JP2008211860A - Uninterruptible power unit and method of controlling the same - Google Patents

Uninterruptible power unit and method of controlling the same Download PDF

Info

Publication number
JP2008211860A
JP2008211860A JP2007043501A JP2007043501A JP2008211860A JP 2008211860 A JP2008211860 A JP 2008211860A JP 2007043501 A JP2007043501 A JP 2007043501A JP 2007043501 A JP2007043501 A JP 2007043501A JP 2008211860 A JP2008211860 A JP 2008211860A
Authority
JP
Japan
Prior art keywords
storage battery
power supply
input power
inverter
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007043501A
Other languages
Japanese (ja)
Inventor
Hirotoshi Ueno
浩稔 上野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Fielding Ltd
Original Assignee
NEC Fielding Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Fielding Ltd filed Critical NEC Fielding Ltd
Priority to JP2007043501A priority Critical patent/JP2008211860A/en
Publication of JP2008211860A publication Critical patent/JP2008211860A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the discharge of a large-capacity battery even when a short-time power failure is repeated, and avoid a large-capacity battery from running short of charge when a long-time power failure occurs, by preparing a battery which is small-capacity and requires short charging time along with a battery which is large-capacity and requires long charging time, and charging the small-capacity battery first in a short time after power recovery, when an input power supply stops. <P>SOLUTION: The uninterruptible power unit 10 has the small-capacity battery 15 requiring short charging time, the large-capacity battery 16 requiring long charging time, and an inverter 12 which converts DC into AC. When the input power 31 stops, the DC output of the storage battery 15 is supplied to the inverter 12 by closing a switch 17, and the inverter 12 supplies AC to electronic equipment 32, in place of the input power 31, and when the battery 15 reaches a discharge limit, a switch 17 and a switch 18 are closed thereby supplying the output of the storage battery 16 to the inverter 12. After power recovery, the battery 15 is charged prior to the battery 16. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は無停電電源装置及び無停電電源装置の制御方法に関する。   The present invention relates to an uninterruptible power supply and a method for controlling the uninterruptible power supply.

無停電電源装置は、入力電源と電子機器との間に設置され、入力電源が電圧低下(停電)した場合、内蔵する蓄電池の電力を電子機器に供給する装置である。無停電電源装置が入力電源に代わって電力を供給できる時間(バックアップ時間)は電子機器の消費電力と蓄電池の容量によって決まる。   The uninterruptible power supply device is a device that is installed between an input power supply and an electronic device, and supplies electric power of a built-in storage battery to the electronic device when the input power supply voltage drops (power failure). The time during which the uninterruptible power supply can supply power instead of the input power (backup time) is determined by the power consumption of the electronic device and the capacity of the storage battery.

従来の無停電電源装置は、通常、数分から数十分程度の短時間の停電をバックアップする場合1つの蓄電池で構成し、数十分から数時間の長時間の停電をバックアップする場合は、特開平8−154344号公報に記載されるように同一の蓄電池を並列に接続して停電バックアップ時間を長時間にしている。蓄電池の数量は停電時に電子機器をどの程度動作させる必要があるかで決められる。   Conventional uninterruptible power supplies are usually configured with a single storage battery when backing up a short-time power outage of several minutes to several tens of minutes, and specially when backing up a long-time power outage of several tens of minutes to several hours. As described in Kaihei 8-154344, the same storage battery is connected in parallel to extend the power failure backup time. The number of storage batteries is determined by how much the electronic device needs to be operated in the event of a power failure.

特開平8−154344号公報JP-A-8-154344

一般的に長時間のバックアップ時間に対応した蓄電池の充電時間は、放電時間に対し約10倍程度となり、充電完了前に再度停電が発生すると充電が不十分な状態でバックアップのための放電を開始することになる。従って、停電が必要とする充電時間より短い間隔で頻発すると、蓄電池の充電不足が加速され期待されるバックアップ時間を確保できなくなるという問題があった。   In general, the charging time of a storage battery corresponding to a long backup time is about 10 times the discharge time. When a power failure occurs again before charging is completed, discharging for backup is started with insufficient charging. Will do. Therefore, if it occurs frequently at intervals shorter than the charging time required by the power failure, there is a problem that insufficient charging of the storage battery is accelerated and the expected backup time cannot be secured.

特開平8−154344号公報に記載される無停電電源装置は、バックアップ時間を延長するために蓄電池を並列接続する構成としているが、充電時間を短縮する構成は備えていない。従って、停電が必要とする充電時間より短い間隔で頻発すると、蓄電池全体として充電不足が加速されてしまい上記問題を解決することはできない。   The uninterruptible power supply described in JP-A-8-154344 has a configuration in which storage batteries are connected in parallel in order to extend the backup time, but does not have a configuration for shortening the charging time. Therefore, if it occurs frequently at intervals shorter than the charging time required for a power failure, the shortage of charging is accelerated as a whole storage battery, and the above problem cannot be solved.

また、充電時間を短縮するために充電時間の短い蓄電池を使用することで上記問題を解決できるが、例えば長時間に及び安定して電力を供給できる鉛蓄電池に比べて、充電時間が極めて短い有機化合物を利用した有機ラジカル電池は高価となることが予想される。   In addition, the above problem can be solved by using a storage battery with a short charging time in order to shorten the charging time. However, for example, an organic battery with a very short charging time compared to a lead storage battery that can supply power stably for a long time. An organic radical battery using a compound is expected to be expensive.

本発明の目的は、上述した従来の課題を解決するために、小容量で充電時間の短い蓄電池と、大容量で充電時間の長い蓄電池を併設し、停電時に小容量の蓄電池を先に使用し復電(停電の復旧)時に短時間で充電することにより、短時間の停電が短期間で繰り返したときでも大容量の蓄電池の放電を抑え、長時間の停電が発生したときに大容量の蓄電池が充電不足の状態であることを回避できるようにした無停電電源装置及び無停電電源装置の制御方法を提供することにある。   The object of the present invention is to provide a storage battery with a small capacity and a short charging time and a storage battery with a large capacity and a long charging time in order to solve the above-mentioned conventional problems. By charging in a short time when power is restored (recovering from a power failure), even if a short power failure is repeated in a short period of time, the discharge of the large-capacity storage battery is suppressed, and when a long-time power failure occurs, a large-capacity storage battery It is an object to provide an uninterruptible power supply and a method for controlling the uninterruptible power supply that can prevent the battery from being insufficiently charged.

本発明の第1の無停電電源装置は、交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置において、
蓄電池Bと、蓄電池Bに比べて短時間で充電される蓄電池Aとを有し、
入力電源が停止すると蓄電池Aの電力を前記電子機器に供給し、蓄電池Aの電力量が尽きると蓄電池Bの電力を前記電子機器に供給し、
入力電源が復電した際先に蓄電池Aを充電し、蓄電池Aの充電後に蓄電池Bを充電することを特徴とする。
The first uninterruptible power supply of the present invention is an uninterruptible power supply that supplies alternating current to an electronic device instead of the input power when the AC input power is stopped.
It has a storage battery B and a storage battery A that is charged in a shorter time than the storage battery B,
When the input power supply stops, the power of the storage battery A is supplied to the electronic device. When the amount of power of the storage battery A is exhausted, the power of the storage battery B is supplied to the electronic device.
The storage battery A is charged first when the input power is restored, and the storage battery B is charged after the storage battery A is charged.

本発明の第2の無停電電源装置は、交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置において、
蓄電池Bと、蓄電池Bに比べて短時間で充電される蓄電池Aと、直流を交流に変換して変換した交流を前記電子機器に供給するインバータとを有し、
入力電源が停止すると蓄電池Aの直流出力を前記インバータに供給し、前記インバータが入力電源に代わって交流を前記電子機器に供給し、
蓄電池Aが放電限界になると蓄電池Aの直流出力を蓄電池Bの出力に切り換えて前記インバータに供給し、前記インバータが継続して交流を前記電子機器に供給することを特徴とする。
The second uninterruptible power supply of the present invention is an uninterruptible power supply that supplies alternating current to an electronic device instead of the input power when the alternating current input power is stopped.
A storage battery B, a storage battery A that is charged in a short time compared to the storage battery B, and an inverter that converts the direct current into alternating current and supplies the alternating current to the electronic device,
When the input power supply stops, the DC output of the storage battery A is supplied to the inverter, and the inverter supplies AC to the electronic device instead of the input power supply.
When the storage battery A reaches the discharge limit, the direct current output of the storage battery A is switched to the output of the storage battery B and supplied to the inverter, and the inverter continuously supplies alternating current to the electronic device.

本発明の第3の無停電電源装置は、交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置において、
蓄電池Bと、蓄電池Bに比べて容量が小さく蓄電池Aと、前記入力電源を直流に変換して蓄電池Bを充電させる充電器Bと、前記入力電源を直流に変換し充電器Bより短時間で蓄電池Aを充電させる充電器Aと、直流を交流に変換して変換した交流を前記電子機器に供給するインバータと、蓄電池Aと前記インバータとを断続する開閉器Aと、蓄電池Bと前記インバータとを断続する開閉器Bとを有し、
入力電源が停止すると開閉器Aを接続状態として蓄電池Aの直流出力をインバータに供給し、蓄電池Aが放電限界になると開閉器Aを切断状態にするとともに開閉器Bを接続状態として蓄電池Aの直流出力を蓄電池Bの直流出力に切り換えて前記インバータに供給することを特徴とする。
The third uninterruptible power supply of the present invention is an uninterruptible power supply that supplies alternating current to an electronic device in place of the input power when the AC input power is stopped.
A storage battery B, a storage battery A having a smaller capacity than that of the storage battery B, a charger B that converts the input power to DC and charges the storage battery B, and a shorter time than the charger B that converts the input power to DC A battery charger A that charges the storage battery A, an inverter that converts the direct current into alternating current and supplies the alternating current to the electronic device, a switch A that intermittently connects the storage battery A and the inverter, a storage battery B, and the inverter And a switch B that intermittently
When the input power supply stops, switch A is connected and the DC output of storage battery A is supplied to the inverter. When storage battery A reaches the discharge limit, switch A is disconnected and switch B is connected and DC of storage battery A is connected. The output is switched to the direct current output of the storage battery B and supplied to the inverter.

本発明の第4の無停電電源装置は、第2又は第3の無停電電源装置において、前記入力電源が復電すると前記蓄電池Aを先に充電し、前記蓄電池Aの充電が完了した後に前記蓄電池Bの充電を開始することを特徴とする。   According to a fourth uninterruptible power supply of the present invention, in the second or third uninterruptible power supply, when the input power is restored, the storage battery A is charged first, and after the charging of the storage battery A is completed, The charging of the storage battery B is started.

本発明の第5の無停電電源装置は、第2又は第3の無停電電源装置において、前記入力電源の交流を直流に変換し前記インバータに供給する整流器を有し、前記インバータは前記入力電源が停止していないとき前記整流器から供給される直流を交流に変換して前記電子機器に交流を供給することを特徴とする。   According to a fifth uninterruptible power supply of the present invention, the second or third uninterruptible power supply includes a rectifier that converts alternating current of the input power into direct current and supplies the direct current to the inverter. Is not stopped, the direct current supplied from the rectifier is converted into alternating current, and the alternating current is supplied to the electronic device.

本発明の第6の無停電電源装置は、第2又は第3の無停電電源装置において、前記入力電源の入力と前記電子機器への出力とを断続する開閉器Cと、前記インバータと前記電子機器への出力とを断続する開閉器Dを有し、
前記入力電源が停止していないとき開閉器Cを接続状態として前記入力電源を前記電子機器へ供給し、前記入力電源が停止すると開閉器Dを接続状態にするとともに開閉器Cを切断状態とし前記入力電源を前記インバータの出力に切り換えて前記電子機器へ交流を供給することを特徴とする。
According to a sixth uninterruptible power supply of the present invention, in the second or third uninterruptible power supply, the switch C that intermittently connects the input of the input power and the output to the electronic device, the inverter, and the electronic A switch D for intermittently outputting to the device;
When the input power supply is not stopped, the switch C is connected and the input power is supplied to the electronic device. When the input power supply is stopped, the switch D is connected and the switch C is disconnected. An AC power is supplied to the electronic device by switching the input power source to the output of the inverter.

本発明の第7の無停電電源装置は、本発明の第1乃至第6のいずれかの無停電電源装置において、前記蓄電池Aは有機化合物を利用した有機ラジカル電池であり、前記蓄電池Bは鉛蓄電池であることを特徴とする。   A seventh uninterruptible power supply of the present invention is the uninterruptible power supply according to any one of the first to sixth of the present invention, wherein the storage battery A is an organic radical battery using an organic compound, and the storage battery B is lead. It is a storage battery.

本発明の第1の無停電電源装置の制御方法は、蓄電池Bと、蓄電池Bに比べて短時間で充電される蓄電池Aとを有し、交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置の制御方法であって、
入力電源が停止すると蓄電池Aの電力を前記電子機器に供給し、蓄電池Aの電力量が尽きると蓄電池Bの電力を前記電子機器に供給し、
入力電源が復電した際先に蓄電池Aを充電し、蓄電池Aの充電後に蓄電池Bを充電することを特徴とする。
The control method of the 1st uninterruptible power supply device of this invention has the storage battery B and the storage battery A charged in a short time compared with the storage battery B, and replaces with an input power supply when alternating current input power supply stops. An uninterruptible power supply control method for supplying alternating current to electronic equipment,
When the input power supply stops, the power of the storage battery A is supplied to the electronic device. When the amount of power of the storage battery A is exhausted, the power of the storage battery B is supplied to the electronic device.
The storage battery A is charged first when the input power is restored, and the storage battery B is charged after the storage battery A is charged.

本発明の第2の無停電電源装置の制御方法は、蓄電池Bと、蓄電池Bに比べて短時間で充電される蓄電池Aと、直流を交流に変換して変換した交流を前記電子機器に供給するインバータとを有し、交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置の制御方法であって、
入力電源が停止すると蓄電池Aの直流出力を前記インバータに供給し、前記インバータが入力電源に代わって交流を前記電子機器に供給し、
蓄電池Aが放電限界になると蓄電池Aの直流出力を蓄電池Bの出力に切り換えて前記インバータに供給し、前記インバータが継続して交流を前記電子機器に供給することを特徴とする。
The second uninterruptible power supply control method of the present invention supplies the electronic device with the storage battery B, the storage battery A that is charged in a shorter time than the storage battery B, and the alternating current converted from direct current to alternating current. A control method for an uninterruptible power supply that supplies alternating current to an electronic device in place of the input power when the AC input power is stopped,
When the input power supply stops, the DC output of the storage battery A is supplied to the inverter, and the inverter supplies AC to the electronic device instead of the input power supply.
When the storage battery A reaches the discharge limit, the direct current output of the storage battery A is switched to the output of the storage battery B and supplied to the inverter, and the inverter continuously supplies alternating current to the electronic device.

本発明の第3の無停電電源装置の制御方法は、蓄電池Bと、蓄電池Bに比べて容量が小さく蓄電池Bと、前記入力電源を直流に変換して蓄電池Bを充電させる充電器Bと、前記入力電源を直流に変換し充電器Bより短時間で蓄電池Aを充電させる充電器Aと、直流を交流に変換して変換した交流を前記電子機器に供給するインバータと、蓄電池Aと前記インバータとを断続する開閉器Aと、蓄電池Bと前記インバータとを断続する開閉器Bとを有し、交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置の制御方法であって、
入力電源が停止すると開閉器Aを接続状態として蓄電池Aの直流出力をインバータに供給し、蓄電池Aが放電限界になると開閉器Aを切断状態にするとともに開閉器Bを接続状態として蓄電池Aの直流出力を蓄電池Bの直流出力に切り換えて前記インバータに供給することを特徴とする。
The third uninterruptible power supply control method of the present invention includes a storage battery B, a storage battery B having a smaller capacity than the storage battery B, a charger B that charges the storage battery B by converting the input power to direct current, A charger A that converts the input power source into a direct current and charges the storage battery A in a shorter time than the charger B; an inverter that converts the direct current into an alternating current and supplies the alternating current to the electronic device; and the storage battery A and the inverter An uninterruptible power supply that supplies a switch AC to an electronic device in place of the input power when the AC input power is stopped. An apparatus control method comprising:
When the input power supply stops, switch A is connected and the DC output of storage battery A is supplied to the inverter. When storage battery A reaches the discharge limit, switch A is disconnected and switch B is connected and DC of storage battery A is connected. The output is switched to the direct current output of the storage battery B and supplied to the inverter.

本発明の第4の無停電電源装置の制御方法は、本発明の第2又は第3の無停電電源装置の制御方法において、前記無停電電源装置は、前記入力電源が復電すると前記蓄電池Aを先に充電し、前記蓄電池Aの充電が完了した後に前記蓄電池Bの充電を開始することを特徴とする。   A fourth uninterruptible power supply control method according to the present invention is the second or third uninterruptible power supply control method according to the present invention, wherein the uninterruptible power supply is configured to store the storage battery A when the input power is restored. And charging of the storage battery B is started after the charging of the storage battery A is completed.

本発明は、短時間の停電時には充電時間が短く小容量の蓄電池を先に放電し、復電後に短時間で充電することにより、短時間の停電が短期間で繰り返しても充電時間が長く大容量の蓄電池の放電を抑えて充電不足となることを回避し長時間のバックアップを確保できるという効果を有する。   The present invention discharges a small-capacity storage battery first in the event of a short power failure and discharges the storage battery in a short time after power recovery. It has the effect of suppressing the discharge of the storage battery of capacity and avoiding insufficient charging and ensuring a long-time backup.

次に、本発明を実施するための最良の形態について図面を参照して詳細に説明する。図1は本発明の第1の実施の形態の構成を示したブロック図である。図1を参照すると、無停電電源装置10は入力電源31と電源の供給先の電子機器32に接続され、入力電源31の電力供給が停止した場合に、入力電源31に代わって電力を供給する。   Next, the best mode for carrying out the present invention will be described in detail with reference to the drawings. FIG. 1 is a block diagram showing the configuration of the first embodiment of the present invention. Referring to FIG. 1, the uninterruptible power supply 10 is connected to an input power supply 31 and a power supply destination electronic device 32, and supplies power instead of the input power supply 31 when the power supply of the input power supply 31 is stopped. .

入力電源31は交流電源として電力を供給するものであり、例えば電力会社から供給される100ボルトで50Hz又は60Hzの商用電源である。電子機器32は、例えばコンピュータやネットワーク機器のような情報処理機能を有した装置であり、図1では1台のみ接続しているが、2台以上に接続する構成でもよい。   The input power supply 31 supplies power as an AC power supply, and is, for example, a commercial power supply of 50 volts or 60 Hz at 100 volts supplied from an electric power company. The electronic device 32 is a device having an information processing function, such as a computer or a network device. For example, only one device is connected in FIG. 1, but a configuration in which two or more devices are connected may be used.

無停電電源装置10は、整流器11と、インバータ12と、高速充電器13(充電器Aに相当)と、低速充電器14(充電器Bに相当)と、蓄電池15(蓄電池Aに相当)と、蓄電池16(蓄電池Bに相当)と、開閉器17(開閉器Aに相当)と、開閉器18(開閉器Bに相当)と、制御部20と、検出回路21とを含む。高速充電器13は検出回路23を含み、低速充電器14は検出回路24を含む。図1では制御用の信号線(複数の信号も1本で示している)には矢印を付け、交流又は直流の電源線には矢印を付けずに両者を区別して示している。   The uninterruptible power supply 10 includes a rectifier 11, an inverter 12, a high-speed charger 13 (corresponding to the charger A), a low-speed charger 14 (corresponding to the charger B), and a storage battery 15 (corresponding to the storage battery A). , A storage battery 16 (corresponding to storage battery B), a switch 17 (corresponding to switch A), a switch 18 (corresponding to switch B), a control unit 20 and a detection circuit 21. The fast charger 13 includes a detection circuit 23, and the slow charger 14 includes a detection circuit 24. In FIG. 1, an arrow is attached to a control signal line (a plurality of signals are also shown as one line), and an AC or DC power line is not shown with an arrow.

整流器11は入力電源31から入力した交流を整流し平滑化し直流に変換する。なお、整流器11は入力電源31が停止したとき出力側の直流が入力側に逆流することがないように構成される。インバータ12は整流器11、蓄電池15、又は蓄電池16から出力される直流を交流へ変換して電子機器32へ出力する。インバータ12が出力する交流は通常は入力電源31と同じ電圧と周波数を持った同特性の交流であるものとして以降説明するが、電圧や周波数を変えることもできる。   The rectifier 11 rectifies and smoothes the alternating current input from the input power supply 31 and converts it into direct current. The rectifier 11 is configured such that the output direct current does not flow backward to the input side when the input power supply 31 is stopped. The inverter 12 converts direct current output from the rectifier 11, the storage battery 15, or the storage battery 16 into alternating current and outputs the alternating current to the electronic device 32. Although the AC output from the inverter 12 will be described below as an AC having the same voltage and frequency as the input power supply 31 and having the same characteristics, the voltage and frequency can be changed.

蓄電池15と蓄電池16は充電が可能な二次電池であり、整流器11と同じ電圧の直流を出力する。バックアップ時間は蓄電池15又は蓄電池16の容量と電子機器32の消費電力とによって決まる。   The storage battery 15 and the storage battery 16 are rechargeable secondary batteries, and output direct current having the same voltage as that of the rectifier 11. The backup time is determined by the capacity of the storage battery 15 or the storage battery 16 and the power consumption of the electronic device 32.

蓄電池16の容量は蓄電池15の容量に比べて大きくし、より長い時間電子機器32をバックアップできるものとする。また、蓄電池15は蓄電池16に比べて充電時間が短い特性を持つものとし、短時間で充電され、短時間の停電が短い間隔で連続しても、充電不足を解消しやすいようになっている。   It is assumed that the capacity of the storage battery 16 is larger than the capacity of the storage battery 15 and the electronic device 32 can be backed up for a longer time. In addition, the storage battery 15 has a characteristic that the charging time is shorter than that of the storage battery 16, and is charged in a short time, and even if a short-time power failure continues at a short interval, it becomes easy to solve the shortage of charging. .

例えば、有機化合物を利用した有機ラジカル電池は充電時間が30秒程度と短いので蓄電池15として適用すれば30秒以上の間隔で短時間の(有機ラジカル電池の容量で足りる範囲の)停電が発生しても蓄電池16の放電を抑止することができる。また、容量が大きく充電時間が長いタイプの鉛蓄電池は蓄電池16に適している。有機ラジカル電池と鉛蓄電池との中間の特性を持つリチウムイオン蓄電池やニッケル水素蓄電池は、有機ラジカル電池又は鉛蓄電池との組み合わせにより蓄電池15としても蓄電池16としても使用できる。   For example, since an organic radical battery using an organic compound has a short charging time of about 30 seconds, if it is applied as the storage battery 15, a power failure occurs for a short time (with a capacity sufficient for the organic radical battery) at intervals of 30 seconds or more. However, the discharge of the storage battery 16 can be suppressed. In addition, a lead storage battery having a large capacity and a long charging time is suitable for the storage battery 16. A lithium ion storage battery or nickel hydride storage battery having characteristics intermediate between those of an organic radical battery and a lead storage battery can be used as the storage battery 15 or the storage battery 16 in combination with an organic radical battery or a lead storage battery.

高速充電器13は、検出回路23により蓄電池15の充電・放電状態を監視しながら必要に応じて入力電源31の交流を直流に変換し蓄電池15の充電を実行する充電回路(図示しない)を有し、制御部20の指示により充電回路を動作させたり停止させたりする。低速充電器14も同様に蓄電池16に対する検出回路24と充電回路(図示しない)を有し、制御部20の指示により充電回路を動作させたり停止させたりする。   The high-speed charger 13 has a charging circuit (not shown) that converts the alternating current of the input power supply 31 to direct current and charges the storage battery 15 as necessary while monitoring the charging / discharging state of the storage battery 15 by the detection circuit 23. Then, the charging circuit is operated or stopped according to an instruction from the control unit 20. Similarly, the low-speed charger 14 has a detection circuit 24 and a charging circuit (not shown) for the storage battery 16, and operates or stops the charging circuit according to an instruction from the control unit 20.

高速充電器13は短時間での充電が可能な蓄電池15の特性に応じた充電を行うことで、蓄電池15に比べて充電時間の長い蓄電池16を充電する低速充電器14より高速な充電を実現する。ただし、充電方法は蓄電池15や蓄電池16の特性に応じた充電を実行するものとするが、高速充電器13において複数の充電方法がある場合、高速充電器13はなるべく高速の充電方法を選択することで本発明の効果を高めることができる。   The high-speed charger 13 performs charging in accordance with the characteristics of the storage battery 15 that can be charged in a short time, thereby realizing faster charging than the low-speed charger 14 that charges the storage battery 16 that has a longer charging time than the storage battery 15. To do. However, the charging method is to perform charging according to the characteristics of the storage battery 15 or the storage battery 16, but when there are a plurality of charging methods in the fast charger 13, the fast charger 13 selects the fastest charging method as possible. Thus, the effect of the present invention can be enhanced.

また、高速充電器13と低速充電器14は、充電対象の蓄電池15又は蓄電池16が過充電から保護されなければならない特性を持つ場合、満充電状態となると充電を自動的に停止して蓄電池15又は蓄電池16を保護する機能をそれぞれの充電回路に有するものとする。   In addition, when the storage battery 15 or the storage battery 16 to be charged has a characteristic that must be protected from overcharging, the high-speed charger 13 and the low-speed charger 14 automatically stop charging when the battery is fully charged. Alternatively, each charging circuit has a function of protecting the storage battery 16.

検出回路23は、充電中に蓄電池15の充電状態を監視し蓄電池15が満充電状態となると満充電信号Aを信号線L43に出力し、充電中以外は蓄電池15の放電状態を監視し蓄電池15が放電限界に近づいたことを検出すると放電限界を予告する放電限界信号Aを信号線L43に出力する。検出回路24も検出回路23と同様に、蓄電池16の充電・放電状態を監視し満充電信号Bと放電限界信号Bを信号線L44に出力する。検出回路23と検出回路24は放電状態を監視する1方法として、例えば、蓄電池15と蓄電池16のそれぞれの直流出力側の出力電圧の低下を監視することにより放電状態を監視する方法がある。   The detection circuit 23 monitors the state of charge of the storage battery 15 during charging, outputs a full charge signal A to the signal line L43 when the storage battery 15 becomes fully charged, and monitors the state of discharge of the storage battery 15 except during charging. Is detected, the discharge limit signal A for notifying the discharge limit is output to the signal line L43. Similarly to the detection circuit 23, the detection circuit 24 monitors the charge / discharge state of the storage battery 16, and outputs the full charge signal B and the discharge limit signal B to the signal line L44. As a method of monitoring the discharge state, the detection circuit 23 and the detection circuit 24 include, for example, a method of monitoring the discharge state by monitoring a decrease in the output voltage of each of the storage battery 15 and the storage battery 16 on the DC output side.

開閉器17は制御部20の指示により閉路(接続状態)又は開路(切断状態)し、閉路時に蓄電池15の直流出力をインバータ12へ供給する。開閉器18は制御部20の指示により閉路(接続状態)又は開路(切断状態)し、閉路時に蓄電池16の直流出力をインバータ12へ供給する。   The switch 17 is closed (connected state) or opened (disconnected state) according to an instruction from the control unit 20, and supplies the DC output of the storage battery 15 to the inverter 12 when the circuit is closed. The switch 18 is closed (connected) or opened (disconnected) according to an instruction from the control unit 20, and supplies the DC output of the storage battery 16 to the inverter 12 when closed.

検出回路21は、入力電源31が正常な状態で入力されているかを検出する回路であり、入力電源31で瞬時電圧低下や停電(以降瞬時電圧低下も区別せず合わせて停電という)による電圧低下が発生するとこれを検出し入力電源異常信号を信号線L41を介して制御部20へ出力する。例えば、検出回路21は入力電源31の交流を整流して直流とし、その直流電圧が規定値以下であることを検出することにより電圧低下を検出することができる。   The detection circuit 21 is a circuit that detects whether the input power supply 31 is input in a normal state. The input power supply 31 causes a voltage drop due to an instantaneous voltage drop or a power failure (hereinafter referred to as a power failure without distinguishing the instantaneous voltage drop). Is detected and an input power supply abnormality signal is output to the control unit 20 via the signal line L41. For example, the detection circuit 21 can detect a voltage drop by rectifying the alternating current of the input power supply 31 into a direct current and detecting that the direct-current voltage is not more than a specified value.

この規定値とはインバータ12が定格電圧を出力できる閾値より少し大きな値である。規定値を閾値より大きくする理由は、蓄電池15から直流が供給されるまでの遅延に配慮するからである。従ってこの規定値は、遅延によってインバータ12の入力電圧が閾値未満とならないような値を閾値に加算して決定される。また、検出回路21は整流する回路を設けずに、整流器11の整流後の直流電圧を利用して検出するようにしてもよい。   This specified value is a value slightly larger than the threshold value at which the inverter 12 can output the rated voltage. The reason why the specified value is made larger than the threshold value is because consideration is given to a delay until the direct current is supplied from the storage battery 15. Therefore, the specified value is determined by adding a value that does not cause the input voltage of the inverter 12 to become less than the threshold value due to the delay. Further, the detection circuit 21 may be detected using a DC voltage after rectification of the rectifier 11 without providing a rectifying circuit.

制御部20は、信号線L41、L43、L44を監視し、その結果として信号線L43、L44、L47、L48を介して高速充電器13、低速充電器14、開閉器17、開閉器18を制御する手順を備えた制御手段であり、制御内容は動作の説明で詳細に説明する。制御部20はハードウェア回路で構成してもよいが、本実施の形態では図示しないがプロセッサと記憶手段と制御回路を備え、記憶手段に記憶したプログラムをプロセッサで実行する。制御部20は実行結果を制御回路を介して信号線L43、L44、L47、L48に出力し、高速充電器13、低速充電器14、開閉器17、開閉器18を制御する。   The control unit 20 monitors the signal lines L41, L43, and L44, and as a result, controls the high-speed charger 13, the low-speed charger 14, the switch 17, and the switch 18 via the signal lines L43, L44, L47, and L48. The control means is provided with a procedure for performing control, and the details of the control will be described in detail in the description of the operation. Although the control unit 20 may be configured by a hardware circuit, although not illustrated in the present embodiment, the control unit 20 includes a processor, a storage unit, and a control circuit, and executes a program stored in the storage unit by the processor. The control unit 20 outputs the execution result to the signal lines L43, L44, L47, and L48 via the control circuit, and controls the fast charger 13, the slow charger 14, the switch 17, and the switch 18.

制御部20は信号線L43、L44を介して高速充電器13、低速充電器14に充電許可指示又は充電禁止指示を送り各充電回路の動作と停止を制御する。制御部20は信号線L47、L48を介して開閉器17、18に開路指示又は閉路指示を送り、開閉器17、18の開閉を制御する。   The control unit 20 sends a charge permission instruction or a charge prohibition instruction to the high-speed charger 13 and the low-speed charger 14 via the signal lines L43 and L44, and controls the operation and stop of each charging circuit. The control unit 20 sends an opening instruction or a closing instruction to the switches 17 and 18 via the signal lines L47 and L48, and controls the opening and closing of the switches 17 and 18.

次に、本発明の第1の実施の形態の動作について図面を参照して説明する。まず、入力電源31が正常な場合の動作を説明し、次に図1に加えて図2のフローチャートも参照して入力電源31が停止した場合の動作について説明する。   Next, the operation of the first exemplary embodiment of the present invention will be described with reference to the drawings. First, the operation when the input power supply 31 is normal will be described, and then the operation when the input power supply 31 is stopped will be described with reference to the flowchart of FIG. 2 in addition to FIG.

なお、以降の動作説明において蓄電池15は有機ラジカル電池とし、蓄電池16は鉛蓄電池とする。また、入力電源31が正常な場合、制御部20は高速充電器13と低速充電器14の充電回路に対してそれぞれ信号線L43又はL44で充電許可指示を出力して充電回路を動作状態とし必要に応じて充電できる状態にしておく。また制御部20は開閉器17と開閉器18に対してそれぞれ信号線L47又はL48で開路指示を出力してともに開路状態とし、蓄電池15又は蓄電池16からインバータ12への出力は停止しておく。   In the following description of the operation, the storage battery 15 is an organic radical battery, and the storage battery 16 is a lead storage battery. Further, when the input power supply 31 is normal, the control unit 20 needs to set the charging circuit in an operating state by outputting a charging permission instruction through the signal line L43 or L44 to the charging circuit of the high-speed charger 13 and the low-speed charger 14, respectively. Make it ready for charging. Further, the control unit 20 outputs an opening instruction to the switch 17 and the switch 18 via the signal line L47 or L48, respectively, to make the circuit open, and the output from the storage battery 15 or the storage battery 16 to the inverter 12 is stopped.

図1を参照すると、入力電源31は無停電電源装置10に交流を供給する。無停電電源装置10の整流器11は、入力電源31から入力した交流を整流し平滑して直流に変換しインバータ12へ出力する。インバータ12は整流器11により変換された直流を交流に変換し電子機器32に交流を供給する。   Referring to FIG. 1, the input power supply 31 supplies alternating current to the uninterruptible power supply 10. The rectifier 11 of the uninterruptible power supply 10 rectifies and smoothes the alternating current input from the input power supply 31, converts it into direct current, and outputs it to the inverter 12. The inverter 12 converts the direct current converted by the rectifier 11 into alternating current and supplies the alternating current to the electronic device 32.

このとき、蓄電池15又は蓄電池16が満充電状態でない(放電後充電をしていないか充電中の状態)と、高速充電器13は蓄電池15を充電したり、低速充電器14は蓄電池16を充電したりする。このように、入力電源31が正常な場合は整流器11の出力がインバータ12へ供給され、蓄電池15と蓄電池16は出力されず満充電でなければ充電が実行される。   At this time, if the storage battery 15 or the storage battery 16 is not fully charged (not charged after discharging or being charged), the high-speed charger 13 charges the storage battery 15 or the low-speed charger 14 charges the storage battery 16. To do. As described above, when the input power supply 31 is normal, the output of the rectifier 11 is supplied to the inverter 12, and the storage battery 15 and the storage battery 16 are not output, and charging is executed unless they are fully charged.

次に、入力電源31が停止した場合の動作を図1に加えて図2も参照して説明する。以降の説明では最初は蓄電池15と蓄電池16とも満充電状態になっているものとする。まず、入力電源31の電力供給が停止すると検出回路21が電圧低下を検出し入力電源異常信号を信号線L41を介して制御部20に出力する。入力電源31の電力供給が停止すると続いて整流器11からの直流出力も停止する。   Next, the operation when the input power supply 31 is stopped will be described with reference to FIG. 2 in addition to FIG. In the following description, it is assumed that both the storage battery 15 and the storage battery 16 are fully charged at first. First, when the power supply of the input power supply 31 is stopped, the detection circuit 21 detects a voltage drop and outputs an input power supply abnormality signal to the control unit 20 via the signal line L41. When the power supply from the input power supply 31 is stopped, the DC output from the rectifier 11 is also stopped.

制御部20は、入力電源異常信号を受けると入力電源31の電圧低下が発生したと判断し(S61)、高速充電器13に対して充電禁止指示を送るとともに開閉器17に閉路指示を送る(S62)。   Upon receiving the input power supply abnormality signal, the control unit 20 determines that the voltage drop of the input power supply 31 has occurred (S61), sends a charge prohibition instruction to the fast charger 13 and sends a closing instruction to the switch 17 ( S62).

高速充電器13は、充電禁止指示を受けると充電回路を停止させる。この場合は充電の必要がないので高速充電器13の動作は変わらないが、もし蓄電池15へ充電中の場合は充電を停止させるように充電回路が動作する。また、開閉器17は閉路指示を受けると開路状態から閉路状態に切り換えて、蓄電池15の直流出力をインバータ12へ供給する。なお、入力電源異常の検出から蓄電池15を直流出力のインバータ12へ供給までの時間は、短時間で実行されるので、整流器11からインバータ12への直流出力が閾値以下にならない間に蓄電池15の直流出力がインバータ12へ供給されるように制御される。   The fast charger 13 stops the charging circuit when receiving the charge prohibition instruction. In this case, since charging is not necessary, the operation of the high-speed charger 13 does not change. However, if the storage battery 15 is being charged, the charging circuit operates so as to stop charging. Further, when the switch 17 receives a closing instruction, the switch 17 switches from the open state to the closed state, and supplies the DC output of the storage battery 15 to the inverter 12. In addition, since the time from the detection of the input power supply abnormality to the supply of the storage battery 15 to the inverter 12 of DC output is executed in a short time, the DC output of the storage battery 15 from the rectifier 11 to the inverter 12 does not fall below the threshold value. The direct current output is controlled to be supplied to the inverter 12.

これにより、インバータ12は整流器11の出力停止により入力電圧が規定値以下になる前に蓄電池15からの出力を受けて今まで通りの交流を続けて出力することができる。この後、制御部20は検出回路21により入力電源31が復電したか、蓄電池15の放電限界となったかの監視を続ける。ここで、復電とは、入力電源31が正常状態に復旧することをいう。   As a result, the inverter 12 can receive the output from the storage battery 15 before the input voltage becomes equal to or lower than the specified value due to the output of the rectifier 11 being stopped, and continuously output the alternating current as before. Thereafter, the control unit 20 continues to monitor whether the input power 31 has been restored by the detection circuit 21 or whether the discharge limit of the storage battery 15 has been reached. Here, power recovery means that the input power supply 31 is restored to a normal state.

制御部20は、検出回路21から入力電源異常信号が出力されなくなると入力電源31が復電したと判断し(S63)、高速充電器13に対して充電許可指示をするとともに開閉器17に対して開路指示をする(S66)。高速充電器13は、充電許可指示を受けると充電回路を動作させ、充電を開始し蓄電池15が満充電となるまで充電を続ける。開閉器17は開路指示により閉路状態から開路状態に切り換わり蓄電池15の直流出力のインバータ12への供給を停止する。インバータ12へは整流器11から直流が供給されるようになる。   When the input power supply abnormality signal is not output from the detection circuit 21, the control unit 20 determines that the input power supply 31 has been restored (S 63), instructs the high-speed charger 13 to charge, and instructs the switch 17. The opening instruction is made (S66). When receiving the charge permission instruction, the high-speed charger 13 operates the charging circuit, starts charging, and continues charging until the storage battery 15 is fully charged. The switch 17 switches from the closed state to the open state in response to the opening instruction, and stops supplying the DC output of the storage battery 15 to the inverter 12. Direct current is supplied from the rectifier 11 to the inverter 12.

制御部20は、ステップS63で入力電源31の復電がないと判断した後、検出回路23から放電限界信号Aが出力されると蓄電池15が放電限界になると判断し(S64)、低速充電器14に対して充電禁止指示をし、開閉器18に対して閉路指示をするとともに、高速充電器13に対して充電許可指示を行い開閉器17に対して開路指示をする(S65)。制御部20は、ステップS64で放電限界信号が検出されないとステップS63へ戻る。   After determining that there is no power recovery of the input power supply 31 in step S63, the control unit 20 determines that the storage battery 15 reaches the discharge limit when the discharge limit signal A is output from the detection circuit 23 (S64). 14 is instructed to prohibit charging, instructed to close the switch 18, and instructed to permit charging to the high-speed charger 13 and instructed to open the switch 17 (S 65). If the discharge limit signal is not detected in step S64, the control unit 20 returns to step S63.

低速充電器14は、充電禁止指示を受けると充電回路を停止するが、この時点では充電は必要ないので動作は変わらない。もし蓄電池16へ充電中の場合は充電を停止させるように低速充電器14の充電回路が動作する。開閉器18は閉路指示を受けると開路状態から閉路状態に切り換わり、整流器11からの出力停止と蓄電池15からの出力停止に代わって蓄電池16の直流出力をインバータ12へ供給する。この状態は入力電源31が復電するか蓄電池16が放電限界になるまで継続する。   When the low-speed charger 14 receives the charge prohibition instruction, the low-speed charger 14 stops the charging circuit. If the storage battery 16 is being charged, the charging circuit of the low-speed charger 14 operates so as to stop the charging. When the switch 18 receives a closing instruction, the switch 18 switches from an open circuit state to a closed circuit state, and supplies the DC output of the storage battery 16 to the inverter 12 instead of stopping the output from the rectifier 11 and stopping the output from the storage battery 15. This state continues until the input power supply 31 recovers or the storage battery 16 reaches the discharge limit.

一方、高速充電器13は、充電許可指示を受けると充電回路を動作させるが、入力電源31が復電するまで充電は待たされる。開閉器17は開路指示により閉路状態から開路状態に切り換わり蓄電池15の出力のインバータ12への供給を停止する。   On the other hand, when the high-speed charger 13 receives the charge permission instruction, the high-speed charger 13 operates the charging circuit, but charging is waited until the input power supply 31 recovers. The switch 17 is switched from a closed state to an open state in response to an opening instruction, and stops supplying the output of the storage battery 15 to the inverter 12.

制御部20は、ステップS65を実行した後、入力電源31が復電するか蓄電池16が放電限界となるかを監視する。制御部20は、検出回路21から入力電源異常信号が出力されなくなり復電したと判断した場合(S67)、又は検出回路24から放電限界信号Bが出力され蓄電池16が放電限界になると判断した場合(S68)、開閉器18に開路指示をする(S69)。開閉器18は開路指示により閉路状態から開路状態に切り換わり、蓄電池16の出力のインバータ12への供給を停止する。これにより、例えば、蓄電池16は過放電による劣化を防止できる。   After executing step S65, the control unit 20 monitors whether the input power supply 31 is restored or the storage battery 16 reaches the discharge limit. When the control unit 20 determines that the input power supply abnormality signal is not output from the detection circuit 21 and is restored (S67), or when the discharge limit signal B is output from the detection circuit 24 and the storage battery 16 reaches the discharge limit (S68), the switch 18 is instructed to open (S69). The switch 18 is switched from a closed state to an open state in response to an opening instruction, and stops supplying the output of the storage battery 16 to the inverter 12. Thereby, for example, the storage battery 16 can prevent deterioration due to overdischarge.

次に、制御部20は、検出回路23からの満充電信号Aが検出されるか判断し(S70)、満充電信号Aが検出されれば低速充電器14に充電許可指示をし(S71)、満充電信号Aが検出されなければステップS60を繰り返し蓄電池15の充電完了(満充電)を待ち合わせる。復電後30秒程度で蓄電池15は満充電となり、低速充電器14は充電許可指示を受けて充電回路を動作させ充電を開始し、停電がなければ満充電となるまで充電を継続する。   Next, the control unit 20 determines whether or not the full charge signal A from the detection circuit 23 is detected (S70), and if the full charge signal A is detected, instructs the low-speed charger 14 to permit charging (S71). If the full charge signal A is not detected, step S60 is repeated to wait for the completion of charging of the storage battery 15 (full charge). In about 30 seconds after power recovery, the storage battery 15 is fully charged, and the low-speed charger 14 starts the charging by operating the charging circuit in response to the charging permission instruction. If there is no power failure, the charging continues.

次に、停電が短時間で繰り返される場合の動作について説明する。蓄電池15が満充電の状態で電子機器32の消費電力に対して60秒間電力供給でき(すなわち60秒で放電限界となり)、放電限界から満充電までの充電時間が30秒とし、最初の停電が60秒未満で復電し、その後30秒以上経過して再度停電した場合を例に説明する。   Next, an operation when a power failure is repeated in a short time will be described. When the storage battery 15 is fully charged, power can be supplied for 60 seconds with respect to the power consumption of the electronic device 32 (that is, the discharge limit is reached after 60 seconds), the charge time from the discharge limit to full charge is 30 seconds, and the first power failure occurs. An example will be described in which power is restored in less than 60 seconds, and then a power failure occurs again after 30 seconds.

この場合、最初の停電によりステップS61とステップS62が実行された後、蓄電池15が放電限界(S64)となる前に入力電源31が復電(S63)するので、ステップS63が成立してステップS66が実行される。   In this case, after step S61 and step S62 are executed by the first power failure, the input power supply 31 is restored (S63) before the storage battery 15 reaches the discharge limit (S64), so step S63 is established and step S66 is established. Is executed.

ステップS66が実行されると、高速充電器13は充電許可指示を受けて充電回路を動作させる。このときすでに復電しているので、高速充電器13は充電を開始し蓄電池15が満充電となるまで充電を続ける。次の停電まで30秒以上あるので、次の停電が発生したときには蓄電池15は満充電されている。従って、この条件で停電が繰り返されても大容量の蓄電池16は放電されることがなく、十分なバックアップ時間を確保し続けることができる。   When step S66 is executed, the high-speed charger 13 receives the charge permission instruction and operates the charging circuit. Since power has already been restored at this time, the high-speed charger 13 starts charging and continues charging until the storage battery 15 is fully charged. Since there is 30 seconds or more until the next power failure, the storage battery 15 is fully charged when the next power failure occurs. Therefore, even if the power failure is repeated under these conditions, the large-capacity storage battery 16 is not discharged, and a sufficient backup time can be secured.

また、次の停電が30秒未満で発生し、充電量が放電量より小さい場合は、蓄電池15は満充電になる前に再度放電を開始することになる。この場合、蓄電池15が電子機器32に電力供給できる時間が60秒より小さくなってしまうが、放電限界に達する前に復電すれば蓄電池16の消費は回避できる。   Further, when the next power failure occurs in less than 30 seconds and the charge amount is smaller than the discharge amount, the storage battery 15 starts to discharge again before being fully charged. In this case, the time during which the storage battery 15 can supply power to the electronic device 32 is shorter than 60 seconds, but if the power is restored before reaching the discharge limit, the consumption of the storage battery 16 can be avoided.

このように、停電の発生間隔と、蓄電池15の容量と充電時間との関係により、蓄電池16の放電が回避できるか否かが決まる。従って、入力電源31の供給環境や電子機器32の消費電力に対応して蓄電池15として採用する蓄電池を決めることにより、より効果的に本発明を適用することができる。   Thus, whether or not the discharge of the storage battery 16 can be avoided is determined by the relationship between the occurrence interval of power failure, the capacity of the storage battery 15 and the charging time. Therefore, the present invention can be applied more effectively by determining the storage battery to be employed as the storage battery 15 in accordance with the supply environment of the input power supply 31 and the power consumption of the electronic device 32.

また、大容量の蓄電池16の放電中又は放電限界後に復電した場合(ステップS69の状態)、蓄電池15は放電限界に達していて充電回路は充電許可状態となっている。このため、復電してもステップS70が実行されるため蓄電池16の充電は直ぐには開始されず、無停電電源装置10は高速充電可能な蓄電池15の充電を優先するように動作する。   Further, when the large-capacity storage battery 16 is discharged or after the discharge limit (step S69), the storage battery 15 has reached the discharge limit and the charging circuit is in a charge-permitted state. For this reason, even if power is restored, charging of the storage battery 16 is not immediately started because step S70 is executed, and the uninterruptible power supply 10 operates so as to give priority to the charging of the storage battery 15 that can be charged at high speed.

従って本発明は、蓄電池16の充電による影響を回避して高速充電特性を持つ蓄電池15を最短時間で満充電にすることができるので、長時間の停電の後に短時間(例えば60秒以内)の停電が30秒以上の間隔をあけて繰り返し発生しても、蓄電池16の充電量にかかわらず、蓄電池15のみで電子機器32への給電を継続することができる。従来のように充電の順序を制御しない方法では蓄電池15の充電が十分に実行されないので、このような場合に対応することができない。特に蓄電池16が放電限界となっている場合、蓄電池15の充電を優先することにより電力のバックアップを効率的に実行できる。   Therefore, according to the present invention, since the storage battery 15 having high-speed charging characteristics can be fully charged in the shortest time by avoiding the influence due to the charging of the storage battery 16, a short time (for example, within 60 seconds) after a long power failure. Even if a power failure occurs repeatedly at intervals of 30 seconds or more, power supply to the electronic device 32 can be continued with only the storage battery 15 regardless of the amount of charge of the storage battery 16. The conventional method that does not control the order of charging does not sufficiently charge the storage battery 15, and cannot cope with such a case. In particular, when the storage battery 16 is at the discharge limit, power backup can be performed efficiently by prioritizing the charging of the storage battery 15.

以上のように、本発明は充電時間の異なる充電器と蓄電池の組を2組設け、充電時間の短い蓄電池の放電と充電を、充電時間の長い蓄電池に先行させて行う構成を採ることにより、短時間の停電が頻発した場合には充電時間の短い蓄電池で対応し、長時間の停電に対しては容量の大きな蓄電池の消費をなるべく抑えて充電不足の状態を回避させておき十分なバックアップ時間を確保することができる。   As described above, the present invention provides two sets of chargers and storage batteries having different charging times, and adopts a configuration in which discharging and charging of a storage battery having a short charging time is performed in advance of a storage battery having a long charging time, When short-time power outages occur frequently, a storage battery with a short charging time is used, and for long-term power outages, the consumption of large-capacity storage batteries is suppressed as much as possible to avoid undercharging conditions and sufficient backup time Can be secured.

次に、本発明の第2の実施の形態について図3を参照して説明する。第1の実施の形態の無停電電源装置10は、入力電源31を整流器11で直流に整流した後インバータ12で交流に戻して供給する構成となっていたのに対して、第2の実施の形態の無停電電源装置50は入力電源31を整流器11とインバータ12を介さずに出力する構成としている点に特徴がある。   Next, a second embodiment of the present invention will be described with reference to FIG. The uninterruptible power supply 10 according to the first embodiment is configured to rectify the input power supply 31 into direct current with the rectifier 11 and then supply it back to alternating current with the inverter 12, whereas in the second embodiment, The form of the uninterruptible power supply 50 is characterized in that the input power supply 31 is configured to output without passing through the rectifier 11 and the inverter 12.

図3を参照すると、無停電電源装置50は入力電源31から交流を受けて電子機器32に交流を供給する。無停電電源装置50は、無停電電源装置10に対して、開閉器51(開閉器Cに相当)と開閉器52(開閉器Dに相当)を追加し、制御部53が開閉器51と開閉器52の制御を行い、整流器11を含まない点で相違する。他の機能は同じであるので図1と同じ符号を付している。   Referring to FIG. 3, the uninterruptible power supply 50 receives alternating current from the input power supply 31 and supplies alternating current to the electronic device 32. The uninterruptible power supply 50 adds a switch 51 (corresponding to the switch C) and a switch 52 (corresponding to the switch D) to the uninterruptible power supply 10, and the control unit 53 opens and closes the switch 51. The difference is that the controller 52 is controlled and the rectifier 11 is not included. Since the other functions are the same, the same reference numerals as those in FIG.

無停電電源装置50は入力電源31を整流器11ではなく開閉器51で受ける。開閉器51の出力は開閉器52の出力と結合されて電子機器32へ供給される。一方、蓄電池15と蓄電池16の直流出力は開閉器17又開閉器18を介してインバータ12に供給され、インバータ12で交流に変換される。インバータ12の交流出力は開閉器52を介して電子機器32に供給される。   The uninterruptible power supply 50 receives the input power supply 31 not by the rectifier 11 but by the switch 51. The output of the switch 51 is combined with the output of the switch 52 and supplied to the electronic device 32. On the other hand, the direct current output of the storage battery 15 and the storage battery 16 is supplied to the inverter 12 via the switch 17 or the switch 18 and is converted into alternating current by the inverter 12. The AC output of the inverter 12 is supplied to the electronic device 32 via the switch 52.

次に本発明の第2の実施の形態の動作について無停電電源装置10との相違点を中心に説明する。入力電源31で停電が発生すると検出回路21で入力電源異常信号が出力される。制御部53は入力電源異常信号を検出すると図2のフローチャートに従って制御し、開閉器17又は開閉器18の少なくとも一方を閉路指示するとき(ステップS62とS65)に同時に開閉器51を開路指示し開閉器52を閉路指示する。また、開閉器17と開閉器18の双方を開路状態とするように開路指示をするとき(ステップS66とS69)に、同時に開閉器51を閉路指示し開閉器52を開路指示する。   Next, the operation of the second exemplary embodiment of the present invention will be described focusing on differences from the uninterruptible power supply 10. When a power failure occurs in the input power supply 31, the detection circuit 21 outputs an input power supply abnormality signal. When the control unit 53 detects the input power supply abnormality signal, the control unit 53 performs control according to the flowchart of FIG. 2, and simultaneously instructs the opening of the switch 51 to open or close at least one of the switch 17 or the switch 18 (steps S62 and S65). The device 52 is instructed to close. Further, when an opening instruction is given to open both the switch 17 and the switch 18 (steps S66 and S69), the opening of the switch 51 and the opening of the switch 52 are simultaneously instructed.

このように制御することにより、入力電源31が停止したとき、蓄電池15又は蓄電池16から電力を電子機器32に供給するために開閉器52を閉路状態とし、同時に入力電源31への逆流を回避するために開閉器51を開路状態とする。無停電電源装置10では整流器11が逆流を抑止する機能を果たしていたため開閉器51に相当する構成が不要であった。また、入力電源31が復電したときは逆の操作をする。この他の動作は無停電電源装置10と同様であるので説明は省略するが、無停電電源装置50においても、無停電電源装置10と同様の動作をし、同様の効果が得られることは容易に理解できる。   By controlling in this way, when the input power supply 31 stops, the switch 52 is closed to supply power from the storage battery 15 or the storage battery 16 to the electronic device 32, and at the same time, backflow to the input power supply 31 is avoided. Therefore, the switch 51 is set in an open circuit state. In the uninterruptible power supply 10, the configuration corresponding to the switch 51 was unnecessary because the rectifier 11 fulfilled the function of suppressing the backflow. When the input power supply 31 is restored, the reverse operation is performed. Other operations are the same as those of the uninterruptible power supply 10 and will not be described. However, the uninterruptible power supply 50 also operates in the same manner as the uninterruptible power supply 10 and it is easy to obtain the same effects. Can understand.

また、以上の説明では、第1及び第2の実施の形態とも2組の充電器と蓄電池を組み合わせた構成としているが、これらの組を充電時間により高速、中速、低速の3組に拡張する構成も容易に実現できる。具体的な実現方法も上記の説明から容易に理解できるので説明は省略する。   In the above description, the first and second embodiments are configured by combining two sets of chargers and storage batteries, but these sets are expanded to three sets of high speed, medium speed, and low speed depending on the charging time. The structure to perform can also be easily realized. Since a specific implementation method can be easily understood from the above description, the description is omitted.

本発明の第1の実施の形態の構成を示したブロック図である。It is the block diagram which showed the structure of the 1st Embodiment of this invention. 本発明の第1の実施の形態の動作を示したフローチャートである。It is the flowchart which showed the operation | movement of the 1st Embodiment of this invention. 本発明の第2の実施の形態の構成を示したブロック図である。It is the block diagram which showed the structure of the 2nd Embodiment of this invention.

符号の説明Explanation of symbols

10 無停電電源装置
11 整流器
12 インバータ
13 高速充電器
14 低速充電器
17、18 開閉器
15、16 蓄電池
20 制御部
21、23、24 検出回路
31 入力電源
32 電子機器
50 無停電電源装置
51、52 開閉器
53 制御部
DESCRIPTION OF SYMBOLS 10 Uninterruptible power supply 11 Rectifier 12 Inverter 13 High-speed charger 14 Low-speed charger 17, 18 Switch 15, 16 Storage battery 20 Control part 21, 23, 24 Detection circuit 31 Input power supply 32 Electronic device 50 Uninterruptible power supply 51, 52 Switch 53 Control unit

Claims (11)

交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置において、
蓄電池Bと、蓄電池Bに比べて短時間で充電される蓄電池Aとを有し、
入力電源が停止すると蓄電池Aの電力を前記電子機器に供給し、蓄電池Aの電力量が尽きると蓄電池Bの電力を前記電子機器に供給し、
入力電源が復電した際先に蓄電池Aを充電し、蓄電池Aの充電後に蓄電池Bを充電することを特徴とする無停電電源装置。
In an uninterruptible power supply that supplies AC to electronic equipment instead of input power when the AC input power stops,
It has a storage battery B and a storage battery A that is charged in a shorter time than the storage battery B,
When the input power supply stops, the power of the storage battery A is supplied to the electronic device. When the amount of power of the storage battery A is exhausted, the power of the storage battery B is supplied to the electronic device.
An uninterruptible power supply, wherein the storage battery A is charged first when the input power is restored, and the storage battery B is charged after the storage battery A is charged.
交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置において、
蓄電池Bと、蓄電池Bに比べて短時間で充電される蓄電池Aと、直流を交流に変換して変換した交流を前記電子機器に供給するインバータとを有し、
入力電源が停止すると蓄電池Aの直流出力を前記インバータに供給し、前記インバータが入力電源に代わって交流を前記電子機器に供給し、
蓄電池Aが放電限界になると蓄電池Aの直流出力を蓄電池Bの出力に切り換えて前記インバータに供給し、前記インバータが継続して交流を前記電子機器に供給することを特徴とする無停電電源装置。
In an uninterruptible power supply that supplies AC to electronic equipment instead of input power when the AC input power stops,
A storage battery B, a storage battery A that is charged in a short time compared to the storage battery B, and an inverter that converts the direct current into alternating current and supplies the alternating current to the electronic device,
When the input power supply stops, the DC output of the storage battery A is supplied to the inverter, and the inverter supplies AC to the electronic device instead of the input power supply.
When the storage battery A reaches a discharge limit, the DC output of the storage battery A is switched to the output of the storage battery B and supplied to the inverter, and the inverter continues to supply AC to the electronic device.
交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置において、
蓄電池Bと、蓄電池Bに比べて容量が小さく蓄電池Aと、前記入力電源を直流に変換して蓄電池Bを充電させる充電器Bと、前記入力電源を直流に変換し充電器Bより短時間で蓄電池Aを充電させる充電器Aと、直流を交流に変換して変換した交流を前記電子機器に供給するインバータと、蓄電池Aと前記インバータとを断続する開閉器Aと、蓄電池Bと前記インバータとを断続する開閉器Bとを有し、
入力電源が停止すると開閉器Aを接続状態として蓄電池Aの直流出力をインバータに供給し、蓄電池Aが放電限界になると開閉器Aを切断状態にするとともに開閉器Bを接続状態として蓄電池Aの直流出力を蓄電池Bの直流出力に切り換えて前記インバータに供給することを特徴とする無停電電源装置。
In an uninterruptible power supply that supplies AC to electronic equipment instead of input power when the AC input power stops,
A storage battery B, a storage battery A having a smaller capacity than that of the storage battery B, a charger B that converts the input power to DC and charges the storage battery B, and a shorter time than the charger B that converts the input power to DC A battery charger A that charges the storage battery A, an inverter that converts the direct current into alternating current and supplies the alternating current to the electronic device, a switch A that intermittently connects the storage battery A and the inverter, a storage battery B, and the inverter And a switch B that intermittently
When the input power supply stops, switch A is connected and the DC output of storage battery A is supplied to the inverter. When storage battery A reaches the discharge limit, switch A is disconnected and switch B is connected and DC of storage battery A is connected. An uninterruptible power supply, wherein the output is switched to the direct current output of the storage battery B and supplied to the inverter.
前記入力電源が復電すると前記蓄電池Aを先に充電し、前記蓄電池Aの充電が完了した後に前記蓄電池Bの充電を開始することを特徴とする請求項2又は3の無停電電源装置。 The uninterruptible power supply according to claim 2 or 3, wherein when the input power is restored, the storage battery A is charged first, and charging of the storage battery B is started after the charging of the storage battery A is completed. 前記入力電源の交流を直流に変換し前記インバータに供給する整流器を有し、前記インバータは前記入力電源が停止していないとき前記整流器から供給される直流を交流に変換して前記電子機器に交流を供給することを特徴とする請求項2又は3の無停電電源装置。 A rectifier that converts alternating current of the input power source into direct current and supplies the inverter to the inverter, and the inverter converts direct current supplied from the rectifier to alternating current when the input power source is not stopped, The uninterruptible power supply according to claim 2 or 3, wherein 前記入力電源の入力と前記電子機器への出力とを断続する開閉器Cと、前記インバータと前記電子機器への出力とを断続する開閉器Dを有し、
前記入力電源が停止していないとき開閉器Cを接続状態として前記入力電源を前記電子機器へ供給し、前記入力電源が停止すると開閉器Dを接続状態にするとともに開閉器Cを切断状態とし前記入力電源を前記インバータの出力に切り換えて前記電子機器へ交流を供給することを特徴とする請求項2又は3の無停電電源装置。
A switch C for intermittently connecting the input of the input power source and an output to the electronic device, and a switch D for intermittently connecting the inverter and the output to the electronic device,
When the input power supply is not stopped, the switch C is connected and the input power is supplied to the electronic device. When the input power supply is stopped, the switch D is connected and the switch C is disconnected. The uninterruptible power supply according to claim 2 or 3, wherein an input power is switched to an output of the inverter to supply alternating current to the electronic device.
前記蓄電池Aは有機化合物を利用した有機ラジカル電池であり、前記蓄電池Bは鉛蓄電池であることを特徴とする請求項1乃至6のいずれかの無停電電源装置。 The uninterruptible power supply according to any one of claims 1 to 6, wherein the storage battery A is an organic radical battery using an organic compound, and the storage battery B is a lead storage battery. 蓄電池Bと、蓄電池Bに比べて短時間で充電される蓄電池Aとを有し、交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置の制御方法であって、
入力電源が停止すると蓄電池Aの電力を前記電子機器に供給し、蓄電池Aの電力量が尽きると蓄電池Bの電力を前記電子機器に供給し、
入力電源が復電した際先に蓄電池Aを充電し、蓄電池Aの充電後に蓄電池Bを充電することを特徴とする無停電電源装置の制御方法。
A control method for an uninterruptible power supply that has a storage battery B and a storage battery A that is charged in a shorter time than the storage battery B and supplies alternating current to an electronic device instead of the input power supply when the alternating current input power supply stops Because
When the input power supply stops, the power of the storage battery A is supplied to the electronic device. When the amount of power of the storage battery A is exhausted, the power of the storage battery B is supplied to the electronic device.
A control method for an uninterruptible power supply, wherein the storage battery A is charged first when the input power is restored, and the storage battery B is charged after the storage battery A is charged.
蓄電池Bと、蓄電池Bに比べて短時間で充電される蓄電池Aと、直流を交流に変換して変換した交流を前記電子機器に供給するインバータとを有し、交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置の制御方法であって、
入力電源が停止すると蓄電池Aの直流出力を前記インバータに供給し、前記インバータが入力電源に代わって交流を前記電子機器に供給し、
蓄電池Aが放電限界になると蓄電池Aの直流出力を蓄電池Bの出力に切り換えて前記インバータに供給し、前記インバータが継続して交流を前記電子機器に供給することを特徴とする無停電電源装置の制御方法。
When the storage battery B, the storage battery A that is charged in a shorter time than the storage battery B, and the inverter that converts the direct current into alternating current and supplies the alternating current to the electronic device, and the alternating current input power is stopped A control method for an uninterruptible power supply that supplies alternating current to an electronic device instead of an input power source,
When the input power supply stops, the DC output of the storage battery A is supplied to the inverter, and the inverter supplies AC to the electronic device instead of the input power supply.
When the storage battery A reaches the discharge limit, the direct current output of the storage battery A is switched to the output of the storage battery B and supplied to the inverter, and the inverter continuously supplies alternating current to the electronic device. Control method.
蓄電池Bと、蓄電池Bに比べて容量が小さく蓄電池Bと、前記入力電源を直流に変換して蓄電池Bを充電させる充電器Bと、前記入力電源を直流に変換し充電器Bより短時間で蓄電池Aを充電させる充電器Aと、直流を交流に変換して変換した交流を前記電子機器に供給するインバータと、蓄電池Aと前記インバータとを断続する開閉器Aと、蓄電池Bと前記インバータとを断続する開閉器Bとを有し、交流の入力電源が停止したときに入力電源に代わって電子機器に交流を供給する無停電電源装置の制御方法であって、
入力電源が停止すると開閉器Aを接続状態として蓄電池Aの直流出力をインバータに供給し、蓄電池Aが放電限界になると開閉器Aを切断状態にするとともに開閉器Bを接続状態として蓄電池Aの直流出力を蓄電池Bの直流出力に切り換えて前記インバータに供給することを特徴とする無停電電源装置の制御方法。
A storage battery B, a storage battery B having a smaller capacity than the storage battery B, a charger B that converts the input power source into direct current to charge the storage battery B, and a shorter time than the charger B that converts the input power source into direct current A battery charger A that charges the storage battery A, an inverter that converts the direct current into alternating current and supplies the alternating current to the electronic device, a switch A that intermittently connects the storage battery A and the inverter, a storage battery B, and the inverter A control method for an uninterruptible power supply that supplies AC to an electronic device in place of the input power when the AC input power is stopped.
When the input power supply stops, switch A is connected and the DC output of storage battery A is supplied to the inverter. When storage battery A reaches the discharge limit, switch A is disconnected and switch B is connected and DC of storage battery A is connected. A control method for an uninterruptible power supply, wherein the output is switched to a direct current output of a storage battery B and supplied to the inverter.
前記無停電電源装置は、前記入力電源が復電すると前記蓄電池Aを先に充電し、前記蓄電池Aの充電が完了した後に前記蓄電池Bの充電を開始することを特徴とする請求項9又は10の無停電電源装置の制御方法。 11. The uninterruptible power supply device charges the storage battery A first when the input power is restored, and starts charging the storage battery B after the charging of the storage battery A is completed. Control method for uninterruptible power supply.
JP2007043501A 2007-02-23 2007-02-23 Uninterruptible power unit and method of controlling the same Pending JP2008211860A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007043501A JP2008211860A (en) 2007-02-23 2007-02-23 Uninterruptible power unit and method of controlling the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007043501A JP2008211860A (en) 2007-02-23 2007-02-23 Uninterruptible power unit and method of controlling the same

Publications (1)

Publication Number Publication Date
JP2008211860A true JP2008211860A (en) 2008-09-11

Family

ID=39787707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007043501A Pending JP2008211860A (en) 2007-02-23 2007-02-23 Uninterruptible power unit and method of controlling the same

Country Status (1)

Country Link
JP (1) JP2008211860A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191737A (en) * 2011-03-10 2012-10-04 Toshiba Corp Power storage system
CN104377758A (en) * 2014-10-24 2015-02-25 北京凌云智能科技有限公司 Battery switching method, battery management system and power device
JP2016012980A (en) * 2014-06-27 2016-01-21 三菱重工業株式会社 Dc power supply facility
JP2016025688A (en) * 2014-07-17 2016-02-08 株式会社関谷 Power supply controller and control method for power supply controller
JP2016032313A (en) * 2014-07-28 2016-03-07 通研電気工業株式会社 Inverter apparatus and control method therefor
WO2024018614A1 (en) * 2022-07-22 2024-01-25 株式会社オートネットワーク技術研究所 Vehicle-mounted control device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012191737A (en) * 2011-03-10 2012-10-04 Toshiba Corp Power storage system
JP2016012980A (en) * 2014-06-27 2016-01-21 三菱重工業株式会社 Dc power supply facility
JP2016025688A (en) * 2014-07-17 2016-02-08 株式会社関谷 Power supply controller and control method for power supply controller
JP2016032313A (en) * 2014-07-28 2016-03-07 通研電気工業株式会社 Inverter apparatus and control method therefor
CN104377758A (en) * 2014-10-24 2015-02-25 北京凌云智能科技有限公司 Battery switching method, battery management system and power device
WO2024018614A1 (en) * 2022-07-22 2024-01-25 株式会社オートネットワーク技術研究所 Vehicle-mounted control device

Similar Documents

Publication Publication Date Title
US8278781B2 (en) Discharger and discharger control method
JP6470003B2 (en) Uninterruptible power supply and uninterruptible power supply system
US9269989B2 (en) Electric power supply system
CN112165156B (en) Charging/discharging device, battery system, charging/discharging control method, and storage medium
EP2626971A1 (en) Power supply system and method for controlling same
US8957545B2 (en) Prioritization circuit and electric power supply system
JP2008211860A (en) Uninterruptible power unit and method of controlling the same
EP4075638A1 (en) Energy storage system and method for controlling energy storage system
KR20150142673A (en) Accumulator battery management system
JP2015006027A (en) Storage battery system and control method for storage battery system
JP5361529B2 (en) Lithium-ion battery charge control device and lithium-ion battery system
JP2020043653A (en) Power storage device and charging method
JP4717856B2 (en) Battery system, battery system control method, battery system control program, and program recording medium
KR20150033882A (en) Control system and Control method of Uninterruptible Power Supply using Lithium-ion Battery
JP4519077B2 (en) Power supply system, power supply system control program, and recording medium recording the same
JP2009071922A (en) Dc backup power supply device and method of controlling the same
JP6214131B2 (en) Battery pack charging system and battery pack charging method
JP5541682B2 (en) Lithium-ion battery charging system and charging method
KR20180049545A (en) Battery pack with multi-charging function and energy storage system considered extensibility of battery pack
EP4075627A1 (en) Direct current distribution-based charging/discharging system for battery activation
CN109586395A (en) Uninterrupted power supply intelligently switches and monitoring method
KR101663445B1 (en) The uninterruptible power supply system using energy storage system, and operating method of the uninterruptible power supply system
JP2008211935A (en) Power system
JP5424633B2 (en) Charging apparatus, charging method and program
KR20180049543A (en) Energy storage system considered extensibility of battery pack and method for controlling therefor

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080610

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20090514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090604

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091020