WO2024018927A1 - Linear power supply device and power supply system - Google Patents

Linear power supply device and power supply system Download PDF

Info

Publication number
WO2024018927A1
WO2024018927A1 PCT/JP2023/025292 JP2023025292W WO2024018927A1 WO 2024018927 A1 WO2024018927 A1 WO 2024018927A1 JP 2023025292 W JP2023025292 W JP 2023025292W WO 2024018927 A1 WO2024018927 A1 WO 2024018927A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
linear power
voltage information
output
voltage
Prior art date
Application number
PCT/JP2023/025292
Other languages
French (fr)
Japanese (ja)
Inventor
勇武 岩橋
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024018927A1 publication Critical patent/WO2024018927A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Definitions

  • the present disclosure relates to a linear power supply device and a power supply system.
  • linear power supplies linear regulators
  • linear regulators linear regulators
  • Some linear power supply devices use two linear power supply devices and commonly connect the output terminals of the respective linear power supply devices to a common load (for example, Patent Document 1). That is, such linear power supplies are connected in parallel to a common load.
  • the purpose of such a linear power supply is to disperse heat by distributing the load current into the output current output from the output terminals, or to increase the load current based on the output current output from each output terminal. The purpose is to do something.
  • an object of the present disclosure is to provide a linear power supply device that can effectively perform parallel operation in parallel connection applications, regardless of variations in the linear power supply devices.
  • the linear power supply device is an output transistor having a first main electrode configured to be connectable to an input voltage application end and a second main electrode; an output terminal connected to the second main electrode; an error amplifier configured to receive a feedback voltage based on the output voltage generated at the output terminal and a reference voltage, and to be able to drive a control end of the output transistor; a mirror transistor configured to be able to generate a mirror current of the current flowing through the output transistor; a current/voltage converter that converts the mirror current into first voltage information; a voltage information output terminal configured to be able to output the first voltage information to the outside; a voltage information input terminal configured to allow input of second voltage information from the outside; a comparison unit configured to compare the second voltage information and the first voltage information;
  • the control transistor is configured to include a control transistor that is driven based on the comparison result of the comparison section and controls so that the difference between the second voltage information and the first voltage information becomes small.
  • linear power supply device in parallel connection applications, it is possible to effectively perform parallel operation regardless of variations in the linear power supply devices.
  • FIG. 1 is a diagram showing the configuration of a power supply system according to a comparative example.
  • FIG. 2 is a diagram showing the configuration of the power supply system according to the first embodiment.
  • FIG. 3 is a diagram showing an OR circuit.
  • FIG. 4 is a diagram showing another configuration example of the power supply system according to the first embodiment.
  • FIG. 5 is a diagram showing an example of a current waveform in the configuration shown in FIG. 4.
  • FIG. 6 is a diagram showing the configuration of a power supply system according to the second embodiment.
  • FIG. 7 is a diagram showing another configuration example of the power supply system according to the second embodiment.
  • FIG. 1 is a diagram showing the configuration of a power supply system 50 according to a comparative example.
  • the power supply system 50 includes a linear power supply device 10A, a linear power supply device 10B, and resistors Ra and Rb.
  • Power supply system 50 supplies load current Iout to load RL using two linear power supplies 10A and 10B.
  • the linear power supplies 10A and 10B are linear regulators that step down the input voltage Vin to generate desired output voltages VoA and VoB, respectively.
  • the linear power supply device 10A and the linear power supply device 10B are ICs (Integrated Circuits) with the same configuration, and corresponding components are designated with “A” or "B” for the same reference numerals. It is illustrated. Below, the configuration of the linear power supply device 10A will be representatively explained.
  • the linear power supply device 10A is an IC that includes an output transistor M10A, resistors R11A and 12A, and an error amplifier AP10A, and integrates these into one chip.
  • the source of the output transistor M10A configured as a PMOS transistor (P-channel MOSFET (metal-oxide-semiconductor field-effect transistor)) is connected to the input terminal of the input voltage Vin.
  • the drain of the output transistor M10A and the first end of the resistor R11A are commonly connected to an output terminal ToA for outputting the output voltage VoA.
  • a second end of resistor R11A is connected to a first end of resistor R12A.
  • a second end of the resistor R12A is connected to a ground terminal.
  • the inverting input terminal (-) of the error amplifier AP10A is connected to the application terminal of the reference voltage VrefA.
  • the output terminal of the error amplifier AP10A is connected to the gate of the output transistor M
  • the on-resistance value of the output transistor M10B is continuously controlled so that the output voltage VoB matches its target value.
  • the output terminal ToA is connected to the first end of a resistor Ra provided outside the linear power supply devices 10A and 10B.
  • the output terminal ToB is connected to a first end of a resistor Rb provided outside the linear power supply devices 10A and 10B.
  • the second ends of each of the resistors Ra and Rb are commonly connected to the load RL. Therefore, linear power supplies 10A and 10B are connected in parallel to a common load RL.
  • the standard values (Typ values) of the output voltages VoA and VoB of the linear power supplies 10A and 10B are set to be the same, but due to variations in the linear power supplies, the output voltage may vary from the standard value. be. For example, it varies by ⁇ 2% with respect to the standard value of 5V. Such variations are caused by, for example, variations in the reference voltage, feedback voltage, or threshold voltage of the output transistor, as well as variations in the input offset voltage of the error amplifier.
  • the output transistor M10B on the linear power supply 10B side is kept off, and the output is output from the output terminal ToB.
  • the current IoutB is not output, and the load current Iout is supplied only by the output current IoutA output from the output terminal ToA of the linear power supply device 10A. Therefore, the output current is concentrated on one linear power supply device.
  • the output voltage VoA when the output voltage VoA is higher than VoB, as the load current Iout gradually increases from 0 A, the output voltage VoA is dropped by the resistor Ra.
  • the output voltage Vo generated at the node to which the second ends of the resistors Ra and Rb are connected gradually decreases.
  • the output transistor M10B on the linear power supply device 10B side starts operating, and the output of the output current IoutB is started from the output terminal ToB. That is, a parallel operation is started in which the load current Iout is supplied by both the output currents IoutA and IoutB.
  • the resistors Ra and Rb may be set to such resistance values that the voltage drop across the resistors is greater than or equal to the voltage difference between the maximum and minimum values due to variations in the output voltage.
  • this comparative example has problems in that loss and heat generation occur due to the resistors Ra and Rb, and that the output currents IoutA and IoutB are not equal. Further, when the load current Iout changes, the output voltage Vo changes due to the voltage drop caused by the resistors Ra and Rb, causing a problem in the function as a regulator.
  • FIG. 2 is a diagram showing the configuration of the power supply system 5 according to the first embodiment.
  • the power supply system 5 includes a linear power supply device 1A and a linear power supply device 1B.
  • the power supply system 5 supplies a load current Iout to the load RL using two linear power supplies 1A and 1B.
  • the linear power supplies 1A and 1B are linear regulators that step down the input voltage Vin to generate desired output voltages VoA and VoB, respectively.
  • the linear power supply device 1A and the linear power supply device 1B are ICs with the same configuration, and corresponding components are shown with "A” or "B" attached to the same reference numerals. There is. Below, the configuration of the linear power supply device 1A will be representatively explained.
  • the linear power supply device 1A includes an output transistor M1A, a mirror transistor M2A, an error amplifier AP1A, feedback resistors R1A, R2A, R3A, R4A, a bypass switch BPA, a sense resistor RsA, and a comparator.
  • This IC includes a CPA, an NMOS transistor (N-channel MOSFET) NMA, a resistor RA, NMOS switches NS1A, NS2A, and a PMOS switch PMA, and these are integrated into one chip.
  • the linear power supply device 1A has external terminals such as an output terminal ToA and a voltage information transmission/reception terminal TvA in order to establish electrical connection with the outside.
  • the source of the output transistor M1A configured as a PMOS transistor is connected to the application terminal of the input voltage Vin.
  • the drain of output transistor M1A is connected to the first end of feedback resistor R1A.
  • the drain of the output transistor M1A is connected to an output terminal ToA for outputting an output voltage VoA.
  • a second end of feedback resistor R1A is connected to a first end of feedback resistor R2A.
  • a second end of feedback resistor R2A is connected to a first end of feedback resistor R3A.
  • a second end of feedback resistor R3A is connected to a first end of feedback resistor R4A.
  • a second end of the feedback resistor R4A is connected to a ground terminal.
  • the inverting input terminal (-) of the error amplifier AP1A is connected to the application terminal of the reference voltage VrefA.
  • the output terminal of the error amplifier AP1A is connected to the gate of the output transistor M1A.
  • bypass switch BPA constituted by an NMOS transistor
  • the source of bypass switch BPA is connected to the second end of feedback resistor R4A.
  • a gate of bypass switch BPA is connected to an application terminal of control signal ScA. Thereby, the on state/off state of the bypass switch BPA is switched according to the control signal ScA.
  • the bypass switch BPA is in the on state, both ends of the feedback resistor R4A are short-circuited, and the feedback resistor R4A is bypassed.
  • the bypass switch BPA is in the off state, the feedback resistor R4A is enabled.
  • the source of the mirror transistor M2A configured as a PMOS transistor is connected to the application terminal of the input voltage Vin.
  • the drain of mirror transistor M2A is connected to the first end of sense resistor RsA.
  • the gate of mirror transistor M2A is connected to the output terminal of error amplifier AP1A.
  • a second end of the sense resistor RsA is connected to a ground terminal.
  • a first end of the sense resistor RsA is connected to the drain of an NMOS switch NS1A configured as an NMOS transistor.
  • the source of the NMOS switch NS1A is connected to the voltage information transmission/reception terminal TvA.
  • the gate of the NMOS switch NS1A is connected to the application terminal of the control signal ScA. The on/off state of the NMOS switch NS1A is switched by the control signal ScA.
  • a mirror current Im2A of the current flowing through the output transistor M1A flows through the mirror transistor M2A.
  • the mirror current Im2A is, for example, several hundredths or several thousandths of the current flowing through the output transistor M1A.
  • voltage information Vmon obtained by converting the mirror current Im2A into a current/voltage by the sense resistor RsA can be outputted to the outside from the voltage transmitting/receiving terminal TvA via the NMOS switch NS1A.
  • the comparator CPA includes PMOS transistors P1 and P2 and NMOS transistors N1 and N2.
  • the sources of PMOS transistors P1 and P2 are connected to the drain of PMOS switch PMA.
  • the gate of PMOS transistor P1 is connected to voltage information transmission/reception terminal TvA.
  • the gate of PMOS transistor P2 is connected to the first end of sense resistor RsA.
  • the drain of PMOS transistor P1 is connected to the drain of NMOS transistor N1.
  • the drain and gate of NMOS transistor N1 are shorted.
  • the gates of NMOS transistors N1 and N2 are connected to each other.
  • the sources of NMOS transistors N1 and N2 are connected to a ground terminal.
  • the drain of the NMOS transistor N2 and the drain of the PMOS transistor P2 are connected at a node Nd. Note that a phase compensation capacitor C1 is connected between the gate and drain of the NMOS transistor N2.
  • NMOS transistor NMA The gate of NMOS transistor NMA is connected to node Nd.
  • the source of the NMOS transistor NMA is connected to a ground terminal via a resistor RA.
  • the drain of the NMOS transistor NMA is connected to a node NDA to which feedback resistors R1A and R2A are connected. Note that a phase compensation capacitor C2 is connected between the gate and drain of the NMOS transistor NMA.
  • the drain of the NMOS switch NS2A is connected to the gate of the NMOS transistor NMA.
  • the source of NMOS switch NS2A is connected to the ground terminal.
  • the gate of the PMOS switch PMA and the gate of the NMOS switch NS2A are connected to the application terminal of the control signal ScA.
  • the control signal ScA switches the on state/off state of the PMOS switch PMA and the NMOS switch NS2A.
  • the NMOS switch NS1A When the control signal ScA is at a low level, the NMOS switch NS1A is in the off state, the PMOS switch PMA is in the on state, and the NMOS switch NS2A is in the off state.
  • voltage information Vmon input from the outside to the voltage information transmitting/receiving terminal TvA is applied to the gate of the PMOS transistor P1
  • voltage information Vs obtained by converting the mirror current Im2A into a voltage by the sense resistor RsA is applied to the gate of the PMOS transistor P2. Applied to the gate.
  • the voltage information Vs and Vmon are compared by the comparator CPA, and the gate of the NMOS transistor NMA is driven based on the comparison result. Since the drain of the NMOS transistor NMA is connected to the node NDA, the output voltage VoA is controlled so that the voltage information Vs and Vmon match.
  • FIG. 3 is a diagram showing an OR circuit Or provided in the linear power supply device 1A.
  • the protection signals P1 to Pn, the enable signal En, and the master/slave selection signal MS are input to the OR circuit Or.
  • a control signal ScA is output from the OR circuit Or.
  • the control signal ScA is at a high level. Note that the configuration is not limited to the OR circuit, but may be configured using other logic circuits such as a NAND circuit.
  • the output terminal ToA of the linear power supply device 1A and the output terminal ToB of the linear power supply device 1B are commonly connected to the load RL. That is, two linear power supplies are connected in parallel to the load RL. Further, the voltage information transmitting/receiving terminal TvA of the linear power supply device 1A and the voltage information transmitting/receiving terminal TvB of the linear power supply device 1B are connected.
  • One of the linear power supply devices 1A and 1B is set as a master, and the other is set as a slave.
  • the linear power supply device 1A is set as the master and the linear power supply device 1B is set as the slave.
  • the linear power supply device 1A is set as the master (FIG. 2).
  • the control signal ScA becomes high level
  • the NMOS switch NS1A is turned on
  • the PMOS switch PMA is turned off
  • the NMOS switch NS2A is turned on.
  • the voltage information Vmon to be output from the voltage information transmission/reception terminal TvA.
  • no current is supplied to the comparator CPA, making the comparator CPA ineffective, and the gate of the NMOS transistor NMA becomes a low level.
  • the bypass switch BPA is turned on, and the feedback resistor R4A is bypassed.
  • the linear power supply device 1B is set as a slave (FIG. 2).
  • the control signal ScB becomes a low level
  • the NMOS switch NS1B is turned off
  • the PMOS switch PMB is turned on
  • the NMOS switch NS2B is turned off.
  • a current is supplied to the comparator CPB, and the comparator CPB becomes valid, making it possible to compare the voltage information Vs and Vmon.
  • NMOS transistor NMB becomes valid.
  • the bypass switch BPB is turned off, and the feedback resistor R4B is enabled.
  • the feedback resistors R4A and R4B may be set to a resistance value that is greater than or equal to the voltage difference between the maximum value and the minimum value due to variations in the output voltage. Thereby, even if there are variations in the output voltages VoA and VoB, the output voltage VoB can be set lower than VoA.
  • the output voltage VoB increases. Then, when the output voltage VoB reaches VoA, the output current IoutB starts to be output from the output terminal ToB in the linear power supply device 1B. That is, parallel operation of the linear power supplies 1A and 1B is started.
  • the mirror current Im2B also starts flowing, and by driving the NMOS transistor NMB by comparing the voltage information Vs and Vmon, the voltage information Vs and Vmon match, that is, the output currents IoutB and IoutA match. controlled as follows.
  • linear power supply devices may be connected in parallel to the load RL.
  • Output terminals ToA, ToB, and ToC of linear power supplies 1A, 1B, and 1C shown in FIG. 4 are commonly connected to a load RL.
  • voltage information transmitting/receiving terminals TvA, TvB, and TvC of the linear power supplies 1A, 1B, and 1C are connected.
  • the linear power supply device 1A is set as a master, and the linear power supply devices 1B and 1C are set as slaves.
  • the output currents IoutA, IoutB, and IoutC of the linear power supplies 1A, 1B, and 1C are controlled to match (that is, the output currents IoutA, IoutB, and IoutC are each controlled to 1 ⁇ 3 of the load current Iout).
  • FIG. 5 shows a schematic current waveform at startup in the configuration shown in FIG. 4. As shown in FIG. 5, first, the output current IoutA of the master linear power supply device 1A rises, and then the output currents IoutB and IoutC rise. Then, the output currents IoutA, IoutB, and IoutC are controlled to match.
  • three or more linear power supply devices may be provided as slaves. That is, it is possible to provide two or more linear power supply devices that are set as slaves for a linear power supply device that is set as a master. Since the voltage information Vmon output from the master linear power supply is a voltage signal rather than a current signal, the signal is not divided by two or more slave linear power supply devices, and the output current of each linear power supply can be made equal.
  • FIG. 6 is a diagram showing the configuration of a power supply system 5 according to the second embodiment.
  • FIG. 6 shows the configuration of a power supply system 5 according to the second embodiment.
  • FIG. 2 shows the configuration of this embodiment and the first embodiment (FIG. 2).
  • the configuration of the linear power supply device 1A among the linear power supply devices 1A and 1B will be representatively explained.
  • the NMOS switch NS1A is not provided, and the first end of the sense resistor RsA is connected to the voltage source terminal TsrA, which is an external terminal.
  • the voltage source terminal TsrA is a terminal for outputting to the outside voltage information VmonA obtained by converting the mirror current Im2A into a current voltage using the sense resistor RsA.
  • the gate of the PMOS transistor P1 is connected to the voltage sink terminal TskA.
  • the voltage sink terminal TskA is a terminal for inputting voltage information Vmon from the outside.
  • Voltage source terminal TsrA and voltage sink terminal TskA are separate terminals.
  • the feedback resistor R4A and the bypass switch BPA are not provided.
  • the voltage source terminal TsrA of the linear power supply device 1A is connected to the voltage sink terminal TskB of the linear power supply device 1B. Thereby, the voltage information VmonA output from the voltage source terminal TsrA is input to the voltage sink terminal TskB.
  • a comparator CPB compares voltage information VsB obtained by converting the mirror current Im2B into a current voltage using a sense resistor RsB and VmonA.
  • the voltage source terminal TsrB of the linear power supply device 1B is connected to the voltage sink terminal TskA of the linear power supply device 1A. Thereby, the voltage information VmonB output from the voltage source terminal TsrB is input to the voltage sink terminal TskA.
  • a comparator CPA compares voltage information VsA obtained by converting a mirror current Im2A into a current voltage using a sense resistor RsA and VmonB.
  • the output voltage VoA of the linear power supply device 1A is higher than the output voltage VoB of the linear power supply device 1B due to variations in the linear power supply device.
  • the output current IoutB is not initially output from the output terminal ToB of the linear power supply 1B, and the load is caused only by the output current IoutA output from the output terminal ToA of the linear power supply 1A.
  • a current Iout is supplied.
  • mirror current Im2A flows, and voltage information VmonA based on mirror current Im2A is output from voltage source terminal TsrA and input to voltage sink terminal TskB.
  • mirror current Im2B does not flow, voltage information VsB and VmonA are compared by comparator CPB, NMOS transistor NMB is driven, and output voltage VoB of linear power supply device 1B is increased.
  • the output voltage VoB increases. Then, when the output voltage VoB reaches VoA, the output current IoutB starts to be output from the output terminal ToB in the linear power supply device 1B. That is, parallel operation of the linear power supplies 1A and 1B is started.
  • the mirror current Im2B also starts to flow, and the NMOS transistor NMB is driven by comparing the voltage information VsB and VmonA, and is controlled so that the voltage information VsB and VmonA match.
  • the NMOS transistor NMA is driven by comparing the voltage information VsA and VmonB, and is controlled so that the voltage information VsA and VmonB match. Thereby, the output currents IoutA and IoutB are controlled to match.
  • FIG. 7 is a diagram showing a case where three linear power supply devices according to the second embodiment are connected in parallel to a load RL to configure a power supply system 5.
  • the voltage source terminal TsrA of the linear power supply 1A is connected to the voltage sink terminal TskB of the linear power supply 1B
  • the voltage source terminal TsrB of the linear power supply 1B is connected to the voltage sink terminal TskC of the linear power supply 1C
  • the linear A voltage source terminal TsrC of the power supply device 1C is connected to a voltage sink terminal TskA of the linear power supply device 1A.
  • the output currents IoutA, IoutB, and IoutC of the linear power supply devices 1A, 1B, and 1C can be equally controlled. Note that even if four or more linear power supply devices 1 are connected in parallel to the load RL, each output current can be controlled equally.
  • the linear power supply device (1A) having a first main electrode configured to be connectable to an application end of the input voltage (Vin) and a second main electrode; an output terminal (ToA) connected to the second main electrode; an error amplifier (AP1A) configured to receive a feedback voltage (VfbA) based on the output voltage (VoA) generated at the output terminal and a reference voltage (VrefA) and to be able to drive a control end of the output transistor; a mirror transistor (M2A) configured to be able to generate a mirror current (Im2A) of the current flowing through the output transistor; a current/voltage converter (RsA) that converts the mirror current into first voltage information (Vmon, Vs); a voltage information output terminal (TvA) configured to be able to output the first voltage information (Vmon) to the outside; a voltage information input terminal (TvA) configured to be able to input
  • the first main electrode of the control transistor (NMA) is connected to the feedback resistor section (R1A, R2A, R3A, R4A) connected to the second main electrode of the output transistor (M1A).
  • a configuration in which they are connected may also be used (second configuration).
  • the voltage information output terminal and the voltage information input terminal are the same terminal (TvA), further comprising a first switch (NS1A) for switching whether or not to output the first voltage information from the voltage information output terminal;
  • a first switch for switching whether or not to output the first voltage information from the voltage information output terminal;
  • a second switch switches whether or not to bypass a part of the feedback resistor (R4A) of the feedback resistor section connected to the second main electrode of the output transistor (M1A).
  • the second switch may be configured to operate in conjunction with the first switch (fourth configuration).
  • the third switch (PMA) is further provided for switching whether or not to supply current to the comparing section (CPA), and the third switch is interlocked with the first switch. (fifth configuration).
  • any one of the third to fifth configurations further comprising a fourth switch (NS2A) connected between the control terminal and the ground terminal of the control transistor (NMA),
  • the fourth switch may be configured to work in conjunction with the first switch (sixth configuration).
  • the voltage information output terminal (TsrA) and the voltage information input terminal (TskA) may be separate terminals (seventh configuration).
  • a power supply system (5) includes a master linear power supply device (1A) that is a linear power supply device having the third configuration, in which the first switch (NS1A) is set to an on state; one or more slave linear power supply devices (1B), which are linear power supply devices of the third configuration, in which the first switch is set to an off state;
  • the output terminal (ToA) of the master linear power supply device and the output terminal (ToB) of the slave linear power supply device can be commonly connected to a load,
  • the voltage information output terminal (TvA) of the master linear power supply device and the voltage information input terminal (TvB) of the slave linear power supply device are connectable (eighth configuration).
  • the number of slave linear power supply devices may be two or more (ninth configuration).
  • a power supply system (5) includes a plurality of linear power supply devices according to the seventh configuration,
  • the respective output terminals (ToA, ToB) in the plurality of linear power supply devices (1A, 1B) can be commonly connected to a load,
  • the voltage information output terminals (TsrA, TsrB) and the voltage information input terminals (TskB, TskA) are sequentially connected between different linear power supply devices. (10th configuration).
  • the present disclosure can be used in power supply systems installed in various devices.

Abstract

A linear power supply device (1A) comprises: a current/voltage conversion unit (RsA) that converts a mirror current into first voltage information (Vmon, Vs); a voltage information output terminal (TvA) configured to be able to output the first voltage information (Vmon) to the outside; a voltage information input terminal (TvA) configured to allow for the input of second voltage information (Vmon) from the outside; a comparison unit (CPA) configured to compare the second voltage information (Vmon) with the first voltage information (Vs); and a control transistor (NMA) that is driven on the basis of the result of comparison by the comparison unit, and effects control to decrease the difference between the second voltage information and the first voltage information.

Description

リニア電源装置、および電源システムLinear power supplies and power systems
 本開示は、リニア電源装置、および電源システムに関する。 The present disclosure relates to a linear power supply device and a power supply system.
 従来、入力電圧から所望の出力電圧を生成することのできるリニア電源装置(リニアレギュレータ)は、様々なアプリケーション(車載機器、産業機器、事務機器、デジタル家電、あるいはポータブル機器など)に搭載されている。 Conventionally, linear power supplies (linear regulators) that can generate a desired output voltage from an input voltage have been installed in various applications (in-vehicle equipment, industrial equipment, office equipment, digital home appliances, portable equipment, etc.) .
 リニア電源装置には、2つのリニア電源装置を用いて、それぞれのリニア電源装置の出力電圧を出力する出力端子を共通の負荷に共通接続するものがある(例えば特許文献1)。すなわち、このようなリニア電源装置は、共通の負荷に対して並列に接続される。このようなリニア電源装置の用途は、負荷電流を出力端子から出力される出力電流に分散することで熱分散を行ったり、各出力端子から出力される出力電流に基づき負荷電流を大電流化することなどを目的とする。 Some linear power supply devices use two linear power supply devices and commonly connect the output terminals of the respective linear power supply devices to a common load (for example, Patent Document 1). That is, such linear power supplies are connected in parallel to a common load. The purpose of such a linear power supply is to disperse heat by distributing the load current into the output current output from the output terminals, or to increase the load current based on the output current output from each output terminal. The purpose is to do something.
特開2020-4214号公報JP 2020-4214 Publication
 しかしながら、上記のようにリニア電源装置を並列接続した場合、リニア電源装置のばらつきの影響でそれぞれの出力端子から出力される出力電圧に差が生じる場合がある。この場合、低いほうの出力電圧のリニア電源装置から出力電流が出力されず、高いほうの出力電圧のリニア電源装置の出力電流のみにより負荷電流が供給される現象が生じる。これにより、リニア電源装置の並列接続が意味をなさない虞があった。 However, when linear power supplies are connected in parallel as described above, differences may occur in the output voltages output from the respective output terminals due to variations in the linear power supplies. In this case, a phenomenon occurs in which no output current is output from the linear power supply device with the lower output voltage, and the load current is supplied only by the output current of the linear power supply device with the higher output voltage. As a result, there was a possibility that parallel connection of the linear power supply devices would be meaningless.
 上記状況に鑑み、本開示は、並列接続の用途において、リニア電源装置のばらつきに関わらず、効果的に並列動作を行うことが可能となるリニア電源装置を提供することを目的とする。 In view of the above situation, an object of the present disclosure is to provide a linear power supply device that can effectively perform parallel operation in parallel connection applications, regardless of variations in the linear power supply devices.
 例えば、本開示に係るリニア電源装置は、
 入力電圧の印加端に接続可能に構成される第1主電極と、第2主電極と、を有する出力トランジスタと、
 前記第2主電極に接続される出力端子と、
 前記出力端子に発生する出力電圧に基づく帰還電圧と、基準電圧とが入力され、前記出力トランジスタの制御端を駆動可能に構成されるエラーアンプと、
 前記出力トランジスタに流れる電流のミラー電流を生成可能に構成されるミラートランジスタと、
 前記ミラー電流を第1電圧情報に変換する電流/電圧変換部と、
 前記第1電圧情報を外部に対して出力可能に構成される電圧情報出力端子と、
 第2電圧情報を外部から入力可能に構成される電圧情報入力端子と、
 前記第2電圧情報と前記第1電圧情報とを比較するように構成される比較部と、
 前記比較部の比較結果に基づき駆動され、前記第2電圧情報と前記第1電圧情報の差が小さくなるように制御する制御トランジスタと、を備える構成としている。
For example, the linear power supply device according to the present disclosure is
an output transistor having a first main electrode configured to be connectable to an input voltage application end and a second main electrode;
an output terminal connected to the second main electrode;
an error amplifier configured to receive a feedback voltage based on the output voltage generated at the output terminal and a reference voltage, and to be able to drive a control end of the output transistor;
a mirror transistor configured to be able to generate a mirror current of the current flowing through the output transistor;
a current/voltage converter that converts the mirror current into first voltage information;
a voltage information output terminal configured to be able to output the first voltage information to the outside;
a voltage information input terminal configured to allow input of second voltage information from the outside;
a comparison unit configured to compare the second voltage information and the first voltage information;
The control transistor is configured to include a control transistor that is driven based on the comparison result of the comparison section and controls so that the difference between the second voltage information and the first voltage information becomes small.
 本開示に係るリニア電源装置によれば、並列接続の用途において、リニア電源装置のばらつきに関わらず、効果的に並列動作を行うことが可能となる。 According to the linear power supply device according to the present disclosure, in parallel connection applications, it is possible to effectively perform parallel operation regardless of variations in the linear power supply devices.
図1は、比較例に係る電源システムの構成を示す図である。FIG. 1 is a diagram showing the configuration of a power supply system according to a comparative example. 図2は、第1実施形態に係る電源システムの構成を示す図である。FIG. 2 is a diagram showing the configuration of the power supply system according to the first embodiment. 図3は、OR回路を示す図である。FIG. 3 is a diagram showing an OR circuit. 図4は、第1実施形態に係る電源システムの別構成例を示す図である。FIG. 4 is a diagram showing another configuration example of the power supply system according to the first embodiment. 図5は、図4に示す構成における電流波形例を示す図である。FIG. 5 is a diagram showing an example of a current waveform in the configuration shown in FIG. 4. 図6は、第2実施形態に係る電源システムの構成を示す図である。FIG. 6 is a diagram showing the configuration of a power supply system according to the second embodiment. 図7は、第2実施形態に係る電源システムの別構成例を示す図である。FIG. 7 is a diagram showing another configuration example of the power supply system according to the second embodiment.
<1.比較例>
 ここでは、リニア電源装置の新規な実施形態を説明する前に、これと対比される比較例について説明する。
<1. Comparative example>
Here, before describing a new embodiment of a linear power supply device, a comparative example to be compared with this will be described.
 図1は、比較例に係る電源システム50の構成を示す図である。電源システム50は、リニア電源装置10Aと、リニア電源装置10Bと、抵抗Ra,Rbと、を備える。電源システム50は、2つのリニア電源装置10A,10Bを用いて負荷RLに対して負荷電流Ioutを供給する。 FIG. 1 is a diagram showing the configuration of a power supply system 50 according to a comparative example. The power supply system 50 includes a linear power supply device 10A, a linear power supply device 10B, and resistors Ra and Rb. Power supply system 50 supplies load current Iout to load RL using two linear power supplies 10A and 10B.
 リニア電源装置10A,10Bは、それぞれ入力電圧Vinを降圧して所望の出力電圧VoA,VoBを生成するリニアレギュレータである。なお、リニア電源装置10Aとリニア電源装置10Bは、同一の構成のIC(Integrated Circuit)であり、それぞれの対応する構成要素には、同一の符号に対して“A”または“B”を付して図示している。以下では、リニア電源装置10Aの構成について代表的に説明する。 The linear power supplies 10A and 10B are linear regulators that step down the input voltage Vin to generate desired output voltages VoA and VoB, respectively. Note that the linear power supply device 10A and the linear power supply device 10B are ICs (Integrated Circuits) with the same configuration, and corresponding components are designated with "A" or "B" for the same reference numerals. It is illustrated. Below, the configuration of the linear power supply device 10A will be representatively explained.
 図1に示すように、リニア電源装置10Aは、出力トランジスタM10Aと、抵抗R11A,12Aと、エラーアンプAP10Aと、を備え、これらを1チップに集積したICである。 As shown in FIG. 1, the linear power supply device 10A is an IC that includes an output transistor M10A, resistors R11A and 12A, and an error amplifier AP10A, and integrates these into one chip.
 PMOSトランジスタ(PチャネルMOSFET(metal-oxide-semiconductor field-effect transistor))として構成される出力トランジスタM10Aのソースは、入力電圧Vinの入力端に接続されている。出力トランジスタM10Aのドレインと抵抗R11Aの第1端は、出力電圧VoAを出力するための出力端子ToAに共通接続されている。抵抗R11Aの第2端は、抵抗R12Aの第1端に接続されている。抵抗R12Aの第2端は、接地端に接続されている。エラーアンプAP10Aの非反転入力端(+)は、抵抗R11AとR12Aとが接続される接続ノード(=帰還電圧VfbAの印加端)に接続されている。エラーアンプAP10Aの反転入力端(-)は、基準電圧VrefAの印加端に接続されている。エラーアンプAP10Aの出力端は、出力トランジスタM10Aのゲートに接続されている。 The source of the output transistor M10A configured as a PMOS transistor (P-channel MOSFET (metal-oxide-semiconductor field-effect transistor)) is connected to the input terminal of the input voltage Vin. The drain of the output transistor M10A and the first end of the resistor R11A are commonly connected to an output terminal ToA for outputting the output voltage VoA. A second end of resistor R11A is connected to a first end of resistor R12A. A second end of the resistor R12A is connected to a ground terminal. The non-inverting input terminal (+) of the error amplifier AP10A is connected to a connection node (=an application terminal of the feedback voltage VfbA) to which the resistors R11A and R12A are connected. The inverting input terminal (-) of the error amplifier AP10A is connected to the application terminal of the reference voltage VrefA. The output terminal of the error amplifier AP10A is connected to the gate of the output transistor M10A.
 上記したエラーアンプAP10Aは、出力電圧VoAに応じた帰還電圧VfbA(=VoA×{R12A/(R11A+R12A)})が所定の基準電圧VrefAと一致するように、出力トランジスタM10Aのゲート制御を行う。すなわち、出力トランジスタM10Aは、出力電圧VoAがその目標値(=VrefA×{(R11A+R12A)/R12A})と一致するように、オン抵抗値が連続的に制御される。 The error amplifier AP10A described above performs gate control of the output transistor M10A so that the feedback voltage VfbA (=VoA×{R12A/(R11A+R12A)}) corresponding to the output voltage VoA matches the predetermined reference voltage VrefA. That is, the on-resistance value of the output transistor M10A is continuously controlled so that the output voltage VoA matches its target value (=VrefA×{(R11A+R12A)/R12A}).
 同様に、リニア電源装置10Bにおいては、出力電圧VoBがその目標値と一致するように出力トランジスタM10Bのオン抵抗値が連続的に制御される。 Similarly, in the linear power supply device 10B, the on-resistance value of the output transistor M10B is continuously controlled so that the output voltage VoB matches its target value.
 出力端子ToAは、リニア電源装置10A,10Bの外部に設けられる抵抗Raの第1端に接続される。出力端ToBは、リニア電源装置10A,10Bの外部に設けられる抵抗Rbの第1端に接続される。抵抗Ra,Rbのそれぞれの第2端は、負荷RLに共通接続される。従って、リニア電源装置10A,10Bは、共通の負荷RLに対して並列に接続される。 The output terminal ToA is connected to the first end of a resistor Ra provided outside the linear power supply devices 10A and 10B. The output terminal ToB is connected to a first end of a resistor Rb provided outside the linear power supply devices 10A and 10B. The second ends of each of the resistors Ra and Rb are commonly connected to the load RL. Therefore, linear power supplies 10A and 10B are connected in parallel to a common load RL.
 ここで、リニア電源装置10A,10Bの出力電圧VoA,VoBの標準値(Typ値)は同じに設定しているが、リニア電源装置のばらつきにより、出力電圧は標準値に対してばらつく可能性がある。例えば、標準値5Vに対して±2%ばらつく等である。このようなばらつきは、例えば、基準電圧、帰還電圧、または出力トランジスタの閾値電圧のばらつき、さらにエラーアンプの入力オフセット電圧のばらつきなどによって生じる。 Here, the standard values (Typ values) of the output voltages VoA and VoB of the linear power supplies 10A and 10B are set to be the same, but due to variations in the linear power supplies, the output voltage may vary from the standard value. be. For example, it varies by ±2% with respect to the standard value of 5V. Such variations are caused by, for example, variations in the reference voltage, feedback voltage, or threshold voltage of the output transistor, as well as variations in the input offset voltage of the error amplifier.
 仮に出力端子ToA,ToB間を直接的に接続した構成の場合、ばらつきにより例えば出力電圧VoAがVoBよりも高い場合、リニア電源装置10B側の出力トランジスタM10Bはオフを維持され、出力端ToBから出力電流IoutBは出力されず、負荷電流Ioutは、リニア電源装置10Aにおける出力端子ToAから出力される出力電流IoutAのみにより供給される。従って、出力電流が片側のリニア電源装置に集中してしまう。 In the case of a configuration in which the output terminals ToA and ToB are directly connected, for example, if the output voltage VoA is higher than VoB due to variations, the output transistor M10B on the linear power supply 10B side is kept off, and the output is output from the output terminal ToB. The current IoutB is not output, and the load current Iout is supplied only by the output current IoutA output from the output terminal ToA of the linear power supply device 10A. Therefore, the output current is concentrated on one linear power supply device.
 これに対し、図1に示す本比較例に係る構成では、例えば出力電圧VoAがVoBよりも高い場合、負荷電流Ioutが0Aより徐々に増加するにつれ、出力電圧VoAが抵抗Raにより電圧降下され、抵抗Ra,Rbの各第2端が接続されるノードに発生する出力電圧Voは、徐々に低下する。そして、出力電圧Voが出力電圧VoBに到達すると、リニア電源装置10B側の出力トランジスタM10Bが動作を開始し、出力端ToBから出力電流IoutBの出力が開始される。すなわち、出力電流IoutA,IoutBの両方により負荷電流Ioutが供給される並列動作が開始される。なお、抵抗Ra,Rbは、抵抗における電圧降下が、出力電圧のばらつきによる最大値と最小値の間の電圧差以上となるような抵抗値に設定すればよい。 On the other hand, in the configuration according to the present comparative example shown in FIG. 1, for example, when the output voltage VoA is higher than VoB, as the load current Iout gradually increases from 0 A, the output voltage VoA is dropped by the resistor Ra. The output voltage Vo generated at the node to which the second ends of the resistors Ra and Rb are connected gradually decreases. Then, when the output voltage Vo reaches the output voltage VoB, the output transistor M10B on the linear power supply device 10B side starts operating, and the output of the output current IoutB is started from the output terminal ToB. That is, a parallel operation is started in which the load current Iout is supplied by both the output currents IoutA and IoutB. Note that the resistors Ra and Rb may be set to such resistance values that the voltage drop across the resistors is greater than or equal to the voltage difference between the maximum and minimum values due to variations in the output voltage.
 このように、本比較例の構成であれば、2つのリニア電源装置を並列接続して用いる場合において、出力電圧のばらつきがある場合でも、並列動作が可能となる。しかしながら、このような本比較例では、抵抗Ra,Rbによる損失・発熱が発生すること、出力電流IoutA,IoutBが均等にならないといった課題を有している。また、負荷電流Ioutが変化すると抵抗Ra,Rbによる電圧降下により出力電圧Voが変化してしまい、レギュレータとしての機能に課題が生じる。 As described above, with the configuration of this comparative example, when two linear power supply devices are connected in parallel and used, parallel operation is possible even when there are variations in output voltage. However, this comparative example has problems in that loss and heat generation occur due to the resistors Ra and Rb, and that the output currents IoutA and IoutB are not equal. Further, when the load current Iout changes, the output voltage Vo changes due to the voltage drop caused by the resistors Ra and Rb, causing a problem in the function as a regulator.
<2.第1実施形態>
 以下では、上記の課題を解決できる各種実施形態について説明する。図2は、第1実施形態に係る電源システム5の構成を示す図である。電源システム5は、リニア電源装置1Aと、リニア電源装置1Bと、を備える。電源システム5は、2つのリニア電源装置1A,1Bを用いて負荷RLに対して負荷電流Ioutを供給する。
<2. First embodiment>
Below, various embodiments that can solve the above problems will be described. FIG. 2 is a diagram showing the configuration of the power supply system 5 according to the first embodiment. The power supply system 5 includes a linear power supply device 1A and a linear power supply device 1B. The power supply system 5 supplies a load current Iout to the load RL using two linear power supplies 1A and 1B.
 リニア電源装置1A,1Bは、それぞれ入力電圧Vinを降圧して所望の出力電圧VoA,VoBを生成するリニアレギュレータである。なお、リニア電源装置1Aとリニア電源装置1Bは、同一の構成のICであり、それぞれの対応する構成要素には、同一の符号に対して“A”または“B”を付して図示している。以下では、リニア電源装置1Aの構成について代表的に説明する。 The linear power supplies 1A and 1B are linear regulators that step down the input voltage Vin to generate desired output voltages VoA and VoB, respectively. Note that the linear power supply device 1A and the linear power supply device 1B are ICs with the same configuration, and corresponding components are shown with "A" or "B" attached to the same reference numerals. There is. Below, the configuration of the linear power supply device 1A will be representatively explained.
 図2に示すように、リニア電源装置1Aは、出力トランジスタM1Aと、ミラートランジスタM2Aと、エラーアンプAP1Aと、帰還抵抗R1A,R2A,R3A,R4Aと、バイパススイッチBPAと、センス抵抗RsAと、コンパレータCPAと、NMOSトランジスタ(NチャネルMOSFET)NMAと、抵抗RAと、NMOSスイッチNS1A,NS2Aと、PMOSスイッチPMAと、を備え、これらを1チップに集積したICである。また、リニア電源装置1Aは、外部との電気的接続を確立するために、出力端子ToA、電圧情報送受信端子TvA等の外部端子を有している。 As shown in FIG. 2, the linear power supply device 1A includes an output transistor M1A, a mirror transistor M2A, an error amplifier AP1A, feedback resistors R1A, R2A, R3A, R4A, a bypass switch BPA, a sense resistor RsA, and a comparator. This IC includes a CPA, an NMOS transistor (N-channel MOSFET) NMA, a resistor RA, NMOS switches NS1A, NS2A, and a PMOS switch PMA, and these are integrated into one chip. Furthermore, the linear power supply device 1A has external terminals such as an output terminal ToA and a voltage information transmission/reception terminal TvA in order to establish electrical connection with the outside.
 PMOSトランジスタとして構成される出力トランジスタM1Aのソースは、入力電圧Vinの印加端に接続される。出力トランジスタM1Aのドレインは、帰還抵抗R1Aの第1端に接続される。出力トランジスタM1Aのドレインは、出力電圧VoAを出力するための出力端子ToAに接続される。帰還抵抗R1Aの第2端は、帰還抵抗R2Aの第1端に接続される。帰還抵抗R2Aの第2端は、帰還抵抗R3Aの第1端に接続される。帰還抵抗R3Aの第2端は、帰還抵抗R4Aの第1端に接続される。帰還抵抗R4Aの第2端は、接地端に接続される。 The source of the output transistor M1A configured as a PMOS transistor is connected to the application terminal of the input voltage Vin. The drain of output transistor M1A is connected to the first end of feedback resistor R1A. The drain of the output transistor M1A is connected to an output terminal ToA for outputting an output voltage VoA. A second end of feedback resistor R1A is connected to a first end of feedback resistor R2A. A second end of feedback resistor R2A is connected to a first end of feedback resistor R3A. A second end of feedback resistor R3A is connected to a first end of feedback resistor R4A. A second end of the feedback resistor R4A is connected to a ground terminal.
 エラーアンプAP1Aの非反転入力端(+)は、抵抗R2AとR3Aとが接続される接続ノード(=帰還電圧VfbAの印加端)に接続されている。エラーアンプAP1Aの反転入力端(-)は、基準電圧VrefAの印加端に接続されている。エラーアンプAP1Aの出力端は、出力トランジスタM1Aのゲートに接続されている。 The non-inverting input terminal (+) of the error amplifier AP1A is connected to the connection node (=the application terminal of the feedback voltage VfbA) to which the resistors R2A and R3A are connected. The inverting input terminal (-) of the error amplifier AP1A is connected to the application terminal of the reference voltage VrefA. The output terminal of the error amplifier AP1A is connected to the gate of the output transistor M1A.
 NMOSトランジスタにより構成されるバイパススイッチBPAのドレインは、帰還抵抗R4Aの第1端に接続される。バイパススイッチBPAのソースは、帰還抵抗R4Aの第2端に接続される。バイパススイッチBPAのゲートは、制御信号ScAの印加端に接続される。これにより、制御信号ScAに応じてバイパススイッチBPAのオン状態/オフ状態が切り替えられる。バイパススイッチBPAがオン状態の場合、帰還抵抗R4Aの両端間がショートされ、帰還抵抗R4Aはバイパスされる。一方、バイパススイッチBPAがオフ状態の場合、帰還抵抗R4Aは有効となる。 The drain of the bypass switch BPA constituted by an NMOS transistor is connected to the first end of the feedback resistor R4A. The source of bypass switch BPA is connected to the second end of feedback resistor R4A. A gate of bypass switch BPA is connected to an application terminal of control signal ScA. Thereby, the on state/off state of the bypass switch BPA is switched according to the control signal ScA. When the bypass switch BPA is in the on state, both ends of the feedback resistor R4A are short-circuited, and the feedback resistor R4A is bypassed. On the other hand, when the bypass switch BPA is in the off state, the feedback resistor R4A is enabled.
 帰還抵抗R4Aがバイパスされている場合は、上記したエラーアンプAP1Aは、出力電圧VoAに応じた帰還電圧VfbA(=VoA×{R3A/(R1A+R2A+R3A)})が所定の基準電圧VrefAと一致するように、出力トランジスタM1Aのゲート制御を行う。すなわち、出力トランジスタM1Aは、出力電圧VoAがその目標値(=VrefA×{(R1A+R2A+R3A)/(R3A)})と一致するように、オン抵抗値が連続的に制御される。 When the feedback resistor R4A is bypassed, the error amplifier AP1A described above operates so that the feedback voltage VfbA (=VoA×{R3A/(R1A+R2A+R3A)}) corresponding to the output voltage VoA matches the predetermined reference voltage VrefA. , controls the gate of the output transistor M1A. That is, the on-resistance value of the output transistor M1A is continuously controlled so that the output voltage VoA matches its target value (=VrefA×{(R1A+R2A+R3A)/(R3A)}).
 帰還抵抗R4Aがバイパスされていない場合は、上記したエラーアンプAP1Aは、出力電圧VoAに応じた帰還電圧VfbA(=VoA×{(R3A+R4A)/(R1A+R2A+R3A+R4A)})が所定の基準電圧VrefAと一致するように、出力トランジスタM1Aのゲート制御を行う。すなわち、出力トランジスタM1Aは、出力電圧VoAがその目標値(=VrefA×{(R1A+R2A+R3A+R4A)/(R3A+R4A)})と一致するように、オン抵抗値が連続的に制御される。 When the feedback resistor R4A is not bypassed, the error amplifier AP1A described above has a feedback voltage VfbA (=VoA×{(R3A+R4A)/(R1A+R2A+R3A+R4A)}) corresponding to the output voltage VoA that matches the predetermined reference voltage VrefA. The gate of the output transistor M1A is controlled as follows. That is, the on-resistance value of the output transistor M1A is continuously controlled so that the output voltage VoA matches its target value (=VrefA×{(R1A+R2A+R3A+R4A)/(R3A+R4A)}).
 PMOSトランジスタとして構成されるミラートランジスタM2Aのソースは、入力電圧Vinの印加端に接続される。ミラートランジスタM2Aのドレインは、センス抵抗RsAの第1端に接続される。ミラートランジスタM2Aのゲートは、エラーアンプAP1Aの出力端に接続される。センス抵抗RsAの第2端は、接地端に接続される。センス抵抗RsAの第1端は、NMOSトランジスタとして構成されるNMOSスイッチNS1Aのドレインに接続される。NMOSスイッチNS1Aのソースは、電圧情報送受信端子TvAに接続される。NMOSスイッチNS1Aのゲートは、制御信号ScAの印加端に接続される。制御信号ScAによりNMOSスイッチNS1Aのオン状態/オフ状態が切り替えられる。 The source of the mirror transistor M2A configured as a PMOS transistor is connected to the application terminal of the input voltage Vin. The drain of mirror transistor M2A is connected to the first end of sense resistor RsA. The gate of mirror transistor M2A is connected to the output terminal of error amplifier AP1A. A second end of the sense resistor RsA is connected to a ground terminal. A first end of the sense resistor RsA is connected to the drain of an NMOS switch NS1A configured as an NMOS transistor. The source of the NMOS switch NS1A is connected to the voltage information transmission/reception terminal TvA. The gate of the NMOS switch NS1A is connected to the application terminal of the control signal ScA. The on/off state of the NMOS switch NS1A is switched by the control signal ScA.
 出力トランジスタM1Aに流れる電流のミラー電流Im2AがミラートランジスタM2Aを流れる。ミラー電流Im2Aは、例えば出力トランジスタM1Aを流れる電流の数百分の1、あるいは数千分の1である。NMOSスイッチNS1Aがオン状態の場合、ミラー電流Im2Aをセンス抵抗RsAにより電流/電圧変換して得られる電圧情報VmonがNMOSスイッチNS1Aを介して電圧送受信端子TvAから外部へ出力可能となる。 A mirror current Im2A of the current flowing through the output transistor M1A flows through the mirror transistor M2A. The mirror current Im2A is, for example, several hundredths or several thousandths of the current flowing through the output transistor M1A. When the NMOS switch NS1A is in the on state, voltage information Vmon obtained by converting the mirror current Im2A into a current/voltage by the sense resistor RsA can be outputted to the outside from the voltage transmitting/receiving terminal TvA via the NMOS switch NS1A.
 コンパレータCPAは、PMOSトランジスタP1,P2と、NMOSトランジスタN1,N2と、を有する。PMOSトランジスタP1,P2のソースは、PMOSスイッチPMAのドレインに接続される。PMOSトランジスタP1のゲートは、電圧情報送受信端子TvAに接続される。PMOSトランジスタP2のゲートは、センス抵抗RsAの第1端に接続される。PMOSトランジスタP1のドレインは、NMOSトランジスタN1のドレインに接続される。NMOSトランジスタN1のドレインとゲートは短絡される。NMOSトランジスタN1,N2のゲート同士は接続される。NMOSトランジスタN1,N2のソースは、接地端に接続される。NMOSトランジスタN2のドレインとPMOSトランジスタP2のドレインは、ノードNdで接続される。なお、NMOSトランジスタN2のゲートとドレイン間には、位相補償用のコンデンサC1が接続される。 The comparator CPA includes PMOS transistors P1 and P2 and NMOS transistors N1 and N2. The sources of PMOS transistors P1 and P2 are connected to the drain of PMOS switch PMA. The gate of PMOS transistor P1 is connected to voltage information transmission/reception terminal TvA. The gate of PMOS transistor P2 is connected to the first end of sense resistor RsA. The drain of PMOS transistor P1 is connected to the drain of NMOS transistor N1. The drain and gate of NMOS transistor N1 are shorted. The gates of NMOS transistors N1 and N2 are connected to each other. The sources of NMOS transistors N1 and N2 are connected to a ground terminal. The drain of the NMOS transistor N2 and the drain of the PMOS transistor P2 are connected at a node Nd. Note that a phase compensation capacitor C1 is connected between the gate and drain of the NMOS transistor N2.
 NMOSトランジスタNMAのゲートは、ノードNdに接続される。NMOSトランジスタNMAのソースは、抵抗RAを介して接地端に接続される。NMOSトランジスタNMAのドレインは、帰還抵抗R1A,R2Aが接続されるノードNDAに接続される。なお、NMOSトランジスタNMAのゲートとドレイン間には、位相補償用のコンデンサC2が接続される。 The gate of NMOS transistor NMA is connected to node Nd. The source of the NMOS transistor NMA is connected to a ground terminal via a resistor RA. The drain of the NMOS transistor NMA is connected to a node NDA to which feedback resistors R1A and R2A are connected. Note that a phase compensation capacitor C2 is connected between the gate and drain of the NMOS transistor NMA.
 NMOSスイッチNS2Aのドレインは、NMOSトランジスタNMAのゲートに接続される。NMOSスイッチNS2Aのソースは、接地端に接続される。PMOSスイッチPMAのゲートおよびNMOSスイッチNS2Aのゲートは、制御信号ScAの印加端に接続される。制御信号ScAによりPMOSスイッチPMAおよびNMOSスイッチNS2Aのオン状態/オフ状態が切り替えられる。 The drain of the NMOS switch NS2A is connected to the gate of the NMOS transistor NMA. The source of NMOS switch NS2A is connected to the ground terminal. The gate of the PMOS switch PMA and the gate of the NMOS switch NS2A are connected to the application terminal of the control signal ScA. The control signal ScA switches the on state/off state of the PMOS switch PMA and the NMOS switch NS2A.
 制御信号ScAがローレベルの場合、NMOSスイッチNS1Aはオフ状態、PMOSスイッチPMAはオン状態、NMOSスイッチNS2Aはオフ状態となる。この場合、外部から電圧情報送受信端子TvAに入力された電圧情報VmonがPMOSトランジスタP1のゲートに印加され、ミラー電流Im2Aをセンス抵抗RsAにより電流電圧変換して得られる電圧情報VsがPMOSトランジスタP2のゲートに印加される。コンパレータCPAにより電圧情報VsとVmonの比較が行われ、比較結果に基づきNMOSトランジスタNMAのゲートが駆動される。NMOSトランジスタNMAのドレインはノードNDAに接続されているため、電圧情報VsとVmonが一致するように出力電圧VoAが制御される。 When the control signal ScA is at a low level, the NMOS switch NS1A is in the off state, the PMOS switch PMA is in the on state, and the NMOS switch NS2A is in the off state. In this case, voltage information Vmon input from the outside to the voltage information transmitting/receiving terminal TvA is applied to the gate of the PMOS transistor P1, and voltage information Vs obtained by converting the mirror current Im2A into a voltage by the sense resistor RsA is applied to the gate of the PMOS transistor P2. Applied to the gate. The voltage information Vs and Vmon are compared by the comparator CPA, and the gate of the NMOS transistor NMA is driven based on the comparison result. Since the drain of the NMOS transistor NMA is connected to the node NDA, the output voltage VoA is controlled so that the voltage information Vs and Vmon match.
 図3は、リニア電源装置1Aに備えられるOR回路Orを示す図である。OR回路Orには、保護信号P1~Pn、イネーブル信号En、およびマスター/スレーブ選択信号MSが入力される。OR回路Orから制御信号ScAが出力される。保護信号P1~Pn、イネーブル信号En、およびマスター/スレーブ選択信号MSのいずれかがハイレベルの場合に、制御信号ScAがハイレベルとなる。なお、OR回路に限らず、NAND回路等、他の論理回路により構成してもよい。 FIG. 3 is a diagram showing an OR circuit Or provided in the linear power supply device 1A. The protection signals P1 to Pn, the enable signal En, and the master/slave selection signal MS are input to the OR circuit Or. A control signal ScA is output from the OR circuit Or. When any one of the protection signals P1 to Pn, the enable signal En, and the master/slave selection signal MS is at a high level, the control signal ScA is at a high level. Note that the configuration is not limited to the OR circuit, but may be configured using other logic circuits such as a NAND circuit.
 図2に示す電源システム5では、リニア電源装置1Aの出力端子ToAとリニア電源装置1Bの出力端子ToBが負荷RLに共通接続される。すなわち、2つのリニア電源装置が負荷RLに対して並列接続される。また、リニア電源装置1Aの電圧情報送受信端子TvAとリニア電源装置1Bの電圧情報送受信端子TvBとが接続される。 In the power supply system 5 shown in FIG. 2, the output terminal ToA of the linear power supply device 1A and the output terminal ToB of the linear power supply device 1B are commonly connected to the load RL. That is, two linear power supplies are connected in parallel to the load RL. Further, the voltage information transmitting/receiving terminal TvA of the linear power supply device 1A and the voltage information transmitting/receiving terminal TvB of the linear power supply device 1B are connected.
 リニア電源装置1A,1Bのうち一方がマスターに設定され、他方がスレーブに設定される。ここでは、リニア電源装置1Aがマスターに、リニア電源装置1Bがスレーブに設定されるとする。 One of the linear power supply devices 1A and 1B is set as a master, and the other is set as a slave. Here, it is assumed that the linear power supply device 1A is set as the master and the linear power supply device 1B is set as the slave.
 マスター/スレーブ選択信号MSをハイレベルとすることでリニア電源装置1Aがマスターに設定される(図2)。この場合、制御信号ScAがハイレベルとなり、NMOSスイッチNS1Aがオン状態、PMOSスイッチPMAがオフ状態、NMOSスイッチNS2Aがオン状態となる。これにより、電圧情報Vmonを電圧情報送受信端子TvAから出力可能となる。また、コンパレータCPAに電流が供給されずコンパレータCPAが無効となり、NMOSトランジスタNMAのゲートはローベルとなる。また、バイパススイッチBPAがオン状態となり、帰還抵抗R4Aがバイパスされる。 By setting the master/slave selection signal MS to a high level, the linear power supply device 1A is set as the master (FIG. 2). In this case, the control signal ScA becomes high level, the NMOS switch NS1A is turned on, the PMOS switch PMA is turned off, and the NMOS switch NS2A is turned on. This allows the voltage information Vmon to be output from the voltage information transmission/reception terminal TvA. Further, no current is supplied to the comparator CPA, making the comparator CPA ineffective, and the gate of the NMOS transistor NMA becomes a low level. Further, the bypass switch BPA is turned on, and the feedback resistor R4A is bypassed.
 マスター/スレーブ選択信号MSをローレベルとすることでリニア電源装置1Bがスレーブに設定される(図2)。この場合、制御信号ScBがローレベルとなり、NMOSスイッチNS1Bがオフ状態、PMOSスイッチPMBがオン状態、NMOSスイッチNS2Bがオフ状態となる。これにより、コンパレータCPBに電流が供給されてコンパレータCPBが有効となり、電圧情報VsとVmonの比較が可能となる。NMOSトランジスタNMBは有効となる。また、バイパススイッチBPBがオフ状態となり、帰還抵抗R4Bが有効となる。 By setting the master/slave selection signal MS to a low level, the linear power supply device 1B is set as a slave (FIG. 2). In this case, the control signal ScB becomes a low level, the NMOS switch NS1B is turned off, the PMOS switch PMB is turned on, and the NMOS switch NS2B is turned off. As a result, a current is supplied to the comparator CPB, and the comparator CPB becomes valid, making it possible to compare the voltage information Vs and Vmon. NMOS transistor NMB becomes valid. Further, the bypass switch BPB is turned off, and the feedback resistor R4B is enabled.
 帰還抵抗R4Bはバイパスされないため、バイパスされる場合よりも出力電圧VoBは低い目標値に制御される。帰還抵抗R4A,R4Bは、出力電圧のばらつきによる最大値と最小値の間の電圧差以上となるような抵抗値に設定すればよい。これにより、出力電圧VoA,VoBにばらつきがあっても、出力電圧VoBをVoAよりも低く設定することができる。 Since the feedback resistor R4B is not bypassed, the output voltage VoB is controlled to a lower target value than when it is bypassed. The feedback resistors R4A and R4B may be set to a resistance value that is greater than or equal to the voltage difference between the maximum value and the minimum value due to variations in the output voltage. Thereby, even if there are variations in the output voltages VoA and VoB, the output voltage VoB can be set lower than VoA.
 これにより、負荷電流Ioutを0Aから流し始めても、リニア電源装置1Bにおける出力端子ToBから出力電流IoutBは出力されず、リニア電源装置1Aにおける出力端子ToAから出力される出力電流IoutAのみにより負荷電流Ioutが供給される。 As a result, even if the load current Iout starts to flow from 0A, the output current IoutB is not output from the output terminal ToB of the linear power supply 1B, and the load current Iout is caused only by the output current IoutA output from the output terminal ToA of the linear power supply 1A. is supplied.
 このとき、マスターであるリニア電源装置1Aの電圧情報送受信端子TvAから出力されてスレーブであるリニア電源装置1Bの電圧情報送受信端子TvBに入力された電圧情報Vmonと、電圧情報Vsとがリニア電源装置1BにおけるコンパレータCPBにより比較される。リニア電源装置1Bにおいてミラー電流Im2Bが流れないため、Vs=0となり、NMOSトランジスタNMBの駆動により出力電圧VoBは上昇するように制御される。 At this time, the voltage information Vmon outputted from the voltage information transmitting/receiving terminal TvA of the master linear power supply 1A and input to the voltage information transmitting/receiving terminal TvB of the slave linear power supply 1B and the voltage information Vs are connected to the linear power supply Comparison is made by comparator CPB in 1B. Since the mirror current Im2B does not flow in the linear power supply device 1B, Vs=0, and the output voltage VoB is controlled to rise by driving the NMOS transistor NMB.
 負荷電流Ioutが増加し、出力電流IoutAひいてはミラー電流Im2Aが増加するにつれ、出力電圧VoBが上昇する。そして、出力電圧VoBがVoAに到達すると、リニア電源装置1Bにおける出力端子ToBから出力電流IoutBが出力され始める。すなわち、リニア電源装置1A,1Bの並列動作が開始される。 As the load current Iout increases and the output current IoutA and thus the mirror current Im2A increase, the output voltage VoB increases. Then, when the output voltage VoB reaches VoA, the output current IoutB starts to be output from the output terminal ToB in the linear power supply device 1B. That is, parallel operation of the linear power supplies 1A and 1B is started.
 出力電流IoutBが流れ始めると、ミラー電流Im2Bも流れ始め、電圧情報VsとVmonの比較によりNMOSトランジスタNMBの駆動により、電圧情報VsとVmonが一致するように、すなわち出力電流IoutBとIoutAが一致するように制御される。 When the output current IoutB starts flowing, the mirror current Im2B also starts flowing, and by driving the NMOS transistor NMB by comparing the voltage information Vs and Vmon, the voltage information Vs and Vmon match, that is, the output currents IoutB and IoutA match. controlled as follows.
 これにより、リニア電源装置1A,1Bで出力電圧のばらつきがあった場合でも、並列動作を可能とし、出力電流を均等に近づけることができる。また、負荷電流の変化に対する出力電圧の変化を抑制できる。さらに、先述の比較例のような電圧降下のための抵抗が不要であり、損失・発熱を抑制することができる。また、このような効果を同一品番のリニア電源装置により実現することができる。 As a result, even if there are variations in output voltage between the linear power supplies 1A and 1B, parallel operation is possible and the output currents can be made close to equal. Further, changes in output voltage due to changes in load current can be suppressed. Furthermore, there is no need for a resistor for voltage drop as in the above-mentioned comparative example, and loss and heat generation can be suppressed. Moreover, such an effect can be achieved using linear power supply devices of the same product number.
 なお、図4に示す電源システム5のように、負荷RLに対して3つのリニア電源装置を並列接続してもよい。図4に示すリニア電源装置1A,1B,1Cの出力端子ToA,ToB,ToCは、負荷RLに共通接続される。また、リニア電源装置1A,1B,1Cの電圧情報送受信端子TvA,TvB,TvCが接続される。 Note that, like the power supply system 5 shown in FIG. 4, three linear power supply devices may be connected in parallel to the load RL. Output terminals ToA, ToB, and ToC of linear power supplies 1A, 1B, and 1C shown in FIG. 4 are commonly connected to a load RL. Further, voltage information transmitting/receiving terminals TvA, TvB, and TvC of the linear power supplies 1A, 1B, and 1C are connected.
 図4に示すような構成において、例えばリニア電源装置1Aがマスターに、リニア電源装置1B,1Cがスレーブに設定される。リニア電源装置1A,1B,1Cの出力電流IoutA,IoutB,IoutCが一致するように制御される(すなわち出力電流IoutA,IoutB,IoutCはそれぞれ負荷電流Ioutの1/3に制御される)。 In the configuration shown in FIG. 4, for example, the linear power supply device 1A is set as a master, and the linear power supply devices 1B and 1C are set as slaves. The output currents IoutA, IoutB, and IoutC of the linear power supplies 1A, 1B, and 1C are controlled to match (that is, the output currents IoutA, IoutB, and IoutC are each controlled to ⅓ of the load current Iout).
 図4に示す構成における起動時の概略的な電流波形を図5に示す。図5に示すように、まずマスターであるリニア電源装置1Aの出力電流IoutAが立ち上がってから、出力電流IoutB,IoutCが立ち上がる。そして、出力電流IoutA,IoutB,IoutCが一致するように制御される。 FIG. 5 shows a schematic current waveform at startup in the configuration shown in FIG. 4. As shown in FIG. 5, first, the output current IoutA of the master linear power supply device 1A rises, and then the output currents IoutB and IoutC rise. Then, the output currents IoutA, IoutB, and IoutC are controlled to match.
 なお、スレーブに設定されるリニア電源装置を3つ以上設けてもよい。すなわち、マスターに設定されるリニア電源装置に対してスレーブに設定されるリニア電源装置を2つ以上設けることが可能である。マスターのリニア電源装置から出力される電圧情報Vmonは、電流ではなく電圧の信号であるため、2つ以上のスレーブのリニア電源装置によって信号が分割されることはなく、各リニア電源装置の出力電流を均等にすることができる。 Note that three or more linear power supply devices may be provided as slaves. That is, it is possible to provide two or more linear power supply devices that are set as slaves for a linear power supply device that is set as a master. Since the voltage information Vmon output from the master linear power supply is a voltage signal rather than a current signal, the signal is not divided by two or more slave linear power supply devices, and the output current of each linear power supply can be made equal.
<3.第2実施形態>
 図6は、第2実施形態に係る電源システム5の構成を示す図である。ここでは、本実施形態に係る構成の第1実施形態(図2)との相違点について主に述べる。また、リニア電源装置1A,1Bのうちリニア電源装置1Aの構成について代表的に説明する。
<3. Second embodiment>
FIG. 6 is a diagram showing the configuration of a power supply system 5 according to the second embodiment. Here, differences between the configuration of this embodiment and the first embodiment (FIG. 2) will be mainly described. Furthermore, the configuration of the linear power supply device 1A among the linear power supply devices 1A and 1B will be representatively explained.
 図6に示すリニア電源装置1Aでは、NMOSスイッチNS1Aは設けず、センス抵抗RsAの第1端が外部端子である電圧ソース端子TsrAに接続される。電圧ソース端子TsrAは、ミラー電流Im2Aをセンス抵抗RsAにより電流電圧変換して得られる電圧情報VmonAを外部へ出力するための端子である。 In the linear power supply device 1A shown in FIG. 6, the NMOS switch NS1A is not provided, and the first end of the sense resistor RsA is connected to the voltage source terminal TsrA, which is an external terminal. The voltage source terminal TsrA is a terminal for outputting to the outside voltage information VmonA obtained by converting the mirror current Im2A into a current voltage using the sense resistor RsA.
 また、PMOSトランジスタP1のゲートは、電圧シンク端子TskAに接続される。電圧シンク端子TskAは、電圧情報Vmonを外部から入力するための端子である。電圧ソース端子TsrAと電圧シンク端子TskAは、別個の端子である。 Furthermore, the gate of the PMOS transistor P1 is connected to the voltage sink terminal TskA. The voltage sink terminal TskA is a terminal for inputting voltage information Vmon from the outside. Voltage source terminal TsrA and voltage sink terminal TskA are separate terminals.
 また、図6に示すリニア電源装置1Aでは、帰還抵抗R4AおよびバイパススイッチBPAは設けない。 Further, in the linear power supply device 1A shown in FIG. 6, the feedback resistor R4A and the bypass switch BPA are not provided.
 リニア電源装置1Aの電圧ソース端子TsrAは、リニア電源装置1Bの電圧シンク端子TskBに接続される。これにより、電圧ソース端子TsrAから出力された電圧情報VmonAは電圧シンク端子TskBに入力される。リニア電源装置1Bにおいて、ミラー電流Im2Bをセンス抵抗RsBにより電流電圧変換して得られる電圧情報VsBと、VmonAとがコンパレータCPBにより比較される。 The voltage source terminal TsrA of the linear power supply device 1A is connected to the voltage sink terminal TskB of the linear power supply device 1B. Thereby, the voltage information VmonA output from the voltage source terminal TsrA is input to the voltage sink terminal TskB. In the linear power supply device 1B, a comparator CPB compares voltage information VsB obtained by converting the mirror current Im2B into a current voltage using a sense resistor RsB and VmonA.
 リニア電源装置1Bの電圧ソース端子TsrBは、リニア電源装置1Aの電圧シンク端子TskAに接続される。これにより、電圧ソース端子TsrBから出力された電圧情報VmonBは電圧シンク端子TskAに入力される。リニア電源装置1Aにおいて、ミラー電流Im2Aをセンス抵抗RsAにより電流電圧変換して得られる電圧情報VsAと、VmonBとがコンパレータCPAにより比較される。 The voltage source terminal TsrB of the linear power supply device 1B is connected to the voltage sink terminal TskA of the linear power supply device 1A. Thereby, the voltage information VmonB output from the voltage source terminal TsrB is input to the voltage sink terminal TskA. In the linear power supply device 1A, a comparator CPA compares voltage information VsA obtained by converting a mirror current Im2A into a current voltage using a sense resistor RsA and VmonB.
 ここで、リニア電源装置のばらつきによりリニア電源装置1Aの出力電圧VoAがリニア電源装置1Bの出力電圧VoBよりも高いとする。これにより、負荷電流Ioutを0Aから流し始めても、初期にリニア電源装置1Bにおける出力端子ToBから出力電流IoutBは出力されず、リニア電源装置1Aにおける出力端子ToAから出力される出力電流IoutAのみにより負荷電流Ioutが供給される。 Here, it is assumed that the output voltage VoA of the linear power supply device 1A is higher than the output voltage VoB of the linear power supply device 1B due to variations in the linear power supply device. As a result, even if the load current Iout starts flowing from 0A, the output current IoutB is not initially output from the output terminal ToB of the linear power supply 1B, and the load is caused only by the output current IoutA output from the output terminal ToA of the linear power supply 1A. A current Iout is supplied.
 このとき、ミラー電流Im2Aが流れ、ミラー電流Im2Aに基づく電圧情報VmonAが電圧ソース端子TsrAから出力されて電圧シンク端子TskBに入力される。リニア電源装置1Bにおいて、ミラー電流Im2Bは流れず、電圧情報VsBとVmonAとがコンパレータCPBにより比較されてNMOSトランジスタNMBが駆動され、リニア電源装置1Bの出力電圧VoBが上昇する。 At this time, mirror current Im2A flows, and voltage information VmonA based on mirror current Im2A is output from voltage source terminal TsrA and input to voltage sink terminal TskB. In linear power supply device 1B, mirror current Im2B does not flow, voltage information VsB and VmonA are compared by comparator CPB, NMOS transistor NMB is driven, and output voltage VoB of linear power supply device 1B is increased.
 負荷電流Ioutが増加し、出力電流IoutAひいてはミラー電流Im2Aが増加するにつれ、出力電圧VoBが上昇する。そして、出力電圧VoBがVoAに到達すると、リニア電源装置1Bにおける出力端子ToBから出力電流IoutBが出力され始める。すなわち、リニア電源装置1A,1Bの並列動作が開始される。 As the load current Iout increases and the output current IoutA and thus the mirror current Im2A increase, the output voltage VoB increases. Then, when the output voltage VoB reaches VoA, the output current IoutB starts to be output from the output terminal ToB in the linear power supply device 1B. That is, parallel operation of the linear power supplies 1A and 1B is started.
 出力電流IoutBが流れ始めると、ミラー電流Im2Bも流れ始め、電圧情報VsBとVmonAの比較によりNMOSトランジスタNMBが駆動され、電圧情報VsBとVmonAが一致するように制御される。一方、リニア電源装置1Aでは、電圧情報VsAとVmonBの比較によりNMOSトランジスタNMAが駆動され、電圧情報VsAとVmonBが一致するように制御される。これにより、出力電流IoutAとIoutBが一致するように制御される。 When the output current IoutB starts to flow, the mirror current Im2B also starts to flow, and the NMOS transistor NMB is driven by comparing the voltage information VsB and VmonA, and is controlled so that the voltage information VsB and VmonA match. On the other hand, in the linear power supply device 1A, the NMOS transistor NMA is driven by comparing the voltage information VsA and VmonB, and is controlled so that the voltage information VsA and VmonB match. Thereby, the output currents IoutA and IoutB are controlled to match.
 図7は、第2実施形態に係るリニア電源装置を3つ、負荷RLに対して並列接続して電源システム5を構成した場合を示す図である。ここでは、リニア電源装置1Aの電圧ソース端子TsrAをリニア電源装置1Bの電圧シンク端子TskBに接続し、リニア電源装置1Bの電圧ソース端子TsrBをリニア電源装置1Cの電圧シンク端子TskCに接続し、リニア電源装置1Cの電圧ソース端子TsrCをリニア電源装置1Aの電圧シンク端子TskAに接続している。 FIG. 7 is a diagram showing a case where three linear power supply devices according to the second embodiment are connected in parallel to a load RL to configure a power supply system 5. Here, the voltage source terminal TsrA of the linear power supply 1A is connected to the voltage sink terminal TskB of the linear power supply 1B, the voltage source terminal TsrB of the linear power supply 1B is connected to the voltage sink terminal TskC of the linear power supply 1C, and the linear A voltage source terminal TsrC of the power supply device 1C is connected to a voltage sink terminal TskA of the linear power supply device 1A.
 このような構成により、リニア電源装置1A,1B,1Cの出力電流IoutA,IoutB,IoutCを均等に制御することができる。なお、4つ以上のリニア電源装置1を負荷RLに対して並列接続しても、各出力電流を均等に制御することができる。 With such a configuration, the output currents IoutA, IoutB, and IoutC of the linear power supply devices 1A, 1B, and 1C can be equally controlled. Note that even if four or more linear power supply devices 1 are connected in parallel to the load RL, each output current can be controlled equally.
<4.その他>
 なお、本開示に係る種々の技術的特徴は、上記実施形態の他、その技術的創作の主旨を逸脱しない範囲で種々の変更を加えることが可能である。すなわち、上記実施形態は、全ての点で例示であって、制限的なものではないと考えられるべきであり、本発明の技術的範囲は、上記実施形態に限定されるものではなく、特許請求の範囲と均等の意味および範囲内に属する全ての変更が含まれると理解されるべきである。また、上記の各実施形態は、矛盾のない限り、適宜に組み合わせて実施してもよい。
<4. Others>
Note that the various technical features of the present disclosure can be modified in addition to the embodiments described above without departing from the spirit of the technical creation. That is, the above embodiments should be considered to be illustrative in all respects and not restrictive, and the technical scope of the present invention is not limited to the above embodiments, and the claims It is to be understood that the meaning and equivalents of the range and all changes falling within the range are included. Furthermore, the above embodiments may be combined as appropriate unless there is a contradiction.
<5.付記>
 以上の通り、例えば、本開示に係るリニア電源装置(1A)は、
 入力電圧(Vin)の印加端に接続可能に構成される第1主電極と、第2主電極と、を有する出力トランジスタ(M1A)と、
 前記第2主電極に接続される出力端子(ToA)と、
 前記出力端子に発生する出力電圧(VoA)に基づく帰還電圧(VfbA)と、基準電圧(VrefA)とが入力され、前記出力トランジスタの制御端を駆動可能に構成されるエラーアンプ(AP1A)と、
 前記出力トランジスタに流れる電流のミラー電流(Im2A)を生成可能に構成されるミラートランジスタ(M2A)と、
 前記ミラー電流を第1電圧情報(Vmon,Vs)に変換する電流/電圧変換部(RsA)と、
 前記第1電圧情報(Vmon)を外部に対して出力可能に構成される電圧情報出力端子(TvA)と、
 第2電圧情報(Vmon)を外部から入力可能に構成される電圧情報入力端子(TvA)と、
 前記第2電圧情報(Vmon)と前記第1電圧情報(Vs)とを比較するように構成される比較部(CPA)と、
 前記比較部の比較結果に基づき駆動され、前記第2電圧情報と前記第1電圧情報の差が小さくなるように制御する制御トランジスタ(NMA)と、
を備える構成としている(第1の構成)。
<5. Additional notes>
As mentioned above, for example, the linear power supply device (1A) according to the present disclosure,
an output transistor (M1A) having a first main electrode configured to be connectable to an application end of the input voltage (Vin) and a second main electrode;
an output terminal (ToA) connected to the second main electrode;
an error amplifier (AP1A) configured to receive a feedback voltage (VfbA) based on the output voltage (VoA) generated at the output terminal and a reference voltage (VrefA) and to be able to drive a control end of the output transistor;
a mirror transistor (M2A) configured to be able to generate a mirror current (Im2A) of the current flowing through the output transistor;
a current/voltage converter (RsA) that converts the mirror current into first voltage information (Vmon, Vs);
a voltage information output terminal (TvA) configured to be able to output the first voltage information (Vmon) to the outside;
a voltage information input terminal (TvA) configured to be able to input second voltage information (Vmon) from the outside;
a comparison unit (CPA) configured to compare the second voltage information (Vmon) and the first voltage information (Vs);
a control transistor (NMA) that is driven based on the comparison result of the comparison section and controls so that the difference between the second voltage information and the first voltage information becomes small;
(first configuration).
 また、上記第1の構成において、前記制御トランジスタ(NMA)の第1主電極は、前記出力トランジスタ(M1A)の第2主電極に接続される帰還抵抗部(R1A,R2A,R3A,R4A)に接続される構成としてもよい(第2の構成)。 Further, in the first configuration, the first main electrode of the control transistor (NMA) is connected to the feedback resistor section (R1A, R2A, R3A, R4A) connected to the second main electrode of the output transistor (M1A). A configuration in which they are connected may also be used (second configuration).
 また、上記第1または第2の構成において、前記電圧情報出力端子と前記電圧情報入力端子は同一の端子(TvA)であり、
 前記第1電圧情報を前記電圧情報出力端子から出力するか否かを切り替える第1スイッチ(NS1A)をさらに備え、
 前記第1電圧情報(Vmon)が外部へ出力される場合、前記第2電圧情報(Vmon)と前記第1電圧情報(Vs)の差が小さくなるような制御は機能せず、
 前記第1電圧情報が外部へ出力されない場合、外部から入力された前記第2電圧情報と前記第1電圧情報の差が小さくなるような制御が機能する構成としてもよい(第3の構成)。
Further, in the first or second configuration, the voltage information output terminal and the voltage information input terminal are the same terminal (TvA),
further comprising a first switch (NS1A) for switching whether or not to output the first voltage information from the voltage information output terminal;
When the first voltage information (Vmon) is output to the outside, control that reduces the difference between the second voltage information (Vmon) and the first voltage information (Vs) does not function,
When the first voltage information is not output to the outside, a configuration may be adopted in which control functions such that the difference between the second voltage information input from the outside and the first voltage information becomes small (third configuration).
 また、上記第3の構成において、前記出力トランジスタ(M1A)の第2主電極に接続される帰還抵抗部の一部の帰還抵抗(R4A)をバイパスするか否かを切り替える第2スイッチ(BPA)をさらに備え、前記第2スイッチは、前記第1スイッチと連動する構成としてもよい(第4の構成)。 Further, in the third configuration, a second switch (BPA) switches whether or not to bypass a part of the feedback resistor (R4A) of the feedback resistor section connected to the second main electrode of the output transistor (M1A). The second switch may be configured to operate in conjunction with the first switch (fourth configuration).
 また、上記第3または第4の構成において、前記比較部(CPA)に電流を供給するか否かを切り替える第3スイッチ(PMA)をさらに備え、前記第3スイッチは、前記第1スイッチと連動する構成としてもよい(第5の構成)。 Further, in the third or fourth configuration, the third switch (PMA) is further provided for switching whether or not to supply current to the comparing section (CPA), and the third switch is interlocked with the first switch. (fifth configuration).
 また、上記第3から第5のいずれかの構成において、前記制御トランジスタ(NMA)の制御端と接地端との間に接続される第4スイッチ(NS2A)をさらに備え、
 前記第4スイッチは、前記第1スイッチと連動する構成としてもよい(第6の構成)。
Further, in any one of the third to fifth configurations, further comprising a fourth switch (NS2A) connected between the control terminal and the ground terminal of the control transistor (NMA),
The fourth switch may be configured to work in conjunction with the first switch (sixth configuration).
 また、上記第1または第2の構成において、前記電圧情報出力端子(TsrA)と前記電圧情報入力端子(TskA)は別個の端子である構成としてもよい(第7の構成)。 Furthermore, in the first or second configuration, the voltage information output terminal (TsrA) and the voltage information input terminal (TskA) may be separate terminals (seventh configuration).
 また、本開示の一態様に係る電源システム(5)は、前記第1スイッチ(NS1A)がオン状態に設定される上記第3の構成のリニア電源装置であるマスターリニア電源装置(1A)と、
 前記第1スイッチがオフ状態に設定される上記第3の構成のリニア電源装置である1つ以上のスレーブリニア電源装置(1B)と、を備え、
 前記マスターリニア電源装置の前記出力端子(ToA)と前記スレーブリニア電源装置の前記出力端子(ToB)は、負荷に共通接続可能であり、
 前記マスターリニア電源装置の前記電圧情報出力端子(TvA)と前記スレーブリニア電源装置の前記電圧情報入力端子(TvB)が接続可能である構成としている(第8の構成)。
Further, a power supply system (5) according to an aspect of the present disclosure includes a master linear power supply device (1A) that is a linear power supply device having the third configuration, in which the first switch (NS1A) is set to an on state;
one or more slave linear power supply devices (1B), which are linear power supply devices of the third configuration, in which the first switch is set to an off state;
The output terminal (ToA) of the master linear power supply device and the output terminal (ToB) of the slave linear power supply device can be commonly connected to a load,
The voltage information output terminal (TvA) of the master linear power supply device and the voltage information input terminal (TvB) of the slave linear power supply device are connectable (eighth configuration).
 また、上記第8の構成において、前記スレーブリニア電源装置は、2つ以上である構成としてもよい(第9の構成)。 Furthermore, in the eighth configuration, the number of slave linear power supply devices may be two or more (ninth configuration).
 また、本開示の一態様に係る電源システム(5)は、複数の上記第7の構成に記載のリニア電源装置を備え、
 前記複数のリニア電源装置(1A,1B)におけるそれぞれの前記出力端子(ToA,ToB)は、負荷に共通接続可能であり、
 前記複数のリニア電源装置において(1A,1B)、異なる前記リニア電源装置の間で前記電圧情報出力端子(TsrA,TsrB)と前記電圧情報入力端子(TskB,TskA)とが順次接続される構成としている(第10の構成)。
Further, a power supply system (5) according to one aspect of the present disclosure includes a plurality of linear power supply devices according to the seventh configuration,
The respective output terminals (ToA, ToB) in the plurality of linear power supply devices (1A, 1B) can be commonly connected to a load,
In the plurality of linear power supply devices (1A, 1B), the voltage information output terminals (TsrA, TsrB) and the voltage information input terminals (TskB, TskA) are sequentially connected between different linear power supply devices. (10th configuration).
 本開示は、各種機器に搭載される電源システムに利用することが可能である。 The present disclosure can be used in power supply systems installed in various devices.
   1A,1B,1C リニア電源装置
   5   電源システム
   10A,10B リニア電源装置
   50   電源システム
   AP10A  エラーアンプ
   AP1A   エラーアンプ
   BPA   バイパススイッチ
   C1   コンデンサ
   C2   コンデンサ
   CPA   コンパレータ
   M10A   出力トランジスタ
   M10B   出力トランジスタ
   M1A   出力トランジスタ
   M2A   ミラートランジスタ
   N1,N2  NMOSトランジスタ
   NMA   NMOSトランジスタ
   NS1A,NS2A NMOSスイッチ
   Or   OR回路
   P1,P2  PMOSトランジスタ
   PMA   PMOSスイッチ
   R11A,12A 抵抗
   R1A,R2A,R3A,R4A 帰還抵抗
   RA   抵抗
   RL   負荷
   Ra,Rb  抵抗
   RsA   センス抵抗
   ToA   出力端子
   TsrA   電圧ソース端子
   TskA   電圧シンク端子
   TvA   電圧情報送受信端子
1A, 1B, 1C Linear power supply 5 Power supply system 10A, 10B Linear power supply 50 Power supply system AP10A Error amplifier AP1A Error amplifier BPA Bypass switch C1 Capacitor C2 Capacitor CPA Comparator M10A Output transistor M10B Output transistor M1A Output transistor M2A Mirror transistor N1, N2 NMOS transistor NMA NMOS transistor NS1A, NS2A NMOS switch Or OR circuit P1, P2 PMOS transistor PMA PMOS switch R11A, 12A Resistor R1A, R2A, R3A, R4A Feedback resistor RA Resistor RL Load Ra, Rb Resistor RsA Sense resistor ToA Output terminal TsrA voltage Source terminal TskA Voltage sink terminal TvA Voltage information transmission/reception terminal

Claims (10)

  1.  入力電圧の印加端に接続可能に構成される第1主電極と、第2主電極と、を有する出力トランジスタと、
     前記第2主電極に接続される出力端子と、
     前記出力端子に発生する出力電圧に基づく帰還電圧と、基準電圧とが入力され、前記出力トランジスタの制御端を駆動可能に構成されるエラーアンプと、
     前記出力トランジスタに流れる電流のミラー電流を生成可能に構成されるミラートランジスタと、
     前記ミラー電流を第1電圧情報に変換する電流/電圧変換部と、
     前記第1電圧情報を外部に対して出力可能に構成される電圧情報出力端子と、
     第2電圧情報を外部から入力可能に構成される電圧情報入力端子と、
     前記第2電圧情報と前記第1電圧情報とを比較するように構成される比較部と、
     前記比較部の比較結果に基づき駆動され、前記第2電圧情報と前記第1電圧情報の差が小さくなるように制御する制御トランジスタと、
    を備える、リニア電源装置。
    an output transistor having a first main electrode configured to be connectable to an input voltage application end and a second main electrode;
    an output terminal connected to the second main electrode;
    an error amplifier configured to receive a feedback voltage based on the output voltage generated at the output terminal and a reference voltage, and to be able to drive a control end of the output transistor;
    a mirror transistor configured to be able to generate a mirror current of the current flowing through the output transistor;
    a current/voltage converter that converts the mirror current into first voltage information;
    a voltage information output terminal configured to be able to output the first voltage information to the outside;
    a voltage information input terminal configured to allow input of second voltage information from the outside;
    a comparison unit configured to compare the second voltage information and the first voltage information;
    a control transistor that is driven based on the comparison result of the comparison section and is controlled so that the difference between the second voltage information and the first voltage information is small;
    A linear power supply equipped with.
  2.  前記制御トランジスタの第1主電極は、前記出力トランジスタの第2主電極に接続される帰還抵抗部に接続される、請求項1に記載のリニア電源装置。 The linear power supply device according to claim 1, wherein the first main electrode of the control transistor is connected to a feedback resistor connected to the second main electrode of the output transistor.
  3.  前記電圧情報出力端子と前記電圧情報入力端子は同一の端子であり、
     前記第1電圧情報を前記電圧情報出力端子から出力するか否かを切り替える第1スイッチをさらに備え、
     前記第1電圧情報が外部へ出力される場合、前記第2電圧情報と前記第1電圧情報の差が小さくなるような制御は機能せず、
     前記第1電圧情報が外部へ出力されない場合、外部から入力された前記第2電圧情報と前記第1電圧情報の差が小さくなるような制御が機能する、請求項1または請求項2に記載のリニア電源装置。
    The voltage information output terminal and the voltage information input terminal are the same terminal,
    further comprising a first switch that switches whether or not to output the first voltage information from the voltage information output terminal,
    When the first voltage information is output to the outside, control that reduces the difference between the second voltage information and the first voltage information does not function,
    3 . The control according to claim 1 , wherein when the first voltage information is not outputted to the outside, a control is performed such that a difference between the second voltage information inputted from the outside and the first voltage information is reduced. Linear power supply.
  4.  前記出力トランジスタの第2主電極に接続される帰還抵抗部の一部の帰還抵抗をバイパスするか否かを切り替える第2スイッチをさらに備え、
     前記第2スイッチは、前記第1スイッチと連動する、請求項3に記載のリニア電源装置。
    further comprising a second switch for switching whether or not to bypass a part of the feedback resistance of the feedback resistance section connected to the second main electrode of the output transistor,
    The linear power supply device according to claim 3, wherein the second switch operates in conjunction with the first switch.
  5.  前記比較部に電流を供給するか否かを切り替える第3スイッチをさらに備え、
     前記第3スイッチは、前記第1スイッチと連動する、請求項3または請求項4に記載のリニア電源装置。
    further comprising a third switch that switches whether or not to supply current to the comparison section,
    The linear power supply device according to claim 3 or 4, wherein the third switch is interlocked with the first switch.
  6.  前記制御トランジスタの制御端と接地端との間に接続される第4スイッチをさらに備え、
     前記第4スイッチは、前記第1スイッチと連動する、請求項3から請求項5のいずれか1項に記載のリニア電源装置。
    further comprising a fourth switch connected between the control end and the ground end of the control transistor,
    The linear power supply device according to any one of claims 3 to 5, wherein the fourth switch is interlocked with the first switch.
  7.  前記電圧情報出力端子と前記電圧情報入力端子は別個の端子である、請求項1または請求項2に記載のリニア電源装置。 The linear power supply device according to claim 1 or 2, wherein the voltage information output terminal and the voltage information input terminal are separate terminals.
  8.  前記第1スイッチがオン状態に設定される請求項3に記載のリニア電源装置であるマスターリニア電源装置と、
     前記第1スイッチがオフ状態に設定される請求項3に記載のリニア電源装置である1つ以上のスレーブリニア電源装置と、
     を備え、
     前記マスターリニア電源装置の前記出力端子と前記スレーブリニア電源装置の前記出力端子は、負荷に共通接続可能であり、
     前記マスターリニア電源装置の前記電圧情報出力端子と前記スレーブリニア電源装置の前記電圧情報入力端子が接続可能である、電源システム。
    A master linear power supply device that is a linear power supply device according to claim 3, wherein the first switch is set to an on state;
    one or more slave linear power supplies that are the linear power supplies according to claim 3, wherein the first switch is set to an off state;
    Equipped with
    The output terminal of the master linear power supply device and the output terminal of the slave linear power supply device can be commonly connected to a load,
    A power supply system, wherein the voltage information output terminal of the master linear power supply device and the voltage information input terminal of the slave linear power supply device are connectable.
  9.  前記スレーブリニア電源装置は、2つ以上である、請求項8に記載の電源システム。 The power supply system according to claim 8, wherein the number of slave linear power supply devices is two or more.
  10.  複数の請求項7に記載のリニア電源装置を備え、
     前記複数のリニア電源装置におけるそれぞれの前記出力端子は、負荷に共通接続可能であり、
     前記複数のリニア電源装置において、異なる前記リニア電源装置の間で前記電圧情報出力端子と前記電圧情報入力端子とが順次接続される、電源システム。
    comprising a plurality of linear power supply devices according to claim 7,
    The output terminals of each of the plurality of linear power supply devices can be commonly connected to a load,
    In the plurality of linear power supply devices, the voltage information output terminal and the voltage information input terminal are sequentially connected between different linear power supply devices.
PCT/JP2023/025292 2022-07-21 2023-07-07 Linear power supply device and power supply system WO2024018927A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022116681 2022-07-21
JP2022-116681 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024018927A1 true WO2024018927A1 (en) 2024-01-25

Family

ID=89617826

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025292 WO2024018927A1 (en) 2022-07-21 2023-07-07 Linear power supply device and power supply system

Country Status (1)

Country Link
WO (1) WO2024018927A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171811A (en) * 1988-10-31 1990-07-03 Nixdorf Comput Ag Power distribution type power source system
JPH1020947A (en) * 1996-06-28 1998-01-23 Sony Corp Redundant stabilized power source device
JP2021061655A (en) * 2019-10-03 2021-04-15 株式会社豊田自動織機 Power supply device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02171811A (en) * 1988-10-31 1990-07-03 Nixdorf Comput Ag Power distribution type power source system
JPH1020947A (en) * 1996-06-28 1998-01-23 Sony Corp Redundant stabilized power source device
JP2021061655A (en) * 2019-10-03 2021-04-15 株式会社豊田自動織機 Power supply device

Similar Documents

Publication Publication Date Title
KR102380611B1 (en) Current sensing and control for transistor power switches
US20030128489A1 (en) Overcurrent limitation circuit
US7436163B2 (en) DC-DC converter
US20190011944A1 (en) Regulator circuit
US20170040898A1 (en) Buck-boost converter and method for controlling buck-boost converter
JP6791722B2 (en) Power regulator
US9329649B2 (en) Dual input single output regulator for an inertial sensor
US20060125533A1 (en) Low voltage differential signal driver circuit and method for controlling the same
US10185338B1 (en) Digital low drop-out (LDO) voltage regulator with analog-assisted dynamic reference correction
CN108736535B (en) Charge-discharge control circuit and battery device
JP4720722B2 (en) Hysteresis comparator circuit and power supply switching circuit
US20060152953A1 (en) Variable start-up circuit for switching regulators
US20150194888A1 (en) Power source circuit
US6650100B1 (en) Bootstrap technique for a multiple mode switching regulator
KR100744593B1 (en) Power-supply apparatus
KR102634469B1 (en) Buck-boost converter
JP2007201595A (en) Drive device
JP7032154B2 (en) Switching circuits, semiconductor devices, DC / DC converters
US20090002064A1 (en) Charge pump circuit
WO2024018927A1 (en) Linear power supply device and power supply system
CN116126080B (en) Source follower circuit and low dropout linear voltage regulator
JP3951674B2 (en) Triangular wave oscillation circuit
US20220308614A1 (en) Shunt regulator
US8957646B2 (en) Constant voltage circuit and electronic device including same
CN111831046B (en) Output stage circuit and voltage stabilizer thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842852

Country of ref document: EP

Kind code of ref document: A1