WO2024017396A1 - 无级变幅往复驱动机构及筋膜枪 - Google Patents

无级变幅往复驱动机构及筋膜枪 Download PDF

Info

Publication number
WO2024017396A1
WO2024017396A1 PCT/CN2023/109742 CN2023109742W WO2024017396A1 WO 2024017396 A1 WO2024017396 A1 WO 2024017396A1 CN 2023109742 W CN2023109742 W CN 2023109742W WO 2024017396 A1 WO2024017396 A1 WO 2024017396A1
Authority
WO
WIPO (PCT)
Prior art keywords
swing
adjustment
rod
amplitude
piston
Prior art date
Application number
PCT/CN2023/109742
Other languages
English (en)
French (fr)
Inventor
雷昌龙
张文
Original Assignee
四川千里倍益康医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 四川千里倍益康医疗科技股份有限公司 filed Critical 四川千里倍益康医疗科技股份有限公司
Publication of WO2024017396A1 publication Critical patent/WO2024017396A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/006Percussion or tapping massage
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H23/00Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms
    • A61H23/02Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive
    • A61H23/0254Percussion or vibration massage, e.g. using supersonic vibration; Suction-vibration massage; Massage with moving diaphragms with electric or magnetic drive with rotary motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/061Means for converting reciprocating motion into rotary motion or vice versa using rotary unbalanced masses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/065Electromechanical oscillators; Vibrating magnetic drives
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • H02K7/075Means for converting reciprocating motion into rotary motion or vice versa using crankshafts or eccentrics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/12Driving means
    • A61H2201/1207Driving means with electric or magnetic drive
    • A61H2201/123Linear drive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/14Special force transmission means, i.e. between the driving means and the interface with the user
    • A61H2201/1436Special crank assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H2201/00Characteristics of apparatus not provided for in the preceding codes
    • A61H2201/14Special force transmission means, i.e. between the driving means and the interface with the user
    • A61H2201/1481Special movement conversion means
    • A61H2201/149Special movement conversion means rotation-linear or vice versa

Definitions

  • the invention relates to the field of fascia guns, in particular to a stepless amplitude reciprocating drive mechanism and a fascial gun.
  • the fascia gun also known as the deep myofascial impact instrument, is a soft tissue massage tool that relaxes the body's soft tissues through high-frequency impact.
  • the existing fascia gun uses a piston to drive the massage head to perform linear reciprocating motion.
  • the massage head contacts the human body and generates high-frequency vibrations that penetrate deep into the muscles, thereby reducing local tissue tension, relieving pain, and promoting blood circulation.
  • Existing fascial guns have realized the function of adjusting the amplitude of the massage head, which allows users to choose the appropriate fascia gun amplitude depth for massage therapy according to their own conditions. For example, professional athletes need deep amplitude to relieve muscle pain after exercise. When ordinary consumers, especially novices, use a fascia gun, they need to use a fascia gun with a shallow amplitude and depth at first, and then gradually deepen the amplitude as the need arises.
  • the adjustment principle is to design a mechanism that can directly adjust the eccentricity, and then adjust the distance between the motor output shaft and the eccentric output shaft during actual use. , thereby adjusting the piston vibration amplitude.
  • the patent application CN115444733A Take the patent application CN115444733A as an example.
  • This solution involves the field of massage equipment, especially a variable amplitude fascia gun that uses the switching of the motor's forward and reverse rotation states to achieve amplitude adjustment, including a motor, an eccentric distance adjustment component with an eccentric shaft, Connecting rod and piston rod, one end of the connecting rod is rotationally connected to the aforementioned eccentric shaft, and the other end of the connecting rod is rotationally connected to the piston rod;
  • the eccentricity adjustment assembly includes a sliding ramp and an eccentric slider structure with an eccentric shaft, so The motor output shaft of the motor is connected with the sliding ramp by a threaded transmission.
  • the sliding ramp is driven by the motor to slide on the eccentric slider structure and push the eccentric slider structure perpendicular to the direction of the motor output shaft. move.
  • This solution realizes direct adjustment of the eccentricity through the position change of the sliding ramp block, thereby adjusting the amplitude of the piston.
  • This adjustment method requires direct adjustment of the eccentricity, the structure is relatively complex, and the stability after amplitude adjustment cannot be guaranteed.
  • the technical problem to be solved by the present invention is to provide a stepless amplitude reciprocating drive mechanism and a fascia gun that has a simple and reliable structure and can realize stepless adjustment of amplitude.
  • a stepless amplitude reciprocating drive mechanism including a crank-slider mechanism composed of a crank, an output rod, a connecting rod and a slider that are articulated in sequence, including a swing adjustment mechanism, an output rod
  • a swing adjustment mechanism adjusts and limits the swing range of the swing hinge point.
  • the swing adjustment mechanism includes an adjustment rod, the adjustment rod has a swing end and an adjustment end; the swing end of the adjustment rod is hinged on the output On the rod, the hinge position of the adjusting end of the adjusting rod is adjustable.
  • the swing end of the adjusting rod is rotationally connected to the output rod, the adjusting rod will move along with the swing of the output rod.
  • the rotational connection position of the adjustment end of the adjustment rod is adjusted, so that the swing range of the swing hinge point is changed, and thereby the amplitude of the slider is adjusted.
  • the structural design of this solution is simple, but it effectively achieves the adjustment effect of the slider amplitude.
  • the crank is an eccentric
  • the connecting rod is a swing arm
  • the slider is a piston
  • the rotation connection end of the output rod and the swing arm is connected to the eccentric
  • the connection between the rotational input ends is the first cycloid
  • the connection between the adjustment end of the adjustment rod and the rotational input end of the eccentric is the second cycloid
  • the first cycloid and the piston reciprocating axis The included angle between them is the first included angle ⁇
  • the included angle between the second cycloid and the piston reciprocating axis is the second included angle ⁇ ; adjust the second included angle ⁇ to make the first included angle
  • the swing range of ⁇ is adjusted in conjunction.
  • the first cycloid corresponds to the od line in Figure 16
  • the second cycloid corresponds to the og line in Figure 16
  • the horizontal line in Figure 16 is the piston reciprocating axis.
  • the maximum swing angle of a cycloid corresponding to the second included angle ⁇ ; ⁇ min is the minimum swing angle of the first cycloid corresponding to the second included angle ⁇ .
  • the swing angle range of the first included angle ⁇ ranges from -20° to 90°.
  • the value of ⁇ does not include 90°.
  • the above structure can accurately calculate the linkage change in the swing range of the first included angle ⁇ caused by adjusting the second included angle ⁇ , and then calculate the reciprocating motion amplitude. This provides a structural basis for implementing the stepless amplitude reciprocating drive mechanism into specific products, so that the stepless adjustment process of amplitude can be accurately controlled.
  • any hinge point has a convex or concave structure.
  • the three-dimensional structure formed can also be used as an output rod when the above projection relationship is satisfied.
  • the adjustment hinge point between the output rod and the swing end of the adjustment rod can also extend in two opposite directions to the swing hinge point.
  • the specific shape is, as long as the included angle range of the line between the projections of any two hinge points is 0-360°, it can be ensured that the constituted kinematic mechanism can achieve the corresponding swing action and achieve reciprocation. Movement is transmitted and involves reciprocating amplitude regulation.
  • the value of the angle between the connecting lines The range does not include the endpoint values of 0° and 360°.
  • a position adjustment mechanism can be selected.
  • the adjustment end of the adjustment rod is hinged on the position adjustment mechanism.
  • the position adjustment mechanism drives the relative position of the adjustment end of the adjustment rod. move.
  • the adjustment end position of the adjustment rod can be adjusted conveniently and reliably, thereby driving the adjustment rod to adjust the swing range of the swing hinge point on the output rod, thereby realizing adjustment of the slider amplitude.
  • the position adjustment mechanism can be selected to include a screw rod and a screw nut.
  • the screw nut is rotatably installed on the adjustment end of the adjustment rod.
  • the screw rod is connected to a driving device.
  • the driving device drives the screw rod to rotate and thereby drives the screw nut to slide along the axial direction of the screw rod.
  • the driving device drives the screw rod to rotate, and then drives the screw nut to slide along the extension direction of the screw rod, thereby changing the position of the adjusting end of the adjusting rod.
  • the driving device is a driving motor or a manual knob, thereby achieving a more reasonable driving method and product cost optimization, and providing support for product diversification.
  • the position adjustment mechanism can be selected as a limit chute.
  • the adjustment end of the adjustment rod is hingedly provided with a sliding block, and the sliding block is slidably disposed in the limit chute.
  • the sliding block is provided with a slide block fixing mechanism for fixing the slide block on the limiting chute.
  • the slide block fixing mechanism is a threaded knob and a fastening block threaded with the threaded knob. The threaded knob When tightening, fix the sliding block on the limit chute.
  • the sliding block is limited to slide in the limiting chute, and during the sliding process of the sliding block, the position of the adjusting end of the adjusting rod is also adjusted.
  • the swing adjustment mechanism can be selected to include a limit baffle, and the swing range of the swing hinge point is set within the swing range formed by the limit baffle.
  • the swing range formed by the limiting baffle is adjustable.
  • the limiting baffle forms a relative swing range, and the entire motion trajectory of the swing hinge point is limited to this swing range.
  • the limiting baffle is two baffles
  • the swing adjustment hinge point is provided between the two baffles
  • the distance between the two baffles can be adjust.
  • the two baffles jointly construct a relative swing range and limit the swing hinge point to move within the swing range.
  • This solution can be flexibly set at the position of the baffle according to actual layout needs, thereby saving corresponding layout space.
  • the swing adjustment range of the swing hinge point is also larger, thereby obtaining a larger slider amplitude adjustment range.
  • the fascia gun includes an installation cavity composed of a lower shell, an upper shell, a front cover and a back cover, and a crankshaft drive for driving the crank.
  • the slider is a piston
  • the piston slides It is dynamically installed in the piston hole of the front cover.
  • the fascial gun obtained based on the above-mentioned stepless amplitude reciprocating drive mechanism not only greatly simplifies the structural composition of the amplitude adjustment system, but is also easier to implement at the product level and is easier to promote on a large scale in the future.
  • this structure also allows users to adjust the amplitude more conveniently and accurately, greatly improving the user experience.
  • crank is an eccentric
  • rotation input end of the eccentric is fixedly connected to the output shaft of the motor.
  • the eccentric wheel of the fascia gun is combined with the motor of the fascial gun. Without the need to adjust the eccentric distance on the eccentric wheel, the piston amplitude can be adjusted through the stepless amplitude reciprocating drive mechanism.
  • the swing adjustment mechanism is a mechanism that adjusts the swing range of the output rod. During the actual movement, it will be subject to high-frequency reaction force. Therefore, the stability of the position of the swing adjustment mechanism is a design point that needs to be considered for actual products. .
  • the swing adjustment mechanism is set on the motor fixed bracket, which makes good use of the bracket originally used to fix the motor, thereby further saving the layout space and allowing the internal layout More reasonable.
  • the beneficial effects of the present invention are: when the existing fascia gun achieves the effect of adjustable amplitude, it is achieved by directly adjusting the eccentricity in the fascia gun, that is, increasing or decreasing the eccentricity. .
  • Such structural design is difficult to implement in actual products.
  • the problems caused by the adjustment of eccentricity are the wear and tear of related parts, the increase of vibration, the stability of the overall structure, and the manufacturing cost of the product is also very high.
  • changing the eccentricity between the swing arm and the eccentric requires adjusting the relative position change. If the relative position changes during operation, the stability after amplitude adjustment cannot be guaranteed, that is, it is difficult to guarantee the amplitude adjustment in actual use. stability.
  • the eccentric distance on the eccentric wheel itself does not change.
  • the core of realizing the piston amplitude adjustment is to adjust the swing amplitude of the swing hinge point of the output rod. Specifically, the output rod swings back and forth as the eccentric rotates, and the swing amplitude and swing range of the output rod's swing hinge point are transmitted to the piston through the swing arm, and ultimately cause the piston to reciprocate. changes in magnitude.
  • the added swing adjustment mechanism directly controls and adjusts the swing range of the swing hinge point, thereby directly and effectively adjusting the reciprocating motion trajectory of the piston. Since the swing amplitude range of the swing hinge point is adjusted, the internal relative connection relationship will not cause relative position changes during the adjustment process, and the operation stability after amplitude adjustment is better.
  • the invention is particularly suitable for widespread promotion of fascia gun products.
  • Figure 1 is a schematic diagram of the mechanical motion principle of the continuously variable amplitude reciprocating drive mechanism.
  • Figure 2 is a schematic diagram of the swing range adjustment of the swing hinge point d of the stepless amplitude reciprocating drive mechanism through the adjustment rod.
  • Figure 3 is a schematic diagram of the swing hinge point d of the stepless amplitude reciprocating drive mechanism having a swing range limited by baffles on the upper and lower sides.
  • Figure 4 is a schematic diagram showing that the adjusting rod of the present invention is arranged at the lower end of the limiting chute, corresponding to the largest amplitude range of the piston.
  • Figure 5 is a schematic diagram showing that the adjusting rod of the present invention is arranged at the uppermost end of the limiting chute, corresponding to the smallest amplitude range of the piston.
  • Figure 6 is a schematic diagram of the piston at the maximum stroke position when the adjusting rod of the present invention is arranged at the maximum position of the piston amplitude range.
  • Figure 7 is a schematic diagram of the piston at the minimum stroke position when the adjusting rod of the present invention is arranged at the maximum position of the piston amplitude range.
  • Fig. 8 is a schematic diagram of the piston at the maximum stroke position when the adjusting rod of the present invention is set at the minimum position of the piston amplitude range.
  • Figure 9 is a schematic diagram of the piston at the minimum stroke position when the adjusting rod of the present invention is set at the minimum position of the piston amplitude range.
  • Figure 10 is a schematic diagram of the piston at the maximum stroke position when the adjusting rod of the present invention is arranged between the maximum and minimum positions of the piston amplitude range.
  • Figure 11 is a schematic diagram of the piston at the minimum stroke position when the adjusting rod of the present invention is arranged between the maximum and minimum positions of the piston amplitude range.
  • Figure 12 is a schematic diagram of the adjusting lever of the present invention at one of its swing limit positions.
  • Fig. 13 is a schematic diagram of the adjustment rod of Fig. 12 swinging to another swing limit position.
  • Figure 14 is a schematic diagram of the piston amplitude calculation method.
  • Figure 15 is a schematic diagram of the position adjustment mechanism of the stepless amplitude reciprocating drive mechanism being a screw rod and a screw nut.
  • Figure 16 is a schematic diagram of the changing relationship between the adjustment angles of an embodiment of the stepless amplitude reciprocating drive mechanism.
  • Figure 17 is an exploded schematic diagram of each main component of the fascial gun of the present invention after being disassembled.
  • Figure 18 is an exploded schematic diagram of the stepless variable amplitude reciprocating drive mechanism and surrounding components of the present invention after disassembly.
  • Figure 19 is a schematic structural diagram of an embodiment of the stepless amplitude reciprocating driving mechanism of the present invention.
  • Figure 20 is a schematic structural diagram of the limiting chute of the stepless amplitude reciprocating drive mechanism of the present invention.
  • upper shell 1 reciprocating drive mechanism 2, front cover 3, lower shell 4, handle 5, rear cover 6, connecting rod 7, bearing 8, output rod 9, crank 91, limit baffle 92, slide Block 10, piston 101, adjusting rod 11, sliding block 12, threaded knob 13, fastening block 14, limit chute 15, eccentric wheel 16, motor fixed bracket 17, motor 18, slider position when the piston amplitude range is minimum 111 , the slider position 112 when the piston amplitude range is the largest, the third slider position 113, the first limit swing position of the output rod f1, the second limit swing position of the output rod f2, the piston amplitude range f, the power source a, the output hinge point c, Swing hinge point d, adjustment hinge point e, adjustment rod and slider rotation point g, screw rod 151, screw nut 152, driving device 153, first cycloid length L1, first included angle ⁇ , second included angle ⁇ , first distance A, second distance B.
  • Figure 1 shows a crank-slider mechanism composed of a crank 91, an output rod 9, a connecting rod 7 and a slider 10 that are articulated in sequence.
  • Figure 3 shows a schematic diagram after adding a limit baffle 92 at the swing hinge point d. Among them, the swing range of the swing hinge point d is located on the limit baffle Within the swing range composed of 92.
  • Figure 2 shows a schematic diagram when the output rod 9 is a connecting rod. Taking Figure 2 as an example, first, the rotating power source a transmits the rotation to the output hinge point c. At this time, the output rod 9 swings accordingly.
  • the connecting rod 7 moves with the swing of the output rod 9.
  • the connecting rod 7 drives the slider 10 to make reciprocating motion.
  • the swing trajectory of the output rod 9 can be adjusted through the adjusting rod 11 and the adjusting hinge point e, thereby achieving adjustment.
  • the swing amplitude of the swing hinge point d is adjusted to adjust the amplitude of the slider 10.
  • this adjustment method can also be adjusted during the use of the fascial gun, which greatly improves the convenience of use and user experience.
  • the lower shell 4, the upper shell 1, the front cover 3 and the back cover 6 form an installation cavity.
  • the reciprocating drive mechanism 2 is arranged in the installation cavity.
  • the piston 101 in the reciprocating drive mechanism 2 is slidably arranged on the front cover 3. inside the piston hole.
  • the motor 18 transmits the rotational power to the eccentric 16 through the output shaft, and drives the eccentric 16 to rotate.
  • the rotating eccentric 16 is rotationally connected to the output rod 9 through the output shaft of the eccentric 1 .
  • the output rod 9 is rod-shaped, one end of which is rotatably connected to the connecting rod 7, and the other end is rotatably connected to the adjusting rod 11.
  • the eccentric 16 rotates with the output shaft of the motor 18, and the rotating eccentric 16 drives the output rod 9 to swing accordingly.
  • the amplitude of the piston 101 is fixed.
  • the adjusting rod 11 will adjust the swing state of the output rod 9 by adjusting the hinge point e, that is, adjust the swing range of the swing hinge point d, and then adjust the amplitude of the piston 101 .
  • Figure 16 also illustrates in detail the relationship between angle adjustment and amplitude change in the case of the above structure.
  • point O is the center of the motor shaft
  • the rotation point g of the adjustment rod and the slider is the rotation center of the adjustment rod
  • the adjustment hinge point e is the rotation connection point between the output rod and the adjustment rod
  • the output hinge point c is the rotation point between the output rod and the eccentric wheel.
  • the connection point, the swing hinge point d is the rotation connection point between the swing arm and the output rod
  • the angle between the og segment and the abscissa axis is ⁇ , which is the second angle ⁇
  • the angle between the od segment and the abscissa axis is ⁇ , which is the first included angle ⁇ .
  • the swing arm When the motor rotates and the eccentric wheel rotates, the swing arm is limited by the adjusting rod and can move in a plane, that is, it swings back and forth.
  • the swing arm When the second included angle ⁇ changes, the swing arm is driven to move at the first included angle ⁇ . It swings within the corresponding swing range, and drives the piston rod to reciprocate within the corresponding amplitude range F. As the second included angle ⁇ decreases, the amplitude F increases.
  • the position of point g changes and corresponds to the second angle ⁇
  • the difference in the projection distance of the swing limit position of the od segment in the horizontal direction is the current reciprocating movement distance F of the piston. At this time, the od segment forms an angle with the horizontal direction during the reciprocating swing process.
  • the angle changes between ⁇ max and ⁇ min, that is, F od*
  • , od is L1. That is, through the adjustment of the g-point position, that is, the angle change of the second included angle ⁇ , the amplitude F is adjusted. As the second included angle ⁇ decreases, the amplitude F increases, and the position of the g-point can be adjusted without any changes.
  • the step adjustment realizes the corresponding stepless adjustment of the amplitude F. Among them, the amplitude adjustment range is Fmax-Fmin.
  • the distance between the output hinge point c and the swing hinge point d is the first distance A
  • the distance between the output hinge point c and the adjustment hinge point e is the second distance B.
  • the output rod 9 is in the second limit swing position f2 of the output rod as shown in Figure 13
  • its axis is marked f2.
  • the output rod 9 is in the first extreme swing position f1 of the output rod as shown in Figure 14
  • its axis is marked f1.
  • Project f2 and f1 onto the straight line where the piston 10 reciprocates, and the difference in projection length obtained by the projection is marked as f, which is the piston amplitude range f, that is, the amplitude stroke as described above.
  • the corresponding schematic diagram of the projection principle is also marked in Figure 14.
  • the position adjustment mechanism is a screw rod 151 and a screw nut 152 .
  • the driving adjustment method of the screw rod 151 and the screw nut 152 can better realize the effect of electric drive stepless adjustment, making the amplitude adjustment of the piston 101 more accurate and convenient. It is more conducive to the promotion of fascia gun products.
  • the driving device 153 first drives the screw rod 151 to rotate, and a relative rotation occurs between the rotating screw rod 151 and the screw nut 152. This relative rotation state causes the thread between the screw rod 151 and the screw nut 152 to rotate.
  • the screw nut 152 is driven to slide along the axial direction of the screw 151.
  • the screw nut 152 is installed in a sliding manner. Specifically, a guide slide rod passing through the screw nut or sliding of the screw nut 152 can be used.
  • the guide and limiting chute structure is used to convert the spiral motion between the screw nut 152 and the driving screw 151 into the sliding of the screw nut 152, thereby adjusting the position of the adjusting end of the adjusting rod 11.
  • the arrangement position and arrangement structure of the position adjustment mechanism only need to ensure that the adjustment end of the adjustment rod 11 can be driven to move relative to the position. Therefore, the position adjustment mechanism can be linear or curved.
  • the positional relationship between the position adjustment mechanism and the output rod 9 is also based on the premise that the adjustment end of the adjustment rod 11 can be driven to move relative to the position.

Landscapes

  • Health & Medical Sciences (AREA)
  • Power Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Animal Behavior & Ethology (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physical Education & Sports Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pain & Pain Management (AREA)
  • Epidemiology (AREA)
  • Transmission Devices (AREA)

Abstract

本发明涉及筋膜枪领域,尤其是一种结构简单可靠,并且可以实现振幅无级调节的无级变幅往复驱动机构,包括由曲柄、输出杆、连接杆和滑块依次铰接构成的曲柄滑块机构,还包括摆幅调节机构,输出杆与连接杆之间的铰接点为摆幅铰接点,所述摆幅调节机构调节并限定摆幅铰接点的摆动范围。本发明在调节活塞振幅时,首先偏心轮上的偏心距本身没有变化,实现活塞振幅调节的核心是调节输出杆的摆幅铰接点的摆动幅度。本发明尤其适用于在筋膜枪产品上做广泛的推广。

Description

无级变幅往复驱动机构及筋膜枪 技术领域
本发明涉及筋膜枪领域,尤其是一种无级变幅往复驱动机构及筋膜枪。
背景技术
筋膜枪,也称深层肌筋膜冲击仪,是一种软组织按摩工具,通过高频率冲击放松身体的软组织。现有的筋膜枪通过活塞带动按摩头做直线往复运动,按摩头与人体接触,产生高频的振动作用到肌肉深层,起到减少局部组织张力、缓解疼痛、促进血液循环等作用。现有的筋膜枪,已经实现了对按摩头振幅大小的调节功能,这就让使用者可以根据自身情况选择合适自己的筋膜枪振幅深度进行按摩理疗。例如专业运动员需要振幅深度深才能实现对运动后的肌肉进行缓解。而普通消费者尤其是新手在使用筋膜枪时,起初需要用振幅深度浅的筋膜枪,随后再随着使用的需要而逐步加深振幅。
现有的振幅深度可以调节的筋膜枪中,其调节原理都是设计出可以将偏心距大小直接进行调节的机构,然后在实际使用时,将电机输出轴与偏心轮输出轴的间距进行调整,进而实现活塞振动幅度进行调整。以专利申请CN115444733A为例,该方案涉及按摩设备领域,尤其是利用电机正、反向转动状态的切换实现振幅调节的可变振幅的筋膜枪,包括电机、具有偏心轴的偏心距调节组件、连杆和活塞杆,所述连杆一端与前述偏心轴转动连接,连杆另一端与活塞杆转动连接;所述偏心距调节组件包括滑动斜块和带有偏心轴的偏心滑块结构,所述电机的电机输出轴与滑动斜块之间螺纹传动连接,所述滑动斜块在所述电机的驱动下滑动于所述偏心滑块结构并推动偏心滑块结构垂直于所述电机输出轴方向移动。该方案通过滑动斜块的位置变化,实现对偏心距的直接调节,从而对活塞的振幅进行调整。这样的调节方式需要对偏心距进行直接调节,结构构成相对复杂,不能保证振幅调节后的稳定性。
发明内容
本发明所要解决的技术问题是提供一种结构简单可靠,并且可以实现振幅无级调节的无级变幅往复驱动机构及筋膜枪。
本发明解决其技术问题所采用的技术方案是:无级变幅往复驱动机构,包括由曲柄、输出杆、连接杆和滑块依次铰接构成的曲柄滑块机构,包括摆幅调节机构,输出杆与连接杆之间的铰接点为摆幅铰接点,所述摆幅调节机构调节并限定摆幅铰接点的摆动范围。本机构在实际运动时,输出杆随着曲柄的转动而往复摆动,在摆动的同时,输出杆驱动连接杆进而驱动滑块进行往复运动。此时,如果对输出杆与连接杆之间的铰接点即摆幅铰接点的往复摆动幅度和摆动范围进行调节,并在调节后限定好摆幅铰接点的往复摆动幅度和摆动范围,则会得到新的滑块往复运动幅度,从而实现对滑块振幅的调节。本方案通过这一简单且巧妙的结构设计,很好的实现了对滑块往复运动幅度的无级调节,与现有的各种无级调节方式相比, 有效的降低了结构复杂程度和制造成本,同时也便于使用人员调节的便利。
作为摆幅调节机构的一种优选的结构形式,优选如下方案:所述摆幅调节机构包括调节杆,所述调节杆具有摆动端以及调节端;所述调节杆的摆动端铰接在所述输出杆上,所述调节杆的调节端的铰接位置可调节。在实际使用时,由于调节杆的摆动端转动连接在所述输出杆上,因此调节杆会随着输出杆的摆动而运动。当需要对滑块振幅进行调节时,则通过调整调节杆的调节端的转动连接位置,从而让摆幅铰接点的摆动范围发生改变,并由此对滑块振幅进行调节。本方案结构设计简单,但是很有效的实现了滑块振幅的调节效果。
上述结构在实际应用中可以选择为如下具体结构形式:所述曲柄为偏心轮,连接杆为摆臂,滑块为活塞,所述输出杆和所述摆臂的转动连接端与所述偏心轮的转动输入端之间的连线为第一摆线,所述调节杆的调节端与偏心轮的转动输入端之间的连线为第二摆线;所述第一摆线与活塞往复轴线之间的夹角为第一夹角θ,所述第二摆线与活塞往复轴线之间的夹角为第二夹角β;调节所述第二夹角β以使所述第一夹角θ的摆动范围联动调节。通过调节所述第二夹角β的大小,进而导致输出杆的摆动轨迹发生变化,也就必然导致输出杆上的摆幅铰接点的摆动范围产生变化,进而实现活塞振幅的调节。其中,第一摆线对应于图16中的od连线,第二摆线对应于图16中的og连线,图16中的水平线即为活塞往复轴线。上述的结构中,所述活塞的往复运动幅度满足以下关系:F=L1*|Cosθmax-Cosθmin|;F为所述活塞的往复运动幅度;L1为所述第一摆线的长度;θmax为第一摆线对应于第二夹角β时的最大摆动角度;θmin为第一摆线对应于第二夹角β时的最小摆动角度。其中,优选所述第二夹角β的取值范围为-20°至30°时,所述第一夹角θ的摆动角度范围为-20°至90°。为了防止出现卡滞而无法顺利转动的情况,θ的取值不包括90°。上述的结构,可以准确的计算出因为调节第二夹角β所引起的第一夹角θ的摆动范围的联动变化,进而计算出往复运动幅度。这就为该无级变幅往复驱动机构实施到具体的产品上提供了结构的基础,从而让振幅的无级调节过程可以被准确控制。
为了实现结构的精简以及传动的顺畅,可以选择如下方案:包括输出杆与曲柄之间的输出铰接点,输出杆与调节杆摆动端之间的调节铰接点,以及与偏心轮的转动输入端垂直的投影平面,所述输出铰接点、调节铰接点以及摆幅铰接点均投影到所述投影平面上得到对应的投影点,任意两个投影点之间的连线的夹角范围为0-360°。在实际设计时,输出杆的形状是多样化的。由上述投影关系限定下的输出杆的结构可以是沿直线延伸的杆状,也可以是折弯的杆状,或者是盘状等形状,除了平面结构外,任意铰接点具有凸起或凹陷结构构成的立体结构在满足上述投影关系时也可作为输出杆。同时,输出杆与调节杆摆动端之间的调节铰接点也可以与摆幅铰接点分别向相反的两个方向延伸。但无论是什么样的具体形状,只需满足其任意两个铰接点投影之间的连线的夹角范围为0-360°,即可保证构成的运动机构能够实现相应的摆动动作而实现往复动作传递并涉及往复运动幅度调节。其中,连线的夹角取值 范围不包括0°和360°这两个端点值。
为了实现对调节杆的调节端位置进行实时调节,可以选择位置调节机构,所述调节杆的调节端铰接在所述位置调节机构上,所述位置调节机构驱动所述调节杆的调节端相对位置移动。通过位置调节机构,可以便捷可靠的调节调节杆的调节端位置,从而驱动调节杆对输出杆上的摆幅铰接点的摆动范围进行调整,也就实现了对滑块振幅的调节。
作为上述位置调节机构的一种具体实施例,可以选择所述位置调节机构包括丝杆及丝杆螺母,丝杆螺母转动设置于调节杆的调节端上,丝杆连接有驱动装置,所述驱动装置驱动丝杆转动从而驱动丝杆螺母沿丝杆的轴向滑动。具体的讲,通过驱动装置驱动丝杆转动,进而驱动丝杆螺母沿丝杆沿伸方向滑动,并由此改变调节杆的调节端的位置,不仅整个调节过程十分的便利,准确,也为后续的产品化提供了结构的基础。其中,优选所述驱动装置为驱动电机或者手动旋钮,从而实现更合理的驱动方式以及产品成本优化,为产品的多元化提供支持。
作为上述位置调节机构的另一种具体实施例,可以选择所述位置调节机构为限位滑槽,调节杆的调节端铰接设置有滑动块,所述滑动块可滑动设置于限位滑槽内,滑动块上设置有用于实现滑动块固定设置于限位滑槽上的滑块固定机构,所述滑块固定机构为螺纹旋钮以及与所述螺纹旋钮螺纹配合的紧固块,所述螺纹旋钮旋紧时将滑动块固定设置于限位滑槽上。滑动块限定在限位滑槽内滑动,且滑动块滑动过程中,也对调节杆的调节端的位置进行调节。当滑动块需要在限位滑槽内某个位置实现固定时,只需旋紧螺纹旋钮,并通过螺纹旋钮将滑块固定设置于限位滑槽上,由此即可实现滑动块位置的固定,进而获得所需的活塞振幅范围。
作为上述摆幅调节机构的另外一种优选的结构形式,可以选择所述摆幅调节机构包括限位挡板,所述摆幅铰接点的摆动范围设置于限位挡板所构成的摆动范围内,所述限位挡板所构成的摆动范围可调节。限位挡板构成一个相对的摆动范围,且摆幅铰接点的整个运动轨迹都限制在该摆动范围内。当需要对摆幅铰接点的摆动范围进行调节时,只需调整限位挡板构成的摆动范围,从而获得摆幅铰接点新的摆动范围,以实现滑块振幅的调节。
作为上述方案进一步的优选实施例,优选所述限位挡板为两个挡板,所述调节摆幅铰接点设置于所述的两个挡板之间,两个挡板之间的间距可调节。两个挡板共同构建了一个相对的摆动范围,且限定摆幅铰接点在该摆动范围内运动。当需要对摆幅铰接点的摆动范围进行调节时,只需对两个挡板之间的间距或者挡板的位置进行调节,即可调整摆幅铰接点的摆动范围,进而实现对滑块振幅的调节。本方案可以根据实际布置需要,灵活的设置于挡板的位置,从而节省相应的布置空间。另外,通过直接调节限位挡板所构成的摆动范围的方式,也让摆幅铰接点的摆动调节范围更大,进而获得更大的滑块振幅调节范围。
基于上述的无级变幅往复驱动机构,还可以得到相应的筋膜枪,所述筋膜枪包括由下壳、上壳、前盖和后盖所构成的安装腔,以及用于驱动曲柄转的电机,所述滑块为活塞,活塞滑 动设置于所述前盖的活塞孔内。在实际使用时,当使用者需要对筋膜枪的活塞振动幅度进行调节时,只需简单的通过调节摆幅调节机构,对输出杆的摆动幅度范围进行便捷的调整,即可实现调节需求。基于上述无级变幅往复驱动机构所得到的筋膜枪,不仅大大的简化了振幅调节系统的结构构成,在产品层面更易于实现,易于后期大规模的市场推广。另外,这样的结构也让使用者对振幅的调节更便利,更准确,大大提高了使用体验。
作为上述方案进一步的优化,优选所述曲柄为偏心轮,所述偏心轮的转动输入端与电机的输出轴固定连接。筋膜枪的偏心轮与筋膜枪的电机结合,在无需对偏心轮上的偏心距进行调节的情况下,通过无级变幅往复驱动机构即可实现对活塞振幅的调节。
为了便于将摆幅调节机构进行安装固定,可以选择增设电机固定支架,所述电机以及摆幅调节机构设置于电机固定支架上。摆幅调节机构作为对输出杆摆动幅度范围进行调节的机构,在实际运动过程中,会受到高频的反作用力,因此,摆幅调节机构位置的稳定性,是实际产品需要考虑的一个设计点。鉴于筋膜枪产品内部布置空间的有限,将摆幅调节机构设置于电机固定支架上,这就很好的利用了原本就用来固定电机的支架,进而进一步的节省了布置空间,让内部布置更加的合理。为了实现上述的稳定布置,可以选择在摆幅调节机构上设置安装孔,摆幅调节机构通过安装孔而设置于电机固定支架上。
本发明的有益效果是:现有的筋膜枪,在实现振幅可调的效果时,都是通过直接对筋膜枪中的偏心距进行直接调节,即调大或调小偏心距来实现的。这样的结构设计,在实际产品上较难真正实现。同时,偏心距的可调带来的问题就是相关部件磨损、振动的增加,以及整体结构的稳定下降,产品生产制造成本也很高。同时,改变摆臂与偏心轮之间的偏心距的方式,需要调节相对位置变化,运行中如果相对位置变化后,则不能保证振幅调节后的稳定性,即难以保证振幅调节后在实际使用时的稳定性。
而本发明在调节活塞振幅时,首先偏心轮上的偏心距本身没有变化,实现活塞振幅调节的核心是调节输出杆的摆幅铰接点的摆动幅度。具体的讲,输出杆随着偏心轮的转动而往复摆动,而输出杆的摆幅铰接点的摆动幅度以及摆动范围的变化,就会通过摆臂传递到活塞处,并最终导致活塞往复运动的幅度的变化。所增设的摆幅调节机构,对摆幅铰接点的摆动范围直接进行控制和调整,以此来直接有效的调整活塞的往复运动轨迹。由于对摆幅铰接点的摆动幅度范围进行调节,内部的相对连接关系在调节过程中不会产生相对位置变化,振幅调节后的运行稳定性更好。本发明尤其适用于在筋膜枪产品上做广泛的推广。
附图说明
图1是该无级变幅往复驱动机构的机械运动原理示意图。
图2是该无级变幅往复驱动机构的摆幅铰接点d通过调节杆进行摆动范围调节的示意图。
图3是该无级变幅往复驱动机构的摆幅铰接点d被上下侧的挡板限定摆动范围的示意图。
图4是本发明的调节杆设置于限位滑槽最下端,对应活塞振幅范围最大的示意图。
图5是本发明的调节杆设置于限位滑槽最上端,对应活塞振幅范围最小的示意图。
图6是本发明的调节杆设置于活塞振幅范围最大位置的情况下,活塞处于最大行程位置的示意图。
图7是本发明的调节杆设置于活塞振幅范围最大位置的情况下,活塞处于最小行程位置的示意图。
图8是本发明的调节杆设置于活塞振幅范围最小位置的情况下,活塞处于最大行程位置的示意图。
图9是本发明的调节杆设置于活塞振幅范围最小位置的情况下,活塞处于最小行程位置的示意图。
图10是本发明的调节杆设置于活塞振幅范围最大和最小位置之间的情况下,活塞处于最大行程位置的示意图。
图11是本发明的调节杆设置于活塞振幅范围最大和最小位置之间的情况下,活塞处于最小行程位置的示意图。
图12是本发明的调节杆在其中一个摆动极限位置处的示意图。
图13是图12的调节杆摆动至另一个摆动极限位置处的示意图。
图14是活塞振幅计算方法的示意图。
图15是该无级变幅往复驱动机构的位置调节机构为丝杆及丝杆螺母时的示意图。
图16是该无级变幅往复驱动机构的一种实施例,其调节角度之间变化关系的示意图。
图17是本发明的筋膜枪各个主要部件分拆后的爆炸示意图。
图18是本发明的无级变幅往复驱动机构以及周围部件分拆后的爆炸示意图。
图19是本发明的无级变幅往复驱动机构的一个实施例的结构示意图。
图20是本发明的无级变幅往复驱动机构的限位滑槽的结构示意图。
图中标记为:上壳1、往复驱动机构2、前盖3、下壳4、把手5、后盖6、连接杆7、轴承8、输出杆9、曲柄91、限位挡板92、滑块10、活塞101、调节杆11、滑动块12、螺纹旋钮13、紧固块14、限位滑槽15、偏心轮16、电机固定支架17、电机18、活塞振幅范围最小时滑块位置111、活塞振幅范围最大时滑块位置112、第三滑块位置113、输出杆第一极限摆动位置f1、输出杆第二极限摆动位置f2、活塞振幅范围f、动力源a、输出铰接点c、摆幅铰接点d、调节铰接点e、调节杆与滑块转动点g、丝杆151、丝杆螺母152、驱动装置153、第一摆线长度L1、第一夹角θ、第二夹角β、第一间距A、第二间距B。
具体实施方式
如图1至图3所示的,是本无级变幅往复驱动机构的结构以及控制原理。图1展示的是由曲柄91、输出杆9、连接杆7和滑块10依次铰接构成的曲柄滑块机构。图3展示的是在摆幅铰接点d处增设限位挡板92后的示意图。其中,摆幅铰接点d的摆动范围位于限位挡板 92所构成的摆动范围内。图2展示的是输出杆9为连接杆时的示意图。以图2为例,首先,转动的动力源a将转动传递到输出铰接点c,此时,输出杆9随之摆动。而摆动中的输出杆9的右端由于受到调节杆11的约束,其摆动的幅度以及范围必然会与自然状态下不同。输出杆9的左端与连接杆7转动连接,连接杆7随着输出杆9的摆动而运动,连接杆7驱动滑块10做往复的运动。其中,在进行调节时,通过滑动调节杆11右端即调节杆与滑块转动点g的相对位置,即可通过调节杆11以及调节铰接点e对输出杆9的摆动轨迹产生调整,进而实现对摆幅铰接点d的摆动幅度的调节,以此调节滑块10的振幅大小。本结构在不对偏心距大小进行调节的情况下,通过对输出杆9的摆幅大小以及范围进行调节,让相关的调节结构得到了明显的优化,也让产品利于量产化。另外,这样的调节方式,也可以在筋膜枪使用的过程中进行调节,大大提高了使用的便利度和用户体验。
上述的无级变幅往复驱动机构在应用到具体的筋膜枪产品后,其相关的结构示意图如图4至图20所示。首先,由下壳4、上壳1、前盖3和后盖6构成安装腔,所述往复驱动机构2布置于安装腔内,往复驱动机构2中的活塞101滑动设置于所述前盖3的活塞孔内。如图18所示,电机18通过输出轴将转动的动力输送到偏心轮16,并带动偏心轮16转动。转动中的偏心轮16则通过偏心轮1的输出轴与输出杆9转动连接。输出杆9为杆状,其一端与连接杆7转动连接,另一端则与调节杆11转动连接。上述基础结构连接完毕后,即得到如图19所示的具体结构。在实际运动时,偏心轮16随电机18的输出轴转动,转动中的偏心轮16则带动输出杆9随之摆动。在调节杆11的调节端的滑动块12的位置固定不变的情况下,活塞101的振幅是固定的。当需要对活塞101的振幅进行调节时,旋松螺纹旋钮13并调整滑动块12的位置。随着滑动块12位置的变化,调节杆11会通过调节铰接点e对输出杆9的摆动状态产生调整,也即对摆幅铰接点d的摆动范围进行调节,进而对活塞101的振幅进行调节。
以图6至图11为例,当调节杆11的右端处于处图6所示位置时,即调节杆11的右端处于活塞振幅范围最大时滑块位置112时,此时活塞101处于最大的振幅范围。其中,图6所示的为活塞101运动至最左端的状态,其活塞101左端与活塞套间距D1为19.9mm。图7所示的为活塞101运动至最右端的状态,其活塞101左端与活塞套间距D2为6.8mm,由此得到,此时活塞101的振幅行程为19.9-6.8=13.1mm。
当调节杆11的右端处于图8和图9所示位置时,即调节杆11的右端处于活塞振幅范围最小时滑块位置111时,此时活塞101处于最小的振幅范围。其中,图8所示的为活塞101运动至最左端的状态,其活塞101左端与活塞套间距D3为26mm。图9所示的为活塞101运动至最右端的状态,其活塞101左端与活塞套间距D4为21.7mm,由此得到,此时活塞101的振幅行程为26-21.7=4.3mm。
当调节杆11的右端处于介于上述两个极限位置之间时,如图10和图11所示,即调节杆11的右端处于第三滑块位置113时,此时活塞101的振幅范围介于最大和最小范围之间。其 中,图10所示的为活塞101运动至最左端的状态,其活塞101左端与活塞套间距D5为26.3mm。图11所示的为活塞101运动至最右端的状态,其活塞101左端与活塞套间距D6为16mm,此时活塞10的振幅行程为26.3-16=10.3mm。
通过上述三种位置可得,对应的活塞101的振幅行程的调节范围为4.3mm至13.1mm。
另外,图16也详细说明了上述结构情况下,角度调节与振幅变化之间的关系。图16中,O点为电机轴中心,调节杆与滑块转动点g为调节杆旋转中心,调节铰接点e为输出杆与调节杆旋转连接点,输出铰接点c为输出杆与偏心轮旋转连接点,摆幅铰接点d为摆臂与输出杆转动连接点;og段与横坐标轴之间的夹角为β,即第二夹角β,od段与横坐标轴之间的夹角为θ,即第一夹角θ。当电机转动带着偏心轮转动时,由于摆臂受到调节杆的限位而能够作平面运动,也即呈往复摆动,当第二夹角β变化时,驱使摆臂以第一夹角θ在对应的摆动范围内进行摆动,并在对应振幅F范围内驱使活塞杆往复动作,呈现随着第二夹角β的角度减小,振幅F增大。当g点位置变化并对应第二夹角β时,od段的摆动极限位置在水平方向上的投影距离差值为当前活塞往复移动距离F,此时od段在往复摆动过程中形成与水平方向的夹角变化为θmax~θmin之间,即F=od*|Cosθmax-Cosθmin|,od即为L1。即通过g点位置调节,也就是第二夹角β的角度变化,实现了振幅F的变化调节,呈现随着第二夹角β的角度减小,振幅F增大,可对g点位置无级调节实现对应的振幅F无级调节。其中,振幅调节范围为Fmax-Fmin。第二角度β取值范围:-20°-30°;第一角度θ取值范围:-20°-90°(不含90°)。针对上述第二夹角β、第一夹角θ以及振幅F之间的关系,可以通过如下的实验数据列表并且结合图16进行说明:
结合上述实验数据以及图16可以看出:当第二夹角β在27°到-19°的范围内逐渐减小时,振幅F的值逐渐增大,实现的振幅调节范围为:11.95-4.61=7.34mm。更进一步的讲,通过调节杆11实现第二夹角β的角度在-19°至27°范围调节时,活塞振幅可调节范围为7.34mm,即振幅在4.61mm至11.95mm之间变化调节。
在图12中,输出铰接点c和摆幅铰接点d之间间距为第一间距A,输出铰接点c和调节铰接点e之间间距为第二间距B。其中,当输出杆9处于如图13所示的输出杆第二极限摆动位置f2时,其轴线标记为f2。当输出杆9处于如图14所示的输出杆第一极限摆动位置f1时,其轴线标记为f1。将所述f2和f1向活塞10往复运动所在直线上进行投影,投影得到投影长度的差值标记为f,此即为活塞振幅范围f,也即如上所述的振幅行程。相应的投影原理示意图,在图14中也有标记。
图15所示的,是位置调节机构为丝杆151及丝杆螺母152的状态。相较于上述的滑动块12进行调节的方式,丝杆151及丝杆螺母152的驱动调节方式,可以更好的实现电驱无级调节的效果,让活塞101的振幅调节更准确和便捷,更有利于在筋膜枪产品上推广。在实际驱动时,驱动装置153首先驱动丝杆151转动,转动中的丝杆151与丝杆螺母152之间发生相对的转动,该相对转动状态在丝杆151与丝杆螺母152之间的螺纹作用下,驱使丝杆螺母152沿丝杆151的轴向滑动,丝杆螺母152为滑动安装方式,具体可采用穿过所述丝杆螺母的导向滑杆或者采用对丝杆螺母152的滑动进行导向限位的滑槽结构等,在于让丝杆螺母152与驱动丝杆151之间的螺旋运动转化为丝杆螺母152的滑动,从而实现对调节杆11的调节端位置的调整。
在实际设计时,所述位置调节机构的布置位置以及布置结构形式,只需保证可以驱动调节杆11的调节端相对位置移动即可。因此,位置调节机构可以为线性的,可以为曲线的。另外,位置调节机构与输出杆9之间的位置关系,也以能够驱动调节杆11的调节端相对位置移动为前提。

Claims (14)

  1. 无级变幅往复驱动机构,包括由曲柄(91)、输出杆(9)、连接杆(7)和滑块(10)依次铰接构成的曲柄滑块机构,其特征在于:包括摆幅调节机构,输出杆(9)与连接杆(7)之间的铰接点为摆幅铰接点(d),所述摆幅调节机构调节并限定摆幅铰接点(d)的摆动范围。
  2. 如权利要求1所述的无级变幅往复驱动机构,其特征在于:所述摆幅调节机构包括调节杆(11),所述调节杆(11)具有摆动端以及调节端;所述调节杆(11)的摆动端铰接在所述输出杆(9)上,所述调节杆(11)的调节端的铰接位置可调节。
  3. 如权利要求2所述的无级变幅往复驱动机构,其特征在于:所述曲柄(91)为偏心轮(16),连接杆(7)为摆臂,滑块(10)为活塞(101),所述输出杆(9)和所述摆臂的转动连接端与所述偏心轮(16)的转动输入端之间的连线为第一摆线,所述调节杆的调节端与偏心轮的转动输入端之间的连线为第二摆线;所述第一摆线与活塞往复轴线之间的夹角为第一夹角θ,所述第二摆线与活塞往复轴线之间的夹角为第二夹角β;调节所述第二夹角β以使所述第一夹角θ的摆动范围联动调节。
  4. 如权利要求3所述的无级变幅往复驱动机构,其特征在于:所述活塞(101)的往复运动幅度满足以下关系:F=L1*|Cosθmax-Cosθmin|;F为所述活塞的往复运动幅度;L1为所述第一摆线的长度;θmax为第一摆线对应于第二夹角β时的最大摆动角度;θmin为第一摆线对应于第二夹角β时的最小摆动角度。
  5. 如权利要求4所述的无级变幅往复驱动机构,其特征在于:所述第二夹角β的取值范围为-20°至30°时,所述第一夹角θ的摆动角度范围为-20°至90°。
  6. 如权利要求3所述的无级变幅往复驱动机构,其特征在于:包括输出杆(9)与曲柄(91)之间的输出铰接点(c),输出杆(9)与调节杆(11)摆动端之间的调节铰接点(e),以及与偏心轮(16)的转动输入端垂直的投影平面,所述输出铰接点(c)、调节铰接点(e)以及摆幅铰接点(d)均投影到所述投影平面上得到对应的投影点,任意两个投影点之间的连线的夹角范围为0-360°。
  7. 如权利要求2至6任意一项所述的无级变幅往复驱动机构,其特征在于:还包括位置调节机构,所述调节杆(11)的调节端铰接在所述位置调节机构上,所述位置调节机构驱动所述调节杆(11)的调节端相对位置移动。
  8. 如权利要求7所述的无级变幅往复驱动机构,其特征在于:所述位置调节机构包括丝杆(151)及丝杆螺母(152),丝杆螺母(152)转动设置于调节杆(11)的调节端上,丝杆(151)连接有驱动装置,所述驱动装置(153)驱动丝杆(151)转动从而驱动丝杆螺母(152)沿丝杆(151)的轴向滑动。
  9. 如权利要求8所述的无级变幅往复驱动机构,其特征在于:所述驱动装置(153)为驱动电机或者手动旋钮。
  10. 如权利要求7所述的无级变幅往复驱动机构,其特征在于:所述位置调节机构为限位滑槽(15),调节杆(11)的调节端铰接设置有滑动块(12),所述滑动块(12)可滑动设置于限位滑槽(15)内,滑动块(12)上设置有用于实现滑动块(12)固定设置于限位滑槽(15)上的滑块固定机构,所述滑块固定机构为螺纹旋钮(13)以及与所述螺纹旋钮(13)螺纹配合的紧固块(14),所述螺纹旋钮(13)旋紧时将滑动块(12)固定设置于限位滑槽(15)上。
  11. 如权利要求1所述的无级变幅往复驱动机构,其特征在于:所述摆幅调节机构包括限位挡板(92),所述摆幅铰接点(d)的摆动范围设置于限位挡板(92)所构成的摆动范围内,所述限位挡板(92)所构成的摆动范围可调节。
  12. 如权利要求11所述的无级变幅往复驱动机构,其特征在于:所述限位挡板(92)为两个挡板,所述调节摆幅铰接点(d)设置于所述的两个挡板之间,两个挡板之间的间距可调节。
  13. 如权利要求1至12任意一项所述的无级变幅往复驱动机构所构成的筋膜枪,包括由下壳(4)、上壳(1)、前盖(3)和后盖(6)所构成的安装腔,以及用于驱动曲柄(91)转的电机(18),其特征在于:所述滑块(10)为活塞(101),活塞(101)滑动设置于所述前盖(3)的活塞孔内,所述曲柄(91)为偏心轮(16),所述偏心轮(16)的转动输入端与电机(18)的输出轴固定连接。
  14. 如权利要求13所述的无级变幅往复驱动机构所构成的筋膜枪,其特征在于:包括电机固定支架(17),所述电机(18)以及摆幅调节机构设置于电机固定支架(17)上。
PCT/CN2023/109742 2023-03-22 2023-07-28 无级变幅往复驱动机构及筋膜枪 WO2024017396A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310288298.XA CN116155027A (zh) 2023-03-22 2023-03-22 无级变幅往复驱动机构及筋膜枪
CN202310288298.X 2023-03-22

Publications (1)

Publication Number Publication Date
WO2024017396A1 true WO2024017396A1 (zh) 2024-01-25

Family

ID=86340824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/109742 WO2024017396A1 (zh) 2023-03-22 2023-07-28 无级变幅往复驱动机构及筋膜枪

Country Status (2)

Country Link
CN (1) CN116155027A (zh)
WO (1) WO2024017396A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116155027A (zh) * 2023-03-22 2023-05-23 四川千里倍益康医疗科技股份有限公司 无级变幅往复驱动机构及筋膜枪

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207390A (ja) * 2004-01-26 2005-08-04 Toyota Motor Corp 内燃機関の運動変換構造
DE102009000772A1 (de) * 2009-02-11 2010-08-12 Zf Friedrichshafen Ag Einstellvorrichtung zur Einstellung des Verdichtungsverhältnisses einer Hubkolbenbrennkraftmaschine
CN111904831A (zh) * 2020-08-23 2020-11-10 刘建东 一种用于按摩枪的偏心距可变的联动机构
CN114041989A (zh) * 2021-12-24 2022-02-15 四川千里倍益康医疗科技股份有限公司 可变振幅筋膜枪及其驱动机构
CN217697261U (zh) * 2022-04-03 2022-11-01 深圳市心造科技有限公司 一种异行程筋膜枪
CN115388139A (zh) * 2022-08-12 2022-11-25 广东新宝电器股份有限公司 一种振幅可调的偏心轮机构及按摩装置
CN115444733A (zh) 2022-10-20 2022-12-09 四川千里倍益康医疗科技股份有限公司 可变振幅的筋膜枪
CN116155027A (zh) * 2023-03-22 2023-05-23 四川千里倍益康医疗科技股份有限公司 无级变幅往复驱动机构及筋膜枪

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005207390A (ja) * 2004-01-26 2005-08-04 Toyota Motor Corp 内燃機関の運動変換構造
DE102009000772A1 (de) * 2009-02-11 2010-08-12 Zf Friedrichshafen Ag Einstellvorrichtung zur Einstellung des Verdichtungsverhältnisses einer Hubkolbenbrennkraftmaschine
CN111904831A (zh) * 2020-08-23 2020-11-10 刘建东 一种用于按摩枪的偏心距可变的联动机构
CN114041989A (zh) * 2021-12-24 2022-02-15 四川千里倍益康医疗科技股份有限公司 可变振幅筋膜枪及其驱动机构
CN217697261U (zh) * 2022-04-03 2022-11-01 深圳市心造科技有限公司 一种异行程筋膜枪
CN115388139A (zh) * 2022-08-12 2022-11-25 广东新宝电器股份有限公司 一种振幅可调的偏心轮机构及按摩装置
CN115444733A (zh) 2022-10-20 2022-12-09 四川千里倍益康医疗科技股份有限公司 可变振幅的筋膜枪
CN116155027A (zh) * 2023-03-22 2023-05-23 四川千里倍益康医疗科技股份有限公司 无级变幅往复驱动机构及筋膜枪

Also Published As

Publication number Publication date
CN116155027A (zh) 2023-05-23

Similar Documents

Publication Publication Date Title
WO2024017396A1 (zh) 无级变幅往复驱动机构及筋膜枪
US6730050B2 (en) Handheld massager with circulatory contact motion
KR20210041339A (ko) 이동거리 가변형 마사지건
CN108578189A (zh) 曲柄摇杆式回旋揉动按摩机构
CN106214424B (zh) 手指功能康复训练装置
KR20220051831A (ko) 마사지 조절 구조 및 마사지 장치
US6802798B1 (en) Adjustable Gemini pedal trace extending crank mechanism
CN115444733A (zh) 可变振幅的筋膜枪
CN219875350U (zh) 无级变幅往复驱动机构及筋膜枪
CN221728067U (zh) 变幅往复驱动机构及筋膜枪
CN216962973U (zh) 肌肉按摩装置
CN221243417U (zh) 一种紧凑型无级变幅驱动机构及筋膜枪
CN221266645U (zh) 一种轻型的无级变幅筋膜枪
CN221470333U (zh) 一种利用急回特性改善按摩效果的可调振幅式筋膜枪
CN2855403Y (zh) 新型振动式按摩器
CN221042536U (zh) 一种往复驱动机构及筋膜枪
CN221331875U (zh) 一种变幅筋膜枪
CN221181017U (zh) 可旋钮调节的无级变幅筋膜枪
CN219271532U (zh) 一种多功能筋膜枪
CN221672580U (zh) 可变振幅调节机构及筋膜枪
CN112535621A (zh) 一种消化外科饭后助消化设备
US20240261176A1 (en) Real time adjustable amplitude and adjustable frequency percussive therapy device
WO2024148580A1 (zh) 一种无级调节健腹轮
CN221154704U (zh) 基于肌电信号的振幅调节装置及按摩设备
RU55910U1 (ru) Устройство преобразования вращательного движения в возвратно-поступательное с регулировкой хода

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842458

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023842458

Country of ref document: EP

Ref document number: 23842458

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023842458

Country of ref document: EP

Effective date: 20240813