WO2024018614A1 - Vehicle-mounted control device - Google Patents
Vehicle-mounted control device Download PDFInfo
- Publication number
- WO2024018614A1 WO2024018614A1 PCT/JP2022/028453 JP2022028453W WO2024018614A1 WO 2024018614 A1 WO2024018614 A1 WO 2024018614A1 JP 2022028453 W JP2022028453 W JP 2022028453W WO 2024018614 A1 WO2024018614 A1 WO 2024018614A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- power
- voltage
- unit
- power path
- section
- Prior art date
Links
- 238000007599 discharging Methods 0.000 claims abstract description 76
- 230000002457 bidirectional effect Effects 0.000 claims description 7
- 238000006243 chemical reaction Methods 0.000 description 26
- 238000000034 method Methods 0.000 description 25
- 238000001514 detection method Methods 0.000 description 16
- 238000010586 diagram Methods 0.000 description 5
- 239000003990 capacitor Substances 0.000 description 4
- 230000005611 electricity Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000005669 field effect Effects 0.000 description 2
- 230000003071 parasitic effect Effects 0.000 description 2
- HEZMWWAKWCSUCB-PHDIDXHHSA-N (3R,4R)-3,4-dihydroxycyclohexa-1,5-diene-1-carboxylic acid Chemical compound O[C@@H]1C=CC(C(O)=O)=C[C@H]1O HEZMWWAKWCSUCB-PHDIDXHHSA-N 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/34—Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J9/00—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
- H02J9/04—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
- H02J9/06—Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
Definitions
- the present disclosure relates to a vehicle-mounted control device.
- Patent Document 1 discloses a power supply device having a backup function. This power supply device supplies power to the load circuit using power provided from the AC-DC conversion power supply when the power supply unit (AC power supply) is in operation, and when the power supply unit (AC power supply) is stopped. In this case, the power stored in the power storage unit (battery) is used to supply power to the load circuit.
- the present disclosure provides a technology that makes it easy to quickly supply power to a load in the event of a power failure, and that makes it easy to suppress a decrease in the degree of charging of a power storage unit.
- An in-vehicle control device that is one aspect of the present disclosure includes: a power supply section, a power storage section different from the power supply section, a power path that is a path for supplying power from the power supply section to a load, and supplying current to the power storage section based on the power supplied from the power supply section.
- an in-vehicle system comprising a charging unit that performs a charging operation, and a discharging unit that performs a discharging operation that causes current to flow to the load side based on the power supplied from the power storage unit, and the charging unit performs the charging operation and
- An on-vehicle control device that controls the discharge operation by the discharge section, comprising a control unit that controls the charging unit and the discharging unit,
- the control section includes a first control that causes the discharging section to perform the discharging operation while causing the charging section to perform the charging operation, and a first control that causes the discharging section to perform the discharging operation without causing the charging section to perform the charging operation. and a second control to perform the first control when the voltage of the power path satisfies a voltage condition that is equal to or less than a failure determination voltage and does not satisfy a failure determination condition different from the voltage condition. Execute control.
- the technology according to the present disclosure makes it easy to quickly supply power to a load in the event of a power failure, and to suppress a decrease in the degree of charging of the power storage unit.
- FIG. 1 is a configuration diagram schematically showing an in-vehicle system including an in-vehicle control device according to a first embodiment.
- FIG. 2 is a flowchart illustrating the flow of backup support control performed by the in-vehicle control device according to the first embodiment.
- FIG. 3 is an explanatory diagram conceptually explaining how power is supplied from the power supply unit to the load in a state where the charging operation and the discharging operation are stopped.
- FIG. 4 is an explanatory diagram conceptually explaining how power is supplied from the power supply unit to the load in the charging operation state.
- FIG. 5 is an explanatory diagram conceptually explaining how a charging operation and a discharging operation are performed in a state where power supply from the power supply section via the first switch section is stopped.
- FIG. 6 is an explanatory diagram conceptually explaining how a discharging operation is performed in a state where the power supply from the power supply unit via the first switch unit and the charging operation are stopped.
- a power supply unit a power storage unit different from the power supply unit, a power path that is a path for supplying power from the power supply unit to a load, and a current flow to the power storage unit based on the power supplied from the power supply unit. and a discharging unit that performs a discharging operation that causes current to flow to the load side based on the electric power supplied from the power storage unit.
- An on-vehicle control device that controls a charging operation and the discharging operation by the discharging section, comprising a control unit that controls the charging unit and the discharging unit,
- the control section includes a first control that causes the discharging section to perform the discharging operation while causing the charging section to perform the charging operation, and a first control that causes the discharging section to perform the discharging operation without causing the charging section to perform the charging operation. and a second control to perform the first control when the voltage of the power path satisfies a voltage condition that is equal to or less than a failure determination voltage and does not satisfy a failure determination condition different from the voltage condition.
- An in-vehicle control device that performs control.
- the in-vehicle control device described in [1] discharges the power storage unit and supplies power to the load early even if the failure determination condition is not satisfied when the voltage of the power path is equal to or lower than the failure determination voltage. be able to. Therefore, this in-vehicle control device can suppress the risk of interruption of power supply to the load in the event of a power failure.
- the charging unit can continue charging unless the failure determination conditions are met, so even if the power storage unit is not discharged due to noise etc. Even if the amount increases, it is possible to suppress a decrease in the degree of charging of the power storage unit.
- the failure determination condition includes that the voltage of the power path is equal to or lower than the failure determination voltage for a certain period of time
- the vehicle-mounted control device according to [1], wherein the control unit executes the second control when the time during which the voltage of the power path is equal to or lower than the failure determination voltage continues for the certain period of time.
- the in-vehicle control device described in [2] can continue the charging operation by the charging unit if the failure determination condition is not satisfied when the voltage of the power line is below the failure determination voltage. Even if the discharge of the power storage unit increases due to this, a decrease in the degree of charge of the power storage unit can be suppressed.
- the in-vehicle control device executes the second control when the voltage of the power line continues to be below the failure determination voltage for a certain period of time, that is, when the possibility of power failure increases further. However, by stopping the charging operation, it is possible to suppress the influence caused by the state of the power path from reaching the power storage unit side due to the charging operation.
- the in-vehicle system includes a switch section provided in the power path,
- the charging unit supplies current to the power storage unit based on power supplied from a first power path closer to the power supply unit than the switch unit in the power path,
- the discharging unit performs the discharging operation so as to cause a current to flow in a second power path on the load side of the power path rather than the switch unit,
- bidirectional energization is allowed between the first power path and the second power path
- the switch section is in an off state, at least the second power path to the first power path is allowed to flow between the first power path and the second power path.
- the control section keeps the switch section in the OFF state until a certain period of time during which the power path is below the failure determination voltage has elapsed, and after the voltage condition is met, The switch section is brought into the on state on the condition that the voltage of the power path exceeds the failure determination voltage before the predetermined period of time during which the power path is lower than or equal to the failure determination voltage elapses;
- the in-vehicle device according to [2], wherein after the condition is met, if the predetermined period of time has elapsed during which the power path is below the failure determination voltage, the charging operation is stopped while the switch section is turned off. control device.
- the in-vehicle control device described in [3] keeps the switch part in the OFF state until the time when the voltage of the power line is below the failure judgment voltage has elapsed for a certain period of time when the voltage of the power line becomes below the failure judgment voltage.
- Current can be prevented from flowing from the second power path to the first power path. Therefore, if the voltage of the power path is lower than the failure determination voltage due to a power failure, the discharge current is supplied to the load from the power storage unit and the discharge current is not diverted to the first power path. It can be shut off reliably.
- the in-vehicle control device operates the switch on the condition that after the voltage condition is met, the power path exceeds the failure determination voltage again before a certain period of time has elapsed.
- the power supply unit can return to supplying power to the load. Therefore, even if the voltage of the power path temporarily drops below the failure determination voltage due to noise or the like, normal operation can be quickly restored if the voltage returns quickly. Even if the discharging operation based on such a temporary voltage drop is repeated, since the charging operation is likely to be performed each time, a decrease in the degree of charging of the power storage unit can be suppressed. Furthermore, this in-vehicle control device turns off the switch section and stops the charging operation when the power path is below the failure determination voltage for a certain period of time after the voltage condition is satisfied. If the possibility of a power failure increases further, the discharge current based on the power storage unit can be supplied to the load while suppressing the influence caused by the state of the first power path from reaching the second power path. .
- the failure determination condition includes that a current flows from the charging unit side to the power path side,
- the in-vehicle control device according to [1], wherein the control unit executes the second control when a current flows from the charging unit side to the power path side.
- the in-vehicle control device described in [4] can continue the charging operation by the charging unit if the failure determination condition is not satisfied when the voltage of the power path is below the failure determination voltage. Even if the discharge of the power storage unit increases due to this, a decrease in the degree of charge of the power storage unit can be suppressed.
- the above-mentioned in-vehicle control device executes the second control when current flows from the charging unit side to the power path side and stops the charging operation, so that the influence caused by the state of the power path is suppressed from the charging operation. This can prevent the energy from reaching the power storage unit.
- the in-vehicle system includes a switch section provided in the power path,
- the charging unit supplies current to the power storage unit based on power supplied from a first power path closer to the power supply unit than the switch unit in the power path,
- the discharging unit performs the discharging operation so as to cause a current to flow through a second power path on the load side of the power path rather than the switch unit,
- the switch section is in an on state, current is allowed to flow between the first power path and the second power path in both directions, and when the switch section is in an off state, at least the second power path to the first power path is allowed to flow between the first power path and the second power path.
- the control unit executes the first control on the condition that the voltage condition is satisfied and no current flows from the charging unit side to the power path side, and the control unit executes the first control on the condition that the voltage condition is satisfied and no current flows from the charging unit side to the power path side.
- the in-vehicle control device according to [4], wherein the second control is executed while turning off the switch section when a current flows through the switch section.
- the in-vehicle control device described in [5] executes the first control on the condition that no current flows from the charging unit side to the power path side when the voltage of the power path becomes equal to or lower than the failure determination voltage. Therefore, when the voltage of the power path becomes equal to or lower than the failure determination voltage, the charging operation can be performed after confirming that the possibility of a ground fault is low. On the other hand, if the voltage of the power path falls below the failure judgment voltage and current flows from the live part side to the power path side, that is, if there is a high possibility of a ground fault, the switch part is turned off. By executing the second control, it is possible to supply the discharge current based on the power storage unit to the load while preventing current from flowing from the second power path to the first power path.
- the failure determination condition includes that the voltage of the power path has become equal to or lower than a reference voltage that is smaller than the failure determination voltage,
- the in-vehicle control device according to [1], wherein the control unit executes the second control when the voltage becomes equal to or lower than the reference voltage.
- the in-vehicle control device described in [6] can cause the charging unit to continue the charging operation if the failure determination condition is not satisfied when the voltage of the power path is below the failure determination voltage. Even if the discharge of the power storage unit increases due to this, a decrease in the degree of charge of the power storage unit can be suppressed.
- the above-mentioned in-vehicle control device can stop the charging operation and perform the discharging operation when the voltage of the power path falls below the reference voltage, which is smaller than the failure judgment voltage, so it is possible to prevent the possibility of power failure. If the performance is higher, it is possible to suppress the influence caused by the state of the power path from reaching the power storage unit side due to the charging operation.
- FIG. 1 An in-vehicle system 100 is shown.
- the in-vehicle system 100 in FIG. 1 mainly includes an in-vehicle power supply system 3 and a load 11.
- the on-vehicle power supply system 3 is also referred to as a power supply system 3 in the following description.
- the in-vehicle system 100 is a system in which the power supply system 3 supplies power to the load 11 to operate the load 11.
- a load 11 is illustrated as an example of an in-vehicle load, but the in-vehicle system 100 may be provided with other loads.
- the load 11 is an electrical component mounted on the vehicle.
- the load 11 operates by receiving power supplied via the power path 80.
- the type of load 11 is not limited.
- various known in-vehicle components may be adopted.
- Load 11 may include multiple electrical components or may be a single electrical component.
- the load 11 is a load that is required to operate even when the power supply from the power supply unit 10 to itself is cut off.
- the load 11 is a load that performs operations necessary for stopping the vehicle (shift-by-wire control). system, electronically controlled brake system, etc.).
- the power supply system 3 is a system that supplies power to the load 11. Power supply system 3 supplies power to load 11 using power supply unit 10 or power storage unit 13 as a power supply source. The power supply system 3 can supply power from the power supply unit 10 to the load 11. For example, when the power supply from the power supply unit 10 is interrupted due to a failure or the like, power is supplied from the power storage unit 13 to the load 11. be able to.
- the power supply system 3 includes a power supply section 10, a power storage section 13, a charging section 20, a discharging section 30, an on-vehicle control device 60, a power path 80, a first switch section 12, a first voltage detection section 51, a second It includes a voltage detection section 52, a third voltage detection section 53, conductive paths 83 and 84, and the like.
- the power supply unit 10 is an on-vehicle power supply that supplies power to the load 11, and functions as a main power supply that supplies power to the load 11.
- the power supply unit 10 is configured as, for example, a known vehicle battery such as a lead battery.
- the power supply section 10 may be configured with a battery other than a lead battery, and may have a power source means other than the battery instead of or in addition to the battery.
- the positive electrode of the power supply section 10 is electrically connected to the first power path 81, which is a part of the power path 80, for example, in a configuration in which it is short-circuited to the first power path 81.
- the negative electrode of the power supply unit 10 is electrically connected to the ground, for example, in a short-circuited configuration.
- the power supply unit 10 applies a constant DC voltage to the first power path 81 .
- the voltage that the power supply section 10 applies to the first power path 81 may vary somewhat from the above-mentioned constant value.
- the power storage unit 13 is a power source different from the power source unit 10.
- the power storage unit 13 is a power supply that serves as a power supply source at least when the power supply from the power supply unit 10 is interrupted, and is a backup power supply that supplies power to the load 11 when the power supply from the power supply unit 10 is insufficient.
- functions as The power storage unit 13 is configured by, for example, a known power storage means such as an electric double layer capacitor (EDLC).
- EDLC electric double layer capacitor
- the power storage unit 13 may be configured with a capacitor other than the electric double layer capacitor, and may include other power storage means (such as a battery) instead of or in addition to the capacitor.
- the positive electrode of power storage unit 13 is electrically connected to conductive path 83 in a short-circuited configuration.
- the negative electrode of power storage unit 13 is electrically connected to the ground in a short-circuited configuration.
- the output voltage of the power storage unit 13 (the voltage applied to the conductive path 83 by the power storage unit 13) may be higher than the output voltage of the power supply unit 10 (the voltage applied to the first power path 81 by the power supply unit 10). , may be small.
- voltage is a voltage relative to a ground potential (for example, 0 V), and is a potential difference from the ground potential.
- a ground potential for example, 0 V
- the voltage applied to the first power path 81 is the potential difference between the potential of the first power path 81 and the ground potential.
- the voltage applied to the conductive path 83 is the potential difference between the potential of the conductive path 83 and the ground potential.
- the power path 80 is a path through which power is transmitted from the power supply section 10, and is a path through which power is supplied from the power supply section 10 to the load 11.
- the power path 80 includes a first power path 81 provided closer to the power supply section 10 than the first switch section 12, and a second power path 82 provided closer to the load 11 than the first switch section 12. and has.
- the first power path 81 is a power path closer to the power supply section 10 than the first switch section 12 (switch section) in the power path 80 .
- the same or substantially the same voltage as the output voltage of the power supply unit 10 is applied to the first power path 81 .
- the first power path 81 is short-circuited to the positive electrode of the power supply unit 10 and is electrically connected to the positive electrode.
- the other end of the first power path 81 is electrically connected to one end of the first switch section 12 .
- the first power path 81 may be provided with a relay or a fuse.
- the second power path 82 is a power path closer to the load 11 than the first switch section 12 (switch section) in the power path 80 .
- One end of the second power path 82 is electrically connected to the other end of the first switch section 12 . In the example of FIG. 1, the second power path 82 is short-circuited to one end of the load 11.
- the first switch section 12 is composed of, for example, one or more FETs (Field Effect Transistors).
- the first switch section 12 corresponds to an example of a "switch section".
- the first switch section 12 is provided in the power path 80.
- the first switch section 12 may be configured by FETs arranged in opposite directions, or may be configured by another semiconductor switch that bidirectionally interrupts current flow.
- the first switch unit 12 allows bidirectional conduction between the first power path 81 and the second power path 82 when the first switch unit 12 is in the on state, and allows energization between the first power path 81 and the second power path 82 when the first switch unit 12 is in the off state.
- Energization between the second power path 82 is interrupted in both directions.
- the first switch section 12 may be configured by a single FET having a parasitic diode whose anode is connected to the first power path 81 and whose cathode is connected to the second power path 82 .
- the first switch section 12 allows bidirectional conduction of electricity between the first power path 81 and the second power path 82 when the first switch section 12 is in the on state, and allows electricity to flow in both directions between the first power path 81 and the second power path 82 when the first switch section 12 is in the off state. Current is blocked from flowing from the power path 82 to the first power path 81, and current is allowed to flow from the first power path 81 to the second power path 82. In any case, when the first switch section 12 is in the OFF state, the flow of current from the second power path 82 to the first power path 81 is blocked.
- charging unit 20 is provided between the first power path 81 and the power storage unit 13. Charging unit 20 performs a charging operation of supplying current to power storage unit 13 based on the power supplied from power supply unit 10 via first power path 81 .
- charging section 20 includes a second switch section 21 and a resistor section 22.
- the second switch unit 21 may be configured by two FETs (Field Effect Transistors) arranged in opposite directions, or may be configured by other semiconductor switches that can bidirectionally interrupt current flow.
- the resistance section 22 is configured, for example, as a known resistor. In the example of FIG. 1, the second switch section 21 and the resistance section 22 are connected in series with each other. The second switch section 21 is arranged closer to the power supply section 10 than the resistance section 22 is.
- the charging voltage of the power storage unit 13 is lower than the voltage of the first power path 81 and a charging operation is performed to turn on the second switch unit 21, a charging current is transferred from the first power path 81 to the power storage unit 13. flows.
- the second switch section 21 is in the off state, charging is stopped, current does not flow from the first power path 81 to the conductive path 83, and no current flows from the conductive path 83 to the first power path 81.
- the output voltage applied to the first power path 81 when the power supply section 10 is fully charged is higher than the output voltage applied to the conductive path 83 when the power storage section 13 is fully charged.
- the discharge unit 30 is provided between the power storage unit 13 and the second power path 82.
- the discharging unit 30 performs a discharging operation based on the power supplied from the power storage unit 13 so as to cause a current to flow to the load 11 side via the second power path 82.
- the discharge section 30 includes a conductive path 31, a voltage conversion circuit 32, and a cutoff section 14.
- the conductive path 31 is a conductive path that serves as a path for supplying discharge current to the load 11 side.
- One end of the conductive path 31 may be electrically connected to a second power path 82 via a conductive path 84, which will be described later.
- One end of voltage conversion circuit 32 is electrically connected to power storage unit 13 via conductive path 83 and short-circuited to conductive path 83 and the positive electrode of power storage unit 13 .
- the other end of the voltage conversion circuit 32 is electrically connected to the other end of the conductive path 31 in a short-circuited manner.
- Voltage conversion circuit 32 performs a voltage conversion operation to step up or step down the input voltage based on power storage unit 13 and apply an output voltage to conductive path 31 .
- the voltage conversion circuit 32 is, for example, a DC/DC converter (for example, a step-up DC/DC converter), and boosts the input voltage based on the power storage unit 13 (specifically, the voltage of the conductive path 83) and applies an output voltage to the conductive path 31. do.
- the discharge unit 30 performs a discharge operation when the voltage conversion circuit 32 performs a voltage conversion operation, and stops the discharge operation when the voltage conversion circuit 32 stops the voltage conversion operation.
- the conductive path 84 is provided between the second power path 82 and the discharge section 30.
- the blocking section 14 is provided between the conductive path 84 and the conductive path 31.
- the cutoff section 14 may be configured by, for example, FETs arranged in opposite directions, or may be configured by other semiconductor switches that bidirectionally cut off current flow. In this case, when the cut-off unit 14 is in the ON state, the cut-off unit 14 prevents both the energization between the second power path 82 and the conductive path 31 (specifically, the energization between the second power path 82 and the voltage conversion circuit 32). When it is in the OFF state, the conduction between the second power path 82 and the conductive path 31 is interrupted in both directions.
- the cutoff unit 14 is configured to cut off electricity in both directions when the cutoff unit 14 is in the OFF state.
- the cutoff unit 14 switches between a cutoff state (off state) in which the current is blocked from flowing from the conductive path 31 to the second power path 82 via itself, and an allowable state (on state) in which it is permitted.
- the first voltage detection section 51, the second voltage detection section 52, and the third voltage detection section 53 are each configured as a known voltage detection circuit.
- the first voltage detection section 51 detects the voltage of the power path 80 (more specifically, the first power path 81), and provides the control section 61 with a voltage signal that can specify the voltage of the power path 80.
- Second voltage detection section 52 provides control section 61 with a voltage signal that can specify the voltage of conductive path 83, that is, the output voltage of power storage section 13.
- the third voltage detection section 53 provides the control section 61 with a voltage signal that can specify the voltage of the conductive path 31.
- the in-vehicle control device 60 is a device that controls the charging operation by the charging section 20 and the discharging operation by the discharging section 30.
- the on-vehicle control device 60 includes a control section 61 .
- the control unit 61 is a device that controls the charging unit 20 and the discharging unit 30. In the representative example described below, the control section 61 also controls the first switch section 12 and the cutoff section 14.
- the control unit 61 is configured as, for example, an MCU (Micro Controller Unit). Signals given from the first voltage detection section 51 , the second voltage detection section 52 , and the third voltage detection section 53 are input to the control section 61 . Based on these signals, the control unit 61 controls the voltage of the power path 80 (more specifically, the first power path 81), the output voltage of the power storage unit 13, and the voltage of the conductive path 31 (that is, the output voltage of the discharge unit 30). ).
- control unit 61 When controlling the charging unit 20, the control unit 61 provides the second switch unit 21 of the charging unit 20 with a PWM signal that periodically outputs an on signal that turns on the second switch unit 21, and Controls the signal duty. Control unit 61 then adjusts the charging current applied to power storage unit 13 by adjusting the PWM signal applied to second switch unit 21 . Note that the method of controlling the charging current by the control unit 61 is not limited to this example, and other known methods may be used.
- control unit 61 can cause the voltage conversion circuit 32 to perform a voltage conversion operation so that the voltage applied to the conductive path 31 becomes the target voltage.
- the control unit 61 starts backup support control as shown in FIG. 2 when a predetermined start condition is satisfied.
- the start condition may be, for example, that the starting switch of the vehicle in which the in-vehicle system 100 is installed is switched from an off state to an on state.
- the starting switch may be, for example, an ignition switch or a power switch provided in the electric vehicle.
- the above-mentioned start condition may be other than the above-mentioned condition, for example, it may be that a predetermined signal is received from an external ECU (Electronic Control Unit), or it may be another condition.
- the control unit 61 determines in step S1 whether the voltage of the power path 80 (specifically, the voltage of the first power path 81) is equal to or lower than the low voltage threshold Vth1.
- the low voltage threshold Vth1 corresponds to a first threshold.
- the low voltage threshold Vth1 is a value greater than 0V.
- the low voltage threshold Vth1 is a value smaller than the output voltage of the power supply section 10 when fully charged, and a value larger than the failure determination voltage Vth2 described later.
- step S1 When the control unit 61 determines in step S1 that the voltage of the first power path 81 is not equal to or lower than the low voltage threshold Vth1, the control unit 61 advances the process to step S2. If the first switch unit 12 is in the on state immediately before the start of step S2, the control unit 61 maintains the on state of the first switch unit 12 in step S2, and turns the first switch unit 12 on immediately before the start of step S2. If it is in the off state, the first switch section 12 is turned on in step S2. If the first switch unit 12 is in the on state when the voltage of the first power path 81 is not lower than the low voltage threshold Vth1, power can be supplied from the power supply unit 10 to the load 11.
- step S2 the control unit 61 advances the process to step S3.
- the control unit 61 maintains the discharge stopped state in step S3 if the discharge by the discharge unit 30 has stopped immediately before the start of step S3, and maintains the state in which the discharge by the discharge unit 30 is being performed just before the start of step S3. If so, the state is switched to a discharge stop state in step S3.
- the discharge stop state is a state in which no current is supplied from the discharge section 30 to the second power path 82.
- the discharge stop state may be a state in which the voltage conversion circuit 32 performs a voltage conversion operation to apply an output voltage to the conductive path 31 and the cutoff section 14 is turned off (blocked state).
- the discharge stop state may be a state in which the voltage conversion circuit 32 is stopped so as not to perform a voltage conversion operation, and the conductive path 83 and the conductive path 31 are electrically disconnected.
- step S3 the control unit 61 advances the process to step S4 and determines whether a predetermined charging condition is satisfied.
- the charging condition is, for example, that "the output voltage of power storage unit 13 (voltage of conductive path 83) is equal to or lower than threshold voltage Vth4."
- Threshold voltage Vth4 corresponds to a fourth threshold.
- Threshold voltage Vth4 is a value larger than 0V.
- the threshold voltage Vth4 is a value lower than the low voltage threshold Vth1.
- the threshold voltage Vth4 may be a higher value than the low voltage threshold Vth1, or may be the same as the low voltage threshold Vth1.
- the charging condition is not limited to the above-mentioned example, and may be, for example, "the voltage of the first power path 81 is higher than the voltage of the conductive path 83.”
- the charging condition is that "the voltage of the conductive path 83 is equal to or lower than the threshold voltage Vth4", and the threshold voltage Vth4 is a value lower than the low voltage threshold Vth1.
- step S4 determines in step S4 that the charging condition is satisfied
- the process proceeds to step S5, and if it is determined that the charging condition is not satisfied, the control unit 61 proceeds to step S6.
- the control unit 61 is in the charging operation state immediately before the start of step S5, it maintains the charging operation state in step S5, and if it is in the charging stop state immediately before the start of step S5, it changes it to the charging operation state in step S5.
- the control unit 61 is in the charging stopped state immediately before the start of step S6, it maintains the charging stopped state in step S6, and if it is in the charging operation state just before the start of step S6, it changes it to the charging stopped state in step S6.
- the charging operation state is a state in which the second switch section 21 is maintained in the on state.
- the charging stop state is a state in which the second switch section 21 is maintained in an off state.
- step S1 determines in step S1 that the voltage of the first power path 81 is equal to or lower than the low voltage threshold Vth1
- the control unit 61 advances the process to step S7. If the first switch unit 12 is in the off state immediately before the start of step S7, the control unit 61 maintains the off state of the first switch unit 12 in step S7, and switches the first switch unit 12 to the off state immediately before the start of step S7. If it is in the on state, the first switch section 12 is turned off in step S7.
- step S7 the control unit 61 advances the process to step S8. If the control unit 61 is in the discharging operation state immediately before the start of step S8, the control unit 61 maintains the discharging operation state in step S8, and if the discharge by the discharge unit 30 has stopped immediately before the start of step S8, the control unit 61 maintains the discharging operation state in step S8. Switch to operating state.
- the discharging operation state is a state in which the discharging unit 30 is performing a discharging operation, and is a state in which the discharging unit 30 supplies a discharging current to the second power path 82 based on the power from the power storage unit 13.
- the discharging operation state is a state in which the cutoff section 14 is on and the voltage conversion circuit 32 is converting the voltage so as to apply a target voltage to the conductive path 31.
- the target voltage may be a low voltage threshold Vth1, a value greater than the low voltage threshold Vth1, or a value smaller than the low voltage threshold Vth1.
- the target voltage is, for example, a value larger than the failure determination voltage Vth2. If the first switch unit 12 is in the discharge operation state while being maintained in the off state, current is supplied from the voltage conversion circuit 32 to the second power path 82 based on the power supplied from the power storage unit 13. .
- step S8 the control unit 61 advances the process to step S9 and determines whether the above charging condition is satisfied. If the control unit 61 determines in step S9 that the charging condition is satisfied, the process proceeds to step S10, and if it is determined that the charging condition is not satisfied, the control unit 61 advances the process to step S11. If the control unit 61 is in the charging operation state immediately before the start of step S10, it maintains the charging operation state in step S10, and if it is in the charging stop state immediately before the start of step S10, it changes it to the charging operation state in step S10.
- control unit 61 If the control unit 61 is in the charging stopped state immediately before the start of step S11, it maintains the charging stopped state in step S11, and if it is in the charging operation state just before the start of step S11, it puts it in the charging stopped state in step S11.
- the control unit 61 causes the discharge unit 30 to perform a discharging operation when the voltage of the power path 80 (more specifically, the first power path 81) is equal to or lower than the low voltage threshold Vth1, and When the output voltage of section 13 (voltage of conductive path 83) is equal to or lower than threshold voltage Vth4, charging section 20 is caused to perform a charging operation.
- Control in which the control unit 61 causes the charging unit 20 to perform a charging operation and the discharging unit 30 to perform a discharging operation corresponds to an example of the first control.
- the control unit 61 controls the charging unit 20 during a period in which the discharging operation by the discharging unit 30 and the charging operation by the charging unit 20 are performed in parallel. Control is performed so that the power supplied to power storage unit 13 is greater than or equal to the power supplied by discharge unit 30 through discharge.
- the specific control method is not limited.
- the control unit 61 calculates the power per unit time that the discharge unit 30 supplies by discharging, and controls the power so that the power per unit time that the charging unit 20 supplies to the power storage unit 13 is equal to or greater than the calculated value.
- the charging unit 20 may be caused to perform a charging operation.
- the power per unit time that the discharge unit 30 supplies by discharging may be calculated based on, for example, the voltage of the conductive path 31 and the current flowing through the conductive path 31.
- Power per unit time that charging unit 20 supplies to power storage unit 13 is calculated based on, for example, the voltage of the path between charging unit 20 and conductive path 83 and the current flowing through that path. You can.
- step S10 or step S11 the control unit 61 advances the process to step S12, and in step S12, the voltage of the power path 80 (specifically, the voltage of the first power path 81) is equal to or lower than the failure determination voltage Vth2.
- the failure determination voltage Vth2 corresponds to a second threshold value. Failure determination voltage Vth2 has a value larger than 0V. Failure determination voltage Vth2 is a value smaller than low voltage threshold Vth1. Failure determination voltage Vth2 is a value smaller than threshold voltage Vth4.
- step S12 determines in step S12 that the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2, the process proceeds to step S13, and the voltage of the first power path 81 is equal to or lower than the failure determination voltage. If it is determined that it is not less than Vth2, the process returns to step S1.
- step S13 the control unit 61 determines whether a predetermined failure determination condition is satisfied in step S13.
- the failure determination condition is, for example, that "the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2 for a certain period of time".
- step S13 if the control unit 61 determines that the failure determination condition is satisfied, the process proceeds to step S14, and if it is determined that the failure determination condition is not satisfied, the control unit 61 returns the process to step S1.
- the control unit 61 is configured to detect a failure that satisfies a voltage condition in which the voltage of the power path 80 (specifically, the voltage of the first power path 81) is equal to or lower than the failure determination voltage Vth2 and is different from the voltage condition.
- the determination condition is not satisfied (No in step S13)
- the first control is executed when the charging condition is satisfied. Specifically, the first control is performed when the determination is Yes in step S12 immediately after step S10 and the determination is No in step S13, and when the first control is performed, the power is reduced as in FIG. Supplied.
- control unit 61 If the control unit 61 is in the charging stopped state immediately before the start of step S14, it maintains the charging stopped state in step S14, and if it is in the charging operation state just before the start of step S14, it changes it to the charging stopped state in step S14.
- “Control that causes the discharging unit 30 to perform a discharging operation without causing the charging unit 20 to perform a charging operation” corresponds to an example of the second control.
- the control unit 61 controls the time period during which the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2 after the voltage of the first power route 81 satisfies the voltage condition that the voltage of the first power route 81 is equal to or lower than the failure determination voltage Vth2.
- step S14 the second control is executed in step S14, causing the charging section 20 to stop the charging operation, causing the discharging section 30 to perform the discharging operation, and maintaining the first switch section 12 in the off state.
- the second control is performed in step S14 in this way, in a state where the power supply from the power supply unit 10 to the load 11 is stopped and in a state where the power supply from the power supply unit 10 to the power storage unit 13 is stopped, as shown in FIG. Electric power is supplied from power storage unit 13 to load 11 .
- step S14 the control unit 61 performs control to stop the charging operation while performing the discharging operation, but in addition to or instead of stopping the charging operation, the control unit 61 performs control to stop the charging operation, but in addition to or instead of stopping the charging operation,
- a notification signal may be output to notify an ECU (such as an ECU different from the on-vehicle control device 60) that the power supply section 10 has failed.
- the external device may notify a person in the vehicle of an abnormality (for example, notification that a power failure has occurred) by audio or display. .
- the control unit 61 causes the voltage of the first power path 81 to become the failure determination voltage Vth2 after satisfying the "voltage condition that the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2".
- the first switch section 12 is maintained in the OFF state until a certain period of time has elapsed (that is, while the determinations of Yes in steps S1 and S12 and No in step S13 are repeated). Therefore, the first power path 81 and the second power path 82 can be electrically cut off during a period when there is a risk of failure.
- the control unit 61 determines the time period during which the first power path 81 is equal to or less than the failure determination voltage Vth2 after satisfying the voltage condition that "the voltage of the first power route 81 is equal to or less than the failure determination voltage Vth2."
- the first switch section 12 is turned on on the condition that the voltage of the first power path 81 exceeds the failure determination voltage Vth2 before a certain period of time has elapsed. For example, if the voltage of the first power path 81 exceeds the low voltage threshold Vth1 while the determinations of Yes in steps S1 and S12 and No in step S13 are repeated, the first switch unit 12 is turned on in step S2. Make it.
- the above description relates to the effects of the in-vehicle control device 60.
- the vehicle-mounted control device 60 discharges the power storage unit 13 and supplies power to the load 11 early even if the failure determination condition is not satisfied. Can be done. Therefore, this in-vehicle control device 60 can suppress the risk of interruption of power supply to the load 11 in the event of a power failure.
- the voltage of the power path 80 is equal to or lower than the failure determination voltage Vth2
- the charging operation by the charging unit 20 can be continued unless the failure determination conditions are met, so even if the voltage temporarily due to noise etc. Even if the discharge of power storage unit 13 increases due to a decrease in the voltage of power path 80, a decrease in the degree of charge of power storage unit 13 can be suppressed.
- the in-vehicle control device 60 executes the second control when the voltage of the power line 80 continues to be equal to or lower than the failure determination voltage Vth2 for a certain period of time, that is, when the possibility of a power failure increases further.
- the second control By stopping the charging operation, it is possible to suppress the influence caused by the state of the power path 80 from reaching the power storage unit 13 side due to the charging operation. For example, if a ground fault occurs in the first power path 81 and the failure determination voltage drops below Vth2, if the charging operation time becomes too long, the power storage unit 13 will be discharged from the power storage unit 13 to the ground fault location. There is a concern that the energy stored in the battery will disappear, but if the charging operation is stopped when the voltage is below the failure determination voltage Vth2 for a certain period of time, the subsequent discharge can be suppressed.
- the in-vehicle control device 60 controls the first switch unit 12 (switch part) can be turned off to prevent current from flowing from the second power path 82 to the first power path 81. Therefore, if the voltage of the first power path 81 is lower than the failure determination voltage Vth2 due to a power supply failure, the discharge current is supplied to the load 11 from the power storage unit 13 and the discharge current is supplied to the first power path 81. It is possible to reliably prevent it from going around.
- the on-vehicle control device 60 exceeds the failure determination voltage Vth2 again before the time period during which the first power path 81 is equal to or less than the failure determination voltage Vth2 has elapsed for a certain period of time after satisfying the above voltage condition, Then, by switching the first switch section 12 to the on state, the power supply section 10 can return to supplying power to the load 11. Therefore, even if the voltage of the first power path 81 temporarily falls below the failure determination voltage Vth2 due to noise or the like, normal operation can be quickly restored if the voltage returns quickly.
- the in-vehicle control device 60 turns off the first switch unit 12 and stops charging. In order to stop the operation, if the possibility of power failure increases further, the power storage unit 13 A discharge current can be supplied to the load 11.
- the vehicle-mounted control device 60 of the second embodiment is the same as the vehicle-mounted control device 60 of the first embodiment except for the failure determination conditions.
- the in-vehicle system 100 in which the in-vehicle control device 60 of the second embodiment is used is the same as the in-vehicle system 100 in which the in-vehicle control device 60 of the first embodiment is used except for the failure determination conditions, and the in-vehicle system 100 uses the in-vehicle control device 60 of the first embodiment. make up a composition.
- the backup support control performed by the control unit 61 of the in-vehicle control device 60 of the second embodiment is the same as the backup support control performed by the in-vehicle control device 60 of the first embodiment, except for the specific determination method in step S13. be. Therefore, below, the vehicle-mounted control device 60 of the second embodiment will be explained with reference to FIGS. 1 and 2.
- step S13 that "current is flowing from the charging unit 20 side to the power path 80 side”
- step S13 determines that the failure determination condition is satisfied in step S13
- step S14 determines that the failure determination condition is not satisfied in step S13
- step S13 determines in step S13 that the failure determination condition is satisfied in step S13
- step S14 determines that the failure determination condition is not satisfied in step S13
- step S1 determines in step S13 that the failure determination condition is satisfied (that is, when the current flows from the charging unit 20 side to the power path 80 side)
- step S14 executes the above-described second control in step S14.
- Determination as to whether or not current is flowing from the charging unit 20 side to the power path 80 side can be performed using various methods. For example, when the second switch section 21 is in the on state, the voltages at both ends of the resistor section 22 are detected, and in the resistor section 22, the voltage at the terminal on the first power path 81 side is higher than the voltage at the terminal on the conductive path 83 side. If the current is low, the control unit 61 may determine that “current is flowing from the charging unit 20 side to the power path 80 side”. Alternatively, the current sensor may be provided in a configuration in which it is connected in series to the second switch section 21 and the resistance section 22 in a path in which the second switch section 21 and the resistance section 22 are provided in series.
- control unit 61 acquires the detected value of the current sensor, and when a current of a certain value or more is flowing in the direction from the charging unit 20 toward the first power path 81, the control unit 61 performs “from the charging unit 20 side to the power path 81”. It may be determined that the current is flowing to the 80 side.
- the first switch section 12 (switch section) is also provided in the power path 80.
- Charging unit 20 supplies current to power storage unit 13 based on power supplied from first power path 81 (power path on power path 80 closer to power supply unit 10 than first switch unit 12).
- the discharging section 30 performs a discharging operation so as to cause current to flow through the second power path 82 (the power path on the side of the load 11 rather than the first switch section 12 in the power path 80).
- the first switch section 12 When the first switch section 12 is in the on state, electricity is allowed to pass between the first power path 81 and the second power path 82 in both directions, and when the first switch section 12 is in the off state, at least the second power path 82 energization to the first power path 81 is cut off. Note that when the first switch section 12 is in the off state, it is desirable that the current flow between the first power path 81 and the second power path 82 is interrupted in both directions; however, when the first switch section 12 is in the off state, A configuration may be adopted in which energization from the first power path 81 to the second power path 82 is permitted.
- the control unit 61 satisfies the above-mentioned voltage condition (voltage condition that the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2), and the current flows from the charging unit 20 side to the power path 80 side.
- the first control can be executed on the condition that no flow occurs. Specifically, after step S10, when determining Yes in step S12 and determining No in step S13, the control unit 61 turns off the first switch unit 12 and causes the charging unit 20 to perform the charging operation. The first control is executed to cause the discharge unit 30 to perform a discharge operation while causing the discharge unit 30 to perform a discharge operation.
- the control unit 61 controls the first switch unit 12 when the voltage of the first power path 81 satisfies the voltage condition that the voltage is equal to or lower than the failure determination voltage Vth2 and the current flows from the charging unit 20 side to the power path 80 side.
- the second control is executed while being in the off state. Specifically, when determining Yes in step S12 and Yes in step S13, the control unit 61 turns off the first switch unit 12 and does not cause the charging unit 20 to perform a charging operation.
- the second control is executed to cause the discharge section 30 to perform a discharge operation.
- the in-vehicle control device 60 can also allow the charging unit 20 to continue the charging operation if the failure determination condition is not satisfied when the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2. Therefore, even if the amount of discharge of power storage unit 13 increases due to noise or the like, a decrease in the degree of charging of power storage unit 13 can be suppressed.
- the vehicle-mounted control device 60 executes the second control when a current flows from the charging unit 20 side to the power path 80 side. and stop charging operation.
- in-vehicle control device 60 can suppress the influence caused by the state of power path 80 from reaching power storage unit 13 due to the charging operation. For example, if a ground fault occurs in the power line 80 and the voltage of the power line 80 becomes equal to or lower than the failure determination voltage Vth2 due to the ground fault, there is a risk that a large current will flow into the ground fault location if the charging operation is continued. However, if the second control is executed when the current flows from the charging unit 20 side to the power path 80 side, such a problem is unlikely to occur.
- the in-vehicle control device 60 of this embodiment operates on the condition that when the voltage of the first power path 81 becomes equal to or lower than the failure determination voltage Vth2, no current flows from the charging unit 20 side to the power path 80 side. Execute control. Therefore, when the voltage of the first power path 81 becomes equal to or lower than the failure determination voltage Vth2, the charging operation can be performed after confirming that the possibility of a ground fault is low.
- the vehicle-mounted control device 60 of the third embodiment is the same as the vehicle-mounted control device 60 of the first embodiment except for the failure determination conditions.
- the in-vehicle system 100 in which the in-vehicle control device 60 of the third embodiment is used is the same as the in-vehicle system 100 in which the in-vehicle control device 60 of the first embodiment is used except for the failure determination conditions, and the in-vehicle system 100 uses the in-vehicle control device 60 of the first embodiment. make up a composition.
- the backup support control performed by the control unit 61 of the in-vehicle control device 60 of the third embodiment is the same as the backup support control performed by the in-vehicle control device 60 of the first embodiment, except for the specific determination method in step S13. be. Therefore, below, the vehicle-mounted control device 60 of the third embodiment will be explained with reference to FIGS. 1 and 2.
- Reference voltage Vth3 corresponds to the third threshold. Reference voltage Vth3 has a value greater than zero. Reference voltage Vth3 is a value smaller than threshold voltage Vth4. If the control unit 61 determines in step S13 that "the voltage of the first power path 81 is equal to or lower than the reference voltage Vth3," it determines that the failure determination condition is satisfied in step S13, and the process proceeds to step S14. Proceed.
- step S13 determines in step S13 that "the voltage of the first power path 81 is higher than the reference voltage Vth3"
- it determines in step S13 that the failure determination condition is not satisfied and executes the process. Return to step S1.
- the control unit 61 determines in step S13 that the failure determination condition is satisfied (that is, when the voltage of the first power path 81 is equal to or lower than the reference voltage Vth3)
- the control unit 61 executes the second control described above in step S14.
- the discharging section 30 is caused to perform a discharging operation without causing the charging section 20 to perform a charging operation.
- control unit 61 performs the above-mentioned charging when the voltage of the power path 80 satisfies the voltage condition that the voltage is equal to or lower than the failure determination voltage Vth2 and does not satisfy the failure determination condition different from the voltage condition.
- the first control is executed when the conditions are met, but the first control may be executed whenever the voltage conditions are met and the failure determination conditions are not met.
- the vehicle-mounted control device 60 includes at least the control unit 61, but the vehicle-mounted control device 60 may include the entire power supply system 3.
- the power supply system 3 includes the power supply unit 10 and the power storage unit 13, but in the embodiments described above, even when the on-vehicle control device 60 is configured to include the entire power supply system 3, the power supply system 3 includes the power supply unit 10 and the power storage unit 13. 3 may be changed to a configuration in which only the power supply unit 10 is removed from the configuration of the power supply system 3 described above, or may be changed to a configuration in which only the power storage unit 13 is removed from the configuration of the power supply system 3 described above. , the configuration of the power supply system 3 described above may be changed to a configuration in which the power supply unit 10 and the power storage unit 13 are removed.
- the interrupter 14 in FIG. 1 is constituted by a single FET having a parasitic diode whose anode is connected to short-circuit to the conductive path 31 and whose cathode is connected to short-circuit to the second power path 82.
- the cutoff unit 14 in FIG. 1 may be changed to a diode whose anode is electrically connected to the conductive path 31 and whose cathode is electrically connected to the conductive path 84.
- the first switch section 12 is illustrated as an example of an element provided in the power path 80, but the first switch section 12 blocks the flow of current from the load 11 side to the power supply section 10 side. It may be changed to other types of elements that can be used.
- the first switch section 12 may be changed to a diode, and in this case, the anode of the diode is electrically connected to the first power path 81, and the cathode is connected to the second power path 81. It may be electrically connected to short circuit 82 .
- the charging section 20 has a configuration including the second switch section 21 and the resistance section 22, but it may have a different configuration.
- the charging unit 20 may be configured by a voltage conversion circuit (for example, a DCDC converter), and in this case, the voltage conversion circuit performs a step-up operation or a step-down operation using the voltage applied to the first power path 81 as an input voltage. may be performed, and a charging operation (voltage conversion operation) may be performed so as to apply an output voltage to the conductive path 83.
- a voltage conversion circuit for example, a DCDC converter
- the discharge section 30 has a configuration that includes the voltage conversion circuit 32, but may have a configuration that does not include the voltage conversion circuit 32.
- the discharge section 30 may be changed to a switching element.
- Vehicle power supply system 10 Power supply section 11: Load 12: First switch section 13: Power storage section 14: Cutoff section 20: Charging section 21: Second switch section 22: Resistance section 30: Discharge section 31: Conductive path 32 :Voltage conversion circuit 51 :First voltage detection section 52 :Second voltage detection section 53 :Third voltage detection section 60 :In-vehicle control device 61 :Control section 80 :Power path 81 :First power path 82 :Second power Path 83: Conductive path 84: Conductive path 100: In-vehicle system
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Business, Economics & Management (AREA)
- Emergency Management (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
This vehicle-mounted control device (60) is used in an in-vehicle system (100) and controls a charging operation performed by a charging unit (20) and a discharging operation performed by a discharging unit (30). The vehicle-mounted control device (60) comprises a control unit (61) that controls the charging unit (20) and the discharging unit (30). The control unit (61) is able to execute a first control that, while causing the charging unit (20) to perform the charging operation, causes the discharging unit (30) to perform the discharging operation, and a second control that, without causing the charging unit (20) to perform the charging operation, causes the discharging unit (30) to perform the discharging operation. The control unit (61) executes the first control when the voltage in a power path (80) satisfies a voltage condition of being at most a failure determination voltage and does not satisfy a failure determination condition that is different from the voltage condition.
Description
本開示は、車載用制御装置に関する。
The present disclosure relates to a vehicle-mounted control device.
特許文献1には、バックアップ機能を有する電源装置が開示されている。この電源装置は、電源部(交流電源)が動作中であれば、AC-DC変換電源から提供された電力を用いて負荷回路に電力を供給し、電源部(交流電源)が停止中である場合に、蓄電部(バッテリ)に蓄積された電力を用いて負荷回路に電力を供給する。
Patent Document 1 discloses a power supply device having a backup function. This power supply device supplies power to the load circuit using power provided from the AC-DC conversion power supply when the power supply unit (AC power supply) is in operation, and when the power supply unit (AC power supply) is stopped. In this case, the power stored in the power storage unit (battery) is used to supply power to the load circuit.
車両内において電源部から負荷に電力を供給する車載システムでは、電源部からの電力供給が停止した電源失陥時に電源部とは異なる蓄電部から即座に電力を供給することが望まれる。そのためには、電源失陥の可能性が高まった時期にできるだけ早く蓄電部から電力を供給することが望ましい。しかし、電源失陥が確定しない時期に早めに蓄電部から電力を供給する方法を採用すると、電源失陥時に負荷への電力供給が途絶えるリスクは抑えられるが、ノイズ等に起因する誤判定によって蓄電部からの放電が多くなりやすく、蓄電部の充電量が低下しやすい。
In an in-vehicle system that supplies power from a power source to a load in a vehicle, it is desirable to immediately supply power from a power storage unit different from the power source when the power supply fails and the power supply from the power source stops. To this end, it is desirable to supply power from the power storage unit as soon as possible when the possibility of power failure increases. However, if you adopt a method of supplying power from the power storage unit early before a power failure is confirmed, the risk of power supply to the load being cut off in the event of a power failure can be reduced; The amount of discharge from the storage unit tends to increase, and the amount of charge in the power storage unit tends to decrease.
本開示は、電源失陥時に早期に負荷に電力を供給しやすく、且つ蓄電部の充電度合いの低下を抑えやすい技術を提供する。
The present disclosure provides a technology that makes it easy to quickly supply power to a load in the event of a power failure, and that makes it easy to suppress a decrease in the degree of charging of a power storage unit.
本開示の一つである車載用制御装置は、
電源部と、前記電源部とは異なる蓄電部と、前記電源部から負荷へ電力を供給する経路である電力路と、前記電源部から供給される電力に基づいて前記蓄電部に電流を供給する充電動作を行う充電部と、前記蓄電部から供給される電力に基づいて前記負荷側に電流を流す放電動作を行う放電部と、を備える車載システムに用いられ、前記充電部による前記充電動作及び前記放電部による前記放電動作を制御する車載用制御装置であって、
前記充電部及び前記放電部を制御する制御部を有し、
前記制御部は、前記充電部に前記充電動作を行わせつつ前記放電部に前記放電動作を行わせる第1制御と、前記充電部に前記充電動作を行わせずに前記放電部に前記放電動作を行わせる第2制御と、を実行可能であり、前記電力路の電圧が失陥判定電圧以下である電圧条件を満たし且つ前記電圧条件とは異なる失陥判定条件を満たさない場合に前記第1制御を実行する。 An in-vehicle control device that is one aspect of the present disclosure includes:
a power supply section, a power storage section different from the power supply section, a power path that is a path for supplying power from the power supply section to a load, and supplying current to the power storage section based on the power supplied from the power supply section. It is used in an in-vehicle system comprising a charging unit that performs a charging operation, and a discharging unit that performs a discharging operation that causes current to flow to the load side based on the power supplied from the power storage unit, and the charging unit performs the charging operation and An on-vehicle control device that controls the discharge operation by the discharge section,
comprising a control unit that controls the charging unit and the discharging unit,
The control section includes a first control that causes the discharging section to perform the discharging operation while causing the charging section to perform the charging operation, and a first control that causes the discharging section to perform the discharging operation without causing the charging section to perform the charging operation. and a second control to perform the first control when the voltage of the power path satisfies a voltage condition that is equal to or less than a failure determination voltage and does not satisfy a failure determination condition different from the voltage condition. Execute control.
電源部と、前記電源部とは異なる蓄電部と、前記電源部から負荷へ電力を供給する経路である電力路と、前記電源部から供給される電力に基づいて前記蓄電部に電流を供給する充電動作を行う充電部と、前記蓄電部から供給される電力に基づいて前記負荷側に電流を流す放電動作を行う放電部と、を備える車載システムに用いられ、前記充電部による前記充電動作及び前記放電部による前記放電動作を制御する車載用制御装置であって、
前記充電部及び前記放電部を制御する制御部を有し、
前記制御部は、前記充電部に前記充電動作を行わせつつ前記放電部に前記放電動作を行わせる第1制御と、前記充電部に前記充電動作を行わせずに前記放電部に前記放電動作を行わせる第2制御と、を実行可能であり、前記電力路の電圧が失陥判定電圧以下である電圧条件を満たし且つ前記電圧条件とは異なる失陥判定条件を満たさない場合に前記第1制御を実行する。 An in-vehicle control device that is one aspect of the present disclosure includes:
a power supply section, a power storage section different from the power supply section, a power path that is a path for supplying power from the power supply section to a load, and supplying current to the power storage section based on the power supplied from the power supply section. It is used in an in-vehicle system comprising a charging unit that performs a charging operation, and a discharging unit that performs a discharging operation that causes current to flow to the load side based on the power supplied from the power storage unit, and the charging unit performs the charging operation and An on-vehicle control device that controls the discharge operation by the discharge section,
comprising a control unit that controls the charging unit and the discharging unit,
The control section includes a first control that causes the discharging section to perform the discharging operation while causing the charging section to perform the charging operation, and a first control that causes the discharging section to perform the discharging operation without causing the charging section to perform the charging operation. and a second control to perform the first control when the voltage of the power path satisfies a voltage condition that is equal to or less than a failure determination voltage and does not satisfy a failure determination condition different from the voltage condition. Execute control.
本開示に係る技術は、電源失陥時に早期に負荷に電力を供給しやすく、且つ蓄電部の充電度合いの低下を抑えやすい。
The technology according to the present disclosure makes it easy to quickly supply power to a load in the event of a power failure, and to suppress a decrease in the degree of charging of the power storage unit.
[本開示の実施形態の説明]
以下では、本開示の実施形態が列記されて例示される。 [Description of embodiments of the present disclosure]
In the following, embodiments of the disclosure are listed and illustrated.
以下では、本開示の実施形態が列記されて例示される。 [Description of embodiments of the present disclosure]
In the following, embodiments of the disclosure are listed and illustrated.
〔1〕電源部と、前記電源部とは異なる蓄電部と、前記電源部から負荷へ電力を供給する経路である電力路と、前記電源部から供給される電力に基づいて前記蓄電部に電流を供給する充電動作を行う充電部と、前記蓄電部から供給される電力に基づいて前記負荷側に電流を流す放電動作を行う放電部と、を備える車載システムに用いられ、前記充電部による前記充電動作及び前記放電部による前記放電動作を制御する車載用制御装置であって、
前記充電部及び前記放電部を制御する制御部を有し、
前記制御部は、前記充電部に前記充電動作を行わせつつ前記放電部に前記放電動作を行わせる第1制御と、前記充電部に前記充電動作を行わせずに前記放電部に前記放電動作を行わせる第2制御と、を実行可能であり、前記電力路の電圧が失陥判定電圧以下である電圧条件を満たし且つ前記電圧条件とは異なる失陥判定条件を満たさない場合に前記第1制御を実行する
車載用制御装置。 [1] A power supply unit, a power storage unit different from the power supply unit, a power path that is a path for supplying power from the power supply unit to a load, and a current flow to the power storage unit based on the power supplied from the power supply unit. and a discharging unit that performs a discharging operation that causes current to flow to the load side based on the electric power supplied from the power storage unit. An on-vehicle control device that controls a charging operation and the discharging operation by the discharging section,
comprising a control unit that controls the charging unit and the discharging unit,
The control section includes a first control that causes the discharging section to perform the discharging operation while causing the charging section to perform the charging operation, and a first control that causes the discharging section to perform the discharging operation without causing the charging section to perform the charging operation. and a second control to perform the first control when the voltage of the power path satisfies a voltage condition that is equal to or less than a failure determination voltage and does not satisfy a failure determination condition different from the voltage condition. An in-vehicle control device that performs control.
前記充電部及び前記放電部を制御する制御部を有し、
前記制御部は、前記充電部に前記充電動作を行わせつつ前記放電部に前記放電動作を行わせる第1制御と、前記充電部に前記充電動作を行わせずに前記放電部に前記放電動作を行わせる第2制御と、を実行可能であり、前記電力路の電圧が失陥判定電圧以下である電圧条件を満たし且つ前記電圧条件とは異なる失陥判定条件を満たさない場合に前記第1制御を実行する
車載用制御装置。 [1] A power supply unit, a power storage unit different from the power supply unit, a power path that is a path for supplying power from the power supply unit to a load, and a current flow to the power storage unit based on the power supplied from the power supply unit. and a discharging unit that performs a discharging operation that causes current to flow to the load side based on the electric power supplied from the power storage unit. An on-vehicle control device that controls a charging operation and the discharging operation by the discharging section,
comprising a control unit that controls the charging unit and the discharging unit,
The control section includes a first control that causes the discharging section to perform the discharging operation while causing the charging section to perform the charging operation, and a first control that causes the discharging section to perform the discharging operation without causing the charging section to perform the charging operation. and a second control to perform the first control when the voltage of the power path satisfies a voltage condition that is equal to or less than a failure determination voltage and does not satisfy a failure determination condition different from the voltage condition. An in-vehicle control device that performs control.
〔1〕に記載の車載用制御装置は、電力路の電圧が失陥判定電圧以下である場合に、失陥判定条件を満たさなくても蓄電部を放電させて早期に負荷に電力を供給することができる。従って、この車載用制御装置は、電源失陥時に負荷への電力供給が途絶えるリスクを抑えることができる。一方で、電力路の電圧が失陥判定電圧以下である場合、失陥判定条件を満たさなければ充電部による充電動作を継続させることができるため、仮にノイズ等に起因して蓄電部の放電が増えても、蓄電部の充電度合いの低下を抑えることができる。
The in-vehicle control device described in [1] discharges the power storage unit and supplies power to the load early even if the failure determination condition is not satisfied when the voltage of the power path is equal to or lower than the failure determination voltage. be able to. Therefore, this in-vehicle control device can suppress the risk of interruption of power supply to the load in the event of a power failure. On the other hand, if the voltage of the power path is below the failure determination voltage, the charging unit can continue charging unless the failure determination conditions are met, so even if the power storage unit is not discharged due to noise etc. Even if the amount increases, it is possible to suppress a decrease in the degree of charging of the power storage unit.
〔2〕前記失陥判定条件は、前記電力路の電圧が前記失陥判定電圧以下である時間が一定時間継続したことを含み、
前記制御部は、前記電力路の電圧が前記失陥判定電圧以下である時間が前記一定時間継続した場合に前記第2制御を実行する
〔1〕に記載の車載用制御装置。 [2] The failure determination condition includes that the voltage of the power path is equal to or lower than the failure determination voltage for a certain period of time,
The vehicle-mounted control device according to [1], wherein the control unit executes the second control when the time during which the voltage of the power path is equal to or lower than the failure determination voltage continues for the certain period of time.
前記制御部は、前記電力路の電圧が前記失陥判定電圧以下である時間が前記一定時間継続した場合に前記第2制御を実行する
〔1〕に記載の車載用制御装置。 [2] The failure determination condition includes that the voltage of the power path is equal to or lower than the failure determination voltage for a certain period of time,
The vehicle-mounted control device according to [1], wherein the control unit executes the second control when the time during which the voltage of the power path is equal to or lower than the failure determination voltage continues for the certain period of time.
〔2〕に記載の車載用制御装置は、電力路の電圧が失陥判定電圧以下である場合、失陥判定条件を満たさなければ充電部による充電動作を継続させることができるため、仮にノイズ等に起因して蓄電部の放電が増えても、蓄電部の充電度合いの低下を抑えることができる。一方で、上記車載用制御装置は、電力路の電圧が失陥判定電圧以下である時間が一定時間継続した場合、即ち、電源失陥の可能性が一層高まった場合には第2制御を実行し、充電動作を停止させることで、電力路の状態に起因する影響が充電動作によって蓄電部側に及ぶことを抑えることができる。
The in-vehicle control device described in [2] can continue the charging operation by the charging unit if the failure determination condition is not satisfied when the voltage of the power line is below the failure determination voltage. Even if the discharge of the power storage unit increases due to this, a decrease in the degree of charge of the power storage unit can be suppressed. On the other hand, the in-vehicle control device executes the second control when the voltage of the power line continues to be below the failure determination voltage for a certain period of time, that is, when the possibility of power failure increases further. However, by stopping the charging operation, it is possible to suppress the influence caused by the state of the power path from reaching the power storage unit side due to the charging operation.
〔3〕前記車載システムは、前記電力路にスイッチ部が設けられ、
前記充電部は、前記電力路における前記スイッチ部よりも前記電源部側の第1電力路から供給される電力に基づいて前記蓄電部に電流を供給し、
前記放電部は、前記電力路における前記スイッチ部よりも前記負荷側の第2電力路に電流を流すように前記放電動作を行い、
前記スイッチ部がオン状態のときには前記第1電力路と前記第2電力路の間の通電が双方向に許容され、前記スイッチ部がオフ状態のときには少なくとも前記第2電力路から前記第1電力路への通電が遮断され、
前記制御部は、前記電圧条件を満たした後、前記電力路が前記失陥判定電圧以下である時間が一定時間経過するまでは前記スイッチ部を前記オフ状態とし、前記電圧条件を満たした後、前記電力路が前記失陥判定電圧以下である時間が前記一定時間経過する前に前記電力路の電圧が前記失陥判定電圧を超えたことを条件として前記スイッチ部を前記オン状態とし、前記電圧条件を満たした後、前記電力路が前記失陥判定電圧以下である時間が前記一定時間経過した場合には前記スイッチ部を前記オフ状態としつつ前記充電動作を停止させる
〔2〕に記載の車載用制御装置。 [3] The in-vehicle system includes a switch section provided in the power path,
The charging unit supplies current to the power storage unit based on power supplied from a first power path closer to the power supply unit than the switch unit in the power path,
The discharging unit performs the discharging operation so as to cause a current to flow in a second power path on the load side of the power path rather than the switch unit,
When the switch section is in an on state, bidirectional energization is allowed between the first power path and the second power path, and when the switch section is in an off state, at least the second power path to the first power path is allowed to flow between the first power path and the second power path. Power is cut off to
After the voltage condition is met, the control section keeps the switch section in the OFF state until a certain period of time during which the power path is below the failure determination voltage has elapsed, and after the voltage condition is met, The switch section is brought into the on state on the condition that the voltage of the power path exceeds the failure determination voltage before the predetermined period of time during which the power path is lower than or equal to the failure determination voltage elapses; The in-vehicle device according to [2], wherein after the condition is met, if the predetermined period of time has elapsed during which the power path is below the failure determination voltage, the charging operation is stopped while the switch section is turned off. control device.
前記充電部は、前記電力路における前記スイッチ部よりも前記電源部側の第1電力路から供給される電力に基づいて前記蓄電部に電流を供給し、
前記放電部は、前記電力路における前記スイッチ部よりも前記負荷側の第2電力路に電流を流すように前記放電動作を行い、
前記スイッチ部がオン状態のときには前記第1電力路と前記第2電力路の間の通電が双方向に許容され、前記スイッチ部がオフ状態のときには少なくとも前記第2電力路から前記第1電力路への通電が遮断され、
前記制御部は、前記電圧条件を満たした後、前記電力路が前記失陥判定電圧以下である時間が一定時間経過するまでは前記スイッチ部を前記オフ状態とし、前記電圧条件を満たした後、前記電力路が前記失陥判定電圧以下である時間が前記一定時間経過する前に前記電力路の電圧が前記失陥判定電圧を超えたことを条件として前記スイッチ部を前記オン状態とし、前記電圧条件を満たした後、前記電力路が前記失陥判定電圧以下である時間が前記一定時間経過した場合には前記スイッチ部を前記オフ状態としつつ前記充電動作を停止させる
〔2〕に記載の車載用制御装置。 [3] The in-vehicle system includes a switch section provided in the power path,
The charging unit supplies current to the power storage unit based on power supplied from a first power path closer to the power supply unit than the switch unit in the power path,
The discharging unit performs the discharging operation so as to cause a current to flow in a second power path on the load side of the power path rather than the switch unit,
When the switch section is in an on state, bidirectional energization is allowed between the first power path and the second power path, and when the switch section is in an off state, at least the second power path to the first power path is allowed to flow between the first power path and the second power path. Power is cut off to
After the voltage condition is met, the control section keeps the switch section in the OFF state until a certain period of time during which the power path is below the failure determination voltage has elapsed, and after the voltage condition is met, The switch section is brought into the on state on the condition that the voltage of the power path exceeds the failure determination voltage before the predetermined period of time during which the power path is lower than or equal to the failure determination voltage elapses; The in-vehicle device according to [2], wherein after the condition is met, if the predetermined period of time has elapsed during which the power path is below the failure determination voltage, the charging operation is stopped while the switch section is turned off. control device.
〔3〕に記載の車載用制御装置は、電力路の電圧が失陥判定電圧以下となった場合に、失陥判定電圧以下である時間が一定時間経過するまではスイッチ部をオフ状態にして第2電力路から第1電力路へと電流が流れないようにすることができる。従って、もし電源失陥に起因して電力路の電圧が失陥判定電圧以下となっている場合には、蓄電部から負荷に放電電流を供給しつつ放電電流が第1電力路に回り込むことを確実に遮断することができる。一方で、上記車載用制御装置は、上記電圧条件を満たした後、電力路が失陥判定電圧以下である時間が一定時間経過する前に再び失陥判定電圧を超えたことを条件として、スイッチ部をオン状態に切り替えることで電源部から負荷に電力を供給するように復帰することができる。従って、ノイズ等に起因して電力路の電圧が一時的に失陥判定電圧以下になった場合でも、早めに電圧が戻った場合には速やかに正常動作に復帰し得る。そして、このような一時的な電圧低下に基づく放電動作が繰り返されても、その都度充電動作が行われやすいため、蓄電部の充電度合いの低下が抑えられる。更に、この車載用制御装置は、上記電圧条件を満たした後、電力路が失陥判定電圧以下である時間が一定時間経過した場合にはスイッチ部をオフ状態とし、充電動作を停止させるため、電源失陥の可能性が一層高まった場合には、第1電力路の状態に起因する影響が第2電力路側に及ぶことを抑えつつ、蓄電部に基づく放電電流を負荷に供給することができる。
The in-vehicle control device described in [3] keeps the switch part in the OFF state until the time when the voltage of the power line is below the failure judgment voltage has elapsed for a certain period of time when the voltage of the power line becomes below the failure judgment voltage. Current can be prevented from flowing from the second power path to the first power path. Therefore, if the voltage of the power path is lower than the failure determination voltage due to a power failure, the discharge current is supplied to the load from the power storage unit and the discharge current is not diverted to the first power path. It can be shut off reliably. On the other hand, the in-vehicle control device operates the switch on the condition that after the voltage condition is met, the power path exceeds the failure determination voltage again before a certain period of time has elapsed. By switching the unit to the on state, the power supply unit can return to supplying power to the load. Therefore, even if the voltage of the power path temporarily drops below the failure determination voltage due to noise or the like, normal operation can be quickly restored if the voltage returns quickly. Even if the discharging operation based on such a temporary voltage drop is repeated, since the charging operation is likely to be performed each time, a decrease in the degree of charging of the power storage unit can be suppressed. Furthermore, this in-vehicle control device turns off the switch section and stops the charging operation when the power path is below the failure determination voltage for a certain period of time after the voltage condition is satisfied. If the possibility of a power failure increases further, the discharge current based on the power storage unit can be supplied to the load while suppressing the influence caused by the state of the first power path from reaching the second power path. .
〔4〕前記失陥判定条件は、前記充電部側から前記電力路側に電流が流れることを含み、
前記制御部は、前記充電部側から前記電力路側に電流が流れる場合に前記第2制御を実行する
〔1〕に記載の車載用制御装置。 [4] The failure determination condition includes that a current flows from the charging unit side to the power path side,
The in-vehicle control device according to [1], wherein the control unit executes the second control when a current flows from the charging unit side to the power path side.
前記制御部は、前記充電部側から前記電力路側に電流が流れる場合に前記第2制御を実行する
〔1〕に記載の車載用制御装置。 [4] The failure determination condition includes that a current flows from the charging unit side to the power path side,
The in-vehicle control device according to [1], wherein the control unit executes the second control when a current flows from the charging unit side to the power path side.
〔4〕に記載の車載用制御装置は、電力路の電圧が失陥判定電圧以下である場合、失陥判定条件を満たさなければ充電部による充電動作を継続させることができるため、仮にノイズ等に起因して蓄電部の放電が増えても、蓄電部の充電度合いの低下を抑えることができる。一方で、上記車載用制御装置は、充電部側から前記電力路側に電流が流れる場合には第2制御を実行し、充電動作を停止させることで、電力路の状態に起因する影響が充電動作によって蓄電部側に及ぶことを抑えることができる。例えば、電力路において地絡が発生し、地絡に起因して電力路の電圧が失陥判定電圧以下となった場合、充電動作を継続すると大きな電流が地絡箇所に流れ込む懸念があるが、充電部側から電力路側に電流が流れる場合に第2制御を実行すれば、このような問題は生じにくい。
The in-vehicle control device described in [4] can continue the charging operation by the charging unit if the failure determination condition is not satisfied when the voltage of the power path is below the failure determination voltage. Even if the discharge of the power storage unit increases due to this, a decrease in the degree of charge of the power storage unit can be suppressed. On the other hand, the above-mentioned in-vehicle control device executes the second control when current flows from the charging unit side to the power path side and stops the charging operation, so that the influence caused by the state of the power path is suppressed from the charging operation. This can prevent the energy from reaching the power storage unit. For example, if a ground fault occurs in a power line and the voltage of the power line falls below the fault determination voltage due to the ground fault, there is a risk that a large current will flow into the ground fault location if charging continues. If the second control is executed when the current flows from the charging unit side to the power path side, such a problem is unlikely to occur.
〔5〕前記車載システムは、前記電力路にスイッチ部が設けられ、
前記充電部は、前記電力路における前記スイッチ部よりも前記電源部側の第1電力路から供給される電力に基づいて前記蓄電部に電流を供給し、
前記放電部は、前記電力路における前記スイッチ部よりも前記負荷側の第2電力路に電流を流すように前記放電動作を行い、
前記スイッチ部がオン状態のときには前記第1電力路と前記第2電力路の間の通電が双方向に許容され、前記スイッチ部がオフ状態のときには少なくとも前記第2電力路から前記第1電力路への通電が遮断され、
前記制御部は、前記電圧条件を満たし且つ前記充電部側から前記電力路側に電流が流れないことを条件として前記第1制御を実行し、前記電圧条件を満たし且つ前記充電部側から前記電力路側に電流が流れる場合には前記スイッチ部をオフ状態としつつ前記第2制御を実行する
〔4〕に記載の車載用制御装置。 [5] The in-vehicle system includes a switch section provided in the power path,
The charging unit supplies current to the power storage unit based on power supplied from a first power path closer to the power supply unit than the switch unit in the power path,
The discharging unit performs the discharging operation so as to cause a current to flow through a second power path on the load side of the power path rather than the switch unit,
When the switch section is in an on state, current is allowed to flow between the first power path and the second power path in both directions, and when the switch section is in an off state, at least the second power path to the first power path is allowed to flow between the first power path and the second power path. Power is cut off to
The control unit executes the first control on the condition that the voltage condition is satisfied and no current flows from the charging unit side to the power path side, and the control unit executes the first control on the condition that the voltage condition is satisfied and no current flows from the charging unit side to the power path side. The in-vehicle control device according to [4], wherein the second control is executed while turning off the switch section when a current flows through the switch section.
前記充電部は、前記電力路における前記スイッチ部よりも前記電源部側の第1電力路から供給される電力に基づいて前記蓄電部に電流を供給し、
前記放電部は、前記電力路における前記スイッチ部よりも前記負荷側の第2電力路に電流を流すように前記放電動作を行い、
前記スイッチ部がオン状態のときには前記第1電力路と前記第2電力路の間の通電が双方向に許容され、前記スイッチ部がオフ状態のときには少なくとも前記第2電力路から前記第1電力路への通電が遮断され、
前記制御部は、前記電圧条件を満たし且つ前記充電部側から前記電力路側に電流が流れないことを条件として前記第1制御を実行し、前記電圧条件を満たし且つ前記充電部側から前記電力路側に電流が流れる場合には前記スイッチ部をオフ状態としつつ前記第2制御を実行する
〔4〕に記載の車載用制御装置。 [5] The in-vehicle system includes a switch section provided in the power path,
The charging unit supplies current to the power storage unit based on power supplied from a first power path closer to the power supply unit than the switch unit in the power path,
The discharging unit performs the discharging operation so as to cause a current to flow through a second power path on the load side of the power path rather than the switch unit,
When the switch section is in an on state, current is allowed to flow between the first power path and the second power path in both directions, and when the switch section is in an off state, at least the second power path to the first power path is allowed to flow between the first power path and the second power path. Power is cut off to
The control unit executes the first control on the condition that the voltage condition is satisfied and no current flows from the charging unit side to the power path side, and the control unit executes the first control on the condition that the voltage condition is satisfied and no current flows from the charging unit side to the power path side. The in-vehicle control device according to [4], wherein the second control is executed while turning off the switch section when a current flows through the switch section.
〔5〕に記載の車載用制御装置は、電力路の電圧が失陥判定電圧以下となった場合、充電部側から電力路側に電流が流れないことを条件として第1制御を実行する。従って、電力路の電圧が失陥判定電圧以下となった場合、地絡の可能性が低いことを確認した上で充電動作を行うことができる。一方で、電力路の電圧が失陥判定電圧以下となった場合において充電部側から電力路側に電流が流れる場合、即ち、地絡の可能性が高い場合には、スイッチ部をオフ状態にして第2制御を実行し、第2電力路から第1電力路への電流の流れ込みを防ぎつつ蓄電部に基づく放電電流を負荷に供給することができる。
The in-vehicle control device described in [5] executes the first control on the condition that no current flows from the charging unit side to the power path side when the voltage of the power path becomes equal to or lower than the failure determination voltage. Therefore, when the voltage of the power path becomes equal to or lower than the failure determination voltage, the charging operation can be performed after confirming that the possibility of a ground fault is low. On the other hand, if the voltage of the power path falls below the failure judgment voltage and current flows from the live part side to the power path side, that is, if there is a high possibility of a ground fault, the switch part is turned off. By executing the second control, it is possible to supply the discharge current based on the power storage unit to the load while preventing current from flowing from the second power path to the first power path.
〔6〕前記失陥判定条件は、前記電力路の電圧が前記失陥判定電圧よりも小さい基準電圧以下になったことを含み、
前記制御部は、前記基準電圧以下になった場合に前記第2制御を実行する
〔1〕に記載の車載用制御装置。 [6] The failure determination condition includes that the voltage of the power path has become equal to or lower than a reference voltage that is smaller than the failure determination voltage,
The in-vehicle control device according to [1], wherein the control unit executes the second control when the voltage becomes equal to or lower than the reference voltage.
前記制御部は、前記基準電圧以下になった場合に前記第2制御を実行する
〔1〕に記載の車載用制御装置。 [6] The failure determination condition includes that the voltage of the power path has become equal to or lower than a reference voltage that is smaller than the failure determination voltage,
The in-vehicle control device according to [1], wherein the control unit executes the second control when the voltage becomes equal to or lower than the reference voltage.
〔6〕に記載の車載用制御装置は、電力路の電圧が失陥判定電圧以下である場合、失陥判定条件を満たさなければ充電部による充電動作を継続させることができるため、仮にノイズ等に起因して蓄電部の放電が増えても、蓄電部の充電度合いの低下を抑えることができる。一方で、上記車載用制御装置は、電力路の電圧が失陥判定電圧よりも小さい基準電圧以下になった場合に充電動作を停止させて放電動作を行うことができるため、電源失陥の可能性が一層高い場合には、電力路の状態に起因する影響が充電動作によって蓄電部側に及ぶことを抑えることができる。
The in-vehicle control device described in [6] can cause the charging unit to continue the charging operation if the failure determination condition is not satisfied when the voltage of the power path is below the failure determination voltage. Even if the discharge of the power storage unit increases due to this, a decrease in the degree of charge of the power storage unit can be suppressed. On the other hand, the above-mentioned in-vehicle control device can stop the charging operation and perform the discharging operation when the voltage of the power path falls below the reference voltage, which is smaller than the failure judgment voltage, so it is possible to prevent the possibility of power failure. If the performance is higher, it is possible to suppress the influence caused by the state of the power path from reaching the power storage unit side due to the charging operation.
<第1実施形態>
1.車載システムの概要
図1には、車載システム100が示される。図1の車載システム100は、主に、車載用電源システム3と負荷11とを備える。車載用電源システム3は、以下の説明において電源システム3とも称される。車載システム100は、電源システム3によって負荷11に電力を供給し、負荷11を動作させるシステムである。図1では、車載用の負荷の一例として負荷11が例示されるが、車載システム100にはこれ以外の負荷が設けられていてもよい。 <First embodiment>
1. Overview of In-Vehicle System In FIG. 1, an in-vehicle system 100 is shown. The in-vehicle system 100 in FIG. 1 mainly includes an in-vehicle power supply system 3 and a load 11. The on-vehicle power supply system 3 is also referred to as a power supply system 3 in the following description. The in-vehicle system 100 is a system in which the power supply system 3 supplies power to the load 11 to operate the load 11. In FIG. 1, a load 11 is illustrated as an example of an in-vehicle load, but the in-vehicle system 100 may be provided with other loads.
1.車載システムの概要
図1には、車載システム100が示される。図1の車載システム100は、主に、車載用電源システム3と負荷11とを備える。車載用電源システム3は、以下の説明において電源システム3とも称される。車載システム100は、電源システム3によって負荷11に電力を供給し、負荷11を動作させるシステムである。図1では、車載用の負荷の一例として負荷11が例示されるが、車載システム100にはこれ以外の負荷が設けられていてもよい。 <First embodiment>
1. Overview of In-Vehicle System In FIG. 1, an in-
負荷11は、車両に搭載される電気部品である。負荷11は、電力路80を介して供給される電力を受けて動作する。負荷11の種類は限定されない。負荷11としては、公知の様々な車載部品が採用され得る。負荷11は、複数の電気部品を有していてもよく、単一の電気部品であってもよい。負荷11は、電源部10から自身への電力供給が遮断された場合であっても動作することが求められる負荷であり、例えば、車両が停止するために必要な動作を行う負荷(シフトバイワイヤ制御システム、電子制御ブレーキシステム等)である。
The load 11 is an electrical component mounted on the vehicle. The load 11 operates by receiving power supplied via the power path 80. The type of load 11 is not limited. As the load 11, various known in-vehicle components may be adopted. Load 11 may include multiple electrical components or may be a single electrical component. The load 11 is a load that is required to operate even when the power supply from the power supply unit 10 to itself is cut off. For example, the load 11 is a load that performs operations necessary for stopping the vehicle (shift-by-wire control). system, electronically controlled brake system, etc.).
電源システム3は、負荷11に電力を供給するシステムである。電源システム3は、電源部10又は蓄電部13を電力供給源として負荷11に電力を供給する。電源システム3は、電源部10から負荷11に電力を供給することができ、例えば、故障などによって電源部10からの電力供給が途絶えた場合には、蓄電部13から負荷11に電力を供給することができる。
The power supply system 3 is a system that supplies power to the load 11. Power supply system 3 supplies power to load 11 using power supply unit 10 or power storage unit 13 as a power supply source. The power supply system 3 can supply power from the power supply unit 10 to the load 11. For example, when the power supply from the power supply unit 10 is interrupted due to a failure or the like, power is supplied from the power storage unit 13 to the load 11. be able to.
2.電源システムの概要
電源システム3は、電源部10、蓄電部13、充電部20、放電部30、車載用制御装置60、電力路80、第1スイッチ部12、第1電圧検出部51、第2電圧検出部52、第3電圧検出部53、導電路83、84などを備える。 2. Outline of power supply system Thepower supply system 3 includes a power supply section 10, a power storage section 13, a charging section 20, a discharging section 30, an on-vehicle control device 60, a power path 80, a first switch section 12, a first voltage detection section 51, a second It includes a voltage detection section 52, a third voltage detection section 53, conductive paths 83 and 84, and the like.
電源システム3は、電源部10、蓄電部13、充電部20、放電部30、車載用制御装置60、電力路80、第1スイッチ部12、第1電圧検出部51、第2電圧検出部52、第3電圧検出部53、導電路83、84などを備える。 2. Outline of power supply system The
電源部10は、負荷11へ電力を供給する車載用電源であり、負荷11へ電力を供給する主電源として機能する。電源部10は、例えば、鉛バッテリ等の公知の車載バッテリとして構成されている。電源部10は、鉛バッテリ以外のバッテリによって構成されていてもよく、バッテリに代えて又はバッテリに加えてバッテリ以外の電源手段を有していてもよい。電源部10の正極は、例えば、電力路80の一部である第1電力路81に短絡した構成で第1電力路81に電気的に接続される。電源部10の負極は、例えば、グラウンドに短絡した構成でグラウンドに電気的に接続される。電源部10は、第1電力路81に一定値の直流電圧を印加する。電源部10が第1電力路81に印加する電圧は、上記一定値から多少変動してもよい。
The power supply unit 10 is an on-vehicle power supply that supplies power to the load 11, and functions as a main power supply that supplies power to the load 11. The power supply unit 10 is configured as, for example, a known vehicle battery such as a lead battery. The power supply section 10 may be configured with a battery other than a lead battery, and may have a power source means other than the battery instead of or in addition to the battery. The positive electrode of the power supply section 10 is electrically connected to the first power path 81, which is a part of the power path 80, for example, in a configuration in which it is short-circuited to the first power path 81. The negative electrode of the power supply unit 10 is electrically connected to the ground, for example, in a short-circuited configuration. The power supply unit 10 applies a constant DC voltage to the first power path 81 . The voltage that the power supply section 10 applies to the first power path 81 may vary somewhat from the above-mentioned constant value.
蓄電部13は、電源部10とは異なる電源である。蓄電部13は、少なくとも電源部10からの電力供給が途絶えたときに電力供給源となる電源であり、電源部10に基づく電力供給が不足した場合に負荷11に向けて電力を供給するバックアップ電源として機能する。蓄電部13は、例えば、電気二重層キャパシタ(EDLC)等の公知の蓄電手段によって構成されている。蓄電部13は、電気二重層キャパシタ以外のキャパシタによって構成されていてもよく、キャパシタに代えて又はキャパシタに加えて他の蓄電手段(バッテリなど)を備えていてもよい。蓄電部13の正極は、導電路83に短絡した構成で導電路83に電気的に接続される。蓄電部13の負極は、グラウンドに短絡した構成でグラウンドに電気的に接続される。蓄電部13の出力電圧(蓄電部13によって導電路83に印加される電圧)は、電源部10の出力電圧(電源部10によって第1電力路81に印加される電圧)よりも大きくてもよく、小さくてもよい。
The power storage unit 13 is a power source different from the power source unit 10. The power storage unit 13 is a power supply that serves as a power supply source at least when the power supply from the power supply unit 10 is interrupted, and is a backup power supply that supplies power to the load 11 when the power supply from the power supply unit 10 is insufficient. functions as The power storage unit 13 is configured by, for example, a known power storage means such as an electric double layer capacitor (EDLC). The power storage unit 13 may be configured with a capacitor other than the electric double layer capacitor, and may include other power storage means (such as a battery) instead of or in addition to the capacitor. The positive electrode of power storage unit 13 is electrically connected to conductive path 83 in a short-circuited configuration. The negative electrode of power storage unit 13 is electrically connected to the ground in a short-circuited configuration. The output voltage of the power storage unit 13 (the voltage applied to the conductive path 83 by the power storage unit 13) may be higher than the output voltage of the power supply unit 10 (the voltage applied to the first power path 81 by the power supply unit 10). , may be small.
本明細書において、電圧とは、特に限定が無い限り、グラウンド電位(例えば0V)に対する電圧であり、グラウンド電位との電位差である。例えば、第1電力路81に印加される電圧とは、第1電力路81の電位とグラウンド電位との電位差である。導電路83に印加される電圧とは、導電路83の電位とグラウンド電位との電位差である。
In this specification, unless otherwise specified, voltage is a voltage relative to a ground potential (for example, 0 V), and is a potential difference from the ground potential. For example, the voltage applied to the first power path 81 is the potential difference between the potential of the first power path 81 and the ground potential. The voltage applied to the conductive path 83 is the potential difference between the potential of the conductive path 83 and the ground potential.
電力路80は、電源部10に基づく電力が伝送される経路であり、電源部10から負荷11に電力を供給する経路である。図1の例では、電力路80は、第1スイッチ部12よりも電源部10側に設けられる第1電力路81と、第1スイッチ部12よりも負荷11側に設けられる第2電力路82とを有する。第1電力路81は、電力路80における第1スイッチ部12(スイッチ部)よりも電源部10側の電力路である。第1電力路81には、電源部10の出力電圧と同一又は略同一の電圧が印加される。第1電力路81の一端は、電源部10の正極に短絡した構成で当該正極に電気的に接続される。第1電力路81の他端は、第1スイッチ部12の一端に電気的に接続される。第1電力路81には、リレーやヒューズが設けられていてもよい。第2電力路82は、電力路80における第1スイッチ部12(スイッチ部)よりも負荷11側の電力路である。第2電力路82の一端は、第1スイッチ部12の他端に電気的に接続される。図1の例では、第2電力路82が負荷11の一端に短絡する。
The power path 80 is a path through which power is transmitted from the power supply section 10, and is a path through which power is supplied from the power supply section 10 to the load 11. In the example of FIG. 1, the power path 80 includes a first power path 81 provided closer to the power supply section 10 than the first switch section 12, and a second power path 82 provided closer to the load 11 than the first switch section 12. and has. The first power path 81 is a power path closer to the power supply section 10 than the first switch section 12 (switch section) in the power path 80 . The same or substantially the same voltage as the output voltage of the power supply unit 10 is applied to the first power path 81 . One end of the first power path 81 is short-circuited to the positive electrode of the power supply unit 10 and is electrically connected to the positive electrode. The other end of the first power path 81 is electrically connected to one end of the first switch section 12 . The first power path 81 may be provided with a relay or a fuse. The second power path 82 is a power path closer to the load 11 than the first switch section 12 (switch section) in the power path 80 . One end of the second power path 82 is electrically connected to the other end of the first switch section 12 . In the example of FIG. 1, the second power path 82 is short-circuited to one end of the load 11.
第1スイッチ部12は、例えば1以上のFET(Field Effect Transistor)によって構成される。第1スイッチ部12は、「スイッチ部」の一例に相当する。第1スイッチ部12は、電力路80に設けられる。第1スイッチ部12は、互いに逆向きに配置されたFETによって構成されてもよく、通電を双方向に遮断するその他の半導体スイッチによって構成されてもよい。この場合、第1スイッチ部12は、自身がオン状態のときには第1電力路81と第2電力路82の間の通電を双方向に許容し、自身がオフ状態のときには第1電力路81と第2電力路82の間の通電を双方向で遮断する。第1スイッチ部12は、第1電力路81にアノードが接続され第2電力路82にカソードが接続された寄生ダイオードを有する単一のFETによって構成されていてもよい。この場合、第1スイッチ部12は、自身がオン状態のときには第1電力路81と第2電力路82の間の通電を双方向に許容し、自身がオフ状態のときには自身を介して第2電力路82から第1電力路81へ電流が流れることを遮断し、第1電力路81から第2電力路82へ電流が流れることは許容する。いずれにしても、第1スイッチ部12がオフ状態のときには第2電力路82から第1電力路81へ電流が流れることは遮断される。
The first switch section 12 is composed of, for example, one or more FETs (Field Effect Transistors). The first switch section 12 corresponds to an example of a "switch section". The first switch section 12 is provided in the power path 80. The first switch section 12 may be configured by FETs arranged in opposite directions, or may be configured by another semiconductor switch that bidirectionally interrupts current flow. In this case, the first switch unit 12 allows bidirectional conduction between the first power path 81 and the second power path 82 when the first switch unit 12 is in the on state, and allows energization between the first power path 81 and the second power path 82 when the first switch unit 12 is in the off state. Energization between the second power path 82 is interrupted in both directions. The first switch section 12 may be configured by a single FET having a parasitic diode whose anode is connected to the first power path 81 and whose cathode is connected to the second power path 82 . In this case, the first switch section 12 allows bidirectional conduction of electricity between the first power path 81 and the second power path 82 when the first switch section 12 is in the on state, and allows electricity to flow in both directions between the first power path 81 and the second power path 82 when the first switch section 12 is in the off state. Current is blocked from flowing from the power path 82 to the first power path 81, and current is allowed to flow from the first power path 81 to the second power path 82. In any case, when the first switch section 12 is in the OFF state, the flow of current from the second power path 82 to the first power path 81 is blocked.
充電部20は、第1電力路81と蓄電部13との間に設けられる。充電部20は、第1電力路81を介して電源部10から供給される電力に基づいて、蓄電部13に電流を供給する充電動作を行う。図1の例では、充電部20は、第2スイッチ部21と、抵抗部22と、を有する。第2スイッチ部21は、互いに逆向きに配置された2つのFET(Field Effect Transistor)によって構成されてもよく、通電を双方向に遮断し得るその他の半導体スイッチによって構成されてもよい。抵抗部22は、例えば公知の抵抗器として構成されている。図1の例では、第2スイッチ部21と抵抗部22は、互いに直列に接続されている。第2スイッチ部21は、抵抗部22よりも電源部10側に配置される。蓄電部13の充電電圧が第1電力路81の電圧よりも低い場合において第2スイッチ部21をオン状態とするように充電動作が行われる場合に第1電力路81から蓄電部13に充電電流が流れる。第2スイッチ部21がオフ状態のときには充電が停止し、第1電力路81から導電路83に電流は流れず、導電路83から第1電力路81に電流は流れない。本実施形態の代表例では、電源部10が満充電時に第1電力路81に印加される出力電圧は、蓄電部13の満充電時に導電路83に印加される出力電圧よりも大きい。
The charging unit 20 is provided between the first power path 81 and the power storage unit 13. Charging unit 20 performs a charging operation of supplying current to power storage unit 13 based on the power supplied from power supply unit 10 via first power path 81 . In the example of FIG. 1, charging section 20 includes a second switch section 21 and a resistor section 22. The second switch unit 21 may be configured by two FETs (Field Effect Transistors) arranged in opposite directions, or may be configured by other semiconductor switches that can bidirectionally interrupt current flow. The resistance section 22 is configured, for example, as a known resistor. In the example of FIG. 1, the second switch section 21 and the resistance section 22 are connected in series with each other. The second switch section 21 is arranged closer to the power supply section 10 than the resistance section 22 is. When the charging voltage of the power storage unit 13 is lower than the voltage of the first power path 81 and a charging operation is performed to turn on the second switch unit 21, a charging current is transferred from the first power path 81 to the power storage unit 13. flows. When the second switch section 21 is in the off state, charging is stopped, current does not flow from the first power path 81 to the conductive path 83, and no current flows from the conductive path 83 to the first power path 81. In the representative example of this embodiment, the output voltage applied to the first power path 81 when the power supply section 10 is fully charged is higher than the output voltage applied to the conductive path 83 when the power storage section 13 is fully charged.
放電部30は、蓄電部13と第2電力路82との間に設けられる。放電部30は、蓄電部13から供給される電力に基づき、第2電力路82を介して負荷11側に電流を流すように放電動作を行う。放電部30は、導電路31、電圧変換回路32、及び遮断部14を有する。導電路31は、負荷11側へ放電電流を供給する経路をなす導電路である。導電路31の一端は、後述する導電路84を介して第2電力路82に電気的に接続されうる。電圧変換回路32の一端は、導電路83を介して蓄電部13に電気的に接続され、導電路83及び蓄電部13の正極に短絡する。電圧変換回路32の他端は、導電路31の他端に短絡した形態で電気的に接続される。電圧変換回路32は、蓄電部13に基づく入力電圧を昇圧又は降圧し、導電路31に出力電圧を印加するように電圧変換動作を行う。電圧変換回路32は、例えばDCDCコンバータ(例えば昇圧型のDCDCコンバータ)であり、蓄電部13に基づく入力電圧(具体的には導電路83の電圧)を昇圧して導電路31に出力電圧を印加する。放電部30は、電圧変換回路32が電圧変換動作を行うことで放電動作を行い、電圧変換回路32が電圧変換動作を停止することで放電動作を停止する。
The discharge unit 30 is provided between the power storage unit 13 and the second power path 82. The discharging unit 30 performs a discharging operation based on the power supplied from the power storage unit 13 so as to cause a current to flow to the load 11 side via the second power path 82. The discharge section 30 includes a conductive path 31, a voltage conversion circuit 32, and a cutoff section 14. The conductive path 31 is a conductive path that serves as a path for supplying discharge current to the load 11 side. One end of the conductive path 31 may be electrically connected to a second power path 82 via a conductive path 84, which will be described later. One end of voltage conversion circuit 32 is electrically connected to power storage unit 13 via conductive path 83 and short-circuited to conductive path 83 and the positive electrode of power storage unit 13 . The other end of the voltage conversion circuit 32 is electrically connected to the other end of the conductive path 31 in a short-circuited manner. Voltage conversion circuit 32 performs a voltage conversion operation to step up or step down the input voltage based on power storage unit 13 and apply an output voltage to conductive path 31 . The voltage conversion circuit 32 is, for example, a DC/DC converter (for example, a step-up DC/DC converter), and boosts the input voltage based on the power storage unit 13 (specifically, the voltage of the conductive path 83) and applies an output voltage to the conductive path 31. do. The discharge unit 30 performs a discharge operation when the voltage conversion circuit 32 performs a voltage conversion operation, and stops the discharge operation when the voltage conversion circuit 32 stops the voltage conversion operation.
導電路84は、第2電力路82と放電部30との間に設けられる。遮断部14は、導電路84と導電路31の間に設けられる。遮断部14は、例えば、互いに逆向きに配置されたFETによって構成されてもよく、通電を双方向に遮断するその他の半導体スイッチによって構成されてもよい。この場合、遮断部14は、自身がオン状態のときには第2電力路82と導電路31の間の通電(具体的には、第2電力路82と電圧変換回路32の間の通電)を双方向に許容し、自身がオフ状態のときには第2電力路82と導電路31の間の通電を双方向で遮断する。
The conductive path 84 is provided between the second power path 82 and the discharge section 30. The blocking section 14 is provided between the conductive path 84 and the conductive path 31. The cutoff section 14 may be configured by, for example, FETs arranged in opposite directions, or may be configured by other semiconductor switches that bidirectionally cut off current flow. In this case, when the cut-off unit 14 is in the ON state, the cut-off unit 14 prevents both the energization between the second power path 82 and the conductive path 31 (specifically, the energization between the second power path 82 and the voltage conversion circuit 32). When it is in the OFF state, the conduction between the second power path 82 and the conductive path 31 is interrupted in both directions.
代表例では、遮断部14は、自身がオフ状態のときに通電を双方向に遮断する構成をなす。この例では、遮断部14は、自身を介して導電路31から第2電力路82へ電流が流れることを遮断する遮断状態(オフ状態)と、許容する許容状態(オン状態)とに切り替わる。
In a typical example, the cutoff unit 14 is configured to cut off electricity in both directions when the cutoff unit 14 is in the OFF state. In this example, the cutoff unit 14 switches between a cutoff state (off state) in which the current is blocked from flowing from the conductive path 31 to the second power path 82 via itself, and an allowable state (on state) in which it is permitted.
第1電圧検出部51、第2電圧検出部52及び第3電圧検出部53は、それぞれ公知の電圧検出回路として構成されている。第1電圧検出部51は、電力路80(より具体的には第1電力路81)の電圧を検出し、電力路80の電圧を特定し得る電圧信号を制御部61に与える。第2電圧検出部52は、導電路83の電圧、つまり蓄電部13の出力電圧を特定し得る電圧信号を制御部61に与える。第3電圧検出部53は、導電路31の電圧を特定し得る電圧信号を制御部61に与える。
The first voltage detection section 51, the second voltage detection section 52, and the third voltage detection section 53 are each configured as a known voltage detection circuit. The first voltage detection section 51 detects the voltage of the power path 80 (more specifically, the first power path 81), and provides the control section 61 with a voltage signal that can specify the voltage of the power path 80. Second voltage detection section 52 provides control section 61 with a voltage signal that can specify the voltage of conductive path 83, that is, the output voltage of power storage section 13. The third voltage detection section 53 provides the control section 61 with a voltage signal that can specify the voltage of the conductive path 31.
車載用制御装置60は、充電部20による充電動作及び放電部30による放電動作を制御する装置である。車載用制御装置60は、制御部61を有する。
The in-vehicle control device 60 is a device that controls the charging operation by the charging section 20 and the discharging operation by the discharging section 30. The on-vehicle control device 60 includes a control section 61 .
制御部61は、充電部20及び放電部30を制御する装置である。以下で説明される代表例では、制御部61は、第1スイッチ部12及び遮断部14も制御する。制御部61は、例えばMCU(Micro Controller Unit)として構成される。制御部61には、第1電圧検出部51、第2電圧検出部52及び第3電圧検出部53から与えられる信号が入力される。制御部61は、これらの信号に基づいて電力路80(より具体的には第1電力路81)の電圧、蓄電部13の出力電圧、及び導電路31の電圧(つまり放電部30の出力電圧)を特定する。
The control unit 61 is a device that controls the charging unit 20 and the discharging unit 30. In the representative example described below, the control section 61 also controls the first switch section 12 and the cutoff section 14. The control unit 61 is configured as, for example, an MCU (Micro Controller Unit). Signals given from the first voltage detection section 51 , the second voltage detection section 52 , and the third voltage detection section 53 are input to the control section 61 . Based on these signals, the control unit 61 controls the voltage of the power path 80 (more specifically, the first power path 81), the output voltage of the power storage unit 13, and the voltage of the conductive path 31 (that is, the output voltage of the discharge unit 30). ).
制御部61は、充電部20を制御する場合、例えば充電部20の第2スイッチ部21に対して、第2スイッチ部21をオンさせるオン信号を周期的に出力するPWM信号を与え、このPWM信号のデューティを制御する。そして、制御部61は、第2スイッチ部21に与えるPWM信号を調整することにより、蓄電部13に与える充電電流を調整する。なお、制御部61による充電電流の制御方法はこの例に限定されず、公知の他の方法が用いられてもよい。
When controlling the charging unit 20, the control unit 61 provides the second switch unit 21 of the charging unit 20 with a PWM signal that periodically outputs an on signal that turns on the second switch unit 21, and Controls the signal duty. Control unit 61 then adjusts the charging current applied to power storage unit 13 by adjusting the PWM signal applied to second switch unit 21 . Note that the method of controlling the charging current by the control unit 61 is not limited to this example, and other known methods may be used.
制御部61は、例えば導電路31に印加される電圧を目標電圧とするように電圧変換回路32に電圧変換動作を行わせうる。
For example, the control unit 61 can cause the voltage conversion circuit 32 to perform a voltage conversion operation so that the voltage applied to the conductive path 31 becomes the target voltage.
次の説明は、車載用制御装置60の動作に関する。
制御部61は、予め定められた開始条件が成立した場合に、図2のようなバックアップ対応制御を開始する。上記開始条件は、例えば、車載システム100が搭載される車両の始動スイッチがオフ状態からオン状態に切り替わったことであってもよい。この場合、始動スイッチは、例えばイグニッションスイッチであってもよく、電気自動車に設けられるパワースイッチであってもよい。上記開始条件は、上述の条件以外であってもよく、例えば、外部のECU(Electronic Control Unit)から所定信号を受信したことであってもよく、その他の条件であってもよい。 The following explanation relates to the operation of the vehicle-mountedcontrol device 60.
Thecontrol unit 61 starts backup support control as shown in FIG. 2 when a predetermined start condition is satisfied. The start condition may be, for example, that the starting switch of the vehicle in which the in-vehicle system 100 is installed is switched from an off state to an on state. In this case, the starting switch may be, for example, an ignition switch or a power switch provided in the electric vehicle. The above-mentioned start condition may be other than the above-mentioned condition, for example, it may be that a predetermined signal is received from an external ECU (Electronic Control Unit), or it may be another condition.
制御部61は、予め定められた開始条件が成立した場合に、図2のようなバックアップ対応制御を開始する。上記開始条件は、例えば、車載システム100が搭載される車両の始動スイッチがオフ状態からオン状態に切り替わったことであってもよい。この場合、始動スイッチは、例えばイグニッションスイッチであってもよく、電気自動車に設けられるパワースイッチであってもよい。上記開始条件は、上述の条件以外であってもよく、例えば、外部のECU(Electronic Control Unit)から所定信号を受信したことであってもよく、その他の条件であってもよい。 The following explanation relates to the operation of the vehicle-mounted
The
制御部61は、図2の制御を開始した場合、ステップS1において電力路80の電圧(具体的には第1電力路81の電圧)が低電圧閾値Vth1以下であるか否かを判定する。低電圧閾値Vth1は、第1閾値に相当する。低電圧閾値Vth1は、0Vよりも大きい値である。低電圧閾値Vth1は、電源部10の満充電時の出力電圧よりも小さい値であり、後述される失陥判定電圧Vth2よりも大きい値である。
When the control unit 61 starts the control shown in FIG. 2, it determines in step S1 whether the voltage of the power path 80 (specifically, the voltage of the first power path 81) is equal to or lower than the low voltage threshold Vth1. The low voltage threshold Vth1 corresponds to a first threshold. The low voltage threshold Vth1 is a value greater than 0V. The low voltage threshold Vth1 is a value smaller than the output voltage of the power supply section 10 when fully charged, and a value larger than the failure determination voltage Vth2 described later.
制御部61は、ステップS1において第1電力路81の電圧が低電圧閾値Vth1以下でないと判定した場合、処理をステップS2に進める。制御部61は、ステップS2の開始直前に第1スイッチ部12がオン状態である場合にはステップS2では第1スイッチ部12のオン状態を維持し、ステップS2の開始直前に第1スイッチ部12がオフ状態であればステップS2では第1スイッチ部12をオン状態にする。第1電力路81の電圧が低電圧閾値Vth1以下でないときに第1スイッチ部12がオン状態であれば電源部10から負荷11へ電力が供給され得る。
When the control unit 61 determines in step S1 that the voltage of the first power path 81 is not equal to or lower than the low voltage threshold Vth1, the control unit 61 advances the process to step S2. If the first switch unit 12 is in the on state immediately before the start of step S2, the control unit 61 maintains the on state of the first switch unit 12 in step S2, and turns the first switch unit 12 on immediately before the start of step S2. If it is in the off state, the first switch section 12 is turned on in step S2. If the first switch unit 12 is in the on state when the voltage of the first power path 81 is not lower than the low voltage threshold Vth1, power can be supplied from the power supply unit 10 to the load 11.
制御部61は、ステップS2の後、処理をステップS3に進める。制御部61は、ステップS3の開始直前に放電部30による放電が停止した状態であればステップS3では放電停止状態を維持し、ステップS3の開始直前に放電部30による放電が行われている状態であればステップS3では放電停止状態に切り替える。放電停止状態とは、放電部30から第2電力路82へ電流が供給されない状態である。放電停止状態は、電圧変換回路32が導電路31に出力電圧を印加するように電圧変換動作を行っている状態で遮断部14がオフ状態(遮断状態)とされた状態であってもよい。放電停止状態は、電圧変換回路32が電圧変換動作を行わないように停止し、導電路83と導電路31とが電気的に遮断された状態であってもよい。
After step S2, the control unit 61 advances the process to step S3. The control unit 61 maintains the discharge stopped state in step S3 if the discharge by the discharge unit 30 has stopped immediately before the start of step S3, and maintains the state in which the discharge by the discharge unit 30 is being performed just before the start of step S3. If so, the state is switched to a discharge stop state in step S3. The discharge stop state is a state in which no current is supplied from the discharge section 30 to the second power path 82. The discharge stop state may be a state in which the voltage conversion circuit 32 performs a voltage conversion operation to apply an output voltage to the conductive path 31 and the cutoff section 14 is turned off (blocked state). The discharge stop state may be a state in which the voltage conversion circuit 32 is stopped so as not to perform a voltage conversion operation, and the conductive path 83 and the conductive path 31 are electrically disconnected.
制御部61は、ステップS3の後、処理をステップS4に進め、予め定められた充電条件が成立しているか否かを判定する。充電条件は、例えば、「蓄電部13の出力電圧(導電路83の電圧)が閾値電圧Vth4以下であること」である。閾値電圧Vth4は、第4閾値に相当する。閾値電圧Vth4は、0Vよりも大きい値である。閾値電圧Vth4は、例えば、低電圧閾値Vth1よりも低い値であることが望ましい。但し、閾値電圧Vth4は、低電圧閾値Vth1よりも高い値であってもよく、低電圧閾値Vth1と同じであってもよい。なお、充電条件は、上述の例に限定されず、例えば、「第1電力路81の電圧が導電路83の電圧よりも高いこと」であってもよい。以下で説明される代表例では、「導電路83の電圧が閾値電圧Vth4以下であること」が上記充電条件であり、閾値電圧Vth4は、低電圧閾値Vth1よりも低い値である。
After step S3, the control unit 61 advances the process to step S4 and determines whether a predetermined charging condition is satisfied. The charging condition is, for example, that "the output voltage of power storage unit 13 (voltage of conductive path 83) is equal to or lower than threshold voltage Vth4." Threshold voltage Vth4 corresponds to a fourth threshold. Threshold voltage Vth4 is a value larger than 0V. For example, it is desirable that the threshold voltage Vth4 is a value lower than the low voltage threshold Vth1. However, the threshold voltage Vth4 may be a higher value than the low voltage threshold Vth1, or may be the same as the low voltage threshold Vth1. Note that the charging condition is not limited to the above-mentioned example, and may be, for example, "the voltage of the first power path 81 is higher than the voltage of the conductive path 83." In the representative example described below, the charging condition is that "the voltage of the conductive path 83 is equal to or lower than the threshold voltage Vth4", and the threshold voltage Vth4 is a value lower than the low voltage threshold Vth1.
制御部61は、ステップS4において上記充電条件が成立していると判定した場合には処理をステップS5に進め、上記充電条件が成立していないと判定した場合には処理をステップS6に進める。制御部61は、ステップS5の開始直前に充電動作状態であればステップS5では充電動作状態を維持し、ステップS5の開始直前に充電停止状態であればステップS5では充電動作状態にする。制御部61は、ステップS6の開始直前に充電停止状態であればステップS6では充電停止状態を維持し、ステップS6の開始直前に充電動作状態であればステップS6では充電停止状態にする。図1の例では、充電動作状態は、第2スイッチ部21をオン状態で維持する状態である。充電停止状態は、第2スイッチ部21をオフ状態で維持する状態である。ステップS6で充電停止状態とする場合、図3のように充電動作が停止した状態で電源部10から負荷11に電力が供給され得る。充電動作状態では、第1電力路81の電圧が導電路83の電圧よりも高い場合に電源部10からの電力に基づく充電電流が蓄電部13に供給される。従って、ステップS5で充電動作状態とする場合、第1電力路81の電圧が導電路83の電圧よりも高い場合には、図4のように、電源部10から蓄電部13に電力が供給されつつ、負荷11に電力が供給され得る。制御部61は、ステップS5又はステップS6の後に処理をステップS1に戻す。
If the control unit 61 determines in step S4 that the charging condition is satisfied, the process proceeds to step S5, and if it is determined that the charging condition is not satisfied, the control unit 61 proceeds to step S6. If the control unit 61 is in the charging operation state immediately before the start of step S5, it maintains the charging operation state in step S5, and if it is in the charging stop state immediately before the start of step S5, it changes it to the charging operation state in step S5. If the control unit 61 is in the charging stopped state immediately before the start of step S6, it maintains the charging stopped state in step S6, and if it is in the charging operation state just before the start of step S6, it changes it to the charging stopped state in step S6. In the example of FIG. 1, the charging operation state is a state in which the second switch section 21 is maintained in the on state. The charging stop state is a state in which the second switch section 21 is maintained in an off state. When the charging is stopped in step S6, power can be supplied from the power supply unit 10 to the load 11 while the charging operation is stopped as shown in FIG. In the charging operation state, when the voltage of the first power path 81 is higher than the voltage of the conductive path 83, a charging current based on the power from the power supply section 10 is supplied to the power storage section 13. Therefore, when entering the charging operation state in step S5, if the voltage of the first power path 81 is higher than the voltage of the conductive path 83, power is not supplied from the power supply unit 10 to the power storage unit 13 as shown in FIG. At the same time, power can be supplied to the load 11. The control unit 61 returns the process to step S1 after step S5 or step S6.
制御部61は、ステップS1において第1電力路81の電圧が低電圧閾値Vth1以下であると判定した場合、処理をステップS7に進める。制御部61は、ステップS7の開始直前に第1スイッチ部12がオフ状態である場合にはステップS7では第1スイッチ部12のオフ状態を維持し、ステップS7の開始直前に第1スイッチ部12がオン状態であればステップS7では第1スイッチ部12をオフ状態にする。
If the control unit 61 determines in step S1 that the voltage of the first power path 81 is equal to or lower than the low voltage threshold Vth1, the control unit 61 advances the process to step S7. If the first switch unit 12 is in the off state immediately before the start of step S7, the control unit 61 maintains the off state of the first switch unit 12 in step S7, and switches the first switch unit 12 to the off state immediately before the start of step S7. If it is in the on state, the first switch section 12 is turned off in step S7.
制御部61は、ステップS7の後、処理をステップS8に進める。制御部61は、ステップS8の開始直前に放電動作状態であればステップS8ではその放電動作状態を維持し、ステップS8の開始直前に放電部30による放電が停止した状態であればステップS8では放電動作状態に切り替える。放電動作状態は、放電部30が放電動作を行っている状態であり、放電部30が蓄電部13からの電力に基づいて第2電力路82に放電電流を供給する状態である。具体的には、放電動作状態は、遮断部14がオン状態であって且つ電圧変換回路32が導電路31に目標電圧を印加するように電圧変換を行っている状態である。目標電圧は、低電圧閾値Vth1であってもよく、低電圧閾値Vth1よりも大きい値であってもよく、低電圧閾値Vth1よりも小さい値であってもよい。上記目標電圧は、例えば、失陥判定電圧Vth2よりも大きい値である。第1スイッチ部12がオフ状態で維持されているときに上記放電動作状態であれば、蓄電部13から供給される電力に基づいて電圧変換回路32から第2電力路82に電流が供給される。
After step S7, the control unit 61 advances the process to step S8. If the control unit 61 is in the discharging operation state immediately before the start of step S8, the control unit 61 maintains the discharging operation state in step S8, and if the discharge by the discharge unit 30 has stopped immediately before the start of step S8, the control unit 61 maintains the discharging operation state in step S8. Switch to operating state. The discharging operation state is a state in which the discharging unit 30 is performing a discharging operation, and is a state in which the discharging unit 30 supplies a discharging current to the second power path 82 based on the power from the power storage unit 13. Specifically, the discharging operation state is a state in which the cutoff section 14 is on and the voltage conversion circuit 32 is converting the voltage so as to apply a target voltage to the conductive path 31. The target voltage may be a low voltage threshold Vth1, a value greater than the low voltage threshold Vth1, or a value smaller than the low voltage threshold Vth1. The target voltage is, for example, a value larger than the failure determination voltage Vth2. If the first switch unit 12 is in the discharge operation state while being maintained in the off state, current is supplied from the voltage conversion circuit 32 to the second power path 82 based on the power supplied from the power storage unit 13. .
制御部61は、ステップS8の後、処理をステップS9に進め、上記充電条件が成立しているか否かを判定する。制御部61は、ステップS9において上記充電条件が成立していると判定した場合には処理をステップS10に進め、上記充電条件が成立していないと判定した場合には処理をステップS11に進める。制御部61は、ステップS10の開始直前に充電動作状態であればステップS10では充電動作状態を維持し、ステップS10の開始直前に充電停止状態であればステップS10では充電動作状態にする。制御部61は、ステップS11の開始直前に充電停止状態であればステップS11では充電停止状態を維持し、ステップS11の開始直前に充電動作状態であればステップS11では充電停止状態にする。このように代表例では、制御部61は、電力路80(より具体的には第1電力路81)の電圧が低電圧閾値Vth1以下である場合に放電部30に放電動作を行わせ、蓄電部13の出力電圧(導電路83の電圧)が閾値電圧Vth4以下である場合に充電部20に充電動作を行わせる。制御部61が充電部20に充電動作を行わせつつ放電部30に放電動作を行わせる制御が第1制御の一例に相当する。ステップS10にて充電動作状態とする場合、第1電力路81の電圧が導電路83の電圧よりも高い場合には、図5のように、電源部10から蓄電部13側に電力が供給されつつ、蓄電部13側からの電力に基づいて負荷11に電力が供給され得る。
After step S8, the control unit 61 advances the process to step S9 and determines whether the above charging condition is satisfied. If the control unit 61 determines in step S9 that the charging condition is satisfied, the process proceeds to step S10, and if it is determined that the charging condition is not satisfied, the control unit 61 advances the process to step S11. If the control unit 61 is in the charging operation state immediately before the start of step S10, it maintains the charging operation state in step S10, and if it is in the charging stop state immediately before the start of step S10, it changes it to the charging operation state in step S10. If the control unit 61 is in the charging stopped state immediately before the start of step S11, it maintains the charging stopped state in step S11, and if it is in the charging operation state just before the start of step S11, it puts it in the charging stopped state in step S11. In this typical example, the control unit 61 causes the discharge unit 30 to perform a discharging operation when the voltage of the power path 80 (more specifically, the first power path 81) is equal to or lower than the low voltage threshold Vth1, and When the output voltage of section 13 (voltage of conductive path 83) is equal to or lower than threshold voltage Vth4, charging section 20 is caused to perform a charging operation. Control in which the control unit 61 causes the charging unit 20 to perform a charging operation and the discharging unit 30 to perform a discharging operation corresponds to an example of the first control. When entering the charging operation state in step S10, if the voltage of the first power path 81 is higher than the voltage of the conductive path 83, power is not supplied from the power supply unit 10 to the power storage unit 13 side as shown in FIG. At the same time, power can be supplied to the load 11 based on the power from the power storage unit 13 side.
制御部61は、ステップS8で放電動作状態とし且つステップS10で充電動作状態とする場合、放電部30による放電動作と充電部20による充電動作とを並行して行わせる期間において、充電部20が蓄電部13に向けて供給する電力が、放電部30が放電によって供給する電力以上となるように制御する。具体的な制御方法は限定されない。例えば、制御部61は、放電部30が放電によって供給する単位時間当たりの電力を算出し、充電部20が蓄電部13に向けて供給する単位時間当たりの電力がその算出値以上となるように充電部20に充電動作を行わせてもよい。「放電部30が放電によって供給する単位時間当たりの電力」は、例えば導電路31の電圧と、導電路31を流れる電流と、に基づいて算出されてもよい。「充電部20が蓄電部13に向けて供給する単位時間当たりの電力」は、例えば充電部20と導電路83との間の経路の電圧と、その経路を流れる電流と、に基づいて算出されてもよい。
When setting the discharging operation state in step S8 and charging operation state in step S10, the control unit 61 controls the charging unit 20 during a period in which the discharging operation by the discharging unit 30 and the charging operation by the charging unit 20 are performed in parallel. Control is performed so that the power supplied to power storage unit 13 is greater than or equal to the power supplied by discharge unit 30 through discharge. The specific control method is not limited. For example, the control unit 61 calculates the power per unit time that the discharge unit 30 supplies by discharging, and controls the power so that the power per unit time that the charging unit 20 supplies to the power storage unit 13 is equal to or greater than the calculated value. The charging unit 20 may be caused to perform a charging operation. “The power per unit time that the discharge unit 30 supplies by discharging” may be calculated based on, for example, the voltage of the conductive path 31 and the current flowing through the conductive path 31. “Power per unit time that charging unit 20 supplies to power storage unit 13” is calculated based on, for example, the voltage of the path between charging unit 20 and conductive path 83 and the current flowing through that path. You can.
制御部61は、ステップS10又はステップS11の後、処理をステップS12に進め、ステップS12において電力路80の電圧(具体的には第1電力路81の電圧)が失陥判定電圧Vth2以下であるか否かを判定する。失陥判定電圧Vth2は、第2閾値に相当する。失陥判定電圧Vth2は、0Vよりも大きい値である。失陥判定電圧Vth2は、低電圧閾値Vth1よりも小さい値である。失陥判定電圧Vth2は、閾値電圧Vth4よりも小さい値である。制御部61は、ステップS12において、第1電力路81の電圧が失陥判定電圧Vth2以下であると判定した場合には処理をステップS13に進め、第1電力路81の電圧が失陥判定電圧Vth2以下でないと判定した場合には処理をステップS1に戻す。
After step S10 or step S11, the control unit 61 advances the process to step S12, and in step S12, the voltage of the power path 80 (specifically, the voltage of the first power path 81) is equal to or lower than the failure determination voltage Vth2. Determine whether or not. The failure determination voltage Vth2 corresponds to a second threshold value. Failure determination voltage Vth2 has a value larger than 0V. Failure determination voltage Vth2 is a value smaller than low voltage threshold Vth1. Failure determination voltage Vth2 is a value smaller than threshold voltage Vth4. If the control unit 61 determines in step S12 that the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2, the process proceeds to step S13, and the voltage of the first power path 81 is equal to or lower than the failure determination voltage. If it is determined that it is not less than Vth2, the process returns to step S1.
制御部61は、処理をステップS13に進める場合、ステップS13において予め定められた失陥判定条件を満たすか否かを判定する。失陥判定条件は、例えば、「第1電力路81の電圧が失陥判定電圧Vth2以下である時間が一定時間継続したこと」である。制御部61は、ステップS13において、失陥判定条件を満たすと判定した場合には処理をステップS14に進め、失陥判定条件を満たさないと判定した場合には処理をステップS1に戻す。本実施形態では、制御部61は、電力路80の電圧(具体的には第1電力路81の電圧)が失陥判定電圧Vth2以下である電圧条件を満たし且つ当該電圧条件とは異なる失陥判定条件を満たさない場合(ステップS13でNoと判定する場合)において、充電条件が成立している場合に上記第1制御を実行する。具体的には、ステップS10の直後にステップS12にてYesと判定され且つステップS13でNoと判定される場合に第1制御を行い、第1制御が行われると、図5と同様に電力が供給される。
When proceeding to step S13, the control unit 61 determines whether a predetermined failure determination condition is satisfied in step S13. The failure determination condition is, for example, that "the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2 for a certain period of time". In step S13, if the control unit 61 determines that the failure determination condition is satisfied, the process proceeds to step S14, and if it is determined that the failure determination condition is not satisfied, the control unit 61 returns the process to step S1. In the present embodiment, the control unit 61 is configured to detect a failure that satisfies a voltage condition in which the voltage of the power path 80 (specifically, the voltage of the first power path 81) is equal to or lower than the failure determination voltage Vth2 and is different from the voltage condition. When the determination condition is not satisfied (No in step S13), the first control is executed when the charging condition is satisfied. Specifically, the first control is performed when the determination is Yes in step S12 immediately after step S10 and the determination is No in step S13, and when the first control is performed, the power is reduced as in FIG. Supplied.
制御部61は、ステップS14の開始直前に充電停止状態である場合にはステップS14では充電停止状態を維持し、ステップS14の開始直前に充電動作状態であればステップS14では充電停止状態にする。「充電部20に充電動作を行わせずに放電部30に放電動作を行わせる制御」が第2制御の一例に相当する。代表例では、制御部61は、第1電力路81の電圧が失陥判定電圧Vth2以下である電圧条件を満たした後、第1電力路81の電圧が失陥判定電圧Vth2以下である時間が一定時間継続した場合にステップS14において第2制御を実行し、充電部20に充電動作を停止させ、放電部30に放電動作を行わせ、第1スイッチ部12をオフ状態で維持する。このようにステップS14において第2制御が行われると、図6のように電源部10から負荷11への電力供給が停止した状態且つ電源部10から蓄電部13への電力供給が停止した状態で蓄電部13から負荷11へ電力が供給される。
If the control unit 61 is in the charging stopped state immediately before the start of step S14, it maintains the charging stopped state in step S14, and if it is in the charging operation state just before the start of step S14, it changes it to the charging stopped state in step S14. “Control that causes the discharging unit 30 to perform a discharging operation without causing the charging unit 20 to perform a charging operation” corresponds to an example of the second control. In a typical example, the control unit 61 controls the time period during which the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2 after the voltage of the first power route 81 satisfies the voltage condition that the voltage of the first power route 81 is equal to or lower than the failure determination voltage Vth2. If it continues for a certain period of time, the second control is executed in step S14, causing the charging section 20 to stop the charging operation, causing the discharging section 30 to perform the discharging operation, and maintaining the first switch section 12 in the off state. When the second control is performed in step S14 in this way, in a state where the power supply from the power supply unit 10 to the load 11 is stopped and in a state where the power supply from the power supply unit 10 to the power storage unit 13 is stopped, as shown in FIG. Electric power is supplied from power storage unit 13 to load 11 .
このようにステップS14では、制御部61は、放電動作を行いつつ充電動作を停止させるように制御を行うが、充電動作の停止に加えて又は充電動作の停止に代えて、外部装置(例えば、車載用制御装置60とは異なるECUなど)に対して電源部10が失陥したことを報知する報知信号を出力してもよい。この例では、上記外部装置は、上記報知信号を受信した場合に音声や表示などによって異常の報知(例えば、電源失陥が生じたことの報知)を車室内の者に対して行ってもよい。
As described above, in step S14, the control unit 61 performs control to stop the charging operation while performing the discharging operation, but in addition to or instead of stopping the charging operation, the control unit 61 performs control to stop the charging operation, but in addition to or instead of stopping the charging operation, A notification signal may be output to notify an ECU (such as an ECU different from the on-vehicle control device 60) that the power supply section 10 has failed. In this example, when the external device receives the notification signal, the external device may notify a person in the vehicle of an abnormality (for example, notification that a power failure has occurred) by audio or display. .
上述された代表例では、制御部61は、「第1電力路81の電圧が失陥判定電圧Vth2以下である電圧条件」を満たした後、第1電力路81の電圧が失陥判定電圧Vth2以下である時間が一定時間経過するまで(即ち、ステップS1及びステップS12でYes且つステップS13でNoの判定が繰り返される間)は第1スイッチ部12をオフ状態で維持する。従って、失陥の懸念がある期間において、第1電力路81と第2電力路82を電気的に遮断しておくことができる。
In the representative example described above, the control unit 61 causes the voltage of the first power path 81 to become the failure determination voltage Vth2 after satisfying the "voltage condition that the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2". The first switch section 12 is maintained in the OFF state until a certain period of time has elapsed (that is, while the determinations of Yes in steps S1 and S12 and No in step S13 are repeated). Therefore, the first power path 81 and the second power path 82 can be electrically cut off during a period when there is a risk of failure.
代表例では、制御部61は、「第1電力路81の電圧が失陥判定電圧Vth2以下である」という電圧条件を満たした後、第1電力路81が失陥判定電圧Vth2以下である時間が一定時間経過する前に第1電力路81の電圧が失陥判定電圧Vth2を超えたことを条件として第1スイッチ部12をオン状態とする。例えば、ステップS1及びステップS12でYes且つステップS13でNoの判定が繰り返される間において第1電力路81の電圧が低電圧閾値Vth1を超えた場合にはステップS2において第1スイッチ部12をオン状態にする。従って、一時的に第1電力路81の電圧が失陥判定電圧Vth2を下回っても、上記一定時間を経過する前に第1電力路81の電圧が低電圧閾値Vth1を超えるまで復帰した場合には、通常動作に戻すことができる。
In a typical example, the control unit 61 determines the time period during which the first power path 81 is equal to or less than the failure determination voltage Vth2 after satisfying the voltage condition that "the voltage of the first power route 81 is equal to or less than the failure determination voltage Vth2." The first switch section 12 is turned on on the condition that the voltage of the first power path 81 exceeds the failure determination voltage Vth2 before a certain period of time has elapsed. For example, if the voltage of the first power path 81 exceeds the low voltage threshold Vth1 while the determinations of Yes in steps S1 and S12 and No in step S13 are repeated, the first switch unit 12 is turned on in step S2. Make it. Therefore, even if the voltage of the first power path 81 temporarily falls below the failure determination voltage Vth2, if the voltage of the first power path 81 returns to exceed the low voltage threshold Vth1 before the above-mentioned certain period of time elapses, can be returned to normal operation.
以上の説明は、車載用制御装置60の効果に関する。
車載用制御装置60は、電力路80の電圧が失陥判定電圧Vth2以下である場合に、失陥判定条件を満たさなくても蓄電部13を放電させて早期に負荷11に電力を供給することができる。従って、この車載用制御装置60は、電源失陥時に負荷11への電力供給が途絶えるリスクを抑えることができる。一方で、電力路80の電圧が失陥判定電圧Vth2以下である場合、失陥判定条件を満たさなければ充電部20による充電動作を継続させることができるため、仮にノイズ等に起因して一時的に電力路80の電圧が低下することで蓄電部13の放電が増えても、蓄電部13の充電度合いの低下を抑えることができる。 The above description relates to the effects of the in-vehicle control device 60.
When the voltage of thepower path 80 is equal to or lower than the failure determination voltage Vth2, the vehicle-mounted control device 60 discharges the power storage unit 13 and supplies power to the load 11 early even if the failure determination condition is not satisfied. Can be done. Therefore, this in-vehicle control device 60 can suppress the risk of interruption of power supply to the load 11 in the event of a power failure. On the other hand, if the voltage of the power path 80 is equal to or lower than the failure determination voltage Vth2, the charging operation by the charging unit 20 can be continued unless the failure determination conditions are met, so even if the voltage temporarily due to noise etc. Even if the discharge of power storage unit 13 increases due to a decrease in the voltage of power path 80, a decrease in the degree of charge of power storage unit 13 can be suppressed.
車載用制御装置60は、電力路80の電圧が失陥判定電圧Vth2以下である場合に、失陥判定条件を満たさなくても蓄電部13を放電させて早期に負荷11に電力を供給することができる。従って、この車載用制御装置60は、電源失陥時に負荷11への電力供給が途絶えるリスクを抑えることができる。一方で、電力路80の電圧が失陥判定電圧Vth2以下である場合、失陥判定条件を満たさなければ充電部20による充電動作を継続させることができるため、仮にノイズ等に起因して一時的に電力路80の電圧が低下することで蓄電部13の放電が増えても、蓄電部13の充電度合いの低下を抑えることができる。 The above description relates to the effects of the in-
When the voltage of the
車載用制御装置60は、電力路80の電圧が失陥判定電圧Vth2以下である時間が一定時間継続した場合、即ち、電源失陥の可能性が一層高まった場合には第2制御を実行し、充電動作を停止させることで、電力路80の状態に起因する影響が充電動作によって蓄電部13側に及ぶことを抑えることができる。例えば、第1電力路81に地絡が発生することで失陥判定電圧Vth2以下に低下した場合、充電動作の時間が長くなりすぎると、蓄電部13から地絡箇所への放電によって蓄電部13に蓄積されたエネルギーが消失する懸念があるが、失陥判定電圧Vth2以下である時間が一定時間継続した場合に充電動作を停止させれば、その後の上記放電は抑えられる。
The in-vehicle control device 60 executes the second control when the voltage of the power line 80 continues to be equal to or lower than the failure determination voltage Vth2 for a certain period of time, that is, when the possibility of a power failure increases further. By stopping the charging operation, it is possible to suppress the influence caused by the state of the power path 80 from reaching the power storage unit 13 side due to the charging operation. For example, if a ground fault occurs in the first power path 81 and the failure determination voltage drops below Vth2, if the charging operation time becomes too long, the power storage unit 13 will be discharged from the power storage unit 13 to the ground fault location. There is a concern that the energy stored in the battery will disappear, but if the charging operation is stopped when the voltage is below the failure determination voltage Vth2 for a certain period of time, the subsequent discharge can be suppressed.
車載用制御装置60は、第1電力路81の電圧が失陥判定電圧Vth2以下となった場合に、失陥判定電圧Vth2以下である時間が一定時間経過するまでは第1スイッチ部12(スイッチ部)をオフ状態にして第2電力路82から第1電力路81へと電流が流れないようにすることができる。従って、もし電源失陥によって第1電力路81の電圧が失陥判定電圧Vth2以下となっている場合には、蓄電部13から負荷11に放電電流を供給しつつ放電電流が第1電力路81に回り込むことを確実に遮断することができる。一方で、車載用制御装置60は、上記電圧条件を満たした後、第1電力路81が失陥判定電圧Vth2以下である時間が一定時間経過する前に再び失陥判定電圧Vth2を超えた場合に、第1スイッチ部12をオン状態に切り替えることで電源部10から負荷11に電力を供給するように復帰することができる。従って、ノイズ等に起因して第1電力路81の電圧が一時的に失陥判定電圧Vth2以下になった場合でも、早めに電圧が戻った場合には速やかに正常動作に復帰し得る。そして、このような一時的な電圧低下に基づく放電動作が繰り返されても、その都度充電動作が行われやすいため、蓄電部13の充電度合いの低下が抑えられる。更に、車載用制御装置60は、上記電圧条件を満たした後、第1電力路81が失陥判定電圧以下である時間が一定時間経過した場合には第1スイッチ部12をオフ状態とし、充電動作を停止させるため、電源失陥の可能性が一層高まった場合には、第1電力路81の状態に起因する影響が第2電力路82側に及ぶことを抑えつつ、蓄電部13に基づく放電電流を負荷11に供給することができる。
When the voltage of the first power path 81 becomes equal to or lower than the failure determination voltage Vth2, the in-vehicle control device 60 controls the first switch unit 12 (switch part) can be turned off to prevent current from flowing from the second power path 82 to the first power path 81. Therefore, if the voltage of the first power path 81 is lower than the failure determination voltage Vth2 due to a power supply failure, the discharge current is supplied to the load 11 from the power storage unit 13 and the discharge current is supplied to the first power path 81. It is possible to reliably prevent it from going around. On the other hand, if the on-vehicle control device 60 exceeds the failure determination voltage Vth2 again before the time period during which the first power path 81 is equal to or less than the failure determination voltage Vth2 has elapsed for a certain period of time after satisfying the above voltage condition, Then, by switching the first switch section 12 to the on state, the power supply section 10 can return to supplying power to the load 11. Therefore, even if the voltage of the first power path 81 temporarily falls below the failure determination voltage Vth2 due to noise or the like, normal operation can be quickly restored if the voltage returns quickly. Even if the discharging operation based on such a temporary voltage drop is repeated, since the charging operation is likely to be performed each time, a decrease in the degree of charging of the power storage unit 13 can be suppressed. Furthermore, after the voltage condition is satisfied, if a certain period of time has elapsed during which the first power path 81 is below the failure determination voltage, the in-vehicle control device 60 turns off the first switch unit 12 and stops charging. In order to stop the operation, if the possibility of power failure increases further, the power storage unit 13 A discharge current can be supplied to the load 11.
<第2実施形態>
第2実施形態の車載用制御装置60は、失陥判定条件以外は第1実施形態の車載用制御装置60と同一である。第2実施形態の車載用制御装置60が用いられる車載システム100は、失陥判定条件以外は第1実施形態の車載用制御装置60が用いられる車載システム100と同一であり、図1のような構成をなす。また、第2実施形態の車載用制御装置60の制御部61が行うバックアップ対応制御は、ステップS13の具体的判定方法以外は第1実施形態の車載用制御装置60が行うバックアップ対応制御と同一である。従って、以下では、図1、図2が参照されつつ第2実施形態の車載用制御装置60が説明される。 <Second embodiment>
The vehicle-mountedcontrol device 60 of the second embodiment is the same as the vehicle-mounted control device 60 of the first embodiment except for the failure determination conditions. The in-vehicle system 100 in which the in-vehicle control device 60 of the second embodiment is used is the same as the in-vehicle system 100 in which the in-vehicle control device 60 of the first embodiment is used except for the failure determination conditions, and the in-vehicle system 100 uses the in-vehicle control device 60 of the first embodiment. make up a composition. Further, the backup support control performed by the control unit 61 of the in-vehicle control device 60 of the second embodiment is the same as the backup support control performed by the in-vehicle control device 60 of the first embodiment, except for the specific determination method in step S13. be. Therefore, below, the vehicle-mounted control device 60 of the second embodiment will be explained with reference to FIGS. 1 and 2.
第2実施形態の車載用制御装置60は、失陥判定条件以外は第1実施形態の車載用制御装置60と同一である。第2実施形態の車載用制御装置60が用いられる車載システム100は、失陥判定条件以外は第1実施形態の車載用制御装置60が用いられる車載システム100と同一であり、図1のような構成をなす。また、第2実施形態の車載用制御装置60の制御部61が行うバックアップ対応制御は、ステップS13の具体的判定方法以外は第1実施形態の車載用制御装置60が行うバックアップ対応制御と同一である。従って、以下では、図1、図2が参照されつつ第2実施形態の車載用制御装置60が説明される。 <Second embodiment>
The vehicle-mounted
第2実施形態の車載用制御装置60は、制御部61が図2のバックアップ対応制御を行う場合、ステップS13において「充電部20側から電力路80側に電流が流れること」を失陥判定条件とする。つまり、制御部61は、ステップS13において「充電部20側から電力路80側に電流が流れている」と判断した場合には、ステップS13にて失陥判定条件を満たすと判定し、処理をステップS14に進める。一方、制御部61は、ステップS13において「充電部20側から電力路80側に電流が流れていない」と判断した場合には、ステップS13にて失陥判定条件を満たさないと判定し、処理をステップS1に戻す。制御部61は、ステップS13にて失陥判定条件を満たすと判定する場合(即ち、充電部20側から電力路80側に電流が流れる場合)にステップS14において上述の第2制御を実行する。
In the vehicle-mounted control device 60 of the second embodiment, when the control unit 61 performs the backup control shown in FIG. shall be. That is, when the control unit 61 determines in step S13 that "current is flowing from the charging unit 20 side to the power path 80 side", it determines that the failure determination condition is satisfied in step S13, and executes the process. Proceed to step S14. On the other hand, if the control unit 61 determines in step S13 that "current is not flowing from the charging unit 20 side to the power line 80 side", it determines that the failure determination condition is not satisfied in step S13, and performs processing. Return to step S1. When the control unit 61 determines in step S13 that the failure determination condition is satisfied (that is, when the current flows from the charging unit 20 side to the power path 80 side), the control unit 61 executes the above-described second control in step S14.
充電部20側から電力路80側に電流が流れているか否かの判定は、様々な方法で行われ得る。例えば、第2スイッチ部21がオン状態のときに抵抗部22の両端の電圧をそれぞれ検出し、抵抗部22において第1電力路81側の端子の電圧が導電路83側の端子の電圧よりも低い場合に、制御部61が「充電部20側から電力路80側に電流が流れている」と判定してもよい。或いは、第2スイッチ部21及び抵抗部22が直列に設けられた経路において第2スイッチ部21及び抵抗部22に対して直列に接続される構成で電流センサが設けられていてもよい。この場合、制御部61は、上記電流センサの検出値を取得し、充電部20から第1電力路81に向かう方向に一定値以上の電流が流れている場合に「充電部20側から電力路80側に電流が流れている」と判定してもよい。
Determination as to whether or not current is flowing from the charging unit 20 side to the power path 80 side can be performed using various methods. For example, when the second switch section 21 is in the on state, the voltages at both ends of the resistor section 22 are detected, and in the resistor section 22, the voltage at the terminal on the first power path 81 side is higher than the voltage at the terminal on the conductive path 83 side. If the current is low, the control unit 61 may determine that “current is flowing from the charging unit 20 side to the power path 80 side”. Alternatively, the current sensor may be provided in a configuration in which it is connected in series to the second switch section 21 and the resistance section 22 in a path in which the second switch section 21 and the resistance section 22 are provided in series. In this case, the control unit 61 acquires the detected value of the current sensor, and when a current of a certain value or more is flowing in the direction from the charging unit 20 toward the first power path 81, the control unit 61 performs “from the charging unit 20 side to the power path 81”. It may be determined that the current is flowing to the 80 side.
第2実施形態の車載用制御装置60でも、電力路80に第1スイッチ部12(スイッチ部)が設けられる。充電部20は、第1電力路81(電力路80における第1スイッチ部12よりも電源部10側の電力路)から供給される電力に基づいて蓄電部13に電流を供給する。そして、放電部30は、第2電力路82(電力路80における第1スイッチ部12よりも負荷11側の電力路)に電流を流すように放電動作を行う。そして、第1スイッチ部12がオン状態のときには第1電力路81と第2電力路82の間の通電が双方向に許容され、第1スイッチ部12がオフ状態のときには少なくとも第2電力路82から第1電力路81への通電が遮断される。なお、第1スイッチ部12がオフ状態のときには第1電力路81と第2電力路82の間の通電が双方向に遮断されることが望ましいが、第1スイッチ部12がオフ状態のときに第1電力路81から第2電力路82への通電が許容される構成であってもよい。
In the vehicle-mounted control device 60 of the second embodiment, the first switch section 12 (switch section) is also provided in the power path 80. Charging unit 20 supplies current to power storage unit 13 based on power supplied from first power path 81 (power path on power path 80 closer to power supply unit 10 than first switch unit 12). Then, the discharging section 30 performs a discharging operation so as to cause current to flow through the second power path 82 (the power path on the side of the load 11 rather than the first switch section 12 in the power path 80). When the first switch section 12 is in the on state, electricity is allowed to pass between the first power path 81 and the second power path 82 in both directions, and when the first switch section 12 is in the off state, at least the second power path 82 energization to the first power path 81 is cut off. Note that when the first switch section 12 is in the off state, it is desirable that the current flow between the first power path 81 and the second power path 82 is interrupted in both directions; however, when the first switch section 12 is in the off state, A configuration may be adopted in which energization from the first power path 81 to the second power path 82 is permitted.
第2実施形態では、制御部61は、上述の電圧条件(第1電力路81の電圧が失陥判定電圧Vth2以下である電圧条件)を満たし且つ充電部20側から電力路80側に電流が流れないことを条件として第1制御を実行し得る。具体的には、制御部61は、ステップS10の後、ステップS12にてYesと判定し、ステップS13にてNoと判定する場合、第1スイッチ部12をオフ状態とし、充電部20に充電動作を行わせつつ放電部30に放電動作を行わせるように第1制御を実行する。一方、制御部61は、第1電力路81の電圧が失陥判定電圧Vth2以下である電圧条件を満たし且つ充電部20側から電力路80側に電流が流れる場合には第1スイッチ部12をオフ状態としつつ第2制御を実行する。具体的には、制御部61は、ステップS12にてYesと判定し、ステップS13にてYesと判定する場合、第1スイッチ部12をオフ状態としつつ、充電部20に充電動作を行わせずに放電部30に放電動作を行わせるように第2制御を実行する。
In the second embodiment, the control unit 61 satisfies the above-mentioned voltage condition (voltage condition that the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2), and the current flows from the charging unit 20 side to the power path 80 side. The first control can be executed on the condition that no flow occurs. Specifically, after step S10, when determining Yes in step S12 and determining No in step S13, the control unit 61 turns off the first switch unit 12 and causes the charging unit 20 to perform the charging operation. The first control is executed to cause the discharge unit 30 to perform a discharge operation while causing the discharge unit 30 to perform a discharge operation. On the other hand, the control unit 61 controls the first switch unit 12 when the voltage of the first power path 81 satisfies the voltage condition that the voltage is equal to or lower than the failure determination voltage Vth2 and the current flows from the charging unit 20 side to the power path 80 side. The second control is executed while being in the off state. Specifically, when determining Yes in step S12 and Yes in step S13, the control unit 61 turns off the first switch unit 12 and does not cause the charging unit 20 to perform a charging operation. The second control is executed to cause the discharge section 30 to perform a discharge operation.
本実施形態に係る車載用制御装置60も、第1電力路81の電圧が失陥判定電圧Vth2以下である場合、失陥判定条件を満たさなければ充電部20による充電動作を継続させることができるため、仮にノイズ等に起因して蓄電部13の放電が増えても、蓄電部13の充電度合いの低下を抑えることができる。一方で、車載用制御装置60は、第1電力路81の電圧が失陥判定電圧Vth2以下である場合において、充電部20側から電力路80側に電流が流れる場合には第2制御を実行し、充電動作を停止させる。車載用制御装置60は、このような制御により、電力路80の状態に起因する影響が充電動作によって蓄電部13側に及ぶことを抑えることができる。例えば、電力路80において地絡が発生し、地絡に起因して電力路80の電圧が失陥判定電圧Vth2以下となった場合、充電動作を継続すると大きな電流が地絡箇所に流れ込む懸念があるが、充電部20側から電力路80側に電流が流れる場合に第2制御を実行すれば、このような問題は生じにくい。
The in-vehicle control device 60 according to the present embodiment can also allow the charging unit 20 to continue the charging operation if the failure determination condition is not satisfied when the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2. Therefore, even if the amount of discharge of power storage unit 13 increases due to noise or the like, a decrease in the degree of charging of power storage unit 13 can be suppressed. On the other hand, when the voltage of the first power path 81 is equal to or lower than the failure determination voltage Vth2, the vehicle-mounted control device 60 executes the second control when a current flows from the charging unit 20 side to the power path 80 side. and stop charging operation. Through such control, in-vehicle control device 60 can suppress the influence caused by the state of power path 80 from reaching power storage unit 13 due to the charging operation. For example, if a ground fault occurs in the power line 80 and the voltage of the power line 80 becomes equal to or lower than the failure determination voltage Vth2 due to the ground fault, there is a risk that a large current will flow into the ground fault location if the charging operation is continued. However, if the second control is executed when the current flows from the charging unit 20 side to the power path 80 side, such a problem is unlikely to occur.
本実施形態の車載用制御装置60は、第1電力路81の電圧が失陥判定電圧Vth2以下となった場合、充電部20側から電力路80側に電流が流れないことを条件として第1制御を実行する。従って、第1電力路81の電圧が失陥判定電圧Vth2以下となった場合、地絡の可能性が低いことを確認した上で充電動作を行うことができる。一方で、第1電力路81の電圧が失陥判定電圧Vth2以下となった場合において充電部20側から電力路80側に電流が流れる場合、即ち、地絡の可能性が高い場合には、第1スイッチ部12をオフ状態にして第2制御を実行し、第2電力路82から第1電力路81への電流の流れ込み及び蓄電部13から第1電力路81への流れ込みを防ぎつつ、蓄電部13に基づく放電電流を負荷11に供給することができる。
The in-vehicle control device 60 of this embodiment operates on the condition that when the voltage of the first power path 81 becomes equal to or lower than the failure determination voltage Vth2, no current flows from the charging unit 20 side to the power path 80 side. Execute control. Therefore, when the voltage of the first power path 81 becomes equal to or lower than the failure determination voltage Vth2, the charging operation can be performed after confirming that the possibility of a ground fault is low. On the other hand, if the voltage of the first power path 81 becomes equal to or lower than the failure determination voltage Vth2 and current flows from the charging unit 20 side to the power path 80 side, that is, if there is a high possibility of a ground fault, Executing the second control by turning off the first switch unit 12 and preventing current from flowing from the second power path 82 to the first power path 81 and from flowing from the power storage unit 13 to the first power path 81, A discharge current based on power storage unit 13 can be supplied to load 11 .
<第3実施形態>
第3実施形態の車載用制御装置60は、失陥判定条件以外は第1実施形態の車載用制御装置60と同一である。第3実施形態の車載用制御装置60が用いられる車載システム100は、失陥判定条件以外は第1実施形態の車載用制御装置60が用いられる車載システム100と同一であり、図1のような構成をなす。また、第3実施形態の車載用制御装置60の制御部61が行うバックアップ対応制御は、ステップS13の具体的判定方法以外は第1実施形態の車載用制御装置60が行うバックアップ対応制御と同一である。従って、以下では、図1、図2が参照されつつ第3実施形態の車載用制御装置60が説明される。 <Third embodiment>
The vehicle-mountedcontrol device 60 of the third embodiment is the same as the vehicle-mounted control device 60 of the first embodiment except for the failure determination conditions. The in-vehicle system 100 in which the in-vehicle control device 60 of the third embodiment is used is the same as the in-vehicle system 100 in which the in-vehicle control device 60 of the first embodiment is used except for the failure determination conditions, and the in-vehicle system 100 uses the in-vehicle control device 60 of the first embodiment. make up a composition. Further, the backup support control performed by the control unit 61 of the in-vehicle control device 60 of the third embodiment is the same as the backup support control performed by the in-vehicle control device 60 of the first embodiment, except for the specific determination method in step S13. be. Therefore, below, the vehicle-mounted control device 60 of the third embodiment will be explained with reference to FIGS. 1 and 2.
第3実施形態の車載用制御装置60は、失陥判定条件以外は第1実施形態の車載用制御装置60と同一である。第3実施形態の車載用制御装置60が用いられる車載システム100は、失陥判定条件以外は第1実施形態の車載用制御装置60が用いられる車載システム100と同一であり、図1のような構成をなす。また、第3実施形態の車載用制御装置60の制御部61が行うバックアップ対応制御は、ステップS13の具体的判定方法以外は第1実施形態の車載用制御装置60が行うバックアップ対応制御と同一である。従って、以下では、図1、図2が参照されつつ第3実施形態の車載用制御装置60が説明される。 <Third embodiment>
The vehicle-mounted
第3実施形態の車載用制御装置60は、制御部61が図2のバックアップ対応制御を行う場合、ステップS13において「第1電力路81の電圧が失陥判定電圧Vth2よりも小さい基準電圧Vth3以下になったこと」を失陥判定条件とする。基準電圧Vth3は、第3閾値に相当する。基準電圧Vth3は、0より大きい値である。基準電圧Vth3は、閾値電圧Vth4よりも小さい値である。制御部61は、ステップS13において「第1電力路81の電圧が基準電圧Vth3以下である」と判断した場合には、ステップS13にて失陥判定条件を満たすと判定し、処理をステップS14に進める。一方、制御部61は、ステップS13において「第1電力路81の電圧が基準電圧Vth3よりも大きい」と判断した場合には、ステップS13にて失陥判定条件を満たさないと判定し、処理をステップS1に戻す。制御部61は、ステップS13にて失陥判定条件を満たすと判定する場合(即ち、第1電力路81の電圧が基準電圧Vth3以下である場合)にステップS14において上述の第2制御を実行し、充電部20に充電動作を行わせずに放電部30に放電動作を行わせる。
In the vehicle-mounted control device 60 of the third embodiment, when the control unit 61 performs the backup control shown in FIG. The condition for determining failure is ``has become ``. Reference voltage Vth3 corresponds to the third threshold. Reference voltage Vth3 has a value greater than zero. Reference voltage Vth3 is a value smaller than threshold voltage Vth4. If the control unit 61 determines in step S13 that "the voltage of the first power path 81 is equal to or lower than the reference voltage Vth3," it determines that the failure determination condition is satisfied in step S13, and the process proceeds to step S14. Proceed. On the other hand, if the control unit 61 determines in step S13 that "the voltage of the first power path 81 is higher than the reference voltage Vth3", it determines in step S13 that the failure determination condition is not satisfied, and executes the process. Return to step S1. When the control unit 61 determines in step S13 that the failure determination condition is satisfied (that is, when the voltage of the first power path 81 is equal to or lower than the reference voltage Vth3), the control unit 61 executes the second control described above in step S14. , the discharging section 30 is caused to perform a discharging operation without causing the charging section 20 to perform a charging operation.
<他の実施形態>
本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。 <Other embodiments>
The present disclosure is not limited to the embodiments described above and illustrated in the drawings. For example, the features of the embodiments described above or below can be combined in any combination without contradicting each other. Furthermore, any feature of the embodiments described above or below may be omitted unless explicitly stated as essential. Furthermore, the embodiment described above may be modified as follows.
本開示は、上記記述及び図面によって説明した実施形態に限定されるものではない。例えば、上述又は後述の実施形態の特徴は、矛盾しない範囲であらゆる組み合わせが可能である。また、上述又は後述の実施形態のいずれの特徴も、必須のものとして明示されていなければ省略することもできる。更に、上述した実施形態は、次のように変更されてもよい。 <Other embodiments>
The present disclosure is not limited to the embodiments described above and illustrated in the drawings. For example, the features of the embodiments described above or below can be combined in any combination without contradicting each other. Furthermore, any feature of the embodiments described above or below may be omitted unless explicitly stated as essential. Furthermore, the embodiment described above may be modified as follows.
上述された実施形態では、制御部61は、電力路80の電圧が失陥判定電圧Vth2以下である電圧条件を満たし且つ当該電圧条件とは異なる失陥判定条件を満たさない場合において、上述の充電条件が成立している場合に第1制御を実行するが、上記電圧条件を満たし且つ上記失陥判定条件を満たさない場合に常に第1制御を実行してもよい。
In the embodiment described above, the control unit 61 performs the above-mentioned charging when the voltage of the power path 80 satisfies the voltage condition that the voltage is equal to or lower than the failure determination voltage Vth2 and does not satisfy the failure determination condition different from the voltage condition. The first control is executed when the conditions are met, but the first control may be executed whenever the voltage conditions are met and the failure determination conditions are not met.
上述された実施形態では、車載用制御装置60は、少なくとも制御部61を備えているが、車載用制御装置60は、電源システム3の全体を備えた構成であってもよい。
In the embodiment described above, the vehicle-mounted control device 60 includes at least the control unit 61, but the vehicle-mounted control device 60 may include the entire power supply system 3.
上述された実施形態では、電源システム3が電源部10や蓄電部13を含むが、上述された実施形態でも、車載用制御装置60が電源システム3全体を備えた構成とした場合でも、電源システム3は、上述の電源システム3の構成から電源部10のみが除かれた構成に変更されてもよい、上述の電源システム3の構成から蓄電部13のみが除かれた構成に変更されてもよく、上述の電源システム3の構成から電源部10及び蓄電部13が除かれた構成に変更されてもよい。
In the embodiments described above, the power supply system 3 includes the power supply unit 10 and the power storage unit 13, but in the embodiments described above, even when the on-vehicle control device 60 is configured to include the entire power supply system 3, the power supply system 3 includes the power supply unit 10 and the power storage unit 13. 3 may be changed to a configuration in which only the power supply unit 10 is removed from the configuration of the power supply system 3 described above, or may be changed to a configuration in which only the power storage unit 13 is removed from the configuration of the power supply system 3 described above. , the configuration of the power supply system 3 described above may be changed to a configuration in which the power supply unit 10 and the power storage unit 13 are removed.
上述された実施形態では、遮断部14の一例として双方向の通電を許可する状態と双方向の通電を遮断する状態とに切り替わる所定構造のスイッチング素子が例示されるが、この例に限定されない。例えば、図1の遮断部14は、導電路31に短絡するようにアノードが接続され第2電力路82に短絡するようにカソードが接続された寄生ダイオードを有する単一のFETによって構成されていてもよい。或いは、図1の遮断部14は、アノードが導電路31に短絡するように電気的に接続され、カソードが導電路84に短絡するように電気的に接続されるダイオードに変更されてもよい。
In the embodiment described above, as an example of the cutoff unit 14, a switching element having a predetermined structure that switches between a state of permitting bidirectional energization and a state of blocking bidirectional energization is exemplified, but is not limited to this example. For example, the interrupter 14 in FIG. 1 is constituted by a single FET having a parasitic diode whose anode is connected to short-circuit to the conductive path 31 and whose cathode is connected to short-circuit to the second power path 82. Good too. Alternatively, the cutoff unit 14 in FIG. 1 may be changed to a diode whose anode is electrically connected to the conductive path 31 and whose cathode is electrically connected to the conductive path 84.
上述された実施形態では、電力路80に設けられる素子の一例として第1スイッチ部12が例示されたが、第1スイッチ部12は、負荷11側から電源部10側への電流の流れを遮断し得る他種の素子に変更されてもよい。例えば、図1の構成において、第1スイッチ部12がダイオードに変更されてもよく、この場合、ダイオードのアノードが第1電力路81に短絡するように電気的に接続され、カソードが第2電力路82に短絡するように電気的に接続されていてもよい。
In the embodiment described above, the first switch section 12 is illustrated as an example of an element provided in the power path 80, but the first switch section 12 blocks the flow of current from the load 11 side to the power supply section 10 side. It may be changed to other types of elements that can be used. For example, in the configuration of FIG. 1, the first switch section 12 may be changed to a diode, and in this case, the anode of the diode is electrically connected to the first power path 81, and the cathode is connected to the second power path 81. It may be electrically connected to short circuit 82 .
上述された実施形態では、充電部20は、第2スイッチ部21と抵抗部22とを有する構成であるが、別の構成であってもよい。例えば、充電部20は、電圧変換回路(例えばDCDCコンバータ)によって構成されていてもよく、この場合、電圧変換回路は、第1電力路81に印加された電圧を入力電圧として昇圧動作又は降圧動作を行い、導電路83に出力電圧を印加するように充電動作(電圧変換動作)を行ってもよい。
In the embodiment described above, the charging section 20 has a configuration including the second switch section 21 and the resistance section 22, but it may have a different configuration. For example, the charging unit 20 may be configured by a voltage conversion circuit (for example, a DCDC converter), and in this case, the voltage conversion circuit performs a step-up operation or a step-down operation using the voltage applied to the first power path 81 as an input voltage. may be performed, and a charging operation (voltage conversion operation) may be performed so as to apply an output voltage to the conductive path 83.
上述された実施形態では、放電部30は、電圧変換回路32を有する構成であるが、電圧変換回路32を有さない構成であってもよい。例えば、放電部30は、スイッチング素子に変更されてもよい。
In the embodiment described above, the discharge section 30 has a configuration that includes the voltage conversion circuit 32, but may have a configuration that does not include the voltage conversion circuit 32. For example, the discharge section 30 may be changed to a switching element.
なお、今回開示された実施の形態は全ての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、今回開示された実施の形態に限定されるものではなく、請求の範囲によって示された範囲内又は請求の範囲と均等の範囲内での全ての変更が含まれることが意図される。
It should be noted that the embodiments disclosed herein are illustrative in all respects and should not be considered restrictive. The scope of the present invention is not limited to the embodiments disclosed herein, and is intended to include all modifications within the scope indicated by the claims or within the range equivalent to the claims. be done.
3 :車載用電源システム
10 :電源部
11 :負荷
12 :第1スイッチ部
13 :蓄電部
14 :遮断部
20 :充電部
21 :第2スイッチ部
22 :抵抗部
30 :放電部
31 :導電路
32 :電圧変換回路
51 :第1電圧検出部
52 :第2電圧検出部
53 :第3電圧検出部
60 :車載用制御装置
61 :制御部
80 :電力路
81 :第1電力路
82 :第2電力路
83 :導電路
84 :導電路
100 :車載システム 3: Vehicle power supply system 10: Power supply section 11: Load 12: First switch section 13: Power storage section 14: Cutoff section 20: Charging section 21: Second switch section 22: Resistance section 30: Discharge section 31: Conductive path 32 :Voltage conversion circuit 51 :First voltage detection section 52 :Second voltage detection section 53 :Third voltage detection section 60 :In-vehicle control device 61 :Control section 80 :Power path 81 :First power path 82 :Second power Path 83: Conductive path 84: Conductive path 100: In-vehicle system
10 :電源部
11 :負荷
12 :第1スイッチ部
13 :蓄電部
14 :遮断部
20 :充電部
21 :第2スイッチ部
22 :抵抗部
30 :放電部
31 :導電路
32 :電圧変換回路
51 :第1電圧検出部
52 :第2電圧検出部
53 :第3電圧検出部
60 :車載用制御装置
61 :制御部
80 :電力路
81 :第1電力路
82 :第2電力路
83 :導電路
84 :導電路
100 :車載システム 3: Vehicle power supply system 10: Power supply section 11: Load 12: First switch section 13: Power storage section 14: Cutoff section 20: Charging section 21: Second switch section 22: Resistance section 30: Discharge section 31: Conductive path 32 :Voltage conversion circuit 51 :First voltage detection section 52 :Second voltage detection section 53 :Third voltage detection section 60 :In-vehicle control device 61 :Control section 80 :Power path 81 :First power path 82 :Second power Path 83: Conductive path 84: Conductive path 100: In-vehicle system
Claims (6)
- 電源部と、前記電源部とは異なる蓄電部と、前記電源部から負荷へ電力を供給する経路である電力路と、前記電源部から供給される電力に基づいて前記蓄電部に電流を供給する充電動作を行う充電部と、前記蓄電部から供給される電力に基づいて前記負荷側に電流を流す放電動作を行う放電部と、を備える車載システムに用いられ、前記充電部による前記充電動作及び前記放電部による前記放電動作を制御する車載用制御装置であって、
前記充電部及び前記放電部を制御する制御部を有し、
前記制御部は、前記充電部に前記充電動作を行わせつつ前記放電部に前記放電動作を行わせる第1制御と、前記充電部に前記充電動作を行わせずに前記放電部に前記放電動作を行わせる第2制御と、を実行可能であり、前記電力路の電圧が失陥判定電圧以下である電圧条件を満たし且つ前記電圧条件とは異なる失陥判定条件を満たさない場合に前記第1制御を実行する
車載用制御装置。 a power supply section, a power storage section different from the power supply section, a power path that is a path for supplying power from the power supply section to a load, and supplying current to the power storage section based on the power supplied from the power supply section. It is used in an in-vehicle system comprising a charging unit that performs a charging operation, and a discharging unit that performs a discharging operation that causes current to flow to the load side based on the power supplied from the power storage unit, and the charging unit performs the charging operation and An on-vehicle control device that controls the discharge operation by the discharge section,
comprising a control unit that controls the charging unit and the discharging unit,
The control section includes a first control that causes the discharging section to perform the discharging operation while causing the charging section to perform the charging operation, and a first control that causes the discharging section to perform the discharging operation without causing the charging section to perform the charging operation. and a second control to perform the first control when the voltage of the power path satisfies a voltage condition that is equal to or less than a failure determination voltage and does not satisfy a failure determination condition different from the voltage condition. An in-vehicle control device that performs control. - 前記失陥判定条件は、前記電力路の電圧が前記失陥判定電圧以下である時間が一定時間継続したことを含み、
前記制御部は、前記電力路の電圧が前記失陥判定電圧以下である時間が前記一定時間継続した場合に前記第2制御を実行する
請求項1に記載の車載用制御装置。 The failure determination condition includes that the voltage of the power path is equal to or lower than the failure determination voltage for a certain period of time,
The in-vehicle control device according to claim 1, wherein the control unit executes the second control when the time during which the voltage of the power path is equal to or lower than the failure determination voltage continues for the certain period of time. - 前記車載システムは、前記電力路にスイッチ部が設けられ、
前記充電部は、前記電力路における前記スイッチ部よりも前記電源部側の第1電力路から供給される電力に基づいて前記蓄電部に電流を供給し、
前記放電部は、前記電力路における前記スイッチ部よりも前記負荷側の第2電力路に電流を流すように前記放電動作を行い、
前記スイッチ部がオン状態のときには前記第1電力路と前記第2電力路の間の通電が双方向に許容され、前記スイッチ部がオフ状態のときには少なくとも前記第2電力路から前記第1電力路への通電が遮断され、
前記制御部は、前記電圧条件を満たした後、前記電力路が前記失陥判定電圧以下である時間が一定時間経過するまでは前記スイッチ部を前記オフ状態とし、前記電圧条件を満たした後、前記電力路が前記失陥判定電圧以下である時間が前記一定時間経過する前に前記電力路の電圧が前記失陥判定電圧を超えたことを条件として前記スイッチ部を前記オン状態とし、前記電圧条件を満たした後、前記電力路が前記失陥判定電圧以下である時間が前記一定時間経過した場合には前記スイッチ部を前記オフ状態としつつ前記充電動作を停止させる
請求項2に記載の車載用制御装置。 The in-vehicle system includes a switch section provided in the power path,
The charging unit supplies current to the power storage unit based on power supplied from a first power path closer to the power supply unit than the switch unit in the power path,
The discharging unit performs the discharging operation so as to cause a current to flow in a second power path on the load side of the power path rather than the switch unit,
When the switch section is in an on state, bidirectional energization is allowed between the first power path and the second power path, and when the switch section is in an off state, at least the second power path to the first power path is allowed to flow between the first power path and the second power path. Power is cut off to
After the voltage condition is met, the control section keeps the switch section in the OFF state until a certain period of time during which the power path is below the failure determination voltage has elapsed, and after the voltage condition is met, The switch section is brought into the on state on the condition that the voltage of the power path exceeds the failure determination voltage before the predetermined period of time during which the power path is lower than or equal to the failure determination voltage elapses; The in-vehicle device according to claim 2, wherein after the condition is met, when the predetermined period of time during which the power path is below the failure determination voltage has elapsed, the charging operation is stopped while the switch section is turned off. control device. - 前記失陥判定条件は、前記充電部側から前記電力路側に電流が流れることを含み、
前記制御部は、前記充電部側から前記電力路側に電流が流れる場合に前記第2制御を実行する
請求項1に記載の車載用制御装置。 The failure determination condition includes that a current flows from the charging unit side to the power path side,
The vehicle-mounted control device according to claim 1, wherein the control unit executes the second control when a current flows from the charging unit side to the power path side. - 前記車載システムは、前記電力路にスイッチ部が設けられ、
前記充電部は、前記電力路における前記スイッチ部よりも前記電源部側の第1電力路から供給される電力に基づいて前記蓄電部に電流を供給し、
前記放電部は、前記電力路における前記スイッチ部よりも前記負荷側の第2電力路に電流を流すように前記放電動作を行い、
前記スイッチ部がオン状態のときには前記第1電力路と前記第2電力路の間の通電が双方向に許容され、前記スイッチ部がオフ状態のときには少なくとも前記第2電力路から前記第1電力路への通電が遮断され、
前記制御部は、前記電圧条件を満たし且つ前記充電部側から前記電力路側に電流が流れないことを条件として前記第1制御を実行し、前記電圧条件を満たし且つ前記充電部側から前記電力路側に電流が流れる場合には前記スイッチ部をオフ状態としつつ前記第2制御を実行する
請求項4に記載の車載用制御装置。 The in-vehicle system includes a switch section provided in the power path,
The charging unit supplies current to the power storage unit based on power supplied from a first power path closer to the power supply unit than the switch unit in the power path,
The discharging unit performs the discharging operation so as to cause a current to flow in a second power path on the load side of the power path rather than the switch unit,
When the switch section is in an on state, bidirectional energization is allowed between the first power path and the second power path, and when the switch section is in an off state, at least the second power path to the first power path is allowed to flow between the first power path and the second power path. Power is cut off to
The control unit executes the first control on condition that the voltage condition is satisfied and no current flows from the charging unit side to the power path side, and the control unit executes the first control on the condition that the voltage condition is satisfied and no current flows from the charging unit side to the power path side. The vehicle-mounted control device according to claim 4, wherein the second control is executed while turning off the switch section when a current flows through the switch section. - 前記失陥判定条件は、前記電力路の電圧が前記失陥判定電圧よりも小さい基準電圧以下になったことを含み、
前記制御部は、前記基準電圧以下になった場合に前記第2制御を実行する
請求項1に記載の車載用制御装置。 The failure determination condition includes that the voltage of the power path has become equal to or less than a reference voltage that is smaller than the failure determination voltage,
The in-vehicle control device according to claim 1, wherein the control unit executes the second control when the voltage becomes equal to or less than the reference voltage.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/028453 WO2024018614A1 (en) | 2022-07-22 | 2022-07-22 | Vehicle-mounted control device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/028453 WO2024018614A1 (en) | 2022-07-22 | 2022-07-22 | Vehicle-mounted control device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024018614A1 true WO2024018614A1 (en) | 2024-01-25 |
Family
ID=89617353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/028453 WO2024018614A1 (en) | 2022-07-22 | 2022-07-22 | Vehicle-mounted control device |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2024018614A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008211860A (en) * | 2007-02-23 | 2008-09-11 | Nec Fielding Ltd | Uninterruptible power unit and method of controlling the same |
WO2017199645A1 (en) * | 2016-05-18 | 2017-11-23 | 株式会社村田製作所 | Power supply device, power supply method, and power storage device |
JP2018012394A (en) * | 2016-07-20 | 2018-01-25 | 株式会社デンソー | Control device, and power supply system |
JP2020092476A (en) * | 2018-12-03 | 2020-06-11 | 株式会社オートネットワーク技術研究所 | On-vehicle backup power source control device and on-vehicle backup power source device |
WO2020137348A1 (en) * | 2018-12-29 | 2020-07-02 | シオン電機株式会社 | Dc power supply device and dc power system |
JP2021114849A (en) * | 2020-01-20 | 2021-08-05 | 株式会社Jvcケンウッド | Charge amount control device, charge amount control method, and charge amount control program |
WO2022114197A1 (en) * | 2020-11-30 | 2022-06-02 | パナソニックIpマネジメント株式会社 | Back-up power source system and mobile body |
-
2022
- 2022-07-22 WO PCT/JP2022/028453 patent/WO2024018614A1/en unknown
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008211860A (en) * | 2007-02-23 | 2008-09-11 | Nec Fielding Ltd | Uninterruptible power unit and method of controlling the same |
WO2017199645A1 (en) * | 2016-05-18 | 2017-11-23 | 株式会社村田製作所 | Power supply device, power supply method, and power storage device |
JP2018012394A (en) * | 2016-07-20 | 2018-01-25 | 株式会社デンソー | Control device, and power supply system |
JP2020092476A (en) * | 2018-12-03 | 2020-06-11 | 株式会社オートネットワーク技術研究所 | On-vehicle backup power source control device and on-vehicle backup power source device |
WO2020137348A1 (en) * | 2018-12-29 | 2020-07-02 | シオン電機株式会社 | Dc power supply device and dc power system |
JP2021114849A (en) * | 2020-01-20 | 2021-08-05 | 株式会社Jvcケンウッド | Charge amount control device, charge amount control method, and charge amount control program |
WO2022114197A1 (en) * | 2020-11-30 | 2022-06-02 | パナソニックIpマネジメント株式会社 | Back-up power source system and mobile body |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10992169B2 (en) | Vehicle-mounted backup device | |
US11173857B2 (en) | Control device for on-board power supply unit, and on-board power supply device with a protective relay | |
WO2018047636A1 (en) | On-vehicle backup device | |
US10710468B2 (en) | Vehicle power supply device | |
CN108604809B (en) | Relay device and power supply device | |
CN112041200B (en) | On-vehicle backup circuit and on-vehicle backup device | |
JP2008072880A (en) | Power supply system | |
US11984758B2 (en) | In-vehicle backup power source control apparatus and in-vehicle backup power source apparatus | |
US20190123547A1 (en) | Relay device | |
JP2024133395A (en) | Power Switching Device | |
JP6969505B2 (en) | In-vehicle power control device and in-vehicle power supply system | |
WO2024018614A1 (en) | Vehicle-mounted control device | |
JP7554390B2 (en) | Charge/discharge control device | |
JP7565001B2 (en) | Vehicle control device | |
US11299115B2 (en) | Power storage unit control device | |
WO2024105905A1 (en) | Power feed control device | |
JP7234907B2 (en) | In-vehicle power supply control device and in-vehicle power supply device | |
WO2024024312A1 (en) | In-vehicle control device | |
WO2024157374A1 (en) | Vehicle-mounted control device | |
WO2024024087A1 (en) | On-vehicle backup control device | |
WO2022190790A1 (en) | Power supply control device | |
CN118402158A (en) | Power supply control device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22951998 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024534883 Country of ref document: JP Kind code of ref document: A |