WO2024017288A1 - 血管修复系统及控制方法 - Google Patents

血管修复系统及控制方法 Download PDF

Info

Publication number
WO2024017288A1
WO2024017288A1 PCT/CN2023/108114 CN2023108114W WO2024017288A1 WO 2024017288 A1 WO2024017288 A1 WO 2024017288A1 CN 2023108114 W CN2023108114 W CN 2023108114W WO 2024017288 A1 WO2024017288 A1 WO 2024017288A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
blood vessel
repair system
module
output
Prior art date
Application number
PCT/CN2023/108114
Other languages
English (en)
French (fr)
Inventor
王彩霞
刘翔
刘强宪
余贤涛
金旻
Original Assignee
上海微创惟美医疗科技(集团)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202221900632.XU external-priority patent/CN217938369U/zh
Priority claimed from CN202210869431.6A external-priority patent/CN117462241A/zh
Application filed by 上海微创惟美医疗科技(集团)有限公司 filed Critical 上海微创惟美医疗科技(集团)有限公司
Publication of WO2024017288A1 publication Critical patent/WO2024017288A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/22Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser the beam being directed along or through a flexible conduit, e.g. an optical fibre; Couplings or hand-pieces therefor

Definitions

  • the invention relates to the technical field of medical devices, and in particular to a blood vessel repair system and a control method.
  • Atherosclerosis is a chronic disease of the inner wall of blood vessels that commonly occurs in large and medium-sized arteries and is characterized by lipid accumulation and inflammation. Its disease process includes vascular inflammation, endothelial injury, phenotypic transformation, migration and proliferation of vascular smooth muscle cells, Foam cell formation, cell death, accumulation of lipids and cholesterol, and thrombosis.
  • the existing treatment method for atherosclerosis is usually mechanical thrombectomy, which has the advantages of high vascular recanalization rate, low incidence of cerebral hemorrhage, recanalization time, and extended treatment time window.
  • Mechanical thrombectomy also has shortcomings such as insufficient accuracy, delayed vascular recanalization due to surgical preparation and operation, and high requirements on operators and equipment.
  • This method uses laser products combined with optical fibers for vascular treatment of atheroma and semi-atheroma thrombi.
  • the optical fiber is delivered to into the blood vessels, and transmits the laser through the optical fiber, and uses the laser to open up the atherosclerotic plaques and thrombi in the coronary arteries and peripheral blood vessels to recanalize the blood vessels and create an effective and new treatment method.
  • the main mechanism is to make the target tissue through photochemistry and photomechanical action. Destruction dissolves.
  • laser angioplasty can remove thrombi with laser, there are still safety issues related to embolization. While laser can eliminate plaques and thrombus, it can also easily damage the inner wall of blood vessels. The inner wall of blood vessels can easily cause blood vessel damage during the wound healing and proliferation process. The occurrence of postoperative restenosis.
  • the object of the present invention is to provide a blood vessel repair system and a control method.
  • the repair system integrates the functions of inner wall repair of blood vessels and blood vessel ablation and recanalization. It can repair the inner wall of blood vessels after ablation and recanalization and reduce the repair of blood vessel damage.
  • the degree of intimal thickening during the process can prevent and treat recurrence after ablation. Occurrence of stenosis.
  • the invention provides a blood vessel repair system, including:
  • a laser generation module used to generate a first laser for repairing the inner wall of blood vessels, and a second laser for ablation of target tissue within the blood vessels, where the wavelength range of the first laser is 600nm to 1064nm;
  • An output module is used to intervene in the blood vessel and transmit the first laser and the second laser.
  • the energy density of the first laser generated by the laser generating module is adjustable.
  • the wavelength range of the second laser is 198nm ⁇ 400nm.
  • the output module includes a first output part and a second output part, the first output part is used to transmit the first laser and irradiate the first laser to the inner wall of the blood vessel, and the third output part is used to transmit the first laser.
  • the two output parts are used to transmit the second laser and irradiate the second laser to the target tissue in the blood vessel.
  • the vascular repair system further includes a delivery catheter, which is used to be implanted into the blood vessel to form a delivery channel, and the delivery catheter has a lumen for allowing the first output member or the second The output member is introduced into the blood vessel through the lumen; or, the delivery catheter has two lumens so that the first output member and the second output member are introduced into the blood vessel simultaneously through the two lumens.
  • the first output member is a dispersion optical fiber, a bundled optical fiber or a lateral output optical fiber; and/or the second output member is a bundled optical fiber.
  • the laser generating module includes a semiconductor laser and an ultraviolet laser, the semiconductor laser is used to generate the first laser, and the ultraviolet laser is used to generate the second laser.
  • the blood vessel repair system further includes a control module, which is communicatively connected to the laser generation module and used to control the light emission mode of the laser generation module.
  • the light emission mode at least includes a first laser individual light emission mode, a third laser light emission mode, and a first laser light emission mode. The two lasers emit light independently and the first laser and the second laser emit light simultaneously.
  • control module is further configured to control the activation of the first laser individual light emission mode after the activation of the second laser individual light emission mode.
  • the blood vessel repair system further includes a power supply module, which is used to power the laser generating module and the control module.
  • the blood vessel repair system also includes a blood pressure collection unit and an alarm module. Both the blood pressure collection unit and the alarm module are communicatively connected with the control module.
  • the control module is also configured to: receive the blood pressure collection unit. Collect the blood pressure value of the intervened blood vessel, and determine whether the blood pressure value is less than the set value. If the blood pressure value is less than the set value, control the alarm module to issue an alarm.
  • the invention also provides a control method for a blood vessel repair system
  • Control the laser generation module to start and output the first laser for blood vessel repair and/or the second laser for ablation of target tissue within the blood vessel;
  • the second laser is controlled to be output into the blood vessel alone, and the first laser is controlled to be output into the blood vessel alone after a preset time delay.
  • the laser generating module is controlled to generate the first laser and/or the second laser.
  • the vascular repair system provided by the present invention includes:
  • a laser generation module used to generate a first laser for repairing the inner wall of blood vessels, and a second laser for ablation of target tissue within the blood vessels, where the wavelength range of the first laser is 600nm to 1064nm;
  • An output module is used to intervene in the blood vessel and transmit the first laser and the second laser.
  • the output module can irradiate the inner wall of blood vessels with laser light of a certain wavelength range, and utilize the photobiomodulation effect to produce energy and microstructural changes relying on the absorption of light by chromophores present in mitochondria and intracellular ion channels. This in turn leads to the activation of cell signaling, upregulation of transcription factors, and increased expression of protective genes.
  • Vascular endothelial cells are the main regulators of vascular tension balance and blood vessel growth, and play a very important role in cardiovascular diseases. Photobiomodulation has a protective effect on endothelial cells, mainly by stimulating cell proliferation and resisting inflammation and apoptosis.
  • vascular smooth muscle cells are the main component of the arterial wall. The apoptosis of smooth muscle cells induced by lasers with corresponding wavelengths is beneficial to reducing the thickness of the intima during the repair process of vascular injuries, thus preventing the occurrence of restenosis after ablation.
  • This repair system integrates the functions of blood vessel wall repair and blood vessel ablation, improving the safety and effectiveness of blood vessel ablation using a single ultraviolet laser in the past; the dual-wavelength laser can treat ultraviolet Repair the vascular damage after external ablation.
  • a repair system we can achieve an overall solution for vascular plaque ablation and blood vessel wall repair in one laser surgery.
  • the ablation efficiency and safety are improved, which not only minimizes the risk of surgery, but also uses laser repair to improve the therapeutic effect, solving the common problem in vascular surgery of untimely repair of the blood vessel wall after ablation. , improves the effectiveness and reliability of surgery, greatly reduces postoperative complications and postoperative dependence on drugs, and reduces the infection rate during and after surgery and the hidden dangers of vascular restenosis.
  • Figure 1 is a schematic diagram of the structural system of Embodiment 1 of the present invention.
  • Figure 2 is a schematic diagram 2 of the structural system of Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural diagram of Embodiment 1 of the present invention.
  • Figure 4 is a schematic structural diagram of the first output member in Embodiment 1 of the present invention.
  • Figure 5 is a schematic structural diagram of the second output member in Embodiment 1 of the present invention.
  • Figure 6 is a schematic structural diagram of the delivery catheter according to Embodiment 1 of the present invention.
  • Figure 7 is a schematic structural diagram of a delivery catheter according to Embodiment 2 of the present invention.
  • the reference signs are as follows: 10-laser generating module; 11-semiconductor laser; 12-ultraviolet laser; 20-output module; 21-first output piece; 211-dispersed optical fiber; 212-first conduit; 213-first connector; 22-second output piece; 221-quartz bundled optical fiber; 222-Luer connector; 223- second connector; 30-Control module; 40-Alarm module; 50-power supply module; 51-first driving power supply; 52-second driving power supply; 53-switching power supply; 60-delivery catheter, 61-lumen; 61'-first lumen; 62'-second lumen.
  • outer diameter and inner diameter correspond to diameter dimensions for circular structures.
  • the inner diameter refers to the diameter of its inscribed circle
  • the outer diameter refers to its inscribed circle.
  • axial direction for a cylindrical rod corresponds to the direction of the axis;
  • axial direction corresponds to the length direction of the rod; in the present invention, "radial direction” If the direction is based on the casing or implant rod as a reference, it is actually the radial direction when using the casing as a reference;
  • proximal end and distal end refer to the relative orientation, relative position, and direction of components or actions relative to each other from the perspective of a physician using the product, although “proximal end” and “distal end” are not Restrictive, but “proximal” generally refers to the end of the product that is closest to the physician during normal operation, and “distal” generally refers to the end that first enters the patient's body.
  • the definition of parallel and perpendicular should not be understood in a narrow sense as an absolutely vertical or absolutely parallel relationship, but should be understood as allowing an error of a set angle under the premise of being correspondingly vertical or parallel.
  • the set angle is usually ⁇ 5 °, the specific value of the set angle is determined according to the required usage conditions;
  • connection, coupling, or connection between the two elements.
  • Cooperation or transmission relationship, and the connection, coupling, cooperation or transmission between the two elements can be direct or indirect through an intermediate element, and it cannot be understood as indicating or implying the spatial positional relationship between the two elements, that is, one element can be in another Any orientation inside, outside, above, below, or to one side of a component, unless the content clearly indicates otherwise.
  • the specific meanings of the above terms in the present invention can be understood according to specific circumstances.
  • the elastic fibers in the media of the blood vessel wall have the function of retracting the expanded blood vessels, while the collagen fibers maintain tension and have a supporting function.
  • the amorphous matrix in the connective tissue of the vessel wall contains proteoglycans, the composition and water content of which vary slightly depending on the type of blood vessel. Restenosis as a response to damage to the inner wall of a blood vessel can be considered, at least in part, to be a proliferative problem or a specific wound healing process. Restenosis is the result of multiple factors.
  • the main pathological change is the proliferation of smooth muscle cells in the media, migrating to the intima and producing a large amount of matrix, causing vascular remodeling, resulting in significant thickening of the intima, shrinkage of the lumen, and even complete occlusion.
  • this embodiment provides a blood vessel repair system, including:
  • the laser generation module 10 is used to generate a first laser for repairing the inner wall of blood vessels and a second laser for ablation of target tissue within blood vessels;
  • the output module 20 is used to intervene in the blood vessel, and is used to transmit the first laser light to the inner wall of the blood vessel for blood vessel repair; and is also used to transmit the second laser light to the target in the blood vessel.
  • the tissue is irradiated to ablate the target tissue.
  • the wavelength range of the first laser is 600nm ⁇ 1064nm
  • the wavelength range of the second laser is 198nm ⁇ 400nm.
  • the laser generating module 10 generally uses an existing laser, and the output module 20 is used to transmit laser light.
  • the commonly used medium for transmitting laser light is optical fiber.
  • the output module 20 can be inserted into blood vessels using existing implantation methods.
  • Existing minimally invasive vascular recanalization surgeries require the puncture of a delivery catheter to build a delivery system.
  • femoral artery puncture and radial artery puncture are used in clinical practice. , firstly insert the guide wire and delivery catheter, the delivery catheter is driven by the guide wire, along the arterial approach and finally reaches the target blood vessel, and the output module 20 reaches the guided position through the delivery system built on the delivery catheter;
  • Irradiating human tissue with laser light in a certain wavelength range can cause mitochondria to produce biophotochemical effects and increase mitochondrial catalase activity.
  • This can increase cell metabolism, increase glycogen content, increase protein synthesis and increase decomposition of adenosine triphosphate, thus it can promote cell synthesis, promote the healing of wounds and ulcers, promote fracture healing, accelerate the regeneration of damaged nerves, and increase the production of white blood cells. Phagocytosis.
  • it can also be used to treat acne. Red light or near-infrared light can stimulate the growth of ATP in the human body.
  • Cytochrome C oxidase absorbs the light, which can not only promote the repair of blood vessel damage, enhance the function of the immune defense system, promote metabolism, reduce blood viscosity, and regulate Blood lipids, accelerating the clearance of inflammatory mediators and the absorption of tissue edema and other photobiomodulatory effects.
  • the secretion of vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 increases, and leukocytes migrate and adhere to the endothelial injury site mediated by a variety of chemotactic factors, thereby accumulating under the endothelium.
  • Inflammatory mediators secreted by endothelial cells trigger local chronic inflammatory reactions in blood vessels and mediate plaque formation.
  • This implementation study found that by adjusting the high and low energy density of red light or near-infrared light for irradiating the inner wall of blood vessels, the photobiomodulation effect is mainly used. Therefore, the energy density of the first laser generated by the laser generation module 10 is adjustable, and low energy density promotes blood vessel growth.
  • vascular smooth muscle cells are the main component of the arterial wall.
  • the apoptosis of smooth muscle cells induced by high-energy-density red light or near-infrared light is beneficial to reducing the thickness of the intima after angioplasty and preventing the occurrence of restenosis after ablation; these The effect may be related to the following mechanisms: affecting the flow of intracellular calcium ions, promoting the release of NO, and stabilizing and activating mitochondria.
  • the wavelength range of the first laser is 600nm ⁇ 1064nm, which has a good effect on blood vessel repair and preventing the occurrence of restenosis.
  • the preferred wavelength of the first laser is 635nm or 810nm, the average output power is 200 mW, and the energy density is 0.2 ⁇ 5J/ cm 2 , the low energy density is generally 0.2 ⁇ 1J/cm 2 , and the high energy density is generally 1 ⁇ 3J/cm 2 .
  • the first laser can be output continuously or in pulses.
  • the present invention further enables the laser generation module 10 to also be used to generate a second laser; wherein, the laser generation module 10 includes a semiconductor laser 11 and an ultraviolet laser 12.
  • the semiconductor laser 11 is used to generate the first laser
  • the ultraviolet laser 12 is used to generate the second laser. .
  • the semiconductor laser 11 can be a KD multi-wavelength plug-in semiconductor laser.
  • the energy density of the red light or near-infrared light generated by the semiconductor laser 11 can be adjusted.
  • the low energy density range is preferably 0.2 ⁇ 1J/cm 2 , which can promote vascular endothelium through low energy.
  • Cell proliferation reduces inflammatory reactions for vascular repair, and high energy higher than 1J/cm 2 can also be used to inhibit smooth muscle cell proliferation and plaque re-formation.
  • the specific values of low energy density and high energy density can be determined according to individual differences. Adaptive adjustments.
  • the ultraviolet laser 12 can be a Gama type high-frequency ultraviolet pulse laser.
  • the wavelength range generated by the ultraviolet laser is 198 ⁇ 400nm.
  • the ultraviolet high repetition frequency pulse laser with a wavelength of 355nm is preferred.
  • the laser is a solid ultraviolet laser.
  • the single pulse energy can reach 125mj and the pulse width 10ns, repetition frequency 100Hz adjustable in steps, high repetition frequency is effective on different types of plaques, relatively low noise, short warm-up time, this type
  • the series of UV lasers can output lasers of multiple wavelengths by switching the frequency doubling module, enabling free switching of lasers of different wavelengths.
  • the ultraviolet high-energy laser with nanosecond pulse width is introduced into the blood vessel cavity using optical fiber, so that it can directly act on the stenosis and occlusion.
  • the stenosis and occlusion can be The target tissue is crushed into micron-sized particles for ablation, thereby achieving volume reduction and enlarging the lumen, achieving the effect of minimally invasive treatment.
  • This embodiment uses a 355nm triple frequency Nd:YAG solid laser light source.
  • the laser pulse width is short, and a smaller laser energy can obtain a higher peak power, which can effectively ablate plaque target tissue; at the same time, the thermal effect is small, reducing the risk of blood vessels Risk of perforation.
  • the device has a simple structure and is easy to operate. It can adjust output laser parameters appropriately according to the treatment of different cavity diseases.
  • the first laser can be generated after the second laser, so that the first laser is used to irradiate the inner wall of the ablated blood vessel.
  • the energy of the second laser should be increased as much as possible.
  • increasing the laser energy also brings the risk of increasing the probability of damage to the inner wall of blood vessels, which in turn will reshape the blood vessels. Narrowness brings greater hidden dangers. Therefore, although laser surgical equipment has been widely used in many clinical settings, it has the disadvantages of single efficacy, low precision, and large damage, which limits the application of laser surgical equipment in high-precision surgery.
  • the principle of treatment for major artery and blood vessel injuries after laser ablation surgery is mainly to restore the continuity of the artery.
  • the blood vessel repair function in this system can irradiate and repair the inner wall of ablated blood vessels, solving the contradiction between laser energy and laser efficiency. It not only improves the efficacy of minimally invasive surgery, but also helps expand the application field of laser surgery.
  • the first laser with a wavelength of 635nm or 810nm can be introduced into the inner wall of the blood vessel to perform irradiation repair on the inner wall of the blood vessel where the target tissue has been ablated. Then the blood vessel repair and the ablation functions of the target tissue complement each other, solving the conflict between the ablation efficiency and the inner wall damage of blood vessels during the ablation process, making the laser ablation technique The surgical effect is improved and the application scope of laser surgery is expanded.
  • the first laser can be used alone, and the first laser can irradiate the inner wall of the blood vessel in the early stage of the disease.
  • the irradiation of the first laser can prevent thrombosis in the early stage, reduce vasoconstrictor active substances, increase vasodilator active substances, reduce the production of venous thromboembolism components in the blood, and is helpful in avoiding cardio-cerebral thrombosis diseases, such as stroke, cerebral infarction, and myocardial infarction.
  • cardio-cerebral thrombosis diseases such as stroke, cerebral infarction, and myocardial infarction.
  • the blood vessel repair system integrates the functions of blood vessel wall repair and blood vessel ablation.
  • the repair system is actually a dual-wavelength laser plaque ablation combined with blood vessel wall repair system. It is a multi-functional blood vessel repair system that improves The safety and effectiveness problems of vascular ablation with a single ultraviolet laser in the past have been overcome; the dual-wavelength laser can repair the vascular damage problem after ultraviolet ablation.
  • one-time laser surgery can achieve vascular plaque ablation and blood vessel ablation. Total solution for wall repair.
  • the ablation efficiency and safety are improved, which not only minimizes the risk of surgery, but also uses laser repair to improve the therapeutic effect, solving the common problem in vascular surgery of untimely repair of the blood vessel wall after ablation. , improves the effectiveness and reliability of surgery, greatly reduces postoperative complications and postoperative dependence on drugs, and reduces the infection rate during and after surgery and the hidden dangers of vascular restenosis.
  • the output module 20 includes a first output part 21 and a second output part 22.
  • the first output part 21 is used to transmit the first laser and irradiate the first laser to the inner wall of the blood vessel for blood vessel repair.
  • the second output part 22 It is used to transmit the second laser, and irradiate the second laser to the target tissue in the blood vessel to ablate the target tissue; the first output member 21 and the second output member 22 are optical fibers.
  • the first laser has a narrow spectrum and has extremely strong penetration into biological tissue.
  • the first laser is directly transmitted into the blood vessel through the first output member 21.
  • the first output member 21 can be a dispersion optical fiber, a bundled optical fiber, or a lateral output optical fiber.
  • the head of the first output member 21 is preferably a specially processed dispersion optical fiber, so that the first laser can be uniformly irradiated on the inner wall of the blood vessel.
  • the first output member 21 includes a dispersive optical fiber 211 , a first conduit 212 and a first connector 213 .
  • the proximal end of the dispersive optical fiber is located in the first conduit 212 , and the proximal end of the first conduit 212 is connected to a third connector.
  • a connector 213, and the proximal end of the dispersion fiber is connected to the first connector 213.
  • the first connector 213 is used to connect to the semiconductor laser 11, so that the first laser generated in the semiconductor laser 11 enters
  • the dispersion optical fiber is transmitted inside, and the distal end of the dispersion optical fiber is the dispersion end.
  • the first laser light is diffused through the distal end of the dispersion optical fiber, so that the first laser light is uniformly irradiated on the inner wall of the blood vessel.
  • the first output member 21 can also use liquid core optical fiber to achieve the purpose of uniform irradiation.
  • the second output part 22 is an ultraviolet laser fiber bundle, and the ultraviolet laser fiber bundle enters the blood vessel for treatment through a catheter; the second output part 22 is preferably a quartz fiber bundle, and the quartz fiber bundle is fastened together by multiple optical fibers.
  • the second output member 22 includes a quartz bundled optical fiber 221, a Luer connector 222 and a second connector 223, wherein the quartz bundled optical fiber 221 is connected to the Luer connector 222 and the second connector 223.
  • the Luer connector 222 can inject saline through a syringe.
  • the salt water is used for cooling, reducing thermal effects, and can also be used to clean the treatment surface, where the second connector 223 is connected to the ultraviolet laser 12; the second output part 22 can be purchased from existing equipment, for example, the second output part 22 can be of UVLC type.
  • the second output part 22 of the model is a laser ablation catheter with a nominal outer diameter of 1.54mm and a nominal length of 3m.
  • the tensile strength is 10N and the minimum bending working radius of the optical fiber is 500mm.
  • the second output part 22 passes through ethylene oxide. Sterilized by alkane.
  • the structures of the first joint and the second joint can adopt existing joint structures.
  • Both the semiconductor laser 11 and the ultraviolet laser 12 are purchased from existing equipment.
  • the connection method between the first joint and the semiconductor laser 11 and the connection between the second joint and the ultraviolet laser 12 The connection methods are all existing technologies and will not be described again here;
  • the above-mentioned first output member 21 and second output member 22 can be put on a guide wire through the delivery catheter and enter the human blood vessel through the sheath, and the delivery catheter reaches the diseased site along the guide wire;
  • the first output member 21 and the second output member 22 have a split structure. Therefore, during the ablation operation, the first output member 21 and the second output member 22 enter the blood vessel in a sequential order.
  • the second output member is inserted first.
  • the output member 22 is transported to the vicinity of the target tissue through blood vessels and begins ablation. After the ablation is completed, the second output member 22 is controlled to withdraw corresponding to the catheter and withdraw from the human blood vessel; after the withdrawal, the first output member 21 is transported into the blood vessel for ablation. irradiation to repair the blood vessel wall; in another alternative embodiment, the first output member 21 and the second output member 22 can be integrated into one body, and both are delivered to the inside of the blood vessel at the same time and selectively based on the needs of the surgery. to generate the first laser or the second laser.
  • the vascular repair system also includes a control module 30.
  • the control module 30 is communicatively connected with the laser generation module 10 for controlling the light emission mode of the laser generation module 10.
  • the light emission mode at least includes a first laser individual light emission mode, a second laser individual light emission mode and The first laser and the second laser emit light simultaneously.
  • the blood vessel repair system also includes a power supply module 50 , which is used to power the laser generating module 10 and the control module 30 .
  • control module 30 is communicatively connected with the semiconductor laser 11 and the ultraviolet laser 12;
  • the power supply module 50 includes a first driving power supply 51, a second driving power supply 52 and a switching power supply 53.
  • the first driving power supply 51 is electrically connected to the semiconductor laser 11 for powering the semiconductor laser 11.
  • the second driving power supply 52 is electrically connected to the ultraviolet laser 12.
  • the electrical connection is used to power the ultraviolet laser 12
  • the switching power supply 53 is electrically connected to the control module 30 and is used to power the switching power supply 53
  • the first output part 21 is connected to the semiconductor laser 11, and the second output part 22 is connected to the ultraviolet laser 12
  • the first driving power supply 51 and the second driving power supply 52 may be IGBT chopper power supplies with adjustable pulse width.
  • the control module 30 preferably adopts a dual-wavelength control system.
  • the control module 30 can adopt a PLC or a single-chip microcomputer. Please refer to Figure 3.
  • the control module 30 includes a main control board, an LCD operation screen, a preparation/launch indicator light, a foot switch, and a water flow switch. and a water temperature sensor.
  • the foot switch is connected to the main control board for controlling the opening and closing of the module 30.
  • the water flow switch is connected to the main control board for controlling the opening and closing of the cooling system and the cooling flow.
  • the water temperature sensor is connected to the main control board. The water temperature sensor is used to obtain the water temperature information at the designated position of the cooling system, transmit the water temperature information to the main control board, and display the water temperature information on the LCD operation screen.
  • the LCD operation screen is connected to the main control board for communication.
  • the LCD operation screen is used For displaying relevant information, such as the water temperature information of the cooling system, the turn-on information of the semiconductor laser 11 and the ultraviolet laser 12, the current of the power supply module 50, the output duration information, etc., the LCD operation screen is also used to output operating instructions for controlling the power supply.
  • the LCD operation screen can be used to input the current size and output duration parameters of the first driving power supply 51 or the second driving power supply 52.
  • the LCD operation screen can control and switch the light emission modes of different lasers.
  • the preparation/emission indicator light is used to display the laser emission status. When the preparation/emission indicator light is on, Indicates that the laser is ready to be fired or is being fired;
  • the laser power supply in Figure 3 integrates a first driving power supply 51 and a second driving power supply 52.
  • the red laser is the semiconductor laser 11 and the ultraviolet laser is the ultraviolet laser 12.
  • the laser The power supply is communicatively connected to the main control board, and the first driving power supply 51 in the laser power supply is connected to The red light laser is electrically connected, the second driving power supply 52 in the laser power supply is electrically connected to the ultraviolet laser, and the active board is communicatively connected to the ultraviolet laser and the red light laser;
  • the blood vessel repair system of this embodiment also includes a cooling system, an emergency stop switch, a key switch and an air switch.
  • the cooling system is connected to the red laser and the ultraviolet laser to provide cooling liquid for both.
  • the system is also electrically connected to the switching power supply 53;
  • the emergency stop switch is electrically connected to the laser power supply and the switching power supply 53 for emergency shutdown of the laser power supply and switching power supply 53;
  • the air switch is connected to the key switch, and the key switch is connected to the emergency switch connection;
  • an optical module such as a fiber coupling device, is also provided to improve the optical performance of the laser through the optical module;
  • the optical module can also include a beam combining device and a PBS attenuation device.
  • the beam combining device is used to combine the aiming light with the second laser.
  • the PBS attenuation device is composed of a half-wave plate, PBS and a beam terminator. The half-wave plate can be rotated to control the coupling.
  • the laser energy entering the optical fiber; the coupling device consists of a DOE homogenizer and a coupling lens. It first homogenizes the laser and then couples it into the optical fiber through the coupling lens.
  • the control module 30 controls the first driving power supply 51 and the second driving power supply 52 simultaneously or in a time-sharing manner, thereby driving the semiconductor laser 11 and the ultraviolet laser 12 to emit laser light;
  • the control mode includes a first laser light emitting mode alone, a second laser light emitting mode alone, and The first laser and the second laser emit light mode at the same time.
  • the first laser light emitting mode means that the semiconductor laser 11 emits the first laser alone. This is used for blood vessel repair.
  • the second laser light emitting mode means that the ultraviolet laser 12 emits the second laser alone.
  • the first laser and the second laser emit light simultaneously, that is, the semiconductor laser 11 and the ultraviolet laser 12 emit corresponding laser light at the same time. At this time, the first laser and the second laser simultaneously output and act on the target location.
  • control module controls the activation of the first laser individual light emission mode after the activation of the second laser individual light emission mode, that is to say, the first laser is generated after the second laser, then by generating the second laser After blood vessel ablation and recanalization, the first laser is generated to repair the inner wall of the blood vessel ablation site.
  • the blood vessel repair system further includes a delivery catheter 60, which is used to be implanted into the blood vessel to form a delivery channel, and the delivery catheter 60 has a lumen for allowing the first output member 21 or the second
  • the output member 22 is introduced into the blood vessel through the lumen, or the delivery catheter has two lumens. It is used to introduce the first output member 21 and the second output member 22 into the blood vessel simultaneously through the two lumens respectively.
  • the delivery catheter 60 has a lumen 61 .
  • a single lumen is only used for the introduction of a single instrument at a time. Therefore, at this time, the first output member 21 and the second output member 22 have a sequential introduction sequence. For example, the first output member 21 is introduced first. The second output member 22 is taken out after the operation is completed, and then introduced into the first output member 21;
  • the delivery catheter 60 has two lumens, namely a first lumen 61 ′ and a second lumen 62 ′. Then the first output member 21 can be introduced through the first lumen 61 ′. The two output members 22 can be introduced through the second lumen 62', therefore, the first output member 21 and the second output member 22 can be introduced into the target position at the same time, then the first laser and the second laser can act on the target position at the same time;
  • the blood vessel repair system also includes a blood pressure collection unit and an alarm module 40. Both the blood pressure collection unit and the alarm module 40 are communicatively connected with the control module 30; the control module 30 is also configured to: receive the blood pressure of the intervened blood vessel collected by the blood pressure collection unit. The blood pressure value is determined, and whether the blood pressure value is less than the set value is determined. If the blood pressure value is less than the set value, the alarm module 40 is controlled to issue an alarm.
  • the alarm module 40 is in communication or electrical connection with the control module 30.
  • the alarm module 40 can be integrated on the laser generating module 10 or integrated in the control module 30.
  • the alarm module 40 is used to issue warnings, such as through audio tones, visual signals, and tactile feedback. And/or control the laser generating module 10 to stop to form an audible/visible alarm or other warning; for example, the alarm module 40 can be an alarm light, which flashes the alarm, or the alarm module 40 can be a buzzer, which emits a sound.
  • Alarm the alarm module 40 can also be a warning mark integrated in the LCD operation screen display interface;
  • the blood pressure acquisition unit is a pressure sensor, for example, a FOP optical fiber pressure sensor is used.
  • This sensor is widely used in cardiovascular departments, and its application is an existing technology and will not be described again here; the pressure sensor can be integrated in the first output part 21 and the second output part 21.
  • the pressure sensor can be integrated on the delivery catheter, and as the delivery catheter is Intervening into the blood vessel to detect the blood pressure of the blood vessel; the pressure sensor is communicatively connected with the control module to send the collected blood pressure value to the control module for comparison with the set value to avoid clinical risks, for example, if the carotid sinus
  • the pressure sensing threshold is 0.08-0.24atm, which is far less than the standard working pressure of the clinically used balloon, then the alarm module 40 alarms, Because clinical requirements require a slow increase and slow release of pressure during balloon expansion, there is also a risk of hypotension and intraoperative cerebral ischemia.
  • the set value of blood pressure is obtained based on the pressure safety margin and is passed through the alarm module 40 to ensure clinical safety.
  • the present invention can also adjust the semiconductor laser through the control module 30
  • the laser parameters emitted by 11 and ultraviolet laser 12 are conducive to minimizing surgical risks according to actual surgical conditions.
  • the second laser is also used to repair blood vessels to reduce the infection rate during and after surgery.
  • this embodiment also provides a control method for a blood vessel repair system.
  • the control module 30 controls the laser generation module 10 to start and output the first laser for blood vessel repair and/or for target tissue ablation within the blood vessel. the second laser;
  • the second laser is controlled to be output into the blood vessel alone, and the first laser is controlled to be output into the blood vessel alone after a preset time delay.
  • the delay preset time can be set through the control module, or manually determined based on the actual operation site.
  • the first laser and the second laser can be output independently and used independently, or the first laser and the second laser can be used in conjunction with each other. There are two ways of cooperation. One way is that the first laser and the second laser are output at the same time, and the other way is that the first laser and the second laser are output sequentially, and the second laser is located behind the first laser; because the first laser The second laser is generated by the semiconductor laser 11 and the second laser is generated by the ultraviolet laser 12. Then the startup sequence of the semiconductor laser 11 and the ultraviolet laser 12 can be manually controlled to control the delay preset time and the output mode of the first laser and the second laser. and output sequence. Of course, the output mode and output sequence of the first laser and the second laser can also be controlled through the control module;
  • the ultraviolet laser 12 is controlled to emit a second laser, and the second laser is used for intravascular ablation through the second output member 22, and then the semiconductor laser 11 is controlled to emit the first laser, and the second laser is used for intravascular ablation through the second output member 22.
  • 21 enables the first laser to be used to repair the blood vessel wall after ablation, and the action time is controlled by the time sharing of the control module 30 to respectively realize the functions of ablation of intravascular plaques and repair of the blood vessel wall after ablation, or only controls the semiconductor laser 11 to emit the first
  • a laser is used for blood vessel wall repair through the first output member 21 .
  • the control method also includes collecting the blood pressure value in the blood vessel, and judging the size of the blood pressure value relative to the set value; if the blood pressure value is greater than or equal to the set value, controlling the laser generating module 10 to generate the first laser and/or said second laser.
  • the blood pressure value of the blood vessel is obtained through a pressure sensor integrated on the first output part, the second output part or the delivery catheter, and the pressure sensor transmits the obtained blood pressure value to the control module for comparison with the set value, if the blood pressure value is greater than or equal to the set value, the laser generating module 10 is controlled to generate the first laser and/or the second laser; during the real-time detection process, if the blood pressure value is less than the set value, it indicates that the blood pressure If the value is not suitable for the surgical environment, the laser generating module 10 is turned off to stop generating laser light.
  • the vascular repair system provided by the present invention includes:
  • a laser generation module used to generate a first laser and a second laser, the wavelength range of the first laser being 600nm ⁇ 1064nm;
  • An output module is used to be implanted in a blood vessel and transmit the first laser for repairing the inner wall of the blood vessel and the second laser for ablation of target tissue within the blood vessel.
  • the output module 20 can irradiate the inner wall of the blood vessel with laser light in a certain wavelength range, mainly utilizing the photobiomodulation effect.
  • Vascular smooth muscle cells are the main component of the arterial wall, and the smooth muscle cell apoptosis induced by laser light in the corresponding wavelength range is beneficial to reducing blood vessel inflammation.
  • the degree of intimal thickening after plastic surgery can prevent and treat restenosis after ablation;
  • This repair system integrates the functions of blood vessel wall repair and blood vessel ablation, improving the safety and effectiveness of blood vessel ablation using a single ultraviolet laser in the past; the dual-wavelength laser can repair blood vessel damage after ultraviolet ablation.
  • a repair system that provides an overall solution for vascular plaque ablation and blood vessel wall repair in one laser surgery. Through the application of two lasers in surgery, the ablation efficiency and safety are improved, which not only minimizes the risk of surgery, but also uses laser repair to improve the therapeutic effect, solving the common problem in vascular surgery of untimely repair of the blood vessel wall after ablation. , improves the effectiveness and reliability of surgery, greatly reduces postoperative complications and postoperative dependence on drugs, and reduces the infection rate during and after surgery and the hidden dangers of vascular restenosis.

Abstract

一种血管修复系统及控制方法,其中血管修复系统包括:激光发生模块(10),用于产生血管内壁修复用的第一激光,以及血管内的目标组织消融用的第二激光,第一激光的波长范围为600nm~1064nm;输出模块(20),用于介入血管内,并传输第一激光和第二激光。该修复系统整合了血管壁修复以及血管消融的功能,提高消融效率及安全性,不仅将手术风险降到最低,还利用激光修复提高治疗效果,解决了血管手术中普遍存在的消融后血管壁修复不及时的问题,提高了手术的有效性和可靠性,大大减少术后并发症以及术后对药物的依赖,减少了手术中和手术后的感染率以及血管再狭窄的隐患。

Description

血管修复系统及控制方法 技术领域
本发明涉及医疗器械技术领域,特别涉及一种血管修复系统及控制方法。
背景技术
动脉粥样硬化是一种好发于大、中等动脉的以脂质蓄积和炎症为特征的血管的内壁慢性病变,其病变过程包括血管炎症、内皮损伤、血管平滑肌细胞表型转化和迁移增殖、泡沫细胞形成、细胞死亡、脂质和胆固醇蓄积以及血栓形成等。
现有的脉粥样硬化的治疗方式通常是机械取栓,机械取栓具有血管再通率高、脑出血发生率低、再通时间、治疗时间窗延长等优点。机械取栓也存在精准性不够高且因手术准备及操作延迟血管再通、对操作人员及设备要求较高等缺点。
在此基础上,提出了一种激光血管成形术治疗脉粥样硬化的方式,该方式利用激光产品结合光纤用于粥化状血栓和半粥化状血栓进行血管治疗,具体的通过将光纤输送至血管内,并通过光纤传输激光,通过激光打通冠状动脉及外周血管的粥样硬化斑块及血栓,使血管再通复流开创了有效的、崭新的治疗手段。激光根据放射性物质的发射特性和能量传递到组织的方式,通过热效应、光声损伤和光化学等作用机制,消融粥样斑块组织达到血管成形,其主要机制是通过光化学及光机械作用使目标组织破坏消融。
激光血管成形术虽然可通过激光蚀除血栓,但目前尚存在栓塞的安全性问题,激光在消除斑块及血栓的同时,也容易损伤血管内壁,血管内壁在伤口愈合和增殖过程中容易导致血管术后再狭窄的发生。
发明内容
本发明的目的在于提供一种血管修复系统及控制方法,该修复系统集成了血管的内壁修复以及血管消融再通的功能,可对消融再通后的血管的内壁进行修复,减轻血管损伤处修复过程中内膜的增厚程度从而防治消融术后再 狭窄的发生。
本发明提供了一种血管修复系统,包括:
激光发生模块,用于产生血管内壁修复用的第一激光,以及血管内的目标组织消融用的第二激光,所述第一激光的波长范围为600nm~1064nm;
输出模块,用于介入血管内,并传输所述第一激光和所述第二激光。
进一步,所述激光发生模块产生的所述第一激光的能量密度可调。
进一步,所述第二激光的波长范围为198nm~400nm。
进一步,所述输出模块包括第一输出件和第二输出件,所述第一输出件用于传输所述第一激光,并使所述第一激光向所述血管的内壁照射,所述第二输出件用于传输所述第二激光并使所述第二激光向所述血管内的目标组织照射。
进一步,所述血管修复系统还包括输送导管,所述输送导管用于植入所述血管内形成输送通道,所述输送导管具有一个管腔用于使得所述第一输出件或所述第二输出件经所述管腔导入血管内;或,所述输送导管具有两个管腔用于使得所述第一输出件和第二输出件分别经两个所述管腔同时导入血管内。
进一步,所述第一输出件为弥散光纤、集束光纤或侧向输出光纤;和/或,所述第二输出件为集束光纤。
进一步,所述激光发生模块包括半导体激光器和紫外激光器,所述半导体激光器用于产生所述第一激光,所述紫外激光器用于产生所述第二激光。
进一步,所述血管修复系统还包括控制模块,所述控制模块与所述激光发生模块通信连接用于控制所述激光发生模块的出光模式,所述出光模式至少包括第一激光单独出光模式、第二激光单独出光模式以及第一激光第二激光同时出光模式。
进一步,所述控制模块还被配置为:控制所述第一激光单独出光模式的启动处于所述第二激光单独出光模式的启动之后。
进一步,所述血管修复系统还包括供电模块,所述供电模块用于为所述激光发生模块和所述控制模块供电。
进一步,所述血管修复系统还包括血压采集单元和报警模块,所述血压采集单元和所述报警模块均与所述控制模块通信连接,所述控制模块还被配置为:接收所述血压采集单元采集到的被介入血管的血压值,并判断所述血压值是否小于设定值,若所述血压值小于所述设定值时,控制所述报警模块发出报警。
本发明还提供了一种血管修复系统的控制方法,
控制激光发生模块启动,并输出用于血管修复的第一激光和\或用于血管内的目标组织消融的第二激光;
其中控制所述第二激光单独输出至血管内,以及延迟预设时间后控制所述第一激光单独输出至血管内。
进一步,采集血管内的血压值,判断所述血压值相对设定值的大小;
若所述血压值大于或等于所述设定值时,控制所述激光发生模块产生所述第一激光和/或所述第二激光。
综上所述,在本发明提供的血管修复系统包括:
激光发生模块,用于产生血管内壁修复用的第一激光,以及血管内的目标组织消融用的第二激光,所述第一激光的波长范围为600nm~1064nm;
输出模块,用于介入血管内,并传输所述第一激光和所述第二激光。
如此配置,输出模块可将一定波长范围的激光照射血管的内壁,利用光生物调节作用,依赖于存在于线粒体和细胞内离子通道的生色团对于光的吸收,产生能量以及微观结构上的变化进而导致细胞信号的激活,转录因子的上调,以及保护基因的表达增加。血管内皮细胞是血管张力平衡和血管生长的主要调节者,在心血管疾病中有着十分重要的作用,而光生物调节对内皮细胞有保护作用,主要体现在刺激细胞增殖和抗炎症凋亡等方面。另外血管平滑肌细胞是动脉壁的主要成分,相应波长方位的激光可诱导的平滑肌细胞凋亡有益于减轻血管损伤处修复过程中内膜的增厚程度从而防治消融术后再狭窄的发生。
该修复系统整合了血管壁修复以及血管消融的功能,提高了过去单一紫外激光进行血管消融的安全性问题及有效性问题;通过双波长的激光可对紫 外消融后的血管损伤问题进行修复,通过一套修复系统,实现一次激光手术血管斑块消融与血管壁修复的整体解决方案。通过两种激光在手术中的应用,提高消融效率及安全性,不仅将手术风险降到最低,还利用激光修复提高治疗效果,解决了血管手术中普遍存在的消融后血管壁修复不及时的问题,提高了手术的有效性和可靠性,大大减少术后并发症以及术后对药物的依赖,减少了手术中和手术后的感染率以及血管再狭窄的隐患。
附图说明
图1为本发明实施例1的结构系统示意图一;
图2为本发明实施例1的结构系统示意图二;
图3为本发明实施例1的结构示意图;
图4为本发明实施例1的第一输出件的结构示意图;
图5为本发明实施例1的第二输出件的结构示意图;
图6为本发明实施例1的输送导管的结构示意图;
图7为本发明实施例2的输送导管的结构示意图;
其中,附图标记如下:
10-激光发生模块;11-半导体激光器;12-紫外激光器;
20-输出模块;21-第一输出件;211-弥散光纤;212-第一导管;213-第一
接头;22-第二输出件;221-石英集束光纤;222-鲁尔接头;223-第二接头;
30-控制模块;
40-报警模块;
50-供电模块;51-第一驱动电源;52-第二驱动电源;53-开关电源;
60-输送导管,61-管腔;61’-第一管腔;62’-第二管腔。
具体实施方式
以下结合附图和具体实施例对本发明提出的血管修复系统作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明 本发明实施例的目的。
本发明中,“外径”和“内径”对于圆形结构而言,对应的是直径尺寸,对于非圆形结构而言,内径指的是其内接圆的直径,外径指的是其外接圆的直径;“轴向”对于圆柱形杆体而言,对应的是其中轴线所在的方向,对于非圆柱的杆体时,则轴向对应的是杆体的长度方向;本发明中“径向”方向是以套管或植入杆作为参考,则实际上以套管作为参考时的径向;
本发明中,“近端”和“远端”是从使用产品的医生角度来看相对于彼此的元件或动作的相对方位、相对位置、方向,尽管“近端”和“远端”并非是限制性的,但是“近端”通常指该产品在正常操作过程中靠近医生的一端,而“远端”通常是指首先进入患者体内的一端。
本发明中,平行以及垂直的限定不应狭义的理解为绝对垂直或者绝对平行的关系,理应理解为在相应垂直或者平行的前提下允许具有设定角度的误差,该设定角度通常为±5°,设定角度的具体数值依据所需的使用工况确定;
如在本发明中所使用的,单数形式“一”、“一个”以及“该”包括复数对象,术语“或”通常是以包括“和/或”的含义而进行使用的,术语“若干”通常是以包括“至少一个”的含义而进行使用的,术语“至少两个”通常是以包括“两个或两个以上”的含义而进行使用的,此外,术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括一个或者至少两个该特征。此外,如在本发明中所使用的,“安装”、“相连”、“连接”,一元件“设置”于另一元件,应做广义理解,通常仅表示两元件之间存在连接、耦合、配合或传动关系,且两元件之间可以是直接的或通过中间元件间接的连接、耦合、配合或传动,而不能理解为指示或暗示两元件之间的空间位置关系,即一元件可以在另一元件的内部、外部、上方、下方或一侧等任意方位,除非内容另外明确指出外。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。此外,诸如上方、下方、上、下、向上、向下、左、右等的方向术语相对于示例性实施方案如它们在图中所示进行使用,向上或上方向朝向对应附图的顶部,向下 或下方向朝向对应附图的底部。
血管壁中膜的弹性纤维具有使扩张的血管回缩作用,胶原纤维起维持张力作用,具有支持功能。管壁结缔组织中的无定形基质含蛋白多糖,其成分和含水量因血管种类而略有不同。再狭窄作为一种血管的内壁损伤后的反应至少可以部分地认为是一个有关增殖的问题或者说是一种特殊的伤口愈合过程。再狭窄是多因素作用的结果主要病理变化是中膜平滑肌细胞增生向内膜迁移并产生大量基质引起血管重塑使内膜明显增厚管腔缩小甚至完全闭塞。
基于上述技术问题,本实施例提供了一种血管修复系统,包括:
激光发生模块10,用于产生血管内壁修复用的第一激光,以及血管内的目标组织消融用的第二激光;
输出模块20,用于介入血管内,并用于传输第一激光,使第一激光向所述血管的内壁照射用于血管修复;还用于传输第二激光,使第二激光向血管内的目标组织照射以使得目标组织消融,第一激光的波长范围为600nm~1064nm,第二激光的波长范围为198nm~400nm。
其中,激光发生模块10一般采用现有的激光器,输出模块20用于输送激光,常用的输送激光的介质为光纤。
输出模块20介入血管可采用现有的植入方式,现有血管再通微创手术均需要输送导管的穿刺来搭建输送系统,一般临床都会使用股动脉穿刺入路和桡动脉穿刺入路的方式,首先要插入导丝和输送导管,输送导管在导丝的带动之下,沿着动脉入路最终到达目标血管,输出模块20则通过在输送导管搭建的输送系统到达指导的位置;
一定波长范围的激光照射人体组织,可引起线粒体产生生物光化学作用,使线粒体的过氧化氢酶活性增加。这样可以增加细胞的新陈代谢,使糖元含量增加,蛋白合成增加和三磷酸腺苷分解增加,因而它可以促进细胞合成,可以促进伤口和溃疡的愈合,促进骨折愈合,加速受损神经的再生,增加白血球的吞噬作用。同时配合特制的光敏敷料,还可用于痤疮的治疗。红光或近红外光能刺激人体ATP增长,细胞色素C氧化酶吸收光,不仅可以促进血管损伤修复,增强免疫防御系统功能,促进新陈代谢,降低血液黏度,调节 血脂,加快炎性介质的清除和组织水肿的吸收等光生物调节作用。
血管的内壁自然修复过程中,血管细胞黏附分子-1、细胞间黏附分子-1分泌增多,白细胞在多种趋化因素介导下向内皮损伤处迁移、黏附,从而在内皮下集聚,其与内皮细胞分泌的炎性介质触发血管局部慢性炎症反应,介导斑块的形成。本实施研究发现通过调节高低能量密度的红光或近红外光用于血管内壁照射主要利用光生物调节作用,因此,激光发生模块10产生的第一激光的能量密度可调,低能量密度促进血管内皮细胞增值及抗炎症凋亡。血管平滑肌细胞是动脉壁的主要成分,高能量密度的红光或近红外光诱导的平滑肌细胞凋亡有益于减轻血管成形术后内膜的增厚程度从而防治消融术后再狭窄的发生;这些作用可能与以下机制有关:影响胞内钙离子流动、促进NO的释放以及对线粒体的稳定及活化作用。
第一激光的波长范围为600nm~1064nm,其对血管修复防止再狭窄的发生具有良好的效果,优选第一激光的波长为635nm或810nm,输出平均功率为200毫瓦,能量密度0.2~5J/cm2,其中低能量密度一般为0.2~1J/cm2,高能量密度一般为1~3J/cm2,第一激光可连续或脉冲输出。
本发明进一步使得激光发生模块10还用于产生第二激光;其中,激光发生模块10包括半导体激光器11和紫外激光器12,半导体激光器11用于产生第一激光,紫外激光器12用于产生第二激光。
半导体激光器11可选用KD型多波长插拔半导体激光器,该半导体激光器11产生的红光或近红外光能量密度可调节,低能量密度范围优选0.2~1J/cm2,可通过低能量促进血管内皮细胞增殖减少炎性反应进行血管修复,也可通过高于1J/cm2的高能量进行抑制平滑肌细胞增殖,抑制斑块再形成,其中低能量密度以及高能量密度的具体数值依据个体差异可进行适应性的调整。
紫外激光器12可选用Gama型高频紫外脉冲激光器,紫外激光器产生的波长范围为198~400nm,优选355nm波长的紫外高重频脉冲激光器,激光器选固体紫外激光器,单脉冲能量可达125mj,脉宽10ns,重频100Hz分档可调,重复频率高对不同类型的斑块均有效果,噪声相对较低,预热时间短,该型 号系列的紫外激光器通过切换倍频模块,可输出多种波长激光,可实现不同波长的激光的自由切换。
关于第二激光的应用,是利用光纤将纳秒量级脉宽的紫外高能激光导入血管腔内,使其直接作用于狭窄闭塞处,借助光化学、光热和光机械等多重效应,将狭窄闭塞处的目标组织粉碎为微米级颗粒消融,从而达到减容和扩大管腔,实现微创治疗的效果。本实施例采用355nm三倍频Nd:YAG固体激光光源,激光脉宽短,较小的激光能量就可获得较高的峰值功率,能有效的消融斑块目标组织;同时热效应小,降低了血管穿孔的风险。
该装置结构简单,易于手术,可根据不同腔道疾病的治疗,调试出相适应的输出激光参数。
其中第一激光可产生于第二激光之后,以使得第一激光用于对消融后的血管的内壁进行照射。
为了提高激光消融目标组织的效率和完全钙化斑块的能力,应尽可能的提高第二激光的能量,但提高激光能量的同时带来的风险是血管的内壁损伤的概率增加,进而给血管再狭窄带来较大隐患。因此,目前激光手术设备虽然已在多个临床广泛应用,但存在疗效单一、精度不高、损伤大的缺点,限制了激光手术设备在高精度手术中的应用。
一般而言,激光消融手术术后对主要动脉血管损伤的治疗原则,主要是恢复动脉的连续性,损伤的动脉越早修复越好,最好在消融后立即施行,时间的延迟将大大增加血管内血栓形成或感染的机会,从而减低恢复血运的可能性;本实施例中,由于具有血管的内壁修复以及血管消融再通的功能,刚好可满足术后对主要动脉血管损伤的治疗原则;本系统中的血管修复功能可对消融后的血管的内壁位置进行照射修复,解决了激光能量与激光效率的矛盾,在提高微创手术疗效的同时还利于拓展激光手术的应用领域。
例如,当用355nm波长的第二激光消融去掉目标组织后,可再将635nm或810nm波长的第一激光引入血管的内壁内,对血管的内壁上消融目标组织后的位置处进行照射修复处理,则血管修复和目标组织的消融功能形成互补,解决了消融过程中消融效率和血管的内壁损伤矛盾的问题,使得激光消融手 术效果提升,拓展了激光手术有应用范围。
另外,在其他的可替换的实施例中,第一激光可单独使用,第一激光可在疾病早期对血管内壁进行照射治疗。第一激光的照射可以在初期预防血栓形成,可以减少缩血管活性物质,提升舒血管活性物质,减少血液中产生静脉血栓物成分,有益于避免心脑血栓病症,如脑中风、脑梗塞、心肌梗塞、冠心病等病症的产生。
本实施例中,在血管修复系统中,整合了血管壁修复以及血管消融的功能,该修复系统实际上是一种双波长激光斑块消融联合血管壁修复系统,多功能的血管修复系统,提高了过去单一紫外激光进行血管消融的安全性问题及有效性问题;通过双波长的激光可对紫外消融后的血管损伤问题进行修复,通过一套修复系统,实现一次激光手术血管斑块消融与血管壁修复的整体解决方案。通过两种激光在手术中的应用,提高消融效率及安全性,不仅将手术风险降到最低,还利用激光修复提高治疗效果,解决了血管手术中普遍存在的消融后血管壁修复不及时的问题,提高了手术的有效性和可靠性,大大减少术后并发症以及术后对药物的依赖,减少了手术中和手术后的感染率以及血管再狭窄的隐患。
进一步,输出模块20包括第一输出件21和第二输出件22,第一输出件21用于传输第一激光,并使第一激光向血管的内壁照射用于血管修复,第二输出件22用于传输第二激光,使第二激光向血管内的目标组织照射以使得目标组织消融;第一输出件21和第二输出件22为光纤。
第一激光为窄光谱具有极强的生物组织穿透性,将第一激光通过第一输出件21直接传输到血管内,第一输出件21可以是弥散光纤、集束光纤、侧向输出光纤,第一输出件21的头部优选使用做特殊处理后的弥散光纤,以使得第一激光均匀的照射在血管的内壁上。
请参考图4所示,第一输出件21包括弥散光纤211、第一导管212和第一接头213,其中弥散光纤的近端位于第一导管212内,第一导管212的近端连接有第一接头213,且弥散光纤的近端与第一接头213连接,第一接头213用于与半导体激光器11连接,使得半导体激光器11内产生的第一激光进入 弥散光纤内部被传输,弥散光纤的远端为弥散端,第一激光通过弥散光纤的远端弥散发光,以使得第一激光均匀的照射在血管的内壁上,在其他的可替代的实施例中,第一输出件21也可采用液芯光纤达到均匀照射的目的。
第二输出件22为紫外激光光纤束,紫外激光光纤束通过导管进入血管内治疗;第二输出件22优选为石英集束光纤,石英集束光纤由多根光纤紧固在一起,请参考图5所示,第二输出件22包括石英集束光纤221、鲁尔接头222和第二接头223,其中石英集束光纤221与鲁尔接头222和第二接头223连接,鲁尔接头222可以通过注射器注射盐水,盐水的用于冷却,减少热效应,也可用于清理治疗面,其中第二接头223连接至紫外激光器12;第二输出件22可采购现有设备,例如第二输出件22可采用UVLC型,该型号的第二输出件22为导管标称外径为1.54mm、标称长度为3m的激光消融导管,抗拉强度为10N,光纤最小弯曲工作半径为500mm,第二输出件22经过环氧乙烷灭菌。
其中第一接头、第二接头的结构均可采用现有的接头结构,半导体激光器11和紫外激光器12均采购现有设备,第一接头与半导体激光器11的连接方式以及第二接头与紫外激光器12的连接方式均为现有技术,此处不再赘述;
上述的第一输出件21和第二输出件22可通过输送导管套上导丝通过鞘管进入人体血管,输送导管沿导丝抵达病变部位;
本实施例中,第一输出件21和第二输出件22为分体式结构,那么在消融手术过程中,第一输出件21和第二输出件22进入血管内部具有先后顺序,先将第二输出件22经过血管输送至目标组织附近,开始消融,消融结束后控制第二输出件22对应导管回撤并抽离人体血管;回撤后再输送第一输出件21进入血管内进行消融后的照射,以对血管壁进行修复;在另一个可替代的实施例中,第一输出件21和第二输出件22可集成于一体,二者同时输送至血管内部,并基于手术的需求选择性的产生第一激光或第二激光。
进一步,血管修复系统还包括控制模块30,控制模块30与激光发生模块10通信连接用于控制激光发生模块10的出光模式,出光模式至少包括第一激光单独出光模式、第二激光单独出光模式以及第一激光第二激光同时出光模式。
血管修复系统还包括供电模块50,供电模块50用于为激光发生模块10和控制模块30供电。
请参考图2所示,控制模块30与半导体激光器11以及紫外激光器12通信连接;
供电模块50包括第一驱动电源51、第二驱动电源52和开关电源53,第一驱动电源51与半导体激光器11电性连接用于为半导体激光器11供电,第二驱动电源52和紫外激光器12电性连接用于为紫外激光器12供电,开关电源53与控制模块30电性连接用于为开关电源53供电,第一输出件21与半导体激光器11连接,第二输出件22与紫外激光器12连接;其中第一驱动电源51和第二驱动电源52可以为调脉宽的IGBT斩波电源。
控制模块30优选采用双波长控制系统,控制模块30可采用PLC或者单片机,请参考图3所示,控制模块30包括主控板、LCD操作屏、准备/发射指示灯、脚踏开关、水流开关以及水温传感器,其中脚踏开关与主控板连接,用于控制模块30的起闭,水流开关与主控板连接用于控制冷却系统的启闭以及冷却流量,水温传感器与主控板连接,水温传感器用于获取冷却系统的指定位置处的水温信息,并将水温信息传输给主控板,并在LCD操作屏上显示水温信息,LCD操作屏与主控板连接通信连接,LCD操作屏用于显示相关的信息,例如显示冷却系统的水温信息、半导体激光器11和紫外激光器12的开启信息、供电模块50的电流、输出时长的信息等,LCD操作屏还用于输出操作指令用于控制供电模块50和激光发生模块10,例如,LCD操作屏可用于输入第一驱动电源51或第二驱动电源52的电流大小、输出时长参数,又如,LCD操作屏可操控并切换不同激光器的出光模式及治疗时间,还可控制激光发射的能量密度、脉宽、重频等参数来控制血管内消融的效率;准备/发射指示灯用于显示激光发射状态,当准备/发射指示灯点亮时,代表准备发射或者正在发射激光;
请参考图3所示,图3中的激光电源中集成了第一驱动电源51和第二驱动电源52,图3中红光激光器即为半导体激光器11,紫外激光器即为紫外激光器12,其中激光电源与主控板通信连接,激光电源中的第一驱动电源51与 红光激光器电性连接,激光电源中的第二驱动电源52与紫外激光器电性连接,主动板与紫外激光器以及红光激光器通信连接;
请参考图3所示,本实施例的血管修复系统还包括冷却系统、急停开关、钥匙开关和空气开关,冷却系统与红光激光器和紫外激光器连接,用于为二者提供冷却液,冷却系统还与开关电源53电性连接;急停开关与激光电源以及开关电源53电性连接,用于紧急断开激光电源以及开关电源53,以紧急停机;空气开关与钥匙开关连接,钥匙开关与紧急开关连接;
请继续参考图3所示,为更好的提高出光效果,本实施例中,还设置光学模块,例如光纤耦合装置,通过光学模块提高激光的光学性能;
光学模块还可以包括合束装置和PBS衰减装置,合束装置用于瞄准光与第二激光合束;PBS衰减装置由半波片、PBS和光束终止器组成,旋转半波片,可控制耦合进光纤的激光能量;耦合装置由DOE匀化片和耦合透镜组成,先对激光匀化,再经耦合透镜耦合进光纤。
其中控制模块30同时或分时控制第一驱动电源51和第二驱动电源52,从而驱动半导体激光器11以及紫外激光器12发射激光;控制模式具有第一激光单独出光模式、第二激光单独出光模式和第一激光第二激光同时出光模式,第一激光单独出光模式即半导体激光器11单独发射第一激光,此时用于血管修复,第二激光单独出光模式即紫外激光器12单独发射第二激光,此时用于血管消融再通,第一激光第二激光同时出光模式即半导体激光器11和紫外激光器12同时发生相应的激光,此时第一激光和第二激光同时输出作用于目标位置。
优选的,所述控制模块控制所述第一激光单独出光模式的启动处于所述第二激光单独出光模式的启动之后,也就是说第一激光产生在第二激光之后,那么通过产生第二激光用于血管消融再通后,再通过产生第一激光用于血管消融部位处的内壁修复。
所述血管修复系统还包括输送导管60,所述输送导管60用于植入所述血管内形成输送通道,所述输送导管60具有一个管腔用于使得所述第一输出件21或第二输出件22经所述管腔导入血管内,或,所述输送导管具有两个管腔 用于使得所述第一输出件21和第二输出件22分别经两个所述管腔同时导入血管内。
请参考图6所示,该输送导管60具有一个管腔61,单个管腔一次只供单个器械的导入,故此时第一输出件21和第二输出件22具有先后导入顺序,例如先导入第二输出件22,操作完成后取出第二输出件22,再导入第一输出件21;
请参考图7所示,该输送导管60具有两个管腔,分别为第一管腔61’和第二管腔62’,那么第一输出件21可通过第一管腔61’导入,第二输出件22可通过第二管腔62’导入,因此,第一输出件21和第二输出件22可同时被导入目标位置处,那么第一激光和第二激光可同时作用于目标位置;
血管修复系统还包括血压采集单元和报警模块40,血压采集单元和报警模块40均与控制模块30通信连接;所述控制模块30还被配置为:接收所述血压采集单元采集到的被介入血管的血压值,并判断所述血压值是否小于设定值,若所述血压值小于所述设定值时,控制所述报警模块40发出报警。
报警模块40与控制模块30通信或电性连接,报警模块40可集成于激光发生模块10上或集成于控制模块30中,报警模块40用于发出警告,例如通过音频音调、视觉信号、触觉反馈和/或控制激光发生模块10停机以形成可听/可视的警报或其它警告;例如报警模块40可以为报警灯,通过报警灯闪烁报警,或者报警模块40可以为蜂鸣器,通过发出声响报警,报警模块40也可以为集成于LCD操作屏显示界面的警告标识;
血压采集单元为压力传感器,例如采用FOP型光纤压力传感器,该传感器广泛的应用于心血管科,其应用为现有技术,此处不再赘述;压力传感器可集成于第一输出件21和第二输出件22上,并随着第一输出件21和第二输出件22被输送至被介入血管内用于检测血管的血压,或者压力传感器可集成于输送导管上,并随着输送导管被介入至血管内用于检测血管的血压;压力传感器与控制模块通信连接,以将采集到的血压值发送至控制模块用于与设定值对比,用于避免临床风险,例如,若颈动脉窦的压力感受阈值为0.08-0.24atm,远小于临床上使用的球囊的标准工作压力,则报警模块40报警, 因为临床上要求球囊扩张过程中要缓慢增加、缓慢释放压力,但是也会有出现低血压,术中发生脑缺血的风险,依据压力安全边界得出血压的设定值,通过报警模块40以保证临床安全。
该装置解决了血管手术中普遍存在的消融后出血及血管壁修复不及时的问题,提高了手术的有效性,大大减少并发症以及对药物的依赖,本发明还可通过控制模块30调节半导体激光器11和紫外激光器12发出的激光参数,利于依据实际手术工况将手术风险降到最低,还利用第二激光对血管的修复减少了手术中和手术后的感染率。
另外,本实施例中还提供了一种血管修复系统的控制方法,通过控制模块30控制激光发生模块10启动,并输出用于血管修复的第一激光和\或用于血管内的目标组织消融的第二激光;
其中控制所述第二激光单独输出至血管内,以及延迟预设时间后控制所述第一激光单独输出至血管内。
延迟预设时间可通过控制模块设定,或者依据实际手术进行的实际现场人工确定,其中第一激光和第二激光可单独输出独立使用,或者第一激光和第二激光可相互配合使用,其配合方式具有两种,一种方式为第一激光和第二激光同时输出照射,另一种方式为第一激光和第二激光先后输出,且第二激光位于第一激光之后;由于第一激光通过半导体激光器11产生,第二激光通过紫外激光器12产生,则可通过人工手动控制半导体激光器11和紫外激光器12的启动顺序进而控制延迟预设时间,并控制第一激光和第二激光的输出方式和输出顺序,当然也可通过控制模块控制第一激光和第二激光的输出方式和输出顺序;
例如在同一台手术中,控制紫外激光器12发射第二激光,并通过第二输出件22使得第二激光用于血管内消融,然后通过控制半导体激光器11发射第一激光,并通过第一输出件21使得第一激光用于消融后血管壁修复,作用时间通过控制模块30的分时控制,分别实现对血管内斑块消融和消融后血管壁修复的功能,或者,只控制半导体激光器11发射第一激光,并通过第一输出件21使得第一激光用于血管壁修复。
所述控制方法还包括采集血管内的血压值,判断所述血压值相对设定值的大小;若所述血压值大于或等于所述设定值时,控制所述激光发生模块10产生所述第一激光和/或所述第二激光。
具体的,通过集成于第一输出件、第二输出件或者输送导管上的压力传感器获取血管的血压值,压力传感器将获取的血压值传输给控制模块用于与设定值对比,若所述血压值大于或等于所述设定值时,控制所述激光发生模块10产生所述第一激光和/或所述第二激光;实时检测过程中,若血压值小于设定值时,表明血压值并不适用于手术环境,则关闭激光发生模块10停止产生激光。
综上,在本发明提供的血管修复系统包括:
激光发生模块,用于产生第一激光和第二激光,所述第一激光的波长范围为600nm~1064nm;
输出模块,用于植入血管内,并传输所述第一激光用于血管内壁修复且传输所述第二激光用于血管内的目标组织消融。
如此配置,输出模块20可将一定波长范围的激光照射血管的内壁,主要利用光生物调节作用,血管平滑肌细胞是动脉壁的主要成分,相应波长范围的激光诱导的平滑肌细胞凋亡有益于减轻血管成形术后内膜的增厚程度从而防治消融术后再狭窄的发生;
该修复系统整合了血管壁修复以及血管消融的功能,提高了过去单一紫外激光进行血管消融的安全性问题及有效性问题;通过双波长的激光可对紫外消融后的血管损伤问题进行修复,通过一套修复系统,实现一次激光手术血管斑块消融与血管壁修复的整体解决方案。通过两种激光在手术中的应用,提高消融效率及安全性,不仅将手术风险降到最低,还利用激光修复提高治疗效果,解决了血管手术中普遍存在的消融后血管壁修复不及时的问题,提高了手术的有效性和可靠性,大大减少术后并发症以及术后对药物的依赖,减少了手术中和手术后的感染率以及血管再狭窄的隐患。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (13)

  1. 一种血管修复系统,其特征在于,包括:
    激光发生模块,用于产生血管内壁修复用的第一激光,以及血管内的目标组织消融用的第二激光,所述第一激光的波长范围为600nm~1064nm;
    输出模块,用于介入血管内,并传输所述第一激光和所述第二激光。
  2. 如权利要求1所述的血管修复系统,其特征在于,所述激光发生模块产生的所述第一激光的能量密度可调。
  3. 如权利要求1所述的血管修复系统,其特征在于,所述第二激光的波长范围为198nm~400nm。
  4. 如权利要求1所述的血管修复系统,其特征在于,所述输出模块包括第一输出件和第二输出件,所述第一输出件用于传输所述第一激光,并使所述第一激光向所述血管的内壁照射,所述第二输出件用于传输所述第二激光并使所述第二激光向所述血管内的目标组织照射。
  5. 如权利要求4所述的血管修复系统,其特征在于,所述血管修复系统还包括输送导管,所述输送导管用于植入所述血管内形成输送通道,所述输送导管具有一个管腔用于使得所述第一输出件或所述第二输出件经所述管腔导入血管内;或,所述输送导管具有两个管腔用于使得所述第一输出件和第二输出件分别经两个所述管腔同时导入血管内。
  6. 如权利要求4所述的血管修复系统,其特征在于,所述第一输出件为弥散光纤、集束光纤或侧向输出光纤;和/或,所述第二输出件为集束光纤。
  7. 如权利要求1所述的血管修复系统,其特征在于,所述激光发生模块包括半导体激光器和紫外激光器,所述半导体激光器用于产生所述第一激光,所述紫外激光器用于产生所述第二激光。
  8. 如权利要求1所述的血管修复系统,其特征在于,所述血管修复系统还包括控制模块,所述控制模块与所述激光发生模块通信连接用于控制所述激光发生模块的出光模式,所述出光模式至少包括第一激光单独出光模式、第二激光单独出光模式以及第一激光第二激光同时出光模式。
  9. 如权利要求8所述的血管修复系统,其特征在于,所述控制模块还 被配置为:控制所述第一激光单独出光模式的启动处于所述第二激光单独出光模式的启动之后。
  10. 如权利要求8所述的血管修复系统,其特征在于,所述血管修复系统还包括供电模块,所述供电模块用于为所述激光发生模块和所述控制模块供电。
  11. 如权利要求8所述的血管修复系统,其特征在于,所述血管修复系统还包括血压采集单元和报警模块,所述血压采集单元和所述报警模块均与所述控制模块通信连接,所述控制模块还被配置为:接收所述血压采集单元采集到的被介入血管的血压值,并判断所述血压值是否小于设定值,若所述血压值小于所述设定值时,控制所述报警模块发出报警。
  12. 一种血管修复系统的控制方法,其特征在于,
    控制激光发生模块启动,并输出用于血管修复的第一激光和\或用于血管内的目标组织消融的第二激光;
    其中控制所述第二激光单独输出至血管内,以及延迟预设时间后控制所述第一激光单独输出至血管内。
  13. 如权利要求12所述的控制方法,其特征在于,
    采集血管内的血压值,判断所述血压值相对设定值的大小;
    若所述血压值大于或等于所述设定值时,控制所述激光发生模块产生所述第一激光和/或所述第二激光。
PCT/CN2023/108114 2022-07-22 2023-07-19 血管修复系统及控制方法 WO2024017288A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202221900632.X 2022-07-22
CN202221900632.XU CN217938369U (zh) 2022-07-22 2022-07-22 血管修复系统
CN202210869431.6A CN117462241A (zh) 2022-07-22 2022-07-22 血管修复系统及控制方法
CN202210869431.6 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024017288A1 true WO2024017288A1 (zh) 2024-01-25

Family

ID=89617082

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/108114 WO2024017288A1 (zh) 2022-07-22 2023-07-19 血管修复系统及控制方法

Country Status (1)

Country Link
WO (1) WO2024017288A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0144764A2 (en) * 1983-12-09 1985-06-19 International Business Machines Corporation Laser catheter
CN101919733A (zh) * 2010-09-07 2010-12-22 中国科学院长春光学精密机械与物理研究所 双波长大功率半导体激光综合治疗仪
CN103491892A (zh) * 2011-02-24 2014-01-01 爱克斯莫医疗有限公司 用于血管介入的混合导管
CN108175499A (zh) * 2017-12-08 2018-06-19 湖北工业大学 一种双波长激光手术装置
US10631930B1 (en) * 2013-10-15 2020-04-28 Nipro Corporation Ablation system and ablation device
CN114668493A (zh) * 2022-01-29 2022-06-28 清华大学 血管腔内超快激光治疗系统及方法
CN114732516A (zh) * 2022-03-30 2022-07-12 北京清华长庚医院 消蚀血管内血栓和斑块并抑制再狭窄的多功能激光导管
CN217938369U (zh) * 2022-07-22 2022-12-02 微创投资控股有限公司 血管修复系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0144764A2 (en) * 1983-12-09 1985-06-19 International Business Machines Corporation Laser catheter
CN101919733A (zh) * 2010-09-07 2010-12-22 中国科学院长春光学精密机械与物理研究所 双波长大功率半导体激光综合治疗仪
CN103491892A (zh) * 2011-02-24 2014-01-01 爱克斯莫医疗有限公司 用于血管介入的混合导管
US10631930B1 (en) * 2013-10-15 2020-04-28 Nipro Corporation Ablation system and ablation device
CN108175499A (zh) * 2017-12-08 2018-06-19 湖北工业大学 一种双波长激光手术装置
CN114668493A (zh) * 2022-01-29 2022-06-28 清华大学 血管腔内超快激光治疗系统及方法
CN114732516A (zh) * 2022-03-30 2022-07-12 北京清华长庚医院 消蚀血管内血栓和斑块并抑制再狭窄的多功能激光导管
CN217938369U (zh) * 2022-07-22 2022-12-02 微创投资控股有限公司 血管修复系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PENG CHUAN-YANG; JIANG AI-JIA; LI YAN-JIE; ZHANG YING: "Comparison of Diode Laser and Tacrolimus in the Treatment of Erosive-atrophic Oral Lichen Planus", (CHINESE JOURNAL OF PRACTICAL STOMATOLOGY), vol. 10, no. 9, 30 September 2017 (2017-09-30), pages 535 - 539, XP009552195, ISSN: 1674-1595, DOI: 10.19538/j.kq.2017.09.006 *

Similar Documents

Publication Publication Date Title
EP0629380B1 (en) Inhibition of restenosis by ultraviolet radiation
Jean et al. Mid-IR laser applications in medicine
US8257347B2 (en) Vein treatment device and method
WO2011072472A1 (zh) 多功能激光治疗机
Devaux et al. Experimental and clinical standards, and evolution of lasers in neurosurgery
CN203341816U (zh) 一种医用2微米光纤激光治疗系统
CN217938369U (zh) 血管修复系统
CN114668493A (zh) 血管腔内超快激光治疗系统及方法
CN111603686A (zh) 一种多用途脉冲光谱治疗仪
WO2024017288A1 (zh) 血管修复系统及控制方法
Deutsch Medical applications of lasers
CN1891173A (zh) 双波长连续泵浦的固定激光软组织治疗仪和方法
CN117462241A (zh) 血管修复系统及控制方法
Fried et al. Therapeutic Applications of Lasers
Sedeh et al. A New Method of Healing (Wounds, Burns, Grafts and Scars) through low Level Lasers (LLLT)
Minaev Laser apparatus for surgery and force therapy based on high-power semiconductor and fibre lasers
Doriana et al. Interactions between laser beam and oral tissues during laser-assisted surgical procedures
CN114848139A (zh) 2940nmEr:YAG激光血管斑块消融仪
Lee et al. The advent of laser therapies in dermatology and urology: Underlying mechanisms, recent trends and future directions
RU2678947C1 (ru) Способ коагуляции сосудов в ране при тонзиллэктомии
CN115590613A (zh) 一种基于1470nm激光治疗装置及使用方法
Colles Medical lasers
Longo et al. Lasers in Phlebology: state of the art
Bown Medical Lasers-Their Clinical Role And The Methods Of Power Delivery
Denstedt et al. Intracorporeal lithotripsy with the holmium: YAG laser

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842350

Country of ref document: EP

Kind code of ref document: A1