WO2024018018A1 - Utilisation d'un composé vitisine pour la production de cellules hématopoïétiques - Google Patents

Utilisation d'un composé vitisine pour la production de cellules hématopoïétiques Download PDF

Info

Publication number
WO2024018018A1
WO2024018018A1 PCT/EP2023/070191 EP2023070191W WO2024018018A1 WO 2024018018 A1 WO2024018018 A1 WO 2024018018A1 EP 2023070191 W EP2023070191 W EP 2023070191W WO 2024018018 A1 WO2024018018 A1 WO 2024018018A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
erythrocyte
vitisin
progenitors
approximately
Prior art date
Application number
PCT/EP2023/070191
Other languages
English (en)
Inventor
Philippe BRUNET DE LA GRANGE
Mathilde HUART
Christelle DEBEISSAT
Maryse AVALON
Marija VLASKI-LAFARGE
Zoran Ivanovic
Original Assignee
Etablissement Francais Du Sang
Universite de Bordeaux
Institut National de la Santé et de la Recherche Médicale
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Etablissement Francais Du Sang, Universite de Bordeaux, Institut National de la Santé et de la Recherche Médicale filed Critical Etablissement Francais Du Sang
Publication of WO2024018018A1 publication Critical patent/WO2024018018A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0634Cells from the blood or the immune system
    • C12N5/0641Erythrocytes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/125Stem cell factor [SCF], c-kit ligand [KL]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/14Erythropoietin [EPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/145Thrombopoietin [TPO]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/22Colony stimulating factors (G-CSF, GM-CSF)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2303Interleukin-3 (IL-3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/23Interleukins [IL]
    • C12N2501/2306Interleukin-6 (IL-6)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/20Cytokines; Chemokines
    • C12N2501/26Flt-3 ligand (CD135L, flk-2 ligand)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/999Small molecules not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2506/00Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells
    • C12N2506/11Differentiation of animal cells from one lineage to another; Differentiation of pluripotent cells from blood or immune system cells

Definitions

  • the present invention relates to the field of medicine. It relates more particularly to new processes for producing erythrocyte progenitors and red blood cells.
  • red blood cells which transport oxygen within the body via the blood circulation. This transport is ensured by hemoglobin, a specific protein in red blood cells which is capable of fixing oxygen. When red blood cells reach the tissues, oxygen diffuses through the walls of the capillaries. The role of red blood cells is therefore essential.
  • Red blood cell transfusion is necessary in emergency (hemorrhage) or pathological situations (blood diseases, cancers, etc.).
  • pathological situations blood diseases, cancers, etc.
  • blood transfusions rely exclusively on blood from donors.
  • the reserves of blood bags have been dwindling, with donors no longer traveling as regularly to donate blood.
  • the production of red blood cells or erythropoiesis takes place in the bone marrow called the hematopoietic marrow, which is present in flat bones and at the ends of long bones.
  • the bone marrow multipotent stem cells, called hematopoietic stem cells, differentiate successively into different types of erythrocyte progenitors to end up in mature red blood cells.
  • the invention described here aims, among other things, to meet these needs.
  • the present invention relates to an in vitro process for producing erythrocytes comprising: a) the supply of multipotent hematopoietic cells, preferably of human origin, selected from the group consisting of hematopoietic stem cells (HSCs), multipotent progenitors (MPP), common myeloid progenitors (CMP), megakaryocytic-erythrocyte progenitors (MEP), and combinations thereof, and optionally the amplification of said multipotent hematopoietic cells; b) inducing the differentiation of said multipotent hematopoietic cells into unipotent erythrocyte progenitors, and optionally the amplification of said unipotent erythrocyte progenitors; c) inducing the differentiation of said unipotent erythrocyte progenitors into erythrocyte precursors; and d) the induction of the maturation of erythrocyte precursors into ery
  • HSCs
  • the invention also relates to an in vitro method for producing unipotent erythrocyte progenitors comprising: a) providing multipotent hematopoietic cells, preferably of human origin, selected from the group consisting of hematopoietic stem cells (HSCs), multipotent progenitors ( MPP), common myeloid progenitors (CMP), megakaryocytic-erythrocyte progenitors (MEP), and combinations thereof, and optionally the amplification of said multipotent hematopoietic cells; And b) inducing the differentiation of said multipotent hematopoietic cells into unipotent erythrocyte progenitors, and optionally the amplification of said unipotent erythrocyte progenitors; and c) optionally the recovery of the unipotent erythrocyte progenitors obtained; in which the cells are brought into contact with a vitisin compound in step a) in particular when this comprises the step of
  • the invention also relates to an in vitro method for producing erythrocytes comprising, a) providing unipotent erythrocyte progenitors, preferably obtained according to the method for producing unipotent erythrocyte progenitors according to the invention; b) inducing the differentiation of said unipotent erythrocyte progenitors into unipotent erythrocyte precursors; c) the induction of the maturation of erythrocyte precursors into erythrocytes, and d) optionally the recovery of the erythrocytes obtained, in which the cells are brought into contact with a vitisin compound in step b) and/or step c) .
  • the cells are brought into contact with the vitisin compound in a culture medium adapted to the nutritional requirements of hematopoietic cells, in particular a culture medium adapted to amplification and/or differentiation and/or the maturation of hematopoietic cells.
  • the hematopoietic cells are preferentially selected from the group consisting of HSCs, MPPs, CMPs, MEPs, unipotent erythrocyte progenitors, erythrocyte precursors, and combinations thereof, preferably HSCs or unipotent erythrocyte progenitors.
  • the cells are brought into contact with the vitisin compound i) during the amplification and/or differentiation of multipotent hematopoietic cells or ii) during the amplification and/or differentiation of unipotent erythrocyte progenitors.
  • the cells are brought into contact with the vitisin compound during the amplification and/or differentiation of multipotent hematopoietic cells, and during the amplification and/or differentiation of unipotent erythrocyte progenitors and optionally during of the maturation of erythrocyte precursors.
  • the cells are placed in contact with a vitisin compound for at least 1 day, preferably at least at least 3, 5, 7, 10 or 12 days, during the amplification and/or differentiation of multipotent hematopoietic cells, and/or lasting at least 1 day, preferably at least at least 3, 5, 7, 10 or 12 days, during the amplification and/or differentiation of unipotent erythrocyte progenitors.
  • the vitisin compound when brought into contact with the cells, is present in the culture medium at a concentration of between 1 pM and 500 pM, preferably between 5 pM and 100 pM.
  • the invention relates to a cell culture medium suitable for the amplification and/or differentiation and/or maturation of hematopoietic cells and comprising a vitisin compound.
  • the vitisin compound is present in the medium at a concentration of between 1 pM and 500 pM, preferably between 5 pM and 100 pM.
  • the invention also relates to the in vitro use of such a cell culture medium for (i) the amplification and/or differentiation of hematopoietic stem cells (HSC), multipotent progenitors (MPP), myeloid progenitors common (CMP), megakaryocytic-erythrocyte progenitors (MEP) or unipotent erythrocyte progenitors and/or (ii) for the differentiation and/or maturation of erythrocyte precursors, and/or (iii) the production of unipotent erythrocyte progenitors and/ or erythrocytes.
  • HSC hematopoietic stem cells
  • MPP myeloid progenitors common
  • MEP megakaryocytic-erythrocyte progenitors
  • unipotent erythrocyte progenitors for the differentiation and/or maturation of erythrocyte precursors
  • the invention relates to the use of a vitisin compound to supplement a cell culture medium suitable for the amplification and/or differentiation and/or maturation of hematopoietic cells.
  • the invention also relates to the use of a vitisin compound to stimulate the amplification and/or differentiation of hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), common myeloid progenitors (CMPs), megakaryocytic progenitors- erythrocyte progenitors (MEP) or unipotent erythrocyte progenitors and/or (ii) stimulate the differentiation and/or maturation of erythrocyte precursors, and/or (iii) stimulate the production of unipotent erythrocyte progenitors and/or erythrocytes.
  • HSCs hematopoietic stem cells
  • MPPs multipotent progenitors
  • CMPs common myeloid progenitors
  • MEP megakaryocytic progenitors- erythrocyte progenitors
  • MEP megakaryocytic progenitors- erythrocyte progenitors
  • the vitisin compound is chosen from the group consisting of vitisin B and its derivatives.
  • the vitisin B derivative is an isomer of vitisin B, preferably a stereoisomer of vitisin B.
  • vitisin B derivatives have the formula:
  • the vitisin compound is vitisin B.
  • Vitisin B is a stilbene belonging to the polyphenol family, which can be extracted in particular from vine shoots. Vitisin B has surprising advantages over other antioxidant molecules such as resveratrol. The use of this molecule on human hematopoietic cells, in particular CD34+ cells, shows two important and reproducible effects:
  • Vitisin B promotes the commitment of multipotent CD34 + hematopoietic cells to unipotent erythrocyte progenitors by increasing their amplification
  • Vitisin B also accelerates the differentiation of progenitors towards erythrocyte precursors and their enucleation, resulting in mature cells: erythrocytes.
  • the method according to the invention therefore allows more efficient production of red blood cells.
  • the in vitro culture method according to the invention not only has the advantage of being simple and economical, but also opens the way to large-scale industrial production of erythrocyte progenitors and red blood cells. This reduces the risk of blood shortage or transfusion impasse, while providing optimal safety for transfused patients.
  • Hematopoiesis is a continuous biological process allowing the renewal and maintenance of all blood cells: red blood cells (also called red blood cells or erythrocytes), polymorphonuclear cells, platelets, monocytes and lymphocytes. Hematopoiesis is defined as all the mechanisms taking place in the bone marrow and which ensure, from hematopoietic stem cells (HSC), the continuous and regulated renewal of blood cells, i.e. red blood cells ( RBC, erythrocytes), white blood cells (WBC, neutrophils, eosinophils, monocytes, lymphocytes) and platelets (Neildez-Nguyen et al., 2002).
  • red blood cells also called red blood cells or erythrocytes
  • polymorphonuclear cells platelets
  • monocytes monocytes and lymphocytes.
  • HSC hematopoietic stem cells
  • Erythropoiesis is a biological process allowing the renewal of erythrocytes.
  • HSC hematopoietic stem cell
  • MEP multipotent progenitor
  • CMP common myeloid progenitor
  • BFU-E Breastt Forming Unit-Erythroid
  • CFU-E Cold Forming Unit-Erythroid
  • the terminal phase of differentiation of erythropoiesis leads, from erythrocyte precursors, to the formation of the reticulocyte, after enucleation (expulsion of the nucleus), then to the formation of the erythrocyte.
  • the erythropoiesis process is well known to those skilled in the art and can be followed by the kinetics of expression of different specific markers, depending on the stage of differentiation of the cells.
  • CD34 surface antigen to select a population of primitive CD34 + hematopoietic cells, the transferrin receptor (CD71) which is a marker of early erythrocyte differentiation as well as glycophorin A (GPA), which is a marker of terminal differentiation.
  • CD71 transferrin receptor
  • GPA glycophorin A
  • Glycophorin A is a 10 kDa protein expressed at the membrane of erythrocyte precursors (proerythroblasts) and erythrocytes. It is therefore a marker of terminal erythrocyte differentiation since it is absent from committed progenitors (BFU-E and CFU-E), appears progressively on basophilic erythroblasts and remains stably expressed on erythrocytes.
  • Transferrin receptor 1 (CD71) is a 95 kDa protein expressed at the membrane of erythrocyte progenitors and precursors. Unlike GPA, CD71 expression decreases as differentiation progresses; erythrocytes do not express CD71. It is therefore a marker of earlier erythrocyte differentiation.
  • the differentiation of erythrocyte cells is associated with the decrease and disappearance of CD71 and the acquisition of GPA ultimately giving mature cells (erythrocytes and reticulocytes) characterized by the CD71“GPA + phenotype.
  • erythrocyte differentiation can be observed by flow cytometry, on the basis of specific expression markers such as membrane surface antigens (clusters of differentiation (CD)) such as the markers CD34, CD123, CD45RA, CD71 and GPA.
  • markers such as membrane surface antigens (clusters of differentiation (CD)) such as the markers CD34, CD123, CD45RA, CD71 and GPA.
  • the different erythrocyte cells can also be observed by microscopy using May-Grünwald Giemsa (MGG) staining. Indeed, at each stage of differentiation, a decrease in the size of the cell and its nucleus is observed, ultimately leading to the formation of a mature anucleated erythrocyte cell.
  • MMG May-Grünwald Giemsa
  • the CFC (colony forming cell) clonogenic test also makes it possible to identify the different erythrocyte cells.
  • This test makes it possible to quantify the number of hematopoietic progenitors (HP) capable of forming colonies of mature erythrocyte cells when cultured in semi-solid media, such as media comprising methylcellulose. These media are preferably supplemented with cytokines necessary for erythropoietic differentiation.
  • HP hematopoietic progenitors
  • hematopoietic cells As used herein the terms “hematopoietic cells”, “erythrocyte lineage cells” and “hematopoietic lineage cells” are equivalent and can be used interchangeably. These terms designate any of the cells that make it possible to reach an erythrocyte. These terms include multipotent hematopoietic cells, unipotent erythrocyte progenitors and erythrocyte precursors as defined below.
  • hematopoietic cells include HSC, MPP, CMP, MEP, BFU-E, CFU-E, proerythroblasts, basophilic erythroblasts, polychromatophilic erythroblasts and orthochromatic erythroblasts.
  • the hematopoietic cells according to the invention are preferably obtained from a donor subject, in particular a healthy donor subject.
  • the hematopoietic cells, and more particularly the HSCs can be obtained or prepared from a biological sample from a donor, such as a blood sample, for example peripheral blood, umbilical cord blood or placental blood, or a bone marrow sample.
  • the cells as used in the present invention are cells of human origin.
  • multipotent hematopoietic cells refers to multipotent CD34+ cells capable of differentiating to produce at least two cell types among the different blood cells which are white blood cells (immune cells), red blood cells and platelets.
  • multipotent hematopoietic cells includes HSCs, MPPs, CMPs and MEPs.
  • MPPs have a CD34 + LIN neg CD123 + CD45RA neg phenotype
  • CMPs have a CD34 + LIN neg CD123 + CD45RA neg phenotype
  • MEPs have a CD34 + LIN neg CD123 neg CD45RA neg phenotype.
  • multipotent hematopoietic cells as used in the present invention are selected from the group consisting of HSCs, MPPs, CMPs and MEPs, and combinations thereof. More particularly preferably, the multipotent hematopoietic cells as used in the present invention are HSCs, optionally in combination with MPPs, CMPs and/or MEPs.
  • the term “hematopoietic stem cell” or “HSC” refers to multipotent stem cells capable of differentiating to produce all blood cells such as white blood cells (immune cells), red blood cells and platelets.
  • the HSCs are human HSCs.
  • HSCs carry particular markers, such as strong expression of the primitive marker CD34, absence of expression of the marker CD45RA (isoform of phosphotyrosine phosphatase CD45), and optionally expression of the marker CD133.
  • HSCs also express the IL3 receptor (CD123).
  • CSH includes in particular the so-called “Side Population” (SP) cells.
  • SP cells bring together all the cells in which it is possible to demonstrate, by flow cytometry, an efflux capacity of a vital dye such as Hoescht or Dye Cycle Violet (DCV). SP cells therefore preferably have a CD34 + DCV
  • Multipotent hematopoietic cells can be obtained from different sources and according to methods well known to those skilled in the art. They can in particular be isolated from bone marrow, cytapheresis, whole blood or even umbilical cord blood (or placental blood), for example using an immuno-magnetic system or a sorting system. on the presence of specific membrane receptors (for example CD133, CD123, CD45 and/or CD34).
  • Multipotent hematopoietic cells can also be obtained by differentiation of embryonic stem cells or induced pluripotent stem (iPS) cells, preferably induced pluripotent stem cells.
  • iPS induced pluripotent stem
  • the techniques for differentiating pluripotent stem cells into multipotent hematopoietic cells are well known to those skilled in the art.
  • Several protocols have been published, notably the protocol of Lengerke C et al (2009, Ann N Y Acad Sci, 1176:219-27) consisting of a 17-day differentiation through an intermediate stage of embryoid bodies and thanks to the combination of following cytokines: SCF, Flt-3 ligand, IL-3, IL-6, G-CSF and BMP-4.
  • embryonic stem cell refers to cells derived from the internal cell mass of the blastocyst and which have the capacity to lead to the formation of all tissues of the body (mesoderm, endoderm, ectoderm), including germ line cells.
  • the pluripotency of embryonic stem cells can be assessed by the presence of markers such as the transcription factors OCT4 and NANOG and surface markers such as SSEA3/4, Tra-1-60 and Tra-1-81.
  • Embryonic stem cells can be obtained without destruction of the embryo from which they originate, for example using the technique described by Chung et al. (Cell Stem Cell, 2008, 2(2): 113-117).
  • the embryonic stem cells are non-human embryonic stem cells.
  • the embryonic stem cells used in the invention are human embryonic stem cells, preferably obtained without destruction of the embryo from which they originate.
  • the embryos used are preferably supernumerary embryos obtained as part of a parental project after obtaining regulatory and ethical authorizations in accordance with the laws in force.
  • iPSC induced pluripotent stem cell
  • IPSc induced pluripotent stem cell
  • pluripotent stem cells obtained by genetic reprogramming of differentiated somatic cells, and presenting a morphology and a potential for self- renewal and pluripotency partly similar to those of embryonic stem cells. These cells are notably positive for markers of pluripotency, including alkaline phosphatase staining and expression of NANOG, SOX2, OCT4 and SSEA3/4 proteins.
  • unipotent erythrocyte progenitors refers to progenitor cells obtained by HSC differentiation during erythropoiesis and which have the capacity to divide and subsequently differentiate into erythrocyte precursors and then into globules. red by enucleation.
  • MEP stage last multipotent stage
  • cells gradually acquire specific markers of erythrocyte progenitors. Initially, the marker CD71 (transferrin receptor) appears, followed by the appearance of Glycophorin A (GPA or CD235a).
  • Unipotent erythrocyte progenitors include BFU-E (Burst Forming Unit - E) and CFU-E (Colony Forming Unit - E) cells which are irreversibly committed to the erythrocyte lineage.
  • BFU-E (Burst Forming Unit - E) cells exhibit a CD34 + CD36 neg GPA neg CD123 neg CD71 low phenotype.
  • CFU-E (Colony Forming Unit - E) exhibit a CD34 neg CD36 neg GPA neg CD123 neg CD71 high phenotype.
  • erythrocyte precursor defines cells obtained by differentiation of unipotent erythrocyte progenitors and capable of producing reticulocytes. This term includes proerythroblasts, basophilic erythroblasts, polychromatophilic erythroblasts and orthochromatic erythroblasts. The distinction between these cells is possible on a cytological basis by staining the cells by May-Grünwald Giemsa (MGG) staining, by analyzing the staining and the nucleus/cytoplasm ratio, according to techniques well known to those skilled in the art. job.
  • MMGG May-Grünwald Giemsa
  • red blood cell As used herein the terms “red blood cell”, “mature red blood cell”, “red blood cell”, “erythrocyte” and “mature erythrocyte” are equivalent and can be used interchangeably.
  • the term “erythrocyte” refers to an enucleated cell presenting characteristic markers of erythrocyte maturation. Erythrocytes notably express glycophorin A (CD235a) but do not express the CD36 marker. Their identification can be based on cytological criteria well known to those skilled in the art, such as the size of the cell and the absence of cell nucleus.
  • the multipotent hematopoietic cells used in the methods according to the invention to produce unipotent erythrocyte progenitors or to produce erythrocytes come from a sample taken from a donor or derive from cells obtained from a donor.
  • the erythrocyte progenitors or erythrocytes thus obtained can be intended to be transplanted into a recipient patient, in particular by transfusion.
  • the donor and recipient may be the same individual or different individuals. In one embodiment, the donor and the recipient are the same individual. In another preferred embodiment, the donor is different from the recipient. In this case, the donor is preferably a healthy donor, in particular an individual without hematological pathology. Vitisin compound
  • the invention consists of using a vitisin compound during the ex vivo or in vitro production of multipotent hematopoietic cells and/or unipotent erythrocyte progenitors and/or red blood cells, in particular to promote the amplification and/or differentiation of cells.
  • hematopoietic in particular allows faster and greater erythrocyte differentiation of multipotent hematopoietic cells, in particular HSCs, into unipotent erythrocyte progenitors. It also allows faster and greater erythrocyte differentiation of unipotent erythrocyte progenitors into erythrocyte precursors and/or erythrocyte precursors into red blood cells.
  • vitisin compound refers to a stilbene belonging to the polyphenol family, which can for example be extracted from vine shoots. This term refers to vitisin B or one of its derivatives.
  • the term “vitisin compound” does not include compounds chosen from resveratrol, pallidol, e-viniferin, ampelopsin, oxyresveratrol, piceatannol and/or gnetol.
  • the vitisin compound is vitisin B.
  • Vitisin B is a resveratrol tetramer present in plants of the Vitis genus, such as Vitis vinifera.
  • Vitisin B is also known by the names
  • vitisin B as used according to the invention has the following formula (I):
  • Vitisin B may in particular be in the form of salt or hydrate.
  • the vitisin compound is a derivative of vitisin B.
  • the vitisin derivative is an isomer of vitisin B, preferably a stereoisomer of vitisin B.
  • the stereoisomers of vitisin B include the R or S stereoisomers on any of the stereochemical sites of vitisin B.
  • Examples of isomers can be for example, without being limited to, a compound having a CAS number chosen from CAS 165883-77-2, CAS180580-73-8, CAS142507-86-6, CAS 1373138-12-5, CAS1807631-15-7, CAS879897-47-9, CAS879897-46-8 and CAS681004-56-8; or a compound of formulas (I), (II) and (III) described below and combinations thereof.
  • the vitisin B derivative may be a stereoisomer of vitisin B, for example as described in application WO2015126129.
  • the vitisin B derivative is a stereoisomer which depends on the double bond, in position Z (compound 20 of application WO2015126129) or in position E (compound 22 of application WO2015126129).
  • the vitisin B derivative may in particular have the following formula (II) or (III): According to certain particular embodiments, the vitisin compound is chosen from the group consisting of compounds of formulas (I), (II) and (III), and combinations thereof.
  • the vitisin compound may be chosen from vitisin B and a derivative of vitisin B having a CAS number chosen from CAS142449-90-9, CAS 165883-77-2, CAS180580-73-8, CAS142507 -86-6, CAS 1373138-12-5, CAS1807631-15-7, CAS879897-47-9, CAS879897-46-8 and CAS681004-56-8 or a compound of formulas (l), (II) and (III ) described above and combinations thereof.
  • Bringing the vitisin compound into contact with the cells can be achieved by adding the vitisin compound to a culture medium, in particular a medium allowing the culture of hematopoietic cells.
  • the culture medium is preferably adapted to the nutritional requirements of the hematopoietic cells and in particular adapted to the growth and/or differentiation of the hematopoietic cells, to which the vitisin compound is added.
  • Such environments are known to those skilled in the art and some are more specifically described below.
  • the vitisin compound is used at a concentration of between about 0.5 pM and about 1 mM, about 0.5 pM and about 500 pM, about 0.5 pM and about 200 pM, about 0.5 pM and about 100 pM, between about 0.5 pM and about 50 pM, between about 0.5 pM and about 40 pM, between about 0.5 pM and about 30 pM, between about 0.5 pM and about 20 pM, between about 0 .5 pM and about 15 pM or between about 0.5 pM and about 10 pM, about 5 pM and about 1 mM, about 5 pM and about 500 pM, about 5 pM and about 200 pM, about 5 pM and about 100 pM , between about 5 pM and about 75 pM, between about 5 pM and about 50 pM, between about 5 pM and about 40 pM, between about 5 pM and about 30 , between about
  • the vitisin compound is used at a concentration of between 1 pM and 500 pM, preferably between 5 pM and 100 pM.
  • vitisin-B is used at a concentration of approximately 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 , 80, 85, 80, 90, 95 or 100 pM.
  • the present invention relates to methods of producing or preparing erythrocyte lineage cells.
  • the production methods according to the invention may comprise: a) the amplification, differentiation and/or maturation of cells of the erythrocyte lineage, and b) optionally, the recovery of the cells of the erythrocyte lineage multiplied and/or or differentiated and/or mature, and c) optionally, storage of the obtained/recovered erythrocyte lineage cells.
  • the cells of the erythrocyte lineage are chosen from HSC, MPP, CMP, MEP, BFU-E, CFU-E, and erythrocyte precursors, namely proerythroblasts, erythroblasts. basophils, polychromatophilic erythroblasts, orthochromatic erythroblasts, reticulocytes and/or erythrocytes, and any combination thereof.
  • the vitisin compound can be brought into contact, preferably in a suitable culture medium, with the cells of the erythrocyte lineage during the amplification, differentiation and/or maturation of the cells. , preferably during cell amplification and/or differentiation.
  • the vitisin compound is brought into contact with multipotent hematopoietic cells, in particular cells chosen from CSH, MPP, CMP and MEP cells, and combinations thereof, in order to amplify said cells or/or obtain unipotent erythrocyte progenitors, erythrocyte precursors and/or erythrocytes by differentiation of said cells.
  • multipotent hematopoietic cells in particular cells chosen from CSH, MPP, CMP and MEP cells, and combinations thereof, in order to amplify said cells or/or obtain unipotent erythrocyte progenitors, erythrocyte precursors and/or erythrocytes by differentiation of said cells.
  • the vitisin compound is brought into contact with unipotent erythrocyte progenitors in order to amplify said progenitors and/or obtain erythrocyte precursors and/or erythrocytes by differentiation of said progenitors.
  • the vitisin compound is brought into contact with erythrocyte precursors in order to obtain erythrocytes by differentiation and maturation of said precursors.
  • the vitisin compound is brought into contact with CD34+ cells, that is to say cells chosen from CSH, MPP, CMP, MEP and BFU-E cells, and combinations thereof, in order to to amplify said cells and/or obtain CFU-E progenitors, erythrocyte precursors and/or erythrocytes by differentiation of said cells.
  • CD34+ cells that is to say cells chosen from CSH, MPP, CMP, MEP and BFU-E cells, and combinations thereof, in order to to amplify said cells and/or obtain CFU-E progenitors, erythrocyte precursors and/or erythrocytes by differentiation of said cells.
  • the present invention relates to an in vitro method for producing erythrocytes comprising: a) providing multipotent hematopoietic cells, preferably of human origin, selected from the group consisting of hematopoietic stem cells (HSCs), multipotent progenitors (MPP), common myeloid progenitors (CMP), megakaryocytic-erythrocyte progenitors (MEP), and combinations thereof, and optionally the amplification of said multipotent hematopoietic cells; b) inducing the differentiation of said multipotent hematopoietic cells into unipotent erythrocyte progenitors, and optionally the amplification of said unipotent erythrocyte progenitors; c) inducing the differentiation of said unipotent erythrocyte progenitors into erythrocyte precursors; and d) induction of the maturation of erythrocyte precursors into erythrocytes, and optional
  • the cells are brought into contact with a vitisin compound in step a) (when this comprises the amplification of said multipotent hematopoietic cells), l step b), step c) and/or step d).
  • the present invention relates to an in vitro method for producing erythrocytes comprising: a) providing multipotent hematopoietic cells, preferably of human origin, selected from the group consisting of hematopoietic stem cells (HSCs), multipotent progenitors (MPP), common myeloid progenitors (CMP), megakaryocytic-erythrocyte progenitors (MEP), and combinations thereof, and amplification of said multipotent hematopoietic cells; b) inducing the differentiation of said multipotent hematopoietic cells into unipotent erythrocyte progenitors, and optionally the amplification of said unipotent erythrocyte progenitors; c) inducing the differentiation of said unipotent erythrocyte progenitors into erythrocyte precursors; and d) induction of the maturation of erythrocyte precursors into erythrocytes, and optionally the
  • the cells multipotent hematopoietic cells, unipotent erythrocyte progenitors and/or erythrocyte precursors
  • a vitisin compound in step a), step b), step c) and/or l step d.
  • the present invention also relates to an in vitro method for producing unipotent erythrocyte progenitors comprising: a) providing multipotent hematopoietic cells, preferably of human origin, selected from the group consisting of hematopoietic stem cells (HSCs), multipotent progenitors ( MPP), common myeloid progenitors (CMP), megakaryocytic-erythrocyte progenitors (MEP), and combinations thereof, and optionally the amplification of said multipotent hematopoietic cells; and b) inducing the differentiation of said multipotent hematopoietic cells into unipotent erythrocyte progenitors, and optionally the amplification of said unipotent erythrocyte progenitors; and c) optionally the recovery of the unipotent erythrocyte progenitors obtained;
  • HSCs hematopoietic stem cells
  • MPP multipotent progenitors
  • the cells are brought into contact with a vitisin compound in step a) (when this comprises the amplification of said multipotent hematopoietic cells) and/or at step b).
  • the present invention also relates to an in vitro method for producing unipotent erythrocyte progenitors comprising: a) providing multipotent hematopoietic cells, preferably of human origin, selected from the group consisting of hematopoietic stem cells (HSCs), multipotent progenitors (MPP), common myeloid progenitors (CMP), megakaryocytic-erythrocyte progenitors (MEP), and combinations thereof, and the amplification of said multipotent hematopoietic cells; and b) inducing the differentiation of said multipotent hematopoietic cells into unipotent erythrocyte progenitors, and optionally the amplification of said unipotent erythrocyte progenitors; and c) optionally the recovery of the unipotent erythrocyte progenitors obtained;
  • HSCs hematopoietic stem cells
  • MMP common myeloid progenitors
  • MEP
  • the cells are contacted with a vitisin compound in step a) and/or step b).
  • This process aims in particular to induce the differentiation of multipotent hematopoietic cells into unipotent erythrocyte progenitors, and to allow either the amplification of this population of progenitors while retaining their capacity to subsequently differentiate into red blood cells, or to continue the differentiation of this population of progenitors into erythrocyte precursors and red blood cells.
  • the present invention also relates to an in vitro method for producing erythrocyte precursors comprising: a) providing unipotent erythrocyte progenitors; b) inducing the differentiation of said unipotent erythrocyte progenitors into erythrocyte precursors; and optionally the recovery of the erythrocyte precursors obtained.
  • the cells are contacted with a vitisin compound in step b).
  • the unipotent erythrocyte progenitors provided in step a) are obtained by the process for producing unipotent erythrocyte progenitors according to the invention.
  • the present invention also relates to an in vitro method of producing erythrocytes comprising, a) providing unipotent erythrocyte progenitors; b) inducing the differentiation of said unipotent erythrocyte progenitors into erythrocyte precursors; c) the induction of the maturation of erythrocyte precursors into erythrocytes, and optionally the recovery of the erythrocytes obtained.
  • the cells unipotent erythrocyte progenitors and/or erythrocyte precursors
  • a vitisin compound in step b) and/or step c).
  • the unipotent erythrocyte progenitors provided in step a) are obtained by the process for producing unipotent erythrocyte progenitors according to the invention
  • the present invention also relates to an in vitro method for producing erythrocytes comprising, a) providing erythrocyte precursors; and b) induction of the maturation of erythrocyte precursors into erythrocytes, and optionally the recovery of the erythrocytes obtained.
  • the erythrocyte precursor cells are contacted with a vitisin compound in step b).
  • the erythrocyte precursors provided in step a) are obtained by a process for producing erythrocyte precursors according to the invention.
  • the multipotent hematopoietic cells provided in the methods according to the invention can be obtained by any method known to those skilled in the art. As indicated above, they can in particular be isolated from samples of bone marrow, cytapheresis, whole blood, umbilical cord or placental blood, for example using an immuno-magnetic system or a sorting system based on the presence of specific membrane receptors. They can also be obtained by differentiation of embryonic stem cells or induced pluripotent stem (iPS) cells as indicated above.
  • these multipotent hematopoietic cells can be amplified by culture in a medium suitable for the amplification of these cells.
  • the multipotent hematopoietic cells provided include HSCs, MPPs, CMPs and/or MEPs, preferably HSCs and optionally MPPs, CMPs and/or MEPs.
  • the multipotent hematopoietic cells provided may also include other cell types. In particular, these cells may be CD34+ cells and may also include BFU-E.
  • the unipotent erythrocyte progenitors provided in the methods according to the invention can be obtained by the method for producing unipotent erythrocyte progenitors according to the invention or by any other method known to those skilled in the art.
  • these progenitors can be isolated from samples of bone marrow, cytapheresis, whole blood, umbilical cord or placental blood, for example using an immuno-magnetic system or a system sorting on the presence of specific membrane receptors. They can also be obtained by differentiation of multipotent hematopoietic cells according to any method known to those skilled in the art.
  • these progenitors Unipotent erythrocytes can be amplified by culture in a medium suitable for the amplification of these cells.
  • the unipotent erythrocyte progenitors provided include BFU-E and/or CFU-E. They may also include other cell types such as HSC, MPP, CMP and/or MEP.
  • the erythrocyte precursors provided in the processes according to the invention can be obtained by a process for producing erythrocyte precursors according to the invention or by any other method known to those skilled in the art.
  • these erythrocyte precursors can be isolated from samples of bone marrow, apheresis, whole blood, umbilical cord or placental blood, for example using an immuno-magnetic system or an sorting system on the presence of specific membrane receptors. They can also be obtained by differentiation of multipotent hematopoietic cells or unipotent erythrocyte progenitors according to any method known to those skilled in the art.
  • these erythrocyte precursors can be amplified by culture in a medium suitable for the amplification of these cells.
  • the cells can be brought into contact with the vitisin compound in a culture medium adapted to the nutritional requirements of the hematopoietic cells.
  • this culture medium can be a culture medium suitable for the amplification and/or differentiation and/or maturation of hematopoietic cells.
  • the culture medium adapted to the nutritional requirements of the hematopoietic cells can be any medium known to those skilled in the art to meet the needs of these cells and more particularly to meet the needs of the cells selected from the group consisting of CSH, MPP, CMP cells. , MEP, unipotent erythrocyte progenitors, erythrocyte precursors, and combinations thereof.
  • This medium meets the minimum requirements for survival of the cells to be cultivated and allows, depending on the situations and the supplements provided, the maintenance, amplification, differentiation and/or maturation of hematopoietic cells.
  • IMDM medium Dulbecco's medium modified according to Iscove
  • Stem Span SFEM II medium Stemcell technologies
  • StemMACS HSC Expansion Media XF, Human Stemcell technologies
  • the vitisin compound is placed in contact with the cells in a medium suitable for the amplification and/or differentiation and/or maturation of hematopoietic cells.
  • a medium suitable for the amplification and/or differentiation and/or maturation of hematopoietic cells Such environments are well known to those skilled in the art. Examples of such media are notably mentioned in the “Culture medium” section below.
  • media suitable for amplification, differentiation and maturation of cells can be obtained at from the same basic medium adapted to the nutritional requirements of hematopoietic cells, for example IMDM medium or Stem Span SFEM II medium, and different essentially by their cytokine composition.
  • a medium suitable for the amplification of hematopoietic cells is a medium allowing the multiplication of multipotent hematopoietic cells, namely CSH, MPP, CMP and/or MEP, unipotent erythrocyte progenitors and/or erythrocyte precursors.
  • a culture medium adapted to the amplification of a cell type can also be adapted to the differentiation of this cell type.
  • the culture medium adapted to amplification does not or only slightly stimulates cell differentiation.
  • multipotent hematopoietic cells can be amplified before differentiation. This amplification can be carried out in any medium suitable for the amplification of multipotent hematopoietic cells, in particular HSCs, and known to those skilled in the art.
  • multipotent hematopoietic cells can be amplified in a medium adapted to the nutritional requirements of hematopoietic cells, for example IMDM medium or Stem Span SFEM II medium, comprising or supplemented with G-SCF, SCF, FLT3-L and TPO , particularly in the concentrations described below in the “Culture Medium” section.
  • erythrocyte progenitors can be amplified before differentiation. This amplification can be carried out in any medium suitable for the amplification of erythrocyte progenitors and known to those skilled in the art.
  • erythrocyte progenitors can be amplified in a medium adapted to the nutritional requirements of hematopoietic cells, for example IMDM medium or Stem Span SFEM II medium, comprising, or supplemented with, G-SCF, SCF, FLT3-L and TPO , particularly in the concentrations described below in the “Culture Medium” section.
  • the erythrocyte precursors can be amplified before maturation. This amplification can be carried out in any medium suitable for the amplification of erythrocyte precursors and known to those skilled in the art.
  • the erythrocyte precursors can be amplified in a medium adapted to the nutritional requirements of hematopoietic cells, for example IMDM medium or Stem Span SFEM II medium, comprising, or supplemented with, EPO, Hydrocortisone, suitable growth factors, transferrin , serum and/or plasma, or any combination thereof, particularly in the concentrations described below in the “Culture Medium” section.
  • a medium suitable for the differentiation of hematopoietic cells is therefore a medium allowing the differentiation of multipotent hematopoietic cells, such as HSCs, MPPs, CMPs and/or MEPs, into unipotent erythrocyte progenitors and/or the differentiation of unipotent erythrocyte progenitors into erythrocyte precursors and/or the differentiation of erythrocyte precursors in order to obtain, after maturation, erythrocytes.
  • a culture medium suitable for the differentiation of a cell type is also suitable for the amplification of cells.
  • multipotent hematopoietic cells can be differentiated into unipotent erythrocyte progenitors. This differentiation can be carried out in any medium suitable for the differentiation of multipotent hematopoietic cells, in particular HSCs, and known to those skilled in the art.
  • multipotent hematopoietic cells can be differentiated in a medium adapted to the nutritional requirements of hematopoietic cells, for example IMDM medium or Stem Span SFEM II medium, comprising IL3, IL6, SCF, serum albumin, particularly bovine serum, insulin, transferrin and optionally EPO.
  • erythrocyte progenitors can be differentiated into erythrocyte precursors. This differentiation can be carried out in any medium suitable for the differentiation of erythrocyte progenitors and known to those skilled in the art.
  • erythrocyte progenitors can be differentiated in a medium adapted to the nutritional requirements of hematopoietic cells, for example IMDM medium or Stem Span SFEM II medium, comprising IL3, SCF, hydrocortisone and optionally 'EPO.
  • the term "maturation” refers to the process by which erythrocyte precursors become red blood cells and which notably involves cell enucleation.
  • a medium adapted to the maturation of hematopoietic cells is therefore a medium allowing the maturation of erythrocyte precursors into erythrocytes.
  • a medium adapted to the amplification and/or differentiation of hematopoietic cells does not promote this maturation.
  • the maturation of erythrocyte precursors is reflected in particular by the expression of erythrocyte maturation markers such as CD235a and by enucleation.
  • the erythrocyte precursors can be matured to obtain erythrocytes.
  • This maturation can take place in any medium adapted to the maturation of erythrocyte precursors and known to those skilled in the art.
  • erythrocyte precursors can be matured in a medium adapted to the nutritional requirements of the cells.
  • hematopoietic for example IMDM medium or Stem Span SFEM II medium, comprising, or supplemented with, EPO, preferably 2 or 3 IU/ml of EPO.
  • the medium does not include cytokines.
  • the maturation of erythrocyte precursors is induced at a high cellular concentration, for example greater than 5,000,000 cells/ml of culture.
  • the amplification of multipotent hematopoietic cells can be done by placing the multipotent hematopoietic cells in a culture medium suitable for the amplification of multipotent hematopoietic cells, in particular a medium as described above or in the “Culture medium” section » typically for a period of 3 to 15 days, preferably 5 to 8 days;
  • the amplification of erythrocyte progenitors can be done by placing the erythrocyte progenitors in a culture medium suitable for the amplification of erythrocyte progenitors, in particular a medium as described above or in the “Culture medium” section, typically for a period of 3 to 15 days, preferably 4 to 12 days;
  • the amplification of the erythrocyte precursors can be done by placing the erythrocyte precursors in a culture medium suitable for the amplification of the erythrocyte precursors, in particular a medium as described above or in the “Culture medium” section, typically for a period of 2 to 6 days, preferably 2 to 4 days;
  • the induction of the differentiation of multipotent hematopoietic cells into erythrocyte progenitors can be done by placing the multipotent hematopoietic cells in a culture medium suitable for the differentiation of multipotent hematopoietic cells, in particular a medium as described above or in the “Culture medium” section, typically for a period of 3 to 10 days, preferably 3 to 6 days;
  • the induction of the differentiation of erythrocyte progenitors into erythrocyte precursors can be done by placing the erythrocyte progenitors in a culture medium suitable for the differentiation of erythrocyte progenitors, in particular a medium as described above or in the “Medium” section. culture”, typically for a period of 3 to 10 days, preferably 3 to 6 days;
  • the induction of maturation of erythrocyte precursors can be done by placing the erythrocyte precursors in a culture medium adapted to the maturation of erythrocyte precursors, in particular a medium as described above or in the “Culture medium” section , typically for a period of 5 to 15 days, preferably 8 to 12 days.
  • composition of a culture medium The techniques for modifying the composition of a culture medium are well known to those skilled in the art.
  • the addition of a molecule or the increase in its concentration can be done directly in the pre-existing culture medium and the removal of a molecule or the reduction of its Concentration can be done by centrifugation of the cells and re-suspension in a new culture medium or by dilution of the culture medium.
  • durations of each step of the process given above are given for information purposes only. These durations can be easily defined/adjusted by those skilled in the art by observing the number and/or nature of the cells in culture.
  • the cells can be brought into contact with the vitisin compound during
  • the cells are brought into contact with the vitisin compound during each of these steps.
  • the cells are brought into contact with the vitisin compound during the step of amplification of multipotent hematopoietic cells and/or the step of differentiation of multipotent hematopoietic cells into unipotent erythrocyte progenitors.
  • the cells are brought into contact with the vitisin compound during the step of amplification of unipotent erythrocyte progenitors and/or the step of differentiation of unipotent erythrocyte progenitors into erythrocyte precursors.
  • the cells are brought into contact with the vitisin compound during the step of amplification of unipotent erythrocyte progenitors and/or the step of differentiation of unipotent erythrocyte progenitors into erythrocyte precursors and/or the stage of differentiation of unipotent erythrocyte progenitors into erythrocyte precursors.
  • the cells are brought into contact with the vitisin compound during (i) the step of amplification of multipotent hematopoietic cells and/or the step of differentiation of multipotent hematopoietic cells into erythrocyte progenitors unipotent and (ii) the step of amplification of unipotent erythrocyte progenitors and/or the step of differentiation of unipotent erythrocyte progenitors into erythrocyte precursors.
  • the cells are brought into contact with the vitisin compound during (i) the step of amplification of multipotent hematopoietic cells and/or the step of differentiation of multipotent hematopoietic cells into unipotent erythrocyte progenitors and (ii) the step of amplification of unipotent erythrocyte progenitors and/or the step of differentiation of unipotent erythrocyte progenitors into erythrocyte precursors and iii) the stage of maturation of erythrocyte precursors into erythrocytes.
  • the cells are brought into contact with the vitisin compound during the stage of differentiation of multipotent hematopoietic cells into unipotent erythrocyte progenitors, and the stage of differentiation of unipotent erythrocyte progenitors into erythrocyte precursors; and optionally during the stage of amplification of multipotent hematopoietic cells and/or the stage of amplification of unipotent erythrocyte progenitors.
  • the cells are brought into contact with the vitisin compound during the stage of differentiation of multipotent hematopoietic cells into unipotent erythrocyte progenitors, and the stage of differentiation of unipotent erythrocyte progenitors into erythrocyte precursors; and optionally during the stage of amplification of multipotent hematopoietic cells and/or the stage of amplification of unipotent erythrocyte progenitors, and optionally during the stage of maturation of erythrocyte precursors into erythrocytes.
  • the cells are brought into contact with the vitisin compound at least during the step of amplification of unipotent erythrocyte progenitors and/or the step of differentiation of unipotent erythrocyte progenitors into erythrocyte precursors.
  • the vitisin compound When the cells are brought into contact with the vitisin compound during a step of the process, the vitisin compound may be present in the culture medium during the entire step or during part of this step. Preferably, the vitisin compound is present throughout the duration of the step. Alternatively, the vitisin compound may be present for at least 1 day, preferably at least 3, 5, 7, 10 or 12 days during the step.
  • the cells can be brought into contact with a vitisin compound for at least 1 day, preferably for at least 3, 5, 7, 10 or 12 days, during the amplification and/or differentiation of multipotent hematopoietic cells. , and/or lasting at least 1 day, preferably lasting at least least 3, 5, 7, 10 or 12 days, during the amplification and/or differentiation of unipotent erythrocyte progenitors.
  • the cells are placed in contact with a vitisin compound for at least 1 day, preferably for at least 3, 5, 7, 10 or 12 days, during the amplification of multipotent hematopoietic cells, for at least 1 day , preferably lasting at least 3, 5, 7, 10 or 12 days, during the differentiation of multipotent hematopoietic cells, lasting at least 1 day, preferably lasting at least 3, 5, 7, 10 or 12 days, during the amplification of unipotent erythrocyte progenitors and lasting at least 1 day, preferably lasting at least 3, 5, 7, 10 or 12 days, during the differentiation of unipotent erythrocyte progenitors.
  • a vitisin compound for at least 1 day, preferably for at least 3, 5, 7, 10 or 12 days, during the amplification of multipotent hematopoietic cells, for at least 1 day , preferably lasting at least 3, 5, 7, 10 or 12 days, during the differentiation of multipotent hematopoietic cells, lasting at least 1 day, preferably lasting
  • the cells can be brought into contact with a vitisin compound between 2 and 15 days, in particular between 3 and 12 days, particularly between 3 and 10 days.
  • the methods according to the invention may comprise
  • a culture medium suitable for the amplification of multipotent hematopoietic cells preferably an IMDM medium supplemented with G-SCF, SCF, FLT3-L and TPO, and further comprising a vitisin compound, preferably vitisin B, typically for a period of 3 to 15 days, preferably 5 to 8 days;
  • a culture medium adapted to the differentiation of multipotent hematopoietic cells preferably an IMDM medium supplemented with IL3, IL6, SCF, serum albumin in particular bovine, insulin , transferrin and optionally EPO and further comprising a vitisin compound, preferably vitisin B, typically for a period of 3 to 10 days, preferably 3 to 6 days.
  • the methods according to the invention may comprise
  • a culture medium suitable for the amplification of erythrocyte progenitors preferably an IMDM or Stem Span SFEM II medium supplemented with G-SCF, SCF, FLT3-L and TPO, and further comprising a vitisin compound, preferably vitisin B, typically for a period of 3 to 15 days, preferably 4 to 12 days;
  • a vitisin compound preferably vitisin B, typically for a period of 3 to 15 days, preferably 4 to 12 days;
  • a culture medium suitable for the differentiation of erythrocyte progenitors preferably an IMDM or Stem Span SFEM II medium supplemented with IL3, SCF, hydrocortisone and optionally EPO, and comprising furthermore a vitisin compound, preferably vitisin B, typically for a period of 3 to 10 days, preferably 3 to 6 days.
  • the methods according to the invention may comprise the induction of the maturation of erythrocyte precursors into erythrocytes in a culture medium adapted to the maturation of erythrocyte precursors, preferably an IMDM or Stem Span SFEM II medium supplemented EPO, preferably comprising 2 or 3 IU/ml of EPO, and further comprising a vitisin compound, preferably vitisin B, typically for a period of 5 to 15 days, preferably 8 to 12 days.
  • this maturation medium does not include cytokines.
  • the hematopoietic cells are cultured in a culture medium adapted to the nutritional requirements of the hematopoietic cells for less than 50 days, less than 45 days, less than 40 days, less than 35 days or less than 30 days.
  • the hematopoietic cells are cultured in a culture medium adapted to the nutritional requirements of the hematopoietic cells between 3 and 35 days, between 7 and 35 days, between 15 and 35 days, between 25 and 35 days, between 28 and 35 days, between 7 and 28 days, between 15 and 28 days, between 20 and 28 days, preferably for approximately 28 or 35 days.
  • the hematopoietic cells are cultured in a culture medium adapted to the nutritional requirements of the hematopoietic cells for 25 to 30 days, in particular approximately 28 days .
  • the method comprises the production of erythrocytes from multipotent hematopoietic cells, in particular from HSCs
  • the hematopoietic cells are cultured in a culture medium adapted to the nutritional requirements of the hematopoietic cells for 30 to 40 days, specifically around 35 days.
  • the cell culture steps namely the amplification, differentiation and/or maturation steps, are preferably carried out at a temperature suitable for the multiplication and/or differentiation of hematopoietic cells.
  • the temperature is around 37°C.
  • the CO2 and/or 02 content is preferably controlled during the cell culture stages.
  • the CO2 level is between 2% and 10%, between 3% and 7% or between 4% and 6%, and is preferably around 5%.
  • the O2 level is preferably between 1% and 30%, between 5% and 25%, between 10% and 25% or between 15% and 25%, and is preferably around 20%.
  • the cells are cultured at approximately 37°C, with a CO2 level of 5% and/or with an O2 level of 20%.
  • the hematopoietic cells of interest in the present invention are cultured at a concentration of between 200 and 10,000 cells/ml, preferably between 500 and 2000 cells/ml, and even more preferably at approximately 1000 cells/ml. ml.
  • the hematopoietic cells are placed in contact with mesenchymal cells (MSC) or stromal cells.
  • stromal cells refers to non-hematopoietic cells of the bone marrow, such as endothelial cells, non-striated vascular cells (fibrotic cells), adipocytes and macrophages.
  • Mesenchymal stem cells are present in various tissues of the adult body, mainly in bone marrow but also in adipose tissue. They can differentiate into numerous cell types including osteoblasts, chondrocytes, myocytes and adipocytes, and thus produce and/or repair bone and fatty tissues.
  • mesenchymal cells and hematopoietic cells are in contact.
  • multipotent hematopoietic cells and hematopoietic progenitors are notably regulated extrinsically within the medullary hematopoietic niches and this regulation involves intercellular contacts and diffusible factors.
  • Mesenchymal stem cells secrete growth factors controlling the proliferation and differentiation of these hematopoietic cells.
  • the stromal or mesenchymal cells are preferably cultured under appropriate culture conditions such that they adhere or not to a substrate surface.
  • Hematopoietic cells can be grown in coculture with mesenchymal cells (MSCs) forming a confluent cell layer.
  • MSCs mesenchymal cells
  • Those skilled in the art can use any known technique to obtain a cellular layer with a confluence of MSCs.
  • the step of differentiating multipotent hematopoietic cells into unipotent erythrocyte progenitors, and/or the step of differentiating unipotent erythrocyte progenitors into erythrocyte precursors and/or the step maturation of erythrocyte precursors are carried out in coculture with MSC cells.
  • the stages of differentiation of multipotent hematopoietic cells into unipotent erythrocyte progenitors and of differentiation of unipotent erythrocyte progenitors into erythrocyte precursors, and optionally the stage of maturation of the erythrocyte precursors, are carried out in coculture with MSC cells.
  • the culture medium may further comprise fetal calf serum (FBS), in particular at a concentration of between approximately 1% and approximately 10%. , preferably at a concentration of between approximately 1% and approximately 5%.
  • FBS fetal calf serum
  • the methods according to the invention may further comprise one or more additional steps.
  • the methods according to the invention may in particular also comprise a step of sampling blood from an individual, preferably umbilical cord blood, placental blood and/or peripheral blood.
  • the methods according to the invention may also comprise one or more cell sorting steps, in particular a cell selection step based on the expression of markers such as CD34, CD36, CD123, CD235a, CD117, CD71 and/or GPA or any of their combinations.
  • This preliminary step can in particular be carried out by an immunomagnetic technique using antibodies directed against different phenotypic markers of the cells of interest, in particular as described in the “Erythropoiesis and hematopoietic cells” section.
  • the methods for producing erythrocytes according to the invention may further comprise a step of eliminating nucleated cells. This step makes it possible in particular to obtain a homogeneous population comprising only mature erythrocytes.
  • the production processes according to the invention may further comprise a step of recovering the cells obtained.
  • This step can be carried out by any technique known to those skilled in the art, in particular by filtration, centrifugation and elimination of the culture medium.
  • the production processes according to the invention may also include a step of washing the cells obtained/recovered. This step can be carried out by any technique known to those skilled in the art, in particular by a succession of filtration, centrifugation and resuspension steps.
  • the production methods according to the invention may also include a step of storing the cells obtained/recovered. This step can be carried out by any technique known to those skilled in the art, in particular by freezing.
  • the recovered cells can be mixed with a volume-to-volume solution of decomplemented fetal calf serum (FBS) and cryoprotectant before freezing.
  • FBS decomplemented fetal calf serum
  • the vitisin compound preferably vitisin-B
  • the vitisin compound can be added to any of the culture media suitable for the amplification, differentiation and/or maturation stages.
  • the vitisin compound preferably vitisin B, may be present in the medium at a concentration of between approximately 0.5 pM and approximately 1 mM, approximately 0.5 pM and approximately 500 pM, approximately 0.5 pM and about 200 pM, about 0.5 pM and about 100 pM, between about 0.5 pM and about 50 pM, between about 0.5 pM and about 40 pM, between about 0.5 pM and about 30 pM, between about 0 .5 pM and approximately 20 pM, between approximately 0.5 pM and approximately 15 pM or between approximately 0.5 pM and approximately 10 pM, approximately 5 pM and approximately 1 mM, approximately 5 pM and approximately 500 pM, approximately 5 pM and approximately 200 pM, approximately 5 pM and approximately 100 pM, between approximately 5 pM and approximately 75 pM, between approximately 5 pM and approximately 50 pM, between about 5 pM and about 40 pM
  • the vitisin compound is used at a concentration of between 1 pM and 500 pM, preferably between 5 pM and 100 pM.
  • vitisin-B can be used at a concentration of approximately 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 80, 90, 95 or 100 pM.
  • the present invention also relates to a cell culture medium comprising a vitisin compound, in particular a cell culture medium adapted to the nutritional requirements of hematopoietic cells, in particular multipotent, pluripotent or unipotent hematopoietic cells, preferably selected from the group consisting of cells CSH, MPP, CMP, MEP, unipotent erythrocyte progenitors, erythrocyte precursors, and combinations thereof, and comprising a vitisin compound.
  • the cell culture medium according to the invention can be a medium suitable for the maintenance, amplification, differentiation and/or maturation of hematopoietic cells, preferably cells selected from the group consisting of HSC cells. , MPP, CMP, MEP, unipotent erythrocyte progenitors, erythrocyte precursors, and combinations thereof. This medium can in particular be used in the different stages of the processes according to the invention.
  • the culture medium according to the invention can be any basic medium known to those skilled in the art to be adapted to the nutritional requirements of hematopoietic cells, in particular multipotent hematopoietic cells, unipotent progenitors and/or erythrocyte precursors, to which a compound vitisin is added.
  • Many culture media adapted to the nutritional requirements of hematopoietic cells are known to those skilled in the art and commercially available, such as Dulbecco's medium modified according to Iscove (IMDM medium), Stem Span SFEM II medium (Stemcell technologies) or the “StemMACS HSC Expansion Media XF, Human” medium (Miltenyi Biotec).
  • the cell culture medium is preferably chosen from a Dulbecco medium modified according to Iscove (IMDM medium) and a Stem Span SFEM II medium (Stemcell technologies).
  • the culture medium is a Dulbecco culture medium modified according to Iscove (IMDM_PAN BIOTECH).
  • the middle IMDM culture medium is obtained in particular from Dulbecco's Modified Eagle culture medium (DMEM) enriched with sodium selenite but also with vitamins and amino acids.
  • DMEM Dulbecco's Modified Eagle culture medium
  • the composition of IMDM and Stem Span SFEM II media are well known in the literature.
  • the IMDM medium includes amino acids, vitamins, salts, D-glucose, HEPES and sodium pyruvate.
  • the culture medium according to the invention can be liquid, semi-solid or solid. Those skilled in the art know how to solidify a culture medium, in particular by adding agar.
  • the culture medium according to the invention may comprise one or more amino acids, antibiotics, vitamins, salts, minerals or lipids.
  • the culture medium according to the invention may also comprise other compounds favorable to the amplification and/or differentiation of hematopoietic cells, in particular growth or survival factors, for example as described in application WO2010096746.
  • the cell culture medium can be supplemented with erythropoietin (EPO), Stem Cell Factor (SCF), Hydrocortisone (HC), growth factors, interleukin 3 (IL3), interleukin 6 (IL6), interleukin 11 (IL11), transferrin, heparin, insulin, thrombopoietin, FMS-like tyrosine kinase 3 ligand (Flt3-L ) granulocyte colony-stimulating factor (G-CSF), L-glutamine, inositol, an antibiotic such as penicillin and/or streptomycin, folic acid, mono-thioglycerol, sodium nitrate iron, iron sulfate, BIT 9500 Supplement (Stem Cell Technologies), serum albumin, serum and/or plasma, or any combination thereof.
  • EPO erythropoietin
  • SCF Stem Cell Factor
  • HC Hydrocortisone
  • growth factors IL3
  • the culture medium according to the invention may optionally comprise an antibiotic, for example penicillin and/or streptomycin, at a concentration of between approximately 0.1% and approximately 10%, preferably between approximately 0.5% and approximately 5%, more preferably at a concentration of approximately 1%.
  • an antibiotic for example penicillin and/or streptomycin
  • the compounds of the culture medium according to the invention are preferably human compounds obtained by recombinant or purification techniques.
  • the culture medium according to the invention comprises in particular:
  • IL-3 preferably human IL-3, at a concentration of between approximately 1 ng/mL and approximately 20 ng/mL, preferably between approximately 5 ng/mL and approximately 15 ng/mL, more preferably at a concentration approximately 5 or 10 ng/mL; and or IL-6, preferably human IL-6, at a concentration of between approximately 1 ng/mL and approximately 20 ng/mL, preferably between approximately 5 ng/mL and approximately 15 ng/mL, more preferably at a concentration approximately 10 ng/mL; and or
  • SCF at a concentration of between approximately 1 ng/mL and approximately 500 ng/mL, preferably approximately 10 ng/mL and approximately 200 ng/mL, preferably between approximately 50 ng/mL and approximately 150 ng/mL, preferably between approximately 50 ng/mL and approximately 100 ng/mL, most preferably approximately 100 ng/mL; and or
  • EPO preferably human, at a concentration of between approximately 0.5 lU/mL and approximately 10 lU/mL, preferably between approximately 1 lU/mL and approximately 5 lU/mL, more preferably at a concentration of approximately 2 or 3 lU/mL; and or
  • FLT3-L at a concentration of between approximately 1 ng/mL and approximately 500 ng/mL, preferably approximately 10 ng/mL and approximately 200 ng/mL, preferably between approximately 50 ng/mL and approximately 150 ng/mL, preferably a concentration of 100 ng/ML; and/or TPO at a concentration of between approximately 0.1 ng/mL and approximately 200 ng/mL, preferably approximately 1 ng/mL and approximately 100 ng/mL, preferably between approximately 10 ng/mL and approximately 50 ng/mL , preferably a concentration of 20 ng/ML; and/or G-CSF at a concentration between approximately 0.1 ng/mL and approximately 200 ng/mL, preferably approximately 1 ng/mL and approximately 100 ng/mL, preferably between approximately 5 ng/mL and approximately 25 ng /mL, preferably a concentration of 10 ng/ML, and/or transferrin, preferably human transferrin, at a concentration of between approximately
  • L-glutamine at a concentration of between approximately 0.1 mM and approximately 50 mM, preferably between approximately 1 mM and approximately 15 mM, preferably between approximately 1 mM and approximately 5 mM, most preferably approximately 4 mM ; and or
  • Folic acid at a concentration of between approximately 0.1 pg/mL and approximately 100 pg/mL, preferably between approximately 1 pg/mL and approximately 100 pg/mL, preferably between 5 pg/mL and 20 pg/mL, more preferably at a concentration of approximately 10 pg/mL; and or
  • Hydrocortisone (HC) at a concentration of between approximately 10 -7 M and approximately 10 -8 M, preferably at a concentration of approximately 10 -6 M; and or
  • Fetal calf serum at a concentration of between approximately 1% and approximately 10%, preferably between approximately 3% and approximately 7%, more preferably at a concentration of approximately 5%; and or
  • Iron nitrate at a concentration of between approximately 1 ng/mL and approximately 200 ng/mL, preferably between approximately 10 ng/mL and approximately 150 ng/mL, preferably between approximately 50 ng/mL and approximately 150 ng/mL, of still preferably at a concentration of approximately 90 ng/mL;
  • Human or bovine albumin serum at a concentration of between approximately 1 mg/mL and approximately 50 mg/mL, preferably between approximately 5 mg/mL and approximately 20 mg/mL, more preferably at a concentration of approximately 10 mg/mL;
  • Albumin at a concentration of between approximately 1% and approximately 10%, preferably between approximately 3% and approximately 7%, more preferably at a concentration of approximately 4%, and/or
  • BIT 9500 supplement (Stem Cell Technologies) at a concentration of between approximately 1% and approximately 30%, preferably between approximately 10% and approximately 20%, more preferably at a concentration of approximately 15%; and or ; serum, plasma or pool of serum, preferably human, at a concentration of between approximately 1% and approximately 10%, preferably between approximately 3% and approximately 7%, more preferably at a concentration of approximately 5%, and/or a platelet lysate, preferably of human origin, at a concentration of between approximately 0.05% and approximately 0.5%, preferably between approximately 0.1% and approximately 0.5%, more preferably at a concentration of approximately 0.3%; or any combination thereof.
  • the culture medium according to the invention is a culture medium comprising:
  • L-glutamine at a concentration of between approximately 0.1 mM and approximately 50 mM, preferably between approximately 1 mM and approximately 15 mM, preferably between approximately 1 mM and approximately 5 mM, most preferably approximately 4 mM ; and or
  • Folic acid at a concentration of between approximately 0.1 pg/mL and approximately 100 pg/mL, preferably between approximately 1 pg/mL and approximately 100 pg/mL, preferably between 5 pg/mL and 20 pg/mL, more preferably at a concentration of approximately 10 pg/mL; and or
  • Mono-thioglycerol at a concentration of between approximately 10 -5 M and approximately 10 -3 M, preferably between approximately 0.1.10 -4 M and approximately 10.10 -4 M, preferably between 10 -4 M and approximately 5.10 -4 M, more preferably at a concentration of approximately 1.6.10 -4 M; and/or transferrin, preferably human transferrin, at a concentration of between approximately 50 pg/mL and approximately 400 pg/mL, preferably between approximately 50 pg/mL and approximately 200 pg/mL, preferably between 100 pg/mL and 150 pg/mL, more preferably at a concentration of approximately 120 pg/mL; and/or insulin, preferably human insulin, at a concentration of between approximately 1 pg/mL and approximately 50 pg/mL, preferably between approximately 5 pg/mL and approximately 20 pg/mL, more preferably at a concentration of 'approximately 10 pg/mL; and or
  • Iron nitrate at a concentration between approximately 1 ng/mL and approximately 200 ng/mL, preferably between approximately 10 ng/mL and approximately 150 ng/mL, preferably between approximately 50 ng/mL and approximately 150 ng/mL, more preferably at a concentration of approximately 90 ng/L;
  • Human albumin serum at a concentration of between approximately 1 mg/mL and approximately 50 mg/mL, preferably between approximately 5 mg/mL and approximately 20 mg/mL, more preferably at a concentration of approximately 10 mg/mL. mL; and or
  • IL-3 preferably human IL-3, at a concentration of between approximately 1 ng/mL and approximately 20 ng/mL, preferably between approximately 5 ng/mL and approximately 15 ng/mL, more preferably at a concentration approximately 5 ng/mL; and or
  • SCF at a concentration of between approximately 1 ng/mL and approximately 500 ng/mL, preferably approximately 10 ng/mL and approximately 200 ng/mL, preferably between approximately 50 ng/mL and approximately 150 ng/mL, preferably between approximately 50 ng/mL and approximately 100 ng/mL, most preferably approximately 100 ng/mL; and or
  • EPO preferably human, at a concentration of between approximately 0.5 lU/mL and approximately 10 lU/mL, preferably between approximately 1 lU/mL and approximately 5 lU/mL, more preferably at a concentration of approximately 3 lU/mL; and or
  • Hydrocortisone (HC) at a concentration of between about 10 -7 M and about 10 -8 M, preferably at a concentration of about 10 -6 M.
  • the culture medium is an amplification medium, in particular suitable for the amplification of multipotent hematopoietic cells or unipotent erythrocyte progenitors, for example an IMDM or Stem Span II medium, further comprising:
  • G-CSF at a concentration of between approximately 0.1 ng/mL and approximately 200 ng/mL, preferably approximately 1 ng/mL and approximately 100 ng/mL, preferably between approximately 5 ng/mL and approximately 25 ng/mL, preferably a concentration of 10 ng/ML, and
  • SCF at a concentration of between approximately 1 ng/mL and approximately 500 ng/mL, preferably approximately 10 ng/mL and approximately 200 ng/mL, preferably between approximately 50 ng/mL and approximately 150 ng/mL, preferably a concentration of 100 ng/ML, and
  • FLT3-L at a concentration of between approximately 1 ng/mL and approximately 500 ng/mL, preferably approximately 10 ng/mL and approximately 200 ng/mL, preferably between approximately 50 ng/mL and approximately 150 ng/mL, preferably a concentration of 100 ng/mL
  • TPO at a concentration of between approximately 0.1 ng/mL and approximately 200 ng/mL, preferably approximately 1 ng/mL and approximately 100 ng/mL, preferably between approximately 10 ng/mL and approximately 50 ng/mL, preferably a concentration of 20 ng/ML.
  • the culture medium is an amplification medium, in particular suitable for the amplification of erythrocyte precursors, for example an IMDM or Stem Span II medium, further comprising:
  • SCF in particular at a concentration of between approximately 1 ng/mL and approximately 500 ng/mL, preferably approximately 10 ng/mL and approximately 200 ng/mL, preferably between approximately 50 ng/mL and approximately 150 ng/mL, so as to preferably between approximately 50 ng/mL and approximately 100 ng/mL, most preferably approximately 100 ng/mL;
  • Hydrocortisone in particular at a concentration between approximately 10 -7 M and approximately 10 -8 M, preferably at a concentration of approximately 10 -6 M and/or optionally, transferrin (BIT), preferably human transferrin, at a concentration of between approximately 50 pg/mL and approximately 400 pg/mL, preferably between approximately 50 pg/mL and approximately 200 pg/mL, preferably between 100 pg/mL and 150 pg/mL, more preferably at a concentration of approximately 120 pg/mL;
  • BIT transferrin
  • EPO preferably human
  • EPO at a concentration of between approximately 0.5 lU/mL and approximately 10 lU/mL, preferably between approximately 1 lU/mL and approximately 5 lU/mL, more preferably at a concentration of approximately 2 lU/mL
  • serum, plasma or pool of serum preferably human
  • serum, plasma or pool of serum preferably human
  • a platelet lysate preferably of human origin, at a concentration of between approximately 0.05% and approximately 0.5%, preferably between approximately 0.1% and approximately 0 .5%, more preferably at a concentration of approximately 0.3%.
  • the culture medium is a differentiation medium, allowing in particular the differentiation of multipotent hematopoietic cells into unipotent erythrocyte progenitors, for example an IMDM or Stem Span II medium, further comprising:
  • IL-3 preferably human IL-3, at a concentration of between approximately 1 ng/mL and approximately 20 ng/mL, preferably between approximately 5 ng/mL and approximately 15 ng/mL, more preferably at a concentration approximately 10 ng/mL;
  • IL-6 preferably human IL-6, at a concentration of between approximately 1 ng/mL and approximately 20 ng/mL, preferably between approximately 5 ng/mL and approximately 15 ng/mL, more preferably at a concentration approximately 10 ng/mL;
  • SCF at a concentration of between approximately 1 ng/mL and approximately 500 ng/mL, preferably approximately 10 ng/mL and approximately 200 ng/mL, preferably between approximately 25 ng/mL and approximately 100 ng/mL, preferably a concentration of 'approximately 50 ng/ML,
  • Bovine serum albumin at a concentration of between approximately 1 mg/mL and approximately 50 mg/mL, preferably between approximately 5 mg/mL and approximately 20 mg/mL, more preferably at a concentration of approximately 10 mg/mL; transferrin (BIT), preferably human transferrin, at a concentration of between approximately 50 pg/mL and approximately 400 pg/mL, preferably between approximately 50 pg/mL and approximately 200 pg/mL, preferably between 100 pg/mL and 150 pg/mL, more preferably at a concentration of approximately 120 pg/mL; insulin, preferably human insulin, at a concentration of between about 1 pg/mL and about 50 pg/mL, preferably between about 5 pg/mL and about 20 pg/mL, more preferably at a concentration of about 10 pg/mL;
  • BSA Bovine serum albumin
  • EPO preferably human
  • EPO at a concentration of between approximately 0.5 lU/mL and approximately 10 lU/mL, preferably between approximately 1 lU/mL and approximately 5 lU/mL, more preferably at a concentration of approximately 2 lU/mL, and
  • fetal calf serum in particular at a concentration of between approximately 1% and approximately 10%, preferably at a concentration of between approximately 1% and approximately 5%.
  • BSA, insulin and transferrin can in particular be provided by the use of BIT 9500 (Stem Cell Technologies) at a concentration of between approximately 1% and approximately 30%, preferably between approximately 10% and approximately 20%, of still preferred manner at a concentration of approximately 15%, and
  • the culture medium is a differentiation medium, in particular suitable for the differentiation of unipotent progenitors into erythrocyte precursors, for example an IMDM or Stem Span II medium, further comprising:
  • IL-3 preferably human IL-3, in particular at a concentration of between approximately 1 ng/mL and approximately 20 ng/mL, preferably between approximately 5 ng/mL and approximately 15 ng/mL, more preferably at a concentration of approximately 5 ng/mL;
  • SCF in particular at a concentration between approximately 1 ng/mL and approximately 500 ng/mL, preferably approximately 10 ng/mL and approximately 200 ng/mL, preferably between approximately 50 ng/mL and approximately 150 ng/mL, preferably between approximately 50 ng/mL and approximately 100 ng/mL, most preferably approximately 100 ng/mL;
  • Hydrocortisone in particular at a concentration between approximately 10'7 M and approximately 10 -8 M, preferably at a concentration of approximately 10 -6 M and/or optionally, and
  • EPO preferably human, in particular at a concentration of between approximately 0.5 lU/mL and approximately 10 lU/mL, preferably between approximately 1 lU/mL and approximately 5 lU/mL, furthermore preferred at a concentration of approximately 3 lU/mL;
  • FBS fetal calf serum
  • FBS fetal calf serum
  • the culture medium is a maturation medium; for example an IMDM or Stem Span II medium not comprising cytokines.
  • the maturation medium does not include cytokines, but is supplemented with erythropoietin (approximately 2 or 3 IU/mL).
  • the culture medium according to the invention comprises a vitisin compound and the compounds in Table 1, preferably in the concentrations mentioned in Table 1.
  • Table 1 Example of composition of culture medium suitable for the culture of hematopoietic cells.
  • the culture medium according to the invention is a culture medium comprising the compounds in Table 1, preferably in concentrations mentioned in Table 1, as well as BSA, human insulin, human transferrin and optionally 2-Mercaptoethanol, said medium further comprising a vitisin compound.
  • the vitisin compound can be added to any of the culture media described above, such as amplification, differentiation and/or maturation media.
  • the vitisin compound, preferably vitisin-B can be present in the medium according to the invention at a concentration of between approximately 0.5 pM and approximately 1 mM, approximately 0.5 pM and approximately 500 pM, approximately 0.5 pM and about 200 pM, about 0.5 pM and about 100 pM, between about 0.5 pM and about 50 pM, between about 0.5 pM and about 40 pM, between about 0.5 pM and about 30 pM, between about 0.5 pM and about 20 pM, between about 0.5 pM and about 15 pM or between about 0.5 pM and about 10 pM, about 5 pM and about 1 mM, about 5 pM and about 500 pM , about 5 pM and about 200 pM, about 5 pM
  • the vitisin compound is used at a concentration of between 1 pM and 500 pM, preferably between 5 pM and 100 pM.
  • the vitisin compound, preferably vitisin B is added to the culture medium at a concentration of approximately 0.5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50 , 55, 60, 65, 70, 75, 80, 85, 80, 90, 95 or 100 pM.
  • the culture medium according to the invention comprising a vitisin compound could advantageously be used in the processes for preparing hematopoietic stem cells (HSC), multipotent progenitors (MPP), common myeloid progenitors (CMP), megakaryocytic-erythrocyte progenitors ( MEP), unipotent erythrocyte progenitors, erythrocyte precursors and red blood cells.
  • HSC hematopoietic stem cells
  • MMP common myeloid progenitors
  • MEP megakaryocytic-erythrocyte progenitors
  • unipotent erythrocyte progenitors erythrocyte precursors and red blood cells.
  • the culture medium according to the invention comprising a vitisin compound can be used in any of the methods according to the invention, in particular as described above in the “Culture method” section.
  • the present invention thus also relates to the use of the cell culture medium according to the invention, in particular a culture medium suitable for the amplification, differentiation and/or maturation of hematopoietic cells and comprising a vitisin compound, in particular a medium as described in any of the different embodiments above, for (i) the amplification and/or differentiation of hematopoietic stem cells (HSC), multipotent progenitors (MPP), common myeloid progenitors (CMP ), megakaryocytic-erythrocyte progenitors (MEP) or unipotent erythrocyte progenitors and/or (ii) for the differentiation and/or maturation of erythrocyte precursors, and/or (iii) the production of unipotent erythrocyte progenitors and/or erythrocytes, in particular according to the methods of the invention described below, and more particularly to stimulate the differentiation of CSH, MPP, CMP and/or MEP into unipot
  • the present invention also relates to the use of a vitisin compound to supplement a cell culture medium, in particular a cell culture medium suitable for the amplification and/or differentiation and/or maturation of hematopoietic cells, and more particularly a cell culture medium suitable for (i) the amplification and/or differentiation of hematopoietic stem cells (HSC), multipotent progenitors (MPP), common myeloid progenitors (CMP), megakaryocytic-erythrocyte progenitors (MEP) or of unipotent erythrocyte progenitors and/or (ii) the maturation of erythrocyte precursors, and/or (iii) the production of unipotent erythrocyte progenitors and/or erythrocytes.
  • HSC hematopoietic stem cells
  • MPP multipotent progenitors
  • CMP common myeloid progenitors
  • MEP megakaryocytic-erythr
  • the present invention also relates to the use of a vitisin compound to (i) stimulate the amplification and/or differentiation of hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), common myeloid progenitors (CMPs), megakaryocytic-erythrocyte progenitors (MEP) or unipotent erythrocyte progenitors and/or (ii) stimulate the maturation of erythrocyte precursors, and/or (iii) stimulate the production of unipotent erythrocyte progenitors and/or erythrocytes.
  • HSCs hematopoietic stem cells
  • MPPs common myeloid progenitors
  • MEP megakaryocytic-erythrocyte progenitors
  • unipotent erythrocyte progenitors stimulate the maturation of erythrocyte precursors
  • iii stimulate the production of unipotent erythrocyte progen
  • the vitisin compound can be simply added to a base medium, preferably a base medium adapted to the requirements of the hematopoietic cells.
  • the vitisin compound is preferably added to a culture medium chosen from an amplification medium, a differentiation medium and a maturation medium, in particular as defined above.
  • the vitisin compound can in particular be added to be present in the supplemented medium at a concentration as defined above.
  • compositions based on vitisin compound and their use
  • the present invention relates to the use of a vitisin compound to promote or stimulate the production of hematopoietic cells, in particular erythrocytes, in an individual, in particular an individual suffering from a hemopathy.
  • the present invention also relates to the compound vitisin as a drug for the treatment of hematological pathology.
  • drug encompasses drugs for human and animal use in human and veterinary medicine and refers to any pharmacologically acceptable substance that provides a therapeutic and/or beneficial effect.
  • the present invention also relates to a composition, in particular a pharmaceutical composition comprising a vitisin compound for its use in the treatment of a hematological pathology or the treatment of a patient who has suffered blood loss.
  • a "pharmaceutical composition” means a preparation of an active agent with other optional chemical components such as physiologically appropriate carriers and/or excipients.
  • the pharmaceutical composition according to the invention includes pharmaceutical compositions used in human medicine and pharmaceutical compositions used in animal medicine, that is to say veterinary compositions.
  • treatment here refers to obtaining a desired pharmacological and/or physiological effect.
  • the effect may be prophylactic in terms of total or partial prevention of a disease or symptom and/or may be therapeutic in terms of partial or complete cure of an illness and/or an adverse effect attributable to the illness.
  • treatment covers any treatment of a disease in a subject, particularly in a human, to: reduce the incidence and/or risk of relapse of the disease during a symptom-free period; relieve or reduce a symptom of disease; prevent the disease from occurring in a subject who may be predisposed to the disease but who has not yet been diagnosed as having it; inhibit the disease, i.e. stop its development (for example, reduce the rate of progression); reduce the frequency of episodes of the disease; and relieve the disease, that is to say, cause a total or partial regression of the disease.
  • blood disease hemopathy or hematological pathology
  • blood cells such as erythrocytes, leukocytes and platelets
  • other components hemoglobin, blood proteins
  • the hemopathy envisaged by the invention is a disease linked to damage to red blood cells or to insufficient production of hematopoietic cells, preferably red blood cells.
  • the hematological disease can in particular be selected from sickle cell disease, myeloproliferative syndromes (leukemia, Vaquez disease), aplastic anemia as well as anemias of other etiologies.
  • the pharmaceutical composition or the vitisin compound can also be used for the treatment of insufficient production of hematopoietic cells, preferably red blood cells, caused by another disease, for example cancer.
  • the pharmaceutical composition or the vitisin compound can also be used for the treatment of patients who have suffered significant blood loss, particularly in the context of patients requiring a blood transfusion.
  • transfusion occurs in patients whose hemoglobinemia is less than 10.
  • Blood transfusion consists of injecting blood or a blood component intravenously.
  • the pharmaceutical composition or the vitisin compound can thus be used in addition to a blood transfusion.
  • the pharmaceutical composition according to the invention comprises a vitisin compound as active ingredient.
  • the pharmaceutical composition may, in addition, contain at least one additional pharmaceutical active ingredient.
  • active pharmaceutical ingredient means any compound or substance whose administration has a therapeutic effect or a beneficial effect on the health or general condition of a patient or subject to whom it is administered.
  • compositions according to the invention may vary depending on the route of administration and dosage for which the composition is intended to be used.
  • the composition according to the invention may further comprise a pharmaceutically acceptable support.
  • pharmaceutically acceptable support or “pharmaceutically acceptable excipient” or “pharmaceutically acceptable vehicle” are interchangeable and include all compounds or combinations of compounds which are known to those skilled in the art as being useful in the formulation of pharmaceutical or veterinary compositions. Those skilled in the art know how to select the most appropriate vehicles and excipients for the preparation of a given type of formulation.
  • the vitisin compound or pharmaceutical composition may be used for administration to a subject.
  • the terms "individual”, “host”, “subject” and “patient”, are used here interchangeably, and designate an animal, preferably a mammal, and more particularly a human.
  • the patient treated is a human being, for example a child or an adult.
  • the subjects envisaged by the invention are affected by a hematological pathology or another pathology inducing an insufficient production of hematopoietic cells, preferably red blood cells, for example cancer.
  • the present invention also relates to a method of treating a hematological pathology or another pathology inducing an insufficient production of hematopoietic cells.
  • Methods of treatment generally involve administering to an individual in need an effective amount of the vitisin compound or a composition comprising a vitisin compound.
  • the treatment is either for a curative purpose or for a preventive purpose in order to limit or delay the appearance of a hematological pathology, of another pathology inducing an insufficiency of production of hematopoietic cells or a symptom associated with the disease. .
  • the therapeutically effective or sufficient quantity of a vitisin compound or of a pharmaceutical composition comprising this compound is a quantity making it possible to obtain the desired effect, namely an effect promoting the production of hematopoietic cells, in particular red blood cells, by the patient.
  • a conventional treatment known to those skilled in the art for treating a hematological pathology can be supplemented by the administration of a vitisin compound according to the invention.
  • the administration of the compound vitisin may be associated with the administration of erythropoietin or with a blood transfusion.
  • the administration of the vitisin compound can be carried out before, during and/or after the conventional treatment envisaged for the disease to be treated. Kit
  • the present invention also relates to a kit comprising the compounds making it possible to obtain a cell culture medium according to the invention, in particular as described above in the "Culture medium” section, said medium not comprising a vitisin compound, said kit further comprising a vitisin compound.
  • the present invention relates to a kit comprising: a cell culture medium, in particular a medium for amplification, differentiation and/or maturation of hematopoietic cells, preferably as described above in the section “Medium of culture”, said medium not comprising vitisin compound; and a vitisin compound, and optionally, hematopoietic cells as described above in the section “Erythropoiesis and hematopoietic cells”, in particular HSCs, MPPs, CMPs, MEPs, unipotent erythrocyte progenitors and/or erythrocyte precursors; and optionally, a guide containing instructions for using such a kit.
  • a cell culture medium in particular a medium for amplification, differentiation and/or maturation of hematopoietic cells, preferably as described above in the section “Medium of culture”, said medium not comprising vitisin compound
  • a vitisin compound and optionally, hematopoietic cells as described above
  • the kit comprises: a cell culture medium, in particular as described above in the “Culture medium” section, preferably an IMDM medium and/or a Stem Span II medium, said medium not comprising vitisin compound; one or more compounds chosen from erythropoietin (EPO), Stem Cell Factor (SCF), Hydrocortisone (HC), growth factors, interleukin 3 (IL3), interleukin 6 ( IL6), interleukin 11 (IL11), transferrin, heparin, insulin, thrombopoietin, FMS-like tyrosine kinase 3 ligand (Flt3-L) granulocyte colonies (G-CSF), L-glutamine, inositol, an antibiotic such as penicillin and/or streptomycin, folic acid, mono-thioglycerol, iron nitrate, iron sulfate , human serum albumin, serum, or plasma, or any combination thereof,
  • EPO
  • kit according to the invention may comprise:
  • hematopoietic cells as described above in the “Erythropoiesis and hematopoietic cells” section, in particular HSCs, MPPs, CMPs, MEPs, unipotent erythrocyte progenitors and/or erythrocyte precursors; and optionally, a guide containing instructions for using such a kit.
  • the present kit may include the ingredients necessary to obtain the culture medium in dehydrated form, in a common container or in separate containers.
  • the inventive kit may further comprise various materials and reagents for use in accordance with the present invention in suitable containers and packaging materials, including pipettes, tubes or vials.
  • the kit may also include means allowing the collection of a biological sample such as blood, for example a syringe.
  • the present invention also relates to the use of a kit according to the invention for producing erythrocyte progenitors, erythrocyte precursors and/or erythrocytes, in particular according to the methods of the invention described above.
  • Figure 1 Effect of vitisin B on the ex vivo amplification of hematopoietic progenitors, in particular on progenitors with CD34 + CD133 neg erythrocyte potential in an amplification procedure carried out using peripheral blood CD34 + cells.
  • Data represent the absolute number at the end of the protocol of each phenotypically identified cell subpopulation. Data represent the average of 4 experiments.
  • Figure 2 Comparison of the effects of Vitisin B with other derivatives/analogues of Resveratrol on the ex vivo production of progenitors with CD34 + CD133 neg erythrocyte potential.
  • the data represent a comparison of the proportions (A) and absolute numbers (B) of CD34 + CD133 neg progenitors at the end of the protocol depending on the molecules tested. Data represent the average of 5 experiments.
  • Figure 3 Effect of Vitisin B on erythrocyte differentiation, in a simplified erythrocyte differentiation procedure (ERYTHRO PROTOCOL 1, detailed in the experimental part) from peripheral blood CD34 + cells.
  • the data represent the level of membrane expression of CD71 (mean fluorescence intensity, relative arbitrary values) (A) and the relative proportions of cells having acquired GPA expression at their membrane (B) as a function of the dose of Vitisin B in the culture medium.
  • Data represent the average of 6 experiments.
  • the amounts of vitisin B indicated correspond to concentrations of 5, 10, 15, 20 and 30 pM, respectively.
  • Figure 4 Effect of Vitisin B on erythrocyte differentiation, in a simplified erythrocyte differentiation procedure (ERYTHRO PROTOCOL 1, detailed in the experimental part) from SP, CMP and MEP subpopulation isolated from CD34 + cells of peripheral blood.
  • the data represent the evolution during the culture of the relative proportions of cells expressing GPA and CD71 at their membrane (A) as well as the evolution of the level of membrane expression of CD71 (mean fluorescence intensity, relative arbitrary values ) (B) and function of the presence or absence of Vitisin B (10 pM) in the culture medium. Data represent the average of 3 experiments.
  • Figure 5 Effect of Vitisin B on the total amplification of CD34 + cells from placental blood according to an optimized three-phase production process (ERYTHRO 2 PROTOCOL, detailed in the experimental part).
  • the graph represents the absolute number of cells obtained and counted during the culture in the absence or presence of Vitisin B (10 pM).
  • CTRL Absence of Vitisin B in culture / Vitisin BI: Presence of Vitisin B during phase I / Vitisin B II: Presence of Vitisin B during phases I and II / Vitisin B III: Presence of Vitisin B during the three phases of the protocol . Data represent the average of two experiments.
  • Figure 6 Effect of Vitisin B on the differentiation into erythrocyte cells of CD34 + cells from placental blood and peripheral blood.
  • the kinetics of expression of Glycophorin A (GPA) and transferrin receptor 1 (CD71) were analyzed during the differentiation of erythrocyte cells in the presence or absence of the molecule Vitisin B (10 pM).
  • Panels A and B CD34 + cells from placental blood, data represent the average of two experiments.
  • the histograms represent the evolution during the culture of the relative proportions (panel A) and quantities (panel B) of cells with the CD71 neg GPA + phenotype.
  • Panel C CD34 + cells from peripheral blood, data represent the average of 5 experiments.
  • the histograms represent the evolution during the culture of the quantities of CD71 neg GPA + phenotype cells.
  • Figure 7 Effect of Vitisin B on the amplification of BFU-E and CFU-E erythrocyte progenitors from placental blood CD34 + cells.
  • the number of primitive (BFU-E, panel A) and mature (CFU-E, Panel B) erythrocyte progenitors was estimated as part of a clonogenic test carried out on days 4, 8 and 11 of the erythrocyte culture. Data represent the average of 4 experiments.
  • Vitisin B was tested in a hematopoietic cell amplification protocol and was compared to 7 other stilbene-type molecules.
  • CD34 + cells from peripheral blood in homeostasis were used in this experiment.
  • Vitisin B was tested to define its ability to optimize the production of erythrocyte progenitors and red blood cells in culture systems dedicated to erythrocyte differentiation.
  • CD34 + cells Different cell populations of interest were tested o Total CD34 + cells. o Different subpopulation of CD34 + : Side Population (SP), CMP (Common Myeloid Progenitor), MEP (Megakaryocytic and Erythroid progenitor), and BFU-E (Burst Forming Unit Erythroid).
  • SP Side Population
  • CMP Common Myeloid Progenitor
  • MEP Megakaryocytic and Erythroid progenitor
  • BFU-E Burst Forming Unit Erythroid
  • cell populations of interest come from 2 different sources of cells, peripheral blood in homeostasis (SSBP) and/or placental blood (USP).
  • SSBP peripheral blood in homeostasis
  • USP placental blood
  • CD34+ cells come from peripheral and/or placental blood, SP, CMP and MEP cells from peripheral blood, and BFU-E cells from placental blood.
  • This isolation is based on an immunomagnetic sorting technique.
  • the pellets containing the mononuclear cells are recovered and rinsed twice with selection buffer (PBS PH 7.2, EDTA 200 mM and human albumin (20%)) by centrifugation (430g, 10 min, 4° VS). The pellet is then resuspended in 2mL of selection buffer supplemented with DNase and Tegeline (0.5g/mL).
  • selection buffer PBS PH 7.2, EDTA 200 mM and human albumin (20%)
  • the CD34+ cells obtained were then isolated by an immunomagnetic positive selection procedure carried out using a selection kit (Indirect kit CD34 microbeads kit, Miltenyi Biotec, Bergisch Gladbach, Germany) (Peytour et al., 2010).
  • SP cells are identifiable thanks to their property of expelling certain dyes such as Hoescht or Dye Cycle Violet (DCV). This expulsion is carried out using calcium-dependent ATP Binding Cassette (ABCG2) pumps (Brunet de la Grange et al., 2013).
  • DCV calcium-dependent ATP Binding Cassette
  • ABCG2 calcium-dependent ATP Binding Cassette
  • DMEM + medium Dulbecco's Modified Eagle's Medium (DMEM), 2% FCS, 1% HEPES
  • CD34 + SP cells presenting a low fluorescence intensity for the DCV marker
  • ARIA cell sorter Becton Diockinson
  • the CD34 + cells previously isolated by the immunomagnetic technique were marked with antibodies (BD Pharmingen) anti-CD34-BV421 (1:100000), anti-CD45RA-BB517 (1:100000), anti-CD123-Alexa647 (1, 5:100000) and by a cocktail of anti-LIN-PE antibodies (2:100000) for 15 minutes.
  • the LIN cocktail antibodies are directed against specific markers of mature cells (CD2, CD3, CD4, CD7, CD8, CD10, CDllb, CD14, CD19, CD20, CD56, CD235a). This LIN cocktail thus allows an enrichment of immature cells called “Ll N neg ” by depletion of mature cells. After incubation with these antibodies, the cells are rinsed with a solution of PBS + (PBS + 2% Fetal Calf Serum (FCS)) and centrifuged (430g, 10 min, 4°C).
  • PBS + PBS + 2% Fetal Calf Serum
  • CD34 + cells from placental blood, previously isolated by immunomagnetic sorting are marked with antibodies specific for surface antigens making it possible to target and discriminate BFU-E primitive erythrocyte progenitors, namely anti-CD34, anti-GPA antibodies. , anti CD123 and anti-CD36.
  • Primitive erythrocyte progenitors are defined by the following phenotype: CD34 + CD123 neg CD36 neg GPA neg .
  • Mature erythrocyte progenitors are defined by the following phenotype: CD34 neg CD123 neg CD36 + GPA neg CD71 high .
  • the cells are incubated with a blocking solution for 10 minutes at 4°C in order to saturate the Fc receptors which are non-specific binding sites for antibodies.
  • the antibodies are added and the suspension incubated for 15 minutes in the dark and at room temperature.
  • the excess antibody is removed by washing the cells with 40 mL of PBS/BSA Buffer at 300 g for 10 minutes at 4°C, then the cell pellet was resuspended at a concentration of 15x10 6 cells/mL.
  • This cell suspension was incubated for 10 minutes on ice with the fluorescent viability marker 7-AAD (7-aminoactinomycin D), which therefore makes it possible to demonstrate cell viability and exclude dead cells.
  • BFU-E primitive erythrocyte progenitors
  • the enrichment of the cell population in BFU-E was verified by carrying out a CFC (Colony Forming Cells) clonogenic test.
  • the cell cultures were carried out under sterile conditions under PSM (microbiological safety station).
  • the cells were cultured in an incubator at 37°C with a CO2 level of 5%.
  • This culture is constituted as follows: the CD34 + cells from peripheral blood are isolated (as indicated in section II.Al), and are cultured for 12 days in Stem Span II Medium (Stem Cell Technologies) supplemented with cytokines: SCF at 100 ng/ML, FLT3-L at 100 ng/ML, TPO at 20 ng/ML, G-CSF 10 ng/ML.
  • the amplification product is analyzed by quantification of proliferation (counting on Malassez slides) and phenotypic analysis of CD34 + cell subpopulations by flow cytometry.
  • Vitisin B is used at different concentrations, including 10 and 50 pM. Vitisin B is also compared to the following stilbene type molecules at a concentration of 10 pM:
  • This step only concerns SP cells. Due to the low number of SP cells that can be isolated (rare cells by nature) as well as their very immature status, this subpopulation is preferably amplified and pre-stimulated before being subjected to the erythrocyte differentiation protocol.
  • the SP cells are previously cultured in a liquid cell culture medium (Stem Span medium) supplemented with Granulocyte-Colony Stimulating Factor (G-SCF) (10 ng/mL), SCF (100 ng/pL), FLT3 -L (100 ng/pL) and Thrombopoietin (TPO) (100 ng/pL) for 7 days.
  • G-SCF Granulocyte-Colony Stimulating Factor
  • SCF 100 ng/pL
  • FLT3 -L 100 ng/pL
  • TPO Thrombopoietin
  • This culture has 2 phases: Phase 1: from D0 to D6, culture without EPO Phase 2: from D6 addition of 2 IU/ML of EPO and extension of the culture until D21 minimum and D28 maximum.
  • Condition CTRL Absence of Vitisin B during the entire protocol.
  • Test condition Presence of Vitisin B at 5, 10, 15, 20 or 30 pM throughout the duration of the protocol (phase 1 + phase 2).
  • the differentiation product is analyzed by quantification of proliferation (counting) and analysis of erythrocyte differentiation markers by flow cytometry using the markers CD71 and CD235a.
  • ERYTHRO 2 PROTOCOL 3-phase erythrocyte differentiation protocol
  • This protocol was applied to CD34 + cells. Phase 1 of this protocol was particularly applied to BFU-E cells. This protocol was adapted from the publication by Vlaski et al. (Experimental Hematology 2009;37:573-584).
  • Ex vivo erythrocyte production was established on a 28-day cell culture and consists of three phases, namely 1) amplification of primitive erythrocyte progenitors, then 2) differentiation of said progenitors into erythrocyte precursors, and finally 3 ) the terminal stage of maturation with the enucleation of cells and the development of mature erythrocytes.
  • Phase I of the protocol starts on D0 by seeding 10 4 cells/mL in 5 mL of supplemented IMDM medium as defined below (see section ii). On day 4, a dilution of the culture is carried out by recovering 3 mL which is replaced by the same volume of fresh medium.
  • erythrocyte progenitors dependent in particular on cytokines the cells of all conditions are resuspended at 3x10 5 /mL and incubated in 5 mL of IMDM medium in the presence of cytokines (interleukin 3 (hlL3), Stem Cell Factor (SCF), Hydrocortisone (HC) and erythropoietin (EPO)) for the next 3 days.
  • cytokines interleukin 3 (hlL3), Stem Cell Factor (SCF), Hydrocortisone (HC) and erythropoietin (EPO)
  • Phase II of the protocol begins on day 11, which corresponds to the development of erythrocyte precursors.
  • the cells are placed on a layer of cells mesenchymal stromal cells (MSC) (coculture), which allows terminal maturation to be completed into functional enucleated cells thanks to contact between stromal cells and erythrocyte precursors.
  • MSC mesenchymal stromal cells
  • the erythrocyte cells in suspension are seeded at a concentration of 3x10 5 /ml and are co-cultured from day 11 to day 15 in fresh medium with cytokines (SCF, IL-3, EPO and HC) and 5% serum.
  • cytokines SCF, IL-3, EPO and HC
  • serum fetal calf
  • the suspended erythrocyte cells are removed from the culture, washed, then reseeded onto a new adherent layer of MSCs and cultured for an additional 4 days in 2 mL of fresh medium containing only EPO.
  • Phase III of the protocol begins on day 19.
  • the cells complete their maturation by the enucleation of orthochromatic erythroblasts to form reticulocytes and lead to the formation of erythrocytes.
  • the cells are washed and plated on a new layer of MSCs in 2 mL of fresh medium without cytokines.
  • the cultures are fed with fresh medium until day 28 which corresponds to the last day of culture of the erythropoiesis protocol.
  • the cells are incubated in Iscove's Modified Dulbecco Medium culture medium (IMDM_PAN BIOTECH) supplemented with different reagents to obtain a medium promoting the growth of cells committed to the erythrocyte lineage, namely: L-Glutamine (4 mM), Streptomycin and penicillin (1%), Inositol (40 pg/mL), Folic acid (10 pg/mL), Mono-thioglycerol (1.6.10 -4 M), Transferrin (120 pg/mL), Insulin (10 pg/mL mL), N Iron nitrate (90 ng/mL), Iron sulfate (900 ng/mL) Human serum albumin (10 mg/mL).
  • IDM_PAN BIOTECH Iscove's Modified Dulbecco Medium culture medium
  • cytokines are added extemporaneously to the culture medium: Stem Cell Factor (SCF) at 100 ng/mL, Interleukin-3 (IL-3) at 5 ng/mL, Erythropoietin (EPO) at 3 IU /mL, Hydrocortisone (HC) at 10 -6 M.
  • SCF Stem Cell Factor
  • IL-3 Interleukin-3
  • EPO Erythropoietin
  • HC Hydrocortisone
  • the CD34+ cells are incubated at 20% O2 and 5% CO2 at 37°C for 28 days. Hi. Description of the culture conditions carried out
  • Condition CTRL Absence of Vitisin B during the entire protocol.
  • Condition III Presence of Vitisin B (10 pM) during the 3 phases of the protocol.
  • Analyzes are carried out on the cells of each condition. The differentiation and maturation of erythrocyte cells are followed by quantification of progenitors, analysis of the expression of GPA and CD71 markers, as well as morphological analysis.
  • CTRL condition the cells are cultured for 7 days in the absence of Vitisin B.
  • TEST condition the cells are cultured for 7 days in the presence of Vitisin B at 10 pM.
  • Cell proliferation is assessed by enumerating cells on Malassez slides with exclusion of dead cells using Trypan blue.
  • the amplification of cell populations is based on a phenotypic analysis focusing on the evolution of the expression of membrane markers CD34 and CD133 by flow cytometry. These markers make it possible to define populations of more or less immature cells organized hierarchically as follows: CD34 + CD133 + -> CD34 + CD133 neg -> CD34 neg CD133 neg .
  • the cells are incubated with anti-CD34 (1:100000) (BD Pharmingen) and anti-CD133 (1:100000) (BD Pharmingen) antibodies for 15 minutes.
  • the cells are then rinsed with a PBS solution and centrifuged (430g, 10 min, 4°C). After resuspension of the cell pellets in PBS, the cells were analyzed by flow cytometry (FACSCantoll, Becton Dickinson, San Jose, CA).
  • erythrocyte differentiation protocols an analysis of cell proliferation and cell differentiation is carried out.
  • Cell proliferation is assessed by enumerating cells on Malassez slides with exclusion of dead cells using Trypan blue.
  • the different populations and culture conditions are also analyzed by flow cytometry in order to observe the appearance of erythrocyte differentiation markers and therefore the kinetics of cell differentiation.
  • the cells are incubated with antibodies specific for erythrocyte differentiation: anti-CD71 (1:100000) (BD Pharmingen) and anti-CD235 (1:100000) (BD Pharmingen) for 15 minutes.
  • Marking with the anti-CD34 antibody (1:100000) is also carried out in conjunction with the other antibodies in order to monitor the loss of CD34 indicating the maturation of the cells.
  • the cells are then rinsed with a PBS solution and centrifuged (430g, 10 min, 4°C). After resuspension of the cell pellets in PBS, the cells were analyzed by flow cytometry (FACSCantoll, Becton Dickinson, San Jose, CA).
  • the populations of interest produce progenitors engaged in the erythrocyte pathway which can be demonstrated directly by their clonogenic capacities, that is to say their individual capacity to generate during the culture a colony of differentiated and morphologically identifiable cells.
  • the CFC (Colony Forming Cells) test is used.
  • Committed progenitors are capable of generating colonies after cultivation in semi-solid medium composed of methylcellulose and supplemented with cytokines.
  • the committed progenitors here BFU-E and CFU-E
  • produced during erythrocyte cultures can be counted.
  • Vitisin B induces an amplification of up to 250% of the total quantity of progenitors with CD34 + phenotype from the dose of lOpM ( Figure 1). It is also observed that Vitisin B induces an amplification of a particular subpopulation, CD34 + CD133 neg , whose erythrocyte potential has already been shown by the team of inventors (Lapostolle et al. 2018 Haematologica Vol. 103 No. 10 (2018)). These CD34 + CD133 neg progenitors with high erythrocyte potential therefore have the potential to produce mature red blood cells. Whether for the total CD34 + population or for the CD34 + CD133 neg population, the effect of Vitisin B already occurs at 10 pM, increasing the dose to 50 pM does not induce any additional effect.
  • Vitisin B with other polyphenols (stilbenes) derived from Resveratrol (RESVERATROL, PALLIDOL, E-VINIFERINE, AMPELOPSIN, OXYRESVERATROL, PICEATANNOL and GNETOL) at the dose of lOpM show that only Vitisin B produces a convincing effect on the proportion and total quantity of CD34 + CD133 neg cells ( Figure 2).
  • This result in the context of CD34 amplification indicates a specific effect of Vitisin B, where other antioxidant molecules known as Resveratrol produce no effect.
  • Vitisin B makes it possible to amplify a population enriched in erythrocyte progenitors compared to the other molecules tested, showing that there is a singularity of the effects of Vitisin B.
  • Vitisin B was observed at the level of erythrocyte differentiation from peripheral blood CD34 + cells, evaluated according to a simplified protocol (ERYTHRO 1 PROTOCOL, presented in point B.2. b of Materials and Methods).
  • Vitisin B induces faster and greater differentiation of CD34 + cells into erythrocyte precursors ( Figure 3).
  • This effect is measured by flow cytometry on the basis of the expression of the membrane antigens CD71 and CD235a (GlycoPhorin A, GPA) according to the differentiation sequence: CD71 + GPA neg -> CD71 + GPA + -> CD71 low GPA + .
  • the inventors observed an earlier acquisition of CD235a accompanied by a more rapid drop in the expression of CD71 (CD71 low ), indicating differentiation.
  • FIG. 5 represents the number of erythrocyte cells in the culture during the erythropoiesis protocol under the different conditions tested.
  • Condition CTRL Absence of Vitisin B during the entire protocol.
  • Condition III Presence of Vitisin B during the 3 phases of the protocol.
  • phase I Days 0 to 11
  • cell proliferation is similar for each of the conditions tested. From the transition to phase II (Day 11), a strong increase in cell proliferation for the 3 conditions where Vitisin B is present was observed, until reaching a proliferation peak on the 21st day.
  • condition I presents a number of cells 1.5 times greater than the control condition (CTRL).
  • Vitisin B stimulates the production of progenitor cells leading to the development of precursors and mature erythrocyte cells.
  • Erythrocyte differentiation was observed by the expression of the markers CD71 (transferrin receptor 1) and GPA (Glycophorin A) to confirm the effect of the Vitisin B molecule on differentiation during the ex vivo erythropoiesis protocol (ERYTHRO PROTOCOL 2).
  • the presence of the Vitisin B molecule increases the percentage of cells with the CD71 neg GPA + phenotype (Figure 6A). Indeed, on day 8 of culture less than 20% of the cells express GPA. The expression of GPA appears on day 15 and increases until day 28 more rapidly in the presence of the Vitisin B molecule (more than 50% of the cells express it) compared to the CTRL condition (40%).
  • Vitisin B molecule allows faster and more efficient differentiation of erythrocyte cells, which ultimately results in more efficient production of red blood cells.
  • the inventors were also interested in a population of particular progenitors, the BFU-E and the CFU-E. These progenitors are produced physiologically by differentiation of more immature cells and also ex vivo when culture conditions permit. They are detected by methyl cellulose tests (see section C.b. ii of Materials and Methods) during which they produce colonies of mature erythrocyte cells (reticulocytes and erythrocytes). They observed that the presence of Vitisin B accelerates the appearance of primitive erythrocyte progenitors (BFU-E; Figure 7A) but also of more differentiated progenitors (CFU-E; Figure 7B) resulting from BFU-E.
  • BFU-E primitive erythrocyte progenitors
  • CFU-E Figure 7B
  • Vitisin B exerts its stimulating effect during the first stages of development which concerns the commitment of CD34 + cells towards the erythrocyte lineage and amplification of progenitors. It promotes the commitment of primitive CD34 + hematopoietic cells to erythrocyte progenitors by increasing their amplification.
  • Vitisin B also helps accelerate the differentiation of progenitors towards erythrocyte precursors and their enucleation, resulting in mature cells: reticulocytes and erythrocytes. Bringing hematopoietic cells into contact with Vitisin B thus makes it possible to obtain a better production yield of red blood cells ex vivo and to accelerate the production process.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Hematology (AREA)
  • Microbiology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Cell Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

La présente invention concerne l'utilisation d'un composé vitisine pour amplifier et/ou différencier des cellules hématopoïétiques. L'invention concerne également un procédé de production in vitro de progéniteurs érythrocytaires comprenant la mise en contact de cellules hématopoïétiques avec un milieu de culture cellulaire comprenant un composé vitisine.

Description

Utilisation d'un composé vitisine pour la production de cellules hématopoïétiques
Domaine de l'invention
La présente invention relève du domaine de la médecine. Elle se rapporte plus particulièrement à de nouveaux procédés de production de progéniteurs érythrocytaires et de globules rouges.
Introduction
Le maintien d'un apport constant en dioxygène aux tissus est indispensable à la survie de nombreux êtres vivants, et en particulier des humains. Ce sont les globules rouges qui transportent le dioxygène au sein de l'organisme via la circulation sanguine. Ce transport est assuré par l'hémoglobine, une protéine spécifique des globules rouges qui est capable de fixer le dioxygène. Lorsque les globules rouges parviennent aux tissus, le dioxygène diffuse à travers les parois des capillaires. Le rôle des globules rouges est donc primordial.
La transfusion de globules rouges est nécessaire lors de situations d'urgences (hémorragie) ou pathologiques (maladies du sang, cancers, etc.). En 2016, plus de 100 millions de poches de sang ont été collectées dans le monde et ont été distribuées afin de répondre aux besoins transfusionnels. A ce jour, les transfusions sanguines reposent exclusivement sur le sang issu de donneurs. Cependant, depuis la crise sanitaire liée au Covid-19, les réserves de poches sanguines s'amenuisent, les donneurs ne se déplaçant plus aussi régulièrement pour les dons du sang.
Chez l'adulte, la production de globules rouges ou érythropoïèse se déroule dans la moelle osseuse dite moelle hématopoïétique, qui est présente dans les os plats et aux extrémités des os longs. Dans la moelle osseuse, des cellules souches multipotentes, appelées cellules souches hématopoïétiques se différencient successivement en différents types de progéniteurs érythrocytaires pour finir en globules rouges matures.
Des milieux d'amplification et de différenciation des cellules hématopoïétiques permettant la production in vitro de globules rouges sont connus. Différents essais de production de globules rouges ont été réalisés au cours du temps, décrits notamment dans la revue Yoojin Seo, et al., Stem Cells International, vol. 2019, Article ID 9281329. En particulier, différentes sources cellulaires ont été testées et différents protocoles ont été développés, mettant en jeu des cocktails de cytokines différents, des successions d'étapes adaptées aux différentes étapes de différenciation des cellules, en jouant sur les temps de culture (18 à 60 jours) ou en utilisant ou non un bioréacteur.
Les procédés actuels présentent de nombreuses difficultés pour une production à grande échelle, tel qu'un faible rendement en globules rouges à l'issu de la culture qui ne permet pas d'atteindre des volumes transfusionnels efficaces, des systèmes de productions complexes, faisant appels à des cultures en plusieurs étapes successives et différentes, des délais de culture relativement longs pour obtenir des globules rouges matures, une orientation parfois trop rapide vers une maturation en globules rouges ou encore une différenciation en cellules incapables de réaliser les étapes d'énucléation correctement (Akimov S et al, 2005, Stem cells, 23(9) : 1423-1433 ; Hirose SI et al, 2013, Stem Cell Reports, 1(6) : 499- 508 ; Huang X, 2013, Mol. Ther., 22(2) : 451-463). Enfin, d'autres procédés recourent à des co-cultures avec des cellules nourricières (Kurita R et al, 2013, PloS One, 8(3) : e59890), ce qui est à la fois complexe à mettre en place et coûteux.
Il apparaît ainsi que le développement de nouveaux procédés plus efficaces pour produire des globules rouges permettrait de répondre aux besoins d'approvisionnement en cellules sanguines.
L'invention décrite ici vise, entre autres, à répondre à ces besoins.
Résumé de l'invention
Selon un premier aspect, la présente invention concerne un procédé in vitro de production d'érythrocytes comprenant : a) la fourniture de cellules hématopoïétiques multipotentes, de préférence d'origine humaine, sélectionnées dans le groupe constitué des cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires- érythrocytaires (MEP), et les combinaisons de ceux-ci , et optionnellement l'amplification desdites cellules hématopoïétiques multipotentes; b) l'induction de la différenciation desdites cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et optionnellement l'amplification desdits progéniteurs érythrocytaires unipotents; c) l'induction de la différenciation desdits progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires; et d) l'induction de la maturation des précurseurs érythrocytaires en érythrocytes, et e) optionnellement la récupération des érythrocytes obtenus ; dans lequel les cellules sont mises en contact avec un composé vitisine à l'étape a) en particulier lorsque celle-ci comporte l'étape d'amplification des cellules, l'étape b), l'étape c) et/ou l'étape d). L'invention concerne également un procédé in vitro de production de progéniteurs érythrocytaires unipotents comprenant : a) la fourniture de cellules hématopoïétiques multipotentes, de préférence d'origine humaine, sélectionnées dans le groupe constitué des cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires- érythrocytaires (MEP), et les combinaisons de ceux-ci , et optionnellement l'amplification desdites cellules hématopoïétiques multipotentes; et b) l'induction de la différenciation desdites cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et optionnellement l'amplification desdits progéniteurs érythrocytaires unipotents ; et c) optionnellement la récupération des progéniteurs érythrocytaires unipotents obtenus ; dans lequel les cellules sont mises en contact avec un composé vitisine à l'étape a) en particulier lorsque celle-ci comporte l'étape d'amplification des cellules et/ou l'étape b).
L'invention a aussi trait à un procédé in vitro de production d'érythrocytes comprenant, a) la fourniture de progéniteurs érythrocytaires unipotents, de préférence obtenus selon le procédé de production de progéniteurs érythrocytaires unipotents selon l'invention; b) l'induction de la différenciation desdits progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires unipotents; c) l'induction de la maturation des précurseurs érythrocytaires en érythrocytes, et d) optionnellement la récupération des érythrocytes obtenus, dans lequel les cellules sont mises en contact avec un composé vitisine à l'étape b) et/ou l'étape c).
Dans les procédés selon l'invention, les cellules sont mises en contact avec le composé vitisine dans un milieu de culture adapté aux exigences nutritionnelles des cellules hématopoïétiques, en particulier un milieu de culture adapté à l'amplification et/ou la différenciation et/ou la maturation des cellules hématopoïétiques. Les cellules hématopoïétiques sont préférentiellement sélectionnées dans le groupe constitué des cellules CSH, MPP, CMP, MEP, des progéniteurs érythrocytaires unipotents, des précurseurs érythrocytaires, et des combinaisons de ceux-ci, de préférence des CSH ou des progéniteurs érythrocytaires unipotents.
Selon un mode de réalisation, les cellules sont mises en contact avec le composé vitisine i) lors de l'amplification et/ou la différenciation des cellules hématopoïétiques multipotentes ou ii) lors de l'amplification et/ou la différenciation des progéniteurs érythrocytaires unipotents.
Selon un autre mode de réalisation, les cellules sont mises en contact avec le composé vitisine lors de l'amplification et/ou la différenciation des cellules hématopoïétiques multipotentes, et lors de l'amplification et/ou la différenciation des progéniteurs érythrocytaires unipotents et optionnellement lors de la maturation des précurseurs érythrocytaires.
En particulier, les cellules sont mises en contact avec un composé vitisine durant au moins 1 jour, préférence au moins au moins 3, 5, 7, 10 ou 12 jours, lors de l'amplification et/ou la différenciation des cellules hématopoïétiques multipotentes, et/ou durant au moins 1 jour, préférence au moins au moins 3, 5, 7, 10 ou 12 jours, lors de l'amplification et/ou la différenciation des progéniteurs érythrocytaires unipotents. Dans les procédés selon l'invention, le composé vitisine, lorsqu'il est mis contact avec les cellules, est présent dans le milieu de culture à une concentration comprise entre 1 pM et 500 pM, de préférence ente 5 pM et 100 pM.
Selon un deuxième aspect, l'invention concerne un milieu de culture cellulaire adapté à l'amplification et/ou la différenciation et/ou la maturation de cellules hématopoïétiques et comprenant un composé vitisine.
En particulier, le composé vitisine est présent dans le milieu à une concentration comprise entre 1 pM et 500 pM, de préférence entre 5 pM et 100 pM.
L'invention a également trait à l'utilisation in vitro d'un tel milieu de culture cellulaire pour (i) l'amplification et/ou la différenciation de cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires- érythrocytaires (MEP) ou de progéniteurs érythrocytaires unipotents et/ou (ii) pour la différenciation et/ou la maturation de précurseurs érythrocytaires, et/ou (iii) la production de progéniteurs érythrocytaires unipotents et/ou d'érythrocytes.
Selon un troisième aspect, l'invention concerne l'utilisation d'un composé vitisine pour supplémenter un milieu de culture cellulaire adapté à l'amplification et/ou la différenciation et/ou la maturation de cellules hématopoïétiques.
L'invention concerne également l'utilisation d'un composé vitisine pour stimuler l'amplification et/ou la différenciation de cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires-érythrocytaires (MEP) ou de progéniteurs érythrocytaires unipotents et/ou (ii) stimuler la différenciation et/ou la maturation de précurseurs érythrocytaires, et/ou (iii) stimuler la production de progéniteurs érythrocytaires unipotents et/ou d'érythrocytes.
Dans les procédés, milieux de culture, et utilisations envisagés par l'invention, le composé vitisine est choisi dans le groupe constitué de la vitisine B et de ses dérivés.
De préférence, le dérivé de vitisine B est un isomère de vitisine B, de préférence un stéréoisomère de vitisine B. En particulier des dérivés de vitisine B ont pour formule :
Figure imgf000006_0001
De préférence, le composé vitisine est la vitisine B.
Description détaillée de l'invention
L'invention consiste à utiliser un composé dérivé de la vigne pour la production de globules rouges. La vitisine B est un stilbène appartenant à la famille des polyphénols, qui peut être extraite notamment à partir de sarments de vigne. La vitisine B présente des avantages surprenants par rapport à d'autres molécules antioxydantes telles que le resvératrol. L'utilisation de cette molécule sur des cellules hématopoïétiques humaines, en particulier des cellules CD34+, montre deux effets importants et reproductibles :
1) La vitisine B favorise l'engagement des cellules hématopoïétiques multipotentes CD34+ vers les progéniteurs érythrocytaires unipotents en augmentant leur amplification, et
La vitisine B permet également d'accélérer la différenciation des progéniteurs vers les précurseurs érythrocytaires et leur énucléation, aboutissant aux cellules matures : les érythrocytes.
Le procédé selon l'invention permet donc une production plus efficace de globules rouges.
Le procédé de culture in vitro selon l'invention a non seulement l'avantage d'être simple et économique, mais ouvre également la voie à une production industrielle à grande échelle de progéniteurs érythrocytaires et de globules rouges. Ceci permet de réduire les risques de pénurie de sang ou d'impasse transfusionnelle, tout en offrant une sécurité optimale aux patients transfusés.
Figure imgf000007_0001
L'hématopoïèse est un processus biologique continu permettant le renouvellement et le maintien de toutes les cellules sanguines : hématies (encore appelées globules rouges ou érythrocytes), polynucléaires, plaquettes, monocytes et lymphocytes. L'hématopoïèse se définit comme l'ensemble des mécanismes, se déroulant dans la moelle osseuse et qui assurent, à partir des cellules souches hématopoïétiques (CSH), le renouvellement continu et régulé des cellules sanguines, c'est à dire les globules rouges (GR, érythrocytes), les globules blancs (GB, neutrophiles, éosinophiles, monocytes, lymphocytes) et les plaquettes (Neildez-Nguyen et al., 2002).
L'érythropoïèse est un processus biologique permettant le renouvellement des érythrocytes. Au cours du processus d'érythropoïèse, la cellule souche hématopoïétique (CSH) se différencie en progéniteur multipotent (MPP), en progéniteur myéloïde commun (CMP), en progéniteur bipotent MEP (Megakaryocytic and Erythroid Progenitor, progéniteurs mégacaryocytaires-érythrocytaires), puis en progéniteur BFU-E (Burst Forming Unit-Erythroid) et en CFU-E (Colony Forming Unit-Erythroid), ces deux derniers étant irréversiblement engagés vers la lignée érythrocytaire (unipotents), et enfin en précurseurs érythrocytaires (Iwasaki & Akashi, Immunity. 2007 Jun;26(6):726-40). La phase terminale de différenciation de l'érythropoïèse permet d'aboutir, à partir des précurseurs érythrocytaires, à la formation du réticulocyte, après l'énucléation (expulsion du noyau), puis à la formation de l'érythrocyte.
Le processus d'érythropoïèse est bien connu de l'homme de l'art et peut être suivi par une cinétique d'expression de différents marqueurs spécifiques, selon le stade de différenciation des cellules. En particulier, il est possible d'étudier l'antigène de surface CD34 pour sélectionner une population de cellules hématopoïétiques CD34+ primitives, le récepteur à la transferrine (CD71) qui est un marqueur de la différenciation érythrocytaire précoce ainsi que la glycophorine A (GPA), qui est un marqueur de la différenciation terminale.
La Glycophorine A (GPA) est une protéine de 10 kDa exprimée au niveau de la membrane des précurseurs érythrocytaires (proérythroblastes) et des érythrocytes. Il s'agit donc d'un marqueur de la différenciation érythrocytaire terminale puisqu'elle est absente des progéniteurs engagés (BFU-E et CFU- E), apparaît progressivement sur les érythroblastes basophiles et reste exprimée de façon stable sur les érythrocytes.
Le récepteur de la transferrine 1 (CD71) est une protéine de 95 kDa exprimée au niveau de la membrane des progéniteurs et des précurseurs érythrocytaires. Contrairement à la GPA, l'expression du CD71 diminue au fur et à mesure de la différenciation, les érythrocytes n'expriment pas CD71. Il s'agit donc d'un marqueur de la différenciation érythrocytaire plus précoce.
La différenciation des cellules érythrocytaires est associée à la diminution et à la disparition du CD71 et à l'acquisition de la GPA donnant finalement des cellules matures (érythrocytes et réticulocytes) caractérisées par le phénotype CD71“GPA+.
En particulier, la différenciation érythrocytaire peut être observée par cytométrie en flux, sur la base de marqueurs d'expressions spécifiques tels que des antigènes de surface membranaires (clusters de différenciation (CD)) tels que les marqueurs CD34, CD123, CD45RA, CD71 et GPA.
Les différentes cellules érythrocytaires sont également observables par microscopie grâce à la coloration May-Grünwald Giemsa (MGG). En effet, à chaque étape de différenciation, une diminution de la taille de la cellule et de son noyau est observée, aboutissant à terme à la formation d'une cellule érythrocytaire mature anucléée. Cette technique de cytologie permet notamment d'analyser la maturation des précurseurs érythrocytaires et donc de détecter et quantifier les différents précurseurs ainsi que les érythrocytes matures.
Le test clonogénique CFC (cellules formant colonies) permet également d'identifier les différentes cellules érythrocytaires. Ce test permet de quantifier le nombre de progéniteurs hématopoïétiques (PH) capables de former des colonies de cellules matures érythrocytaires lorsqu'ils sont cultivés en milieux semi-solides, tels que des milieux comprenant de la méthylcellulose. Ces milieux sont de préférence complémentés en cytokines nécessaires à la différenciation érythropoïétique. Ces tests clonogéniques permettent de détecter les progéniteurs qui ont un potentiel érythroïde et de les quantifier en s'affranchissant des marqueurs phénotypiques.
Ces différentes techniques sont bien connues de l'homme du métier.
Tel qu'utilisés ici les termes « cellules hématopoïétiques », « cellules de la lignée érythrocytaire » et « cellules de la lignée hématopoïétique » sont équivalents et peuvent être employés l'un pour l'autre. Ces termes désignent l'une quelconque des cellules permettant d'arriver à un érythrocyte. Ces termes comprennent les cellules hématopoïétiques multipotentes, les progéniteurs érythrocytaires unipotents et les précurseurs érythrocytaires tels que définis ci-dessous. En particulier, les cellules hématopoïétiques comprennent les cellules CSH, MPP, CMP, MEP, BFU-E, CFU-E, les proérythroblastes, les érythroblastes basophiles, les érythroblastes polychromatophiles et les érythroblastes orthochromatiques. Les cellules hématopoïétiques selon invention sont de préférence obtenues à partir d'un sujet donneur, en particulier un sujet donneur sain. En particulier, les cellules hématopoïétiques, et plus particulièrement les CSH, peuvent être obtenues ou préparées à partir d'un échantillon biologique d'un donneur, tel qu'un échantillon de sang, par exemple de sang périphérique, de sang de cordon ombilical ou de sang placentaire, ou un échantillon de moelle osseuse.
De préférence, les cellules telles qu'utilisées dans la présente invention sont des cellules d'origine humaine.
Tel qu'utilisés ici le terme « cellules hématopoïétiques multipotentes » se réfère à des cellules CD34+ multipotentes capables de se différencier pour produire au moins deux types cellulaires parmi les différentes cellules sanguines que sont les globules blancs (cellules immunitaires), les globules rouges et les plaquettes. Dans le contexte de la présente invention, le terme « cellules hématopoïétiques multipotentes » comprend les CSH, les MPP, les CMP et les MEP. De préférence, les MPP ont un phénotype CD34+LINnegCD123+CD45RAneg, les CMP ont un phénotype CD34+LINnegCD123+CD45RAneg et les MEP ont un phénotype CD34+LINnegCD123negCD45RAneg. De préférence, les cellules hématopoïétiques multipotentes telles qu'utilisées dans la présente invention sont sélectionnées dans le groupe constitué des CSH, des MPP, des CMP et des MEP, et des combinaisons de celles-ci. De manière plus particulièrement préférée, les cellules hématopoïétiques multipotentes telles qu'utilisées dans la présente invention sont des CSH, optionnellement en combinaison avec des MPP, des CMP et/ou des MEP.
Tel qu'utilisé ici, le terme de « cellule souche hématopoïétique » ou « CSH » se réfère à des cellules souches multipotentes capables de se différencier pour produire toutes les cellules sanguines que sont les globules blancs (cellules immunitaires), les globules rouges et les plaquettes. Selon les modes de réalisation préférés, les CSH sont des CSH humaines. Les CSH portent des marqueurs particuliers, tels qu'une forte expression du marqueur primitif CD34, une absence d'expression du marqueur CD45RA (isoforme de la phosphotyrosine phosphatase CD45), et optionnellement l'expression du marqueur CD133. De préférence, les CSH expriment également le récepteur à l'IL3 (CD123). Le terme « CSH » englobe notamment les cellules dites « Side Population » (SP). Les « cellules SP » regroupent l'ensemble des cellules chez lesquelles il est possible de mettre en évidence, par cytométrie en flux, une capacité d'efflux d'un colorant vital tels que le Hoescht ou le Dye Cycle Violet (DCV). Les cellules SP ont donc, de préférence, un phénotype CD34+DCV|OW. Les cellules hématopoïétiques multipotentes peuvent être obtenues à partir de différentes sources et selon des procédés bien connus de l'homme du métier. Elles peuvent notamment être isolées à partir de moelles osseuses, de cytaphérèses, de sang total ou encore de sang de cordon ombilical (ou de sang placentaire) par exemple à l'aide d'un système immuno-magnétique ou d'un système de tri sur la présence de récepteurs membranaires spécifiques (par exemple CD133, CD123, CD45 et/ou CD34).
Les cellules hématopoïétiques multipotentes peuvent être également obtenues par différenciation de cellules souches embryonnaires ou de cellules souches pluripotentes induites (iPS), de préférence des cellules souches pluripotentes induites. Les techniques pour différencier des cellules souches pluripotentes en cellules hématopoïétiques multipotentes sont bien connues de l'homme du métier. Plusieurs protocoles ont été publiés, notamment le protocole de Lengerke C et al (2009, Ann N Y Acad Sci, 1176 :219-27) consistant en une différenciation de 17 jours en passant par une étape intermédiaire de corps embryoïdes et grâce à la combinaison des cytokines suivantes : SCF, Flt-3 ligand, IL-3, IL-6, G-CSF et BMP-4.
Tel qu'utilisé ici, le terme de « cellule souche embryonnaire » se réfère à des cellules dérivées de la masse cellulaire interne du blastocyste et qui ont la capacité de conduire à la formation de tous les tissus de l'organisme (mésoderme, endoderme, ectoderme), y compris aux cellules de la lignée germinale. La pluripotence des cellules souches embryonnaires peut être évaluée par la présence de marqueurs tels que les facteurs de transcription OCT4 et NANOG et des marqueurs de surface comme SSEA3/4, Tra-1-60 et Tra-1-81. Les cellules souches embryonnaires peuvent être obtenues sans destruction de l'embryon dont elles sont issues, par exemple à l'aide de la technique décrite par Chung et al. (Cell Stem Cell, 2008, 2(2) : 113-117). Dans un mode de réalisation particulier, et pour des raisons légales ou éthiques, les cellules souches embryonnaires sont des cellules souches embryonnaires non humaines. Dans un autre mode de réalisation particulier, les cellules souches embryonnaires utilisées dans l'invention sont des cellules souches embryonnaires humaines, de préférence obtenues sans destruction de l'embryon dont elles sont issues. Les embryons utilisés sont de préférence des embryons surnuméraires obtenus dans le cadre d'un projet parental après obtention des autorisations réglementaires et éthiques conformes aux lois en vigueur.
Tel qu'utilisé ici, le terme de « cellule souche pluripotente induite » (CSPi, IPSc ou iPS), se réfère à des cellules souches pluripotentes obtenues par reprogrammation génétique de cellules somatiques différenciées, et présentant une morphologie et un potentiel d'auto-renouvellement et de pluripotence en partie similaires à ceux des cellules souches embryonnaires. Ces cellules sont notamment positives pour les marqueurs de pluripotence, notamment la coloration à la phosphatase alcaline et l'expression des protéines NANOG, SOX2, OCT4 et SSEA3/4. Les procédés permettant l'obtention des cellules souches pluripotentes induites sont bien connus de l'homme du métier et sont notamment décrits dans les articles de Yu et al (Science, 2007, 318 (5858) : 1917-1920), Takahashi et al (Cell, 2007, 131(5) : 861-872) et Nakagawa et al (Nat Biotechnol, 2008, 26(1) : 101-106).
Tel qu'utilisé ici, le terme de « progéniteurs érythrocytaires unipotent » se réfère à des cellules progénitrices obtenues par différenciation de CSH au cours de l'érythropoïèse et qui ont la capacité de se diviser et de se différencier ultérieurement en précurseurs érythrocytaires puis en globules rouges par énucléation. En particulier, après le stade MEP (dernier stade multipotent), les cellules acquièrent progressivement des marqueurs spécifiques des progéniteurs érythrocytaires. Dans un premier temps, le marqueur CD71 (récepteur de la transferrine) apparait, suivi par l'apparition de la Glycophorine A (GPA ou CD235a). Les progéniteurs érythrocytaires unipotents englobent les cellules BFU-E (Burst Forming Unit - E) et CFU-E (Colony Forming Unit - E) qui sont irréversiblement engagés vers la lignée érythrocytaire. Les cellules BFU-E (Burst Forming Unit - E) présentent un phénotype CD34+CD36negGPAnegCD123negCD71low. Les CFU-E (Colony Forming Unit - E) présentent un phénotype CD34negCD36negGPAnegCD123negCD71high.
Tel qu'utilisé ici, le terme « précurseur érythrocytaire » définit les cellules obtenues par différenciation des progéniteurs érythrocytaires unipotents et capables de produire des réticulocytes. Ce terme englobe les proérythroblastes, les érythroblastes basophiles, les érythroblastes polychromatophiles et les érythroblastes orthochromatiques. La distinction entre ces cellules est possible sur une base cytologique par coloration des cellules par coloration de May-Grünwald Giemsa (MGG), par l'analyse de la coloration et du rapport noyau/cytoplasme, selon des techniques bien connues de l'homme du métier.
Tel qu'utilisés ici les termes « globule rouge », « globule rouge mature », « hématie », « érythrocyte » et « érythrocyte mature » sont équivalents et peuvent être employés l'un pour l'autre. Le terme de « érythrocyte » se réfère à une cellule énucléée présentant des marqueurs caractéristiques de la maturation érythrocytaire. Les érythrocytes expriment notamment la glycophorine A (CD235a) mais n'expriment pas le marqueur CD36. Leur identification peut être basée sur des critères cytologiques bien connus de l'homme du métier, tels que la taille de la cellule et l'absence de noyau cellulaire.
Selon un mode de réalisation, les cellules hématopoïétiques multipotentes utilisées dans les procédés selon l'invention pour produire des progéniteurs érythrocytaires unipotents ou pour produire des érythrocytes sont issues d'un prélèvement réalisé chez un donneur ou dérivent de cellules obtenues chez un donneur. En particulier, les progéniteurs érythrocytaires ou érythrocytes ainsi obtenus peuvent être destinés à être transplantés chez un patient receveur, notamment par transfusion.
Le donneur et le receveur peuvent être le même individu ou des individus différents. Dans un mode de réalisation, le donneur et le receveur sont le même individu. Dans un autre mode de réalisation préféré, le donneur est différent du receveur. Dans ce cas, le donneur est de préférence un donneur sain, en particulier un individu dépourvu de pathologie hématologique. Composé vitisine
L'invention consiste à utiliser un composé vitisine lors de la production ex vivo ou in vitro de cellules hématopoïétiques multipotentes et/ou de progéniteurs érythrocytaires unipotents et/ou de globules rouges, en particulier pour favoriser l'amplification et/ou la différenciation des cellules hématopoïétiques. Le composé vitisine permet en particulier une différenciation érythrocytaire plus rapide et plus importante des cellules hématopoïétiques multipotentes, en particulier des CSH, en progéniteurs érythrocytaires unipotents. Il permet également une différenciation érythrocytaire plus rapide et plus importante des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires et/ou des précurseurs érythrocytaires en globule rouge.
Tel qu'utilisé ici, le terme « composé vitisine » se réfère à un stilbène appartenant à la famille des polyphénols, pouvant par exemple être extrait à partir de sarments de vigne. Ce terme désigne la vitisine B ou l'un de ses dérivés.
De préférence, le terme « composé vitisine » n'englobe pas les composés choisis parmi le resvératrol, le pallidol, l'e-viniferine, l'ampelopsine, l'oxyresveratrol, le piceatannol et/ou le gnetol.
Selon des modes de réalisation préférés, le composé vitisine est la vitisine B.
La vitisine B est un tétramère du resvératrol présent dans les plantes du genre Vitis, telle que Vitis vinifera.
La vitisine B est également connue sous les noms
- 1,3-Benzenediol, 5-[(2R,2'S,3R,3'S)-5-[(lE)-2-[(2S,3S)-3-(3,5-dihydroxyphenyl)-2,3-dihydro-6-hydroxy-2- (4-hydroxyphenyl)-4-benzofuranyl]ethenyl]-2,2',3,3'-tetrahydro-6'-hydroxy-2,2'-bis(4- hydroxyphenyl)[3,4'-bibenzofuran]-3'-yl]- (9CI, ACI) ;
1,3-Benzenediol, 5-[5-[2-[3-(3,5-dihydroxyphenyl)-2,3-dihydro-6-hydroxy-2-(4-hydroxyphenyl)-4- benzofuranyl]ethenyl]-2,2',3,3'-tetrahydro-6'-hydroxy-2,2'-bis(4-hydroxyphenyl)[3,4'-bibenzofuran]-3'- yl]-, [2R-[2a,3P(2'S*,3'S*),5[E(2S*,3S*)]]]- (ZCI) ; ou
-5-[(2R,2'S,3R,3'S)-5-[(lE)-2-[(2S,3S)-3-(3,5-Dihydroxyphenyl)-2,3-dihydro-6-hydroxy-2-(4- hydroxyphenyl)-4-benzofuranyl]ethenyl]-2,2',3,3'-tetrahydro-6'-hydroxy-2,2'-bis(4-hydroxyphenyl)[3,4'- bibenzofuran]-3'-yl]-l,3-benzenediol (ACI), et a en particulier pour numéro d'enregistrement CAS 142449-90-9.
En particulier, la vitisine B telle qu'utilisée selon l'invention a la formule (I) suivante :
Figure imgf000013_0001
La vitisine B peut notamment être sous forme de sel ou d'hydrate.
Selon d'autres modes de réalisation, le composé vitisine est un dérivé de vitisine B. De préférence, le dérivé de vitisine est un isomère de vitisine B, de préférence un stéréoisomère de vitisine B. En particulier, les stéréoisomères de vitisine B englobent les stéréoisomères R ou S sur l'un quelconque des sites stéréochimiques de la vitisine B.
Des exemples d'isomères peuvent être par exemple sans s'y être limités un composé ayant un numéro de CAS choisi parmi CAS 165883-77-2, CAS180580-73-8, CAS142507-86-6, CAS 1373138-12-5, CAS1807631-15-7, CAS879897-47-9, CAS879897-46-8 et CAS681004-56-8 ; ou un composé de formules(l), (II) et (III) décrit ci-dessous et des combinaisons de ceux-ci.
En particulier, le dérivé de vitisine B peut être un stéréoisomère de vitisine B, par exemple tel que décrit dans la demande WO2015126129. De préférence, le dérivé de vitisine B est un stéréoisomère qui dépend de la double liaison, en position Z (composé 20 de la demande WO2015126129) ou en position E (composé 22 de la demande WO2015126129).
Le dérivé de vitisine B peut notamment avoir la formule (II) ou (III) suivante :
Figure imgf000014_0001
Selon certains modes de réalisation particuliers, le composé vitisine est choisi dans le groupe constitué des composés de formules (I), (II) et (III), et des combinaisons de ceux-ci.
Ainsi, selon certains modes de réalisation, le composé vitisine peut être choisi parmi la vitisine B et un dérivé de vitisine B ayant un numéro CAS choisi parmi CAS142449-90-9, CAS 165883-77-2, CAS180580-73-8, CAS142507-86-6, CAS 1373138-12-5, CAS1807631-15-7, CAS879897-47-9, CAS879897- 46-8 et CAS681004-56-8 ou un composé de formules(l), (II) et (III) décrit ci-dessus et des combinaisons de ceux-ci. La mise en contact du composé vitisine avec les cellules peut être réalisée par l'addition du composé vitisine dans un milieu de culture, en particulier un milieu permettant la culture des cellules hématopoïétiques. Le milieu de culture est de préférence adapté aux exigences nutritionnelles des cellules hématopoïétiques et en particulier adapté à la croissance et/ou différenciation des cellules hématopoïétiques, dans lequel est ajouté le composé vitisine. De tels milieux sont connus de l'homme du métier et certains sont plus spécifiquement décrits ci-dessous.
De préférence, le composé vitisine est utilisé à une concentration comprise entre environ 0,5 pM et environ 1 mM, environ 0,5 pM et environ 500 pM, environ 0,5 pM et environ 200 pM, environ 0,5 pM et environ 100 pM, entre environ 0,5 pM et environ 50 pM, entre environ 0,5 pM et environ 40 pM, entre environ 0,5 pM et environ 30 pM, entre environ 0,5 pM et environ 20 pM, entre environ 0,5 pM et environ 15 pM ou entre environ 0,5 pM et environ 10 pM, environ 5 pM et environ 1 mM, environ 5 pM et environ 500 pM, environ 5 pM et environ 200 pM, environ 5 pM et environ 100 pM, entre environ 5 pM et environ 75 pM, entre environ 5 pM et environ 50 pM, entre environ 5 pM et environ 40 pM, entre environ 5 pM et environ 30 pM, entre environ 5 pM et environ 20 pM, entre environ 5 pM et environ 15 pM ou entre environ 5 pM et environ 10 pM, de préférence entre environ 10 pM et environ 1 mM, environ 10 pM et environ 500 pM, environ 10 pM et environ 200 pM, environ 10 pM et environ 100 pM, 10 pM et environ 75 pM, entre environ 10 pM et environ 50 pM, entre environ 10 pM et environ 40 pM, entre environ 10 pM et environ 30 pM, entre environ 10 pM et environ 20 pM, de manière préférée à une concentration d'environ 10 pM. De préférence, le composé vitisine est utilisé à une concentration comprise entre 1 pM et 500 pM, préférentiellement entre 5 pM et 100 pM. En particulier, la vitisine-B est utilisée à une concentration d'environ 0,5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 80, 90, 95 ou 100 pM.
Procédés de production
La présente invention concerne des procédés de production ou de préparation de cellules de la lignée érythrocytaire.
En particulier, les procédés de production selon l'invention peuvent comprendre : a) l'amplification, la différenciation et/ou la maturation de cellules de la lignée érythrocytaire, et b) facultativement, la récupération des cellules de la lignée érythrocytaire multipliées et/ou différenciées et/ou matures, et c) facultativement, le stockage des cellules de la lignée érythrocytaire obtenues/récupérées.
De préférence, les cellules de la lignée érythrocytaire sont choisies parmi les CSH, MPP, CMP, MEP, BFU-E, les CFU-E, et les précurseurs érythrocytaires, à savoir les proérythroblastes, les érythroblastes basophiles, les érythroblastes polychromatophiles, les érythroblastes orthochromatiques, les réticulocytes et/ou les érythrocytes, et l'une quelconque de leur combinaison.
Dans les procédés selon l'invention, le composé vitisine peut être mis en contact, de préférence dans un milieu de culture adapté, avec les cellules de la lignée érythrocytaire lors de l'amplification, de la différenciation et/ou de la maturation des cellules, de préférence lors de l'amplification et/ou la différenciation des cellules.
Dans certains modes de réalisation, le composé vitisine est mis en contact avec des cellules hématopoïétiques multipotentes, en particulier des cellules choisies parmi les cellules CSH, MPP, CMP et MEP, et leurs combinaisons, afin d'amplifier lesdites cellules ou/ou obtenir des progéniteurs érythrocytaires unipotents, des précurseurs érythrocytaires et/ou des érythrocytes par différenciation desdites cellules.
Dans d'autres modes de réalisation, le composé vitisine est mis en contact avec des progéniteurs érythrocytaires unipotents afin d'amplifier lesdits progéniteurs et/ou obtenir des précurseurs érythrocytaires et/ou des érythrocytes par différenciation desdits progéniteurs.
Dans d'autres modes de réalisation, le composé vitisine est mis en contact avec des précurseurs érythrocytaires afin d'obtenir des érythrocytes par différenciation et maturation desdits précurseurs.
Dans d'autres modes de réalisation, le composé vitisine est mis en contact avec des cellules CD34+, c'est-à-dire des cellules choisies parmi les cellules CSH, MPP, CMP, MEP et BFU-E, et leurs combinaisons, afin d'amplifier lesdites cellules et/ou obtenir des progéniteurs CFU-E, des précurseurs érythrocytaires et/ou des érythrocytes par différenciation desdites cellules.
En particulier, la présente invention concerne un procédé in vitro de production d'érythrocytes comprenant : a) la fourniture de cellules hématopoïétiques multipotentes, de préférence d'origine humaine, sélectionnées dans le groupe constitué des cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires- érythrocytaires (MEP), et les combinaisons de ceux-ci, et optionnellement l'amplification desdites cellules hématopoïétiques multipotentes; b) l'induction de la différenciation desdites cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et optionnellement l'amplification desdits progéniteurs érythrocytaires unipotents; c) l'induction de la différenciation desdits progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires; et d) l'induction de la maturation des précurseurs érythrocytaires en érythrocytes, et optionnellement la récupération des érythrocytes obtenus. Dans ce procédé, les cellules (cellules hématopoïétiques multipotentes, progéniteurs érythrocytaires unipotents et/ou précurseurs érythrocytaires) sont mises en contact avec un composé vitisine à l'étape a) (lorsque celle-ci comprend l'amplification desdites cellules hématopoïétiques multipotentes), l'étape b), l'étape c) et/ou l'étape d).
De préférence, la présente invention concerne un procédé in vitro de production d'érythrocytes comprenant : a) la fourniture de cellules hématopoïétiques multipotentes, de préférence d'origine humaine, sélectionnées dans le groupe constitué des cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires- érythrocytaires (MEP), et les combinaisons de ceux-ci, et l'amplification desdites cellules hématopoïétiques multipotentes; b) l'induction de la différenciation desdites cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et optionnellement l'amplification desdits progéniteurs érythrocytaires unipotents; c) l'induction de la différenciation desdits progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires; et d) l'induction de la maturation des précurseurs érythrocytaires en érythrocytes, et optionnellement la récupération des érythrocytes obtenus.
Dans ce procédé, les cellules (cellules hématopoïétiques multipotentes, progéniteurs érythrocytaires unipotents et/ou précurseurs érythrocytaires) sont mises en contact avec un composé vitisine à l'étape a), l'étape b), l'étape c) et/ou l'étape d).
La présente invention concerne également un procédé in vitro de production de progéniteurs érythrocytaires unipotents comprenant : a) la fourniture de cellules hématopoïétiques multipotentes, de préférence d'origine humaine, sélectionnées dans le groupe constitué des cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires- érythrocytaires (MEP), et les combinaisons de ceux-ci , et optionnellement l'amplification desdites cellules hématopoïétiques multipotentes ; et b) l'induction de la différenciation desdites cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et optionnellement l'amplification desdits progéniteurs érythrocytaires unipotents ; et c) optionnellement la récupération des progéniteurs érythrocytaires unipotents obtenus ;
Dans ce procédé, les cellules (cellules hématopoïétiques multipotentes et/ou progéniteurs érythrocytaires unipotents) sont mises en contact avec un composé vitisine à l'étape a) (lorsque celle-ci comprend l'amplification desdites cellules hématopoïétiques multipotentes) et/ou à l'étape b). De préférence, la présente invention concerne également un procédé in vitro de production de progéniteurs érythrocytaires unipotents comprenant : a) la fourniture de cellules hématopoïétiques multipotentes, de préférence d'origine humaine, sélectionnées dans le groupe constitué des cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires- érythrocytaires (MEP), et les combinaisons de ceux-ci , et l'amplification desdites cellules hématopoïétiques multipotentes ; et b) l'induction de la différenciation desdites cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et optionnellement l'amplification desdits progéniteurs érythrocytaires unipotents ; et c) optionnellement la récupération des progéniteurs érythrocytaires unipotents obtenus ;
Dans ce procédé, les cellules (cellules hématopoïétiques multipotentes et/ou progéniteurs érythrocytaires unipotents) sont mises en contact avec un composé vitisine à l'étape a) et/ou à l'étape b).
Ce procédé a notamment pour but d'induire la différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et de permettre soit l'amplification de cette population de progéniteurs tout en conservant leur capacité à se différencier ultérieurement en globules rouges, soit de poursuivre la différenciation de cette population de progéniteurs en précurseurs érythrocytaires et globules rouges.
La présente invention concerne également un procédé in vitro de production de précurseurs érythrocytaires comprenant : a) la fourniture de progéniteurs érythrocytaires unipotents ; b) l'induction de la différenciation desdits progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires; et optionnellement la récupération des précurseurs érythrocytaires obtenus.
Dans ce procédé, les cellules (progéniteurs érythrocytaires unipotents et/ou précurseurs érythrocytaires) sont mises en contact avec un composé vitisine à l'étape b).
De préférence, les progéniteurs érythrocytaires unipotents fournis dans l'étape a) sont obtenus par le procédé de production de progéniteurs érythrocytaires unipotents selon l'invention.
La présente invention concerne également un procédé in vitro de production d'érythrocytes comprenant, a) la fourniture de progéniteurs érythrocytaires unipotents ; b) l'induction de la différenciation desdits progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires; c) l'induction de la maturation des précurseurs érythrocytaires en érythrocytes, et optionnellement la récupération des érythrocytes obtenus. Dans ce procédé, les cellules (progéniteurs érythrocytaires unipotents et/ou précurseurs érythrocytaires) sont mises en contact avec un composé vitisine à l'étape b) et/ou l'étape c).
De préférence, les progéniteurs érythrocytaires unipotents fournis dans l'étape a) sont obtenus par le procédé de production de progéniteurs érythrocytaires unipotents selon l'invention
La présente invention concerne également un procédé in vitro de production d'érythrocytes comprenant, a) la fourniture de précurseurs érythrocytaires; et b) l'induction de la maturation des précurseurs érythrocytaires en érythrocytes, et optionnellement la récupération des érythrocytes obtenus.
Dans ce procédé, les cellules précurseurs érythrocytaires sont mises en contact avec un composé vitisine à l'étape b).
De préférence, les précurseurs érythrocytaires fournis dans l'étape a) sont obtenus par un procédé de production de précurseurs érythrocytaires selon l'invention.
Les cellules hématopoïétiques multipotentes fournies dans les procédés selon l'invention peuvent être obtenues par toute méthode connue de l'homme du métier. Comme indiqué ci-dessus, elles peuvent notamment être isolées à partir d'échantillons de moelle osseuse, de cytaphérèse, de sang total, de sang de cordon ombilical ou placentaire, par exemple à l'aide d'un système immuno-magnétique ou d'un système de tri sur la présence de récepteurs membranaires spécifiques. Elles peuvent également être obtenues par différenciation de cellules souches embryonnaires ou de cellules souches pluripotentes induites (iPS) comme indiqué ci-dessus. Optionnellement, avant leur utilisation dans l'un des procédés selon l'invention, ces cellules hématopoïétiques multipotentes peuvent être amplifiées par culture dans un milieu adapté à l'amplification de ces cellules. Les cellules hématopoïétiques multipotentes fournies comprennent des CSH, MPP, CMP et/ou MEP, de préférence des CSH et optionnellement des MPP, CMP et/ou MEP. Les cellules hématopoïétiques multipotentes fournies peuvent également comprendre d'autres types cellulaires. En particulier, ces cellules peuvent être des cellules CD34+ et peuvent également comprendre des BFU-E.
Les progéniteurs érythrocytaires unipotents fournis dans les procédés selon l'invention peuvent être obtenus par le procédé de production de progéniteurs érythrocytaires unipotents selon l'invention ou par toute autre méthode connue de l'homme du métier. En particulier, ces progéniteurs peuvent être isolés à partir d'échantillons de moelle osseuse, de cytaphérèse, de sang total, de sang de cordon ombilical ou placentaire, par exemple à l'aide d'un système immuno-magnétique ou d'un système de tri sur la présence de récepteurs membranaires spécifiques. Ils peuvent également être obtenus par différenciation de cellules hématopoïétiques multipotentes selon toute méthode connue de l'homme du métier. Optionnellement, avant leur utilisation dans l'un des procédés selon l'invention, ces progéniteurs érythrocytaires unipotents peuvent être amplifiés par culture dans un milieu adapté à l'amplification de ces cellules. Les progéniteurs érythrocytaires unipotents fournis comprennent des BFU-E et/ou des CFU- E. Ils peuvent également comprendre d'autres types cellulaires tels que des CSH, MPP, CMP et/ou MEP.
Les précurseurs érythrocytaires fournis dans les procédés selon l'invention peuvent être obtenus par un procédé de production de précurseurs érythrocytaires selon l'invention ou par toute autre méthode connue de l'homme du métier. En particulier, ces précurseurs érythrocytaires peuvent être isolés à partir d'échantillons de moelle osseuse, de cytaphérèse, de sang total, de sang de cordon ombilical ou placentaire, par exemple à l'aide d'un système immuno-magnétique ou d'un système de tri sur la présence de récepteurs membranaires spécifiques. Ils peuvent également être obtenus par différenciation de cellules hématopoïétiques multipotentes ou de progéniteurs érythrocytaires unipotents selon toute méthode connue de l'homme du métier. Optionnellement, avant leur utilisation dans l'un des procédés selon l'invention, ces précurseurs érythrocytaires peuvent être amplifiés par culture dans un milieu adapté à l'amplification de ces cellules.
Dans les procédés selon l'invention, les cellules peuvent être mises en contact avec le composé vitisine dans un milieu de culture adapté aux exigences nutritionnelles des cellules hématopoïétiques. Selon les étapes durant lesquelles a lieu cette mise en contact, ce milieu de culture peut être un milieu de culture adapté à l'amplification et/ou la différenciation et/ou la maturation des cellules hématopoïétiques.
Le milieu de culture adapté aux exigences nutritionnelles des cellules hématopoïétiques peut être tout milieu connu de l'homme du métier pour subvenir aux besoins de ces cellules et plus particulièrement pour subvenir aux besoins des cellules sélectionnées dans le groupe constitué des cellules CSH, MPP, CMP, MEP, des progéniteurs érythrocytaires unipotents, des précurseurs érythrocytaires, et des combinaisons de ceux-ci. Ce milieu satisfait les exigences minimales de survie des cellules à cultiver et permet, selon les situations et les compléments apportés, le maintien, l'amplification, la différenciation et/ou la maturation des cellules hématopoïétiques. De nombreux milieux de culture adaptés aux exigences nutritionnelles des cellules hématopoïétiques d'intérêt sont connus de l'homme du métier et disponibles dans le commerce, tels que le milieu de Dulbecco modifié selon Iscove (milieu IMDM), le milieu Stem Span SFEM II (Stemcell technologies) ou encore le milieu « StemMACS HSC Expansion Media XF, Human » (Miltenyi Biotec). La composition de ces milieux est connue.
De préférence, dans les procédés selon l'invention, le composé vitisine est mis en contact avec les cellules dans un milieu adapté à l'amplification et/ou la différenciation et/ou la maturation des cellules hématopoïétiques. De tels milieux sont bien connus de l'homme du métier. Des exemples de tels milieux sont notamment mentionnés dans la section « Milieu de culture » ci-dessous. De manière générale, les milieux adaptés à l'amplification, la différenciation et la maturation des cellules peuvent être obtenus à partir du même milieu de base adapté aux exigences nutritionnelles des cellules hématopoïétiques, par exemple le milieu IMDM ou le milieu Stem Span SFEM II, et différent essentiellement de par leur composition en cytokines.
Tel qu'utilisé ici, le terme « croissance », « multiplication » ou « amplification » se réfère à la multiplication des cellules. Ainsi, un milieu adapté à l'amplification des cellules hématopoïétiques est un milieu permettant la multiplication des cellules hématopoïétiques multipotentes, à savoir CSH, MPP, CMP et/ou MEP, des progéniteurs érythrocytaires unipotents et/ou des précurseurs érythrocytaires. Un milieu de culture adapté à l'amplification d'un type cellulaire peut être également adapté à la différenciation de ce type cellulaire. A l'inverse, lorsque seule l'amplification est souhaitée, par exemple pour augmenter le pool de cellules hématopoïétiques multipotentes ou de progéniteurs érythrocytaires unipotents, le milieu de culture adapté à l'amplification ne stimule pas ou peu la différenciation des cellules.
Dans les procédés selon l'invention, les cellules hématopoïétiques multipotentes peuvent être amplifiées avant différenciation. Cette amplification peut se faire dans tout milieu adapté à l'amplification des cellules hématopoïétiques multipotentes, notamment des CSH, et connu de l'homme du métier. En particulier, les cellules hématopoïétiques multipotentes peuvent être amplifiées dans un milieu adapté aux exigences nutritionnelles des cellules hématopoïétiques, par exemple le milieu IMDM ou le milieu Stem Span SFEM II, comprenant, ou supplémenté en G-SCF, SCF, FLT3-L et TPO, en particulier dans les concentrations décrites ci-dessous dans la section « Milieu de culture ».
Dans les procédés selon l'invention, les progéniteurs érythrocytaires peuvent être amplifiés avant différenciation. Cette amplification peut se faire dans tout milieu adapté à l'amplification des progéniteurs érythrocytaires et connu de l'homme du métier. En particulier, les progéniteurs érythrocytaires peuvent être amplifiés dans un milieu adapté aux exigences nutritionnelles des cellules hématopoïétiques, par exemple le milieu IMDM ou le milieu Stem Span SFEM II, comprenant, ou supplémenté en, G-SCF, SCF, FLT3-L et TPO, en particulier dans les concentrations décrites ci-dessous dans la section « Milieu de culture ».
Dans les procédés selon l'invention, les précurseurs érythrocytaires peuvent être amplifiés avant maturation. Cette amplification peut se faire dans tout milieu adapté à l'amplification des précurseurs érythrocytaires et connu de l'homme du métier. En particulier, les précurseurs érythrocytaires peuvent être amplifiés dans un milieu adapté aux exigences nutritionnelles des cellules hématopoïétiques, par exemple le milieu IMDM ou le milieu Stem Span SFEM II, comprenant, ou supplémenté en EPO, Hydrocortisone , en facteurs de croissance adaptés, en transferrine, sérum et/ou du plasma, ou l'une quelconque de leur combinaison, en particulier dans les concentrations décrites ci-dessous dans la section « Milieu de culture ». Le terme « différenciation » se réfère à l'acquisition par les cellules cultivées de caractéristiques qui n'étaient pas présentes dans les cellules initialement utilisées pour ensemencer le milieu. Dans le cas présent, ce terme se réfère à l'acquisition de caractéristiques de cellules plus avancées dans le processus d'érythropoïèse. Ainsi, un milieu adapté à la différenciation des cellules hématopoïétiques est donc un milieu permettant la différenciation des cellules hématopoïétiques multipotentes, telles que des CSH, MPP, CMP et/ou MEP, en progéniteurs érythrocytaires unipotents et/ou la différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires et/ou la différenciation des précurseurs érythrocytaires afin d'obtenir, après maturation, des érythrocytes. Typiquement, un milieu de culture adapté à la différenciation d'un type cellulaire est également adapté à l'amplification des cellules.
Dans les procédés selon l'invention, les cellules hématopoïétiques multipotentes peuvent être différenciées en progéniteurs érythrocytaires unipotents. Cette différenciation peut se faire dans tout milieu adapté à la différenciation des cellules hématopoïétiques multipotentes, notamment des CSH, et connu de l'homme du métier. En particulier, les cellules hématopoïétiques multipotentes peuvent être différenciées dans un milieu adapté aux exigences nutritionnelles des cellules hématopoïétiques, par exemple le milieu IMDM ou le milieu Stem Span SFEM II, comprenant de l'IL3, de l'IL6, du SCF, de l'albumine sérique en particulier bovine, de l'insuline, de la transferrine et optionnellement de l'EPO.
Dans les procédés selon l'invention, les progéniteurs érythrocytaires peuvent être différenciés en précurseurs érythrocytaires. Cette différenciation peut se faire dans tout milieu adapté à la différenciation des progéniteurs érythrocytaires et connu de l'homme du métier. En particulier, les progéniteurs érythrocytaires peuvent être différenciés dans un milieu adapté aux exigences nutritionnelles des cellules hématopoïétiques, par exemple le milieu IMDM ou le milieu Stem Span SFEM II, comprenant de l'IL3, du SCF, de l'hydrocortisone et optionnellement de l'EPO.
Tel qu'utilisé ici, le terme « maturation » se réfère au processus par lequel les précurseurs érythrocytaires deviennent des globules rouges et qui implique notamment l'énucléation des cellules. Ainsi, un milieu adapté à la maturation des cellules hématopoïétiques est donc un milieu permettant la maturation des précurseurs érythrocytaires en érythrocytes. Typiquement, un milieu adapté à la l'amplification et/ou à la différenciation des cellules hématopoïétiques ne favorise pas cette maturation. La maturation des précurseurs érythrocytaires se traduit notamment par l'expression des marqueurs de maturation érythrocytaire tels que CD235a et par l'énucléation.
Dans les procédés selon l'invention, les précurseurs érythrocytaires peuvent être maturés pour obtenir des érythrocytes. Cette maturation peut se faire dans tout milieu adapté à la maturation des précurseurs érythrocytaires et connu de l'homme du métier. En particulier, les précurseurs érythrocytaires peuvent être maturés dans un milieu adapté aux exigences nutritionnelles des cellules hématopoïétiques, par exemple le milieu IMDM ou le milieu Stem Span SFEM II, comprenant, ou supplémenté en, EPO, de préférence 2 ou 3 Ul/ml d'EPO. De préférence, le milieu ne comprend pas de cytokines. De préférence, la maturation des précurseurs érythrocytaires est induite à une concentration cellulaire élevée, par exemple supérieure à 5 000000 cellules/ml de culture.
Ainsi, dans les procédés selon l'invention,
- l'amplification des cellules hématopoïétiques multipotentes peut se faire en plaçant les cellules hématopoïétiques multipotentes dans un milieu de culture adapté à l'amplification des cellules hématopoïétiques multipotentes, en particulier un milieu tel que décrit ci-dessus ou dans la section « Milieu de culture », typiquement durant une période de 3 à 15 jours, de préférence de 5 à 8 jours ;
- l'amplification des progéniteurs érythrocytaires peut se faire en plaçant les progéniteurs érythrocytaires dans un milieu de culture adapté à l'amplification des progéniteurs érythrocytaires, en particulier un milieu tel que décrit ci-dessus ou dans la section « Milieu de culture », typiquement durant une période de 3 à 15 jours, de préférence de 4 à 12 jours;
- l'amplification des précurseurs érythrocytaires peut se faire en plaçant les précurseurs érythrocytaires dans un milieu de culture adapté à l'amplification des précurseurs érythrocytaires, en particulier un milieu tel que décrit ci-dessus ou dans la section « Milieu de culture », typiquement durant une période de 2 à 6 jours, de préférence de 2 à 4 jours ;
- l'induction de la différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires peut se faire en plaçant les cellules hématopoïétiques multipotentes dans un milieu de culture adapté à la différenciation des cellules hématopoïétiques multipotentes, en particulier un milieu tel que décrit ci-dessus ou dans la section « Milieu de culture », typiquement durant une période de 3 à 10 jours, de préférence de 3 à 6 jours ;
- l'induction de la différenciation des progéniteurs érythrocytaires en précurseurs érythrocytaires peut se faire en plaçant les progéniteurs érythrocytaires dans un milieu de culture adapté à la différenciation des progéniteurs érythrocytaires, en particulier un milieu tel que décrit ci-dessus ou dans la section « Milieu de culture », typiquement durant une période 3 à 10 jours, de préférence de 3 à 6 jours ;
- l'induction de la maturation des précurseurs érythrocytaires peut se faire en plaçant les précurseurs érythrocytaires dans un milieu de culture adapté à la maturation des précurseurs érythrocytaires, en particulier un milieu tel que décrit ci-dessus ou dans la section « Milieu de culture », typiquement durant une période 5 à 15 jours, de préférence de 8 à 12 jours.
Les techniques pour modifier la composition d'un milieu de culture sont bien connues de l'homme du métier. En particulier, l'ajout d'une molécule ou l'augmentation de sa concentration peut se faire directement dans le milieu de culture préexistant et le retrait d'une molécule ou la diminution de sa concentration peut se faire par centrifugation des cellules et re-suspension dans un nouveau milieu de culture ou par dilution du milieu de culture.
Les durées de chaque étape du procédé données ci-dessus sont données à titre indicatif. Ces durées peuvent être aisément définies/ajustées par l'homme du métier en observant le nombre et/ou la nature des cellules en culture.
Dans les procédés selon l'invention, les cellules peuvent être mises en contact avec le composé vitisine durant
- l'étape d'amplification des cellules hématopoïétiques multipotentes, et/ou
- l'étape de différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et/ou
- l'étape d'amplification des progéniteurs érythrocytaires unipotents, et/ou
- l'étape de différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires; et/ou
- l'étape d'amplification des précurseurs érythrocytaires, et/ou
- l'étape d'induction de la maturation des précurseurs érythrocytaires en érythrocytes.
Selon certains modes de réalisation particuliers, les cellules sont mises en contact avec le composé vitisine au cours de chacune de ces étapes.
Selon d'autres modes de réalisation particuliers, les cellules sont mises en contact avec le composé vitisine durant l'étape d'amplification des cellules hématopoïétiques multipotentes et/ou l'étape de différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents.
Selon d'autres modes de réalisation particuliers, les cellules sont mises en contact avec le composé vitisine durant l'étape d'amplification des progéniteurs érythrocytaires unipotents et/ou l'étape de différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires.
Selon d'autres modes de réalisation particuliers, les cellules sont mises en contact avec le composé vitisine durant l'étape d'amplification des progéniteurs érythrocytaires unipotents et/ou l'étape de différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires et/ou l'étape de différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires.
Selon d'autres modes de réalisation particuliers, les cellules sont mises en contact avec le composé vitisine durant (i) l'étape d'amplification des cellules hématopoïétiques multipotentes et/ou l'étape de différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents et (ii) l'étape d'amplification des progéniteurs érythrocytaires unipotents et/ou l'étape de différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires.
Selon d'autres modes de réalisation particuliers, les cellules sont mises en contact avec le composé vitisine durant (i) l'étape d'amplification des cellules hématopoïétiques multipotentes et/ou l'étape de différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents et (ii) l'étape d'amplification des progéniteurs érythrocytaires unipotents et/ou l'étape de différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires et iii) l'étape de maturation des précurseur érythrocytaires en érythrocytes.
Selon d'autres modes de réalisation particuliers, les cellules sont mises en contact avec le composé vitisine durant l'étape de différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et l'étape de différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires; et optionnellement durant l'étape d'amplification des cellules hématopoïétiques multipotentes et/ou l'étape d'amplification des progéniteurs érythrocytaires unipotents.
Selon d'autres modes de réalisation particuliers, les cellules sont mises en contact avec le composé vitisine durant l'étape de différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et l'étape de différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires; et optionnellement durant l'étape d'amplification des cellules hématopoïétiques multipotentes et/ou l'étape d'amplification des progéniteurs érythrocytaires unipotents, et optionnellement durant l'étape de maturation des précurseur érythrocytaires en érythrocytes.
De manière préférée, les cellules sont mises en contact avec le composé vitisine au moins durant l'étape d'amplification des progéniteurs érythrocytaires unipotents et/ou l'étape de différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires.
Lorsque les cellules sont mises en contact avec le composé vitisine durant une étape du procédé, le composé vitisine peut être présent dans le milieu de culture durant toute l'étape ou durant une partie de cette étape. De préférence, le composé vitisine est présent durant toute la durée de l'étape. Alternativement, le composé vitisine peut être présent durant au moins 1 jour, de préférence au moins 3, 5, 7, 10 ou 12 jours lors de l'étape.
En particulier, les cellules peuvent être mises en contact avec un composé vitisine durant au moins 1 jour, de préférence durant au moins 3, 5, 7, 10 ou 12 jours, lors de l'amplification et/ou la différenciation des cellules hématopoïétiques multipotentes, et/ou durant au moins 1 jour, de préférence durant au moins 3, 5, 7 , 10 ou 12 jours, lors de l'amplification et/ou la différenciation des progéniteurs érythrocytaires unipotents.
De préférence, les cellules sont mises en contact avec un composé vitisine durant au moins 1 jour, de préférence durant au moins 3, 5, 7, 10 ou 12 jours, lors de l'amplification des cellules hématopoïétiques multipotentes, durant au moins 1 jour, de préférence durant au moins 3, 5, 7, 10 ou 12 jours, lors de la différenciation des cellules hématopoïétiques multipotentes, durant au moins 1 jour, de préférence durant au moins 3, 5, 7, 10 ou 12 jours, lors de l'amplification des progéniteurs érythrocytaires unipotents et durant au moins 1 jour, de préférence durant au moins 3, 5, 7, 10 ou 12 jours, lors de la différenciation des progéniteurs érythrocytaires unipotents.
En particulier, les cellules peuvent être mises en contact avec un composé vitisine entre 2 et 15 jours, en particulier entre 3 et 12 jours, particulièrement entre 3 et 10 jours.
Selon des modes de réalisation particuliers, les procédés selon l'invention peuvent comprendre
- l'amplification des cellules hématopoïétiques multipotentes dans un milieu de culture adapté à l'amplification des cellules hématopoïétiques multipotentes, de préférence un milieu IMDM supplémenté en G-SCF, SCF, FLT3-L et TPO, et comprenant en outre un composé vitisine, de préférence de la vitisine B, typiquement durant une période 3 à 15 jours, de préférence de 5 à 8 jours ; et
- l'induction de la différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires dans un milieu de culture adapté à la différenciation des cellules hématopoïétiques multipotentes, de préférence un milieu IMDM supplémenté en l'IL3, IL6, SCF, albumine sérique en particulier bovine, insuline, transferrine et optionnellement EPO et comprenant en outre un composé vitisine, de préférence de la vitisine B, typiquement durant une période de 3 à 10 jours, de préférence de 3 à 6 jours.
Selon des modes de réalisation particuliers, les procédés selon l'invention peuvent comprendre
- l'amplification des progéniteurs érythrocytaires dans un milieu de culture adapté à l'amplification des progéniteurs érythrocytaires, de préférence un milieu IMDM ou Stem Span SFEM II supplémenté en G-SCF, SCF, FLT3-L et TPO, et comprenant en outre un composé vitisine, de préférence de la vitisine B, typiquement durant une période de 3 à 15 jours, de préférence de 4 à 12 jours; et
- l'induction de la différenciation des progéniteurs érythrocytaires en précurseurs érythrocytaires dans un milieu de culture adapté à la différenciation des progéniteurs érythrocytaires, de préférence un milieu IMDM ou Stem Span SFEM II supplémenté en IL3, SCF, hydrocortisone et optionnellement de EPO, et comprenant en outre un composé vitisine, de préférence de la vitisine B, typiquement durant une période de 3 à 10 jours, de préférence de 3 à 6 jours. Selon des modes de réalisation particuliers, les procédés selon l'invention peuvent comprendre l'induction de la maturation des précurseurs érythrocytaires en érythrocytes dans un milieu de culture adapté à la maturation des précurseurs érythrocytaires, de préférence un milieu IMDM ou Stem Span SFEM II supplémenté EPO, de préférence comprenant 2 ou 3 Ul/ml d'EPO, et comprenant en outre un composé vitisine, de préférence de la vitisine B, typiquement durant une période de 5 à 15 jours, de préférence de 8 à 12 jours. De préférence, ce milieu de maturation ne comprend pas de cytokines.
Selon des modes de réalisation, les cellules hématopoïétiques sont cultivées dans un milieu de culture adapté aux exigences nutritionnelles des cellules hématopoïétiques pendant moins de 50 jours, moins de 45 jours, moins de 40 jours, moins de 35 jours ou moins de 30 jours. En particulier, les cellules hématopoïétiques sont cultivées dans un milieu de culture adapté aux exigences nutritionnelles des cellules hématopoïétiques entre 3 et 35 jours, entre 7 et 35 jours, entre 15 et 35 jours, entre 25 et 35 jours, entre 28 et 35 jours, entre 7 et 28 jours, entre 15 et 28 jours, entre 20 et 28 jours de manière préférée pendant environ 28 ou 35 jours.
Dans un mode de réalisation particulier, lorsque le procédé comprend la production d'érythrocytes à partir de progéniteurs unipotents, les cellules hématopoïétiques sont cultivées dans un milieu de culture adapté aux exigences nutritionnelles des cellules hématopoïétiques pendant 25 à 30 jours, en particulier environ 28 jours.
Dans un mode de réalisation particulier, lorsque le procédé comprend la production d'érythrocytes à partir de cellules hématopoïétiques multipotentes, en particulier à partir de CSH, les cellules hématopoïétiques sont cultivées dans un milieu de culture adapté aux exigences nutritionnelles des cellules hématopoïétiques pendant 30 à 40 jours, en particulier environ 35 jours.
Dans les procédés selon l'invention, les étapes de culture cellulaire, à savoir les étapes d'amplification, de différenciation et/ou de maturation, sont réalisées de préférence à une température adaptée à la multiplication et/ou la différenciation des cellules hématopoïétiques. De préférence, la température est d'environ 37°C.
La teneur en CO2 et/ou 02 est de préférence contrôlée durant les étapes de culture cellulaire. De préférence, le taux de CO2 est compris entre 2% et 10%, entre 3% et 7% ou entre 4% et 6%, et est préférentiellement d'environ 5%. Le taux d'O2 est de préférence compris entre 1% et 30%, entre 5% et 25%, entre 10% et 25% ou entre 15% et 25%, et est préférentiellement d'environ 20%.
De manière tout particulièrement préférée, les cellules sont cultivées à environ 37°C, avec un taux de CO2 de 5% et/ou avec un taux d'O2 de 20%. Tl
De préférence, les cellules hématopoïétiques d'intérêt dans la présente invention sont mises en culture à une concentration comprise entre 200 et 10 000 cellules/ml, de préférence entre 500 et 2000 cellules/ml, et de manière encore préférée à environ 1000 cellules/ml.
De préférence, durant les étapes de culture, les cellules hématopoïétiques sont mises en contact avec des cellules mésenchymateuses (CSM) ou des cellules stromales. Le terme "cellules stromales", « CSM » ou « cellules mésenchymateuses » désigne les cellules non hématopoïétiques de la moelle osseuse, telles que des cellules endothéliales, des cellules vasculaires non striées (cellules fibrotiques), des adipocytes et des macrophages. Les cellules souches mésenchymateuses sont présentes dans divers tissus de l'organisme adulte, principalement dans la moelle osseuse mais aussi dans le tissu adipeux. Elles peuvent se différencier en de nombreux types cellulaires dont les ostéoblastes, les chondrocytes, les myocytes et les adipocytes, et ainsi produire et/ou réparer les tissus osseux et graisseux. Au sein de la niche médullaire, les cellules mésenchymateuses et les cellules hématopoïétiques sont en contact. En particulier, les cellules hématopoïétiques multipotentes et les progéniteurs hématopoïétiques sont notamment régulés de façon extrinsèque au sein des niches hématopoïétiques médullaires et cette régulation fait intervenir, des contacts intercellulaires et des facteurs diffusibles. Les cellules souches mésenchymateuses sécrètent des facteurs de croissance contrôlant la prolifération et la différenciation de ces cellules hématopoïétiques.
Les cellules stromales ou mésenchymateuses sont de préférence cultivées dans des conditions de culture appropriées de sorte qu'elles adhèrent ou non à une surface de substrat.
Les cellules hématopoïétiques peuvent être cultivées en coculture avec des cellules mésenchymateuses (CSM) formant un tapis cellulaire à confluence. L'homme du métier peut utiliser toute technique connue pour obtenir un tapis cellulaire à confluence de CSM.
Selon certains modes de réalisation particuliers, dans les procédés selon l'invention, l'étape de différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et/ou l'étape de différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires et/ou l'étape de maturation des précurseurs érythrocytaires, sont réalisées en coculture avec des cellules CSM. De préférence, les étapes de différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents et de différenciation des progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires, et optionnellement l'étape de maturation des précurseurs érythrocytaires, sont réalisées en coculture avec des cellules CSM.
Lors que les procédés selon l'invention comprennent une étape de co-culture avec des CSM, le milieu de culture peut comprendre en outre du sérum de veau foetale (SVF), en particulier à une concentration comprise entre environ 1% et environ 10%, de préférence à une concentration comprise entre environ 1% et environ 5%. Les procédés selon l'invention peuvent comprendre en outre une ou plusieurs étapes supplémentaires.
Les procédés selon l'invention peuvent notamment comprendre en outre une étape de prélèvement de sang chez un individu, de préférence de sang de cordon ombilical, de sang placentaire et/ou de sang périphérique.
Les procédés selon l'invention peuvent également comprendre une ou plusieurs étapes de tri cellulaire, en particulier une étape de sélection des cellules basée sur l'expression de marqueurs tels que CD34, CD36, CD123, CD235a, CD117, CD71 et/ou GPA ou l'une quelconque de leur combinaison. Cette étape préliminaire peut notamment être réalisée par une technique immunomagnétique utilisant des anticorps dirigés contre différents marqueurs phénotypiques des cellules d'intérêt, en particulier tels que décrits à la section « Erythropoïèse et cellules hématopoïétique ».
Les procédés de production d'érythrocytes selon l'invention peuvent comprendre en outre une étape d'élimination des cellules nucléées. Cette étape permet notamment d'obtenir une population homogène comprenant uniquement des érythrocytes matures.
Les procédés de production selon l'invention peuvent en outre comprendre une étape de récupération des cellules obtenues. Cette étape peut se faire par toute technique connue de l'homme du métier, notamment par filtration, centrifugation et élimination du milieu de culture.
Les procédés de production selon l'invention peuvent également comprendre en outre une étape de lavage des cellules obtenues/récupérées. Cette étape peut se faire par toute technique connue de l'homme du métier, notamment par une succession d'étapes de filtration, centrifugation et resuspension.
Les procédés de production selon l'invention peuvent également comprendre une étape de stockage des cellules obtenues/récupérées. Cette étape peut se faire par toute technique connue de l'homme du métier, notamment par congélation. En particulier, les cellules récupérées peuvent être mélangées avec une solution volume à volume de sérum de veau foetal (SVF) décomplémenté et de cryoprotecteur avant mise au congélateur.
Dans les procédés selon l'invention, le composé vitisine, de préférence la vitisine-B, peut être additionné à l'un quelconque des milieux de culture adaptés aux étapes d'amplification, de différenciation et/ou de maturation.
En particulier, le composé vitisine, de préférence la vitisine B, peut être présent dans le milieu à une concentration comprise entre environ 0,5 pM et environ 1 mM, environ 0,5 pM et environ 500 pM, environ 0,5 pM et environ 200 pM, environ 0,5 pM et environ 100 pM, entre environ 0,5 pM et environ 50 pM, entre environ 0,5 pM et environ 40 pM, entre environ 0,5 pM et environ 30 pM, entre environ 0,5 pM et environ 20 pM, entre environ 0,5 pM et environ 15 pM ou entre environ 0,5 pM et environ 10 pM, environ 5 pM et environ 1 mM, environ 5 pM et environ 500 pM, environ 5 pM et environ 200 pM, environ 5 pM et environ 100 pM, entre environ 5 pM et environ 75 pM, entre environ 5 pM et environ 50 pM, entre environ 5 pM et environ 40 pM, entre environ 5 pM et environ 30 pM, entre environ 5 pM et environ 20 pM, entre environ 5 pM et environ 15 pM ou entre environ 5 pM et environ 10 pM, de préférence entre environ 10 pM et environ 1 mM, environ 10 pM et environ 500 pM, environ 10 pM et environ 200 pM, environ 10 pM et environ 100 pM, 10 pM et environ 75 pM, entre environ 10 pM et environ 50 pM, entre environ 10 pM et environ 40 pM, entre environ 10 pM et environ 30 pM, entre environ 10 pM et environ 20 pM, de manière préférée à une concentration d'environ 10 pM. De préférence, le composé vitisine est utilisé à une concentration comprise entre 1 pM et 500 pM, préférentiellement entre 5 pM et 100 pM. En particulier, la vitisine-B peut être utilisée à une concentration d'environ 0,5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 80, 90, 95 ou 100 pM.
Milieu de culture
La présente invention concerne également un milieu de culture cellulaire comprenant un composé vitisine, en particulier un milieu de culture cellulaire adapté aux exigences nutritionnelles des cellules hématopoïétiques, en particulier des cellules hématopoïétiques multipotentes, pluripotentes ou unipotentes, de préférence sélectionnées dans le groupe constitué des cellules CSH, MPP, CMP, MEP, des progéniteurs érythrocytaires unipotents, des précurseurs érythrocytaires, et des combinaisons de ceux- ci, et comprenant un composé vitisine. En particulier, le milieu de culture cellulaire selon l'invention peut être un milieu adapté au maintien, à l'amplification, à la différenciation et/ou à la maturation des cellules hématopoïétiques, de préférence des cellules sélectionnées dans le groupe constitué des cellules CSH, MPP, CMP, MEP, des progéniteurs érythrocytaires unipotents, des précurseurs érythrocytaires, et des combinaisons de ceux-ci. Ce milieu peut notamment être utilisé dans les différentes étapes des procédés selon l'invention.
Le milieu de culture selon l'invention peut être tout milieu de base connu par l'homme du métier pour être adapté aux exigences nutritionnelles des cellules hématopoïétiques, en particulier des cellules hématopoïétiques multipotentes, des progéniteurs unipotents et/ou précurseurs érythrocytaires, auquel un composé vitisine est ajouté. De nombreux milieux de culture adaptés aux exigences nutritionnelles des cellules hématopoïétiques sont connus de l'homme du métier et disponibles dans le commerce, tels que le milieu de Dulbecco modifié selon Iscove (milieu IMDM), le milieu Stem Span SFEM II (Stemcell technologies) ou encore le milieu « StemMACS HSC Expansion Media XF, Human » (Miltenyi Biotec).
Le milieu de culture cellulaire est de préférence choisi parmi un milieu de Dulbecco modifié selon Iscove (milieu IMDM) et un milieu Stem Span SFEM II (Stemcell technologies). De manière préférée, le milieu de culture est un milieu de culture Dulbecco modifié selon Iscove (IMDM_PAN BIOTECH). Le milieu de culture IMDM est notamment obtenu à partir du milieu de culture de Eagle Modifié selon Dulbecco (DMEM) enrichi en sélénite de sodium mais aussi en vitamines et acides aminés. La composition des milieux IMDM et Stem Span SFEM II sont bien connues dans la littérature. Le milieu IMDM comprend notamment des acides aminés, des vitamines, des sels, du D-glucose, de l'HEPES et du pyruvate de sodium.
Le milieu de culture selon l'invention peut être liquide, semi-solide ou solide. L'homme du métier sait comment solidifier un milieu de culture, notamment par ajout d'agar.
Le milieu de culture selon l'invention peut comprendre un ou plusieurs acides aminés, antibiotiques, vitamines, sels, minéraux ou lipides. Le milieu de culture selon l'invention peut comprendre en outre d'autres composés favorables à l'amplification et/ou la différenciation des cellules hématopoïétiques, notamment des facteurs de croissance ou de survie, par exemple tels que décrits dans la demande W02010096746. En particulier, le milieu de culture cellulaire peut être complémentée avec de l'érythropoïétine (EPO), du Stem Cell Factor (SCF), de I' Hydrocortisone (HC), des facteurs de croissance, de l'interleukine 3 (IL3), de l'interleukine 6 (IL6), de l'interleukine 11 (IL11), de la transferrine, de l'héparine, de l'insuline, de la thrombopoïétine, du ligand de la tyrosine kinase 3 de type FMS (Flt3-L) du Facteur de stimulation des colonies de granulocytes (G-CSF), de la L-glutamine, de l'inositol, un antibiotique tel que pénicilline et/ou streptomycine, de l'acide folique, du mono-thioglycérol, du nitrate de fer, du sulfate de fer, du Complément en BIT 9500 (Stem Cell Technologies), du sérum d'albumine, du sérum et/ou du plasma, ou l'une quelconque de leur combinaison. Les concentrations de ces différents composés sont aisément déterminées par l'homme du métier sur la base des recommandations des fournisseurs ou des connaissances générales du domaine. L'homme du métier sait ajuster la présence de tels composés adaptés à la culture des cellules hématopoïétiques.
Le milieu de culture selon l'invention peut optionnellement comprendre un antibiotique, par exemple de la pénicilline et/ou de la streptomycine, à une concentration comprise entre environ 0,1 % et environ 10 %, de préférence entre environ 0,5 % et environ 5 %, de manière encore préférée à une concentration d'environ 1%.
Les composés du milieu de culture selon l'invention sont de préférence des composés humains obtenus par des techniques recombinantes ou de purification.
De préférence, le milieu de culture selon l'invention comprend notamment de :
IL-3, de préférence IL-3 humaine, à une concentration comprise entre environ 1 ng/mL et environ 20 ng/mL, de préférence entre environ 5 ng/mL et environ 15 ng/mL, de manière encore préférée à une concentration d'environ 5 ou 10 ng/mL ; et/ou IL-6, de préférence IL-6 humaine, à une concentration comprise entre environ 1 ng/mL et environ 20 ng/mL, de préférence entre environ 5 ng/mL et environ 15 ng/mL, de manière encore préférée à une concentration d'environ 10 ng/mL ; et/ou
SCF à une concentration comprise entre environ 1 ng/mL et environ 500 ng/mL, de préférence environ 10 ng/mL et environ 200 ng/mL, préférentiellement entre environ 50 ng/mL et environ 150 ng/mL, de manière préférée entre environ 50 ng/mL et environ 100 ng/mL, de manière toute préférée environ 100 ng/ml ; et/ou
EPO, de préférence humaine, à une concentration comprise entre environ 0,5 lU/mL et environ 10 lU/mL, de préférence entre environ 1 lU/mL et environ 5 lU/mL, de manière encore préférée à une concentration d'environ 2 ou 3 lU/mL ; et/ou
FLT3-L à une concentration comprise entre environ 1 ng/mL et environ 500 ng/mL, de préférence environ 10 ng/mL et environ 200 ng/mL, préférentiellement entre environ 50 ng/mL et environ 150 ng/mL, préférentiellement une concentration de 100 ng/ML ; et/ou TPO à une concentration comprise entre environ 0,1 ng/mL et environ 200 ng/mL, de préférence environ 1 ng/mL et environ 100 ng/mL, préférentiellement entre environ 10 ng/mL et environ 50 ng/mL, préférentiellement une concentration de 20 ng/ML ; et/ou G-CSF à une concentration comprise entre environ 0,1 ng/mL et environ 200 ng/mL, de préférence environ 1 ng/mL et environ 100 ng/mL, préférentiellement entre environ 5 ng/mL et environ 25 ng/mL, préférentiellement une concentration de 10 ng/ML, et/ou transferrine, de préférence transferrine humaine, à une concentration comprise entre environ 50 pg/mL et environ 400 pg/mL, de préférence entre environ 50 pg/mL et environ 200 pg/mL, de manière préférée entre 100 pg/mL et 150 pg/mL, de manière encore préférée à une concentration d'environ 120 pg/mL ; et/ou insuline, de préférence insuline humaine, à une concentration comprise entre environ 1 pg/mL et environ 50 pg/mL, de préférence entre environ 5 pg/mL et environ 20 pg/mL, de manière encore préférée à une concentration d'environ 10 pg/mL ; et/ou héparine, de préférence héparine humaine, à une concentration comprise entre environ 0,5 U/mL et environ 10 U/mL, de préférence entre environ 1 U/mL et environ 5 U/mL, de manière encore préférée à une concentration d'environ 3 U/mL ; et/ou
L-glutamine à une concentration comprise entre environ 0,1 mM et environ 50 mM, de préférence entre environ 1 mM et environ 15 mM, de manière préférée entre environ 1 mM et environ 5 mM, de manière toute préférée d'environ 4 mM ; et/ou
Inositol à une concentration comprise entre environ 10 pg/mL et environ 200 pg/mL, de préférence entre environ 20 pg/mL et environ 100 pg/mL, de manière préférée entre 20 pg/mL et 60 pg/mL, de manière encore préférée à une concentration d'environ 40 pg/mL ; et/ou
Acide folique à une concentration comprise entre environ 0,1 pg/mL et environ 100 pg/mL, de préférence entre environ 1 pg/mL et environ 100 pg/mL, de manière préférée entre 5 pg/mL et 20 pg/mL, de manière encore préférée à une concentration d'environ 10 pg/mL ; et/ou
Mono-thioglycérol à une concentration comprise entre environ 10-5 M et environ 10-3 M, de préférence entre environ 0,1.10-4 M et environ 10.10-4 M, de manière préférée entre 10-4 M et environ 5.10-4 M, de manière encore préférée à une concentration d'environ 1,6.10-4 M ; et/ou
Hydrocortisone (HC) à une comprise entre environ 10-7 M et environ 10-8 M, de préférence à une concentration d'environ 10-6 M ; et/ou
Sérum de veau foetal à une concentration comprise entre environ 1 % et environ 10 %, de préférence entre environ 3 % et environ 7 %, de manière encore préférée à une concentration d'environ 5%, ; et/ou
Nitrate de fer à une concentration comprise entre environ 1 ng/mL et environ 200 ng/mL, de préférence entre environ 10 ng/mL et environ 150 ng/mL, préférentiellement entre environ 50 ng/mL et environ 150 ng/mL, de manière encore préférée à une concentration d'environ 90 ng/mL ;
Sulfate de fer à une concentration comprise entre environ 100 ng/mL et environ 1500 ng/mL, de préférence entre environ 500 ng/mL et environ 1500 ng/mL, préférentiellement entre environ 800 ng/mL et environ 1000 ng/mL, de manière encore préférée à une concentration d'environ 900 ng/mL ;
Sérum d'albumine humaine ou bovine à une concentration comprise entre environ 1 mg/mL et environ 50 mg/mL, de préférence entre environ 5 mg/mL et environ 20 mg/mL, de manière encore préférée à une concentration d'environ 10 mg/mL ;
Albumine à une concentration comprise entre environ 1 % et environ 10 %, de préférence entre environ 3 % et environ 7 %, de manière encore préférée à une concentration d'environ 4%, et/ou
Complément en BIT 9500 (Stem Cell Technologies) à une concentration comprise entre environ 1 % et environ 30 %, de préférence entre environ 10 % et environ 20 %, de manière encore préférée à une concentration d'environ 15% ; et/ou ; du sérum, plasma ou pool de sérum, de préférence humains, à une concentration comprise entre environ 1 % et environ 10 %, de préférence entre environ 3 % et environ 7 %, de manière encore préféré à une concentration d'environ 5%, et/ou un lysat plaquettaire, de préférence d'origine humaine, à une concentration comprise entre environ 0,05% et environ 0,5 %, de préférence entre environ 0,1 % et environ 0,5 %, de manière encore préféré à une concentration d'environ 0,3 % ; ou l'une quelconque de leur combinaison.
Selon certains modes de réalisation, le milieu de culture selon l'invention est un milieu de culture comprenant :
L-glutamine à une concentration comprise entre environ 0,1 mM et environ 50 mM, de préférence entre environ 1 mM et environ 15 mM, de manière préférée entre environ 1 mM et environ 5 mM, de manière toute préférée d'environ 4 mM ; et/ou
Inositol à une concentration comprise entre environ 10 pg/mL et environ 200 pg/mL, de préférence entre environ 20 pg/mL et environ 100 pg/mL, de manière préférée entre 20 pg/mL et 60 pg/mL, de manière encore préférée à une concentration d'environ 40 pg/mL ; et/ou
Acide folique à une concentration comprise entre environ 0,1 pg/mL et environ 100 pg/mL, de préférence entre environ 1 pg/mL et environ 100 pg/mL, de manière préférée entre 5 pg/mL et 20 pg/mL, de manière encore préférée à une concentration d'environ 10 pg/mL ; et/ou
Mono-thioglycérol à une concentration comprise entre environ 10-5 M et environ 10-3 M, de préférence entre environ 0,1.10-4 M et environ 10.10-4 M, de manière préférée entre 10-4 M et environ 5.10-4 M, de manière encore préférée à une concentration d'environ 1,6.10-4 M ; et/ou transferrine, de préférence transferrine humaine, à une concentration comprise entre environ 50 pg/mL et environ 400 pg/mL, de préférence entre environ 50 pg/mL et environ 200 pg/mL, de manière préférée entre 100 pg/mL et 150 pg/mL, de manière encore préférée à une concentration d'environ 120 pg/mL ; et/ou insuline, de préférence insuline humaine, à une concentration comprise entre environ 1 pg/mL et environ 50 pg/mL, de préférence entre environ 5 pg/mL et environ 20 pg/mL, de manière encore préférée à une concentration d'environ 10 pg/mL ; et/ou
Nitrate de fer à une concentration comprise entre environ 1 ng/mL et environ 200 ng/mL, de préférence entre environ 10 ng/mL et environ 150 ng/mL, préférentiellement entre environ 50 ng/mL et environ 150 ng/mL, de manière encore préférée à une concentration d'environ 90 ng/ L ;
Sulfate de fer à une concentration comprise entre environ 100 ng/mL et environ 1500 ng/mL, de préférence entre environ 500 ng/mL et environ 1500 ng/mL, préférentiellement entre environ 800 ng/mL et environ 1000 ng/mL, de manière encore préférée à une concentration d'environ 900 ng/mL ;
Sérum d'albumine humaine à une concentration comprise entre environ 1 mg/mL et environ 50 mg/mL, de préférence entre environ 5 mg/mL et environ 20 mg/mL, de manière encore préférée à une concentration d'environ 10 mg/mL ; et/ou
IL-3, de préférence IL-3 humaine, à une concentration comprise entre environ 1 ng/mL et environ 20 ng/mL, de préférence entre environ 5 ng/mL et environ 15 ng/mL, de manière encore préférée à une concentration d'environ 5 ng/mL ; et/ou
SCF à une concentration comprise entre environ 1 ng/mL et environ 500 ng/mL, de préférence environ 10 ng/mL et environ 200 ng/mL, préférentiellement entre environ 50 ng/mL et environ 150 ng/mL, de manière préférée entre environ 50 ng/mL et environ 100 ng/mL, de manière toute préférée environ 100 ng/ml ; et/ou
EPO, de préférence humaine, à une concentration comprise entre environ 0,5 lU/mL et environ 10 lU/mL, de préférence entre environ 1 lU/mL et environ 5 lU/mL, de manière encore préférée à une concentration d'environ 3 lU/mL ; et/ou
Hydrocortisone (HC) à une comprise entre environ 10-7 M et environ 10-8 M, de préférence à une concentration d'environ 10-6 M.
Selon certains modes de réalisation, le milieu de culture est un milieu d'amplification, notamment adapté à l'amplification des cellules hématopoïétiques multipotentes ou des progéniteurs érythrocytaire unipotents, par exemple un milieu IMDM ou Stem Span II, comprenant en outre :
G-CSF à une concentration comprise entre environ 0,1 ng/mL et environ 200 ng/mL, de préférence environ 1 ng/mL et environ 100 ng/mL, préférentiellement entre environ 5 ng/mL et environ 25 ng/mL, préférentiellement une concentration de 10 ng/ML, et
SCF à une concentration comprise entre environ 1 ng/mL et environ 500 ng/mL, de préférence environ 10 ng/mL et environ 200 ng/mL, préférentiellement entre environ 50 ng/mL et environ 150 ng/mL, préférentiellement une concentration de 100 ng/ML, et
FLT3-L à une concentration comprise entre environ 1 ng/mL et environ 500 ng/mL, de préférence environ 10 ng/mL et environ 200 ng/mL, préférentiellement entre environ 50 ng/mL et environ 150 ng/mL, préférentiellement une concentration de 100 ng/mL, et TPO à une concentration comprise entre environ 0,1 ng/mL et environ 200 ng/mL, de préférence environ 1 ng/mL et environ 100 ng/mL, préférentiellement entre environ 10 ng/mL et environ 50 ng/mL, préférentiellement une concentration de 20 ng/ML.
Selon certains modes de réalisation, le milieu de culture est un milieu d'amplification, notamment adapté à l'amplification des précurseurs érythrocytaire, par exemple un milieu IMDM ou Stem Span II, comprenant en outre :
SCF en particulier à une concentration comprise entre environ 1 ng/mL et environ 500 ng/mL, de préférence environ 10 ng/mL et environ 200 ng/mL, préférentiellement entre environ 50 ng/mL et environ 150 ng/mL, de manière préférée entre environ 50 ng/mL et environ 100 ng/mL, de manière toute préférée environ 100 ng/ml ;
Hydrocortisone (HC) en particulier à une concentration comprise entre environ 10-7 M et environ 10-8 M, de préférence à une concentration d'environ 10-6 M et/ou optionnellement, transferrine (BIT), de préférence transferrine humaine, à une concentration comprise entre environ 50 pg/mL et environ 400 pg/mL, de préférence entre environ 50 pg/mL et environ 200 pg/mL, de manière préférée entre 100 pg/mL et 150 pg/mL, de manière encore préférée à une concentration d'environ 120 pg/mL ;
EPO, de préférence humaine, à une concentration comprise entre environ 0,5 lU/mL et environ 10 lU/mL, de préférence entre environ 1 lU/mL et environ 5 lU/mL, de manière encore préférée à une concentration d'environ 2 lU/mL, et/ou du sérum, plasma ou pool de sérum, de préférence humains, à une concentration comprise entre environ 1 % et environ 10 %, de préférence entre environ 3 % et environ 7 %, de manière encore préféré à une concentration d'environ 5%, et/ou un lysat plaquettaire, de préférence d'origine humaine, à une concentration comprise entre environ 0,05% et environ 0,5 %, de préférence entre environ 0,1 % et environ 0,5 %, de manière encore préféré à une concentration d'environ 0,3 %.
Selon certains autres modes de réalisation, le milieu de culture est un milieu de différenciation, permettant notamment la différenciation des cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, par exemple un milieu IMDM ou Stem Span II, comprenant en outre :
IL-3, de préférence IL-3 humaine, à une concentration comprise entre environ 1 ng/mL et environ 20 ng/mL, de préférence entre environ 5 ng/mL et environ 15 ng/mL, de manière encore préférée à une concentration d'environ 10 ng/mL ; IL-6, de préférence IL-6 humaine, à une concentration comprise entre environ 1 ng/mL et environ 20 ng/mL, de préférence entre environ 5 ng/mL et environ 15 ng/mL, de manière encore préférée à une concentration d'environ 10 ng/mL ;
SCF à une concentration comprise entre environ 1 ng/mL et environ 500 ng/mL, de préférence environ 10 ng/mL et environ 200 ng/mL, préférentiellement entre environ 25 ng/mL et environ 100 ng/mL, préférentiellement une concentration d'environ 50 ng/ML,
Sérum d'albumine bovine (BSA) à une concentration comprise entre environ 1 mg/mL et environ 50 mg/mL, de préférence entre environ 5 mg/mL et environ 20 mg/mL, de manière encore préférée à une concentration d'environ 10 mg/mL ; transferrine (BIT), de préférence transferrine humaine, à une concentration comprise entre environ 50 pg/mL et environ 400 pg/mL, de préférence entre environ 50 pg/mL et environ 200 pg/mL, de manière préférée entre 100 pg/mL et 150 pg/mL, de manière encore préférée à une concentration d'environ 120 pg/mL ; insuline, de préférence insuline humaine, à une concentration comprise entre environ 1 pg/mL et environ 50 pg/mL, de préférence entre environ 5 pg/mL et environ 20 pg/mL, de manière encore préférée à une concentration d'environ 10 pg/mL ;
Optionnellement EPO, de préférence humaine, à une concentration comprise entre environ 0,5 lU/mL et environ 10 lU/mL, de préférence entre environ 1 lU/mL et environ 5 lU/mL, de manière encore préférée à une concentration d'environ 2 lU/mL, et
Optionnellement, du sérum de veau foetale (SVF), en particulier à une concentration comprise entre environ 1% et environ 10%, de préférence à une concentration comprise entre environ 1% et environ 5%.
La BSA, l'insuline et la transferrine peuvent notamment être apportée par l'utilisation de BIT 9500 (Stem Cell Technologies) à une concentration comprise entre environ 1 % et environ 30 %, de préférence entre environ 10 % et environ 20 %, de manière encore préférée à une concentration d'environ 15%, et
Selon certains modes de réalisation, le milieu de culture est un milieu de différenciation, notamment adapté à la différenciation des progéniteurs unipotents en précurseurs érythrocytaires, par exemple un milieu IMDM ou Stem Span II, comprenant en outre :
IL-3, de préférence IL-3 humaine, en particulier à une concentration comprise entre environ 1 ng/mL et environ 20 ng/mL, de préférence entre environ 5 ng/mL et environ 15 ng/mL, de manière encore préférée à une concentration d'environ 5 ng/mL ; et
SCF en particulier à une concentration comprise entre environ 1 ng/mL et environ 500 ng/mL, de préférence environ 10 ng/mL et environ 200 ng/mL, préférentiellement entre environ 50 ng/mL et environ 150 ng/mL, de manière préférée entre environ 50 ng/mL et environ 100 ng/mL, de manière toute préférée environ 100 ng/ml ; et
Hydrocortisone (HC) en particulier à une concentration comprise entre environ 10'7 M et environ 10-8 M, de préférence à une concentration d'environ 10-6 M et/ou optionnellement, et
Optionnellement, de l'EPO, de préférence humaine, en particulier à une concentration comprise entre environ 0,5 lU/mL et environ 10 lU/mL, de préférence entre environ 1 lU/mL et environ 5 lU/mL, de manière encore préférée à une concentration d'environ 3 lU/mL ; et
Optionnellement, du sérum de veau foetale (SVF), en particulier à une concentration comprise entre environ 1% et environ 10%, de préférence à une concentration comprise entre environ
1% et environ 5%.
Selon certains autres modes de réalisation, le milieu de culture est un milieu de maturation ; par exemple un milieu IMDM ou Stem Span II ne comprenant pas de cytokines. De préférence, le milieu de maturation ne comprenant pas de cytokines, mais est supplémenté en érythropoïétine (environ 2 ou 3 UI/mL).
Selon un mode de réalisation très particulier, le milieu de culture selon l'invention comprend un composé vitisine et les composés du Tableau 1, de préférence en concentrations mentionnées dans le tableau 1.
Figure imgf000039_0001
Tableau 1. Exemple de composition de milieu de culture adapté à la culture de cellules hématopoïétiques.
Selon un autre mode de réalisation, le milieu de culture selon l'invention est un milieu de culture comprenant les composés du Tableau 1, de préférence en concentrations mentionnées dans le tableau 1, ainsi que de la BSA, de l'insuline humaine, de la transferrine humaine et optionnellement du 2- Mercaptoethanol, ledit milieu comprenant en outre un composé vitisine.
Le composé vitisine, de préférence la vitisine-B, peut être additionné à l'un quelconque des milieux de culture décrits ci-dessus, tels que des milieux d'amplification, de différenciation et/ou de maturation. En particulier, le composé vitisine, de préférence la vitisine-B, peut être présent dans le milieu selon l'invention à une concentration comprise entre environ 0,5 pM et environ 1 mM, environ 0,5 pM et environ 500 pM, environ 0,5 pM et environ 200 pM, environ 0,5 pM et environ 100 pM, entre environ 0,5 pM et environ 50 pM, entre environ 0,5 pM et environ 40 pM, entre environ 0,5 pM et environ 30 pM, entre environ 0,5 pM et environ 20 pM, entre environ 0,5 pM et environ 15 pM ou entre environ 0,5 pM et environ 10 pM, environ 5 pM et environ 1 mM, environ 5 pM et environ 500 pM, environ 5 pM et environ 200 pM, environ 5 pM et environ 100 pM, entre environ 5 pM et environ 75 pM, entre environ 5 pM et environ 50 pM, entre environ 5 pM et environ 40 pM, entre environ 5 pM et environ 30 pM, entre environ 5 pM et environ 20 pM, entre environ 5 pM et environ 15 pM ou entre environ 5 pM et environ 10 pM, de préférence entre environ 10 pM et environ 1 mM, environ 10 pM et environ 500 pM, environ 10 pM et environ 200 pM, environ 10 pM et environ 100 pM, 10 pM et environ 75 pM, entre environ 10 pM et environ 50 pM, entre environ 10 pM et environ 40 pM, entre environ 10 pM et environ 30 pM, entre environ 10 pM et environ 20 pM, de manière préférée à une concentration d'environ 10 pM. De préférence, le composé vitisine est utilisé à une concentration comprise entre 1 pM et 500 pM, préférentiellement entre 5 pM et 100 pM. En particulier, le composé vitisine, de préférence la vitisine B, est ajouté au milieu de culture à une concentration d'environ 0,5, 1, 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 80, 90, 95 ou 100 pM.
Le milieu de culture selon l'invention comprenant un composé vitisine pourra avantageusement être utilisé dans les procédés de préparation de cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires-érythrocytaires (MEP), progéniteurs érythrocytaires unipotents, de précurseurs érythrocytaires et de globules rouges. En particulier, le milieu de culture selon l'invention comprenant un composé vitisine peut être utilisé dans l'un quelconque des procédés selon l'invention, en particulier tel que décrit ci-dessus dans la section « Méthode de culture ».
La présente invention concerne ainsi également l'utilisation du milieu de culture cellulaire selon l'invention, en particulier un milieu de culture adapté à l'amplification, la différenciation et/ou la maturation des cellules hématopoïétiques et comprenant un composé vitisine, notamment un milieu tel que décrit dans l'un quelconque des différents modes de réalisation ci-dessus, pour (i) l'amplification et/ou la différenciation de cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires-érythrocytaires (MEP) ou de progéniteurs érythrocytaires unipotents et/ou (ii) pour la différenciation et/ou la maturation de précurseurs érythrocytaires, et/ou (iii) la production de progéniteurs érythrocytaires unipotents et/ou d'érythrocytes, notamment selon les procédés de l'invention décrits ci-dessous, et plus particulièrement pour stimuler la différenciation des CSH, MPP, CMP et/ou MEP en progéniteurs érythrocytaires unipotents ; la différenciation progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires et/ou pour stimuler la maturation des précurseurs érythrocytaires en érythrocytes.
La présente invention concerne également l'utilisation d'un composé vitisine pour supplémenter un milieu de culture cellulaire, en particulier un milieu de culture cellulaire adapté à l'amplification et/ou la différenciation et/ou la maturation de cellules hématopoïétiques, et plus particulièrement un milieu de culture cellulaire adapté à (i) l'amplification et/ou la différenciation de cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires-érythrocytaires (MEP) ou de progéniteurs érythrocytaires unipotents et/ou (ii) la maturation de précurseurs érythrocytaires, et/ou (iii) la production de progéniteurs érythrocytaires unipotents et/ou d'érythrocytes.
La présente invention concerne également l'utilisation d'un composé vitisine pour (i) stimuler l'amplification et/ou la différenciation de cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires- érythrocytaires (MEP) ou de progéniteurs érythrocytaires unipotents et/ou (ii) stimuler la maturation de précurseurs érythrocytaires, et/ou (iii) stimuler la production de progéniteurs érythrocytaires unipotents et/ou d'érythrocytes.
Le composé vitisine peut être simplement ajouté à un milieu de base, de préférence un milieu de base adapté aux exigences des cellules hématopoïétiques. Le composé vitisine est de préférence ajouté dans un milieu de culture choisi parmi un milieu d'amplification, un milieu de différenciation et un milieu de maturation, notamment tel que défini ci-dessus. Le composé vitisine peut notamment être ajouté pour être présent dans le milieu supplémenté à une concentration telle que définie ci-dessus.
Compositions à base de composé vitisine et leur utilisation
Selon un autre aspect, la présente invention concerne l'utilisation d'un composé vitisine pour favoriser ou stimuler la production de cellules hématopoïétiques, en particulier d'érythrocytes, chez un individu, en particulier un individu souffrant d'une hémopathie.
La présente invention concerne également le composé vitisine en tant que médicament pour le traitement d'une pathologie hématologique. Le terme « médicament », tel qu'utilisé ici, englobe des médicaments à usage humain et animal en médecine humaine et vétérinaire et fait référence à toute substance acceptable sur le plan pharmacologique qui procure un effet thérapeutique et/ou bénéfique.
La présente invention concerne aussi une composition, en particulier une composition pharmaceutique comprenant un composé vitisine pour son utilisation dans le traitement d'une pathologie hématologique ou le traitement de patient ayant subi une perte de sang.
Telle qu'utilisée ici, une « composition pharmaceutique » désigne une préparation d'un agent actif avec d'autres composants chimiques optionnels tels que des supports physiologiquement appropriés et/ou des excipients. La composition pharmaceutique selon l'invention englobe les compositions pharmaceutiques utilisées en médecine humaine et les compositions pharmaceutiques utilisées en médecine animale, c'est à dire les compositions vétérinaires.
Le terme « traitement » se rapporte ici à l'obtention d'un effet pharmacologique et/ou physiologique souhaité. L'effet peut être prophylactique en termes de prévention totale ou partielle d'une maladie ou d'un symptôme et/ou peut être thérapeutique en termes de guérison partielle ou complète d'une maladie et/ou d'un effet indésirable attribuable à la maladie. Le terme « traitement » tel qu'utilisé ici couvre tout traitement d'une maladie chez un sujet, en particulier chez un humain, pour : réduire l'incidence et/ou le risque de rechute de la maladie pendant une période sans symptômes; soulager ou réduire un symptôme de la maladie; empêcher la maladie de se produire chez un sujet qui peut être prédisposé à la maladie mais qui n'a pas encore été diagnostiqué comme l'ayant; inhiber la maladie, c'est- à-dire stopper son développement (par exemple, réduire le taux de progression); réduire la fréquence des épisodes de la maladie; et soulager la maladie, c'est-à-dire provoquer une régression totale ou partielle de la maladie.
Les termes « maladie du sang », « hémopathie » ou « pathologie hématologique » sont interchangeables et se réfèrent ici à une maladie affectant les composants du sang (cellules sanguines telles qu'érythrocytes, leucocytes et plaquettes) ou d'autres composants (hémoglobine, protéines sanguines) ou qui affectent la production du sang ou ses mécanisme (coagulation, etc.). En particulier, l'hémopathie envisagée par l'invention est une maladie liée à une atteinte des globules rouges ou à une insuffisance de production des cellules hématopoïétiques, de préférence de globules rouges.
La maladie hématologique peut notamment être sélectionnée parmi la drépanocytose, syndromes myéloprolifératifs (leucémies, maladie de Vaquez), l'anémie aplasique ainsi que les anémies d'autres étiologies.
La composition pharmaceutique ou le composé vitisine peut également être utilisé pour le traitement d'une insuffisance de production des cellules hématopoïétiques, de préférence des globules rouges, causée par une autre maladie, par exemple un cancer.
La composition pharmaceutique ou le composé vitisine peut également être utilisé pour le traitement de patients qui ont subi une forte perte de sang, notamment dans le cadre de patient nécessitant une transfusion sanguine. En particulier, la transfusion survient chez des patients pour lesquels l'hémoglobinémie est inférieure à 10. La transfusion sanguine consiste à injecter du sang ou un composant sanguin par voie intraveineuse. La composition pharmaceutique ou le composé vitisine peuvent ainsi être utilisés en complément d'une transfusion sanguine.
La composition pharmaceutique selon l'invention comprend un composé vitisine comme principe actif.
Dans un mode de réalisation, la composition pharmaceutique peut, en outre, contenir au moins un principe actif pharmaceutique supplémentaire. On entend par « principe actif pharmaceutique », tout composé ou substance dont l'administration a un effet thérapeutique ou un effet bénéfique à la santé ou condition générale d'un patient ou d'un sujet auquel il est administré.
La formulation d'une telle composition pharmaceutique peut varier en fonction de la voie d'administration et du dosage pour lesquels la composition est destinée à être utilisée. La composition selon l'invention peut comprendre en outre un support pharmaceutiquement acceptable Tel qu'utilisé ici, les termes « support pharmaceutiquement acceptable » ou « excipient pharmaceutiquement acceptable » ou « véhicule pharmaceutiquement acceptable » sont interchangeables et comprennent tous composés ou combinaisons de composés qui sont connus de l'homme de l'art comme étant utiles dans la formulation de compositions pharmaceutiques ou vétérinaires. L'homme de l'art sait sélectionner les véhicules et excipients les plus appropriés à la préparation d'un type donné de formulation.
Le composé vitisine ou la composition pharmaceutique peut être utilisé pour être administré à un sujet. Les termes « individu », « hôte », « sujet » et « patient », sont utilisés ici de manière interchangeable, et désignent un animal, de préférence un mammifère, et plus particulièrement un humain. De préférence, le patient traité est un être humain, par exemple un enfant ou un adulte. En particulier, les sujets envisagés par l'invention sont atteints d'une pathologie hématologique ou d'une autre pathologie induisant une insuffisance de production des cellules hématopoïétiques, de préférence des globules rouges, par exemple un cancer.
La présente invention concerne encore une méthode de traitement d'une pathologie hématologique ou d'une autre pathologie induisant une insuffisance de production des cellules hématopoïétiques. Les méthodes de traitement selon l'invention impliquent généralement l'administration à un individu qui en a besoin d'une quantité efficace du composé vitisine ou d'une composition comprenant un composé vitisine. En particulier, le traitement est soit dans un but curatif soit dans un but préventif afin de limiter ou retarder l'apparition d'une pathologie hématologique, d'une autre pathologie induisant une insuffisance de production des cellules hématopoïétiques ou un symptôme associé à la maladie.
La quantité thérapeutiquement efficace ou suffisante d'un composé vitisine ou d'une composition pharmaceutique comprenant ce composé, est une quantité permettant d'obtenir l'effet recherché, à savoir un effet favorisant la production de cellules hématopoïétiques, en particulier de globules rouges, par le patient.
Dans un mode de réalisation particulier, un traitement classique connu par l'homme du métier pour traiter une pathologie hématologique peut être complété par l'administration d'un composé vitisine selon l'invention. Par exemple, l'administration du composé vitisine peut être associé à l'administration d'érythropoïétine ou à une transfusion sanguine. L'administration du composé vitisine peut être réalisée avant, pendant et/ou après le traitement conventionnel envisagé pour la maladie à traiter. Trousse
Dans un dernier aspect, la présente invention concerne encore une trousse comprenant les composés permettant l'obtention d'un milieu de culture cellulaire selon l'invention, en particulier tel que décrit ci- dessus à la section « Milieu de culture », ledit milieu ne comprenant pas de composé vitisine, ladite trousse comprenant en outre un composé vitisine.
En particulier, la présente invention concerne une trousse comprenant : un milieu de culture cellulaire, en particulier un milieu d'amplification, de différenciation et/ou de maturation des cellules hématopoïétiques, de préférence tel que décrit ci-dessus à la section « Milieu de culture », ledit milieu ne comprenant pas de composé vitisine ; et un composé vitisine, et optionnellement, des cellules hématopoïétiques telles que décrites ci-dessus à la section « Erythropoïèse et cellules hématopoïétiques », en particulier des CSH, MPP, CMP, MEP, progéniteurs érythrocytaires unipotents et/ou précurseurs érythrocytaires ; et optionnellement, un guide contenant des instructions pour l'utilisation d'une telle trousse.
De préférence, la trousse comprend : un milieu de culture cellulaire, en particulier tel que décrit ci-dessus à la section « Milieu de culture », de préférence un milieu IMDM et/ou un milieu Stem Span II, ledit milieu ne comprenant pas de composé vitisine ; un ou plusieurs composés choisis parmi de l'érythropoïétine (EPO), du Stem Cell Factor (SCF), de I' Hydrocortisone (HC), des facteurs de croissance, de l'interleukine 3 (IL3), de l'interleukine 6 (IL6), de l'interleukine 11 (IL11), de la transferrine, de l'héparine, de l'insuline, de la thrombopoïétine, du ligand de la tyrosine kinase 3 de type FMS (Flt3-L) du Facteur de stimulation des colonies de granulocytes (G-CSF), de la L-glutamine, de l'inositol, un antibiotique tel que pénicilline et/ou streptomycine, de l'acide folique, du mono-thioglycérol, du nitrate de fer, du sulfate de fer, du sérum d'albumine humaine, du sérum, ou du plasma, ou l'une quelconque de leur combinaison, de préférence choisi parmi de l'érythropoïétine (EPO), du Stem Cell Factor (SCF), de l'Hydrocortisone (HC), des facteurs de croissance, de l'interleukine 3 (IL3), de l'interleukine 6 (IL6), de l'interleukine 11 ( I LU), du BIT9500, du ligand de la tyrosine kinase 3 de type FMS (Flt3-L) du Facteur de stimulation des colonies de granulocytes (G-CSF), de la thrombopoïétine (TPO), un antibiotique tel que pénicilline et/ou streptomycine, ou l'une quelconque de leur combinaison ; un composé vitisine, optionnellement, des cellules hématopoïétiques telles que décrites ci-dessus à la section « Erythropoïèse et cellules hématopoïétiques », en particulier des CSH, MPP, CMP, MEP, progéniteurs érythrocytaires unipotents et/ou précurseurs érythrocytaires ; et optionnellement, un guide contenant des instructions pour l'utilisation d'une telle trousse.
Alternativement, la trousse selon l'invention peut comprendre :
- un milieu de culture cellulaire tel que défini ci-dessus à la section « milieu de culture » et comprenant un composé vitisine ; et
- optionnellement, des cellules hématopoïétiques telles que décrites ci-dessus à la section « Erythropoïèse et cellules hématopoïétiques » en particulier des CSH, MPP, CMP, MEP, progéniteurs érythrocytaires unipotents et/ou précurseurs érythrocytaires ; et optionnellement, un guide contenant des instructions pour l'utilisation d'une telle trousse.
En particulier, la présente trousse peut comprendre les ingrédients nécessaires à l'obtention du milieu de culture sous forme déshydratée, dans un contenant commun ou dans des contenants séparés.
La trousse selon l'invention peut comprendre en outre divers matériaux et réactifs à utiliser conformément à la présente invention dans des contenants et des matériaux d'emballage appropriés, notamment des pipettes, des tubes ou des flacons.
La trousse peut en outre comprendre des moyens permettant le prélèvement d'un échantillon biologique tel que du sang, par exemple une seringue.
La présente invention concerne également l'utilisation d'une trousse selon l'invention pour produire des progéniteurs érythrocytaires, précurseurs érythrocytaires et/ou des érythrocytes, notamment selon les procédés de l'invention décrits ci-dessus.
Tel qu'utilisé ici, le terme « comprenant » ou « comprend » est utilisé en référence à des substances, composés ou procédés qui sont essentiels à l'invention, mais qui sont ouverts à l'inclusion d'éléments non spécifiques, essentiels ou non. L'utilisation de « comprenant » indique l'inclusion plutôt que la limitation.
Le terme « et/ou » tel qu'il est utilisé ici doit être considéré comme une description spécifique de chacune des deux caractéristiques ou composants spécifiés, avec ou sans l'autre. Par exemple, « A et/ou B » doit être considéré comme une divulgation spécifique de chacun des éléments suivants : (i) A, (ii) B et (iii) A et B, comme si chacun d'eux était présenté individuellement. Le terme « environ » tel qu'utilisé ici en relation avec toutes les valeurs (incluant les extrémités inférieures et supérieures de plages numériques) signifie toute valeur ayant une variation acceptable allant jusqu'à +/- 10% (par exemple, +/- 0,5%, +/- 1%, +/- 1,5%, +/- 2%, +/- 2,5%, +/- 3%, +/- 3,5%, +/- 4%, +/- 4,5%, +/- 5%, +/- 5,5%, +/- 6%, +/- 6,5%, +/- 7%, +/- 7,5%, +/- 8%, +/- 8,5%, + / - 9%, +/- 9,5%). L'utilisation du terme « environ » au début d'une liste de valeurs modifie chacune d'entre elles (c'est-à- dire « environ 1, 2 et 3 » se réfère à environ 1, environ 2 et environ 3). En outre, lorsqu'une liste de valeurs est décrite (par exemple environ 50%, 60%, 70%, 80%, 85% ou 86%), la liste inclut toutes ses valeurs intermédiaires et fractionnaires (par exemple 54% ou 85,4%).
Toutes les références citées dans cette demande, y compris les articles de journaux ou les résumés, les demandes de brevets publiées, les brevets délivrés ou tout autre référence, sont entièrement incorporées ici par référence, ce qui inclus tous les résultats, tables, figures et textes présentés dans ces références.
D'autres caractéristiques et avantages de l'invention apparaîtront mieux à la lecture des exemples suivants donnés à titre illustratif et non limitatif.
Description des figures
Figure 1 : Effet de la vitisine B sur l'amplification ex vivo de progéniteurs hématopoïétiques, notamment sur des progéniteurs à potentiel érythrocytaires CD34+CD133neg dans une procédure d'amplification réalisée à partir de cellules CD34+ de sang périphérique. Les données représentent le nombre absolu à la fin du protocole de chaque sous-population cellulaire identifiée phénotypiquement. Les données représentent la moyenne de 4 expériences.
Figure 2 : Comparaison des effets de la Vitisine B avec d'autres dérivés/analogues du Resvératrol sur la production ex vivo de progéniteurs à potentiel érythrocytaires CD34+CD133neg. Les données représentent une comparaison des proportions (A) et des nombres absolus (B) de progéniteurs CD34+CD133neg en fin de protocole en fonction des molécules testées. Les données représentent la moyenne de 5 expériences.
Figure 3 : Effet de la Vitisine B sur la différenciation érythrocytaire, dans une procédure simplifiée de différenciation érythrocytaire (PROTOCOLE ERYTHRO 1, détaillé dans la partie expérimentale) à partir de cellules CD34+ de sang périphérique. Les données représentent le niveau d'expression membranaire du CD71 (intensité moyenne de fluorescence, valeurs arbitraires relatives) (A) et les proportions relatives de cellules ayant acquis l'expression de la GPA à leur membrane (B) en fonction de la dose de Vitisine B dans le milieu de culture. Les données représentent la moyenne de 6 expériences. Les quantités de la vitisine B indiquées correspondent aux concentrations de 5, 10, 15, 20 et 30 pM, respectivement. Figure 4 : Effet de la Vitisine B sur la différenciation érythrocytaire, dans une procédure simplifiée de différenciation érythrocytaire (PROTOCOLE ERYTHRO 1, détaillé dans la partie expérimentale) à partir de sous-population SP, CMP et MEP isolées à partir de cellules CD34+ de sang périphérique. Les données représentent l'évolution au cours de la culture des proportions relatives de cellules exprimant la GPA et le CD71 à leur membrane (A) ainsi que l'évolution du niveau d'expression membranaire du CD71 (intensité moyenne de fluorescence, valeurs arbitraires relatives) (B) et fonction de la présence ou non de Vitisine B (10 pM) dans le milieu de culture. Les données représentent la moyenne de 3 expériences.
Figure 5 : Effet de la Vitisine B sur l'amplification totale de cellules CD34+ de sang placentaire selon un procédé optimisé de production en trois phases (PROTOCOLE ERYTHRO 2, détaillé dans la partie expérimentale). Le graphique représente le nombre absolu de cellules obtenues et comptées au cours de la culture en absence ou en présence de Vitisine B (10 pM). CTRL : Absence de Vitisine B en culture / Vitisine B I : Présence de Vitisine B pendant la phase I / Vitisine B II : Présence de Vitisine B pendant les phases I et II / Vitisine B III : Présence de Vitisine B pendant les trois phases du protocole. Les données représentent la moyenne de deux expériences.
Figure 6 : Effet de la Vitisine B sur la différenciation en cellules érythrocytaires de cellules CD34+ de sang placentaire et de sang périphérique. La cinétique d'expression de la Glycophorine A (GPA) et du récepteur à la transferrine 1 (CD71) a été analysée au cours de la différenciation des cellules érythrocytaires en présence ou en absence de la molécule Vitisine B (10 pM). Panels A et B : Cellules CD34+ de sang placentaire, les données représentent la moyenne de deux expériences. Les histogrammes représentent l'évolution au cours de la culture des proportions relatives (panel A) et des quantités (panel B) de cellules de phénotype CD71negGPA+. Panel C : Cellules CD34+ de sang périphérique, les données représentent la moyenne de 5 expériences. Les histogrammes représentent l'évolution au cours de la culture des quantités de cellules de phénotype CD71negGPA+.
Figure 7 : Effet de la Vitisine B sur l'amplification des progéniteurs érythrocytaires BFU-E et CFU-E à partir de cellules CD34+ de sang placentaire. Le nombre de progéniteurs érythrocytaires primitifs (BFU-E, panel A) et matures (CFU-E, Panel B) a été estimé dans le cadre d'un test clonogénique réalisé à J4, J8 et J 11 de la culture érythrocytaire. Les données représentent la moyenne de 4 expériences.
Préambule - Principales étapes
1. Première étape -Test de molécules sur l'amplification de cellules hématopoïétiques
La Vitisine B a été testée dans un protocole d'amplification des cellules hématopoïétiques et a été comparée à 7 autres molécules de type stilbène.
Des cellules CD34+, issues de sang périphérique en homéostasie ont été utilisées dans cette expérience. Un protocole de culture cellulaire unique, dédié à l'amplification globale des progéniteurs hématopoïétiques, a été utilisé. Il s'agit du « PROTOCOLE AMPLIFICATION » décrit ci-dessous dans la partie Matériels et Méthode section B.l.
Les résultats obtenus au cours de cette étape ont permis d'identifier la molécule « Vitisine B » comme molécule favorisant spontanément l'amplification d'une sous-population à potentiel érythrocytaire.
2. Seconde étape de l'étude - Etude de l'effet de la Vitisine B sur la production de cellules érythrocytaires
La Vitisine B a été testée pour définir sa capacité à optimiser la production de progéniteurs érythrocytaires et de globules rouges dans des systèmes de cultures dédiés à la différenciation érythrocytaires.
Différentes populations cellulaires d'intérêts ont été testées o Les cellules CD34+ totales. o Différentes sous-population de CD34+ : Side Population (SP), CMP (Common Myeloid Progenitor), MEP (Megakaryocytic and Erythroid progenitor), et BFU-E (Burst Forming Unit Erythroid).
L'ensemble de ces différentes populations cellulaires est physiologiquement organisé selon la hiérarchie SP->CMP->MEP->BFU-E->Erythroblaste/Réticulocyte/Globule rouge d'une part et SP->CMP- - >autres cellules sanguines d'autres part. Ces différentes populations concourent ainsi à la production de cellules sanguines matures.
L'étude de l'effet de la vitisine B vise ainsi des populations cellulaires ayant un potentiel à produire des globules rouges (CD34+, SP, CMP, MEP et BFU-E).
Ces populations cellulaires d'intérêt sont issues de 2 sources différentes de cellules, le sang périphérique en homéostasie (SSBP) et/ou le sang placentaire (USP). Les populations cellulaires d'intérêt étudiées proviennent donc de l'une de ces deux sources, ou éventuellement de chacune de ces deux sources.
En particulier, les cellules CD34+ proviennent de sang périphérique et/ou placentaire, les cellules SP, CMP et MEP de sang périphérique, et les cellules BFU-E de sang placentaire.
Deux protocoles différents de culture permettant la différenciation des populations cellulaires d'intérêt en cellules érythrocytaires ont été utilisés : o un protocole simplifié en 2 phases (décrit dans le Matériels et Méthodes, section B.2. b) o un protocole optimisé en 3 phases (décrit dans le Matériels et Méthodes, section B.2.c) Le tableau 2 ci-dessous récapitule l'organisation de l'étude.
Figure imgf000049_0001
Tableau 2. Organisation de l'étude.
I. Matériels et Méthodes A. Isolement des populations d'intérêt
Les phénotypes à partir desquels les différentes populations d'intérêt sont isolées à partir des cellules CD34+ (phénotype décrit au point II.A.l ci-dessous) sont résumés dans le Tableau 3 ci-dessous avec un renvoi aux sections correspondantes du « Matériels et Méthodes ».
Figure imgf000049_0002
Tableau 3. Phénotypes utilisés pour l'isolement des différentes sous-populations de cellules CD34+ utilisées au cours de l'étude.
1. Isolement des cellules CD34+
Cet isolement repose sur une technique de tri immunomagnétique. La sélection des cellules de la lignée hématopoïétique possédant l'antigène de surface CD34 a été réalisée par l'isolement préalable de la fraction des cellules mononucléées du sang à partir des leucocytes du sang périphérique ou du sang placentaire. Les cellules sont isolées du sang par gradient de densité, en utilisant une solution isotonique de Ficoll (d = 1.077). Les cellules mononucléées sont ensuite débarrassées des plaquettes sanguines résiduelles par gradient de densité (d=l,040), et lavage du culot cellulaire dans une solution de sucrose (d=l,0721) puis centrifugé (430g, 10 min, 4°C). Après élimination des plaquettes, les culots contenant les cellules mononucléées sont récupérés et rincés deux fois avec du tampon de sélection (PBS PH 7,2, EDTA 200 mM et albumine humaine (20%)) par centrifugation (430g, 10 min, 4°C). Le culot est ensuite remis en suspension dans 2mL de tampon de sélection supplémenté en DNase et Tégéline (0,5g/mL).
Les cellules CD34+ obtenues ont ensuite été isolées par une procédure de sélection positive immunomagnétique réalisée à partir d'un kit de sélection (Indirect kit CD34 microbeads kit, Miltenyi Biotec, Bergisch Gladbach, Germany) (Peytour et al., 2010).
2. Isolement des différentes sous-population de cellules CD34+ a. Isolement des cellules Side Population (cellules SP)
Les cellules SP sont identifiables grâce à leur propriété d'expulsion de certains colorants tels que le Hoescht ou le Dye Cycle Violet (DCV)). Cette expulsion se fait grâce à des pompes ATP Binding Cassette (ABCG2) dépendantes du calcium (Brunet de la Grange et al., 2013). Pour identifier les cellules SP au sein des cellules CD34+ préalablement isolées, celles-ci sont mises en incubation avec un colorant DCV (5pM) dans un milieu DMEM+ (Dulbecco's Modified Eagle's Medium (DMEM), 2% SVF, 1% HEPES) pendant 2h à 37°C et à l'obscurité. Après l'incubation, toutes les manipulations jusqu'au tri final des cellules sont réalisées dans la glace et en milieu PBS+ (PBS, 2% SVF), milieu pauvre en glucose et calcium provoquant l'arrêt des pompes d'expulsion. Les cellules sont rincées par du PBS+ froid et centrifugées (430g, 10 min, 4°C). Après remise en suspension du culot dans du PBS+, les cellules sont incubées avec le marqueur de viabilité 7AAD (7-Aminoactinomycine-D) (1 :100000) permettant d'exclure les éventuelles cellules mortes, et un anticorps anti-CD34-APC (1 :100000) (Beckman Coulter). Après incubation pendant 15 minutes, les cellules sont rincées dans du PBS+, centrifugées (430 g, 10 min, 4°C) et remises en suspension dans du PBS+. Les cellules CD34+ présentant une intensité de fluorescence faible pour le marqueur DCV (cellules CD34+SP) sont analysées (UV 350nm ou violet 405nm), triées et récupérées grâce à un trieur de cellules ARIA (Becton Diockinson). b. Isolement des progéniteurs CMP et MEP
Les cellules CD34+ préalablement isolées par la technique immunomagnétique ont été marquées avec des anticorps (BD Pharmingen) anti-CD34-BV421 (1 :100000), anti-CD45RA-BB517 (1 :100000), anti-CD123- Alexa647 (1,5 :100000) et par un cocktail d'anticorps anti-LIN-PE (2 :100000) pendant 15 minutes. Les anticorps du cocktail LIN sont dirigés contre des marqueurs spécifiques des cellules matures (CD2, CD3, CD4, CD7, CD8, CD10, CDllb, CD14, CD19, CD20, CD56, CD235a). Ce cocktail LIN permet ainsi un enrichissement en cellules immatures dites « Ll Nneg » par déplétion des cellules matures. Après incubation avec ces anticorps, les cellules sont rincées par une solution de PBS+ (PBS + 2% Sérum Veau Foetal (SVF)) et centrifugées (430g, 10 min, 4°C).
Après remise en suspension des cellules dans du PBS+, les CMP de phénotype CD34+LINnegCD123+CD45RAneg et les MEP de phénotype CD34+LINnegCD123negCD45RAneg sont triées et récoltées grâce à un trieur de cellules ARIA (Manz et al., 2002). c. Isolement des progéniteurs BFU-E et CFU-E
Des cellules CD34+ de sang placentaire, préalablement isolées par tri immunomagnétique, sont marquées avec des anticorps spécifiques d'antigènes de surface permettant de cibler et de discriminer les progéniteurs érythrocytaires primitifs BFU-E, à savoir des anticorps anti-CD34, anti-GPA, anti CD123 et anti-CD36. Les progéniteurs érythrocytaires primitifs (BFU-E) sont définis par le phénotype suivant : CD34+CD123negCD36negGPAneg. Les progéniteurs érythrocytaires matures (CFU-E) sont définis par le phénotype suivant : CD34negCD123negCD36+GPAnegCD71high.
Pour réaliser l'immunomarquage, les cellules sont incubées avec une solution de blocage pendant 10 minutes à 4°C afin de saturer les récepteurs Fc qui sont des sites de fixation non spécifiques des anticorps. Les anticorps sont ajoutés et la suspension incubée 15 minutes à l'obscurité et à température ambiante. L'excès d'anticorps est éliminé par lavage des cellules avec 40 mL de Tampon PBS/BSA à 300 g pendant 10 minutes à 4°C, puis le culot cellulaire a été remis en suspension à une concentration de 15xl06 cellules/mL. Cette suspension cellulaire a été incubée pendant 10 minutes dans la glace avec le marqueur de viabilité fluorescent 7-AAD (7-aminoactinomycine D) qui permet donc de mettre en évidence la viabilité cellulaire et d'exclure les cellules mortes
Après le marquage phénotypique, les progéniteurs érythrocytaires primitifs (BFU-E) sont isolés par la technique du tri cellulaire (ARIA BD).
Après le tri cellulaire de la population enrichie en progéniteurs érythrocytaires primitifs BFU-E celle-ci est lavée dans du tampon PBS et centrifugée à 300 g pendant 10 minutes à 4°C. Le culot cellulaire a été remis en suspension.
L'enrichissement de la population cellulaire en BFU-E a été vérifié par réalisation d'un test clonogénique CFC (Colony Forming Cells).
B. Stratégies de culture cellulaire
Les cultures cellulaires ont été effectuées en conditions stériles sous PSM (poste de sécurité microbiologique). Les cellules ont été cultivées dans un incubateur à 37°C avec un taux de CO2 de 5%.
En fonction l'objectif et de la population cellulaire de départ, plusieurs stratégies de cultures ont été utilisées : 1. Concernant la lère étape de l'étude : « PROTOCOLE AMPLIFICATION »
Il s'agit d'une stratégie d'amplification des progéniteurs hématopoïétiques. Cette culture est constituée comme suit : les cellules CD34+ du sang périphérique sont isolées (comme indiqué dans la section II.A.l), et sont mises en cultures pendant 12 jours dans un Milieu Stem Span II (Stem Cell Technologies) complémenté en cytokines : SCF à 100 ng/ML, FLT3-L à 100 ng/ML, TPO à 20 ng/ML, G-CSF 10 ng/ML. Le produit d'amplification est analysé par quantification de la prolifération (comptage sur lames de Malassez) et analyse phénotypique des sous-populations de cellules CD34+ par cytométrie en flux. La Vitisine B est utilisée à différentes concentrations, notamment 10 et 50 pM. La Vitisine B est également comparée aux molécules de type stilbène suivantes à la concentration de 10 pM :
Resvératrol, Pallidol, E-Viniférine, Ampelopsine, Oxyresvératrol, Picéatannol, Gnétol
2. Concernant la 2nde étape de l'étude > PROTOCOLES ERYTHRO 1 et ERYTHRO 2
Il s'agit d'une stratégie de différenciation érythrocytaires des différentes cellules hématopoïétiques d'intérêt. a. Amplification / pré-stimulation des cellules SP
Cette étape ne concerne que les cellules SP. Du fait du faible nombre de cellules SP pouvant être isolées (cellules rares par nature) ainsi que de leur statut très immature cette sous-population est de préférence amplifiée et pré-stimulée avant d'être soumise au protocole de différenciation érythrocytaire. Ainsi, les cellules SP sont préalablement mises en culture dans un milieu liquide de culture cellulaire (milieu Stem Span) complémenté en Granulocyte-Colony Stimulating Factor (G-SCF) (10 ng/mL), SCF (100 ng/pL), FLT3-L (100 ng/pL) etThrombopoïétine (TPO) (100 ng/pL) pendant 7 jours. A l'issue de cette étape, les cellules SP sont soumise à un protocole de différenciation érythrocytaire. b. PROTOCOLE ERYTHRO 1 : Protocole de différenciation érythrocytaire ex vivo simplifié (en 2 phases)
Ce protocole a été appliqué aux cellules CD34+ du sang périphérique et du sang placentaire, aux cellules SP pré-stimulées, aux cellules CMP et aux cellules MEP. Pour cette culture, les populations cellulaires d'intérêt sont isolées comme indiqué précédemment et sont mises en culture dans un milieu de culture IMDM complémenté comme suit : 15% de BIT 9500 (Stem Cell Technologies). Le BIT est un mélange de BSA (albumine sérique bovine), insuline et transferrine. Cytokines : IL3 à 10 ng/ML, IL6 à 10ng/ML, SCF à 50 ng/ML. Mélange d'antibiotiques Pénicilline - Streptomycine (100 U/mL) notamment pour éviter toute contamination bactérienne Les différentes populations cellulaires sont ensemencées dans des plaques 24 puits à raison de 200 000 cellules/mL pour les CD34+, les CMP et les MEP. La totalité des cellules récupérées après l'étape « Amplification / pré-stimulation » pour les cellules SP (soit 5000 à 50 000 cellules) a été mise en culture dans des plaques 24 puits.
Cette culture comporte 2 phases : Phase 1 : de J0 à J6, culture sans EPO Phase 2 : à partir de J6 adition de 2 UI/ML d'EPO et prolongement de la culture jusqu'à J21 minimum et J28 maximum.
Afin de tester l'effet de la Vitisine B dans ce contexte, la culture est réalisée en absence et en présence de Vitisine B :
• Condition CTRL : Absence de Vitisine B pendant l'intégralité du protocole.
• Condition test : Présence de Vitisine B à 5, 10, 15, 20 ou 30 pM pendant toute la durée du protocole (phase 1 + phase 2).
Au cours du protocole de culture, le produit de différenciation est analysé par quantification de la prolifération (comptage) et analyse des marqueurs de différenciation érythrocytaires par cytométrie en flux grâce aux marqueurs CD71 et CD235a. c. PROTOCOLE ERYTHRO 2 : Protocole de différenciation érythrocytaire en 3 phases
Ce protocole a été appliqué aux cellules CD34+. La phase 1 de ce protocole a été en particulier appliquée aux cellules BFU-E. Ce protocole a été adapté de la publication de Vlaski et al. (Experimental Hematology 2009 ;37 :573-584).
La production d'érythrocytes ex vivo a été établie sur une culture cellulaire de 28 jours et se compose de trois phases, à savoir 1) l'amplification des progéniteurs érythrocytaires primitifs, puis 2) la différenciation desdits progéniteurs en précurseurs érythrocytaires, et enfin 3) le stade terminal de maturation avec l'énucléation des cellules et le développement des érythrocytes matures.
/. Description détaillée des 3 phases du protocole La Phase I du protocole démarre à J0 par l'ensemencement de 104 cellules/mL dans 5 mL de milieu IMDM supplémenté tel que défini ci-dessous (voir section ii). Au jour 4, une dilution de la culture est réalisée en récupérant 3 mL que l'on remplace par le même volume de milieu frais. Au jour 8, afin de permettre la survie et la différenciation de ces progéniteurs érythrocytaires dépendants notamment des cytokines, les cellules de toutes les conditions sont remises en suspension à 3x10 5/mL et incubées dans 5 mL de milieu IMDM en présence de cytokines (interleukine 3 humaine (hlL3), Stem Cell Factor (SCF), Hydrocortisone (HC) et érythropoïétine (EPO)) pendant les 3 jours suivants. La Phase II du protocole démarre au jour 11, qui correspond au développement des précurseurs érythrocytaires. Du jour 11 à la fin du processus, les cellules sont placées sur une couche de cellules stromales mésenchymateuses (CSM) (coculture), ce qui permet d'achever la maturation terminale en cellules énucléées fonctionnelles grâce au contact entre cellules stromales et précurseurs érythrocytaires. Les cellules érythrocytaires en suspension sont ensemencées à une concentration de 3x10 5/ml et sont co-cultivées du jour 11 au jour 15 dans du milieu frais avec des cytokines (SCF, IL-3, EPO et HC) et 5% de sérum de veau foetal (SVF) nécessaire aux CSM.
Au jour 15, les cellules érythrocytaires en suspension sont retirées de la culture, lavées, puis réensemencées sur une nouvelle couche adhérente de CSM et cultivées pendant 4 jours supplémentaires dans 2 mL de milieu frais contenant uniquement de l'EPO. La Phase III du protocole commence au jour 19. A ce stade, les cellules achèvent leur maturation par l'énucléation des érythroblastes orthochromatiques pour former des réticulocytes et aboutir à la formation d'érythrocytes. Au jour 19, les cellules sont lavées et étalées sur une nouvelle couche de CSM dans 2 mL de milieu frais sans cytokines. Au jour 23, les cultures sont alimentées avec du milieu frais jusqu'au jour 28 qui correspond au dernier jour de culture du protocole d'érythropoïèse.
//. Description du milieu de culture
Les cellules sont incubées dans un milieu de culture Iscove 's Modified Dulbecco Medium (IMDM_PAN BIOTECH) supplémenté avec différents réactifs pour obtenir un milieu favorisant la croissance des cellules engagées vers la lignée érythrocytaire à savoir : L-Glutamine (4 mM), Streptomycine et de la pénicilline (1%), Inositol (40 pg/mL), Acide folique (10 pg/mL), Mono-thioglycérol (1,6.10-4 M), Transferrine (120 pg/mL), Insuline (10 pg/mL), N Nitrate de fer (90 ng/mL), Sulfate de fer (900 ng/mL) Albumine sérique humaine (10 mg/ml).
Après préparation du milieu de culture, des cytokines sont ajoutées extemporanément au milieu de culture : Stem Cell Factor (SCF) à 100 ng/mL, lnterleukine-3 (IL-3) à 5 ng/mL, Erythropoïétine (EPO) à 3 UI/mL, Hydrocortisone (HC)à 10-6 M.
Les cellules CD34+ sont incubées à 20% d'O2 et 5% de CO2 à 37°C durant 28 jours. Hi. Description des conditions de culture réalisées
Afin de tester l'effet de la Vitisine B dans ce contexte, différentes conditions ont été définies.
Pour les cellules CD34+
• Condition CTRL : Absence de Vitisine B pendant l'intégralité du protocole.
• Condition I : Présence de Vitisine B (10 pM) pendant la phase I du protocole.
• Condition II : Présence de Vitisine B (10 pM) pendant les phases I et II du protocole.
• Condition III : Présence de Vitisine B (10 pM) pendant les 3 phases du protocole.
Des analyses sont réalisées sur les cellules de chaque condition. La différenciation et la maturation des cellules érythrocytaires sont suivies par la quantification des progéniteurs, l'analyse de l'expression des marqueurs GPA et CD71, ainsi que par l'analyse morphologique.
Pour les BFU-E
• Condition CTRL : les cellules sont mises en culture pendant 7 jours en absence de Vitisine B.
• Condition TEST : les cellules sont mises en culture pendant 7 jours en présence de Vitisine B à 10 pM.
C. Stratégies d'analyse des cultures cellulaires a. Stratégies d'analyse de l'amplification (ETAPE 1 de l'étude)
Au terme du protocole d'amplification des cellules hématopoïétiques, une analyse de la prolifération cellulaire et de l'amplification de populations cellulaires immatures et engagées est réalisée.
La prolifération cellulaire est évaluée par énumération des cellules sur lames de Malassez avec exclusion des cellules mortes au bleu de Trypan.
L'amplification de populations cellulaires repose sur une analyse phénotypique portant sur l'évolution de l'expression des marqueurs membranaires CD34 et CD133 par cytométrie en flux. Ces marqueurs permettent de définir des populations de cellules plus ou moins immatures organisées hiérarchiquement comme suit : CD34+CD133+ -> CD34+CD133neg -> CD34negCD133neg. Pour cela, les cellules sont incubées avec les anticorps anti-CD34 (1 :100000) (BD Pharmingen) et anti-CD133 (1 :100000) (BD Pharmingen) pendant 15 minutes. Les cellules sont ensuite rincées par une solution de PBS et centrifugées (430g, 10 min, 4°C). Après remise en suspension des culots cellulaires dans du PBS, les cellules sont analysées par cytométrie en flux (FACSCantoll, Becton Dickinson, San Jose, CA).
Les proportions de chaque population phénotypique ainsi observées et la quantité de cellules totale permettent de calculer le taux d'amplification des cellules les plus immatures (CD34+CD133+) comparativement à l'amplification de progéniteurs plus engagés (CD34+CD133neg et CD34negCD133neg). b. Stratégies d'analyse de la différenciation érythrocytaire (ETAPE 2 de l'étude) i. Comptage cellulaire et analyse phénotypique (concerne les PROTOCOLES ERYTHRO 1 et ERYTHRO 2)
Au cours et au terme des différents protocoles de différenciation érythrocytaire, une analyse de la prolifération cellulaire et de la différenciation cellulaire est effectuée. La prolifération cellulaire est évaluée par énumération des cellules sur lames de Malassez avec exclusion des cellules mortes au bleu de Trypan. Les différentes populations et conditions de culture sont également analysées par cytométrie en flux afin d'observer l'apparition des marqueurs de différenciation érythrocytaire et donc la cinétique de différenciation des cellules. Pour cela, les cellules sont incubées avec des anticorps spécifiques de la différenciation érythrocytaire : anti-CD71 (1 :100000) (BD Pharmingen) et anti-CD235 (1 :100000) (BD Pharmingen) pendant 15 minutes. Un marquage avec l'anticorps anti-CD34 (1 :100000) (Beckman Coulter), est également réalisé conjointement aux autres anticorps afin de suivre la perte du CD34 témoignant de la maturation des cellules. Les cellules sont ensuite rincées par une solution de PBS et centrifugées (430g, 10 min, 4°C). Après remise en suspension des culots cellulaires dans du PBS, les cellules sont analysées par cytométrie en flux (FACSCantoll, Becton Dickinson, San Jose, CA).
Les proportions de chaque population phénotypique ainsi observées et la quantité de cellules totale permettent de calculer les quantités de cellules ayant atteints les différents stades de différenciation.
H. Analyse de la production de progéniteurs érythrocytaires (concerne uniquement le PROTOCOLE ERYTHRO 2)
Au cours des étapes de différenciation vers les globules rouges, les populations d'intérêt produisent des progéniteurs engagés dans la voie érythrocytaire qui peuvent être mis en évidence directement par leurs capacités clonogéniques, c'est-à-dire leur capacité individuelle à générer lors de la culture une colonie de cellules différenciées et morphologiquement identifiables. Pour cela, le test de CFC (Colony Forming Cells) est utilisé. Les progéniteurs engagés sont capables de générer des colonies après une culture en milieu semi-solide composé de méthylcellulose et supplémenté de cytokines. Ainsi, les progéniteurs engagés (ici les BFU-E et CFU-E) produits au cours des cultures érythrocytaires peuvent être comptés.
Cette analyse de la production des BFU-E et CFU-E a été réalisée uniquement au cours de la phase 1 du PROTOCOLE 2. Les cellules cultivées et récoltées aux jours 4, 8 et 11 de la phase 1 sont ensemencées dans un kit prêt à l'emploi de méthylcellulose H4034 supplémenté en cytokines (Stem Cell Technology, Meylan, France) à des concentrations de 150 cellules/250 pL H4034 pour le jour 4 et 300 cellules/250 II. Résultats
1. Effet de la Vitisine B et des différentes molécules antioxydantes sur l'amplification de progéniteurs hématopoïétiques (Figures 1 et 2)
Dans le contexte d'amplification des progéniteurs hématopoïétiques (PROTOCOLE AMPLIFICATION), la Vitisine B induit une amplification jusqu'à 250% de la quantité totale de progéniteurs de phénotype CD34+ dès la dose de lOpM (Figure 1). Il est également observé que la Vitisine B induit une amplification d'une sous-population particulière, CD34+CD133neg, dont le potentiel érythrocytaire a déjà été montré par l'équipe des inventeurs (Lapostolle ét al. 2018 Haematologica Vol. 103 No. 10 (2018)). Ces progéniteurs CD34+CD133neg a fort potentiel érythrocytaire ont par conséquent le potentiel de produire des globules rouges matures. Que ce soit pour la population CD34+ totale ou pour la population CD34+CD133neg, l'effet de la Vitisine B se produit déjà à 10 pM, l'augmentation de la dose à 50 pM n'induisant pas d'effet supplémentaire.
La comparaison de la Vitisine B avec d'autres polyphénols (des stilbènes) dérivés du Resvératrol (RESVERATROL, PALLIDOL, E-VINIFERINE, AMPELOPSINE, OXYRESVERATROL, PICEATANNOL et GNETOL) à la dose de lOpM montrent que seule la Vitisine B produit un effet probant sur la proportion et la quantité totale de cellules CD34+CD133neg (Figure 2). Cela signifie que dans un contexte d'amplification de cellules CD34+, la vitisine B est capable d'amplifier une sous-population enrichies en progéniteurs érythrocytaires. Ce résultat dans le contexte d'amplification des CD34 indique un effet spécifique de la Vitisine B, là où d'autres molécules antioxydantes connu comme le Resvératrol ne produisent aucun effet.
Ainsi, seule la Vitisine B permet d'amplifier une population enrichie en progéniteurs érythrocytaires par rapport aux autres molécules testées, montrant qu'il existe une singularité des effets de Vitisine B.
2. Effet de la Vitisine B sur la différenciation érythrocytaire a. Dans le contexte du protocole différenciation érythrocytaire ERYTHRO 1 i. A partir des cellules CD34+ du sang périphérique (figure 3)
L'effet de la Vitisine B a été observée au niveau de la différenciation érythrocytaire à partir de cellules CD34+ de sang périphérique, évalué selon un protocole simplifié (PROTOCOLE ERYTHRO 1, présenté au point B.2. b du Matériels et Méthodes).
Dans ces conditions, les inventeurs ont observé que la Vitisine B induit une différenciation plus rapide et plus importante des cellules CD34+ en précurseurs érythrocytaires (Figure 3). Cet effet est mesuré par cytométrie en flux sur la base de l'expression des antigènes membranaires CD71 et CD235a (GlycoPhorine A, GPA) selon la séquence de différenciation : CD71+GPAneg -> CD71+GPA+ -> CD71lowGPA+. Les inventeurs ont observé une acquisition plus précoce du CD235a accompagné d'une baisse plus rapide de l'expression du CD71 (CD71low), indiquant la différenciation. A l'issue de ces deux protocoles (AMPLIFICATION et ERYTHRO 1), deux effets distincts et complémentaires de la Vitisine B sont donc observés : une amplification des progéniteurs à potentiel érythrocytaire et une accélération de la différenciation vers les précurseurs érythrocytaires. ii. A partir des cellules SP, CMP et MEP (figure 4)
Des résultats identiques à ceux décrits pour les CD34+ du sang périphérique sont retrouvés pour les sous- population de CD34+ triées : SP, CMP et MEP. Ces résultats montrent une accélération de la différenciation érythrocytaire en présence de Vitisine B (acquisition du phénotype CD71+GPA+) pour les CMP et les MEP (figure 4A) ainsi qu'une diminution jusqu'à 40% par rapport au contrôle de l'expression membranaire du CD71 pour les SP, les CMP et les MEP dès le J7 de culture (figure 4B). b. Dans le contexte du protocole de différenciation érythrocytaire en 3 phases ERYTHRO 2 i. Amplification totale des cellules CD34+ du sang placentaire (figure 5)
L'effet de la molécule Vitisine B sur le développement des cellules érythrocytaires a également été étudié dans un protocole de production d'érythrocytes ex vivo en trois phases selon un protocole optimisé (PROTOCOLE ERYTHRO 2, présenté au point B.2.c du Matériels et Méthodes). La Figure 5 représente le nombre de cellules érythrocytaires dans la culture au cours du protocole d'érythropoïèse dans les différentes conditions testées.
• Condition CTRL : Absence de Vitisine B pendant l'intégralité du protocole.
• Condition I : Présence de Vitisine B pendant la phase I du protocole.
• Condition II : Présence de Vitisine B pendant les phases I et II du protocole.
• Condition III : Présence de Vitisine B pendant les 3 phases du protocole.
En phase I (Jours 0 à 11), la prolifération cellulaire est similaire pour chacune des conditions testées. A partir du passage en phase II (Jour 11), une forte augmentation de la prolifération cellulaire pour les 3 conditions où la Vitisine B est présente a été observée, jusqu'à atteindre un pic de prolifération au 21ème jour. En particulier, la condition I présente un nombre de cellules 1,5 fois supérieur à la condition contrôle (CTRL). Ces résultats sont observés à la fois à partir des cellules CD34+ de sang placentaire ainsi que des cellules CD34+ de sang périphérique en homéostasie.
L'amplification des cellules érythrocytaires a été considérablement augmentée en présence de Vitisine B en culture. La Vitisine B stimule la production des cellules progénitrices menant au développement de précurseurs et de cellules érythrocytaires matures. ii. Différenciation érythrocytaire à partir des cellules CD34+ du sang périphérique et du sang placentaire (figure 6)
La différenciation érythrocytaire a été observée par l'expression des marqueurs CD71 (récepteur à la transferrine 1) et GPA (Glycophorine A) pour confirmer l'effet de la molécule Vitisine B sur la différenciation pendant le protocole d'érythropoïèse ex vivo (PROTOCOLE ERYTHRO 2).
La présence de la molécule Vitisine B augmente le pourcentage de cellules de phénotype CD71negGPA+ (Figure 6A). En effet, au jour 8 de culture moins de 20 % des cellules expriment la GPA. L'expression de GPA apparait au jour 15 et augmente jusqu'au jour 28 plus rapidement en présence de la molécule Vitisine B (plus de 50 % des cellules l'expriment) en comparaison à la condition CTRL (40%).
Cet effet est encore plus marquant en ce qui concerne le nombre absolu de cellules de phénotype CD71negGPA+ en culture (Figure 6B). La présence de la molécule Vitisine B en phase I du protocole augmente le nombre de cellule de phénotype différencié CD71negGPA+. Le même effet est observé concernant le nombre absolu de cellules CD71negGPA+ produit à partir des cellules CD34+ du sang périphérique (figure 6C).
Ces résultats montrent que la présence de la molécule Vitisine B permet une différenciation des cellules érythrocytaires plus rapide et plus efficace ce qui se traduit in fine par une production plus efficace de globules rouges.
3. Effet de la Vitisine B sur les progéniteurs érythrocytaires BFU-E et CFU-E (figure 7)
Les inventeurs se sont également intéressés à une population de progéniteurs particuliers, les BFU-E et les CFU-E. Ces progéniteurs sont produits physiologiquement par différenciation de cellules plus immatures et aussi ex vivo lorsque les conditions de culture le permettent. Ils sont détectés par des tests en méthyl cellulose (voir section C.b. ii du Matériels et Méthodes) au cours desquels ils produisent des colonies de cellules érythrocytaires matures (réticulocytes et érythrocytes). Ils ont observé que la présence de Vitisine B accélère l'apparition des progéniteurs érythrocytaires primitifs (BFU-E ; figure 7A) mais aussi des progéniteurs plus différenciés (CFU-E ; figure 7B) issus des BFU-E.
Ces résultats montrent l'avantage de la Vitisine B sur une population cellulaire hématopoïétique primitive, permettant donc de favoriser la production de cellules érythrocytaires matures énucléées, c'est-à-dire de réticulocytes et d'érythrocytes.
III. Conclusion
L'étude des cellules érythrocytaires tout au long de cette étude a permis d'évaluer l'effet de la Vitisine B sur l'amplification et la différenciation des cellules hématopoïétiques.
En particulier, la Vitisine B exerce son effet stimulant au cours des premières étapes du développement qui concerne l'engagement des cellules CD34+ vers la lignée érythrocytaire et l'amplification de progéniteurs. Elle promeut l'engagement des cellules hématopoïétiques primitives CD34+vers les progéniteurs érythrocytaires en augmentant leur amplification.
La Vitisine B permet également d'accélérer la différenciation des progéniteurs vers les précurseurs érythrocytaires et leur énucléation, aboutissant aux cellules matures : les réticulocytes et les érythrocytes. La mise en contact des cellules hématopoïétiques avec la Vitisine B permet ainsi d'obtenir un meilleur rendement de production de globules rouges ex vivo et d'accélérer le procédé de production.
Ces deux effets combinés permettent ainsi de dépasser des verrous observés pour la production de globules rouges ex vivo, en particulier le faible rendement et la durée de production.

Claims

Revendications
1. Procédé in vitro de production d'érythrocytes comprenant : a) la fourniture de cellules hématopoïétiques multipotentes, de préférence d'origine humaine, sélectionnées dans le groupe constitué des cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires- érythrocytaires (MEP), et les combinaisons de ceux-ci , et optionnellement l'amplification desdites cellules hématopoïétiques multipotentes; b) l'induction de la différenciation desdites cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et optionnellement l'amplification desdits progéniteurs érythrocytaires unipotents; c) l'induction de la différenciation desdits progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires; et d) l'induction de la maturation des précurseurs érythrocytaires en érythrocytes, et e) optionnellement la récupération des érythrocytes obtenus ; dans lequel les cellules sont mises en contact avec un composé vitisine à l'étape a) lorsque celle- ci comporte l'étape d'amplification des cellules, l'étape b), l'étape c) et/ou l'étape d).
2. Procédé in vitro de production de progéniteurs érythrocytaires unipotents comprenant : a) la fourniture de cellules hématopoïétiques multipotentes, de préférence d'origine humaine, sélectionnées dans le groupe constitué des cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires- érythrocytaires (MEP), et les combinaisons de ceux-ci , et optionnellement l'amplification desdites cellules hématopoïétiques multipotentes; et b) l'induction de la différenciation desdites cellules hématopoïétiques multipotentes en progéniteurs érythrocytaires unipotents, et optionnellement l'amplification desdits progéniteurs érythrocytaires unipotents ; et c) optionnellement la récupération des progéniteurs érythrocytaires unipotents obtenus ; dans lequel les cellules sont mises en contact avec un composé vitisine à l'étape a) lorsque celle- ci comporte l'étape d'amplification des cellules et/ou l'étape b).
3. Procédé in vitro de production d'érythrocytes comprenant, a) la fourniture de progéniteurs érythrocytaires unipotents, de préférence obtenus selon le procédé de la revendication 2 ; b) l'induction de la différenciation desdits progéniteurs érythrocytaires unipotents en précurseurs érythrocytaires unipotents ; c) l'induction de la maturation des précurseurs érythrocytaires en érythrocytes, et d) optionnellement la récupération des érythrocytes obtenus, dans lequel les cellules sont mises en contact avec un composé vitisine à l'étape b) et/ou l'étape c).
4. Procédé selon l'une quelconque des revendications 1 à 3, dans lequel les cellules sont mises en contact avec le composé vitisine dans un milieu de culture adapté aux exigences nutritionnelles des cellules hématopoïétiques, en particulier un milieu de culture adapté à l'amplification et/ou la différenciation et/ou la maturation des cellules hématopoïétiques.
5. Procédé selon l'une quelconque des revendications 1 à 4, dans lequel les cellules sont mises en contact avec le composé vitisine i) lors de l'amplification et/ou la différenciation des cellules hématopoïétiques multipotentes ou ii) lors de l'amplification et/ou la différenciation des progéniteurs érythrocytaires unipotents.
6. Procédé selon l'une quelconque des revendications 1 à 5, dans lequel les cellules sont mises en contact avec le composé vitisine lors de l'amplification et/ou la différenciation des cellules hématopoïétiques multipotentes, et lors de l'amplification et/ou la différenciation des progéniteurs érythrocytaires unipotents et optionnellement lors de la maturation des précurseurs érythrocytaires.
7. Procédé selon l'une quelconque des revendications 1 à 6, dans lequel les cellules sont mises en contact avec un composé vitisine durant au moins 1 jour, préférence au moins au moins 3, 5, 7, 10 ou 12 jours, lors de l'amplification et/ou la différenciation des cellules hématopoïétiques multipotentes, et/ou durant au moins 1 jour, préférence au moins au moins 3, 5, 7, 10 ou 12 jours, lors de l'amplification et/ou la différenciation des progéniteurs érythrocytaires unipotents.
8. Procédé selon l'une quelconque des revendications 1 à 7, dans lequel le composé vitisine, lorsqu'il est mis contact avec les cellules, est présent dans le milieu de culture à une concentration comprise entre 1 pM et 500 pM, de préférence ente 5 pM et 100 pM.
9. Milieu de culture cellulaire adapté à l'amplification et/ou la différenciation et/ou la maturation de cellules hématopoïétiques et comprenant un composé vitisine.
10. Milieu de culture cellulaire selon la revendication 9, sélectionnées dans le groupe constitué des cellules CSH, MPP, CMP, MEP, des progéniteurs érythrocytaires unipotents, des précurseurs érythrocytaires, et des combinaisons de ceux-ci.
11. Milieu de culture cellulaire selon la revendication 9, dans lequel les cellules hématopoïétiques sont des CSH ou des progéniteurs érythrocytaires unipotents.
12. Milieu de culture cellulaire selon la revendication 9 ou 10, lequel le composé vitisine est présent dans le milieu à une concentration comprise entre 1 pM et 500 pM, de préférence entre 5 pM et 100 pM.
13. Utilisation in vitro d'un milieu de culture cellulaire selon l'une quelconque des revendications 9 à 12 pour (i) l'amplification et/ou la différenciation de cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires-érythrocytaires (MEP) ou de progéniteurs érythrocytaires unipotents et/ou (ii) pour la différenciation et/ou la maturation de précurseurs érythrocytaires, et/ou (iii) la production de progéniteurs érythrocytaires unipotents et/ou d'érythrocytes.
14. Utilisation d'un composé vitisine pour supplémenter un milieu de culture cellulaire adapté à l'amplification et/ou la différenciation et/ou la maturation de cellules hématopoïétiques.
15. Utilisation d'un composé vitisine pour stimuler l'amplification et/ou la différenciation de cellules souches hématopoïétiques (CSH), des progéniteurs multipotents (MPP), des progéniteurs myéloïdes communs (CMP), des progéniteurs mégacaryocytaires-érythrocytaires (MEP) ou de progéniteurs érythrocytaires unipotents et/ou (ii) stimuler la différenciation et/ou la maturation de précurseurs érythrocytaires, et/ou (iii) stimuler la production de progéniteurs érythrocytaires unipotents et/ou d'érythrocytes.
16. Procédé selon l'une quelconque des revendications 1 à 8, milieu de culture selon l'une quelconque des revendications 9 à 12, ou utilisation selon l'une quelconque des revendications 13 à 15, dans lequel le composé vitisine est la vitisine B ou l'un de ses dérivés.
17. Procédé la revendication 16, milieu de culture selon la revendication 16 ou utilisation selon la revendication 16, dans lequel le dérivé de vitisine B est un isomère de vitisine B, de préférence un stéréoisomère de vitisine B.
18. Procédé selon l'une quelconque des revendications 1 à 8, milieu de culture selon l'une quelconque des revendications 9 à 12, utilisation selon l'une quelconque des revendications 13 à 15, dans lequel le composé vitisine est un dérivé de vitisine de formule :
Figure imgf000064_0001
19. Procédé selon l'une quelconque des revendications 1 à 8, milieu de culture selon l'une quelconque des revendications 9 à 12, ou utilisation selon l'une quelconque des revendications 13 à 15, dans lequel le composé vitisine est la vitisine B.
PCT/EP2023/070191 2022-07-21 2023-07-20 Utilisation d'un composé vitisine pour la production de cellules hématopoïétiques WO2024018018A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP22306094.8 2022-07-21
EP22306094 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024018018A1 true WO2024018018A1 (fr) 2024-01-25

Family

ID=83270877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/070191 WO2024018018A1 (fr) 2022-07-21 2023-07-20 Utilisation d'un composé vitisine pour la production de cellules hématopoïétiques

Country Status (1)

Country Link
WO (1) WO2024018018A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096746A1 (fr) 2009-02-20 2010-08-26 Cellular Dynamics International, Inc. Procédés et compositions pour la différenciation de cellules souches
WO2014028749A2 (fr) * 2012-08-15 2014-02-20 Boston Medical Center Corporation Production de globules rouges et de plaquettes à partir de cellules souches
WO2015126129A2 (fr) 2014-02-18 2015-08-27 동국대학교 산학협력단 Multimère de resvératrol présentant une activité inhibitrice sélective pour la réplication du génome du virus de l'hépatite c, et son utilisation
WO2019002625A1 (fr) * 2017-06-30 2019-01-03 Etablissement Francais Du Sang Procédé de production de progéniteurs érythroïdes
WO2022089606A1 (fr) * 2020-10-30 2022-05-05 Westlake Therapeutics (Hangzhou) Co. Limited Procédés de préparation de globules rouges matures in vitro
WO2022149166A1 (fr) * 2021-01-08 2022-07-14 Christian Medical College Formulation d'un cocktail pour l'enrichissement sélectif de cellules modifiées génétiquement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096746A1 (fr) 2009-02-20 2010-08-26 Cellular Dynamics International, Inc. Procédés et compositions pour la différenciation de cellules souches
WO2014028749A2 (fr) * 2012-08-15 2014-02-20 Boston Medical Center Corporation Production de globules rouges et de plaquettes à partir de cellules souches
WO2015126129A2 (fr) 2014-02-18 2015-08-27 동국대학교 산학협력단 Multimère de resvératrol présentant une activité inhibitrice sélective pour la réplication du génome du virus de l'hépatite c, et son utilisation
WO2019002625A1 (fr) * 2017-06-30 2019-01-03 Etablissement Francais Du Sang Procédé de production de progéniteurs érythroïdes
WO2022089606A1 (fr) * 2020-10-30 2022-05-05 Westlake Therapeutics (Hangzhou) Co. Limited Procédés de préparation de globules rouges matures in vitro
WO2022149166A1 (fr) * 2021-01-08 2022-07-14 Christian Medical College Formulation d'un cocktail pour l'enrichissement sélectif de cellules modifiées génétiquement

Non-Patent Citations (16)

* Cited by examiner, † Cited by third party
Title
AKIMOV S ET AL., STEM CELLS, vol. 23, no. 9, 2005, pages 1423 - 1433
CAS, no. 1373138-12-5
CAS, no. 1807631-15-7
CHRISTOPHER ABISHA CRYSTAL ET AL: "Preferential Expansion of Human CD34 + CD133 + CD90 + Hematopoietic Stem Cells Enhances Gene-Modified Cell Frequency for Gene Therapy", vol. 33, no. 3-4, 1 February 2022 (2022-02-01), GB, pages 188 - 201, XP093006686, ISSN: 1043-0342, Retrieved from the Internet <URL:https://www.liebertpub.com/doi/pdf/10.1089/hum.2021.089?casa_token=64i8r-005_oAAAAA:lxOijpNsriCBbVuiGYQIDO4r08LfeG4Hyd2fjp_-GvVkN3Pr2xjz0AIglnufsAFeNUMRfxeK3wUK> DOI: 10.1089/hum.2021.089 *
CHUNG ET AL., CELL STEM CELL, vol. 2, no. 2, 2008, pages 113 - 117
HIROSE SI ET AL., STEM CELL REPORTS, vol. 1, no. 6, 2013, pages 499 - 508
HUANG X, MOL. THER., vol. 22, no. 2, 2013, pages 451 - 463
IWASAKIAKASHI, IMMUNITY, vol. 26, no. 6, June 2007 (2007-06-01), pages 726 - 40
KURITA R ET AL., PLOS ONE, vol. 8, no. 3, 2013, pages e59890
LAPOSTOLLE ET AL., HAEMATOLOGICA, vol. 103, no. 10, 2018
LENGERKE C ET AL., ANN N Y ACAD SCI, vol. 1176, 2009, pages 219 - 27
NAKAGAWA ET AL., NAT BIOTECHNOL, vol. 26, no. 1, 2008, pages 101 - 106
TAKAHASHI ET AL., CELL, vol. 131, no. 5, 2007, pages 861 - 872
VLASKI ET AL., EXPERIMENTAL HEMATOLOGY, vol. 37, 2009, pages 573 - 584
YOOJIN SEO ET AL., STEM CELLS INTERNATIONAL, vol. 2019
YU ET AL., SCIENCE, vol. 318, no. 5858, 2007, pages 1917 - 1920

Similar Documents

Publication Publication Date Title
US9315776B2 (en) Wharton&#39;s jelly mesenchymal stem cells and uses thereof
EP1551953B1 (fr) Modulation de la differenciation de cellules souches et progenitrices, analyses et utilisations correspondantes
JP6348848B2 (ja) 間葉系幹細胞の増殖
JP4217262B2 (ja) 脂肪組織から幹細胞を調製するための方法およびシステム
Francese et al. Immunological and regenerative properties of cord blood stem cells
Lo Iacono et al. Wharton’s jelly mesenchymal stromal cells as a feeder layer for the ex vivo expansion of hematopoietic stem and progenitor cells: a review
US8569060B2 (en) Method of producing a population of cells
WO2021149799A1 (fr) Milieu exempt de sérum et procédé de culture approprié pour la culture de cellules sanguines telles que des cellules souches hématopoïétiques humaines
CA3067551A1 (fr) Procede de production de progeniteurs erythroides
WO2014100806A1 (fr) Isolement et expansion de cellules muse
EP4079842A1 (fr) Composés à petites molécules pour amplifier des cellules souches hématopoïétiques, et leur combinaison
WO2021049617A1 (fr) Milieu exempt de sérum ne contenant pas d&#39;albumine et approprié pour la culture de cellules souches hématopoïétiques humaines, et procédé de culture sans albumine
JP5833126B2 (ja) ウマ科動物の羊水由来の多分化能幹細胞及びそれを製造する方法
AU2017325511B2 (en) Substituted azole derivatives for generation, proliferation and differentiation of hematopoietic stem and progenitor cells
KR101906156B1 (ko) 말과동물 양막-유래 중간엽 줄기세포
WO2024018018A1 (fr) Utilisation d&#39;un composé vitisine pour la production de cellules hématopoïétiques
US20210130789A1 (en) Methods of stromal cell expansion, uses and materials related thereto
Juntunen Development of Adipose-Derived Stromal/stem Cell–Based Therapies: Effects of donor weight and culture conditions on cell characteristics and testing the efficacy in stroke models
Li et al. Cells captured from spatium intermusculare by porous material exhibit the characteristics of stem cells
WO2020057107A1 (fr) Composition et utilisation correspondante
Faltusová The role of stem and progenitor cells in regeneration of hematopoietic tissue
Ivanovic et al. Expansion ex vivo des cellules hematopoiétiques: concept et utilité clinique
TWM638487U (zh) 用於分離人類間質幹細胞的採樣管
Aksöz C-MYC inhibition allows ex vivo expansion of murine and human hematopoietic stem and progenitor cells
Siemionow et al. The Role of Stem Cells in Plastic Surgery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23744785

Country of ref document: EP

Kind code of ref document: A1