heat exchanger 100 is connected to the first suction part 11a of the heat source side compressor 11.
  • the usage cycle 20 includes a usage compressor 21, a usage heat exchanger 22, a usage expansion valve 23, a second inlet pipe 160a, a second outlet pipe 160b, and a second flow path of the heat exchanger 100. 121.
  • the user-side cycle 20 is installed in an air-conditioned space.
  • the usage-side compressor 21 sucks in the low-pressure gas-phase heat medium in the usage-side cycle 20 from the second suction part 21a, compresses it, and discharges it as a high-pressure gas-phase heat medium from the second discharge part 21b.
  • the user-side heat exchanger 22 functions as an evaporator, and exchanges heat between the heat medium and the air in the air-conditioned space.
  • the usage-side expansion valve 23 adjusts the flow rate of the heat medium circulating through the usage-side cycle 20.
  • the utilization side expansion valve 23 functions as a pressure reducing device that reduces the pressure of the heat medium.
  • the second discharge part 21b of the user-side compressor 21 is connected to the second introduction pipe 160a of the heat exchanger 100.
  • the second outlet pipe 160b of the heat exchanger 100 is connected to one end of the usage-side expansion valve 23.
  • the other end of the usage-side expansion valve 23 is connected to one end of the usage-side heat exchanger 22.
  • the other end of the utilization side heat exchanger 22 is connected to the first suction section 11a of the utilization side compressor 21.
  • the heat source side compressor 11 sucks the low-pressure gas phase refrigerant in the heat source side cycle 10 from the first suction part 11a, and converts it into a high-pressure gas phase refrigerant to the first discharge part. It is discharged from 11b.
  • the refrigerant in the high-pressure gas phase reaches the heat source side heat exchanger 12 .
  • the heat source side heat exchanger 12 condenses high-pressure gas phase refrigerant into high-pressure liquid phase refrigerant. At this time, the refrigerant releases heat to the outside air.
  • the high-pressure liquid phase refrigerant reaches the heat source side expansion valve 13 .
  • the heat source side expansion valve 13 which is set to an appropriate opening degree, reduces the pressure of the high-pressure liquid phase refrigerant and converts it into a low-pressure gas-liquid two-phase refrigerant.
  • the low-pressure gas-liquid two-phase refrigerant passes through the first introduction pipe 150a of the heat exchanger 100 and enters the first flow path 111.
  • the heat exchanger 100 evaporates a low-pressure gas-liquid two-phase refrigerant into a low-pressure gas-phase refrigerant. At this time, the refrigerant absorbs heat from the heat medium passing through the second flow path 121 of the heat exchanger 100.
  • the low-pressure gas phase refrigerant passes through the first outlet pipe 150b, exits the first flow path 111, and is sucked into the heat source side compressor 11 from the first suction portion 11a.
  • the utilization side compressor 21 sucks the low-pressure gas-phase heat medium in the utilization-side cycle 20 from the second suction part 21a, and uses it as a high-pressure gas-phase heat medium as a second suction medium. It is discharged from the discharge part 21b.
  • the high-pressure gas phase heat medium passes through the second introduction pipe 160a of the heat exchanger 100 and enters the second flow path 121.
  • the heat exchanger 100 condenses a high-pressure gas-phase heat medium into a high-pressure liquid-phase heat medium. At this time, the heat medium releases heat to the refrigerant passing through the first flow path 111 of the heat exchanger 100.
  • the high-pressure liquid phase heat medium passes through the second outlet pipe 160b, exits the second flow path 121, and reaches the usage-side expansion valve 23.
  • the usage-side expansion valve 23, which is set to an appropriate opening degree, reduces the pressure of the high-pressure liquid-phase heat medium and converts it into a low-pressure gas-liquid two-phase heat medium.
  • the low-pressure gas-liquid two-phase heat medium reaches the utilization side heat exchanger 22 .
  • the utilization side heat exchanger 22 evaporates the low-pressure gas-liquid two-phase heat medium into a low-pressure gas-phase heat medium. At this time, the heat medium absorbs heat from the air within the air-conditioned space.
  • the heat medium in the low-pressure gas phase exits the usage-side heat exchanger 22 and is sucked into the usage-side compressor 21 from the second suction section 21a.
  • the heat exchanger 100 includes a plurality of first heat transfer plates 110, a plurality of second heat transfer plates 120, a first frame 130, and a second frame. 140.
  • the heat exchanger 100 has a first flow path 111 and a second flow path 121 formed therein.
  • the first heat transfer plate 110 and the second heat transfer plate 120 are metal plate members having the same rectangular outer shape.
  • the first heat transfer plate 110, the second heat transfer plate 120, the first frame 130, and the second frame 140 are formed in a rectangular shape extending along the longitudinal direction DL. has been done.
  • the plurality of first heat transfer plates 110 and the plurality of second heat transfer plates 120 are alternately stacked between the first frame 130 and the second frame 140.
  • the number of each of the plurality of first heat transfer plates 110 and the plurality of second heat transfer plates 120 is not limited, and is appropriately set according to the required performance.
  • the materials and dimensions of the first frame 130, the first heat transfer plate 110, the second heat transfer plate 120, and the second frame 140 are not limited, and are appropriately set according to the required performance.
  • the first frame 130, the first heat transfer plate 110, the second heat transfer plate 120, and the second frame 140 are integrally joined by, for example, brazing.
  • the direction in which the first heat transfer plate 110 and the second heat transfer plate 120 are stacked is called the stacking direction DS
  • the direction perpendicular to the longitudinal direction DL and the stacking direction DS is called the width direction DW.
  • the longitudinal direction DL is an up-down direction.
  • the width direction DW is the left-right direction.
  • the stacking direction DS is the front-back direction.
  • First heat transfer plate 110 is a corrugated fin having a corrugated cross section.
  • the waveform of the first heat transfer plate 110 is formed so that the top portion thereof draws a herringbone pattern convex upward in plan view.
  • the first heat transfer plate 110 forms a first flow path 111 and a second flow path 121 together with the second heat transfer plate 120 stacked adjacently.
  • the first heat transfer plate 110 has a first joint region 110a, two first communication holes 110b, two first through holes 110c, a first front surface 110sa, and a first rear surface 110sb.
  • the first bonding region 110a is a region for bonding the first heat transfer plate 110 and the second heat transfer plate 120 to each other.
  • the first joint region 110a is a band-shaped region with an edge of a predetermined width bent toward the front side.
  • the first flow hole 110b is a circular hole that introduces or leads the refrigerant into the first flow path 111.
  • the first communication hole 110b is formed on the upper left side and the lower right side of the first heat transfer plate 110.
  • the first through hole 110c is a circular hole that allows the heat medium to pass in the stacking direction DS.
  • the first through hole 110c is formed on the upper right side and the lower left side of the first heat transfer plate 110.
  • the first front surface 110sa is the front surface of the first heat transfer plate 110.
  • the first front surface 110sa is a surface that faces a second rear surface 120sb of the second heat transfer plate 120, which will be described later, when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
  • the first rear surface 110sb is the rear surface of the first heat transfer plate 110.
  • the first rear surface 110sb is a surface that faces a second front surface 120sa of the second heat transfer plate 120, which will be described later, when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
  • the first heat transfer plate 110 is formed using, for example, press working, although the manufacturing method is not limited.
  • the second heat transfer plate 120 forms a first flow path 111 and a second flow path 121 together with the first heat transfer plate 110 stacked adjacent to each other.
  • the second heat transfer plate 120 has a second bonding region 120a, two second communication holes 120b, two second through holes 120c, a second front surface 120sa, and a second rear surface 120sb.
  • the second bonding region 120a is a region for bonding the first heat transfer plate 110 and the second heat transfer plate 120 to each other.
  • the second joint region 120a is a band-shaped region with a predetermined width edge bent toward the front.
  • the second flow hole 120b is a circular hole that introduces or leads out the heat medium to the second flow path 121.
  • the second communication hole 120b is formed on the upper right side and the lower left side of the second heat transfer plate 120.
  • the second communication hole 120b is formed at a position that overlaps and communicates with the first through hole 110c when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
  • the size and shape of the second communication hole 120b are the same as the first through hole 110c.
  • the second through hole 120c is a circular hole that allows the refrigerant to pass in the stacking direction DS.
  • the second through hole 120c is formed on the upper left side and the lower right side of the second heat transfer plate 120.
  • the second through hole 120c is formed at a position that overlaps and communicates with the first communication hole 110b when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
  • the size and shape of the second through hole 120c are the same as the first communication hole 110b.
  • the second front surface 120sa is the front surface of the second heat transfer plate 120.
  • the second front surface 120sa is a surface that faces the first rear surface 110sb of the first heat transfer plate 110 when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
  • the second rear surface 120sb is the rear surface of the second heat transfer plate 120.
  • the second rear surface 120sb is a surface that faces the first front surface 110sa of the first heat transfer plate 110 when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
  • the second heat transfer plate 120 is formed using, for example, press working, although the manufacturing method is not limited. Details of the shape of the second heat transfer plate 120 will be described later.
  • First frame 130 and second frame 140 are metal plate-like members that sandwich the plurality of first heat transfer plates 110 and the plurality of second heat transfer plates 120, which are stacked alternately, at both ends in the stacking direction DS. be.
  • the first introduction pipe 150a is a pipe that introduces the refrigerant into the first flow path 111.
  • the first introduction pipe 150a is provided to pass through the upper left side of the first frame 130 and communicate with the first flow path 111. More specifically, the first introduction pipe 150a is a first communication hole formed on the upper left side that communicates with each other when the first heat transfer plate 110, the second heat transfer plate 120, and the first frame 130 are stacked. 110b and the second through hole 120c.
  • the first outlet pipe 150b is a pipe that leads out the refrigerant from the first flow path 111.
  • the first outlet pipe 150b is provided to penetrate the lower right side of the first frame 130 and communicate with the first flow path 111. More specifically, the first outlet pipe 150b is a first communication hole formed on the lower right side that communicates with each other when the first heat transfer plate 110, the second heat transfer plate 120, and the first frame 130 are stacked. 110b and the second through hole 120c.
  • the second introduction pipe 160a is a pipe that introduces the heat medium into the second flow path 121.
  • the second introduction pipe 160a is provided to pass through the upper right side of the first frame 130 and communicate with the second flow path 121. More specifically, the second introduction pipe 160a is a second communication hole formed on the upper right side that communicates with each other when the first heat transfer plate 110, the second heat transfer plate 120, and the first frame 130 are stacked. 120b and the first through hole 110c.
  • the second outlet pipe 160b is a pipe that leads out the heat medium from the second flow path 121.
  • the second outlet pipe 160b is provided to penetrate the lower left side of the first frame 130 and communicate with the second flow path 121. More specifically, the second introduction pipe 160a is a second communication hole formed on the lower left side that communicates with each other when the first heat transfer plate 110, the second heat transfer plate 120, and the first frame 130 are stacked. 120b and the first through hole 110c.
  • First flow path 111 and second flow path 121 As shown in FIG. 3, by alternately stacking the first heat transfer plates 110 and the second heat transfer plates 120, first flow channels 111 and second flow channels 121 are formed alternately in the stacking direction DS. be done. More specifically, the first heat transfer plate 110 and the second heat transfer plate 120 are stacked alternately, so that the first front surface 110sa of the first heat transfer plate 110 and the second rear surface of the second heat transfer plate 120 are stacked alternately. The space where 120sb faces becomes the first flow path 111. Furthermore, by alternately stacking the first heat transfer plate 110 and the second heat transfer plate 120, the first rear surface 110sb of the first heat transfer plate 110 and the second front surface 120sa of the second heat transfer plate 120 are mutually connected. The opposing space becomes the second flow path 121.
  • the first heat transfer plate 110 and the second heat transfer plate 120 are joined by brazing. More specifically, in the first heat transfer plate 110 and the second heat transfer plate 120, the first bonding area 110a and the second bonding area 120a are bonded to each other by brazing.
  • the first flow path 111 is located between the first communication hole 110b on the upper side and the first communication hole 110b on the lower side, and has a rectangular shape whose dimension in the width direction DW is constant in the longitudinal direction DL. represents the area of
  • the second flow path 121 is located between the upper second flow hole 120b and the lower second flow hole 120b, and is a rectangular region whose dimension in the width direction DW is constant in the longitudinal direction DL. represents. 4 and 5 show the ranges of the first flow path 111 and the second flow path 121 in the longitudinal direction DL and the width direction DW, respectively.
  • the refrigerant introduced from the first introduction pipe 150a of the heat exchanger 100 passes through the upper second through hole 120c and the first distribution hole 110b and enters the first flow path 111. flows into.
  • the refrigerant that has flowed into the first flow path 111 flows through the first flow path 111 toward the first flow hole 110b on the lower side.
  • the refrigerant that has reached the first flow hole 110b on the lower side passes through the second through hole 120c on the lower side and is led out from the first outlet pipe 150b.
  • the liquid refrigerant flowing through the first flow path 111 exchanges heat with the heat medium in the adjacent second flow path 121 via the first heat transfer plate 110 or the second heat transfer plate 120, and evaporates. It becomes a gaseous refrigerant.
  • the heat exchanger 100 functions as a refrigerant evaporator.
  • the heat medium introduced from the second introduction pipe 160a of the heat exchanger 100 flows into the second flow path 121 through the upper second communication hole 120b and the first through hole 110c.
  • the heat medium that has flowed into the second flow path 121 flows through the second flow path 121 toward the second flow hole 120b on the lower side.
  • the heat medium that has reached the second flow hole 120b on the lower side passes through the first through hole 110c on the lower side and is led out from the second outlet pipe 160b.
  • the gaseous heat medium flowing through the second flow path 121 exchanges heat with the refrigerant in the adjacent first flow path 111 via the first heat transfer plate 110 or the second heat transfer plate 120, and is condensed. , becomes a liquid heat medium.
  • the heat exchanger 100 functions as a heat medium condenser.
  • second flow path 121 In the heat exchanger 100, the heat medium flowing through the second flow path 121 is distributed between the upper second flow hole 120b and the lower second flow hole 120b. flows along the longitudinal direction DL. In this embodiment, the heat medium flows in from the upper second flow hole 120b, passes through the second flow path 121, and then flows out from the lower second flow hole 120b.
  • the upper second communication hole 120b communicates with the second introduction pipe 160a via the upper first through hole 110c.
  • the second flow hole 120b on the lower side communicates with the second outlet pipe 160b via the first through hole 110c on the lower side.
  • the gaseous heat medium before being heat exchanged in the heat exchanger 100 flows from the second introduction pipe 160a into the second flow path 121 through the upper second communication hole 120b.
  • the gaseous heat medium undergoes heat exchange and becomes liquid.
  • the liquid heat medium passes through the second flow hole 120b on the lower side and is supplied to the second outlet pipe 160b.
  • the first heat transfer plate 110 and the second heat transfer plate 120 form N flow path regions.
  • the value N is an integer greater than or equal to 2.
  • the value N is 5, and the first heat transfer plate 110 and the second heat transfer plate 120 form five flow path regions F1 to F5.
  • Each flow path region F1 to F5 has a portion of the second flow path 121.
  • Each of the flow path regions F1 to F5 is a rectangular region arranged adjacent to each other along the longitudinal direction DL between the upper second flow hole 120b and the lower second flow hole 120b.
  • the dimension in the width direction DW of each flow path region F1 to F5 is equal to the dimension in the width direction DW of the second flow path 121.
  • the channel region located xth from the upper second communication hole 120b side in the longitudinal direction DL will be referred to as the x-th channel region.
  • the value x is an integer satisfying 1 ⁇ x ⁇ N.
  • the first flow path area F1 is located below the upper second flow hole 120b
  • the second flow path area F2 is located below the first flow path area F1.
  • the fifth flow path area F5 is located below the fourth flow path area F4 and above the second flow hole 120b on the lower side.
  • the first to Nth flow path regions are arranged adjacent to each other in a line along the longitudinal direction DL from the second communication hole 120b on the upper side toward the second communication hole 120b on the lower side.
  • Each flow path region F1 to F5 has one or more flow path elements 131.
  • the flow path element 131 is a space through which the heat medium flows along the longitudinal direction DL.
  • the channel region has a plurality of channel elements 131
  • the plurality of channel elements 131 are arranged along the width direction DW.
  • Two channel elements 131 adjacent in the width direction DW are partitioned by a partition element 132 extending along the longitudinal direction DL.
  • the partitioning elements 132 are shown as hatched areas.
  • the channel element 131 corresponds to a space where the first rear surface 110sb of the first heat transfer plate 110 and the second front surface 120sa of the second heat transfer plate 120 are opposed to each other.
  • the partition element 132 corresponds to a portion where the first rear surface 110sb of the first heat transfer plate 110 and the second front surface 120sa of the second heat transfer plate 120 are joined.
  • Two flow path regions adjacent in the longitudinal direction DL have different numbers of flow path elements 131 and different cross-sectional areas. Further, in each of the flow path regions F1 to F5, the number and cross-sectional area of the flow path elements 131 are constant. Therefore, when N channel regions are formed, the number and cross-sectional area of the channel elements 131 in the first channel region are the same as the number and cross-sectional area of the channel elements 131 in the N-th channel region. It is different from the area.
  • the number of channel elements 131 in the i-th channel region is greater than the number of channel elements 131 in the j-th channel region.
  • the cross-sectional area of the flow path element 131 in the i-th flow path region is larger than the cross-sectional area of the flow path element 131 in the j-th flow path region.
  • the second flow path area F2 has two flow path elements 131
  • the third flow path area F3 has four flow path elements 131.
  • the dimension in the width direction DW of the channel element 131 in the second channel region F2 is larger than the dimension in the width direction DW of the channel element 131 in the third channel region F3. Therefore, the cross-sectional area of the flow path element 131 in the second flow path area F2 is larger than the cross-sectional area of the flow path element 131 in the third flow path area F3.
  • the number of flow path elements 131 in the first flow path region F1 is one.
  • the first flow path region F1 does not have the partition element 132.
  • a confluence region 133 is provided between the fifth flow path region F5 (Nth flow path region) and the second flow hole 120b on the lower side. It is formed.
  • the confluence region 133 communicates with all flow path elements 131 of the fifth flow path region F5.
  • the dimension of the merging region 133 in the longitudinal direction DL is preferably 20% or less of the dimension of the second flow path 121 in the longitudinal direction DL.
  • the number of flow path elements 131 in the flow path regions F1 to F5 gradually increases from the upper second flow hole 120b to the lower second flow hole 120b, and the number of flow path elements 131 in the flow path regions F1 to F5 gradually increases.
  • the cross-sectional area of channel element 131 gradually decreases. In other words, in the process in which the gaseous heat medium flows through the second flow path 121 and becomes a liquid heat medium, the number of flow path elements 131 through which the heat medium flows gradually increases, and the number of flow path elements 131 is interrupted. The area gradually decreases.
  • the boundary between two flow path regions adjacent in the longitudinal direction DL is a position where the number and cross-sectional area of the flow path elements 131 change. Therefore, in the second flow path 121, the flow of the heat medium gradually branches during the process in which the heat medium flows from the first flow path region F1 toward the fifth flow path region F5.
  • the heat medium that has passed through the flow path element 131 of the fifth flow path region F5 joins together in the merging region 133 and is supplied to the second flow hole 120b on the lower side.
  • the numbers of channel elements 131 in the first to fifth channel regions F1 to F5 are 1, 2, 4, 8, and 16, respectively.
  • the number of flow path elements 131 doubles each time the flow of the heat medium branches during the flow of the heat medium from the first flow path region F1 toward the second flow hole 120b on the lower side. ing.
  • each flow path region F1 to F5 The number of each flow path region F1 to F5, the dimension in the longitudinal direction DL, etc. are not limited, and are appropriately set according to the required performance. Further, the number of flow path elements 131 in each flow path region F1 to F5 is not limited, and is appropriately set according to the required performance.
  • the first flow path area F1 may have one flow path element 131
  • the second flow path area F2 may have ten flow path elements 131.
  • the number of flow path elements 131 doubles each time the flow of the heat medium branches during the process in which the heat medium flows from the second flow path region F2 toward the second flow hole 120b on the lower side. You can leave it there.
  • a plate-fin type heat exchanger which includes a metal plate in which a plurality of heat exchange channels for exchanging heat with a fluid and a pair of branch channels connected to both ends of the heat exchange channels are formed. It is being In such a heat exchanger, the fluid flowing into the heat exchanger is divided into all heat exchange channels by a branch channel near the inlet of the heat exchanger, and is merged by a branch channel near the outlet of the heat exchanger. do. Therefore, the number and cross-sectional area of the heat exchange channels are constant from near the inlet to near the outlet of the heat exchanger.
  • the heat exchanger 100 of this embodiment includes first heat transfer plates 110 and second heat transfer plates 120 that are alternately stacked.
  • the first heat transfer plate 110 and the second heat transfer plate 120 form a second flow path 121 in which a gaseous heat medium is condensed through heat exchange to become a liquid heat medium.
  • the second flow path 121 in the process of the heat medium flowing from the inlet side where the gaseous heat medium flows in toward the outlet side where the liquid heat medium flows out, the flow of the heat medium gradually branches and heats up.
  • the cross-sectional area of the channel element 131 through which the medium flows gradually decreases. The larger the cross-sectional area of the flow path near the inlet through which the gaseous heat medium flows, the easier it is to reduce pressure loss.
  • the flow path element 131 through which the heat medium flows is cut off so that a suitable flow rate of the heat medium is realized according to the phase change (density change) of the heat medium flowing through the second flow path 121.
  • a second flow path 121 whose area gradually decreases is formed.
  • the heat exchanger 100 of the present embodiment pressure loss is suppressed from increasing in the flow path near the inlet through which the gaseous fluid flows, and therefore the performance of the heat exchanger is suppressed from deteriorating. Furthermore, in the heat exchanger 100 of the present embodiment, the flow velocity of the fluid is prevented from decreasing in the flow path near the outlet through which the liquid fluid flows, so that the heat transfer efficiency is prevented from decreasing.
  • the heat medium flows from the inlet side where the gaseous heat medium flows in toward the outlet side where the liquid heat medium flows out.
  • the flow gradually branches, and the number of channel elements 131 through which the heat medium flows gradually increases.
  • the heat exchanger 100 of the present embodiment even if the cross-sectional area of the flow path through which the fluid flows from the inlet side to the outlet side gradually decreases, this contributes to the decrease in the flow rate of the fluid and the heat exchange of the fluid. Since the reduction in area (heat transfer area) of the portion where the heat transfer occurs is suppressed, a decrease in heat transfer efficiency is suppressed.
  • the distance L0 is the distance in the longitudinal direction DL between the second communication hole 120b on the upper side and the second communication hole 120b on the lower side.
  • the position of the second communication hole 120b is the center of the circular shape of the second communication hole 120b.
  • the distance L0 is a distance between the first heat transfer plate 110 and the second heat transfer plate 120, in which the heat medium flowing in from the upper second circulation hole 120b and flowing out from the lower second circulation hole 120b moves. This is the distance in the longitudinal direction DL.
  • the distance L1 is the distance in the longitudinal direction DL between the boundary B1 between the first flow path area F1 and the second flow path area F2 and the upper second communication hole 120b.
  • the distance L0 and the distance L1 satisfy the relational expression 0.2 ⁇ L0 ⁇ L1 ⁇ 0.8 ⁇ L0.
  • the position where the flow of the heat medium first branches is at a position of 20% to 80% of the distance L0 corresponding to the length of the flow path of the heat medium.
  • the position where the flow of the heat medium first branches corresponds to the position in the longitudinal direction DL of the boundary B1.
  • the distance L0 is the distance in the longitudinal direction DL between the second communication hole 120b on the upper side and the second communication hole 120b on the lower side.
  • the position of the second communication hole 120b is the center of the circular shape of the second communication hole 120b.
  • the distance L0 is a distance between the first heat transfer plate 110 and the second heat transfer plate 120, in which the heat medium flowing in from the upper second circulation hole 120b and flowing out from the lower second circulation hole 120b moves. This is the distance in the longitudinal direction DL.
  • the distance L2 is the distance in the longitudinal direction DL between the boundary of two flow path regions adjacent in the longitudinal direction DL and the upper second communication hole 120b.
  • FIG. 8 shows boundaries B1 to B4 between two flow path regions adjacent in the longitudinal direction DL from the upper second flow hole 120b toward the lower second flow hole 120b.
  • the number of boundaries is one less than the number of channel regions.
  • FIG. 8 shows five flow path regions F1 to F5 and four boundaries B1 to B4.
  • boundaries B1 to B4 are located at positions where the flow of the heat medium branches.
  • the distance L2 is shown as the distance in the longitudinal direction DL between the boundary B2 and the upper second communication hole 120b.
  • the distance L0 and the distance L2 satisfy the relational expression 0.2 ⁇ L0 ⁇ L2 ⁇ 0.8 ⁇ L0.
  • the position where the flow of the heat medium branches corresponds to the position in the longitudinal direction DL of the boundaries B1 to B4.
  • each flow path region F1 to F5 is preferably 10% to 50% of the distance L0.
  • the distance L0 is the distance in the longitudinal direction DL between the second communication hole 120b on the upper side and the second communication hole 120b on the lower side.
  • the position of the second communication hole 120b is the center of the circular shape of the second communication hole 120b.
  • the distance L0 is a distance between the first heat transfer plate 110 and the second heat transfer plate 120, in which the heat medium flowing in from the upper second circulation hole 120b and flowing out from the lower second circulation hole 120b moves. This is the distance in the longitudinal direction DL.
  • the distance from one branch position to the next branch position in the longitudinal direction DL is preferably 10% to 50% of the distance L0 corresponding to the length of the heat medium flow path.
  • the branch position is a position in the longitudinal direction DL where the flow of the heat medium branches.
  • the distance L0 may be the dimension of the first heat transfer plate 110 and the second heat transfer plate 120 in the longitudinal direction DL. Further, the distance L0 may be a dimension of the second flow path 121 in the longitudinal direction DL.
  • the number of channels in the k+1th channel region is equal to 2 times the number of channels in the k-th channel region. Preferably, it is 4 times to 4 times. In other words, each time the heat medium flow branches at the boundary between two adjacent flow path regions in the longitudinal direction DL, the number of heat medium flow paths increases by two to four times.
  • the flow path regions F1 to F5 of the second flow path 121 have one or more flow path elements 131.
  • the flow path element 131 corresponds to a space where the first rear surface 110sb of the first heat transfer plate 110 and the second front surface 120sa of the second heat transfer plate 120 face each other.
  • the first heat transfer plate 110 is not in contact with the second heat transfer plate 120.
  • a reinforcing element for bringing the first heat transfer plate 110 and the second heat transfer plate 120 into contact with each other is provided on at least one of the first heat transfer plate 110 and the second heat transfer plate 120. Good too.
  • the reinforcing element is a component for ensuring the strength in the channel element 131 of the first heat transfer plate 110 and the second heat transfer plate 120.
  • the first rear surface 110sb of the first heat transfer plate 110 and the second front surface 120sa of the second heat transfer plate 120 come into contact with each other in the flow path element 131, thereby improving the flow path of the second flow path 121. A reduction in cross-sectional area is suppressed.
  • the reinforcing element is, for example, a point-like protrusion formed on at least one of the first heat transfer plate 110 and the second heat transfer plate 120.
  • the reinforcing element has a size that does not reduce the flow velocity of the heat medium in the flow path element 131, and has a shape that does not substantially branch the flow path in the flow path element 131.
  • the reinforcing elements preferably have dimensions and shapes that do not influence the number and cross-sectional area of the channel elements 131 of the channel region.
  • the heat exchanger 100 is formed so that the refrigerant flowing through the first flow path 111 and the heat medium flowing through the second flow path 121 flow in parallel.
  • the heat exchanger 100 may be formed such that the refrigerant flowing through the first flow path 111 and the refrigerant flowing through the second flow path 121 flow in opposite directions.
  • the refrigerant flows from the lower first flow hole 110b toward the upper first flow hole 110b, and in the second flow path 121, the heat medium flows through the upper second flow hole 110b. It may flow from 120b toward the second flow hole 120b on the lower side.
  • the heat exchanger 100 has a branching structure in which the flow of the heat medium gradually branches in the second flow path 121, and the number of flow path elements 131 through which the heat medium flows gradually increases.
  • the heat exchanger 100 may have a branch structure similar to the second flow path 121 in the first flow path 111.
  • the first flow path 111 may have a branch structure in which the flow of the refrigerant gradually branches and the number of spaces (corresponding to the flow path elements 131) through which the refrigerant flows gradually increases.
  • the flow path through which the refrigerant flows may have a branch structure similar to the second flow path 121.
  • the flow path through which the heat medium flows may have a branch structure similar to the second flow path 121.
  • R32 HFO refrigerant, mixed refrigerant of R32 and HFO refrigerant, carbon dioxide, ammonia, propane, etc.
  • R-32 an HFO refrigerant, a mixed refrigerant of HFC-32 and HFO refrigerant, refrigerants such as carbon dioxide, ammonia, and propane, water, and antifreeze may be used.
  • the first introduction pipe 150a, the first outlet pipe 150b, the second introduction pipe 160a, and the second outlet pipe 160b are all formed in the first frame 130. However, at least a portion of the first inlet pipe 150a, the first outlet pipe 150b, the second inlet pipe 160a, and the second outlet pipe 160b may be formed in the second frame 140.
  • the refrigerant cycle device 1 is a binary refrigeration device having a heat source side cycle 10 and a usage side cycle 20.
  • the refrigerant cycle device 1 may be a refrigeration device having only one vapor compression cycle for circulating refrigerant.
  • the refrigerant cycle device 1 includes a refrigerant cycle that includes elements corresponding to a heat source side compressor 11, a heat source side heat exchanger 12, a heat source side expansion valve 13, and a usage side heat exchanger 22.
  • the heat source side heat exchanger 12 that functions as a refrigerant condenser may have a branch structure similar to the second flow path 121 of the above embodiment.
  • Refrigerant cycle device 100 Heat exchanger 110: First heat transfer plate (member) 120: Second heat transfer plate (member) 120b: Upper second communication hole (first opening) 120b: Lower second communication hole (second opening) 131: Channel element (channel) DL: Longitudinal direction (first direction) DS: Lamination direction (second direction) F1: First flow path area F2: Second flow path area F5: Fifth flow path area (Nth flow path area)

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Abstract

In a heat exchanger (100), a refrigerant flows in the longitudinal direction (DL) between an upper second flow hole (120b) and a lower second flow hole (120b). The heat exchanger (100) comprises a first heat transfer plate (110) and a second heat transfer plate (120) which form N flow channel regions (F1-F5) arranged next to each other in the longitudinal direction (DL). The number and cross-sectional areas of the flow channels in the first flow channel region (F1) are different from the number and cross-sectional areas of the flow channels in the Nth flow channel region (F5). The first flow channel region (F1) is located first among the N flow channel regions in the longitudinal direction (DL) from the upper second flow hole (120b) side. The Nth flow channel region (F5) is located Nth among the N flow channel regions in the longitudinal direction (DL) from the upper second flow hole (120b) side.

Description

熱交換器、及び冷媒サイクル装置Heat exchanger and refrigerant cycle equipment
 熱交換器、及び冷媒サイクル装置に関する。 Regarding heat exchangers and refrigerant cycle devices.
 従来、流体に熱交換をさせるための複数の熱交換流路と、流体を各熱交換通路に分配するための分岐流路とが形成される伝熱部材を備える熱交換器が用いられている。 Conventionally, a heat exchanger is used that includes a heat transfer member in which a plurality of heat exchange passages for exchanging heat with a fluid and branch passages for distributing the fluid to each heat exchange passage are formed. .
 特許文献1(特開2016-90157号公報)には、複数の熱交換流路と、熱交換流路の両端に接続される一対の分岐流路とが形成される金属板を備えるプレートフィン型熱交換器が開示されている。このような従来の熱交換器では、熱交換器に導入される流体は、熱交換器の入口付近において分岐流路によって全ての熱交換流路に分流し、熱交換器の出口付近において分岐流路によって合流する。そのため、熱交換器の入口付近から出口付近まで、熱交換流路の数および断面積が一定であることが多い。この場合、ガス状の流体が流れる入口付近の熱交換流路において圧力損失が大きくなり、熱交換器の性能が低下することがある。また、液状の流体が流れる出口付近の熱交換流路において流体の流速が小さくなり、熱伝達効率が低下することがある。 Patent Document 1 (Japanese Unexamined Patent Publication No. 2016-90157) discloses a plate fin type including a metal plate in which a plurality of heat exchange channels and a pair of branch channels connected to both ends of the heat exchange channels are formed. A heat exchanger is disclosed. In such conventional heat exchangers, the fluid introduced into the heat exchanger is divided into all heat exchange channels by branch channels near the inlet of the heat exchanger, and the fluid is divided into branch channels near the outlet of the heat exchanger. They are joined by roads. Therefore, the number and cross-sectional area of heat exchange channels are often constant from near the inlet to near the outlet of the heat exchanger. In this case, pressure loss may increase in the heat exchange channel near the inlet through which the gaseous fluid flows, and the performance of the heat exchanger may deteriorate. Furthermore, the flow velocity of the fluid may decrease in the heat exchange channel near the outlet through which the liquid fluid flows, and the heat transfer efficiency may decrease.
 第1観点の熱交換器は、第1開口と第2開口との間を第1方向に流体が流れる熱交換器である。熱交換器は、第1開口と第2開口との間において第1方向に沿って隣り合って配置されるN個(Nは、2以上の整数である。)の流路領域を形成する部材を備える。N個の流路領域のそれぞれは、流体が流れる流路を有する。第1の流路領域の流路の数および断面積は、第Nの流路領域の流路の数および断面積と異なる。第1の流路領域は、N個の流路領域のうち第1方向において第1開口の側から1番目に位置する。第Nの流路領域は、N個の流路領域のうち第1方向において第1開口の側からN番目に位置する。 The heat exchanger of the first aspect is a heat exchanger in which a fluid flows in a first direction between a first opening and a second opening. The heat exchanger is a member that forms N flow path areas (N is an integer of 2 or more) that are arranged adjacent to each other along the first direction between the first opening and the second opening. Equipped with. Each of the N channel regions has a channel through which fluid flows. The number of channels and the cross-sectional area of the first channel region are different from the number of channels and the cross-sectional area of the Nth channel region. The first channel region is located first from the first opening side in the first direction among the N channel regions. The Nth channel region is located Nth from the first opening side in the first direction among the N channel regions.
 第1観点の熱交換器では、熱交換器の内部を流れる流体の相変化(密度変化)に応じて好適な流体の流速が実現されるように、流体が流れる流路が形成される。従って、ガス状の流体が流れる入口付近の流路において圧力損失が大きくなることにより熱交換器の性能が低下することが抑制される。また、液状の流体が流れる出口付近の流路において流体の流速が小さくなることにより熱伝達効率が低下することが抑制される。 In the heat exchanger of the first aspect, the flow path through which the fluid flows is formed so that a suitable fluid flow rate is achieved according to the phase change (density change) of the fluid flowing inside the heat exchanger. Therefore, the performance of the heat exchanger is prevented from deteriorating due to an increase in pressure loss in the flow path near the inlet through which the gaseous fluid flows. Furthermore, a decrease in heat transfer efficiency due to a decrease in the flow velocity of the fluid in the flow path near the outlet through which the liquid fluid flows is suppressed.
 第2観点の熱交換器は、第1観点の熱交換器であって、第iの流路領域の流路の数は、第jの流路領域の流路の数より少なく、第iの流路領域の流路の断面積は、第jの流路領域の流路の断面積より大きい。第iの流路領域は、N個の流路領域のうち第1方向において第1開口の側からi番目に位置する。第jの流路領域は、N個の流路領域のうち第1方向において第1開口の側からj番目(i,jは、1≦i<j≦Nを満たす整数である。)に位置する。 The heat exchanger according to the second aspect is the heat exchanger according to the first aspect, in which the number of channels in the i-th channel region is smaller than the number of channels in the j-th channel region, and the number of channels in the i-th channel region is smaller than the number of channels in the j-th channel region. The cross-sectional area of the flow path in the flow path region is larger than the cross-sectional area of the flow path in the j-th flow path region. The i-th channel region is located i-th from the first opening side in the first direction among the N channel regions. The j-th flow path area is located at the j-th position from the first opening side in the first direction among the N flow path areas (i, j are integers satisfying 1≦i<j≦N). do.
 第2観点の熱交換器では、ガス側(入口側)から液側(出口側)に向かって流路断面積が徐々に小さくなるので、ガス側の圧力損失が低減され、かつ、液側の流体の流速が確保される。また、ガス側から液側に向かって流路の数が徐々に増えるので、ガス側から液側に向かって流路断面積が小さくなっても、流体の伝熱面積の減少が抑えられる。 In the heat exchanger according to the second aspect, the cross-sectional area of the flow path gradually decreases from the gas side (inlet side) to the liquid side (outlet side), so the pressure loss on the gas side is reduced, and the pressure loss on the liquid side is reduced. The fluid flow rate is ensured. Furthermore, since the number of flow paths gradually increases from the gas side to the liquid side, even if the cross-sectional area of the flow paths decreases from the gas side to the liquid side, the reduction in the heat transfer area of the fluid can be suppressed.
 第3観点の熱交換器は、第1観点又は第2観点の熱交換器であって、第1の流路領域の流路の数は、1である。 The heat exchanger of the third aspect is the heat exchanger of the first aspect or the second aspect, and the number of channels in the first channel region is one.
 第4観点の熱交換器は、第3観点の熱交換器であって、距離L1および距離L0は、0.2×L0≦L1≦0.8×L0の関係式を満たす。距離L1は、第2の流路領域と第1の流路領域との境界と、第1開口との間の第1方向の距離である。距離L0は、第1開口と第2開口との間の第1方向の距離である。第2の流路領域は、N個の流路領域のうち第1方向において第1開口の側から2番目に位置する。 The heat exchanger of the fourth aspect is the heat exchanger of the third aspect, and the distance L1 and the distance L0 satisfy the relational expression 0.2×L0≦L1≦0.8×L0. The distance L1 is the distance in the first direction between the boundary between the second flow path area and the first flow path area and the first opening. The distance L0 is the distance in the first direction between the first opening and the second opening. The second channel region is located second from the first opening side in the first direction among the N channel regions.
 第5観点の熱交換器は、第4観点の熱交換器であって、距離L2および距離L0は、0.2×L0≦L2≦0.8×L0の関係式を満たす。距離L2は、N個の流路領域のうち第1方向において隣接する2つの流路領域の境界と、第1開口との間の第1方向の距離である。距離L0は、第1開口と第2開口との間の第1方向の距離である。 The heat exchanger of the fifth aspect is the heat exchanger of the fourth aspect, and the distance L2 and the distance L0 satisfy the relational expression 0.2×L0≦L2≦0.8×L0. The distance L2 is the distance in the first direction between the first opening and the boundary between two flow path regions adjacent in the first direction among the N flow path regions. The distance L0 is the distance in the first direction between the first opening and the second opening.
 第6観点の熱交換器は、第1乃至第5観点のいずれか1つの熱交換器であって、第kの流路領域と、第k+1の流路領域との境界において、流路は分岐し、第k+1の流路領域の流路の数は、第kの流路領域の流路の数の2倍乃至4倍である。第kの流路領域は、N個の流路領域のうち第1方向において第1開口の側からk番目(kは、1≦k≦N-1を満たす整数である。)に位置する。第k+1の流路領域は、N個の流路領域のうち第1方向において第1開口の側からk+1番目に位置する。 The heat exchanger according to the sixth aspect is the heat exchanger according to any one of the first to fifth aspects, and the flow path is branched at the boundary between the kth flow path region and the k+1th flow path region. However, the number of channels in the k+1th channel region is twice to four times the number of channels in the k-th channel region. The k-th flow path region is located at the k-th (k is an integer satisfying 1≦k≦N−1) from the first opening side in the first direction among the N flow path regions. The (k+1)th flow path area is located at the (k+1)th position from the first opening side in the first direction among the N flow path areas.
 第7観点の熱交換器は、第1乃至第6観点のいずれか1つの熱交換器であって、N個の流路領域のそれぞれの第1方向の長さは、第1開口と第2開口との間の第1方向の距離の10%~50%である。 The heat exchanger according to the seventh aspect is the heat exchanger according to any one of the first to sixth aspects, and the length in the first direction of each of the N flow path regions is the same as that between the first opening and the second opening. It is 10% to 50% of the distance in the first direction from the opening.
 第8観点の熱交換器は、第1乃至第7観点のいずれか1つの熱交換器であって、第1方向と交差する第2方向に積層される複数の部材を備える。N個の流路領域は、第2方向に隣接する部材の間に形成される。 The heat exchanger according to the eighth aspect is the heat exchanger according to any one of the first to seventh aspects, and includes a plurality of members stacked in a second direction intersecting the first direction. N flow path regions are formed between adjacent members in the second direction.
 第9観点の熱交換器は、第8観点の熱交換器であって、流体である第1媒体が流れる流路を有するN個の流路領域と、流体である第2媒体が流れる流路を有するN個の流路領域とが第2方向に交互に積層される。第1媒体は、第1開口から第2開口に向かって流路を流れる。第2媒体は、第2開口から第1開口に向かって流路を流れる。 The heat exchanger according to the ninth aspect is the heat exchanger according to the eighth aspect, and includes N flow path areas each having a flow path through which a first medium, which is a fluid, flows, and a flow path through which a second medium, which is a fluid, flows. N flow path regions having N flow path regions are alternately stacked in the second direction. The first medium flows through the channel from the first opening toward the second opening. The second medium flows through the channel from the second opening toward the first opening.
 第10観点の冷媒サイクル装置は、第1乃至第9観点のいずれか1つの熱交換器を備える。 A refrigerant cycle device according to a tenth aspect includes the heat exchanger according to any one of the first to ninth aspects.
熱交換器100を備える冷媒サイクル装置1の概略構成図である。1 is a schematic configuration diagram of a refrigerant cycle device 1 including a heat exchanger 100. FIG. 熱交換器100の分解斜視図である。1 is an exploded perspective view of a heat exchanger 100. FIG. 熱交換器100の断面図である。1 is a cross-sectional view of a heat exchanger 100. FIG. 第1伝熱プレート110の平面図である。3 is a plan view of the first heat transfer plate 110. FIG. 第2伝熱プレート120の平面図である。3 is a plan view of the second heat transfer plate 120. FIG. 第2伝熱プレート120の平面図である。3 is a plan view of the second heat transfer plate 120. FIG. 変形例Aにおける第2伝熱プレート120の平面図である。7 is a plan view of a second heat transfer plate 120 in modification A. FIG. 変形例Bにおける第2伝熱プレート120の平面図である。7 is a plan view of a second heat transfer plate 120 in modification B. FIG.
 (1)冷媒サイクル装置1
 本開示の実施形態に係る熱交換器100を備える冷媒サイクル装置1について説明する。冷媒サイクル装置1は、蒸気圧縮式のサイクルを実行することで、建物の室内等の空調対象空間(図示省略)の冷房を行う二元冷凍装置である。
(1) Refrigerant cycle device 1
A refrigerant cycle device 1 including a heat exchanger 100 according to an embodiment of the present disclosure will be described. The refrigerant cycle device 1 is a dual refrigeration device that cools an air-conditioned space (not shown) such as an indoor room of a building by executing a vapor compression cycle.
 図1に示されるように、冷媒サイクル装置1は、熱源側サイクル10と、利用側サイクル20とを有する。熱源側サイクル10は、冷媒を循環させる蒸気圧縮式のサイクルである。冷媒は、例えば、R1234zeである。利用側サイクル20は、冷媒よりも低沸点の流体である熱媒体を循環させる蒸気圧縮式のサイクルである。熱媒体は、例えば、二酸化炭素である。冷媒と熱媒体との間での熱交換は、熱交換器100において行われる。 As shown in FIG. 1, the refrigerant cycle device 1 includes a heat source side cycle 10 and a utilization side cycle 20. The heat source side cycle 10 is a vapor compression type cycle that circulates a refrigerant. The refrigerant is, for example, R1234ze. The utilization side cycle 20 is a vapor compression type cycle that circulates a heat medium that is a fluid with a lower boiling point than the refrigerant. The heat medium is, for example, carbon dioxide. Heat exchange between the refrigerant and the heat medium is performed in the heat exchanger 100.
 (1-1)熱交換器100
 熱交換器100は、冷媒と熱媒体との間で熱交換をさせるカスケードコンデンサである。熱交換器100は、冷媒の蒸発器、かつ、熱媒体の凝縮器として機能する。熱交換器100は、第1導入管150a、第1導出管150bと、第2導入管160a、第2導出管160bと、第1流路111と、第2流路121とを有する。
(1-1) Heat exchanger 100
The heat exchanger 100 is a cascade condenser that exchanges heat between a refrigerant and a heat medium. The heat exchanger 100 functions as a refrigerant evaporator and a heat medium condenser. The heat exchanger 100 has a first inlet pipe 150a, a first outlet pipe 150b, a second inlet pipe 160a, a second outlet pipe 160b, a first flow path 111, and a second flow path 121.
 第1流路111は、冷媒が流れる流路である。第1流路111は、第1導入管150aと第1導出管150bとの間に形成される。第2流路121は、熱媒体が流れる流路である。第2流路121は、第2導入管160aと第2導出管160bとの間に形成される。熱交換器100の詳細な構造については、後述する。 The first flow path 111 is a flow path through which the refrigerant flows. The first flow path 111 is formed between the first introduction pipe 150a and the first outlet pipe 150b. The second flow path 121 is a flow path through which a heat medium flows. The second flow path 121 is formed between the second introduction pipe 160a and the second outlet pipe 160b. The detailed structure of the heat exchanger 100 will be described later.
 (1-2)熱源側サイクル10
 熱源側サイクル10は、熱源側圧縮機11と、熱源側熱交換器12と、熱源側膨張弁13と、熱交換器100の第1導入管150a、第1導出管150b、及び第1流路111とから構成される。熱源側サイクル10は、空調対象空間の外に設置される。
(1-2) Heat source side cycle 10
The heat source side cycle 10 includes a heat source side compressor 11, a heat source side heat exchanger 12, a heat source side expansion valve 13, a first inlet pipe 150a of the heat exchanger 100, a first outlet pipe 150b, and a first flow path. 111. The heat source side cycle 10 is installed outside the air-conditioned space.
 熱源側圧縮機11は、熱源側サイクル10における低圧気相の冷媒を第1吸入部11aから吸入し、それを圧縮して、高圧気相の冷媒として第1吐出部11bから吐出する。熱源側熱交換器12は、凝縮機として機能し、冷媒と外気(空調対象空間の外の空気)との間で熱交換を行わせる。熱源側膨張弁13は、熱源側サイクル10を循環する冷媒の流量を調節する。熱源側膨張弁13は、冷媒を減圧させる減圧装置として機能する。 The heat source side compressor 11 sucks the low-pressure gas-phase refrigerant in the heat-source side cycle 10 from the first suction part 11a, compresses it, and discharges it as a high-pressure gas-phase refrigerant from the first discharge part 11b. The heat source side heat exchanger 12 functions as a condenser, and exchanges heat between the refrigerant and the outside air (air outside the air-conditioned space). The heat source side expansion valve 13 adjusts the flow rate of the refrigerant circulating through the heat source side cycle 10. The heat source side expansion valve 13 functions as a pressure reducing device that reduces the pressure of the refrigerant.
 熱源側圧縮機11の第1吐出部11bは、熱源側熱交換器12の一端に接続される。熱源側熱交換器12の他端は、熱源側膨張弁13の一端に接続される。熱源側膨張弁13の他端は、熱交換器100の第1導入管150aに接続される。熱交換器100の第1導出管150bは、熱源側圧縮機11の第1吸入部11aに接続される。 The first discharge part 11b of the heat source side compressor 11 is connected to one end of the heat source side heat exchanger 12. The other end of the heat source side heat exchanger 12 is connected to one end of the heat source side expansion valve 13. The other end of the heat source side expansion valve 13 is connected to the first introduction pipe 150a of the heat exchanger 100. The first outlet pipe 150b of the heat exchanger 100 is connected to the first suction part 11a of the heat source side compressor 11.
 (1-3)利用側サイクル20
 利用側サイクル20は、利用側圧縮機21と、利用側熱交換器22と、利用側膨張弁23と、熱交換器100の第2導入管160a、第2導出管160b、及び第2流路121とから構成される。利用側サイクル20は、空調対象空間に設置される。
(1-3) User cycle 20
The usage cycle 20 includes a usage compressor 21, a usage heat exchanger 22, a usage expansion valve 23, a second inlet pipe 160a, a second outlet pipe 160b, and a second flow path of the heat exchanger 100. 121. The user-side cycle 20 is installed in an air-conditioned space.
 利用側圧縮機21は、利用側サイクル20における低圧気相の熱媒体を第2吸入部21aから吸入し、それを圧縮して、高圧気相の熱媒体として第2吐出部21bから吐出する。利用側熱交換器22は、蒸発機として機能し、熱媒体と空調対象空間内の空気との間で熱交換を行わせる。利用側膨張弁23は、利用側サイクル20を循環する熱媒体の流量を調節する。利用側膨張弁23は、熱媒体を減圧させる減圧装置として機能する。 The usage-side compressor 21 sucks in the low-pressure gas-phase heat medium in the usage-side cycle 20 from the second suction part 21a, compresses it, and discharges it as a high-pressure gas-phase heat medium from the second discharge part 21b. The user-side heat exchanger 22 functions as an evaporator, and exchanges heat between the heat medium and the air in the air-conditioned space. The usage-side expansion valve 23 adjusts the flow rate of the heat medium circulating through the usage-side cycle 20. The utilization side expansion valve 23 functions as a pressure reducing device that reduces the pressure of the heat medium.
 利用側圧縮機21の第2吐出部21bは、熱交換器100の第2導入管160aに接続される。熱交換器100の第2導出管160bは、利用側膨張弁23の一端に接続される。利用側膨張弁23の他端は、利用側熱交換器22の一端に接続される。利用側熱交換器22の他端は、利用側圧縮機21の第1吸入部11aに接続される。 The second discharge part 21b of the user-side compressor 21 is connected to the second introduction pipe 160a of the heat exchanger 100. The second outlet pipe 160b of the heat exchanger 100 is connected to one end of the usage-side expansion valve 23. The other end of the usage-side expansion valve 23 is connected to one end of the usage-side heat exchanger 22. The other end of the utilization side heat exchanger 22 is connected to the first suction section 11a of the utilization side compressor 21.
 (1-4)動作
 冷媒サイクル装置1の運転中における、熱源側サイクル10及び利用側サイクル20の動作を説明する。冷媒サイクル装置1が運転を開始すると、制御部(図示省略)が、熱源側圧縮機11及び利用側圧縮機21を駆動し、熱源側膨張弁13及び利用側膨張弁23の開度を空調負荷に応じた適切な開度に設定する。
(1-4) Operation The operation of the heat source side cycle 10 and the usage side cycle 20 while the refrigerant cycle device 1 is in operation will be explained. When the refrigerant cycle device 1 starts operating, a control unit (not shown) drives the heat source side compressor 11 and the usage side compressor 21, and adjusts the opening degrees of the heat source side expansion valve 13 and the usage side expansion valve 23 to match the air conditioning load. Set the appropriate opening according to the
 (1-4-1)熱源側サイクル10の動作
 熱源側圧縮機11は、熱源側サイクル10における低圧気相の冷媒を第1吸入部11aから吸入し、高圧気相の冷媒として第1吐出部11bから吐出する。高圧気相である冷媒は、熱源側熱交換器12へ到達する。熱源側熱交換器12は、高圧気相の冷媒を凝縮させ高圧液相の冷媒とする。このとき、冷媒は、外気へ熱を放出する。高圧液相の冷媒は、熱源側膨張弁13へ到達する。適切な開度に設定された熱源側膨張弁13は、高圧液相の冷媒を減圧し低圧気液二相の冷媒とする。低圧気液二相の冷媒は、熱交換器100の第1導入管150aを通過して第1流路111に入る。熱交換器100は、低圧気液二相の冷媒を蒸発させ低圧気相の冷媒とする。このとき、冷媒は、熱交換器100の第2流路121を通る熱媒体から熱を吸収する。低圧気相の冷媒は、第1導出管150bを通過して第1流路111を出て、第1吸入部11aから熱源側圧縮機11に吸入される。
(1-4-1) Operation of heat source side cycle 10 The heat source side compressor 11 sucks the low-pressure gas phase refrigerant in the heat source side cycle 10 from the first suction part 11a, and converts it into a high-pressure gas phase refrigerant to the first discharge part. It is discharged from 11b. The refrigerant in the high-pressure gas phase reaches the heat source side heat exchanger 12 . The heat source side heat exchanger 12 condenses high-pressure gas phase refrigerant into high-pressure liquid phase refrigerant. At this time, the refrigerant releases heat to the outside air. The high-pressure liquid phase refrigerant reaches the heat source side expansion valve 13 . The heat source side expansion valve 13, which is set to an appropriate opening degree, reduces the pressure of the high-pressure liquid phase refrigerant and converts it into a low-pressure gas-liquid two-phase refrigerant. The low-pressure gas-liquid two-phase refrigerant passes through the first introduction pipe 150a of the heat exchanger 100 and enters the first flow path 111. The heat exchanger 100 evaporates a low-pressure gas-liquid two-phase refrigerant into a low-pressure gas-phase refrigerant. At this time, the refrigerant absorbs heat from the heat medium passing through the second flow path 121 of the heat exchanger 100. The low-pressure gas phase refrigerant passes through the first outlet pipe 150b, exits the first flow path 111, and is sucked into the heat source side compressor 11 from the first suction portion 11a.
 (1-4-2)利用側サイクル20の動作
 利用側圧縮機21は、利用側サイクル20における低圧気相の熱媒体を第2吸入部21aから吸入し、高圧気相の熱媒体として第2吐出部21bから吐出する。高圧気相の熱媒体は、熱交換器100の第2導入管160aを通過して第2流路121へ入る。熱交換器100は、高圧気相の熱媒体を凝縮させ高圧液相の熱媒体とする。このとき、熱媒体は、熱交換器100の第1流路111を通る冷媒へ熱を放出する。高圧液相の熱媒体は、第2導出管160bを通過して第2流路121を出て、利用側膨張弁23へ到達する。適切な開度に設定された利用側膨張弁23は、高圧液相の熱媒体を減圧し低圧気液二相の熱媒体とする。低圧気液二相の熱媒体は、利用側熱交換器22へ到達する。利用側熱交換器22は、低圧気液二相の熱媒体を蒸発させ低圧気相の熱媒体とする。このとき、熱媒体は、空調対象空間内の空気から熱を吸収する。低圧気相の熱媒体は、利用側熱交換器22を出て、第2吸入部21aから利用側圧縮機21に吸入される。
(1-4-2) Operation of the utilization side cycle 20 The utilization side compressor 21 sucks the low-pressure gas-phase heat medium in the utilization-side cycle 20 from the second suction part 21a, and uses it as a high-pressure gas-phase heat medium as a second suction medium. It is discharged from the discharge part 21b. The high-pressure gas phase heat medium passes through the second introduction pipe 160a of the heat exchanger 100 and enters the second flow path 121. The heat exchanger 100 condenses a high-pressure gas-phase heat medium into a high-pressure liquid-phase heat medium. At this time, the heat medium releases heat to the refrigerant passing through the first flow path 111 of the heat exchanger 100. The high-pressure liquid phase heat medium passes through the second outlet pipe 160b, exits the second flow path 121, and reaches the usage-side expansion valve 23. The usage-side expansion valve 23, which is set to an appropriate opening degree, reduces the pressure of the high-pressure liquid-phase heat medium and converts it into a low-pressure gas-liquid two-phase heat medium. The low-pressure gas-liquid two-phase heat medium reaches the utilization side heat exchanger 22 . The utilization side heat exchanger 22 evaporates the low-pressure gas-liquid two-phase heat medium into a low-pressure gas-phase heat medium. At this time, the heat medium absorbs heat from the air within the air-conditioned space. The heat medium in the low-pressure gas phase exits the usage-side heat exchanger 22 and is sucked into the usage-side compressor 21 from the second suction section 21a.
 (2)熱交換器100
 (2-1)全体構成
 図2に示されるように、熱交換器100は、複数の第1伝熱プレート110と、複数の第2伝熱プレート120と、第1フレーム130と、第2フレーム140とを備えるプレート式熱交換器である。熱交換器100は、内部に、第1流路111と、第2流路121とが形成されている。
(2) Heat exchanger 100
(2-1) Overall configuration As shown in FIG. 2, the heat exchanger 100 includes a plurality of first heat transfer plates 110, a plurality of second heat transfer plates 120, a first frame 130, and a second frame. 140. The heat exchanger 100 has a first flow path 111 and a second flow path 121 formed therein.
 第1伝熱プレート110、及び第2伝熱プレート120は、外形が同じ矩形状に形成される金属製の板状部材である。本実施形態では、図2に示されるように、第1伝熱プレート110、第2伝熱プレート120、第1フレーム130、及び第2フレーム140は、長手方向DLに沿って延びる矩形状に形成されている。 The first heat transfer plate 110 and the second heat transfer plate 120 are metal plate members having the same rectangular outer shape. In this embodiment, as shown in FIG. 2, the first heat transfer plate 110, the second heat transfer plate 120, the first frame 130, and the second frame 140 are formed in a rectangular shape extending along the longitudinal direction DL. has been done.
 複数の第1伝熱プレート110、及び複数の第2伝熱プレート120は、第1フレーム130と、第2フレーム140との間において交互に積層される。複数の第1伝熱プレート110、及び複数の第2伝熱プレート120のそれぞれの枚数は、限定されず、要求される性能に応じて適宜に設定される。第1フレーム130、第1伝熱プレート110、第2伝熱プレート120、及び第2フレーム140の材質及び寸法は、限定されず、要求される性能に応じて適宜に設定される。第1フレーム130、第1伝熱プレート110、第2伝熱プレート120、及び第2フレーム140は、例えば、ロウ付けにより一体的に接合されている。 The plurality of first heat transfer plates 110 and the plurality of second heat transfer plates 120 are alternately stacked between the first frame 130 and the second frame 140. The number of each of the plurality of first heat transfer plates 110 and the plurality of second heat transfer plates 120 is not limited, and is appropriately set according to the required performance. The materials and dimensions of the first frame 130, the first heat transfer plate 110, the second heat transfer plate 120, and the second frame 140 are not limited, and are appropriately set according to the required performance. The first frame 130, the first heat transfer plate 110, the second heat transfer plate 120, and the second frame 140 are integrally joined by, for example, brazing.
 以下の説明では、第1伝熱プレート110、及び第2伝熱プレート120が積層される方向を積層方向DSと呼び、長手方向DL及び積層方向DSと直交する方向を幅方向DWと呼ぶ。また、図2に示されるように、「上」、「下」、「左」、「右」、「前」及び「後」の各方向を定義する。長手方向DLは、上下方向である。幅方向DWは、左右方向である。積層方向DSは、前後方向である。 In the following description, the direction in which the first heat transfer plate 110 and the second heat transfer plate 120 are stacked is called the stacking direction DS, and the direction perpendicular to the longitudinal direction DL and the stacking direction DS is called the width direction DW. Further, as shown in FIG. 2, the directions of "top", "bottom", "left", "right", "front", and "back" are defined. The longitudinal direction DL is an up-down direction. The width direction DW is the left-right direction. The stacking direction DS is the front-back direction.
 (2-2)詳細構成
 (2-2-1)第1伝熱プレート110
 第1伝熱プレート110は、断面が波形に形成された波形フィンである。本実施形態では、図2及び図3に示されるように、第1伝熱プレート110の波形は、平面視において、頂部が、上方に向かって凸なヘリンボーンパターンを描くように形成される。
(2-2) Detailed configuration (2-2-1) First heat transfer plate 110
The first heat transfer plate 110 is a corrugated fin having a corrugated cross section. In the present embodiment, as shown in FIGS. 2 and 3, the waveform of the first heat transfer plate 110 is formed so that the top portion thereof draws a herringbone pattern convex upward in plan view.
 第1伝熱プレート110は、隣接して積層される第2伝熱プレート120とともに第1流路111及び第2流路121を形成する。第1伝熱プレート110は、第1接合領域110aと、2つの第1流通孔110bと、2つの第1貫通孔110cと、第1前面110saと、第1後面110sbとを有する。 The first heat transfer plate 110 forms a first flow path 111 and a second flow path 121 together with the second heat transfer plate 120 stacked adjacently. The first heat transfer plate 110 has a first joint region 110a, two first communication holes 110b, two first through holes 110c, a first front surface 110sa, and a first rear surface 110sb.
 第1接合領域110aは、第1伝熱プレート110と第2伝熱プレート120とを互いに接合するための領域である。第1接合領域110aは、所定幅の端縁が前側に向かって折れ曲がった帯状の領域である。 The first bonding region 110a is a region for bonding the first heat transfer plate 110 and the second heat transfer plate 120 to each other. The first joint region 110a is a band-shaped region with an edge of a predetermined width bent toward the front side.
 第1流通孔110bは、冷媒を第1流路111へ導入又は導出する円形の孔である。第1流通孔110bは、第1伝熱プレート110の上方左側及び下方右側に形成される。 The first flow hole 110b is a circular hole that introduces or leads the refrigerant into the first flow path 111. The first communication hole 110b is formed on the upper left side and the lower right side of the first heat transfer plate 110.
 第1貫通孔110cは、熱媒体を積層方向DSへ通過させる円形の孔である。第1貫通孔110cは、第1伝熱プレート110の上方右側及び下方左側に形成される。 The first through hole 110c is a circular hole that allows the heat medium to pass in the stacking direction DS. The first through hole 110c is formed on the upper right side and the lower left side of the first heat transfer plate 110.
 第1前面110saは、第1伝熱プレート110の前側の面である。第1前面110saは、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、後述する第2伝熱プレート120の第2後面120sbと対向する面である。 The first front surface 110sa is the front surface of the first heat transfer plate 110. The first front surface 110sa is a surface that faces a second rear surface 120sb of the second heat transfer plate 120, which will be described later, when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
 第1後面110sbは、第1伝熱プレート110の後側の面である。第1後面110sbは、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、後述する第2伝熱プレート120の第2前面120saと対向する面である。 The first rear surface 110sb is the rear surface of the first heat transfer plate 110. The first rear surface 110sb is a surface that faces a second front surface 120sa of the second heat transfer plate 120, which will be described later, when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
 第1伝熱プレート110は、製法は限定されないが、例えば、プレス加工を用いて形成される。 The first heat transfer plate 110 is formed using, for example, press working, although the manufacturing method is not limited.
 (2-2-2)第2伝熱プレート120
 第2伝熱プレート120は、隣接して積層される第1伝熱プレート110とともに第1流路111及び第2流路121を形成する。第2伝熱プレート120は、第2接合領域120aと、2つの第2流通孔120bと、2つの第2貫通孔120cと、第2前面120saと、第2後面120sbとを有する。
(2-2-2) Second heat transfer plate 120
The second heat transfer plate 120 forms a first flow path 111 and a second flow path 121 together with the first heat transfer plate 110 stacked adjacent to each other. The second heat transfer plate 120 has a second bonding region 120a, two second communication holes 120b, two second through holes 120c, a second front surface 120sa, and a second rear surface 120sb.
 第2接合領域120aは、第1伝熱プレート110と第2伝熱プレート120とを互いに接合するための領域である。第2接合領域120aは、所定幅の端縁が前側に向かって折れ曲がった帯状の領域である。 The second bonding region 120a is a region for bonding the first heat transfer plate 110 and the second heat transfer plate 120 to each other. The second joint region 120a is a band-shaped region with a predetermined width edge bent toward the front.
 第2流通孔120bは、熱媒体を第2流路121へ導入又は導出する円形の孔である。第2流通孔120bは、第2伝熱プレート120の上方右側及び下方左側に形成される。第2流通孔120bは、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、第1貫通孔110cと重なり合って連通する位置に形成される。第2流通孔120bの大きさ及び形状は、第1貫通孔110cと同じである。 The second flow hole 120b is a circular hole that introduces or leads out the heat medium to the second flow path 121. The second communication hole 120b is formed on the upper right side and the lower left side of the second heat transfer plate 120. The second communication hole 120b is formed at a position that overlaps and communicates with the first through hole 110c when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked. The size and shape of the second communication hole 120b are the same as the first through hole 110c.
 第2貫通孔120cは、冷媒を積層方向DSへ通過させる円形の孔である。第2貫通孔120cは、第2伝熱プレート120の上方左側及び下方右側に形成される。第2貫通孔120cは、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、第1流通孔110bと重なり合って連通する位置に形成される。第2貫通孔120cの大きさ及び形状は、第1流通孔110bと同じである。 The second through hole 120c is a circular hole that allows the refrigerant to pass in the stacking direction DS. The second through hole 120c is formed on the upper left side and the lower right side of the second heat transfer plate 120. The second through hole 120c is formed at a position that overlaps and communicates with the first communication hole 110b when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked. The size and shape of the second through hole 120c are the same as the first communication hole 110b.
 第2前面120saは、第2伝熱プレート120の前側の面である。第2前面120saは、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、第1伝熱プレート110の第1後面110sbと対向する面である。 The second front surface 120sa is the front surface of the second heat transfer plate 120. The second front surface 120sa is a surface that faces the first rear surface 110sb of the first heat transfer plate 110 when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
 第2後面120sbは、第2伝熱プレート120の後側の面である。第2後面120sbは、第1伝熱プレート110と第2伝熱プレート120とを積層した場合に、第1伝熱プレート110の第1前面110saと対向する面である。 The second rear surface 120sb is the rear surface of the second heat transfer plate 120. The second rear surface 120sb is a surface that faces the first front surface 110sa of the first heat transfer plate 110 when the first heat transfer plate 110 and the second heat transfer plate 120 are stacked.
 第2伝熱プレート120は、製法は限定されないが、例えば、プレス加工を用いて形成される。第2伝熱プレート120の形状の詳細については、後述する。 The second heat transfer plate 120 is formed using, for example, press working, although the manufacturing method is not limited. Details of the shape of the second heat transfer plate 120 will be described later.
 (2-2-3)第1フレーム130及び第2フレーム140
 第1フレーム130、及び第2フレーム140は、交互に積層された複数の第1伝熱プレート110及び複数の第2伝熱プレート120を、積層方向DSにおける両端で挟む金属製の板状部材である。
(2-2-3) First frame 130 and second frame 140
The first frame 130 and the second frame 140 are metal plate-like members that sandwich the plurality of first heat transfer plates 110 and the plurality of second heat transfer plates 120, which are stacked alternately, at both ends in the stacking direction DS. be.
 (2-2-4)第1導入管150a及び第1導出管150b
 第1導入管150aは、冷媒を第1流路111に導入する配管である。第1導入管150aは、第1フレーム130の上方左側を貫通し、第1流路111と連通するように設けられる。より詳細には、第1導入管150aは、第1伝熱プレート110、第2伝熱プレート120、及び第1フレーム130を積層した場合に互いに連通する、上方左側に形成された第1流通孔110b及び第2貫通孔120cと連通するように形成される。
(2-2-4) First inlet pipe 150a and first outlet pipe 150b
The first introduction pipe 150a is a pipe that introduces the refrigerant into the first flow path 111. The first introduction pipe 150a is provided to pass through the upper left side of the first frame 130 and communicate with the first flow path 111. More specifically, the first introduction pipe 150a is a first communication hole formed on the upper left side that communicates with each other when the first heat transfer plate 110, the second heat transfer plate 120, and the first frame 130 are stacked. 110b and the second through hole 120c.
 第1導出管150bは、冷媒を第1流路111から導出する配管である。第1導出管150bは、第1フレーム130の下方右側を貫通し、第1流路111と連通するように設けられる。より詳細には、第1導出管150bは、第1伝熱プレート110、第2伝熱プレート120、及び第1フレーム130を積層した場合に互いに連通する、下方右側に形成された第1流通孔110b及び第2貫通孔120cと連通するように形成される。 The first outlet pipe 150b is a pipe that leads out the refrigerant from the first flow path 111. The first outlet pipe 150b is provided to penetrate the lower right side of the first frame 130 and communicate with the first flow path 111. More specifically, the first outlet pipe 150b is a first communication hole formed on the lower right side that communicates with each other when the first heat transfer plate 110, the second heat transfer plate 120, and the first frame 130 are stacked. 110b and the second through hole 120c.
 (2-2-5)第2導入管160a及び第2導出管160b
 第2導入管160aは、熱媒体を第2流路121に導入する配管である。第2導入管160aは、第1フレーム130の上方右側を貫通し、第2流路121と連通するように設けられる。より詳細には、第2導入管160aは、第1伝熱プレート110、第2伝熱プレート120、及び第1フレーム130を積層した場合に互いに連通する、上方右側に形成された第2流通孔120b及び第1貫通孔110cと連通するように形成される。
(2-2-5) Second introduction pipe 160a and second outlet pipe 160b
The second introduction pipe 160a is a pipe that introduces the heat medium into the second flow path 121. The second introduction pipe 160a is provided to pass through the upper right side of the first frame 130 and communicate with the second flow path 121. More specifically, the second introduction pipe 160a is a second communication hole formed on the upper right side that communicates with each other when the first heat transfer plate 110, the second heat transfer plate 120, and the first frame 130 are stacked. 120b and the first through hole 110c.
 第2導出管160bは、熱媒体を第2流路121から導出する配管である。第2導出管160bは、第1フレーム130の下方左側を貫通し、第2流路121と連通するように設けられる。より詳細には、第2導入管160aは、第1伝熱プレート110、第2伝熱プレート120、及び第1フレーム130を積層した場合に互いに連通する、下方左側に形成された第2流通孔120b及び第1貫通孔110cと連通するように形成される。 The second outlet pipe 160b is a pipe that leads out the heat medium from the second flow path 121. The second outlet pipe 160b is provided to penetrate the lower left side of the first frame 130 and communicate with the second flow path 121. More specifically, the second introduction pipe 160a is a second communication hole formed on the lower left side that communicates with each other when the first heat transfer plate 110, the second heat transfer plate 120, and the first frame 130 are stacked. 120b and the first through hole 110c.
 (2-2-6)第1流路111及び第2流路121
 図3に示されるように、第1伝熱プレート110と第2伝熱プレート120とが交互に積層されることで第1流路111と第2流路121とが積層方向DSに交互に形成される。より詳細には、第1伝熱プレート110と第2伝熱プレート120とが交互に積層されることで、第1伝熱プレート110の第1前面110saと第2伝熱プレート120の第2後面120sbとが対向する空間が第1流路111となる。また、第1伝熱プレート110と第2伝熱プレート120とが交互に積層されることで、第1伝熱プレート110の第1後面110sbと第2伝熱プレート120の第2前面120saとが対向する空間が第2流路121となる。
(2-2-6) First flow path 111 and second flow path 121
As shown in FIG. 3, by alternately stacking the first heat transfer plates 110 and the second heat transfer plates 120, first flow channels 111 and second flow channels 121 are formed alternately in the stacking direction DS. be done. More specifically, the first heat transfer plate 110 and the second heat transfer plate 120 are stacked alternately, so that the first front surface 110sa of the first heat transfer plate 110 and the second rear surface of the second heat transfer plate 120 are stacked alternately. The space where 120sb faces becomes the first flow path 111. Furthermore, by alternately stacking the first heat transfer plate 110 and the second heat transfer plate 120, the first rear surface 110sb of the first heat transfer plate 110 and the second front surface 120sa of the second heat transfer plate 120 are mutually connected. The opposing space becomes the second flow path 121.
 第1伝熱プレート110と第2伝熱プレート120とは、ロウ付けにより接合される。より詳細には、第1伝熱プレート110と第2伝熱プレート120とは、第1接合領域110aと第2接合領域120aとがロウ付けにより互いに接合される。 The first heat transfer plate 110 and the second heat transfer plate 120 are joined by brazing. More specifically, in the first heat transfer plate 110 and the second heat transfer plate 120, the first bonding area 110a and the second bonding area 120a are bonded to each other by brazing.
 以下の説明では、第1流路111は、上側の第1流通孔110bと下側の第1流通孔110bとの間に位置し、幅方向DWの寸法が長手方向DLにおいて一定となる矩形状の領域を表す。同様に、第2流路121は、上側の第2流通孔120bと下側の第2流通孔120bとの間に位置し、幅方向DWの寸法が長手方向DLにおいて一定となる矩形状の領域を表す。図4及び図5には、それぞれ、第1流路111及び第2流路121の長手方向DL及び幅方向DWの範囲が示されている。 In the following description, the first flow path 111 is located between the first communication hole 110b on the upper side and the first communication hole 110b on the lower side, and has a rectangular shape whose dimension in the width direction DW is constant in the longitudinal direction DL. represents the area of Similarly, the second flow path 121 is located between the upper second flow hole 120b and the lower second flow hole 120b, and is a rectangular region whose dimension in the width direction DW is constant in the longitudinal direction DL. represents. 4 and 5 show the ranges of the first flow path 111 and the second flow path 121 in the longitudinal direction DL and the width direction DW, respectively.
 (2-3)冷媒及び熱媒体の流れ
 熱交換器100の第1導入管150aから導入された冷媒は、上側の第2貫通孔120c及び第1流通孔110bを通過して第1流路111に流入する。第1流路111に流入した冷媒は、第1流路111を下側の第1流通孔110bへ向かって流れる。下側の第1流通孔110bまで達した冷媒は、下側の第2貫通孔120cを通過して第1導出管150bから導出される。この間、第1流路111を流れる液状の冷媒は、第1伝熱プレート110又は第2伝熱プレート120を介して隣り合う第2流路121の熱媒体と熱交換を行って蒸発して、ガス状の冷媒となる。言い換えると、熱交換器100は冷媒の蒸発器として機能する。
(2-3) Flow of refrigerant and heat medium The refrigerant introduced from the first introduction pipe 150a of the heat exchanger 100 passes through the upper second through hole 120c and the first distribution hole 110b and enters the first flow path 111. flows into. The refrigerant that has flowed into the first flow path 111 flows through the first flow path 111 toward the first flow hole 110b on the lower side. The refrigerant that has reached the first flow hole 110b on the lower side passes through the second through hole 120c on the lower side and is led out from the first outlet pipe 150b. During this time, the liquid refrigerant flowing through the first flow path 111 exchanges heat with the heat medium in the adjacent second flow path 121 via the first heat transfer plate 110 or the second heat transfer plate 120, and evaporates. It becomes a gaseous refrigerant. In other words, the heat exchanger 100 functions as a refrigerant evaporator.
 一方、熱交換器100の第2導入管160aから導入された熱媒体は、上側の第2流通孔120b及び第1貫通孔110cを通過して第2流路121に流入する。第2流路121に流入した熱媒体は、第2流路121を下側の第2流通孔120bへ向かって流れる。下側の第2流通孔120bまで達した熱媒体は、下側の第1貫通孔110cを通過して第2導出管160bから導出される。この間、第2流路121を流れるガス状の熱媒体は、第1伝熱プレート110又は第2伝熱プレート120を介して隣り合う第1流路111の冷媒と熱交換を行って凝縮して、液状の熱媒体となる。言い換えると、熱交換器100は熱媒体の凝縮器として機能する。 On the other hand, the heat medium introduced from the second introduction pipe 160a of the heat exchanger 100 flows into the second flow path 121 through the upper second communication hole 120b and the first through hole 110c. The heat medium that has flowed into the second flow path 121 flows through the second flow path 121 toward the second flow hole 120b on the lower side. The heat medium that has reached the second flow hole 120b on the lower side passes through the first through hole 110c on the lower side and is led out from the second outlet pipe 160b. During this time, the gaseous heat medium flowing through the second flow path 121 exchanges heat with the refrigerant in the adjacent first flow path 111 via the first heat transfer plate 110 or the second heat transfer plate 120, and is condensed. , becomes a liquid heat medium. In other words, the heat exchanger 100 functions as a heat medium condenser.
 (2-4)第2流路121の詳細構成
 熱交換器100において、第2流路121を流れる熱媒体は、上側の第2流通孔120bと、下側の第2流通孔120bとの間を、長手方向DLに沿って流れる。本実施形態では、熱媒体は、上側の第2流通孔120bから流入して、第2流路121を通過した後、下側の第2流通孔120bから流出する。上側の第2流通孔120bは、上側の第1貫通孔110cを介して第2導入管160aと連通する。下側の第2流通孔120bは、下側の第1貫通孔110cを介して第2導出管160bと連通する。熱交換器100で熱交換される前のガス状の熱媒体は、第2導入管160aから、上側の第2流通孔120bを通って、第2流路121に流入する。第2流路121を通過する過程で、ガス状の熱媒体は、熱交換されて液状となる。液状の熱媒体は、第2流路121から流出した後、下側の第2流通孔120bを通って、第2導出管160bに供給される。
(2-4) Detailed configuration of second flow path 121 In the heat exchanger 100, the heat medium flowing through the second flow path 121 is distributed between the upper second flow hole 120b and the lower second flow hole 120b. flows along the longitudinal direction DL. In this embodiment, the heat medium flows in from the upper second flow hole 120b, passes through the second flow path 121, and then flows out from the lower second flow hole 120b. The upper second communication hole 120b communicates with the second introduction pipe 160a via the upper first through hole 110c. The second flow hole 120b on the lower side communicates with the second outlet pipe 160b via the first through hole 110c on the lower side. The gaseous heat medium before being heat exchanged in the heat exchanger 100 flows from the second introduction pipe 160a into the second flow path 121 through the upper second communication hole 120b. In the process of passing through the second flow path 121, the gaseous heat medium undergoes heat exchange and becomes liquid. After flowing out of the second flow path 121, the liquid heat medium passes through the second flow hole 120b on the lower side and is supplied to the second outlet pipe 160b.
 第1伝熱プレート110及び第2伝熱プレート120は、N個の流路領域を形成する。値Nは、2以上の整数である。本実施形態では、図6に示されるように、値Nは5であり、第1伝熱プレート110及び第2伝熱プレート120は、5個の流路領域F1~F5を形成する。各流路領域F1~F5は、第2流路121の一部を有する。各流路領域F1~F5は、上側の第2流通孔120bと、下側の第2流通孔120bとの間において、長手方向DLに沿って隣り合って配置される矩形の領域である。各流路領域F1~F5の幅方向DWの寸法は、第2流路121の幅方向DWの寸法と等しい。 The first heat transfer plate 110 and the second heat transfer plate 120 form N flow path regions. The value N is an integer greater than or equal to 2. In this embodiment, as shown in FIG. 6, the value N is 5, and the first heat transfer plate 110 and the second heat transfer plate 120 form five flow path regions F1 to F5. Each flow path region F1 to F5 has a portion of the second flow path 121. Each of the flow path regions F1 to F5 is a rectangular region arranged adjacent to each other along the longitudinal direction DL between the upper second flow hole 120b and the lower second flow hole 120b. The dimension in the width direction DW of each flow path region F1 to F5 is equal to the dimension in the width direction DW of the second flow path 121.
 以下の説明では、N個の流路領域のうち、長手方向DLにおいて上側の第2流通孔120bの側からx番目に位置する流路領域を、第xの流路領域と呼ぶ。値xは、1≦x≦Nを満たす整数である。例えば、図6において、第1の流路領域F1は、上側の第2流通孔120bの下方に位置し、第2の流路領域F2は、第1の流路領域F1の下方に位置する。また、第5の流路領域F5(第Nの流路領域)は、第4の流路領域F4の下方に位置し、かつ、下側の第2流通孔120bの上方に位置する。このように、第1乃至第Nの流路領域は、上側の第2流通孔120bから下側の第2流通孔120bに向かって、長手方向DLに沿って一列に隣り合って配置されている。 In the following description, among the N channel regions, the channel region located xth from the upper second communication hole 120b side in the longitudinal direction DL will be referred to as the x-th channel region. The value x is an integer satisfying 1≦x≦N. For example, in FIG. 6, the first flow path area F1 is located below the upper second flow hole 120b, and the second flow path area F2 is located below the first flow path area F1. Further, the fifth flow path area F5 (Nth flow path area) is located below the fourth flow path area F4 and above the second flow hole 120b on the lower side. In this way, the first to Nth flow path regions are arranged adjacent to each other in a line along the longitudinal direction DL from the second communication hole 120b on the upper side toward the second communication hole 120b on the lower side. .
 各流路領域F1~F5は、1又は複数の流路要素131を有する。流路要素131は、熱媒体が長手方向DLに沿って流れる空間である。流路領域が複数の流路要素131を有する場合、その複数の流路要素131は幅方向DWに沿って配置される。幅方向DWにおいて隣り合う2個の流路要素131は、長手方向DLに沿って延びる仕切り要素132によって仕切られている。図5~8では、仕切り要素132は、ハッチングされた領域として示されている。 Each flow path region F1 to F5 has one or more flow path elements 131. The flow path element 131 is a space through which the heat medium flows along the longitudinal direction DL. When the channel region has a plurality of channel elements 131, the plurality of channel elements 131 are arranged along the width direction DW. Two channel elements 131 adjacent in the width direction DW are partitioned by a partition element 132 extending along the longitudinal direction DL. In FIGS. 5-8, the partitioning elements 132 are shown as hatched areas.
 図3に示されるように、流路要素131は、第1伝熱プレート110の第1後面110sbと第2伝熱プレート120の第2前面120saとが対向している空間に相当する。また、仕切り要素132は、第1伝熱プレート110の第1後面110sbと第2伝熱プレート120の第2前面120saとが接合している部分に相当する。流路領域が複数の流路要素131を有する場合、その複数の流路要素131は、同一の幅方向DWの寸法、及び、同一の断面積を有する。 As shown in FIG. 3, the channel element 131 corresponds to a space where the first rear surface 110sb of the first heat transfer plate 110 and the second front surface 120sa of the second heat transfer plate 120 are opposed to each other. Further, the partition element 132 corresponds to a portion where the first rear surface 110sb of the first heat transfer plate 110 and the second front surface 120sa of the second heat transfer plate 120 are joined. When the channel region has a plurality of channel elements 131, the plurality of channel elements 131 have the same dimension in the width direction DW and the same cross-sectional area.
 長手方向DLにおいて隣接する2つの流路領域は、流路要素131の数、及び断面積が互いに異なっている。また、各流路領域F1~F5において、流路要素131の数、及び断面積は一定である。そのため、N個の流路領域が形成されている場合、第1の流路領域の流路要素131の数、及び断面積は、第Nの流路領域の流路要素131の数、及び断面積と異なっている。 Two flow path regions adjacent in the longitudinal direction DL have different numbers of flow path elements 131 and different cross-sectional areas. Further, in each of the flow path regions F1 to F5, the number and cross-sectional area of the flow path elements 131 are constant. Therefore, when N channel regions are formed, the number and cross-sectional area of the channel elements 131 in the first channel region are the same as the number and cross-sectional area of the channel elements 131 in the N-th channel region. It is different from the area.
 具体的には、値i,jが1≦i<j≦Nを満たす整数である場合、第iの流路領域の流路要素131の数は、第jの流路領域の流路要素131の数より少なく、第iの流路領域の流路要素131の断面積は、第jの流路領域の流路要素131の断面積より大きい。例えば、図6に示されるように、第2の流路領域F2は2個の流路要素131を有し、第3の流路領域F3は4個の流路要素131を有する。この場合、第2の流路領域F2の流路要素131の幅方向DWの寸法は、第3の流路領域F3の流路要素131の幅方向DWの寸法より大きい。そのため、第2の流路領域F2の流路要素131の断面積は、第3の流路領域F3の流路要素131の断面積より大きい。 Specifically, when the values i and j are integers satisfying 1≦i<j≦N, the number of channel elements 131 in the i-th channel region is greater than the number of channel elements 131 in the j-th channel region. , and the cross-sectional area of the flow path element 131 in the i-th flow path region is larger than the cross-sectional area of the flow path element 131 in the j-th flow path region. For example, as shown in FIG. 6, the second flow path area F2 has two flow path elements 131, and the third flow path area F3 has four flow path elements 131. In this case, the dimension in the width direction DW of the channel element 131 in the second channel region F2 is larger than the dimension in the width direction DW of the channel element 131 in the third channel region F3. Therefore, the cross-sectional area of the flow path element 131 in the second flow path area F2 is larger than the cross-sectional area of the flow path element 131 in the third flow path area F3.
 また、本実施形態では、図6に示されるように、第1の流路領域F1の流路要素131の数は、1である。言い換えると、第1の流路領域F1は、仕切り要素132を有さない。 Furthermore, in this embodiment, as shown in FIG. 6, the number of flow path elements 131 in the first flow path region F1 is one. In other words, the first flow path region F1 does not have the partition element 132.
 さらに、本実施形態では、図6に示されるように、第5の流路領域F5(第Nの流路領域)と、下側の第2流通孔120bとの間には、合流領域133が形成されている。合流領域133は、第5の流路領域F5の全ての流路要素131と連通する。合流領域133の長手方向DLの寸法は、第2流路121の長手方向DLの寸法の20%以下であることが好ましい。 Furthermore, in this embodiment, as shown in FIG. 6, a confluence region 133 is provided between the fifth flow path region F5 (Nth flow path region) and the second flow hole 120b on the lower side. It is formed. The confluence region 133 communicates with all flow path elements 131 of the fifth flow path region F5. The dimension of the merging region 133 in the longitudinal direction DL is preferably 20% or less of the dimension of the second flow path 121 in the longitudinal direction DL.
 従って、上側の第2流通孔120bから下側の第2流通孔120bに向かって、流路領域F1~F5の流路要素131の数は徐々に増加し、かつ、流路領域F1~F5の流路要素131の断面積は徐々に減少する。言い換えると、ガス状の熱媒体が第2流路121を流れて液状の熱媒体となる過程で、熱媒体が流れる流路要素131の数が徐々に増加し、かつ、流路要素131の断面積が徐々に減少する。 Therefore, the number of flow path elements 131 in the flow path regions F1 to F5 gradually increases from the upper second flow hole 120b to the lower second flow hole 120b, and the number of flow path elements 131 in the flow path regions F1 to F5 gradually increases. The cross-sectional area of channel element 131 gradually decreases. In other words, in the process in which the gaseous heat medium flows through the second flow path 121 and becomes a liquid heat medium, the number of flow path elements 131 through which the heat medium flows gradually increases, and the number of flow path elements 131 is interrupted. The area gradually decreases.
 また、第2流路121において、長手方向DLにおいて隣接する2つの流路領域の境界は、流路要素131の数、及び断面積が変化する位置である。そのため、第2流路121において、第1の流路領域F1から第5の流路領域F5に向かって熱媒体が流れる過程で、熱媒体の流れは徐々に分岐する。第5の流路領域F5の流路要素131を通過した熱媒体は、合流領域133において合流して、下側の第2流通孔120bに供給される。 Furthermore, in the second flow path 121, the boundary between two flow path regions adjacent in the longitudinal direction DL is a position where the number and cross-sectional area of the flow path elements 131 change. Therefore, in the second flow path 121, the flow of the heat medium gradually branches during the process in which the heat medium flows from the first flow path region F1 toward the fifth flow path region F5. The heat medium that has passed through the flow path element 131 of the fifth flow path region F5 joins together in the merging region 133 and is supplied to the second flow hole 120b on the lower side.
 図6では、第1乃至第5の流路領域F1~F5の流路要素131の数は、それぞれ、1、2、4、8、及び16である。言い換えると、第1の流路領域F1から下側の第2流通孔120bに向かって熱媒体が流れる過程で、熱媒体の流れが分岐する度に、流路要素131の数は2倍になっている。 In FIG. 6, the numbers of channel elements 131 in the first to fifth channel regions F1 to F5 are 1, 2, 4, 8, and 16, respectively. In other words, the number of flow path elements 131 doubles each time the flow of the heat medium branches during the flow of the heat medium from the first flow path region F1 toward the second flow hole 120b on the lower side. ing.
 各流路領域F1~F5の数、及び、長手方向DLの寸法等は、限定されず、要求される性能に応じて適宜に設定される。また、各流路領域F1~F5の流路要素131の数は、限定されず、要求される性能に応じて適宜に設定される。例えば、第1の流路領域F1は1個の流路要素131を有し、第2の流路領域F2は10個の流路要素131を有してもよい。この場合、第2の流路領域F2から下側の第2流通孔120bに向かって熱媒体が流れる過程で、熱媒体の流れが分岐する度に、流路要素131の数は2倍になっていてもよい。 The number of each flow path region F1 to F5, the dimension in the longitudinal direction DL, etc. are not limited, and are appropriately set according to the required performance. Further, the number of flow path elements 131 in each flow path region F1 to F5 is not limited, and is appropriately set according to the required performance. For example, the first flow path area F1 may have one flow path element 131, and the second flow path area F2 may have ten flow path elements 131. In this case, the number of flow path elements 131 doubles each time the flow of the heat medium branches during the process in which the heat medium flows from the second flow path region F2 toward the second flow hole 120b on the lower side. You can leave it there.
 (3)特徴
 (3-1)
 従来、流体に熱交換をさせるための複数の熱交換流路と、熱交換流路の両端に接続される一対の分岐流路とが形成される金属板を備えるプレートフィン型熱交換器が用いられている。このような熱交換器では、熱交換器に流入する流体は、熱交換器の入口付近において分岐流路によって全ての熱交換流路に分流し、熱交換器の出口付近において分岐流路によって合流する。そのため、熱交換器の入口付近から出口付近まで、熱交換流路の数および断面積が一定である。熱交換流路において熱交換によってガス状の流体が液状の流体に相変化する場合、ガス状の流体が流れる入口付近の熱交換流路において圧力損失が大きくなり、熱交換器の性能が低下することがある。また、液状の流体が流れる出口付近の熱交換流路において流体の流速が小さくなり、熱伝達効率が低下することがある。
(3) Features (3-1)
Conventionally, a plate-fin type heat exchanger has been used, which includes a metal plate in which a plurality of heat exchange channels for exchanging heat with a fluid and a pair of branch channels connected to both ends of the heat exchange channels are formed. It is being In such a heat exchanger, the fluid flowing into the heat exchanger is divided into all heat exchange channels by a branch channel near the inlet of the heat exchanger, and is merged by a branch channel near the outlet of the heat exchanger. do. Therefore, the number and cross-sectional area of the heat exchange channels are constant from near the inlet to near the outlet of the heat exchanger. When a gaseous fluid undergoes a phase change to a liquid fluid due to heat exchange in the heat exchange channel, pressure loss increases in the heat exchange channel near the inlet where the gaseous fluid flows, reducing the performance of the heat exchanger. Sometimes. Furthermore, the flow velocity of the fluid may decrease in the heat exchange channel near the outlet through which the liquid fluid flows, and the heat transfer efficiency may decrease.
 本実施形態の熱交換器100は、交互に積層された、第1伝熱プレート110及び第2伝熱プレート120を備える。第1伝熱プレート110及び第2伝熱プレート120は、ガス状の熱媒体が熱交換により凝縮されて液状の熱媒体となる第2流路121を形成する。第2流路121において、ガス状の熱媒体が流入する入口側から、液状の熱媒体が流出する出口側に向かって熱媒体が流れる過程で、熱媒体の流れは徐々に分岐して、熱媒体が流れる流路要素131の断面積が徐々に減少する。ガス状の熱媒体が流れる入口付近の流路の断面積が大きいほど、圧力損失が低減されやすい。液状の熱媒体が流れる出口付近の流路の断面積が小さいほど、熱媒体の流速の低下が抑制されやすい。そのため、熱交換器100では、第2流路121を流れる熱媒体の相変化(密度変化)に応じて好適な熱媒体の流速が実現されるように、熱媒体が流れる流路要素131の断面積が徐々に減少する第2流路121が形成される。 The heat exchanger 100 of this embodiment includes first heat transfer plates 110 and second heat transfer plates 120 that are alternately stacked. The first heat transfer plate 110 and the second heat transfer plate 120 form a second flow path 121 in which a gaseous heat medium is condensed through heat exchange to become a liquid heat medium. In the second flow path 121, in the process of the heat medium flowing from the inlet side where the gaseous heat medium flows in toward the outlet side where the liquid heat medium flows out, the flow of the heat medium gradually branches and heats up. The cross-sectional area of the channel element 131 through which the medium flows gradually decreases. The larger the cross-sectional area of the flow path near the inlet through which the gaseous heat medium flows, the easier it is to reduce pressure loss. The smaller the cross-sectional area of the flow path near the outlet through which the liquid heat medium flows, the easier it is to suppress a decrease in the flow velocity of the heat medium. Therefore, in the heat exchanger 100, the flow path element 131 through which the heat medium flows is cut off so that a suitable flow rate of the heat medium is realized according to the phase change (density change) of the heat medium flowing through the second flow path 121. A second flow path 121 whose area gradually decreases is formed.
 従って、本実施形態の熱交換器100では、ガス状の流体が流れる入口付近の流路において圧力損失が大きくなることが抑えられるので、熱交換器の性能が低下することが抑制される。また、本実施形態の熱交換器100では、液状の流体が流れる出口付近の流路において流体の流速が小さくなることが抑えられるので、熱伝達効率が低下することが抑制される。 Therefore, in the heat exchanger 100 of the present embodiment, pressure loss is suppressed from increasing in the flow path near the inlet through which the gaseous fluid flows, and therefore the performance of the heat exchanger is suppressed from deteriorating. Furthermore, in the heat exchanger 100 of the present embodiment, the flow velocity of the fluid is prevented from decreasing in the flow path near the outlet through which the liquid fluid flows, so that the heat transfer efficiency is prevented from decreasing.
 (3-2)
 本実施形態の熱交換器100では、第2流路121において、ガス状の熱媒体が流入する入口側から、液状の熱媒体が流出する出口側に向かって熱媒体が流れる過程で、熱媒体の流れは徐々に分岐して、熱媒体が流れる流路要素131の数が徐々に増加する。
(3-2)
In the heat exchanger 100 of the present embodiment, in the second flow path 121, the heat medium flows from the inlet side where the gaseous heat medium flows in toward the outlet side where the liquid heat medium flows out. The flow gradually branches, and the number of channel elements 131 through which the heat medium flows gradually increases.
 従って、本実施形態の熱交換器100では、入口側から出口側に向かって流体が流れる流路の断面積が徐々に減少しても、流体の流量の減少、及び、流体の熱交換に寄与する部分の面積(伝熱面積)の減少が抑えられるので、熱伝達効率が低下することが抑制される。 Therefore, in the heat exchanger 100 of the present embodiment, even if the cross-sectional area of the flow path through which the fluid flows from the inlet side to the outlet side gradually decreases, this contributes to the decrease in the flow rate of the fluid and the heat exchange of the fluid. Since the reduction in area (heat transfer area) of the portion where the heat transfer occurs is suppressed, a decrease in heat transfer efficiency is suppressed.
 (4)変形例
 (4-1)変形例A
 次に、変形例A~Dにおいて、上記実施形態の第2流路121の具体例について説明する。図7~8は、図6と同様の第2伝熱プレート120の平面図である。
(4) Modification example (4-1) Modification example A
Next, specific examples of the second flow path 121 of the above embodiment will be described in Modifications A to D. 7-8 are plan views of the second heat transfer plate 120 similar to FIG. 6.
 図7において、距離L0は、上側の第2流通孔120bと、下側の第2流通孔120bとの間の長手方向DLの距離である。第2流通孔120bの位置は、第2流通孔120bの円形状の中心である。距離L0は、第1伝熱プレート110と第2伝熱プレート120との間の空間において、上側の第2流通孔120bから流入して下側の第2流通孔120bから流出する熱媒体が移動する長手方向DLの距離である。距離L1は、第1の流路領域F1と第2の流路領域F2との境界B1と、上側の第2流通孔120bとの間の長手方向DLの距離である。 In FIG. 7, the distance L0 is the distance in the longitudinal direction DL between the second communication hole 120b on the upper side and the second communication hole 120b on the lower side. The position of the second communication hole 120b is the center of the circular shape of the second communication hole 120b. The distance L0 is a distance between the first heat transfer plate 110 and the second heat transfer plate 120, in which the heat medium flowing in from the upper second circulation hole 120b and flowing out from the lower second circulation hole 120b moves. This is the distance in the longitudinal direction DL. The distance L1 is the distance in the longitudinal direction DL between the boundary B1 between the first flow path area F1 and the second flow path area F2 and the upper second communication hole 120b.
 上記実施形態において、距離L0および距離L1は、0.2×L0≦L1≦0.8×L0の関係式を満たすことが好ましい。この場合、長手方向DLにおいて、熱媒体の流れが最初に分岐する位置は、熱媒体の流路の長さに相当する距離L0の20%~80%の位置にある。熱媒体の流れが最初に分岐する位置は、境界B1の長手方向DLの位置に相当する。 In the above embodiment, it is preferable that the distance L0 and the distance L1 satisfy the relational expression 0.2×L0≦L1≦0.8×L0. In this case, in the longitudinal direction DL, the position where the flow of the heat medium first branches is at a position of 20% to 80% of the distance L0 corresponding to the length of the flow path of the heat medium. The position where the flow of the heat medium first branches corresponds to the position in the longitudinal direction DL of the boundary B1.
 (4-2)変形例B
 図8において、距離L0は、上側の第2流通孔120bと、下側の第2流通孔120bとの間の長手方向DLの距離である。第2流通孔120bの位置は、第2流通孔120bの円形状の中心である。距離L0は、第1伝熱プレート110と第2伝熱プレート120との間の空間において、上側の第2流通孔120bから流入して下側の第2流通孔120bから流出する熱媒体が移動する長手方向DLの距離である。距離L2は、長手方向DLにおいて隣接する2つの流路領域の境界と、上側の第2流通孔120bとの間の長手方向DLの距離である。
(4-2) Modification B
In FIG. 8, the distance L0 is the distance in the longitudinal direction DL between the second communication hole 120b on the upper side and the second communication hole 120b on the lower side. The position of the second communication hole 120b is the center of the circular shape of the second communication hole 120b. The distance L0 is a distance between the first heat transfer plate 110 and the second heat transfer plate 120, in which the heat medium flowing in from the upper second circulation hole 120b and flowing out from the lower second circulation hole 120b moves. This is the distance in the longitudinal direction DL. The distance L2 is the distance in the longitudinal direction DL between the boundary of two flow path regions adjacent in the longitudinal direction DL and the upper second communication hole 120b.
 図8には、上側の第2流通孔120bから下側の第2流通孔120bに向かって、長手方向DLにおいて隣接する2つの流路領域の境界B1~B4が示されている。境界の数は、流路領域の数より1小さい値である。図8には、5個の流路領域F1~F5、及び、4個の境界B1~B4が示されている。長手方向DLにおいて、境界B1~B4は、熱媒体の流れが分岐する位置にある。図8では、距離L2は、境界B2と、上側の第2流通孔120bとの間の長手方向DLの距離として示されている。 FIG. 8 shows boundaries B1 to B4 between two flow path regions adjacent in the longitudinal direction DL from the upper second flow hole 120b toward the lower second flow hole 120b. The number of boundaries is one less than the number of channel regions. FIG. 8 shows five flow path regions F1 to F5 and four boundaries B1 to B4. In the longitudinal direction DL, boundaries B1 to B4 are located at positions where the flow of the heat medium branches. In FIG. 8, the distance L2 is shown as the distance in the longitudinal direction DL between the boundary B2 and the upper second communication hole 120b.
 上記実施形態において、距離L0および距離L2は、0.2×L0≦L2≦0.8×L0の関係式を満たすことが好ましい。この場合、長手方向DLにおいて、熱媒体の流れが分岐する位置は、全て、熱媒体の流路の長さに相当する距離L0の20%~80%の位置にある。熱媒体の流れが分岐する位置は、境界B1~B4の長手方向DLの位置に相当する。 In the above embodiment, it is preferable that the distance L0 and the distance L2 satisfy the relational expression 0.2×L0≦L2≦0.8×L0. In this case, in the longitudinal direction DL, the positions where the heat medium flow branches are all located at 20% to 80% of the distance L0 corresponding to the length of the heat medium flow path. The position where the flow of the heat medium branches corresponds to the position in the longitudinal direction DL of the boundaries B1 to B4.
 (4-3)変形例C
 上記実施形態において、各流路領域F1~F5のそれぞれの長手方向DLの長さは、距離L0の10%~50%であることが好ましい。距離L0は、上側の第2流通孔120bと、下側の第2流通孔120bとの間の長手方向DLの距離である。第2流通孔120bの位置は、第2流通孔120bの円形状の中心である。距離L0は、第1伝熱プレート110と第2伝熱プレート120との間の空間において、上側の第2流通孔120bから流入して下側の第2流通孔120bから流出する熱媒体が移動する長手方向DLの距離である。
(4-3) Modification C
In the above embodiment, the length in the longitudinal direction DL of each flow path region F1 to F5 is preferably 10% to 50% of the distance L0. The distance L0 is the distance in the longitudinal direction DL between the second communication hole 120b on the upper side and the second communication hole 120b on the lower side. The position of the second communication hole 120b is the center of the circular shape of the second communication hole 120b. The distance L0 is a distance between the first heat transfer plate 110 and the second heat transfer plate 120, in which the heat medium flowing in from the upper second circulation hole 120b and flowing out from the lower second circulation hole 120b moves. This is the distance in the longitudinal direction DL.
 この場合、長手方向DLにおいて、分岐位置から隣の分岐位置までの距離は、熱媒体の流路の長さに相当する距離L0の10%~50%であることが好ましい。分岐位置は、熱媒体の流れが分岐する長手方向DLの位置である。 In this case, the distance from one branch position to the next branch position in the longitudinal direction DL is preferably 10% to 50% of the distance L0 corresponding to the length of the heat medium flow path. The branch position is a position in the longitudinal direction DL where the flow of the heat medium branches.
 なお、変形例A~Cにおいて、距離L0は、第1伝熱プレート110及び第2伝熱プレート120の長手方向DLの寸法であってもよい。また、距離L0は、第2流路121の長手方向DLの寸法であってもよい。 Note that in Modifications A to C, the distance L0 may be the dimension of the first heat transfer plate 110 and the second heat transfer plate 120 in the longitudinal direction DL. Further, the distance L0 may be a dimension of the second flow path 121 in the longitudinal direction DL.
 (4-4)変形例D
 上記実施形態において、値kを1≦k≦N-1を満たす整数であるとした場合、第k+1の流路領域の流路の数は、第kの流路領域の流路の数の2倍乃至4倍であることが好ましい。言い換えると、長手方向DLにおいて隣接する2つの流路領域の境界において熱媒体の流れが分岐する度に、熱媒体の流路の数は2倍~4倍に増加する。
(4-4) Modification D
In the above embodiment, when the value k is an integer satisfying 1≦k≦N-1, the number of channels in the k+1th channel region is equal to 2 times the number of channels in the k-th channel region. Preferably, it is 4 times to 4 times. In other words, each time the heat medium flow branches at the boundary between two adjacent flow path regions in the longitudinal direction DL, the number of heat medium flow paths increases by two to four times.
 (4-5)変形例E
 上記実施形態において、第2流路121の流路領域F1~F5は、1又は複数の流路要素131を有する。流路要素131は、第1伝熱プレート110の第1後面110sbと第2伝熱プレート120の第2前面120saとが対向した空間に相当する。言い換えると、流路要素131において、第1伝熱プレート110は第2伝熱プレート120と接触していない。しかし、流路要素131において第1伝熱プレート110と第2伝熱プレート120とを互いに接触させるための補強要素を、第1伝熱プレート110及び第2伝熱プレート120の少なくとも一方に設けてもよい。補強要素は、第1伝熱プレート110及び第2伝熱プレート120の、流路要素131における強度を確保するための構成要素である。補強要素を設けることで、第1伝熱プレート110の第1後面110sbと第2伝熱プレート120の第2前面120saとが流路要素131において互いに接触して、第2流路121の流路断面積が低減することが抑制される。
(4-5) Modification E
In the embodiment described above, the flow path regions F1 to F5 of the second flow path 121 have one or more flow path elements 131. The flow path element 131 corresponds to a space where the first rear surface 110sb of the first heat transfer plate 110 and the second front surface 120sa of the second heat transfer plate 120 face each other. In other words, in the channel element 131, the first heat transfer plate 110 is not in contact with the second heat transfer plate 120. However, in the channel element 131, a reinforcing element for bringing the first heat transfer plate 110 and the second heat transfer plate 120 into contact with each other is provided on at least one of the first heat transfer plate 110 and the second heat transfer plate 120. Good too. The reinforcing element is a component for ensuring the strength in the channel element 131 of the first heat transfer plate 110 and the second heat transfer plate 120. By providing the reinforcing element, the first rear surface 110sb of the first heat transfer plate 110 and the second front surface 120sa of the second heat transfer plate 120 come into contact with each other in the flow path element 131, thereby improving the flow path of the second flow path 121. A reduction in cross-sectional area is suppressed.
 補強要素は、例えば、第1伝熱プレート110及び第2伝熱プレート120の少なくとも一方に形成される点状の突起である。補強要素は、流路要素131における熱媒体の流速が低減されない程度の大きさを有し、かつ、流路要素131において実質的に流路を分岐させない形状を有する。言い換えると、補強要素は、流路領域の流路要素131の数、及び断面積に影響を与えない寸法及び形状を有することが好ましい。 The reinforcing element is, for example, a point-like protrusion formed on at least one of the first heat transfer plate 110 and the second heat transfer plate 120. The reinforcing element has a size that does not reduce the flow velocity of the heat medium in the flow path element 131, and has a shape that does not substantially branch the flow path in the flow path element 131. In other words, the reinforcing elements preferably have dimensions and shapes that do not influence the number and cross-sectional area of the channel elements 131 of the channel region.
 (4-6)変形例F
 上記実施形態において、第1流路111を流れる冷媒と第2流路121を流れる熱媒体とが並行流となるように熱交換器100が形成されている。しかし、第1流路111を流れる冷媒と第2流路121を流れる冷媒とが対向流となるように熱交換器100が形成されてもよい。例えば、第1流路111において、冷媒は、下側の第1流通孔110bから上側の第1流通孔110bに向かって流れ、第2流路121において、熱媒体は、上側の第2流通孔120bから下側の第2流通孔120bに向かって流れてもよい。
(4-6) Modification example F
In the embodiment described above, the heat exchanger 100 is formed so that the refrigerant flowing through the first flow path 111 and the heat medium flowing through the second flow path 121 flow in parallel. However, the heat exchanger 100 may be formed such that the refrigerant flowing through the first flow path 111 and the refrigerant flowing through the second flow path 121 flow in opposite directions. For example, in the first flow path 111, the refrigerant flows from the lower first flow hole 110b toward the upper first flow hole 110b, and in the second flow path 121, the heat medium flows through the upper second flow hole 110b. It may flow from 120b toward the second flow hole 120b on the lower side.
 (4-7)変形例G
 上記実施形態において、熱交換器100は、第2流路121において、熱媒体の流れが徐々に分岐して、熱媒体が流れる流路要素131の数が徐々に増加する分岐構造を有する。しかし、熱交換器100は、第1流路111において、第2流路121と同様の分岐構造を有してもよい。具体的には、第1流路111において、冷媒の流れが徐々に分岐して、冷媒が流れる空間(流路要素131に相当)の数が徐々に増加する分岐構造を有してもよい。
(4-7) Modification example G
In the embodiment described above, the heat exchanger 100 has a branching structure in which the flow of the heat medium gradually branches in the second flow path 121, and the number of flow path elements 131 through which the heat medium flows gradually increases. However, the heat exchanger 100 may have a branch structure similar to the second flow path 121 in the first flow path 111. Specifically, the first flow path 111 may have a branch structure in which the flow of the refrigerant gradually branches and the number of spaces (corresponding to the flow path elements 131) through which the refrigerant flows gradually increases.
 また、熱源側サイクル10の熱源側熱交換器12において、冷媒が流れる流路が、第2流路121と同様の分岐構造を有してもよい。また、利用側サイクル20の利用側熱交換器22において、熱媒体が流れる流路が、第2流路121と同様の分岐構造を有してもよい。 Furthermore, in the heat source side heat exchanger 12 of the heat source side cycle 10, the flow path through which the refrigerant flows may have a branch structure similar to the second flow path 121. Further, in the usage-side heat exchanger 22 of the usage-side cycle 20, the flow path through which the heat medium flows may have a branch structure similar to the second flow path 121.
 (4-8)変形例H
 上記実施形態において、冷媒としてR1234zeを例示し、熱媒体として二酸化炭素を例示したが、冷媒及び熱媒体は、これに限定されない。
(4-8) Modification H
In the embodiment described above, R1234ze was exemplified as the refrigerant and carbon dioxide was exemplified as the heat medium, but the refrigerant and the heat medium are not limited thereto.
 冷媒として、R32、HFO系冷媒、R32とHFO系冷媒との混合冷媒、二酸化炭素、アンモニア、及びプロパン等を用いてもよい。熱媒体として、R-32、HFO系冷媒、HFC-32とHFO系冷媒との混合冷媒、二酸化炭素、アンモニア、及びプロパン等の冷媒、水、及び不凍液等を用いてよい。 As the refrigerant, R32, HFO refrigerant, mixed refrigerant of R32 and HFO refrigerant, carbon dioxide, ammonia, propane, etc. may be used. As the heat medium, R-32, an HFO refrigerant, a mixed refrigerant of HFC-32 and HFO refrigerant, refrigerants such as carbon dioxide, ammonia, and propane, water, and antifreeze may be used.
 (4-9)変形例I
 上記実施形態において、第1導入管150a、第1導出管150b、第2導入管160a、及び第2導出管160bの全ては、第1フレーム130に形成されている。しかし、第1導入管150a、第1導出管150b、第2導入管160a、及び第2導出管160bの少なくとも一部が、第2フレーム140に形成されてもよい。
(4-9) Modification I
In the embodiment described above, the first introduction pipe 150a, the first outlet pipe 150b, the second introduction pipe 160a, and the second outlet pipe 160b are all formed in the first frame 130. However, at least a portion of the first inlet pipe 150a, the first outlet pipe 150b, the second inlet pipe 160a, and the second outlet pipe 160b may be formed in the second frame 140.
 (4-10)変形例J
 上記実施形態において、冷媒サイクル装置1は、熱源側サイクル10と利用側サイクル20とを有する二元冷凍装置である。しかし、冷媒サイクル装置1は、冷媒を循環させる蒸気圧縮式のサイクルを1つのみ有する冷凍装置であってもよい。例えば、冷媒サイクル装置1は、熱源側圧縮機11、熱源側熱交換器12、熱源側膨張弁13、及び利用側熱交換器22のそれぞれに相当する要素から構成される冷媒サイクルを有してもよい。この場合、冷媒の凝縮器として機能する熱源側熱交換器12は、上記実施形態の第2流路121と同様の分岐構造を有してもよい。
(4-10) Modification J
In the embodiment described above, the refrigerant cycle device 1 is a binary refrigeration device having a heat source side cycle 10 and a usage side cycle 20. However, the refrigerant cycle device 1 may be a refrigeration device having only one vapor compression cycle for circulating refrigerant. For example, the refrigerant cycle device 1 includes a refrigerant cycle that includes elements corresponding to a heat source side compressor 11, a heat source side heat exchanger 12, a heat source side expansion valve 13, and a usage side heat exchanger 22. Good too. In this case, the heat source side heat exchanger 12 that functions as a refrigerant condenser may have a branch structure similar to the second flow path 121 of the above embodiment.
 以上、本開示の実施形態を説明したが、特許請求の範囲に記載された本開示の趣旨及び範囲から逸脱することなく、形態や詳細の多様な変更が可能なことが理解されるであろう。 Although the embodiments of the present disclosure have been described above, it will be understood that various changes in form and details can be made without departing from the spirit and scope of the present disclosure as described in the claims. .
  1  :冷媒サイクル装置
100  :熱交換器
110  :第1伝熱プレート(部材)
120  :第2伝熱プレート(部材)
120b :上側の第2流通孔(第1開口)
120b :下側の第2流通孔(第2開口)
131  :流路要素(流路)
 DL  :長手方向(第1方向)
 DS  :積層方向(第2方向)
 F1  :第1の流路領域
 F2  :第2の流路領域
 F5  :第5の流路領域(第Nの流路領域)
1: Refrigerant cycle device 100: Heat exchanger 110: First heat transfer plate (member)
120: Second heat transfer plate (member)
120b: Upper second communication hole (first opening)
120b: Lower second communication hole (second opening)
131: Channel element (channel)
DL: Longitudinal direction (first direction)
DS: Lamination direction (second direction)
F1: First flow path area F2: Second flow path area F5: Fifth flow path area (Nth flow path area)
特開2016-90157号公報Japanese Patent Application Publication No. 2016-90157

Claims (10)

  1.  第1開口(120b)と第2開口(120b)との間を第1方向(DL)に流体が流れる熱交換器であって、
     前記第1開口と前記第2開口との間において前記第1方向に沿って隣り合って配置されるN個(Nは、2以上の整数である。)の流路領域を形成する部材(110,120)を備え、
     前記N個の流路領域のそれぞれは、前記流体が流れる流路(131)を有し、
     前記N個の流路領域のうち前記第1方向において前記第1開口の側から1番目に位置する第1の流路領域(F1)の前記流路の数および断面積は、前記N個の流路領域のうち前記第1方向において前記第1開口の側からN番目に位置する第Nの流路領域(F5)の前記流路の数および断面積と異なる、
    熱交換器(100)。
    A heat exchanger in which a fluid flows in a first direction (DL) between a first opening (120b) and a second opening (120b),
    Members (110 , 120),
    Each of the N flow path regions has a flow path (131) through which the fluid flows,
    The number of channels and the cross-sectional area of the first channel region (F1) located first from the first opening side in the first direction among the N channel regions are different from the number and cross-sectional area of the channels of the Nth channel region (F5) located Nth from the first opening side in the first direction among the channel regions;
    Heat exchanger (100).
  2.  前記N個の流路領域のうち前記第1方向において前記第1開口の側からi番目に位置する第iの流路領域の前記流路の数は、前記N個の流路領域のうち前記第1方向において前記第1開口の側からj番目(i,jは、1≦i<j≦Nを満たす整数である。)に位置する第jの流路領域の前記流路の数より少なく、
     前記第iの流路領域の前記流路の断面積は、前記第jの流路領域の前記流路の断面積より大きい、
    請求項1に記載の熱交換器。
    The number of channels in the i-th channel region located i-th from the first opening side in the first direction among the N channel regions is less than the number of channels in the j-th channel region located at the j-th (i, j are integers satisfying 1≦i<j≦N) from the first opening side in the first direction; ,
    The cross-sectional area of the flow path in the i-th flow path region is larger than the cross-sectional area of the flow path in the j-th flow path region.
    The heat exchanger according to claim 1.
  3.  前記第1の流路領域の前記流路の数は、1である、
    請求項1または2に記載の熱交換器。
    The number of channels in the first channel region is 1,
    The heat exchanger according to claim 1 or 2.
  4.  前記N個の流路領域のうち前記第1方向において前記第1開口の側から2番目に位置する第2の流路領域(F2)と前記第1の流路領域との境界と、前記第1開口との間の前記第1方向の距離L1、および、前記第1開口と前記第2開口との間の前記第1方向の距離L0は、
     0.2×L0≦L1≦0.8×L0の関係式を満たす、
    請求項3に記載の熱交換器。
    A boundary between a second flow path area (F2) located second from the first opening side in the first direction among the N flow path areas and the first flow path area; The distance L1 in the first direction between the first opening and the second opening, and the distance L0 in the first direction between the first opening and the second opening are as follows:
    Satisfies the relational expression 0.2×L0≦L1≦0.8×L0,
    The heat exchanger according to claim 3.
  5.  前記N個の流路領域のうち前記第1方向において隣接する2つの流路領域の境界と、前記第1開口との間の前記第1方向の距離L2、および、前記第1開口と前記第2開口との間の前記第1方向の距離L0は、
     0.2×L0≦L2≦0.8×L0の関係式を満たす、
    請求項4に記載の熱交換器。
    A distance L2 in the first direction between the first opening and a boundary between two adjacent flow path areas in the first direction among the N flow path areas, and a distance L2 between the first opening and the first opening. The distance L0 in the first direction between the two openings is
    Satisfies the relational expression 0.2×L0≦L2≦0.8×L0,
    The heat exchanger according to claim 4.
  6.  前記N個の流路領域のうち前記第1方向において前記第1開口の側からk番目(kは、1≦k≦N-1を満たす整数である。)に位置する第kの流路領域と、前記N個の流路領域のうち前記第1方向において前記第1開口の側からk+1番目に位置する第k+1の流路領域との境界において、前記流路は分岐し、
     前記第k+1の流路領域の前記流路の数は、前記第kの流路領域の前記流路の数の2倍乃至4倍である、
    請求項1から5のいずれか1項に記載の熱交換器。
    A k-th flow path region located at the k-th (k is an integer satisfying 1≦k≦N-1) from the first opening side in the first direction among the N flow path regions. The flow path branches at the boundary between the flow path area and the k+1st flow path area located at the k+1th position from the first opening side in the first direction among the N flow path areas,
    The number of channels in the k+1 channel region is twice to four times the number of channels in the k-th channel region.
    A heat exchanger according to any one of claims 1 to 5.
  7.  前記N個の流路領域のそれぞれの前記第1方向の長さは、前記第1開口と前記第2開口との間の前記第1方向の距離の10%~50%である、
    請求項1から6のいずれか1項に記載の熱交換器。
    The length of each of the N flow path regions in the first direction is 10% to 50% of the distance in the first direction between the first opening and the second opening,
    A heat exchanger according to any one of claims 1 to 6.
  8.  前記第1方向と交差する第2方向(DS)に積層される複数の前記部材を備え、
     前記N個の流路領域は、前記第2方向に隣接する前記部材の間に形成される、
    請求項1から7のいずれか1項に記載の熱交換器。
    comprising a plurality of the members stacked in a second direction (DS) intersecting the first direction,
    the N flow path regions are formed between the members adjacent in the second direction;
    A heat exchanger according to any one of claims 1 to 7.
  9.  前記流体である第1媒体が流れる前記流路を有する前記N個の流路領域と、前記流体である第2媒体が流れる前記流路を有する前記N個の流路領域とが前記第2方向に交互に積層され、
     前記第1媒体は、前記第1開口から前記第2開口に向かって前記流路を流れ、
     前記第2媒体は、前記第2開口から前記第1開口に向かって前記流路を流れる、
    請求項8に記載の熱交換器。
    The N flow path areas having the flow paths through which the first medium that is the fluid flows and the N flow path areas having the flow paths through which the second medium that is the fluid flows are arranged in the second direction. layered alternately,
    The first medium flows through the flow path from the first opening toward the second opening,
    The second medium flows through the flow path from the second opening toward the first opening.
    The heat exchanger according to claim 8.
  10.  請求項1から9のいずれか1項に記載の熱交換器を備える、
    冷媒サイクル装置(1)。
    A heat exchanger according to any one of claims 1 to 9 is provided.
    Refrigerant cycle device (1).
PCT/JP2023/025812 2022-07-19 2023-07-13 Heat exchanger and refrigerant cycle device WO2024018977A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022114936A JP2024013036A (en) 2022-07-19 2022-07-19 Heat exchanger, and refrigerant cycle device
JP2022-114936 2022-07-19

Publications (1)

Publication Number Publication Date
WO2024018977A1 true WO2024018977A1 (en) 2024-01-25

Family

ID=89617874

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025812 WO2024018977A1 (en) 2022-07-19 2023-07-13 Heat exchanger and refrigerant cycle device

Country Status (2)

Country Link
JP (1) JP2024013036A (en)
WO (1) WO2024018977A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504584A (en) * 2000-07-21 2004-02-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Heat transfer device
CN102564205A (en) * 2012-01-16 2012-07-11 杭州沈氏换热器有限公司 Flow distributing structure of heat exchanger with micro-channels
JP5847913B1 (en) * 2014-11-06 2016-01-27 住友精密工業株式会社 Heat exchanger

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004504584A (en) * 2000-07-21 2004-02-12 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Heat transfer device
CN102564205A (en) * 2012-01-16 2012-07-11 杭州沈氏换热器有限公司 Flow distributing structure of heat exchanger with micro-channels
JP5847913B1 (en) * 2014-11-06 2016-01-27 住友精密工業株式会社 Heat exchanger

Also Published As

Publication number Publication date
JP2024013036A (en) 2024-01-31

Similar Documents

Publication Publication Date Title
KR101263559B1 (en) heat exchanger
US6640579B2 (en) Laminated heat exchanger and refrigeration cycle
US6732789B2 (en) Heat exchanger for CO2 refrigerant
EP2410278B1 (en) Plate-type heat exchanger and refrigerating air-conditioning device
CN105209845B (en) Laminated header, heat exchanger, and air conditioner
JP6116683B2 (en) Laminated header, heat exchanger, and air conditioner
WO2014132602A1 (en) Stacked heat exchanger
US11629897B2 (en) Distributor, heat exchanger, and refrigeration cycle apparatus
JP6005266B2 (en) Laminated header, heat exchanger, and air conditioner
JP6138264B2 (en) Laminated header, heat exchanger, and air conditioner
CN112997045B (en) Plate heat exchanger, heat pump device, and heat pump type cooling/heating hot water supply system
WO2016071946A1 (en) Layered header, heat exchanger, and air-conditioning device
CN109564070B (en) Heat exchanger and refrigeration system using the same
WO2013076751A1 (en) Plate-type heat exchanger and refrigeration cycle device using same
US6742577B2 (en) Laminate type evaporator
US7121331B2 (en) Heat exchanger
WO2024018977A1 (en) Heat exchanger and refrigerant cycle device
JP6716016B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
CN110285603B (en) Heat exchanger and refrigeration system using same
JP6906149B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP2009079779A (en) Plate-type heat exchanger and air conditioning device using the same
CN111512112B (en) Plate fin stacked type heat exchanger and refrigeration system using the same
US20240118005A1 (en) Dual heat exchanger for heat pump system
JP7502700B2 (en) Heat exchangers, refrigerant cycle devices, water heaters
JP7399286B2 (en) Heat exchanger and refrigeration cycle equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842900

Country of ref document: EP

Kind code of ref document: A1