JP6906149B2 - Plate fin laminated heat exchanger and refrigeration system using it - Google Patents

Plate fin laminated heat exchanger and refrigeration system using it Download PDF

Info

Publication number
JP6906149B2
JP6906149B2 JP2019093452A JP2019093452A JP6906149B2 JP 6906149 B2 JP6906149 B2 JP 6906149B2 JP 2019093452 A JP2019093452 A JP 2019093452A JP 2019093452 A JP2019093452 A JP 2019093452A JP 6906149 B2 JP6906149 B2 JP 6906149B2
Authority
JP
Japan
Prior art keywords
heat transfer
flow path
plate fin
heat exchanger
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019093452A
Other languages
Japanese (ja)
Other versions
JP2020186889A (en
Inventor
健二 名越
健二 名越
憲昭 山本
憲昭 山本
一彦 丸本
一彦 丸本
拓也 奥村
拓也 奥村
崇裕 大城
崇裕 大城
米澤 勝
勝 米澤
剛史 永田
剛史 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2019093452A priority Critical patent/JP6906149B2/en
Priority to CN202080004003.6A priority patent/CN112424554B/en
Priority to PCT/JP2020/003930 priority patent/WO2020235144A1/en
Publication of JP2020186889A publication Critical patent/JP2020186889A/en
Application granted granted Critical
Publication of JP6906149B2 publication Critical patent/JP6906149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/03Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with plate-like or laminated conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates

Description

本発明はプレートフィン積層型熱交換器とそれを用いた冷凍システムに関する。 The present invention relates to a plate fin laminated heat exchanger and a refrigeration system using the same.

一般に空気調和機や冷凍機等の冷凍システムは、圧縮機によって圧縮した冷媒を凝縮器や蒸発器等の熱交換器に循環させ、第2流体と熱交換させて冷房もしくは暖房を行うが、前記熱交換器の熱交換性能によってシステムとしての性能や省エネ性が大きく左右される。従って、熱交換器は高性能化が強く求められている。 Generally, in a refrigerating system such as an air conditioner or a refrigerator, a refrigerant compressed by a compressor is circulated to a heat exchanger such as a condenser or an evaporator and heat exchanged with a second fluid to cool or heat the refrigerant. The heat exchange performance of the heat exchanger greatly affects the performance as a system and energy saving. Therefore, heat exchangers are strongly required to have high performance.

このような中にあって、空気調和機や冷凍機等の冷凍システムの熱交換器は、一般的には、フィン群に伝熱管を貫通させて構成したフィンチューブ型熱交換器が用いられており、伝熱管の細径化を図って熱交換性能の向上及び小型化が進められている。 Under such circumstances, as the heat exchanger of a refrigeration system such as an air conditioner or a refrigerator, a fin tube type heat exchanger configured by penetrating a heat transfer tube through a fin group is generally used. Therefore, the heat exchange performance is being improved and the size is being reduced by reducing the diameter of the heat transfer tube.

しかしながら、上記伝熱管の細径化には限度があるため、熱交換性能の向上及び小型化は限界に近づきつつある。 However, since there is a limit to the reduction in diameter of the heat transfer tube, improvement in heat exchange performance and miniaturization are approaching the limit.

そこで出願人は、上記フィンチューブ型熱交換器をプレートフィン積層型熱交換器に代えて使用することを提案している(例えば、特許文献1参照)。 Therefore, the applicant proposes to use the fin tube type heat exchanger in place of the plate fin laminated heat exchanger (see, for example, Patent Document 1).

図15、図16は特許文献1記載のプレートフィン積層型熱交換器を示し、このプレートフィン積層型熱交換器は、冷媒の流入及び流出用ヘッダ流路101、102をプレートフィン103の一端部側に纏めて設け、前記流入及び流出用ヘッダ流路101、102の間に設けた伝熱流路104を他端部側でUターンさせて流出入用ヘッダ流路101、102に接続する構成とし、かつ、更に前記伝熱流路104は複複数に分けて流入及び流出用ヘッダ流路101、102を繋いでいる。 15 and 16 show the plate fin laminated heat exchanger described in Patent Document 1. In this plate fin laminated heat exchanger, the inflow and outflow header flow paths 101 and 102 of the refrigerant are provided at one end of the plate fin 103. The heat transfer flow path 104 provided between the inflow and outflow header flow paths 101 and 102 is U-turned on the other end side and connected to the inflow and outflow header flow paths 101 and 102. Further, the heat transfer flow path 104 is divided into a plurality of parts and connects the inflow and outflow header flow paths 101 and 102.

このように構成したプレートフィン積層型熱交換器は、伝熱流路104となる凹状溝104aをプレスによって形成できるので、この凹状溝104aによって形成した伝熱流路104の断面積は従来のフィンチューブ型熱交換器のチューブに比べ極端に小さくすることができる。しかも、ヘッダ流路101とヘッダ流路102との間の伝熱流路104はUターンさせ、且つ複数に分けているので、プレートフィン103を長くすることなく伝熱流路104を長くし、伝熱面積を増大できる。したがって、冷媒と空気の熱交換性能を高めると同時に小型化を促進でき、小型高性能な熱交換器とすることができる。 In the plate fin laminated heat exchanger configured in this way, the concave groove 104a serving as the heat transfer flow path 104 can be formed by pressing, so that the cross-sectional area of the heat transfer flow path 104 formed by the concave groove 104a is a conventional fin tube type. It can be made extremely small compared to the tube of a heat exchanger. Moreover, since the heat transfer flow path 104 between the header flow path 101 and the header flow path 102 is U-turned and divided into a plurality of parts, the heat transfer flow path 104 is lengthened without lengthening the plate fin 103 to transfer heat. The area can be increased. Therefore, the heat exchange performance between the refrigerant and the air can be improved, and at the same time, miniaturization can be promoted, and a compact and high-performance heat exchanger can be obtained.

特開2018−66534号公報JP-A-2018-66534

しかしながら、上記構成のプレートフィン積層型熱交換器は、Uターンさせた伝熱流路104の折り返し通路部104bは複数の伝熱流路104が合流するため多くの冷媒が流れので、その冷媒からの圧力に耐えるように当該伝熱流路104の折り返し通路部104bは積層方向に隣接する他方のプレートフィン103の伝熱流路104の折り返し通路部104bに背中合わせに当接させている。そのため、上記伝熱流路104の折り返し通路部104bではプレートフィン103の積層間隔を流れる第二流体の流れが遮られ、熱交換ロスが発生する、という課題があった。 However, in the plate fin laminated heat exchanger having the above configuration, since a large amount of refrigerant flows in the folded passage portion 104b of the U-turned heat transfer passage 104 because the plurality of heat transfer passages 104 merge, the pressure from the refrigerant flows. The folded passage portion 104b of the heat transfer flow path 104 is brought into contact with the folded passage portion 104b of the heat transfer passage 104 of the other plate fin 103 adjacent to the stacking direction back to back so as to withstand the heat transfer passage 104b. Therefore, there is a problem that the return passage portion 104b of the heat transfer passage 104 blocks the flow of the second fluid flowing through the stacking interval of the plate fins 103, and heat exchange loss occurs.

すなわち、このプレートフィン積層型熱交換器を例えば家庭用の空気調和機に搭載した場合、その熱交換器は図17に示すように二つの熱交換器ブロック110a、110bをその上部で突き合わせて送風ファン111の背面側と前面側を覆うように配置することになるが、この場合、前記熱交換器ブロック110a、110bの突合せ部、すなわちプレートフィン103の端部には伝熱流路104の折り返し通路部104bがあって、矢印Xで示す室内空気が前記伝熱流路104の折り返し通路部104bに遮られて当該部分を通過できず、矢印Yのような迂回流の身になることによって大きな熱交換ロスを発生する。 That is, when this plate fin laminated heat exchanger is mounted on, for example, a household air exchanger, the heat exchanger blows air by abutting two heat exchanger blocks 110a and 110b on the upper part as shown in FIG. It is arranged so as to cover the back side and the front side of the fan 111. In this case, the heat transfer passage 104 is folded back at the abutting portion of the heat exchanger blocks 110a and 110b, that is, at the end of the plate fin 103. There is a portion 104b, and the indoor air indicated by the arrow X is blocked by the folded passage portion 104b of the heat transfer flow path 104 and cannot pass through the portion. Cause loss.

本発明はこのような点に鑑みてなしたもので、伝熱流路折り返し通路部での空気流れを確保して熱交換性能を向上させた高性能なプレートフィン積層型根交換機とそれを用いた冷凍システムを提供することを目的としたものである。 The present invention has been made in view of these points, and uses a high-performance plate fin laminated root exchange that secures the air flow in the heat transfer flow path folding passage and improves the heat exchange performance. The purpose is to provide a refrigeration system.

本発明は、上記目的を達成するため、その熱交換器は、流入及び流出用の一対のヘッダ流路に繋がる複数の伝熱流路を有したプレートフィンを多数積層して構成し、前記プレートフィンの伝熱流路はプレートフィンの端部でUターンする形状とするとともに、前記プレートフィンのUターンする伝熱流路の折り返し通路部近傍あるいは折り返し通路部の一部に前記伝熱流路の背丈より高い凸部を設け、前記凸部を積層方向に隣接する他のプレートフィンの伝熱流路の折り返し通路部近傍あるいは他のプレートフィンの折り返し通路部の凸部に当接させて前記伝熱流路の積層方向に隣接する折り返し通路部同士の間に空隙を形成した構成としている。 In order to achieve the above object, the heat exchanger is configured by laminating a large number of plate fins having a plurality of heat transfer channels connected to a pair of inflow and outflow header channels, and the plate fins. The heat transfer flow path is shaped to make a U-turn at the end of the plate fin, and is taller than the height of the heat transfer flow path in the vicinity of the folded passage portion of the U-turned heat transfer passage of the plate fin or a part of the folded passage portion. A convex portion is provided, and the convex portion is brought into contact with the vicinity of the folded passage portion of the heat transfer passage of another plate fin adjacent in the stacking direction or the convex portion of the folded passage portion of the other plate fin to stack the heat transfer flow path. A gap is formed between the folded passages adjacent to each other in the direction.

これにより、プレートフィンの伝熱流路の折り返し通路部同士の間も空隙を介して空気を流すことができる。よって該伝熱流路の折り返し通路部を通風及び熱交換領域として機能させ、熱交換性能を大きく向上させることができる。 As a result, air can flow through the gaps between the folded passages of the heat transfer passages of the plate fins. Therefore, the folded passage portion of the heat transfer passage can function as a ventilation and heat exchange region, and the heat exchange performance can be greatly improved.

本発明は、上記構成により、伝熱流路折り返し通路部での空気流れを確保して熱交換性能を向上させることができ、高性能なプレートフィン積層型根交換機とそれを用いた冷凍システムを提供することができる。 The present invention provides a high-performance plate fin laminated root exchange and a refrigeration system using the above-mentioned configuration, which can secure the air flow in the heat transfer flow path folding passage portion and improve the heat exchange performance. can do.

本発明の実施の形態1におけるプレートフィン積層型熱交換器の外観を示す斜視図A perspective view showing the appearance of the plate fin laminated heat exchanger according to the first embodiment of the present invention. 同プレートフィン積層型熱交換器の分解斜視図An exploded perspective view of the plate fin laminated heat exchanger 同プレートフィン積層型熱交換器のプレートフィンを示す分解斜視図An exploded perspective view showing the plate fins of the plate fin laminated heat exchanger. 同プレートフィン積層型熱交換器のプレートフィン積層体を示す斜視図Perspective view showing the plate fin laminated body of the plate fin laminated type heat exchanger 同プレートフィン積層型熱交換器のプレートフィンを示す平面図Top view showing the plate fins of the plate fin laminated heat exchanger 同プレートフィン積層型熱交換器のプレートフィンの伝熱流路折り返し通路部を示す平面図Top view showing the heat transfer flow path folded-back passage portion of the plate fin of the plate fin laminated heat exchanger. 同プレートフィン積層型熱交換器のプレートフィンの伝熱流路折り返し通路部の要部断面図Cross-sectional view of the main part of the heat transfer flow path folded passage portion of the plate fin of the plate fin laminated heat exchanger (a)(b)同プレートフィン積層型熱交換器のプレートフィンの伝熱流路折り返し通路部の他の例を示す平面図(A) (b) Top view showing another example of the heat transfer passage folded passage portion of the plate fin of the plate fin laminated heat exchanger. 本発明の実施の形態2におけるプレートフィン積層型熱交換器のプレートフィンを示す平面図Top view showing the plate fins of the plate fin laminated heat exchanger according to the second embodiment of the present invention. 同プレートフィン積層型熱交換器のプレートフィンの伝熱流路折り返し通路部を示す平面図Top view showing the heat transfer flow path folded-back passage portion of the plate fin of the plate fin laminated heat exchanger. 本発明のプレートフィン積層型熱交換器を用いた実施の形態3における空気調和機の室内機を示す斜視図A perspective view showing an indoor unit of an air conditioner according to a third embodiment using the plate fin laminated heat exchanger of the present invention. 同空気調和機の室内機を示す断面図Cross-sectional view showing the indoor unit of the air conditioner 同室内機の熱交換器ブロックを示す斜視図、A perspective view showing the heat exchanger block of the indoor unit, 同室内機の熱交換器ブロックによる作用効果を説明する説明図Explanatory drawing explaining the action and effect by the heat exchanger block of the indoor unit 本出願人が提案した従来のプレートフィン積層型熱交換器の外観を示す斜視図Perspective view showing the appearance of the conventional plate fin laminated heat exchanger proposed by the applicant. 同プレートフィン積層型熱交換器のプレートフィンを示す平面図Top view showing the plate fins of the plate fin laminated heat exchanger 同プレートフィン積層型熱交換器を搭載した空気調和機の室内機を示す断面図A cross-sectional view showing an indoor unit of an air conditioner equipped with the same plate fin laminated heat exchanger.

第1の発明は、熱交換機であり、この熱交換器は、流入及び流出用の一対のヘッダ流路に繋がる複数の伝熱流路を有したプレートフィンを多数積層して構成し、前記プレートフィンの伝熱流路はプレートフィンの端部でUターンする形状とするとともに、前記プレートフィンのUターンする伝熱流路の折り返し通路部近傍あるいは折り返し通路部の一部に前記伝熱流路の背丈より高い凸部を設け、前記凸部を積層方向に隣接する他のプレートフィンの伝熱流路の折り返し通路部近傍あるいは他のプレートフィンの折り返し通路部の凸部に当接させて前記伝熱流路の積層方向に隣接する折り返し通路部同士の間に空隙を形成した構成としている。 The first invention is a heat exchanger, in which the heat exchanger is configured by laminating a large number of plate fins having a plurality of heat transfer channels connected to a pair of inflow and outflow header channels, and the plate fins. The heat transfer flow path is shaped to make a U-turn at the end of the plate fin, and is taller than the height of the heat transfer flow path in the vicinity of the folded passage portion of the U-turned heat transfer passage of the plate fin or a part of the folded passage portion. A convex portion is provided, and the convex portion is brought into contact with the vicinity of the folded passage portion of the heat transfer passage of another plate fin adjacent in the stacking direction or the convex portion of the folded passage portion of the other plate fin to stack the heat transfer flow path. A gap is formed between the folded passages adjacent to each other in the direction.

これにより、プレートフィンの伝熱流路の折り返し通路部同士の間に形成した空隙を介して伝熱流路の折り返し通路部にも空気を流すことができる。よって該伝熱流路の折り返し通路部を通風路及び熱交換領域として機能させ、熱交換性能を大きく向上させることができる。 As a result, air can flow to the folded passages of the heat transfer passages through the gaps formed between the folded passages of the heat transfer passages of the plate fins. Therefore, the folded passage portion of the heat transfer passage can function as a ventilation passage and a heat exchange region, and the heat exchange performance can be greatly improved.

第2の発明は、第1の発明において、前記伝熱流路は一つもしくは複数の流路毎にグループ分けしてUターンさせるとともに、前記プレートフィンの伝熱流路の折り返し通路部は、前記複数の流路毎の伝熱流路が合流するマニホールドと、前記マニホールド同士を繋ぐ接続流路とからなる構成とし、且つ、凸部は前記マニホールドを前記接続流路よりも背丈を高くして構成し、前記凸部となるマニホールドを積層方向に隣接する他のプレートフィンのマニホールドに当接させて前記伝熱流路の積層方向に隣接する折り返し通路部同士の間に空隙を形成した構成としている。 In the second invention, in the first invention, the heat transfer passages are grouped into one or a plurality of passages and U-turned, and the folded passage portions of the heat transfer passages of the plate fins are the plurality. The structure is composed of a manifold in which the heat transfer flow paths of each flow path merge and a connection flow path connecting the manifolds to each other, and the convex portion is configured to make the manifold taller than the connection flow path. The manifold serving as the convex portion is brought into contact with the manifold of another plate fin adjacent in the stacking direction to form a gap between the folded passage portions adjacent in the stacking direction of the heat transfer flow path.

これにより、伝熱流路の折り返し通路部となる接続流路と積層方向に隣接する他方のプレートフィンの折り返し通路部となる接続流路との間に形成した空隙を介してプレートフィン端部の伝熱流路折り返し通路部に空気を流すことができる。 As a result, the heat transfer at the end of the plate fin is transmitted through the gap formed between the connection flow path that becomes the turn-back passage portion of the heat transfer flow path and the connection flow path that becomes the turn-back passage portion of the other plate fin adjacent in the stacking direction. Air can flow through the heat flow path folded passage.

しかも、上記プレートフィンの伝熱流路は一つもしくは複数流路毎にグループ分けしてUターンさせ、その折り返し通路部は複数流路毎の合流部となるマニホールドとこのマニホールド同士を繋ぐ接続流路とに分けて構成しているので、マニホールド及び接続流路に合流して流れる流体の流量は伝熱流路全ての流体を一つにまとめて合流させる場合に比べ少なくすることができる。 Moreover, the heat transfer flow paths of the plate fins are grouped into one or a plurality of flow paths and made to make a U-turn, and the folded passage section is a manifold that serves as a confluence of each of the plurality of flow paths and a connection flow path that connects the manifolds. Since it is configured separately, the flow rate of the fluid that merges with the manifold and the connecting flow path can be reduced as compared with the case where all the fluids of the heat transfer flow path are merged together.

よって、マニホールド及び接続流路の断面積は伝熱流路全ての流体が合流する場合に比べ小さくでき、耐圧性の問題を発生させることなく伝熱流路の折り返し通路部同士間に空隙を設けて通風路及び熱交換領域として機能させ、熱交換性能を向上させると同時に信頼性も大きく向上させることができる。 Therefore, the cross-sectional area of the manifold and the connecting flow path can be made smaller than when all the fluids of the heat transfer flow path merge, and a gap is provided between the folded passages of the heat transfer flow path to ventilate without causing a problem of pressure resistance. It functions as a path and a heat exchange area, and at the same time, the heat exchange performance can be improved and the reliability can be greatly improved.

第3の発明は、第1の発明において、前記伝熱流路は一つもしくは複数の流路毎にグループ分けしてUターンを数回繰り返す形状とするとともに、凸部は前記プレートフィンの伝熱流路折り返し通路部近傍部分に折り返し通路部とは別に設け、前記凸部を積層方向に隣接する他のプレートフィンに当接させて前記伝熱流路の積層方向に隣接する折り返し通路部同士の間に空隙を形成した構成としている。 In the third invention, in the first invention, the heat transfer flow path is divided into groups for each one or a plurality of flow paths and the U-turn is repeated several times, and the convex portion is the heat transfer flow of the plate fin. A portion near the path folding passage portion is provided separately from the folding passage portion, and the convex portion is brought into contact with another plate fin adjacent in the stacking direction to be between the folding passage portions adjacent to each other in the stacking direction of the heat transfer flow path. It has a structure in which a gap is formed.

これにより、プレートフィンの伝熱流路の折り返し通路部と積層方向に隣接する他のプレートフィンの折り返し通路部との間に形成した空隙を介してプレートフィン端部の伝熱流路折り返し通路部にも空気を流すことができる。 As a result, the heat transfer passage at the end of the plate fin is also formed through the gap formed between the folded passage of the heat transfer passage of the plate fin and the folded passage of other plate fins adjacent in the stacking direction. Air can flow.

また、伝熱流路は一つもしくは複数の流路毎にグループ分けしてUターンを数回繰り返す形状としているので、伝熱流路の折り返し通路部は各伝熱流路を流れる流体の流量と同じとなるので、流体を一つにまとめて合流させる場合のような耐圧性の問題が発生することはなく、熱交換性能を向上させつつ信頼性も大きく向上させることができる。 Further, since the heat transfer flow path is divided into groups for each one or a plurality of flow paths and the U-turn is repeated several times, the folded passage portion of the heat transfer flow path is the same as the flow rate of the fluid flowing through each heat transfer flow path. Therefore, the problem of pressure resistance as in the case of merging fluids together does not occur, and the heat exchange performance can be improved and the reliability can be greatly improved.

しかも、前記プレートフィンの伝熱流路折り返し通路部近傍部分に折り返し通路部とは別に設けた凸部によって隣接する他のプレートフィンの伝熱流路の折り返し通路部との間に空隙を設けているので、折り返し通路部の全長域を空隙とすることができ、その分空気の通過面積が増大して熱交換性能が向上し、より高性能な熱交換器とすることができる。 Moreover, since a gap is provided between the folded passage portion of the heat transfer passage of the other plate fins adjacent to the plate fin by a convex portion provided separately from the folded passage portion in the vicinity of the folded passage portion of the heat transfer passage of the plate fin. The entire length of the folded passage can be made into a gap, and the air passage area is increased by that amount to improve the heat exchange performance, so that a higher performance heat exchanger can be obtained.

第4の発明は冷凍システムであり、この冷凍システムは熱交換器と送風ファンを備え、前記熱交換器を前記第1〜第3の発明に記載のプレートフィン積層型熱交換器としたものである。 A fourth invention is a refrigeration system, which comprises a heat exchanger and a blower fan, and the heat exchanger is a plate fin laminated heat exchanger according to the first to third inventions. be.

これにより、この冷凍システムは、プレートフィン積層型熱交換器の熱交換性能が高いので、省エネ性の高い高性能な冷凍システムとすることができる。 As a result, this refrigeration system can be a high-performance refrigeration system with high energy saving because the heat exchange performance of the plate fin laminated heat exchanger is high.

以下、本発明の実施の形態について、添付の図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The present invention is not limited to this embodiment.

(実施の形態1)
図1は本発明の実施の形態1におけるプレートフィン積層型熱交換器の外観を示す斜視図、図2は同プレートフィン積層型熱交換器の分解斜視図、図3は同プレートフィン積層型熱交換器のプレートフィンを示す分解斜視図、図4は同プレートフィン積層型熱交換器のプレートフィン積層体を示す斜視図、図5は同プレートフィン積層型熱交換器のプレートフィンを示す平面図、図6は同プレートフィン積層型熱交換器のプレートフィンの伝熱流路折り返し通路部を示す平面図、図7は同プレートフィン積層型熱交換器のプレートフィンの伝熱流路折り返し通路部の要部断面図、図8(a)(b)は同プレートフィン積層型熱交換器のプレートフィンの伝熱流路折り返し通路部の他の例を示す平面図である。
(Embodiment 1)
FIG. 1 is a perspective view showing the appearance of the plate fin laminated heat exchanger according to the first embodiment of the present invention, FIG. 2 is an exploded perspective view of the plate fin laminated heat exchanger, and FIG. 3 is a plate fin laminated heat exchanger. An exploded perspective view showing the plate fins of the exchanger, FIG. 4 is a perspective view showing the plate fin laminate of the plate fin laminated heat exchanger, and FIG. 5 is a plan view showing the plate fins of the plate fin laminated heat exchanger. , FIG. 6 is a plan view showing a heat transfer flow path folded passage portion of the plate fin of the plate fin laminated heat exchanger, and FIG. 7 is a key point of the heat transfer flow path folded passage portion of the plate fin of the plate fin laminated heat exchanger. Sectional cross-sectional views, FIGS. 8A and 8B, are plan views showing another example of the heat transfer flow path folded-back passage portion of the plate fins of the plate fin laminated heat exchanger.

図1、図2に示すように、本実施の形態の熱交換器1は、略弓型形状のプレートフィン2aを積層したプレートフィン積層体2の両側に平面視が略同一形状のエンドプレート3a、3bを接合一体化して構成している。そして、その一端部側に、蒸発器として用いる場合には入口となり凝縮器として用いる場合は出口となる管A4及びその逆となる管B5とを有している。 As shown in FIGS. 1 and 2, the heat exchanger 1 of the present embodiment has end plates 3a having substantially the same plan view on both sides of the plate fin laminate 2 in which the substantially bow-shaped plate fins 2a are laminated. 3b is joined and integrated. On one end side thereof, there is a tube A4 which is an inlet when used as an evaporator and an outlet when used as a condenser, and a tube B5 which is the opposite.

上記プレートフィン積層体2の両側のエンドプレート3a、3bは、プレートフィン積層体2を挟持した形でロウ付けされ、ボルト・ナット若しくはカシメピン軸等の締結手段7によりその長手方向両端部を連結固定し、熱交換器としての剛性を保持している。 The end plates 3a and 3b on both sides of the plate fin laminate 2 are brazed so as to sandwich the plate fin laminate 2, and both ends in the longitudinal direction are connected and fixed by fastening means 7 such as bolts, nuts or caulking pin shafts. However, it retains the rigidity as a heat exchanger.

また、プレートフィン2aは、図3に示す一対のプレート6a、6bをロウ付け等により接合して冷媒等の第1流体(以下、冷媒と称する)が流れる伝熱流路8を有する構成としてあり、図3に示すように多数積層して各プレートフィン2a同士の間に空気等の第2流体(以下、空気と称する)が流れる積層間隔を形成している。そして、上記プレートフィン2aに設けた前記伝熱流路8を流れる冷媒と各プレートフィン2a同士の間の積層間隙を流れる空気との間で熱交換する。 Further, the plate fins 2a have a configuration in which the pair of plates 6a and 6b shown in FIG. 3 are joined by brazing or the like to have a heat transfer flow path 8 through which a first fluid such as a refrigerant (hereinafter referred to as a refrigerant) flows. As shown in FIG. 3, a large number of layers are laminated to form a stacking interval in which a second fluid such as air (hereinafter referred to as air) flows between the plate fins 2a. Then, heat is exchanged between the refrigerant flowing through the heat transfer flow path 8 provided in the plate fins 2a and the air flowing through the stacking gap between the plate fins 2a.

上記プレートフィン2aを構成する一対のプレート6a、6bは、管A4及び管B5に繋がるヘッダ流路A9およびヘッダ流路B10となる開口9a、10a及びその開口縁に設けたリング状凹溝9b、10bと、リング状凹溝9b、10bより導出した連絡流路用凹溝11a、11bと、連絡流路用凹溝11a、11bの端部に設けた分流路用凹溝12a、12bと、分流路用凹溝12a、12bより分岐形成した複数の並行した流路形成用凹溝8aが設けてある。 The pair of plates 6a and 6b constituting the plate fins 2a are the header flow paths A9 connected to the pipes A4 and the pipe B5, the openings 9a and 10a serving as the header flow paths B10, and the ring-shaped concave grooves 9b provided at the opening edges thereof. 10b, the concave grooves 11a and 11b for the connecting flow path derived from the ring-shaped concave grooves 9b and 10b, and the concave grooves 12a and 12b for the dividing flow path provided at the ends of the concave grooves 11a and 11b for the connecting flow path. A plurality of parallel flow path forming concave grooves 8a branched from the road concave grooves 12a and 12b are provided.

そして、上記一対のプレート6a、6bを向かい合わせにロウ付けして、ヘッダ流路A9およびヘッダ流路B10、連絡流路11、分流路12、複数の伝熱流路8を形成している。 Then, the pair of plates 6a and 6b are brazed to face each other to form a header flow path A9, a header flow path B10, a communication flow path 11, a branch flow path 12, and a plurality of heat transfer flow paths 8.

上記構成のプレートフィン2aは、図5のプレートフィン全体図に示すように、伝熱流路8をプレートフィン2aの端部側で屈曲させてUターンする形状としている。そして、この例では、前記伝熱流路8を二本の流路毎にグループ分けしてUターンさせるとともに、前記Uターンさせた伝熱流路8の折り返し通路部15は、図6に示すように、前記複数の流路毎、ここでは二本の伝熱流路8、8が合流するマニホールド16と、前記マニホールド16同士を繋ぐ接続流路17とで構成している。 As shown in the overall view of the plate fins of FIG. 5, the plate fins 2a having the above configuration have a shape in which the heat transfer flow path 8 is bent at the end side of the plate fins 2a to make a U-turn. Then, in this example, the heat transfer passage 8 is grouped into two flow paths and U-turned, and the folded passage portion 15 of the U-turned heat transfer passage 8 is as shown in FIG. Each of the plurality of flow paths, here, is composed of a manifold 16 in which the two heat transfer flow paths 8 and 8 merge, and a connection flow path 17 connecting the manifolds 16.

前記二本の流路毎にUターンさせた伝熱流路8は入り口側のヘッダ流路A9に繋がる6本の伝熱往き流路8−1とヘッダ流路B10に繋がる2本の伝熱戻り流路8−2とに区分けされた形となる。 The heat transfer flow path 8 U-turned for each of the two flow paths has six heat transfer forward flow paths 8-1 connected to the header flow path A9 on the inlet side and two heat transfer returns connected to the header flow path B10. The shape is divided into the flow path 8-2.

さらに、前記マニホールド16は、図7に示すように、その背丈を前記接続流路17の背丈より高くし、積層方向に隣接する他のプレートフィン2aのマニホールド16に当接させ、前記伝熱流路8の積層方向に隣接する折り返し通路部15同士の間に空隙18を形成する構成としている。 Further, as shown in FIG. 7, the manifold 16 has a height higher than the height of the connection flow path 17 and is brought into contact with the manifold 16 of another plate fin 2a adjacent in the stacking direction to cause the heat transfer flow path. A gap 18 is formed between the folded passage portions 15 adjacent to each other in the stacking direction of the eight.

なお、上記構成のプレートフィン積層体2のプレートフィン2aは、当該プレートフィン2aの伝熱流路8の長手方向に沿って適宜設けた複数の突起19(図3参照)によって空気が流れる積層間隔を形成している。 The plate fins 2a of the plate fin laminate 2 having the above configuration have a stacking interval in which air flows through a plurality of protrusions 19 (see FIG. 3) appropriately provided along the longitudinal direction of the heat transfer flow path 8 of the plate fins 2a. Is forming.

次に上記のように構成したプレートフィン積層型熱交換器について、これを空気調和機の熱交換器として用いた場合を例にしてその作用効果を説明する。 Next, the operation and effect of the plate fin laminated heat exchanger configured as described above will be described by taking as an example the case where this is used as a heat exchanger of an air conditioner.

本実施の形態の熱交換器は、例えば蒸発条件で使用されている時、管A4から気液二相状態の液冷媒がプレートフィン積層体2の入り口側のヘッダ流路A9内に流入する。ヘッダ流路A9内に流入した液冷媒は、各プレートフィン2aの連絡流路11及び分流路12を介して伝熱流路8の伝熱往き流路8−1群へ流れる。各プレートフィン2aの伝熱往き流路8−1群に流れた冷媒は他端側の分流路13でUターンし伝熱戻り流路8−2群、ヘッダ流路B10を介して管B5より冷凍システムの冷媒回路へと流出する。 When the heat exchanger of the present embodiment is used, for example, under evaporation conditions, a liquid refrigerant in a gas-liquid two-phase state flows from the pipe A4 into the header flow path A9 on the inlet side of the plate fin laminate 2. The liquid refrigerant that has flowed into the header flow path A9 flows to the heat transfer flow path 8-1 group of the heat transfer flow path 8 via the communication flow path 11 and the branch flow path 12 of each plate fin 2a. The refrigerant flowing into the heat transfer outflow flow path 8-1 group of each plate fin 2a makes a U-turn in the branch flow path 13 on the other end side, and from the pipe B5 via the heat transfer return flow path 8-2 group and the header flow path B10. It flows out to the refrigerant circuit of the refrigeration system.

そして、上記伝熱流路8の伝熱往き流路8−1から伝熱戻り流路8−2群を介して管B5へと流れる際に冷媒はガス化し、前記プレートフィン積層体2のプレートフィン積層間隔を通り抜ける空気と熱交換する。 Then, when the refrigerant flows from the heat transfer flow path 8-1 of the heat transfer flow path 8 to the pipe B5 via the heat transfer return flow path 8-2 group, the refrigerant is gasified and the plate fins of the plate fin laminate 2 are used. It exchanges heat with the air that passes through the stacking interval.

ここで、上記プレートフィン積層型熱交換器は、後述するが、図12に示すように家庭用の空気調和機に搭載した場合、その熱交換器は二つの熱交換器ブロック1a、1bをその上部で突き合わせて送風ファン53の背面側と前面側を覆うように配置することになり、二つの熱交換器ブロック1a、1bの突き合わせ部分が通風路に位置することになる。したがって、従来の構成では既述した通り当該突合せ部分に空気を流すことができず、大きな熱交換ロスが発生していた。 Here, the plate fin laminated heat exchanger will be described later, but when mounted on a household air conditioner as shown in FIG. 12, the heat exchanger has two heat exchanger blocks 1a and 1b. It is arranged so as to cover the back side and the front side of the blower fan 53 so as to be butted at the upper part, and the butted portions of the two heat exchanger blocks 1a and 1b are located in the ventilation path. Therefore, in the conventional configuration, air cannot flow to the butt portion as described above, and a large heat exchange loss occurs.

しかしながら、本実施の形態のプレートフィン積層型熱交換器は、二つの熱交換器ブロック1a、1bの突き合わせ部分となる部分、すなわち、プレートフィン2aの伝熱流路8がUターンする折り返し通路部分が、複数の流路毎の伝熱流路8が合流するマニホールド16と、前記マニホールド16同士を繋ぐ接続流路17とからなっている。そして、上記マニホールド16は隣接するマニホールド16同士が当接して接続流路17同士間は空隙18が形成されている。 However, in the plate fin laminated heat exchanger of the present embodiment, the portion serving as the abutting portion of the two heat exchanger blocks 1a and 1b, that is, the folded passage portion in which the heat transfer flow path 8 of the plate fin 2a makes a U-turn is provided. It is composed of a manifold 16 in which heat transfer flow paths 8 for each of a plurality of flow paths merge, and a connection flow path 17 for connecting the manifolds 16. In the manifold 16, adjacent manifolds 16 are in contact with each other, and a gap 18 is formed between the connection flow paths 17.

したがって、送風ファン53によって吸引される空気は前記接続流路17同士間の空隙18を通過することができ、伝熱流路8の折り返し通路部分も通風路及び熱交換領域として機能することになる。よって、熱交換性能を大きく向上させることができる。 Therefore, the air sucked by the blower fan 53 can pass through the gap 18 between the connection flow paths 17, and the folded passage portion of the heat transfer flow path 8 also functions as a ventilation passage and a heat exchange region. Therefore, the heat exchange performance can be greatly improved.

また、上記伝熱流路8はこの例では二本の流路毎にグループ分けしてUターンさせ、その折り返し通路部15は複数流路毎の合流部となるマニホールド16とこのマニホールド16同士を繋ぐ接続流路17とに分けて構成しているので、マニホールド16及び接続流路17に合流して流れる流体の流量は伝熱流路全ての流体を一つの流路に纏めて合流させる場合に比べ少なくすることができる。 Further, in this example, the heat transfer flow path 8 is divided into two flow paths and made to make a U-turn, and the folded passage portion 15 connects the manifold 16 and the manifold 16 which are the confluence portions of each of the plurality of flow paths. Since it is configured separately from the connecting flow path 17, the flow rate of the fluid that merges with the manifold 16 and the connecting flow path 17 is smaller than that when all the fluids of the heat transfer flow path are combined into one flow path and merged. can do.

よって、マニホールド16及び接続流路17の断面積は伝熱流路全ての流体が合流する場合に比べ小さくでき、耐圧性の問題を発生させることなく伝熱流路8の折り返し通路部同士間に空隙18を設けて通風路及び熱交換領域として機能させ、熱交換性能を向上させると同時に信頼性も大きく向上させることができる。 Therefore, the cross-sectional area of the manifold 16 and the connecting flow path 17 can be made smaller than when all the fluids of the heat transfer flow path merge, and the gap 18 between the folded passage portions of the heat transfer flow path 8 does not cause a problem of pressure resistance. Can be provided to function as a ventilation passage and a heat exchange area, and the heat exchange performance can be improved and at the same time the reliability can be greatly improved.

なお、本実施の形態では、伝熱流路8の折り返し通路部15をマニホールド16と接続流路17とに分けて構成することにより空隙18を形成したものを例示したが、これに限定されるものではなく、折り返し通路部15を一つの流路にしてその一部に凸部を設ける、あるいは折り返し通路部の近傍に当該折り返し通路部15とは別に凸部を設ける等して、空隙18を形成するようにしてもよい。 In the present embodiment, the case where the gap 18 is formed by separately forming the folded passage portion 15 of the heat transfer passage 8 into the manifold 16 and the connecting passage 17 is illustrated, but the present invention is limited to this. Instead, the folded passage portion 15 is made into one flow path and a convex portion is provided in a part thereof, or a convex portion is provided in the vicinity of the folded passage portion 15 separately from the folded passage portion 15 to form a gap 18. You may try to do it.

例えば、図8の(a)に示すように、伝熱流路8の折り返し通路部15となる伝熱往き流路8−1と伝熱戻り流路8−2とを繋ぐ一つのマニホールド16の一部に背丈の高い凸部16aを設けて高低差をつけ、この高低差を利用して空隙18を形成するようにしてもよい。 For example, as shown in FIG. 8A, one of one manifold 16 connecting the heat transfer flow path 8-1 and the heat transfer return flow path 8-2, which are the folded passage portions 15 of the heat transfer flow path 8. A tall convex portion 16a may be provided on the portion to make a height difference, and the gap 18 may be formed by utilizing this height difference.

或いは、図8の(b)に示すように、伝熱流路8の折り返し通路部15となる伝熱往き流路8−1と伝熱戻り流路8−2とを繋ぐマニホールド16とは別にプレートフィン2aの平坦面に前記マニホールド16より背丈の高い凸部16bを設け、この凸部16bを隣接する他のプレートフィン2aに当接させて前記マニホールド16同士の間に空隙18を形成するようにしてもよい。 Alternatively, as shown in FIG. 8B, a plate is provided separately from the manifold 16 connecting the heat transfer flow path 8-1 and the heat transfer return flow path 8-2, which are the folded passage portions 15 of the heat transfer flow path 8. A convex portion 16b taller than the manifold 16 is provided on the flat surface of the fin 2a, and the convex portion 16b is brought into contact with another adjacent plate fin 2a to form a gap 18 between the manifolds 16. You may.

上記いずれの場合も伝熱流路8の折り返し通路部15を通風路及び熱交換領域として機能させ、熱交換性能を大きく向上させることができる。 In any of the above cases, the folded passage portion 15 of the heat transfer passage 8 can function as a ventilation passage and a heat exchange region, and the heat exchange performance can be greatly improved.

(実施の形態2)
図9は本発明の実施の形態2におけるプレートフィン積層型熱交換器のプレートフィンを示す平面図、図10は同プレートフィン積層型熱交換器のプレートフィンの伝熱流路折り返し通路部を示す平面図である。
(Embodiment 2)
FIG. 9 is a plan view showing the plate fins of the plate fin laminated heat exchanger according to the second embodiment of the present invention, and FIG. 10 is a plan view showing the heat transfer flow path folded passage portion of the plate fins of the plate fin laminated heat exchanger. It is a figure.

図9、図10において、このプレートフィン2aは伝熱流路8を一つもしくは複数の流路毎、この例では一本の流路にし、Uターンを数回繰り返す形状とするとともに、前記プレートフィン2aの伝熱流路折り返し通路部近傍部分の平坦面2bに折り返し通路部15とは別に当該折り返し通路部15より背丈の高い凸部16aを設けてある。そして、前記凸部16aを積層方向に隣接する他のプレートフィン2aの平坦面2bに当接させて前記伝熱流路8の積層方向に隣接する折り返し通路部15同士の間に空隙を形成した構成としている。なお、上記凸部16aはプレートフィン2aの伝熱流路8に沿って設けた突起19を平坦面2bに設けることによって代用するなどしてもよいものである。 In FIGS. 9 and 10, the plate fins 2a have a heat transfer flow path 8 for each one or a plurality of flow paths, one flow path in this example, and have a shape in which U-turns are repeated several times, and the plate fins. A convex portion 16a, which is taller than the folded passage portion 15, is provided on the flat surface 2b in the vicinity of the folded passage portion of the heat transfer passage of 2a in addition to the folded passage portion 15. Then, the convex portion 16a is brought into contact with the flat surface 2b of another plate fin 2a adjacent in the stacking direction to form a gap between the folded passage portions 15 adjacent to each other in the stacking direction of the heat transfer flow path 8. It is said. The convex portion 16a may be substituted by providing a protrusion 19 provided along the heat transfer flow path 8 of the plate fin 2a on the flat surface 2b.

上記のように構成した本実施の形態のプレートフィン積層型熱交換器は、プレートフィン2aの伝熱流路8の折り返し通路部15と積層方向に隣接する他のプレートフィン2aの折り返し通路部15との間に凸部16aによって空隙18が形成され、この空隙18を介してプレートフィン端部の伝熱流路折り返し通路部にも空気を流すことができる。したがって前記実施の形態1と同様、伝熱流路8の折り返し通路部15を通風路及び熱交換領域として機能させ、熱交換性能を大きく向上させることができる。 The plate fin laminated heat exchanger of the present embodiment configured as described above includes the folded passage portion 15 of the heat transfer passage 8 of the plate fin 2a and the folded passage portion 15 of another plate fin 2a adjacent in the stacking direction. A gap 18 is formed by the convex portion 16a between the two, and air can flow through the gap 18 to the heat transfer flow path folded passage portion at the end of the plate fin. Therefore, as in the first embodiment, the folded passage portion 15 of the heat transfer passage 8 can function as a ventilation passage and a heat exchange region, and the heat exchange performance can be greatly improved.

また、上記伝熱流路8を一つもしくは複数の流路毎にグループ分けしてUターンを数回繰り返す形状としているので、伝熱流路8の折り返し通路部15は各伝熱流路8を流れる流体の流量と同じとなる。したがって、冷媒が一つの流路にまとまって合流する場合のような耐圧性の問題が発生することはなくなる。よって、熱交換性能を向上させつつ信頼性も大きく向上させることができる。 Further, since the heat transfer flow path 8 is grouped into one or a plurality of flow paths and the U-turn is repeated several times, the folded passage portion 15 of the heat transfer flow path 8 is a fluid flowing through each heat transfer flow path 8. It becomes the same as the flow rate of. Therefore, the problem of pressure resistance as in the case where the refrigerants are collectively merged into one flow path does not occur. Therefore, the reliability can be greatly improved while improving the heat exchange performance.

しかも、前記プレートフィン2aの伝熱流路折り返し通路部近傍部分に折り返し通路部15とは別に設けた凸部16aによって隣接する他のプレートフィン2aの伝熱流路8の折り返し通路部15との間に空隙18を設けているので、伝熱流路8の折り返し通路部15自体に凸部を設ける必要がなくなって折り返し通路部15の全長域と空隙18とすることができ、その分空気の通過面積が増大して熱交換性能が向上し、より高性能な熱交換器とすることができる。 Moreover, between the heat transfer passage of the plate fin 2a and the heat transfer passage 8 of the other plate fins 2a, which is adjacent to the plate fin 2a by a convex portion 16a provided in the vicinity of the heat transfer passage of the plate fin 2a. Since the gap 18 is provided, it is not necessary to provide a convex portion in the folded passage portion 15 itself of the heat transfer passage 8, and the entire length region of the folded passage portion 15 and the gap 18 can be provided, and the air passage area can be increased by that amount. It can be increased and the heat exchange performance is improved, and a higher performance heat exchanger can be obtained.

(実施の形態3)
図11は前記実施の形態のいずれかに記載したプレートフィン積層型熱交換器を用いて構成した空気調和機の室内機を示す斜視図、図12は同空気調和機の室内機を示す断面図、図13は同室内機の熱交換器ブロックを示す斜視図、図14は同室内機の熱交換器ブロックによる作用効果を説明する説明図である。
(Embodiment 3)
FIG. 11 is a perspective view showing an indoor unit of an air conditioner configured by using the plate fin laminated heat exchanger described in any one of the above embodiments, and FIG. 12 is a sectional view showing an indoor unit of the air conditioner. FIG. 13 is a perspective view showing a heat exchanger block of the indoor unit, and FIG. 14 is an explanatory view illustrating the action and effect of the heat exchanger block of the indoor unit.

本実施の形態に係る空気調和機の室内機は、図1、図2に示すように、本体51の内部に、開口部52から取り入れた室内空気を熱交換する熱交換器1と、熱交換器1で熱交換された空気を室内に吹き出すための送風ファン53とが設けられている。送風ファン53は、本体51の下方に設けられた吹出口54より室内に空気を吹き出すように設けられており、吹出口54には、空気の吹き出し方向を上下に変更する上下風向変更羽根55と、空気の吹き出し方向を左右に変更する左右風向変更羽根56とが設けられている。 As shown in FIGS. 1 and 2, the indoor unit of the air conditioner according to the present embodiment heat exchanges with a heat exchanger 1 that exchanges heat with the indoor air taken in from the opening 52 inside the main body 51. A blower fan 53 for blowing out the air heat exchanged by the vessel 1 into the room is provided. The blower fan 53 is provided so as to blow air into the room from the air outlet 54 provided below the main body 51, and the air outlet 54 is provided with a vertical wind direction changing blade 55 that changes the air blowing direction up and down. , Left and right wind direction changing blades 56 for changing the air blowing direction to the left and right are provided.

空気調和機が空調運転を開始すると、上下風向変更羽根55が開制御されて吹出口54が開放される。この状態で送風ファン53が駆動されることで、室内空気が開口部52を介して室内機の内部に取り入れられる。取り入れられた室内空気は、熱交換器1を通過する際熱交換され、送風ファン53により吹出口54より吹き出される。 When the air conditioner starts the air conditioning operation, the vertical wind direction changing blades 55 are open-controlled and the air outlet 54 is opened. By driving the blower fan 53 in this state, the indoor air is taken into the inside of the indoor unit through the opening 52. The taken-in indoor air is heat-exchanged when passing through the heat exchanger 1, and is blown out from the outlet 54 by the blower fan 53.

ここで、上記熱交換器1は、既述したように二つの熱交換器ブロック1a、1bをその上部で突き合わせて送風ファン53の背面側と前面側を覆うように配置してあり、二つの熱交換器ブロック1a、1bの突き合わせ部分が通風路に位置するが、この熱交換器1は前記各実施の形態で説明したように二つの熱交換器ブロック1a、1bの突き合わせ部分となる伝熱流路8の折り返し通路部分が空隙を有していて図14のZで示すように当該折り返し通路部分も空気が流れるので、高い熱交換性能を発揮する。よって、省エネ性の高い高性能な空気調和機とすることができる。 Here, the heat exchanger 1 is arranged so that the two heat exchanger blocks 1a and 1b are butted at the upper part thereof and cover the back side and the front side of the blower fan 53 as described above. The butt portions of the heat exchanger blocks 1a and 1b are located in the ventilation passage, and the heat exchanger 1 is a heat transfer stream that serves as the butt portion of the two heat exchanger blocks 1a and 1b as described in each of the above embodiments. Since the folded passage portion of the road 8 has a gap and air flows through the folded passage portion as shown by Z in FIG. 14, high heat exchange performance is exhibited. Therefore, it is possible to obtain a high-performance air conditioner with high energy saving.

以上、本発明に係るプレートフィン積層型熱交換器及びそれを用いた冷凍システムについて、上記実施の形態を用いて説明したが、本発明はこれに限定されるものではない。つまり、今回開示した実施の形態はすべての点で例示であって制限的なものではなく、本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれるものである。 The plate fin laminated heat exchanger according to the present invention and the refrigeration system using the same have been described above using the above-described embodiment, but the present invention is not limited thereto. That is, the embodiments disclosed this time are exemplary and not restrictive in all respects, and the scope of the present invention is indicated by the claims and has the same meaning and scope as the claims. All changes are included.

本発明は、上記したように、伝熱流路折り返し通路部での空気流れを確保して熱交換性能を向上させることができ、高性能なプレートフィン積層型根交換機とそれを用いた冷凍システムを提供することができる。よって、家庭用及び業務用エアコン等に用いる熱交換器や各種冷凍機器等に幅広く利用でき、その産業的価値は大なるものがある。 As described above, the present invention provides a high-performance plate fin laminated root exchange and a refrigeration system using the high-performance plate fin laminated root exchange, which can secure the air flow in the heat transfer flow path folded passage and improve the heat exchange performance. Can be provided. Therefore, it can be widely used in heat exchangers and various refrigerating devices used for home and commercial air conditioners, and has great industrial value.

1 熱交換器
1a、1b 熱交換器ブロック
2 プレートフィン積層体
2b 平坦面
2a プレートフィン
3a、3b エンドプレート
4 管A
5 管B
6a プレート
6b プレート
7 締結手段(ボルト・ナット)
8 伝熱流路
8−1 伝熱往き流路
8−2 伝熱戻り流路
9 ヘッダ流路A
10 ヘッダ流路B
11 連絡流路
12、13 分流路
12a、12b 分流路用凹溝
15 折り返し通路部
16 マニホールド(凸部)
16a、16b 凸部
17 接続流路
18 空隙
19 突起
51 本体
52 開口部
53 送風ファン
54 吹出口
55 上下風向変更羽根
56 左右風向変更羽根
1 Heat exchanger 1a, 1b Heat exchanger block 2 Plate fin laminate 2b Flat surface 2a Plate fin 3a, 3b End plate 4 Tube A
5 Tube B
6a plate 6b plate 7 fastening means (bolts and nuts)
8 Heat transfer flow path 8-1 Heat transfer forward flow path 8-2 Heat transfer return flow path 9 Header flow path A
10 Header flow path B
11 Communication flow path 12, 13 Minute flow path 12a, 12b Concave groove for branch flow path 15 Folded passage part 16 Manifold (convex part)
16a, 16b Convex 17 Connection flow path 18 Void 19 Protrusion 51 Main body 52 Opening 53 Blower fan 54 Air outlet 55 Vertical wind direction change blade 56 Left and right wind direction change blade

Claims (1)

流入及び流出用の一対のヘッダ流路に繋がる複数の伝熱流路を有したプレートフィンを多数積層して構成した熱交換器であって、前記プレートフィンの伝熱流路はプレートフィンの端部でU ターンする形状とするとともに、前記プレートフィンのU ターンする伝熱流路の折り返し通路部近傍あるいは折り返し通路部の一部に前記伝熱流路の背丈より高い凸部を設け、前記凸部を積層方向に隣接する他のプレートフィンの伝熱流路の折り返し通路部近傍あるいは他のプレートフィンの折り返し通路部の凸部に当接させて前記伝熱流路の積層方向に隣接する折り返し通路部同士の間に空隙を形成するとともに、前記伝熱流路は複数の流路毎にグループ分けしてU ターンさせるとともに、前記プレートフィンの伝熱流路の折り返し通路部は、前記複数の流路毎の伝熱流路が合流するマニホールドと、前記マニホールド同士を繋ぐ接続通路とからなる構成とし、前記マニホールドは前記複数の流路に対し略直角になるよう配置され、且つ、凸部は前記マニホールドを前記接続通路よりも背丈を高くして構成し、前記凸部となるマニホールドを積層方向に隣接する他のプレートフィンのマニホールドに当接させて前記伝熱流路の積層方向に隣接する折り返し通路部同士の間に空隙を形成したプレートフィン積層型熱交換器。 A heat exchanger configured by stacking a large number of plate fins having a plurality of heat transfer channels connected to a pair of inflow and outflow header channels, and the heat transfer channels of the plate fins are at the ends of the plate fins. The shape is U-turned, and a convex portion higher than the height of the heat transfer flow path is provided in the vicinity of the folded passage portion of the U-turned heat transfer flow path of the plate fin or a part of the folded passage portion, and the convex portion is provided in the stacking direction. In the vicinity of the folded passage portion of the heat transfer passage of another plate fin adjacent to the above, or between the folded passage portions adjacent to each other in the stacking direction of the heat transfer passage by contacting the convex portion of the folded passage portion of the other plate fin. While forming a gap, the heat transfer flow path is grouped into a plurality of flow paths and U-turned, and the folded passage portion of the heat transfer flow path of the plate fin is a heat transfer flow path for each of the plurality of flow paths. The configuration is composed of a merging manifold and a connecting passage connecting the manifolds, the manifold is arranged so as to be substantially perpendicular to the plurality of flow paths, and the convex portion makes the manifold taller than the connecting passage. The convex portion of the manifold is brought into contact with the manifold of another plate fin adjacent in the stacking direction to form a gap between the folded passage portions adjacent in the stacking direction of the heat transfer flow path. Plate fin laminated heat exchanger.
JP2019093452A 2019-05-17 2019-05-17 Plate fin laminated heat exchanger and refrigeration system using it Active JP6906149B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019093452A JP6906149B2 (en) 2019-05-17 2019-05-17 Plate fin laminated heat exchanger and refrigeration system using it
CN202080004003.6A CN112424554B (en) 2019-05-17 2020-02-03 Plate fin stacked type heat exchanger and refrigeration system using the same
PCT/JP2020/003930 WO2020235144A1 (en) 2019-05-17 2020-02-03 Plate fin stacked heat exchanger and refrigeration system using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019093452A JP6906149B2 (en) 2019-05-17 2019-05-17 Plate fin laminated heat exchanger and refrigeration system using it

Publications (2)

Publication Number Publication Date
JP2020186889A JP2020186889A (en) 2020-11-19
JP6906149B2 true JP6906149B2 (en) 2021-07-21

Family

ID=73222346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019093452A Active JP6906149B2 (en) 2019-05-17 2019-05-17 Plate fin laminated heat exchanger and refrigeration system using it

Country Status (3)

Country Link
JP (1) JP6906149B2 (en)
CN (1) CN112424554B (en)
WO (1) WO2020235144A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022174759A (en) * 2021-05-12 2022-11-25 パナソニックIpマネジメント株式会社 air conditioner

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3172859B2 (en) * 1995-02-16 2001-06-04 株式会社ゼクセルヴァレオクライメートコントロール Stacked heat exchanger
JP3965901B2 (en) * 2000-10-27 2007-08-29 株式会社デンソー Evaporator
JP2008133999A (en) * 2006-11-28 2008-06-12 Xenesys Inc Heat exchange plate
KR100953907B1 (en) * 2008-03-06 2010-04-22 차재현 Base plate for evaporating refrigerant and evaporator using thereof
CN205300331U (en) * 2016-01-13 2016-06-08 宁波市哈雷换热设备有限公司 Plate type heat exchanger
CN205808192U (en) * 2016-06-20 2016-12-14 江苏迈能高科技有限公司 A kind of inflation type plate type heat exchanger
JP6906130B2 (en) * 2016-10-21 2021-07-21 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using it
WO2018074342A1 (en) * 2016-10-21 2018-04-26 パナソニックIpマネジメント株式会社 Heat exchanger and refrigeration system using same
CN207938757U (en) * 2018-03-01 2018-10-02 广东文轩热能科技股份有限公司 A kind of lock riveting tank liquor cold plate

Also Published As

Publication number Publication date
WO2020235144A1 (en) 2020-11-26
CN112424554B (en) 2022-05-31
JP2020186889A (en) 2020-11-19
CN112424554A (en) 2021-02-26

Similar Documents

Publication Publication Date Title
JP4122578B2 (en) Heat exchanger
JP5617935B2 (en) Heat exchanger and air conditioner
JP5071597B2 (en) Heat exchanger and air conditioner
AU740183B2 (en) Heat exchanger
JP5195733B2 (en) Heat exchanger and refrigeration cycle apparatus equipped with the same
JP3797109B2 (en) Evaporator
JP6906149B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP6661880B2 (en) Air conditioner
JP2001041678A (en) Heat exchanger
JP4147731B2 (en) Heat exchanger for cooling
JP2001027484A (en) Serpentine heat-exchanger
JP6716016B2 (en) Heat exchanger and refrigeration cycle apparatus including the same
WO2022085113A1 (en) Distributor, heat exchanger, and air conditioning device
JP6987227B2 (en) Heat exchanger and refrigeration cycle equipment
JP6599056B1 (en) Gas header, heat exchanger and refrigeration cycle apparatus
JP2020148346A (en) Heat exchanger and air conditioner
JP6928793B2 (en) Plate fin laminated heat exchanger and freezing system using it
JP6582373B2 (en) Heat exchanger
JP6915714B1 (en) Heat exchanger
JP6865354B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP6934608B2 (en) Plate fin laminated heat exchanger and freezing system using it
JP6872694B2 (en) Plate fin laminated heat exchanger and refrigeration system using it
JP7310655B2 (en) Heat exchanger
JP7327214B2 (en) Heat exchanger
US20230375283A1 (en) Heat exchanger and refrigeration cycle apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210309

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210524

R151 Written notification of patent or utility model registration

Ref document number: 6906149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151