WO2020137348A1 - Dc power supply device and dc power system - Google Patents

Dc power supply device and dc power system Download PDF

Info

Publication number
WO2020137348A1
WO2020137348A1 PCT/JP2019/046685 JP2019046685W WO2020137348A1 WO 2020137348 A1 WO2020137348 A1 WO 2020137348A1 JP 2019046685 W JP2019046685 W JP 2019046685W WO 2020137348 A1 WO2020137348 A1 WO 2020137348A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
switch
power supply
path
output
Prior art date
Application number
PCT/JP2019/046685
Other languages
French (fr)
Japanese (ja)
Inventor
實 村野
真 棚橋
伸一 尾崎
幸伸 高橋
Original Assignee
シオン電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シオン電機株式会社 filed Critical シオン電機株式会社
Priority to JP2020562970A priority Critical patent/JPWO2020137348A1/en
Publication of WO2020137348A1 publication Critical patent/WO2020137348A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to a DC power supply device and a DC power system.
  • Patent Document 1 discloses a DC power source utilization system for the purpose of reducing installation cost, stable power supply to a DC load, and improvement of power supply capacity.
  • the DC power supply system is a DC power supply that receives DC power from both a DC power supply, an AC commercial power supply, a DC converter that converts the AC commercial power supply into a DC power supply, and a DC power supply and a commercial power supply converted into DC.
  • the loader is equipped with a backflow prevention diode between the DC power supply and the DC loader and between the DC converter and the DC loader, and the DC power supply side preferentially supplies power to the DC loader.
  • a power supply priority supply device for supplying power is attached. According to the DC power supply system, even if the solar power is included in the DC power supply, even if the amount of solar radiation is reduced, it is possible to provide a simple control method capable of maximally utilizing the electric power generated at the amount of solar radiation.
  • Patent Document 2 discloses a power transmission system for selecting a desired power source and aiming for efficient use corresponding to the type of the selected power source.
  • the power transmission system has a plurality of DC power supplies and a load that receives the supply of DC power, and the DC power supply is equipped with a power priority extraction device, and is controlled by a controller. It is characterized in that the power amount for preferential power extraction from the power source to the load is determined.
  • the power transmission system when synthesizing the power groups generated from each natural energy as well as the commercial power source, a small amount of power generated from a small amount of natural energy can be effectively used without being wasted, and Multiple power sources can be used in combination, and even if one power source is cut off, power can be automatically supplied from other power sources, and when multiple power sources are used, the priority of use can be easily set. It is said that.
  • Patent Document 3 discloses a photovoltaic power supply system for the purpose of maximizing the generated power of the solar cell when the power consumption of the load exceeds the power supplied from the solar cell.
  • the solar power generation power supply system includes a solar power supply device, a power supply device other than the solar power supply device, a power combining device that combines the power from the power supply devices, and the power combined by the power combining device.
  • the power consumption of the load in a condition that is substantially equal to or greater than the power generated by the solar power supply device, detects a voltage value at which the power of maximum efficiency can be obtained from the solar power supply device, Set the voltage value of the power supply device other than the solar power supply device as a voltage value that is approximately equal to the detected voltage value, combine the power from multiple power supply devices with the power combiner, and supply the combined power to the load.
  • a configuration With a load to be input, the power consumption of the load, in a condition that is substantially equal to or greater than the power generated by the solar power supply device, detects a voltage value at which the power of maximum efficiency can be obtained from the solar power supply device, Set the voltage value of the power supply device other than the solar power supply device as a voltage value that is approximately equal to the detected voltage value, combine the power from multiple power supply devices with the power combiner, and supply the combined power to the load.
  • the output current fluctuates according to the output voltage, that is, the power that can be extracted fluctuates according to the output voltage, such as a solar cell.
  • an MPPT Maximum Power Point Tracking
  • the MPPT controller itself can cause power loss.
  • the MPPT control device adopts the Hill Climbing Method as a control method and uses a DC-DC converter, which inevitably causes pulse-shaped or sawtooth-shaped voltage fluctuations, and these voltage fluctuations occur in the storage battery. There is a problem that can be a factor that deteriorates.
  • the present inventors appropriately maintain or control the output even when including a power source such as a solar cell in which the optimum output voltage fluctuates, and as a whole, Invented a power supply system that can improve the power generation efficiency of, and applied for a patent for this (Japanese Patent Application No. 2017-169034).
  • the power supply system described above it is possible to increase the power generation efficiency of the entire system, but if the power generation capacity becomes large, it is unavoidable to use expensive parts for high power as the parts to be used, which reduces the cost. There was concern that it would rise. Further, in order to finely correspond to the required power amount that differs for each user, it is necessary to prepare a wide variety of power combining devices and the like used in the power supply system, which may increase the load of designing and manufacturing.
  • An object of the present invention is to provide a DC power supply device and a DC power system capable of meeting various user needs and suppressing the burden of design/manufacturing and an increase in cost.
  • a DC power receiving end for receiving DC power
  • a DC output end for outputting DC power
  • a power storage unit connected to a power storage unit for storing DC power.
  • a part connection end a first path electrically connecting the power storage part connection end and the DC power reception end, a second path electrically connecting the power storage part connection end and the DC output end, and A third path electrically connecting the direct current power receiving end and the direct current output end, the first path having a first switch that shuts off the first path, and the second path;
  • a first configuration having a second switch for shutting off the second path, wherein the third path has a third diode forward-connected to the power supply from the DC power receiving end to the DC output end;
  • a DC power supply device having any one of a second configuration in which the DC power receiving end and the DC output end are directly connected.
  • the first path further includes a first diode connected in series to the first switch and connected in a forward direction with respect to power supply from the DC power receiving end to the power storage unit connecting end.
  • the second path may further include a second diode connected in series to the second switch and connected in a forward direction with respect to power supply from the power storage unit connection end to the DC output end. You may further have the control part which controls the said 1st switch and said 2nd switch.
  • the first path further has a first bypass in which a third switch and a resistance element are connected in series
  • the second path further has a second bypass in which a fourth switch and a resistance element are connected in series
  • the first switch and the first bypass may be connected in parallel
  • the second switch and the second bypass may be connected in parallel.
  • you may further have the control part which controls the said 1st switch, the said 2nd switch, the said 3rd switch, and the said 4th switch.
  • a DC power receiving end that receives DC power
  • a DC output end that outputs DC power
  • a power storage unit connection end connected to a power storage unit that stores DC power
  • the power storage unit A fourth path electrically connecting the connection end to the DC power receiving end and the DC output end; and a third path electrically connecting the DC power receiving end to the DC output end
  • the fourth path has a fifth switch that shuts off the fourth path
  • the third path has a third diode forwardly connected to the power supply from the DC power receiving end to the DC output end.
  • the DC power supply device of the first and second aspects described above may further include a rectifying unit that rectifies AC power into DC, and the DC output of the rectifying unit may be directly connected to the DC output terminal. Moreover, you may further have a power storage part connected to the said power storage part connection end.
  • a DC power system using the above DC power supply device comprising a plurality of the DC power supply devices, and a power storage unit connected to the power storage unit connection end of the DC power supply device.
  • a single or a plurality of power generators that output DC power, and an input connection unit that inputs the DC power from the power generators to the DC power supply device, wherein the input connection unit is a single or a plurality.
  • a DC power system capable of arbitrarily connecting an output end of any power generator of the power generators and a DC power receiver of any DC power feeder of the plurality of DC power feeders. provide.
  • the input connection unit may be composed of a switch matrix.
  • a storage voltage control device that monitors the storage voltage of the power storage unit and controls the connection state of the input connection unit may be further included.
  • the output connection unit is a DC of any DC power supply device of the plurality of DC power supply devices. The output terminal and the input terminal of an arbitrary load of the single or the plurality of loads may be arbitrarily connectable.
  • a DC power system using the above DC power supply device, wherein a plurality of the DC power supply devices and a power storage unit connected to the power storage unit connection end of the DC power supply device are provided.
  • a single or a plurality of power generators that output DC power, and an output connection unit that outputs DC power to a single or a plurality of loads, wherein the output connection unit is a plurality of the DC power supply devices.
  • the output connection unit capable of arbitrarily connecting a DC output end of an arbitrary DC power supply device and an input end of an arbitrary load of a single load or a plurality of loads.
  • the output connection unit may include a switch matrix, and may further include an output control device that controls an on/off state of each switch in the switch matrix.
  • FIG. 3 is a functional block diagram showing a DC power system 100. It is a circuit block diagram which shows an example of the direct current storage power supply part 110. 6 is a circuit diagram showing an example of an input connection section 160 (output connection section 170). FIG. 3 is a circuit block diagram showing an example of a DC storage power supply unit 210. FIG. FIG. 6 is a circuit block diagram showing an example of a DC storage power supply unit 310. It is a circuit block diagram which shows an example of the direct current storage power supply part 315. FIG. 3 is a functional block diagram showing a DC power system 400. FIG. 6 is a partial circuit diagram showing another example of the DC power supply circuit 120.
  • FIG. 1 is a functional block diagram showing a DC power system 100.
  • the DC power system 100 includes a plurality of DC power storage/supply sections 110, an input connection section 160, a single or a plurality of power generators 165, a commercial power source 166, an output connection section 170, and a load 175. It has a DC power supply circuit 120, a power storage unit 140, and a rectification unit 150.
  • the commercial power source 166, the rectifying unit 150, and the load 175 do not necessarily constitute the DC power system 100.
  • the DC power storage/supply unit 110 stores the DC power received from the power generation device 165 via the input connection unit 160 in the power storage unit 140 or rectifies the AC power received from the commercial power source 166 by the rectification unit 150.
  • the DC power from the power generation device 165, the DC power obtained by rectifying the AC power from the commercial power supply 166, or the DC power stored in the power storage unit 140 is stored in the power storage unit 140 and is supplied to the load 175 via the output connection unit 170. It has the function of supplying power.
  • the DC power system 100 includes a plurality of DC storage and power supply units 110, so that it is possible to finely respond to various user needs and reduce costs. That is, the electric power required by each user varies, and it is necessary to individually design and construct the system for each user in order to fully meet the individual needs. If such measures are taken, the burden of designing and construction is heavy, and it is difficult to reduce the man-hours, so that the cost may increase. Further, when the amount of electric power required by the customer is large, it is necessary to use expensive parts for large electric power, which may increase the cost.
  • the DC power supply system 100 of the present embodiment includes the plurality of DC power storage/supply units 110, some standard products having a relatively small power capacity are prepared as the DC power storage/power supply unit 110 (for example, 5 kW, 10 kW, 30 kW). , Etc.), by combining these standard products, it is possible to finely correspond to the power capacity required by the customer. Further, since it is a standard product, there is no need to newly design and construct it for each customer, and the cost can be kept low. By using a standard product prepared in advance as the DC power storage/supply unit 110 with a relatively small power capacity, inexpensive power-saving components can be used, and the product cost can be suppressed. Further, even if the customer who is operating the system makes a request to increase or decrease the power capacity, by changing the combination of the DC storage and power feeding units 110, it becomes possible to easily meet such a request. ..
  • FIG. 2 is a circuit block diagram showing an example of the direct current storage/power supply unit 110.
  • the DC power storage/supply unit 110 includes a DC power supply circuit 120, DC power receiving ends 122-1 and 122-2, DC output ends 124-1 and 124-2, rectifying unit connecting ends 126-1 and 126-2, and a power storing unit connecting end. 128-1 and 128-2, a control unit 130, a power storage unit 140, a rectifying unit 150, and rectifying unit power receiving ends 152 and 154. Note that the rectifying unit 150 and the rectifying unit power receiving ends 152 and 154 are not indispensable constituent features of the DC storage power feeding unit 110.
  • the DC power supply circuit 120 includes DC power receiving terminals 122-1 and 122-2, DC output terminals 124-1 and 124-2, rectifying unit connecting terminals 126-1 and 126-2, and power storage unit connecting terminals 128-1 and 128-. It is an electric circuit that connects the two and has a first path 134, a second path 136, and a third path 138.
  • the first path 134 electrically connects the power storage unit connection end 128-1 and the DC power reception end 122-1.
  • the second path 136 connects the power storage unit connection end 128-1 and the DC output end 124-1.
  • the third path 138 is electrically connected to electrically connect the DC power receiving end 122-1 and the DC output end 124-1.
  • the first path 134 has a first switch SW1 and a first diode D1.
  • the first switch SW1 shuts off the first path 134.
  • the first diode D1 is connected in series to the first switch SW1 and is connected in the forward direction with respect to the power supply from the DC power receiving end 122-1 to the power storage unit connecting end 128-1.
  • the second path 136 has a second switch SW2 and a second diode D2.
  • the second switch SW2 shuts off the second path 136.
  • the second diode D2 is connected in series to the second switch SW2, and is connected in the forward direction with respect to the power supply from the power storage unit connection end 128-1 to the DC output end 124-1.
  • the third path 138 has a third diode D3.
  • the third diode D3 is forwardly connected to the power supply from the DC power receiving end 122-1 to the DC output end 124-1.
  • the DC power receiving ends 122-1 and 122-2 receive DC power, and the DC output ends 124-1 and 124-2 output DC power.
  • Rectification unit connection ends 126-1 and 126-2 are connected to rectification unit 150, and power storage unit connection ends 128-1 and 128-2 are connected to power storage unit 140.
  • the control unit 130 controls the first switch SW1 and the second switch SW2.
  • the power storage unit 140 is an electric device capable of storing DC power, and examples thereof include a storage battery and a capacitor. Power storage unit 140 may be configured by a single storage battery or a plurality of storage batteries. The voltage of the power storage unit 140 can be adjusted by combining and connecting a plurality of storage batteries and the like in series and parallel.
  • the rectifying unit 150 rectifies AC power into DC.
  • the DC output of the rectifying unit 150 is directly connected to the DC output terminals 124-1 and 124-2.
  • the rectifier power receiving ends 152 and 154 receive the AC power from the commercial power source 166.
  • the input connection unit 160 receives the DC power from the power generator 165.
  • the input connection section 160 includes an output terminal of an arbitrary power generating apparatus 165 of the single or a plurality of power generating apparatuses 165, a DC power receiving terminal 122-1 of an arbitrary DC storage power feeding section 110 of the plurality of DC power storage feeding sections 110, 122-2 is an electric circuit that can be arbitrarily connected to the unit 122-2.
  • the input connection section 160 may be composed of a switch matrix as shown in FIG. 3, for example.
  • FIG. 3 is a circuit diagram showing an example of the input connection section 160.
  • the input connection section 160 shown in FIG. 3 has a plurality of input terminals 162 and a plurality of output terminals 164.
  • the switches connected to the input terminals 162 and the output terminals 164 are arranged in a matrix.
  • SW11 to SW33 are connected.
  • the input end 162 is arranged on the power generation device 165 side, and the output end 164 is arranged on the DC storage power feeding unit 110 side.
  • By controlling the opening and closing of the switches SW11 to SW33 it is possible to connect the arbitrary input terminal 162 and the arbitrary output terminal 164, and it is possible to connect the arbitrary power generation device 165 to the arbitrary DC storage power supply unit 110. become.
  • connection between the power generation device 165 and the DC power storage and supply unit 110 is optimally controlled while monitoring the amount of power generation in each power generation device 165 and the amount of power stored in the power storage unit 140 in each DC power storage and power supply unit 110. can do.
  • the power generation device 165 is an electric device that outputs DC power, and examples thereof include a solar cell and a fuel cell.
  • the power generator 165 is preferably renewable energy. Although a plurality of power generators 165 are illustrated in FIG. 1, the power generator 165 may be a single power generator 165.
  • the commercial power source 166 is an AC power source supplied from a power company or the like via a power transmission line.
  • the DC power system 100 of the present embodiment tries to cover the power supply to the load 175 with natural energy typified by a solar cell or the like as much as possible, the power from the commercial power supply 166 is It is auxiliary power used only when the power from the power generation device 165 is insufficient. Therefore, when the power from the power generation device 165 sufficiently supplies the power to the load 175, the commercial power source 166 and the rectifying unit 150 associated therewith are unnecessary and are not essential components.
  • the output connection unit 170 supplies DC power to the single or multiple loads 175.
  • the output connection unit 170 inputs the DC output terminals 124-1 and 124-2 of any DC storage power supply unit 110 among the plurality of DC storage power supply units 110 and any load 175 of the single or multiple loads 175. It is an electric circuit that can be arbitrarily connected to the ends.
  • the output connection section 170 may be configured by a switch matrix as shown in FIG. 3, for example.
  • the single load 175 is illustrated in FIG. 1, the load 175 may be plural.
  • the output connection unit 170 has a plurality of input ends 172 and a plurality of output ends 174, and each input line 172 and each wiring connected to the output end 174 are arranged in a matrix.
  • the arranged switches SW11 to SW33 are connected.
  • the input end 172 is arranged on the side of the DC storage power supply unit 110, and the output end 174 is arranged on the side of the load 175.
  • the output connection unit 170 By providing the output connection unit 170, the balance between the amount of power from the power generation device 165 supplied to each DC power storage unit 110 and the amount of power stored in the power storage unit 140 and the required amount of power of the load 175 is considered. However, it is possible to optimally control the connection between the DC power storage/supply unit 110 and the load 175.
  • the load 175 is an electric/electronic device that consumes DC power.
  • an inverter type air conditioner having a DC input a lighting device such as an LED capable of being driven by DC, and an electronic device such as a computer having a DC input can be exemplified.
  • the first switch SW1 and the second switch SW2 are controlled by the control unit 130 with reference to the voltage (V_BATT) of the power storage unit 140.
  • the following four voltages are defined according to the characteristics of power storage unit 140.
  • “Charging prohibition voltage (V_CRGOFF)” When this voltage is exceeded, it is considered to be fully charged and charging is prohibited.
  • “Charging permission voltage (V_CRGON)” When the voltage drops below this voltage, charging is possible.
  • discharge permission voltage (V_DISON) When the voltage exceeds this voltage, discharge is possible.
  • discharge inhibit voltage (V_DISOFF) When the voltage drops below this voltage, it is considered that the battery level is empty, and discharge is prohibited.
  • V_CRGOFF and V_BATT are compared, and if “V_CRGOFF ⁇ V_BATT”, the first switch SW1 is turned off. 2.
  • V_CRGON and V_BATT are compared, and when “V_CRGON>V_BATT”, the first switch SW1 is turned on. 3.
  • V_DISON is compared with V_BATT, and when “V_DISON ⁇ V_BATT”, the second switch SW2 is turned on. 4.
  • V_DISOFF and V_BATT are compared, and when “V_DISOFF>V_BATT”, the second switch SW2 is turned off.
  • the DC storage and power supply unit 110 can be increased or decreased according to the user's request, so that it is possible to respond to the user's request in detail while suppressing the cost. Further, by making the DC power storage/feeding unit 110 compatible with a relatively small power capacity, cost reduction can be achieved.
  • the first diode D1, the second diode D2, and the third diode D3 are provided in each of the first path 134, the second path 136, and the third path 138 of the DC power supply circuit 120, so that the power storage is performed.
  • Cascade connection of two or more DC storage/feeding units 110 DC receiving ends 122-1 and 122-2 of one DC storage/feeding unit 110, DC output ends without worrying about the amount of stored electricity (output voltage) of the unit 140)
  • 124-1 and 124-2 can be connected to the DC power receiving ends 122-1 and 122-2 and the DC output ends 124-1 and 124-2 of the other DC storage power feeding unit 110). it can.
  • a single DC storage power supply unit 110 can be connected to a single or a plurality of power generation devices 165, and a single power generation device 165 cannot be connected to a plurality of DC storage power supply units 110.
  • the DC power supply circuit 120 includes the first diode D1, the second diode D2, and the third diode D3. Therefore, the single power generation device 165 is connected to the plurality of DC storage power supply units 110. It will be possible. That is, when the single power generation device 165 is connected to the plurality of DC storage power supply units 110 connected in cascade, the first diode D1 becomes a forward bias in the charging enabled state, and the power storage unit 140 having a low voltage is preferentially started. Charging is executed. As a result, it is possible to reduce the bias of charging in the plurality of DC storage power supply units 110.
  • each of the first path 134, the second path 136, and the third path 138 of the DC power supply circuit 120 includes a first diode D1, a second diode D2, and a third diode D3.
  • the third diode D3 of the third path 138 can be omitted as shown in FIG. That is, the third path 138 can be configured such that the DC power receiving end 122 and the DC output end 126 are directly connected.
  • the control of the first switch SW1 and the second switch SW2 in the control unit 130 in this case can be performed as follows, as in the case of the first embodiment.
  • V_CRGOFF and V_BATT are compared, and if “V_CRGOFF ⁇ V_BATT”, the first switch SW1 is turned off.
  • V_CRGON and V_BATT are compared, and when “V_CRGON>V_BATT”, the first switch SW1 is turned on.
  • V_DISON is compared with V_BATT, and when “V_DISON ⁇ V_BATT”, the second switch SW2 is turned on.
  • V_DISOFF and V_BATT are compared, and when “V_DISOFF>V_BATT”, the second switch SW2 is turned off.
  • the first diode D1 and the second diode D2 described in the first embodiment are elements for preventing backflow, and the first diode D1 and the second diode D2 can be replaced with switches.
  • the backflow prevention function can be realized by controlling the first switch SW1 and the second switch SW2, the first diode D1 and the second diode D2 can be omitted as shown in FIG.
  • the control of the first switch SW1 and the second switch SW2 in the control unit 130 in this case can be performed as follows. 5.
  • the charging prohibition condition is met: The first switch SW1 is turned off. 6-1.
  • the charging permission condition is met and SW1 is off: When the voltage on the power storage unit side of SW1 is lower than the voltage on the DC output end side, the first switch SW1 is turned on. 6-2.
  • the charge permission condition is met and SW1 is on: When the current flowing through SW1 is flowing to the DC output end side, the first switch SW1 is turned off. 7.
  • the second switch SW2 is turned off. 8-1.
  • the first diode D1 and the second diode D2 described in the second embodiment may be omitted if the backflow prevention function can be realized by the control of the first switch SW1 and the second switch SW2. it can.
  • the first switch SW1 and the second switch SW2 are connected in parallel, they can be replaced with a single fifth switch SW5 as shown in FIG.
  • the fourth path 139 electrically connecting the power storage unit connection end 128-1, the DC power reception end 122-1 and the DC output end 124-1 and the third path 138 are provided, and the fourth path 139 may have a fifth switch SW5 that shuts it off, and the third path 138 may be a direct connection between the DC power receiving end 122-1 and the DC output end 124-1.
  • the fifth switch SW5 can be controlled by the control unit 130. For example, in the operation of the first switch SW1 and the second switch SW2, SW5 is turned off when both switches are turned off. SW5 may be controlled to be turned on under the condition that one of the switches is turned on.
  • the configurations of the accumulated voltage control device 402 and the output control device 404 can be added. That is, the stored voltage control device 402 monitors the stored voltage in the power storage unit 140 included in each of the plurality of DC storage power supply units 110, and controls the connection state in the input connection unit 160. With the configuration, charging can be preferentially performed from the power storage unit 140 having a low stored voltage. Further, at this time, the power generation device 165 having a large generated power can be selected and used for the charging.
  • the output control device 404 controls ON/OFF of each switch of the switch matrix in the output connection section 170.
  • the load 175 to be prioritized can be selected and power can be supplied.
  • the purpose is to fuse the relay contacts and prevent arc discharge during cutting.
  • a precharge circuit as shown in FIG. 8 can be added. That is, the first path 134 further has the first bypass 502 in which the third switch SW3 and the resistance element R are connected in series, and the second path 136 is the first bypass 502 in which the fourth switch SW4 and the resistance element R are connected in series.
  • the second switch 504 may further include two bypasses 504, the first switch SW1 and the first bypass 502 may be connected in parallel, and the second switch SW2 and the second bypass 504 may be connected in parallel.
  • the control unit 130 can control the first switch SW1, the second switch SW2, the third switch SW3 and the fourth switch SW4, or the fifth switch SW5, the third switch SW3 and the fourth switch SW4. ..
  • each switch of the first switch SW1 to the fifth switch SW5 in the present embodiment can be performed as follows, for example. That is, when SW1 is turned on, the third switch SW3 is turned on, and then SW1 is turned on. To turn off SW1, turn off SW1 and then turn off SW3. The same applies to SW2 and SW4. The same applies to SW5. With this configuration, it is possible to prevent the arc discharge when the relay contacts are fused and cut.
  • the DC power receiving ends 122-1 and 122-2 or the DC output ends 124-1 and 124-2 which do not include the input connecting part 160 or the output connecting part 170, are cascaded with the same part of the other DC storage power feeding part 110. It may be connected or may be arbitrarily connected.
  • the output of the power generation device 165 may be provided with a DC-DC converter or an MPPT control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Stand-By Power Supply Arrangements (AREA)

Abstract

The purpose of the present invention is to be able to meet a variety of user needs and to suppress an increase in expense and cost of design and production. Provided is a DC power supply device having: a DC reception end which receives DC electric power; a DC output end which outputs the DC electric power; a power storage part connection end which connects to a power storage part storing the DC electric power; a first path which electrically connects the power storage part connection end and the DC reception end; a second path which electrically connects the power storage part connection end and the DC output end; and, a third path which electrically connects the DC reception end and the DC output end, wherein the first path has a first switch which cuts off said first path, the second path has a second switch which cuts off said second path, and the third path has a third diode which is connected in a forward direction to a supply of power from the DC reception end to the DC output end.

Description

直流給電装置および直流電力システムDC power supply device and DC power system
 本発明は、直流給電装置および直流電力システムに関する。 The present invention relates to a DC power supply device and a DC power system.
 たとえば、特許文献1は、設置コストの低減、直流負荷に対する安定的な電力供給、および、電力供給能力の向上を目的とする直流電源利用システムを開示している。当該直流電源利用システムは、直流電源と、交流商用電源と、交流商用電源を直流電源に変換する直流変換器と、直流電源及び直流に変換された商用電源の双方から直流の電力供給を受ける直流負荷器とを備え、直流電源と直流負荷器との間及び直流変換器と直流負荷器との間には各々逆流防止のダイオードが取り付けられると共に、直流電源側から優先的に直流負荷器に電力供給を行う電源優先供給装置が取り付けられたことを特徴とする。当該直流電源利用システムによれば、直流電源に太陽電池を含む場合に日射量が減少したとしても、その日射量において発電した電力を最大限利用できる簡易な制御法が提供できるとされている。 For example, Patent Document 1 discloses a DC power source utilization system for the purpose of reducing installation cost, stable power supply to a DC load, and improvement of power supply capacity. The DC power supply system is a DC power supply that receives DC power from both a DC power supply, an AC commercial power supply, a DC converter that converts the AC commercial power supply into a DC power supply, and a DC power supply and a commercial power supply converted into DC. The loader is equipped with a backflow prevention diode between the DC power supply and the DC loader and between the DC converter and the DC loader, and the DC power supply side preferentially supplies power to the DC loader. A power supply priority supply device for supplying power is attached. According to the DC power supply system, even if the solar power is included in the DC power supply, even if the amount of solar radiation is reduced, it is possible to provide a simple control method capable of maximally utilizing the electric power generated at the amount of solar radiation.
 たとえば、特許文献2は、所望する電源を選択し、選択した電源の種類に対応した無駄のない利用を目的とした電力送出システムを開示する。当該電力送出システムは、複数の直流電源と、直流電力の供給を受ける負荷とを有し、直流電源には電力優先取り出し装置が取り付けられ、コントローラーにより制御し、電力優先取り出し装置が取り付けられた直流電源から負荷への電力優先取り出しの電力量を決定することを特徴とする。当該電力送出システムによれば、商用電源のみならず、各自然エネルギーから発電された電力群を合成する際、少ない自然エネルギーから発電された少量の電力を無駄にすることなく有効に利用でき、また複数の電源を組み合わせて利用でき、ひとつの電源が断たれても自動的に他の電源から電力が供給でき、また複数の電源を利用するときに、利用優先順位が容易に設定できる利点があるとされている。 For example, Patent Document 2 discloses a power transmission system for selecting a desired power source and aiming for efficient use corresponding to the type of the selected power source. The power transmission system has a plurality of DC power supplies and a load that receives the supply of DC power, and the DC power supply is equipped with a power priority extraction device, and is controlled by a controller. It is characterized in that the power amount for preferential power extraction from the power source to the load is determined. According to the power transmission system, when synthesizing the power groups generated from each natural energy as well as the commercial power source, a small amount of power generated from a small amount of natural energy can be effectively used without being wasted, and Multiple power sources can be used in combination, and even if one power source is cut off, power can be automatically supplied from other power sources, and when multiple power sources are used, the priority of use can be easily set. It is said that.
 たとえば、特許文献3は、負荷の消費電力が太陽電池からの供給電力を超える場合に、太陽電池の発電電力を最大限取り出すことを目的とした太陽光発電用電力給電システムが開示されている。当該太陽光発電用電力給電システムは、太陽光電源装置と、太陽光電源装置以外の電源装置と、該電源装置からの電力を合成する電力合成装置と、該電力合成装置で合成された電力が入力される負荷とを備え、負荷の消費電力が、太陽光電源装置の発電電力と略等しいかそれよりも大きい条件において、太陽光電源装置から最大効率の電力が取得できる電圧値を検出し、太陽光電源装置以外の電源装置の電圧値を検出した電圧値と略同等の電圧値として設定し、複数の電源装置からの電力を電力合成装置で合成し、合成した電力を負荷へ電力供給する構成を有する。 For example, Patent Document 3 discloses a photovoltaic power supply system for the purpose of maximizing the generated power of the solar cell when the power consumption of the load exceeds the power supplied from the solar cell. The solar power generation power supply system includes a solar power supply device, a power supply device other than the solar power supply device, a power combining device that combines the power from the power supply devices, and the power combined by the power combining device. With a load to be input, the power consumption of the load, in a condition that is substantially equal to or greater than the power generated by the solar power supply device, detects a voltage value at which the power of maximum efficiency can be obtained from the solar power supply device, Set the voltage value of the power supply device other than the solar power supply device as a voltage value that is approximately equal to the detected voltage value, combine the power from multiple power supply devices with the power combiner, and supply the combined power to the load. Have a configuration.
特開2011-181055号公報JP, 2011-181055, A 特開2014-121241号公報Japanese Patent Laid-Open No. 2014-121241 特開2016-019415号公報JP, 2016-019415, A
 上記したような、複数の電力源からの直流電力を合成し負荷に供給するシステムに、太陽電池のような、出力電圧に応じて出力電流が変動する、すなわち出力電圧に応じて取り出せる電力が変動する電力源を含む場合、一般に、出力を最大化する最適な電流-電圧を自動的に求めるMPPT(Maximum Power Point Tracking)方式の制御装置が用いられる。 As described above, in a system that combines direct current power from multiple power sources and supplies it to the load, the output current fluctuates according to the output voltage, that is, the power that can be extracted fluctuates according to the output voltage, such as a solar cell. In general, when a power source that includes a power source is included, an MPPT (Maximum Power Point Tracking) type control device that automatically obtains an optimum current-voltage that maximizes the output is used.
 しかし、MPPT制御装置は、それ自体が電力損失の原因になり得る。また、MPPT制御装置は、制御方法として山登り法(Hill Climbing Method)を採用し、DC-DCコンバータを用いることから、必然的にパルス状または鋸歯状の電圧変動が発生し、これら電圧変動が蓄電池を劣化させる要因になり得る問題がある。 However, the MPPT controller itself can cause power loss. In addition, the MPPT control device adopts the Hill Climbing Method as a control method and uses a DC-DC converter, which inevitably causes pulse-shaped or sawtooth-shaped voltage fluctuations, and these voltage fluctuations occur in the storage battery. There is a problem that can be a factor that deteriorates.
 そこで本発明者らは、上記した課題の解決を目的に、太陽電池のような最適出力電圧が変動する電力源を含むような場合であっても、出力を適切に維持または制御し、全体としての発電効率を高めることができる電力供給システムの発明を為し、これを特許出願した(特願2017-169034号)。 Therefore, for the purpose of solving the above-mentioned problems, the present inventors appropriately maintain or control the output even when including a power source such as a solar cell in which the optimum output voltage fluctuates, and as a whole, Invented a power supply system that can improve the power generation efficiency of, and applied for a patent for this (Japanese Patent Application No. 2017-169034).
 上記した電力供給システムによれば、システム全体としての発電効率を高めることが可能になるものの、発電容量が大きくなれば、用いる部品として大電力用の高価な部品を用いざるを得ず、コストを上昇させる懸念があった。また、ユーザ毎に異なる必要電力量にきめ細かに対応するには、電力供給システムで用いる電力合成装置等を多種多様に取り揃える必要があり、設計や製造の負担が大きくなる可能性があった。 According to the power supply system described above, it is possible to increase the power generation efficiency of the entire system, but if the power generation capacity becomes large, it is unavoidable to use expensive parts for high power as the parts to be used, which reduces the cost. There was concern that it would rise. Further, in order to finely correspond to the required power amount that differs for each user, it is necessary to prepare a wide variety of power combining devices and the like used in the power supply system, which may increase the load of designing and manufacturing.
 本発明の目的は、多様なユーザニーズに対応が可能であり、かつ、設計・製造の負担およびコストの上昇を抑えた直流給電装置および直流電力システムを提供することにある。 An object of the present invention is to provide a DC power supply device and a DC power system capable of meeting various user needs and suppressing the burden of design/manufacturing and an increase in cost.
 上記課題を解決するために、本発明の第1の態様においては、直流電力を受電する直流受電端と、直流電力を出力する直流出力端と、直流電力を蓄電する蓄電部に接続される蓄電部接続端と、前記蓄電部接続端と前記直流受電端とを電気的に接続する第1パスと、前記蓄電部接続端と前記直流出力端とを電気的に接続する第2パスと、前記直流受電端と前記直流出力端とを電気的に接続する第3パスと、を有し、前記第1パスが、前記第1パスを遮断する第1スイッチを有し、前記第2パスが、前記第2パスを遮断する第2スイッチを有し、前記第3パスが、前記直流受電端から前記直流出力端への電力供給に対し順方向接続された第3ダイオードを有する第1の構成、または、前記直流受電端と前記直流出力端との間が直接接続された第2の構成、の何れかの構成を有する直流給電装置を提供する。 In order to solve the above problems, in a first aspect of the present invention, a DC power receiving end for receiving DC power, a DC output end for outputting DC power, and a power storage unit connected to a power storage unit for storing DC power. A part connection end, a first path electrically connecting the power storage part connection end and the DC power reception end, a second path electrically connecting the power storage part connection end and the DC output end, and A third path electrically connecting the direct current power receiving end and the direct current output end, the first path having a first switch that shuts off the first path, and the second path; A first configuration having a second switch for shutting off the second path, wherein the third path has a third diode forward-connected to the power supply from the DC power receiving end to the DC output end; Alternatively, there is provided a DC power supply device having any one of a second configuration in which the DC power receiving end and the DC output end are directly connected.
 上記した直流給電装置において、前記第1パスが、前記第1スイッチに直列接続され、前記直流受電端から前記蓄電部接続端への電力供給に対し順方向に接続された第1ダイオードをさらに有し、前記第2パスが、前記第2スイッチに直列接続され、前記蓄電部接続端から前記直流出力端への電力供給に対し順方向に接続された第2ダイオードをさらに有しても良い。上記した前記第1スイッチおよび前記第2スイッチを制御する制御部をさらに有しても良い。 In the above-described DC power supply device, the first path further includes a first diode connected in series to the first switch and connected in a forward direction with respect to power supply from the DC power receiving end to the power storage unit connecting end. However, the second path may further include a second diode connected in series to the second switch and connected in a forward direction with respect to power supply from the power storage unit connection end to the DC output end. You may further have the control part which controls the said 1st switch and said 2nd switch.
 前記第1パスが、第3スイッチおよび抵抗素子が直列接続された第1バイパスをさらに有し、前記第2パスが、第4スイッチおよび抵抗素子が直列接続された第2バイパスをさらに有し、前記第1スイッチと前記第1バイパスとが並列に接続され、前記第2スイッチと前記第2バイパスとが並列に接続されたものであっても良い。この場合、前記第1スイッチ、前記第2スイッチ、前記第3スイッチおよび前記第4スイッチを制御する制御部をさらに有しても良い。 The first path further has a first bypass in which a third switch and a resistance element are connected in series, and the second path further has a second bypass in which a fourth switch and a resistance element are connected in series, The first switch and the first bypass may be connected in parallel, and the second switch and the second bypass may be connected in parallel. In this case, you may further have the control part which controls the said 1st switch, the said 2nd switch, the said 3rd switch, and the said 4th switch.
 本発明の第2の態様においては、直流電力を受電する直流受電端と、直流電力を出力する直流出力端と、直流電力を蓄電する蓄電部に接続される蓄電部接続端と、前記蓄電部接続端と前記直流受電端および前記直流出力端とを電気的に接続する第4パスと、前記直流受電端と前記直流出力端とを電気的に接続する第3パスと、を有し、前記第4パスが、前記第4パスを遮断する第5スイッチを有し、前記第3パスが、前記直流受電端から前記直流出力端への電力供給に対し順方向接続された第3ダイオードを有する第1の構成、または、前記直流受電端と前記直流出力端との間が直接接続された第2の構成、の何れかの構成を有する直流給電装置を提供する。この場合、前記第5スイッチを制御する制御部をさらに有しても良い。 In a second aspect of the present invention, a DC power receiving end that receives DC power, a DC output end that outputs DC power, a power storage unit connection end connected to a power storage unit that stores DC power, and the power storage unit. A fourth path electrically connecting the connection end to the DC power receiving end and the DC output end; and a third path electrically connecting the DC power receiving end to the DC output end, The fourth path has a fifth switch that shuts off the fourth path, and the third path has a third diode forwardly connected to the power supply from the DC power receiving end to the DC output end. There is provided a DC power supply device having either a first configuration or a second configuration in which the DC power receiving end and the DC output end are directly connected. In this case, you may further have the control part which controls the said 5th switch.
 上記した第1および第2の態様の直流給電装置において、交流電力を直流に整流する整流部をさらに有し、前記整流部の直流出力が、前記直流出力端に直接接続されてもよい。また、前記蓄電部接続端に接続される蓄電部をさらに有してもよい。 The DC power supply device of the first and second aspects described above may further include a rectifying unit that rectifies AC power into DC, and the DC output of the rectifying unit may be directly connected to the DC output terminal. Moreover, you may further have a power storage part connected to the said power storage part connection end.
 本発明の第3の態様においては、上記した直流給電装置を用いた直流電力システムであって、複数の前記直流給電装置と、前記直流給電装置の前記蓄電部接続端に接続された蓄電部と、直流電力を出力する、単一または複数の発電装置と、前記発電装置からの直流電力を前記直流給電装置に入力する入力接続部と、を有し、前記入力接続部が、単一または複数の前記発電装置のうち任意の発電装置の出力端と、複数の前記直流給電装置のうち任意の直流給電装置の直流受電端とを、任意に接続することが可能なものである直流電力システムを提供する。 In a third aspect of the present invention, there is provided a DC power system using the above DC power supply device, comprising a plurality of the DC power supply devices, and a power storage unit connected to the power storage unit connection end of the DC power supply device. A single or a plurality of power generators that output DC power, and an input connection unit that inputs the DC power from the power generators to the DC power supply device, wherein the input connection unit is a single or a plurality. A DC power system capable of arbitrarily connecting an output end of any power generator of the power generators and a DC power receiver of any DC power feeder of the plurality of DC power feeders. provide.
 前記入力接続部が、スイッチマトリックスで構成されても良い。前記蓄電部の蓄電圧をモニタし、前記入力接続部における接続状態を制御する蓄電圧制御装置、をさらに有しても良い。また、上記した直流電力システムにおいて、単一または複数の負荷に直流電力を出力する出力接続部をさらに有し、前記出力接続部が、複数の前記直流給電装置のうち任意の直流給電装置の直流出力端と、単一または複数の前記負荷のうち任意の負荷の入力端とを、任意に接続することが可能なものであってもよい。 The input connection unit may be composed of a switch matrix. A storage voltage control device that monitors the storage voltage of the power storage unit and controls the connection state of the input connection unit may be further included. Further, in the above DC power system, further having an output connection unit for outputting DC power to a single or a plurality of loads, the output connection unit is a DC of any DC power supply device of the plurality of DC power supply devices. The output terminal and the input terminal of an arbitrary load of the single or the plurality of loads may be arbitrarily connectable.
 本発明の第4の態様においては、上記した直流給電装置を用いた直流電力システムであって、複数の前記直流給電装置と、前記直流給電装置の前記蓄電部接続端に接続された蓄電部と、直流電力を出力する、単一または複数の発電装置と、単一または複数の負荷に直流電力を出力する出力接続部と、を有し、前記出力接続部が、複数の前記直流給電装置のうち任意の直流給電装置の直流出力端と、単一または複数の前記負荷のうち任意の負荷の入力端とを、任意に接続することが可能なものである直流電力システムを提供する。この場合、前記出力接続部が、スイッチマトリックスで構成され、前記スイッチマトリックスにおける各スイッチのオンオフ状態を制御する出力制御装置をさらに有しても良い。 In a fourth aspect of the present invention, there is provided a DC power system using the above DC power supply device, wherein a plurality of the DC power supply devices and a power storage unit connected to the power storage unit connection end of the DC power supply device are provided. A single or a plurality of power generators that output DC power, and an output connection unit that outputs DC power to a single or a plurality of loads, wherein the output connection unit is a plurality of the DC power supply devices. There is provided a DC power system capable of arbitrarily connecting a DC output end of an arbitrary DC power supply device and an input end of an arbitrary load of a single load or a plurality of loads. In this case, the output connection unit may include a switch matrix, and may further include an output control device that controls an on/off state of each switch in the switch matrix.
 なお、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではない。また、これらの特徴群のサブコンビネーションもまた、発明となりうる。 The above summary of the invention does not enumerate all necessary features of the invention. Further, a sub-combination of these feature groups can also be an invention.
直流電力システム100を示す機能ブロック図である。FIG. 3 is a functional block diagram showing a DC power system 100. 直流蓄給電部110の一例を示す回路ブロック図である。It is a circuit block diagram which shows an example of the direct current storage power supply part 110. 入力接続部160(出力接続部170)の一例を示す回路図である。6 is a circuit diagram showing an example of an input connection section 160 (output connection section 170). FIG. 直流蓄給電部210の一例を示す回路ブロック図である。3 is a circuit block diagram showing an example of a DC storage power supply unit 210. FIG. 直流蓄給電部310の一例を示す回路ブロック図である。FIG. 6 is a circuit block diagram showing an example of a DC storage power supply unit 310. 直流蓄給電部315の一例を示す回路ブロック図である。It is a circuit block diagram which shows an example of the direct current storage power supply part 315. 直流電力システム400を示す機能ブロック図である。FIG. 3 is a functional block diagram showing a DC power system 400. 直流給電回路120の他の例を示す部分回路図である。FIG. 6 is a partial circuit diagram showing another example of the DC power supply circuit 120.
 以下、発明の実施の形態を通じて本発明を説明するが、以下の実施形態は特許請求の範囲にかかる発明を限定するものではない。また、実施形態の中で説明されている特徴の組み合わせの全てが発明の解決手段に必須であるとは限らない。 Hereinafter, the present invention will be described through embodiments of the invention, but the following embodiments do not limit the invention according to the claims. In addition, not all of the combinations of features described in the embodiments are essential to the solving means of the invention.
(実施の形態1)
 図1は、直流電力システム100を示す機能ブロック図である。直流電力システム100は、複数の直流蓄給電部110、入力接続部160、単一または複数の発電装置165、商用電源166、出力接続部170および負荷175を有し、直流蓄給電部110は、直流給電回路120、蓄電部140および整流部150を有する。なお、商用電源166および整流部150、負荷175は、必ずしも直流電力システム100を構成するものではない。
(Embodiment 1)
FIG. 1 is a functional block diagram showing a DC power system 100. The DC power system 100 includes a plurality of DC power storage/supply sections 110, an input connection section 160, a single or a plurality of power generators 165, a commercial power source 166, an output connection section 170, and a load 175. It has a DC power supply circuit 120, a power storage unit 140, and a rectification unit 150. The commercial power source 166, the rectifying unit 150, and the load 175 do not necessarily constitute the DC power system 100.
 直流蓄給電部110は、入力接続部160を介して発電装置165から受電した直流電力を蓄電部140に蓄電し、あるいは、商用電源166から受電した交流電力を整流部150で整流した直流電力を蓄電部140に蓄電し、発電装置165からの直流電力、商用電源166からの交流電力を整流した直流電力、または、蓄電部140に蓄電した直流電力を、出力接続部170を介して負荷175に給電する機能を有する。 The DC power storage/supply unit 110 stores the DC power received from the power generation device 165 via the input connection unit 160 in the power storage unit 140 or rectifies the AC power received from the commercial power source 166 by the rectification unit 150. The DC power from the power generation device 165, the DC power obtained by rectifying the AC power from the commercial power supply 166, or the DC power stored in the power storage unit 140 is stored in the power storage unit 140 and is supplied to the load 175 via the output connection unit 170. It has the function of supplying power.
 本実施の形態の直流電力システム100は、直流蓄給電部110を複数備えることで、多様なユーザニーズにきめ細かく対応することが可能になり、また、コストを抑制することができる。すなわち、ユーザが必要とする電力はユーザ毎に多様であり、個々のニーズに完全に対応するには、ユーザ毎にシステムを個別に設計施工する必要がある。そのような対応を行っていては、設計施工の負担が大きく、工数を削減することも難しくなるので、コストが高くなる可能性がある。また、顧客の求める電力量が大容量である場合、大電力用の高価な部品を用いる必要があり、コストが高くなる可能性がある。 The DC power system 100 according to the present embodiment includes a plurality of DC storage and power supply units 110, so that it is possible to finely respond to various user needs and reduce costs. That is, the electric power required by each user varies, and it is necessary to individually design and construct the system for each user in order to fully meet the individual needs. If such measures are taken, the burden of designing and construction is heavy, and it is difficult to reduce the man-hours, so that the cost may increase. Further, when the amount of electric power required by the customer is large, it is necessary to use expensive parts for large electric power, which may increase the cost.
 しかし、本実施の形態の直流電力システム100では、直流蓄給電部110を複数備えるため、直流蓄給電部110として、比較的小電力容量の標準品をいくつか用意(たとえば、5kW、10kW、30kW、等)しておけば、これら標準品を組み合わせることで、顧客が求める電力容量にきめ細かく対応できる。また、標準品であることから、顧客ごとに新たに設計施工する必要がなく、コストを低く抑えることができる。直流蓄給電部110として予め用意する標準品を比較的小電力容量とすることで、安価な省電力用部品を用いることができ、製品コストを抑制することも可能である。さらに、システム運用中の顧客が電力容量を増減させたい要求が発生したとしても、直流蓄給電部110の組み合わせを変更することで、そのような要求にも容易に対応することができるようになる。 However, since the DC power supply system 100 of the present embodiment includes the plurality of DC power storage/supply units 110, some standard products having a relatively small power capacity are prepared as the DC power storage/power supply unit 110 (for example, 5 kW, 10 kW, 30 kW). , Etc.), by combining these standard products, it is possible to finely correspond to the power capacity required by the customer. Further, since it is a standard product, there is no need to newly design and construct it for each customer, and the cost can be kept low. By using a standard product prepared in advance as the DC power storage/supply unit 110 with a relatively small power capacity, inexpensive power-saving components can be used, and the product cost can be suppressed. Further, even if the customer who is operating the system makes a request to increase or decrease the power capacity, by changing the combination of the DC storage and power feeding units 110, it becomes possible to easily meet such a request. ..
 図2は、直流蓄給電部110の一例を示す回路ブロック図である。直流蓄給電部110は、直流給電回路120、直流受電端122-1,122-2、直流出力端124-1,124-2、整流部接続端126-1,126-2、蓄電部接続端128-1,128-2、制御部130、蓄電部140、整流部150および整流部受電端152,154を有する。なお、整流部150および整流部受電端152,154は、直流蓄給電部110の必須の構成要件ではない。 FIG. 2 is a circuit block diagram showing an example of the direct current storage/power supply unit 110. The DC power storage/supply unit 110 includes a DC power supply circuit 120, DC power receiving ends 122-1 and 122-2, DC output ends 124-1 and 124-2, rectifying unit connecting ends 126-1 and 126-2, and a power storing unit connecting end. 128-1 and 128-2, a control unit 130, a power storage unit 140, a rectifying unit 150, and rectifying unit power receiving ends 152 and 154. Note that the rectifying unit 150 and the rectifying unit power receiving ends 152 and 154 are not indispensable constituent features of the DC storage power feeding unit 110.
 直流給電回路120は、直流受電端122-1,122-2、直流出力端124-1,124-2、整流部接続端126-1,126-2および蓄電部接続端128-1,128-2の間を繋ぐ電気回路であり、第1パス134、第2パス136および第3パス138を有する。 The DC power supply circuit 120 includes DC power receiving terminals 122-1 and 122-2, DC output terminals 124-1 and 124-2, rectifying unit connecting terminals 126-1 and 126-2, and power storage unit connecting terminals 128-1 and 128-. It is an electric circuit that connects the two and has a first path 134, a second path 136, and a third path 138.
 第1パス134は、蓄電部接続端128-1と直流受電端122-1とを電気的に接続し、第2パス136は、蓄電部接続端128-1と直流出力端124-1とを電気的に接続し、第3パス138は、直流受電端122-1と直流出力端124-1とを電気的に接続する。 The first path 134 electrically connects the power storage unit connection end 128-1 and the DC power reception end 122-1. The second path 136 connects the power storage unit connection end 128-1 and the DC output end 124-1. The third path 138 is electrically connected to electrically connect the DC power receiving end 122-1 and the DC output end 124-1.
 第1パス134は、第1スイッチSW1と第1ダイオードD1とを有する。第1スイッチSW1は、第1パス134を遮断する。第1ダイオードD1は、第1スイッチSW1に直列接続され、直流受電端122-1から蓄電部接続端128-1への電力供給に対し順方向に接続されている。 The first path 134 has a first switch SW1 and a first diode D1. The first switch SW1 shuts off the first path 134. The first diode D1 is connected in series to the first switch SW1 and is connected in the forward direction with respect to the power supply from the DC power receiving end 122-1 to the power storage unit connecting end 128-1.
 第2パス136は、第2スイッチSW2と第2ダイオードD2とを有する。第2スイッチSW2は、第2パス136を遮断する。第2ダイオードD2は、第2スイッチSW2に直列接続され、蓄電部接続端128-1から直流出力端124-1への電力供給に対し順方向に接続されている。 The second path 136 has a second switch SW2 and a second diode D2. The second switch SW2 shuts off the second path 136. The second diode D2 is connected in series to the second switch SW2, and is connected in the forward direction with respect to the power supply from the power storage unit connection end 128-1 to the DC output end 124-1.
 第3パス138は、第3ダイオードD3を有する。第3ダイオードD3は、直流受電端122-1から直流出力端124-1への電力供給に対し順方向接続されている。 The third path 138 has a third diode D3. The third diode D3 is forwardly connected to the power supply from the DC power receiving end 122-1 to the DC output end 124-1.
 直流受電端122-1,122-2は、直流電力を受電し、直流出力端124-1,124-2は、直流電力を出力する。整流部接続端126-1,126-2は、整流部150に接続され、蓄電部接続端128-1,128-2は、蓄電部140に接続される。制御部130は、第1スイッチSW1および第2スイッチSW2を制御する。 The DC power receiving ends 122-1 and 122-2 receive DC power, and the DC output ends 124-1 and 124-2 output DC power. Rectification unit connection ends 126-1 and 126-2 are connected to rectification unit 150, and power storage unit connection ends 128-1 and 128-2 are connected to power storage unit 140. The control unit 130 controls the first switch SW1 and the second switch SW2.
 蓄電部140は、直流電力を蓄電することができる電気装置であり、たとえば蓄電池、コンデンサを挙げることができる。蓄電部140は、単一または複数の蓄電池等で構成されてもよい。複数の蓄電池等を直並列に組み合わせて接続することで、蓄電部140の電圧を調整することができる。 The power storage unit 140 is an electric device capable of storing DC power, and examples thereof include a storage battery and a capacitor. Power storage unit 140 may be configured by a single storage battery or a plurality of storage batteries. The voltage of the power storage unit 140 can be adjusted by combining and connecting a plurality of storage batteries and the like in series and parallel.
 整流部150は、交流電力を直流に整流する。なお、整流部150の直流出力は、直流出力端124-1、124-2に直接接続されている。整流部受電端152,154は、商用電源166からの交流電力を受電する。 The rectifying unit 150 rectifies AC power into DC. The DC output of the rectifying unit 150 is directly connected to the DC output terminals 124-1 and 124-2. The rectifier power receiving ends 152 and 154 receive the AC power from the commercial power source 166.
 入力接続部160は、発電装置165からの直流電力を受電する。入力接続部160は、単一または複数の発電装置165のうち任意の発電装置165の出力端と、複数の直流蓄給電部110のうち任意の直流蓄給電部110の直流受電端122-1,122-2とを、任意に接続することが可能な電気回路である。入力接続部160は、たとえば図3に示すようなスイッチマトリックスで構成されてもよい。 The input connection unit 160 receives the DC power from the power generator 165. The input connection section 160 includes an output terminal of an arbitrary power generating apparatus 165 of the single or a plurality of power generating apparatuses 165, a DC power receiving terminal 122-1 of an arbitrary DC storage power feeding section 110 of the plurality of DC power storage feeding sections 110, 122-2 is an electric circuit that can be arbitrarily connected to the unit 122-2. The input connection section 160 may be composed of a switch matrix as shown in FIG. 3, for example.
 図3は、入力接続部160の一例を示す回路図である。図3に示す入力接続部160は、複数の入力端162と複数の出力端164とを有し、各入力端162および出力端164に接続された各配線には、マトリックス状に配置されたスイッチSW11~SW33が接続されている。入力端162は発電装置165の側に配置され、出力端164は直流蓄給電部110の側に配置される。スイッチSW11~SW33の開閉を制御することで、任意の入力端162と任意の出力端164とを接続することができ、任意の発電装置165を任意の直流蓄給電部110に接続することが可能になる。 FIG. 3 is a circuit diagram showing an example of the input connection section 160. The input connection section 160 shown in FIG. 3 has a plurality of input terminals 162 and a plurality of output terminals 164. The switches connected to the input terminals 162 and the output terminals 164 are arranged in a matrix. SW11 to SW33 are connected. The input end 162 is arranged on the power generation device 165 side, and the output end 164 is arranged on the DC storage power feeding unit 110 side. By controlling the opening and closing of the switches SW11 to SW33, it is possible to connect the arbitrary input terminal 162 and the arbitrary output terminal 164, and it is possible to connect the arbitrary power generation device 165 to the arbitrary DC storage power supply unit 110. become.
 入力接続部160を備えることで、各発電装置165における発電量と各直流蓄給電部110における蓄電部140の蓄電量をモニタしつつ、発電装置165と直流蓄給電部110の接続を最適に制御することができる。 By including the input connection unit 160, the connection between the power generation device 165 and the DC power storage and supply unit 110 is optimally controlled while monitoring the amount of power generation in each power generation device 165 and the amount of power stored in the power storage unit 140 in each DC power storage and power supply unit 110. can do.
 発電装置165は、直流電力を出力する電気装置であり、たとえば太陽電池、燃料電池等を挙げることができる。発電装置165は、再生可能エネルギーであることが好ましい。なお、図1では複数の発電装置165を例示するが、発電装置165は、単一の発電装置165であっても良い。 The power generation device 165 is an electric device that outputs DC power, and examples thereof include a solar cell and a fuel cell. The power generator 165 is preferably renewable energy. Although a plurality of power generators 165 are illustrated in FIG. 1, the power generator 165 may be a single power generator 165.
 商用電源166は、電力会社等から送電線を介して供給される交流電力源である。なお、本実施の形態の直流電力システム100は、可能な限り、太陽電池等に代表される自然エネルギーにより負荷175への電力供給を賄おうとするものであるから、商用電源166からの電力は、発電装置165からの電力が不足する場合に限り利用する予備的電力である。よって、発電装置165からの電力により十分に負荷175への電力供給が為される場合には、商用電源166およびこれに付随する整流部150は不要であり、必須の構成要素ではない。 The commercial power source 166 is an AC power source supplied from a power company or the like via a power transmission line. In addition, since the DC power system 100 of the present embodiment tries to cover the power supply to the load 175 with natural energy typified by a solar cell or the like as much as possible, the power from the commercial power supply 166 is It is auxiliary power used only when the power from the power generation device 165 is insufficient. Therefore, when the power from the power generation device 165 sufficiently supplies the power to the load 175, the commercial power source 166 and the rectifying unit 150 associated therewith are unnecessary and are not essential components.
 出力接続部170は、単一または複数の負荷175に直流電力を供給する。出力接続部170は、複数の直流蓄給電部110のうち任意の直流蓄給電部110の直流出力端124-1,124-2と、単一または複数の負荷175のうち任意の負荷175の入力端とを、任意に接続することが可能な電気回路である。出力接続部170は、たとえば図3に示すようなスイッチマトリックスで構成されてもよい。なお、図1では単一の負荷175を例示しているが、負荷175は複数であっても良い。 The output connection unit 170 supplies DC power to the single or multiple loads 175. The output connection unit 170 inputs the DC output terminals 124-1 and 124-2 of any DC storage power supply unit 110 among the plurality of DC storage power supply units 110 and any load 175 of the single or multiple loads 175. It is an electric circuit that can be arbitrarily connected to the ends. The output connection section 170 may be configured by a switch matrix as shown in FIG. 3, for example. In addition, although the single load 175 is illustrated in FIG. 1, the load 175 may be plural.
 上記図3の説明と同様、出力接続部170は、複数の入力端172と複数の出力端174とを有し、各入力端172および出力端174に接続された各配線には、マトリックス状に配置されたスイッチSW11~SW33が接続されている。入力端172は直流蓄給電部110の側に配置され、出力端174は負荷175の側に配置される。スイッチSW11~SW33の開閉を制御することで、任意の入力端172と任意の出力端174とを接続することができ、任意の直流蓄給電部110を任意の負荷175に接続することが可能になる。 Similar to the description of FIG. 3 described above, the output connection unit 170 has a plurality of input ends 172 and a plurality of output ends 174, and each input line 172 and each wiring connected to the output end 174 are arranged in a matrix. The arranged switches SW11 to SW33 are connected. The input end 172 is arranged on the side of the DC storage power supply unit 110, and the output end 174 is arranged on the side of the load 175. By controlling the opening and closing of the switches SW11 to SW33, it is possible to connect the arbitrary input terminal 172 and the arbitrary output terminal 174, and it is possible to connect the arbitrary DC storage power feeding unit 110 to the arbitrary load 175. Become.
 出力接続部170を備えることで、各直流蓄給電部110に供給される発電装置165からの電力量および蓄電部140に蓄積されている電力量と、負荷175の必要電力量とのバランスを勘案し、直流蓄給電部110と負荷175との接続を最適に制御することができる。 By providing the output connection unit 170, the balance between the amount of power from the power generation device 165 supplied to each DC power storage unit 110 and the amount of power stored in the power storage unit 140 and the required amount of power of the load 175 is considered. However, it is possible to optimally control the connection between the DC power storage/supply unit 110 and the load 175.
 負荷175は、直流電力を消費する電気電子機器である。たとえば直流入力を有するインバータ方式のエアーコンディショナ、直流駆動可能なLED等の照明器具、直流入力を有するコンピュータ等電子機器が例示できる。 The load 175 is an electric/electronic device that consumes DC power. For example, an inverter type air conditioner having a DC input, a lighting device such as an LED capable of being driven by DC, and an electronic device such as a computer having a DC input can be exemplified.
 次に、直流給電回路120における第1スイッチSW1および第2スイッチSW2の動作について説明する。第1スイッチSW1および第2スイッチSW2は、蓄電部140の電圧(V_BATT)を参照し、制御部130により制御する。蓄電部140の特性に合わせ、下記4つの電圧を定義する。
 「充電禁止電圧(V_CRGOFF)」:この電圧を超えた場合は、満充電になっているものとみなし、充電を禁止する。
 「充電許可電圧(V_CRGON)」:この電圧以下になった場合は、充電可能とする。
 「放電許可電圧(V_DISON)」:この電圧以上になった場合は、放電可能とする。
 「放電禁止電圧(V_DISOFF)」:この電圧を下回った場合は、バッテリー残量が空になったものとみなし、放電を禁止する。
Next, operations of the first switch SW1 and the second switch SW2 in the DC power supply circuit 120 will be described. The first switch SW1 and the second switch SW2 are controlled by the control unit 130 with reference to the voltage (V_BATT) of the power storage unit 140. The following four voltages are defined according to the characteristics of power storage unit 140.
"Charging prohibition voltage (V_CRGOFF)": When this voltage is exceeded, it is considered to be fully charged and charging is prohibited.
"Charging permission voltage (V_CRGON)": When the voltage drops below this voltage, charging is possible.
"Discharge permission voltage (V_DISON)": When the voltage exceeds this voltage, discharge is possible.
"Discharge inhibit voltage (V_DISOFF)": When the voltage drops below this voltage, it is considered that the battery level is empty, and discharge is prohibited.
 具体的な制御方法は以下の通りである。
 1.V_CRGOFFとV_BATTとを比較し、「V_CRGOFF<V_BATT」である場合に第1スイッチSW1をオフにする。
 2.V_CRGONとV_BATTとを比較し、「V_CRGON>V_BATT」である場合に第1スイッチSW1をオンにする。
 3.V_DISONとV_BATTとを比較し、「V_DISON<V_BATT」である場合に第2スイッチSW2をオンにする。
 4.V_DISOFFとV_BATTとを比較し、「V_DISOFF>V_BATT」である場合に第2スイッチSW2をオフにする。
The specific control method is as follows.
1. V_CRGOFF and V_BATT are compared, and if “V_CRGOFF<V_BATT”, the first switch SW1 is turned off.
2. V_CRGON and V_BATT are compared, and when “V_CRGON>V_BATT”, the first switch SW1 is turned on.
3. V_DISON is compared with V_BATT, and when “V_DISON<V_BATT”, the second switch SW2 is turned on.
4. V_DISOFF and V_BATT are compared, and when “V_DISOFF>V_BATT”, the second switch SW2 is turned off.
 以上説明した直流電力システム100によれば、ユーザの要望に合わせて直流蓄給電部110を増減できるので、コストを抑えつつユーザの要望にきめ細かく対応することができる。また、直流蓄給電部110を比較的小規模な電力容量に対応するものとすることで、コスト低減を図ることが可能になる。 According to the DC power system 100 described above, the DC storage and power supply unit 110 can be increased or decreased according to the user's request, so that it is possible to respond to the user's request in detail while suppressing the cost. Further, by making the DC power storage/feeding unit 110 compatible with a relatively small power capacity, cost reduction can be achieved.
 上記した直流電力システム100では、直流給電回路120の第1パス134、第2パス136および第3パス138のそれぞれに、第1ダイオードD1、第2ダイオードD2および第3ダイオードD3を備えるため、蓄電部140の蓄電量(出力電圧)を気にすることなく、2以上の直流蓄給電部110のカスケード接続(一の直流蓄給電部110の直流受電端122-1,122-2、直流出力端124-1,124-2のそれぞれを、他の直流蓄給電部110の直流受電端122-1,122-2、直流出力端124-1,124-2のそれぞれにつなげる接続)を行うことができる。すなわち、蓄電部140の電圧が異なる二つの直流蓄給電部110を放電許可状態でカスケード接続した場合、両者の直流出力端124-1,124-2を介して、一方の蓄電部140から他方の蓄電部140に電流が流れようとする。しかし、電流が流れ込む側の第2ダイオードD2および第3ダイオードD3の作用(逆バイアス)により、流入電流は阻止され、結果、蓄電部140および発電装置165に逆電流は流れ込まない。 In the above-described DC power system 100, the first diode D1, the second diode D2, and the third diode D3 are provided in each of the first path 134, the second path 136, and the third path 138 of the DC power supply circuit 120, so that the power storage is performed. Cascade connection of two or more DC storage/feeding units 110 (DC receiving ends 122-1 and 122-2 of one DC storage/feeding unit 110, DC output ends without worrying about the amount of stored electricity (output voltage) of the unit 140) 124-1 and 124-2 can be connected to the DC power receiving ends 122-1 and 122-2 and the DC output ends 124-1 and 124-2 of the other DC storage power feeding unit 110). it can. That is, when two DC power storage/supply units 110 having different voltages in power storage unit 140 are cascade-connected in a discharge enabled state, one power storage unit 140 is connected to the other via the DC output terminals 124-1 and 124-2 of the two. A current is about to flow in power storage unit 140. However, the inflow current is blocked by the action (reverse bias) of second diode D2 and third diode D3 on the side where the current flows, and as a result, the reverse current does not flow into power storage unit 140 and power generation device 165.
 また、一般に、単一の直流蓄給電部110には、単一または複数の発電装置165が接続でき、単一の発電装置165を複数の直流蓄給電部110に接続することはできないが、本実施の形態の直流電力システム100では、直流給電回路120に第1ダイオードD1、第2ダイオードD2および第3ダイオードD3を備えるため、単一の発電装置165を複数の直流蓄給電部110に接続することが可能になる。すなわち、単一の発電装置165を、カスケード接続された複数の直流蓄給電部110に接続した場合、充電許可状態では、第1ダイオードD1が順バイアスとなり、電圧の低い蓄電部140から優先的に充電が実行される。この結果、複数の直流蓄給電部110における充電の偏りを小さくすることも可能になる。 Further, in general, a single DC storage power supply unit 110 can be connected to a single or a plurality of power generation devices 165, and a single power generation device 165 cannot be connected to a plurality of DC storage power supply units 110. In the DC power system 100 according to the embodiment, the DC power supply circuit 120 includes the first diode D1, the second diode D2, and the third diode D3. Therefore, the single power generation device 165 is connected to the plurality of DC storage power supply units 110. It will be possible. That is, when the single power generation device 165 is connected to the plurality of DC storage power supply units 110 connected in cascade, the first diode D1 becomes a forward bias in the charging enabled state, and the power storage unit 140 having a low voltage is preferentially started. Charging is executed. As a result, it is possible to reduce the bias of charging in the plurality of DC storage power supply units 110.
(実施の形態2)
 実施の形態1の直流電力システム100では、直流給電回路120の第1パス134、第2パス136および第3パス138のそれぞれに、第1ダイオードD1、第2ダイオードD2および第3ダイオードD3を備えた例を示したが、直流蓄給電部110を接続する際の充電電圧が同一である場合には、図4に示すように、第3パス138の第3ダイオードD3を省略することができる。すなわち、第3パス138を、直流受電端122と直流出力端126との間が直接接続された構成とすることができる。
(Embodiment 2)
In the DC power system 100 according to the first embodiment, each of the first path 134, the second path 136, and the third path 138 of the DC power supply circuit 120 includes a first diode D1, a second diode D2, and a third diode D3. Although the example described above is shown, when the charging voltage at the time of connecting the DC storage power supply unit 110 is the same, the third diode D3 of the third path 138 can be omitted as shown in FIG. That is, the third path 138 can be configured such that the DC power receiving end 122 and the DC output end 126 are directly connected.
 この場合の制御部130における第1スイッチSW1および第2スイッチSW2の制御は、実施の形態1の場合と同様、以下のように行うことができる。
 1.V_CRGOFFとV_BATTとを比較し、「V_CRGOFF<V_BATT」である場合に第1スイッチSW1をオフにする。
 2.V_CRGONとV_BATTとを比較し、「V_CRGON>V_BATT」である場合に第1スイッチSW1をオンにする。
 3.V_DISONとV_BATTとを比較し、「V_DISON<V_BATT」である場合に第2スイッチSW2をオンにする。
 4.V_DISOFFとV_BATTとを比較し、「V_DISOFF>V_BATT」である場合に第2スイッチSW2をオフにする。
The control of the first switch SW1 and the second switch SW2 in the control unit 130 in this case can be performed as follows, as in the case of the first embodiment.
1. V_CRGOFF and V_BATT are compared, and if “V_CRGOFF<V_BATT”, the first switch SW1 is turned off.
2. V_CRGON and V_BATT are compared, and when “V_CRGON>V_BATT”, the first switch SW1 is turned on.
3. V_DISON is compared with V_BATT, and when “V_DISON<V_BATT”, the second switch SW2 is turned on.
4. V_DISOFF and V_BATT are compared, and when “V_DISOFF>V_BATT”, the second switch SW2 is turned off.
(実施の形態3)
 実施の形態1で説明した第1ダイオードD1および第2ダイオードD2は、逆流防止用の素子であり、第1ダイオードD1および第2ダイオードD2をスイッチに置き換えることができる。また、第1スイッチSW1および第2スイッチSW2の制御により逆流防止機能が実現できる場合には、図5に示すように、第1ダイオードD1および第2ダイオードD2を省略することができる。
(Embodiment 3)
The first diode D1 and the second diode D2 described in the first embodiment are elements for preventing backflow, and the first diode D1 and the second diode D2 can be replaced with switches. When the backflow prevention function can be realized by controlling the first switch SW1 and the second switch SW2, the first diode D1 and the second diode D2 can be omitted as shown in FIG.
 この場合の制御部130における第1スイッチSW1および第2スイッチSW2の制御は、以下のように行うことができる。
 5.充電禁止条件に合致する場合:第1スイッチSW1をオフにする。
 6-1.充電許可条件に合致しSW1がオフである場合:SW1の蓄電部側電圧が直流出力端側電圧より低いとき、第1スイッチSW1をオンにする。
 6-2.充電許可条件に合致しSW1がオンである場合:SW1に流れる電流が直流出力端側に流れているとき、第1スイッチSW1をオフにする。
 7.放電禁止条件に合致する場合:第2スイッチSW2をオフにする。
 8-1.放電許可条件に合致しSW2がオフである場合:SW2の蓄電部側電圧が直流出力端側電圧より高いとき、第2スイッチSW2をオンにする。
 8-2.放電許可条件に合致しSW2がオンである場合:SW2に流れる電流が蓄電部側に流れているとき、第2スイッチSW2をオフにする。
The control of the first switch SW1 and the second switch SW2 in the control unit 130 in this case can be performed as follows.
5. When the charging prohibition condition is met: The first switch SW1 is turned off.
6-1. When the charging permission condition is met and SW1 is off: When the voltage on the power storage unit side of SW1 is lower than the voltage on the DC output end side, the first switch SW1 is turned on.
6-2. When the charge permission condition is met and SW1 is on: When the current flowing through SW1 is flowing to the DC output end side, the first switch SW1 is turned off.
7. When the discharge prohibition condition is met: The second switch SW2 is turned off.
8-1. When the discharge permission condition is met and SW2 is off: When the voltage on the power storage unit side of SW2 is higher than the voltage on the DC output end side, the second switch SW2 is turned on.
8-2. When the discharge permission condition is satisfied and SW2 is on: When the current flowing through SW2 is flowing to the power storage unit side, the second switch SW2 is turned off.
(実施の形態4)
 実施の形態2で説明した第1ダイオードD1および第2ダイオードD2も、実施の形態3と同様、第1スイッチSW1および第2スイッチSW2の制御により逆流防止機能が実現できる場合には省略することができる。この場合、第1スイッチSW1と第2スイッチSW2は、並列に接続された構成となるため、図6に示すように、単一の第5スイッチSW5に置き換えることができる。すなわち、蓄電部接続端128-1と直流受電端122-1および直流出力端124-1とを電気的に接続する第4パス139と、上記第3パス138と、を有し、第4パス139が、これを遮断する第5スイッチSW5を有し、第3パス138が、直流受電端122-1と直流出力端124-1との間が直接接続されたものとすることができる。
(Embodiment 4)
Similarly to the third embodiment, the first diode D1 and the second diode D2 described in the second embodiment may be omitted if the backflow prevention function can be realized by the control of the first switch SW1 and the second switch SW2. it can. In this case, since the first switch SW1 and the second switch SW2 are connected in parallel, they can be replaced with a single fifth switch SW5 as shown in FIG. That is, the fourth path 139 electrically connecting the power storage unit connection end 128-1, the DC power reception end 122-1 and the DC output end 124-1 and the third path 138 are provided, and the fourth path 139 may have a fifth switch SW5 that shuts it off, and the third path 138 may be a direct connection between the DC power receiving end 122-1 and the DC output end 124-1.
 なお、第5スイッチSW5は、制御部130によって制御することができ、たとえば、第1スイッチSW1および第2スイッチSW2の動作において、両スイッチがオフになる条件の場合にSW5がオフになり、何れか一方のスイッチがオンになる条件の場合にSW5がオンになるよう制御すればよい。 The fifth switch SW5 can be controlled by the control unit 130. For example, in the operation of the first switch SW1 and the second switch SW2, SW5 is turned off when both switches are turned off. SW5 may be controlled to be turned on under the condition that one of the switches is turned on.
(実施の形態5)
 実施の形態1の構成に加え、図7に示すように、蓄電圧制御装置402および出力制御装置404の構成を追加することができる。すなわち、蓄電圧制御装置402は、複数の直流蓄給電部110のそれぞれに含まれる蓄電部140における蓄電圧をモニタし、入力接続部160における接続状態を制御するものである。当該構成を備えることで、蓄電圧の低い蓄電部140から優先的に充電を実行できる。また、この際、発電電力の大きい発電装置165を選択して、当該充電に充てることができる。
(Embodiment 5)
In addition to the configuration of the first embodiment, as shown in FIG. 7, the configurations of the accumulated voltage control device 402 and the output control device 404 can be added. That is, the stored voltage control device 402 monitors the stored voltage in the power storage unit 140 included in each of the plurality of DC storage power supply units 110, and controls the connection state in the input connection unit 160. With the configuration, charging can be preferentially performed from the power storage unit 140 having a low stored voltage. Further, at this time, the power generation device 165 having a large generated power can be selected and used for the charging.
 また、出力制御装置404は、出力接続部170におけるスイッチマトリックスの各スイッチをオンオフ制御するものである。当該構成により、負荷175が複数あった場合に、優先すべき負荷175を選択して、電力を供給することができる。また、蓄電圧の高い蓄電部140を選択して、優先的に負荷175への電力供給を実行し、各直流蓄給電部110間の蓄電圧の平準化を図ることができる。 Further, the output control device 404 controls ON/OFF of each switch of the switch matrix in the output connection section 170. With this configuration, when there are a plurality of loads 175, the load 175 to be prioritized can be selected and power can be supplied. Further, it is possible to select the power storage unit 140 having a high stored voltage, preferentially supply power to the load 175, and level the stored voltage among the DC storage power supply units 110.
(実施の形態6)
 実施の形態1~4における第1スイッチSW1および第2スイッチSW2並びに実施の形態5における第5スイッチSW5としてスイッチリレー等を用いた場合、リレー接点の融着や切断時アーク放電の防止を目的に、図8に示すようなプリチャージ回路を付加することができる。すなわち、第1パス134が、第3スイッチSW3および抵抗素子Rが直列接続された第1バイパス502をさらに有し、第2パス136が、第4スイッチSW4および抵抗素子Rが直列接続された第2バイパス504をさらに有し、第1スイッチSW1と第1バイパス502とが並列に接続され、第2スイッチSW2と第2バイパス504とが並列に接続されたものとすることができる。この場合、制御部130は、第1スイッチSW1、第2スイッチSW2、第3スイッチSW3および第4スイッチSW4、または、第5スイッチSW5、第3スイッチSW3および第4スイッチSW4を制御することができる。
(Embodiment 6)
When a switch relay or the like is used as the first switch SW1 and the second switch SW2 in the first to fourth embodiments and the fifth switch SW5 in the fifth embodiment, the purpose is to fuse the relay contacts and prevent arc discharge during cutting. A precharge circuit as shown in FIG. 8 can be added. That is, the first path 134 further has the first bypass 502 in which the third switch SW3 and the resistance element R are connected in series, and the second path 136 is the first bypass 502 in which the fourth switch SW4 and the resistance element R are connected in series. The second switch 504 may further include two bypasses 504, the first switch SW1 and the first bypass 502 may be connected in parallel, and the second switch SW2 and the second bypass 504 may be connected in parallel. In this case, the control unit 130 can control the first switch SW1, the second switch SW2, the third switch SW3 and the fourth switch SW4, or the fifth switch SW5, the third switch SW3 and the fourth switch SW4. ..
 本実施の形態における第1スイッチSW1~第5スイッチSW5の各スイッチの制御は、たとえば以下のように行うことができる。すなわち、SW1をONにする場合、第3スイッチSW3をONにし、その後SW1をONにする。SW1をOFFにする場合は、SW1をOFFにした後、SW3をOFFにする。SW2およびSW4についても同様である。SW5についても同様である。当該構成により、リレー接点の融着、切断時のアーク放電を防止することができる。 The control of each switch of the first switch SW1 to the fifth switch SW5 in the present embodiment can be performed as follows, for example. That is, when SW1 is turned on, the third switch SW3 is turned on, and then SW1 is turned on. To turn off SW1, turn off SW1 and then turn off SW3. The same applies to SW2 and SW4. The same applies to SW5. With this configuration, it is possible to prevent the arc discharge when the relay contacts are fused and cut.
 以上、本発明を実施の形態を用いて説明したが、本発明の技術的範囲は上記実施の形態に記載の範囲には限定されない。上記実施の形態に、多様な変更または改良を加えることが可能であることが当業者に明らかである。その様な変更または改良を加えた形態も本発明の技術的範囲に含まれ得ることが、特許請求の範囲の記載から明らかである。 The present invention has been described above using the embodiments, but the technical scope of the present invention is not limited to the scope described in the above embodiments. It is apparent to those skilled in the art that various changes or improvements can be added to the above-described embodiment. It is apparent from the description of the scope of claims that the embodiments added with such changes or improvements can be included in the technical scope of the present invention.
 たとえば、上記した直流電力システム100では、入力接続部160および出力接続部170の両方を備える例を説明したが、何れか一方を備えるもの、または、何れも備えないものであっても良い。この場合、入力接続部160または出力接続部170を備えない直流受電端122-1,122-2または直流出力端124-1,124-2は、他の直流蓄給電部110の同部位とカスケード接続されても良く、任意に接続されても良い。 For example, in the above-described DC power system 100, an example in which both the input connection section 160 and the output connection section 170 are provided has been described, but it may be provided with either one or without both. In this case, the DC power receiving ends 122-1 and 122-2 or the DC output ends 124-1 and 124-2, which do not include the input connecting part 160 or the output connecting part 170, are cascaded with the same part of the other DC storage power feeding part 110. It may be connected or may be arbitrarily connected.
 また、上記した実施の形態において、発電装置165の出力にDC-DCコンバータあるいはMPPT制御装置を備えても良い。 Also, in the above-described embodiment, the output of the power generation device 165 may be provided with a DC-DC converter or an MPPT control device.
 100…直流電力システム、110…直流蓄給電部、120…直流給電回路、122-1,122-2…直流受電端、124-1,124-2…直流出力端、126-1,126-2…整流部接続端、128-1,128-2…蓄電部接続端、130…制御部、134…第1パス、136…第2パス、138…第3パス、139…第4パス、140…蓄電部、150…整流部、152,154…整流部受電端、160…入力接続部、162…入力端、164…出力端、165…発電装置、166…商用電源、170…出力接続部、172…入力端、174…出力端、175…負荷、210…直流蓄給電部、310…直流蓄給電部、315…直流蓄給電部、400…直流電力システム、402…蓄電圧制御装置、404…出力制御装置、502…第1バイパス、504…第2バイパス、D1…第1ダイオード、D2…第2ダイオード、D3…第3ダイオード、R…抵抗素子、SW1…第1スイッチ、SW2…第2スイッチ、SW3…第3スイッチ、SW4…第4スイッチ、SW5…第5スイッチ、SW11~SW33…スイッチ。 100... DC power system, 110... DC storage/feeding unit, 120... DC feeding circuit, 122-1 and 122-2... DC receiving end, 124-1, 124-2... DC output end, 126-1, 126-2 ... Rectifier connection ends, 128-1, 128-2... Power storage connection ends, 130... Control part, 134... First path, 136... Second path, 138... Third path, 139... Fourth path, 140... Power storage unit, 150... Rectification unit, 152, 154... Rectification unit power receiving end, 160... Input connection unit, 162... Input end, 164... Output end, 165... Power generation device, 166... Commercial power supply, 170... Output connection unit, 172 ... Input end, 174... Output end, 175... Load, 210... DC storage power supply unit, 310... DC storage power supply unit, 315... DC storage power supply unit, 400... DC power system, 402... Storage voltage control device, 404... Output Control device, 502... First bypass, 504... Second bypass, D1... First diode, D2... Second diode, D3... Third diode, R... Resistance element, SW1... First switch, SW2... Second switch, SW3... Third switch, SW4... Fourth switch, SW5... Fifth switch, SW11 to SW33... Switch.

Claims (15)

  1.  直流電力を受電する直流受電端と、
     直流電力を出力する直流出力端と、
     直流電力を蓄電する蓄電部に接続される蓄電部接続端と、
     前記蓄電部接続端と前記直流受電端とを電気的に接続する第1パスと、
     前記蓄電部接続端と前記直流出力端とを電気的に接続する第2パスと、
     前記直流受電端と前記直流出力端とを電気的に接続する第3パスと、を有し、
     前記第1パスが、前記第1パスを遮断する第1スイッチを有し、
     前記第2パスが、前記第2パスを遮断する第2スイッチを有し、
     前記第3パスが、前記直流受電端から前記直流出力端への電力供給に対し順方向接続された第3ダイオードを有する第1の構成、または、前記直流受電端と前記直流出力端との間が直接接続された第2の構成、の何れかの構成を有する直流給電装置。
    A DC power receiving end that receives DC power,
    A DC output end that outputs DC power,
    A power storage unit connection end connected to a power storage unit that stores DC power,
    A first path electrically connecting the power storage unit connection end and the DC power reception end;
    A second path electrically connecting the power storage unit connection end and the DC output end;
    A third path electrically connecting the DC power receiving end and the DC output end,
    The first path has a first switch that shuts off the first path,
    The second path has a second switch that shuts off the second path,
    A first configuration in which the third path has a third diode forwardly connected to the power supply from the DC power receiving end to the DC output end, or between the DC power receiving end and the DC output end The DC power supply device having any one of the second configuration in which is directly connected.
  2.  前記第1パスが、前記第1スイッチに直列接続され、前記直流受電端から前記蓄電部接続端への電力供給に対し順方向に接続された第1ダイオードをさらに有し、
     前記第2パスが、前記第2スイッチに直列接続され、前記蓄電部接続端から前記直流出力端への電力供給に対し順方向に接続された第2ダイオードをさらに有する請求項1に記載の直流給電装置。
    The first path further includes a first diode connected in series to the first switch and connected in a forward direction with respect to power supply from the DC power receiving end to the power storage unit connecting end,
    The direct current according to claim 1, wherein the second path further includes a second diode connected in series to the second switch and connected in a forward direction with respect to power supply from the power storage unit connection end to the direct current output end. Power supply device.
  3.  前記第1スイッチおよび前記第2スイッチを制御する制御部をさらに有する請求項1または請求項2に記載の直流給電装置。 The DC power supply device according to claim 1 or 2, further comprising a control unit that controls the first switch and the second switch.
  4.  前記第1パスが、第3スイッチおよび抵抗素子が直列接続された第1バイパスをさらに有し、
     前記第2パスが、第4スイッチおよび抵抗素子が直列接続された第2バイパスをさらに有し、
     前記第1スイッチと前記第1バイパスとが並列に接続され、
     前記第2スイッチと前記第2バイパスとが並列に接続された請求項1から請求項3の何れか一項に記載の直流給電装置。
    The first path further has a first bypass in which a third switch and a resistance element are connected in series,
    The second path further has a second bypass in which a fourth switch and a resistance element are connected in series,
    The first switch and the first bypass are connected in parallel,
    The DC power supply device according to any one of claims 1 to 3, wherein the second switch and the second bypass are connected in parallel.
  5.  前記第1スイッチ、前記第2スイッチ、前記第3スイッチおよび前記第4スイッチを制御する制御部をさらに有する請求項4に記載の直流給電装置。 The DC power supply device according to claim 4, further comprising a control unit that controls the first switch, the second switch, the third switch, and the fourth switch.
  6.  直流電力を受電する直流受電端と、
     直流電力を出力する直流出力端と、
     直流電力を蓄電する蓄電部に接続される蓄電部接続端と、
     前記蓄電部接続端と前記直流受電端および前記直流出力端とを電気的に接続する第4パスと、
     前記直流受電端と前記直流出力端とを電気的に接続する第3パスと、を有し、
     前記第4パスが、前記第4パスを遮断する第5スイッチを有し、
     前記第3パスが、前記直流受電端と前記直流出力端との間が直接接続されている直流給電装置。
    A DC power receiving end that receives DC power,
    A DC output end that outputs DC power,
    A power storage unit connection end connected to a power storage unit that stores DC power,
    A fourth path electrically connecting the power storage unit connection end to the DC power reception end and the DC output end;
    A third path electrically connecting the DC power receiving end and the DC output end,
    The fourth path has a fifth switch that shuts off the fourth path,
    A DC power supply device in which the third path is directly connected between the DC power receiving end and the DC output end.
  7.  前記第5スイッチを制御する制御部をさらに有する請求項6に記載の直流給電装置。 The DC power supply device according to claim 6, further comprising a control unit that controls the fifth switch.
  8.  交流電力を直流に整流する整流部をさらに有し、
     前記整流部の直流出力が、前記直流出力端に直接接続されている請求項1から請求項7の何れか一項に記載の直流給電装置。
    Further having a rectifying unit for rectifying AC power into DC,
    The DC power supply device according to claim 1, wherein a DC output of the rectifying unit is directly connected to the DC output terminal.
  9.  前記蓄電部接続端に接続される蓄電部をさらに有する請求項1から請求項8の何れか一項に記載の直流給電装置。 The DC power supply device according to claim 1, further comprising a power storage unit connected to the power storage unit connection end.
  10.  請求項1から請求項8の何れか一項に記載の直流給電装置を用いた直流電力システムであって、
     複数の前記直流給電装置と、
     前記直流給電装置の前記蓄電部接続端に接続された蓄電部と、
     直流電力を出力する、単一または複数の発電装置と、
     前記発電装置からの直流電力を前記直流給電装置に入力する入力接続部と、を有し、
     前記入力接続部が、単一または複数の前記発電装置のうち任意の発電装置の出力端と、複数の前記直流給電装置のうち任意の直流給電装置の直流受電端とを、任意に接続することが可能なものである直流電力システム。
    A DC power system using the DC power supply device according to claim 1.
    A plurality of the DC power supply devices,
    A power storage unit connected to the power storage unit connection end of the DC power supply device,
    A single or a plurality of generators that output DC power;
    An input connection unit for inputting DC power from the power generation device to the DC power supply device,
    The input connection section arbitrarily connects an output end of any power generation device of the single or a plurality of the power generation devices and a DC power reception end of any DC power supply device of the plurality of DC power supply devices. DC power system that is capable of.
  11.  前記入力接続部が、スイッチマトリックスで構成される請求項10に記載の直流電力システム。 The DC power system according to claim 10, wherein the input connection unit is composed of a switch matrix.
  12.  前記蓄電部の蓄電圧をモニタし、前記入力接続部における接続状態を制御する蓄電圧制御装置、をさらに有する請求項10または請求項11に記載の直流電力システム。 The DC power system according to claim 10 or 11, further comprising a storage voltage control device that monitors a storage voltage of the power storage unit and controls a connection state of the input connection unit.
  13.  請求項10から請求項12の何れか一項に記載の直流電力システムであって、
     単一または複数の負荷に直流電力を出力する出力接続部をさらに有し、
     前記出力接続部が、複数の前記直流給電装置のうち任意の直流給電装置の直流出力端と、単一または複数の前記負荷のうち任意の負荷の入力端とを、任意に接続することが可能なものである直流電力システム。
    The DC power system according to any one of claims 10 to 12,
    Further having an output connection for outputting DC power to a single or multiple loads,
    The output connection unit can arbitrarily connect a DC output terminal of an arbitrary DC power feeding apparatus of the plurality of DC power feeding apparatuses and an input terminal of an arbitrary load of the single or the plurality of loads. A direct current power system.
  14.  請求項1から請求項8の何れか一項に記載の直流給電装置を用いた直流電力システムであって、
     複数の前記直流給電装置と、
     前記直流給電装置の前記蓄電部接続端に接続された蓄電部と、
     直流電力を出力する、単一または複数の発電装置と、
     単一または複数の負荷に直流電力を出力する出力接続部と、を有し、
     前記出力接続部が、複数の前記直流給電装置のうち任意の直流給電装置の直流出力端と、単一または複数の前記負荷のうち任意の負荷の入力端とを、任意に接続することが可能なものである直流電力システム。
    A DC power system using the DC power supply device according to claim 1.
    A plurality of the DC power supply devices,
    A power storage unit connected to the power storage unit connection end of the DC power supply device,
    A single or a plurality of generators that output DC power;
    An output connection that outputs DC power to a single or multiple loads,
    The output connection unit can arbitrarily connect a DC output terminal of an arbitrary DC power feeding apparatus of the plurality of DC power feeding apparatuses and an input terminal of an arbitrary load of the single or the plurality of loads. A direct current power system.
  15.  前記出力接続部が、スイッチマトリックスで構成され、
     前記スイッチマトリックスにおける各スイッチのオンオフ状態を制御する出力制御装置をさらに有する請求項14に記載の直流電力システム。
    The output connection is composed of a switch matrix,
    The DC power system according to claim 14, further comprising an output control device that controls an on/off state of each switch in the switch matrix.
PCT/JP2019/046685 2018-12-29 2019-11-29 Dc power supply device and dc power system WO2020137348A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020562970A JPWO2020137348A1 (en) 2018-12-29 2019-11-29 DC power supply and DC power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-248766 2018-12-29
JP2018248766 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020137348A1 true WO2020137348A1 (en) 2020-07-02

Family

ID=71127101

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/046685 WO2020137348A1 (en) 2018-12-29 2019-11-29 Dc power supply device and dc power system

Country Status (2)

Country Link
JP (1) JPWO2020137348A1 (en)
WO (1) WO2020137348A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018614A1 (en) * 2022-07-22 2024-01-25 株式会社オートネットワーク技術研究所 Vehicle-mounted control device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583884A (en) * 1991-09-20 1993-04-02 Nec Corp D.c. power supply switching device
JPH09322431A (en) * 1996-05-31 1997-12-12 Fujitsu Ltd Power source unit
JP2007324843A (en) * 2006-05-31 2007-12-13 Oki Electric Ind Co Ltd Rush current suppression circuit
JP2012105504A (en) * 2010-11-12 2012-05-31 Sharp Corp Dc power supply system
JP2013048497A (en) * 2011-07-26 2013-03-07 Gs Yuasa Corp Uninterruptible power supply device and power supply device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0583884A (en) * 1991-09-20 1993-04-02 Nec Corp D.c. power supply switching device
JPH09322431A (en) * 1996-05-31 1997-12-12 Fujitsu Ltd Power source unit
JP2007324843A (en) * 2006-05-31 2007-12-13 Oki Electric Ind Co Ltd Rush current suppression circuit
JP2012105504A (en) * 2010-11-12 2012-05-31 Sharp Corp Dc power supply system
JP2013048497A (en) * 2011-07-26 2013-03-07 Gs Yuasa Corp Uninterruptible power supply device and power supply device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018614A1 (en) * 2022-07-22 2024-01-25 株式会社オートネットワーク技術研究所 Vehicle-mounted control device

Also Published As

Publication number Publication date
JPWO2020137348A1 (en) 2021-11-25

Similar Documents

Publication Publication Date Title
US6369461B1 (en) High efficiency power conditioner employing low voltage DC bus and buck and boost converters
JP5914821B2 (en) Power supply system
WO2013088799A1 (en) Power supply system and power conditioner for charging and discharging
EP2444872A2 (en) Photovoltaic Power Systems
US9698596B2 (en) Power converter module, photovoltaic system having a power converter module, and method for operating a photovoltaic system
JP6000742B2 (en) Power conditioner and power supply system
JP2011211885A (en) Power storage system
JP5541982B2 (en) DC power distribution system
EP3163712B1 (en) Uninterruptible power-supply system
CN111106750B (en) Uninterrupted power source and battery pack voltage-boosting circuit thereof
US10186861B2 (en) Energy storage device comprising a DC voltage supply circuit and method for providing a DC voltage from an energy storage device
US20170163089A1 (en) Control of Multiple Battery Groups
CN102257700B (en) A photovoltaic system
US8766478B2 (en) Power system and control method thereof
US10003199B2 (en) Battery energy storage system
JP6534219B2 (en) Power storage system
WO2020137348A1 (en) Dc power supply device and dc power system
WO2016084400A1 (en) Storage battery system and electricity storage method
WO2014076446A1 (en) A power management system
JP2010041783A (en) Power distribution system
WO2021039678A1 (en) Direct current power supply device
WO2019045083A2 (en) Power supply system and power synthesis device
JP2021069192A (en) Power conditioner
JP2019058053A (en) Direct current power supply system
US20130141958A1 (en) Management system for variable-resource energy generation systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903524

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020562970

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19903524

Country of ref document: EP

Kind code of ref document: A1