WO2024017240A1 - 钢衬里模块施工方法、吊装工装及限位工装 - Google Patents

钢衬里模块施工方法、吊装工装及限位工装 Download PDF

Info

Publication number
WO2024017240A1
WO2024017240A1 PCT/CN2023/107892 CN2023107892W WO2024017240A1 WO 2024017240 A1 WO2024017240 A1 WO 2024017240A1 CN 2023107892 W CN2023107892 W CN 2023107892W WO 2024017240 A1 WO2024017240 A1 WO 2024017240A1
Authority
WO
WIPO (PCT)
Prior art keywords
lifting
steel lining
lining module
hoisting
point
Prior art date
Application number
PCT/CN2023/107892
Other languages
English (en)
French (fr)
Inventor
曹智毅
孙作晓
凌洪基
阁春雷
付琪
Original Assignee
中广核工程有限公司
中国广核集团有限公司
中国广核电力股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中广核工程有限公司, 中国广核集团有限公司, 中国广核电力股份有限公司 filed Critical 中广核工程有限公司
Publication of WO2024017240A1 publication Critical patent/WO2024017240A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/12Slings comprising chains, wires, ropes, or bands; Nets
    • B66C1/122Sling or load protectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C1/00Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles
    • B66C1/10Load-engaging elements or devices attached to lifting or lowering gear of cranes or adapted for connection therewith for transmitting lifting forces to articles or groups of articles by mechanical means
    • B66C1/12Slings comprising chains, wires, ropes, or bands; Nets
    • B66C1/14Slings with hooks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/04Auxiliary devices for controlling movements of suspended loads, or preventing cable slack
    • B66C13/08Auxiliary devices for controlling movements of suspended loads, or preventing cable slack for depositing loads in desired attitudes or positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/16Applications of indicating, registering, or weighing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Definitions

  • This application relates to the technical field of construction of steel linings for the containment of nuclear island reactor buildings, in particular to steel lining module construction methods, hoisting fixtures and limiting fixtures.
  • the steel lining is used to prevent the leakage of radioactive ions. It is located inside the containment vessel in the reactor building of the nuclear island and is connected to the internal structure of the nuclear island.
  • the nuclear island steel lining consists of four parts: base plate, truncated cone, cylinder and dome.
  • the conventional construction method of steel lining is to carry out orderly overlapping construction of the base plate, truncated cone, nuclear island internal structure and containment foundation, truncated cone, cylinder, civil structure and steel structure.
  • the steel lining base plate and truncated cone in the current project are on the critical path of the nuclear island construction, the steel lining itself has a complex structure, a large amount of on-site welding work, and 100% radiographic testing (RT testing for short) of the welds must be carried out. ), which makes on-site construction and safety and quality control face great challenges.
  • the above method is used to construct the steel lining of the current project.
  • the safety and quality risks are under control, since both the steel structure and civil construction paths belong to the schedule critical path, there is a certain degree of overlap between the steel structure construction and the civil construction.
  • the cross-cutting operations have a great impact on the construction period.
  • the cylinder is assembled and hoisted as an integral module. Although it brings convenience to the construction of the structure above the containment foundation and the cylinder section, the bottom plate assembly and truncated cone construction are It still affects the construction of the containment vessel and the internal structure of the reactor building.
  • the construction period of the base plate and truncated cone is about four months, which greatly affects the construction progress.
  • the construction method of steel lining in the related art has the disadvantage of intersecting operations, which has a great impact on the construction period.
  • a steel lining module construction method, hoisting tooling and limiting tooling are provided.
  • this application provides a steel lining module construction method.
  • the steel lining module includes a base plate, a first truncated cone and a second truncated cone connected in sequence; the steel lining module construction method includes the following steps:
  • arranging the first lifting point on the steel lining module includes:
  • a plurality of first lifting point groups are arranged sequentially from the center outward along the radial direction of the steel lining module; wherein each first lifting point group includes a plurality of first lifting point groups spaced apart in the circumferential direction of the steel lining module. Describe the first hanging point.
  • connection lines of the first suspension points in the plurality of first suspension point groups form multiple concentric circles; the concentric circles, and any of the first suspension point groups in the same first suspension point group
  • the distance between two adjacent first hanging points satisfies at least one of the following conditions: the difference between the radii of any two adjacent concentric circles is equal; and any phase difference within the same first hanging point group is The distance between two adjacent first hanging points is the same.
  • the edge of the bottom plate is welded to one end of the first truncated cone in the axial direction, and the other end of the first truncated cone in the axial direction extends away from the bottom plate.
  • the edge of the second truncated cone away from the first truncated cone moves away from the first truncated cone along the radial direction of the first truncated cone. direction extension;
  • a plurality of first suspension point groups are provided on the bottom plate, and at least one first suspension point group is provided on the top of the second truncated cone.
  • arranging the first lifting point on the steel lining module further includes a verification step:
  • the stress and strain of the steel lining module are determined by simulating the force on the first lifting point during the hoisting process to verify whether the stress and strain of the first lifting point meet the preset conditions, thereby determining the Check whether the layout of the first lifting point is reasonable.
  • determining the stress and strain of the steel lining module by simulating the stress on the first lifting point during the hoisting process through finite element analysis includes:
  • the stress on the first lifting point under the first hoisting condition and the second hoisting condition is simulated; wherein, in the first hoisting condition, all the components on the steel lining module The stress on the first lifting points is the same; in the second lifting condition, among all the first lifting points on the steel lining module, there are the largest and smallest stress-bearing lifting points, and the maximum stress is The force of the hanging point is not higher than 10% of the force of the first hanging point under the first working condition, and the force of the minimum stressed hanging point is not lower than that of the first hanging point under the first working condition. 10% of the force of the first lifting point;
  • the stress and strain of the steel lining module under the two hoisting conditions are determined.
  • the stress of the steel lining module under the two hoisting conditions is determined based on the stress on the first lifting point under the first hoisting condition and the second hoisting condition. and strains include:
  • the stress and strain of the steel lining module are determined according to the force on the first lifting point on the steel lining module, as well as the wind load, dynamic load coefficient and imbalance coefficient of the steel lining module.
  • it also includes:
  • the wind load of the steel lining module is obtained according to the preset parameters of the steel lining module; wherein the preset parameters include the height of the steel lining module, the diameter of the steel lining module, the The highest value for hoisting, wind speed and wind coefficient of the environment where the steel lining module is located.
  • the verification step further includes:
  • the simulation artifact includes:
  • a first simulated workpiece is a rectangular steel plate
  • a second simulated workpiece is a rectangular steel plate, and a limit frame is provided around the edges of the second simulated workpiece;
  • the thickness of the first simulated workpiece and the second simulated workpiece is consistent with the thickness of the base plate.
  • a plurality of points to be detected are provided on both the first simulated workpiece and the second simulated workpiece.
  • the first simulated workpiece The number of detection points on the simulated workpiece and the second simulated workpiece is the same, and the points to be detected are distributed in the same manner as the first hanging points on the base plate where the stress is the greatest.
  • the first lifting point is connected to the lifting tool through a first sling.
  • the first sling includes a first turnbuckle, a rope loop, and a first shackle connected in sequence, wherein the first turnbuckle Connected to the lifting tool, the first shackle is connected to the first lifting point;
  • the hoisting tool is connected to the hoisting equipment through a second sling.
  • the second sling includes a hook, a rope, a second shackle, and a second turnbuckle connected in sequence, wherein the hook is connected to the The lifting equipment is connected, and the second flower basket bolt is connected with the lifting tooling.
  • this application provides a hoisting tool, which is used in the construction process of the steel lining module as described above. All the first lifting points on the steel lining module are in contact with the hoisting tool.
  • the hoisting tool is connected to the hoisting equipment.
  • the lifting equipment includes:
  • a plurality of second lifting points, the second lifting points are arranged on one side of the lifting body and used to connect with the lifting equipment;
  • a plurality of third lifting points, the third lifting points are arranged on the other side of the lifting body, and the plurality of third lifting points correspond to the first lifting points on the steel lining module, so The third hanging point is used to connect with the first hanging point.
  • the hoisting body includes:
  • a plurality of first connecting rods, the heads and tails of the plurality of first connecting rods are connected in sequence to form a circular first connecting frame, and the plurality of first connecting frames are spaced apart and concentrically arranged in the same plane;
  • a plurality of second connecting rods, the heads and tails of the plurality of second connecting rods are connected in sequence to form a circular second connecting frame, and the plurality of second connecting frames are spaced apart and concentrically arranged on another same plane within, and the first connecting rod and the second connecting rod are spaced apart;
  • support rods wherein the support rods meet at least one of the following conditions:
  • the two ends of the support rod are detachably connected to the ends of the first connecting rods on the two adjacent first connecting frames;
  • the two ends of the support rod are detachably connected to the ends of the second connecting rods on the two adjacent second connecting frames;
  • the two ends of the support rod are detachably connected to the ends of the first connecting rod and the second connecting rod respectively.
  • the lifting tooling further includes a plurality of connecting pieces, and a plurality of connecting holes are provided on the connecting pieces; wherein, the connecting holes satisfy at least one of the following conditions:
  • the two first connecting rods are respectively detachably connected to the two connecting holes on the same connecting piece;
  • the two second connecting rods are respectively detachably connected to the two connecting holes on the same connecting piece;
  • the first connecting rod and the support rod are respectively detachably connected to the two connecting holes on the same connecting piece;
  • the second connecting rod and the supporting rod are respectively detachably connected to the two connecting holes on the same connecting piece.
  • the number of the second hanging points is no less than 12, and the second hanging points are arranged on the first connecting frame;
  • the third hanging point is arranged on the second connecting frame, and the third hanging point meets at least one of the following conditions:
  • the third hanging point on the second connecting frame corresponds to the first hanging point on the bottom plate
  • One third hanging point on the second connecting frame corresponds to two second hanging points.
  • the present application provides a limiting tool for limiting the position of the steel lining module in the steel lining module construction method as described above.
  • the limiting tool includes:
  • a circumferential stopper one end of the circumferential stopper is fixed on the outer surface of the first truncated cone, and the other end extends in a direction away from the first truncated cone;
  • An axial stopper one end of the axial stopper is fixed on the ground in the nuclear island factory building, and the other end extends upward;
  • the circumferential stop is in contact with the opposite surface of the axial stop to determine the position of the steel lining module.
  • the limiting tool further includes a support column, one end of the support column is fixed on the ground in the nuclear island reactor building, and the other end of the support column faces the second truncated cone.
  • the direction of the body extends and abuts against the edge of the second frustum.
  • Figure 1 is a schematic flow chart of the steel lining module construction method in Embodiment 1 of the present application.
  • Figure 2 is a schematic diagram of the assembly of the bottom plate in the steel lining module construction method of Embodiment 1 of the present application;
  • Figure 3 is a schematic structural diagram of a steel plate counterweight block used for counterweighting when assembling the base plate in the steel lining module construction method of Embodiment 1 of the present application;
  • Figure 4 is a schematic structural diagram of a concrete counterweight block used for counterweighting when assembling the base plate in the steel lining module construction method of Embodiment 1 of the present application;
  • Figure 5 is a schematic diagram of the distribution of counterweight blocks along the welds of the base plate when the base plate is assembled in the steel lining module construction method of Embodiment 1 of the present application;
  • Figure 6 is a schematic diagram of the distribution of counterweight blocks on the entire bottom plate when the bottom plate is assembled in the steel lining module construction method of Embodiment 1 of the present application;
  • Figure 7 shows the connection between the support column and the second truncated cone and the ground of the nuclear island reaction plant in the steel lining module construction method in Embodiment 1 of the present application. Connect schematic diagram;
  • Figure 8 is a schematic diagram of the connection between the reinforcing ribs and the first truncated cone and the second truncated cone in the construction method of the steel lining module in Embodiment 1 of the present application;
  • Figure 9 is a schematic diagram of the docking of the vertical reinforcement plate when the bottom plate and the first truncated cone are welded in the steel lining module construction method in Embodiment 1 of the present application;
  • Figure 10 is a schematic structural diagram of a temporary platform used for bottom plate assembly in the steel lining module construction method of Embodiment 1 of the present application;
  • Figure 11 is a schematic diagram of the layout of the first lifting points on the steel lining module in the steel lining module construction method in Embodiment 2 of the present application;
  • Figure 12 is an overall stress diagram of the steel lining module using finite element analysis of the hoisting process in the construction method of the steel lining module in Embodiment 3 of the present application;
  • Figure 13 is another overall stress diagram of the steel lining module that performs finite element analysis on the hoisting process in the construction method of the steel lining module in Embodiment 3 of the present application;
  • Figure 14 is an overall displacement diagram of the steel lining module using finite element analysis of the hoisting process in the construction method of the steel lining module in Embodiment 3 of the present application;
  • Figure 15 is another overall displacement diagram of the steel lining module that performs finite element analysis on the hoisting process in the steel lining module construction method of Embodiment 3 of the present application;
  • Figure 16 is a schematic structural diagram of the first simulated workpiece in the steel lining module construction method in Embodiment 4 of the present application;
  • Figure 17 is a schematic structural diagram of the second simulated workpiece in the steel lining module construction method of Embodiment 4 of the present application.
  • Figure 18 is a stress diagram after finite element analysis of the first simulated workpiece in the steel lining module construction method of Embodiment 4 of the present application;
  • Figure 19 is a stress diagram after finite element analysis of the second simulated workpiece in the steel lining module construction method of Embodiment 4 of the present application;
  • Figure 20 is a displacement diagram after finite element analysis of the first simulated workpiece in the steel lining module construction method of Embodiment 4 of the present application;
  • Figure 21 is a displacement diagram after finite element analysis of the second simulated workpiece in the steel lining module construction method of Embodiment 4 of the present application;
  • Figure 22 is a schematic diagram of the connection of slings in the construction method of steel lining modules in Embodiment 4 of the present application;
  • Figure 23 is a schematic structural diagram of the first sling in the steel lining module construction method in Embodiment 4 of the present application.
  • Figure 24 is a schematic diagram of the connection between the hoisting tooling and the hoisting equipment in Embodiment 5 of the present application;
  • Figure 25 is a schematic diagram of the pasting position of the strain gauge on the first connecting rod of the lifting tool in Embodiment 5 of the present application;
  • Figure 26 is a schematic diagram of the pasting position of the strain gauge on the second connecting rod of the lifting tool in Embodiment 5 of the present application;
  • Figure 27 is a schematic diagram of the attachment position of the strain gauge on the support rod of the lifting tool in Embodiment 5 of the present application;
  • Figure 28 is a schematic diagram of the connection between the limiting tool and the steel lining module in Embodiment 6 of the present application;
  • Figure 29 is another schematic diagram of the connection between the limiting tool and the steel lining module in Embodiment 6 of the present application.
  • Bottom plate 10 steel plate 101; weld 102; first lifting point 103;
  • Counterweight block 20 steel plate counterweight block 201; concrete counterweight block 202;
  • first truncated cone 30 vertical reinforcement plate 301;
  • Simulated workpiece 90 first simulated workpiece 901; point to be detected 902; second simulated workpiece 903; frame 9031;
  • Hoisting tool 100 first connecting rod 1001; second connecting rod 1002; support rod 1003;
  • Limiting fixture 130 circumferential limiter 1301; radial limiter 1302; guide limiter 1303.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • connection In this application, unless otherwise clearly stated and limited, the terms “installation”, “connection”, “connection”, “fixing” and other terms should be understood in a broad sense. For example, it can be a fixed connection or a detachable connection. , or integrated into one; it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two elements or an interactive relationship between two elements, unless otherwise specified restrictions. For those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • a first feature being “on” or “below” a second feature may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary. touch.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Figure 1 shows a schematic flow chart of the steel lining module construction method in Embodiment 1 of the present application. It should be understood that although various steps in the flowchart shown in FIG. 1 are shown in sequence as indicated by arrows, these steps are not necessarily executed in the order indicated by arrows. Unless explicitly stated in this article, the execution of these steps is not strictly limited in order, and they can be executed in other orders. Moreover, at least some of the steps in Figure 1 may include multiple sub-steps or multiple stages. These sub-steps or stages are not necessarily executed at the same time, but may be executed at different times, and their execution order is not necessarily It is performed once, but may be performed in turn or alternately with other steps or sub-steps of other steps or at least part of stages.
  • the steel lining module 1 includes a base plate 10, a first truncated cone 30 and a second truncated cone 40 connected in sequence; the steel lining module construction method includes the following steps:
  • Step S1 Splice the bottom plate 10, the first truncated cone 30 and the second truncated cone 40 together to form the steel lining module 1;
  • Step S2 arrange the first lifting point 103 on the steel lining module 1;
  • Step S3 Connect the first lifting point 103 on the steel lining module 1 to the lifting tool 100, and connect the lifting tool 100 to the lifting equipment 120;
  • Step S4 Hoist the steel lining module 1 into the containment vessel in the nuclear island reactor building.
  • the bottom plate 10, the first truncated cone 30 and the second truncated cone 40 are spliced into an integral module.
  • the overall assembly process of the steel lining module 1 can be constructed on the ground, which can greatly reduce the number of civil construction structures. and critical path work during the erection and construction of steel structures. After the steel lining module 1 is assembled, it is hoisted to the containment in the nuclear island reactor building for assembly. This can make the overall assembly module, civil containment, and internal structure construction independent of each other, reducing the risk of cross-operation. At the same time, two key Paths can be constructed simultaneously, thus shortening the construction period. Moreover, the assembly process is completed on the ground, which can improve the welding working environment and also improve the level of construction management safety and quality.
  • the base plate 10 usually uses a thin-walled steel plate, the flatness and deformation of the base plate 10 need to be controlled during assembly and hoisting.
  • an inspection slot for RT detection is usually embedded at the bottom of the base plate 10 .
  • the base plate 10 is divided into multiple pieces and welded to the inspection slot.
  • the inspection slot can serve as the base plate 10 Back support during assembly and welding to reduce welding deformation.
  • the base plate 10 can be assembled at a special assembly site and then hoisted.
  • a reserved channel for RT detection is set up at the assembly site itself. Therefore, the inspection slot for RT detection is no longer arranged on the base plate 10. This results in no anchor points being provided on the base plate 10. Since there are no anchor points on the base plate 10, The back support is eliminated, which greatly increases the risk of welding deformation during the assembly of the base plate 10 .
  • the control of the flatness of the base plate 10 during the assembly stage is the source of flatness control of the overall module of the steel lining.
  • the base plate 10 Before assembling the base plate 10, the first truncated cone 30 and the second truncated cone 40, the base plate 10 needs to be assembled first.
  • the base plate 10 has multiple The steel plates are spliced together. Of course, there is no limit to the number of steel plates. The number of steel plates should be controlled within 12 pieces.
  • the thickness of the steel plates is between 4mm and 8mm.
  • the bottom plate 10 includes 12 steel plates 101.
  • the steel plates 101 The material is model P265GH and the thickness is 6mm. Twelve steel plates 101 are assembled together by welding to form the base plate 10 of the steel lining module 1.
  • the radius of the spliced base plate 10 is 19.7m and the area is 1219m 2 .
  • the shape and size of the assembled base plate can be determined according to actual needs.
  • the base plate can be round or square, and its size can also be other sizes except the radius of 19.7m.
  • the number of steel plates 101 in the base plate 10 in the related art which is 16 pieces
  • the number of steel plates 101 in the base plate 10 in this solution is reduced by 4 pieces, thereby also reducing the total length of the weld 102 during the assembly process by 71m, using Reducing the length of the weld can effectively reduce welding deformation.
  • counterweights 20 are provided on both sides of the weld seam 102 to reduce the risk of deformation during the welding process.
  • a combination of a 4-ton concrete counterweight 202 and a 1-ton steel plate counterweight 201 is used to press on the steel plate of the base plate 10 .
  • a 1-ton steel plate counterweight 201 is used to weigh the two sides of the butt weld 102 of the two steel plates.
  • the steel plate counterweight 201 Since the structure of the steel plate counterweight 201 is relatively simple, it is convenient to leave an operating space for the weld, thereby making it convenient The operator performs welding; a 4-ton concrete counterweight block 202 can be used for counterweighting at other locations except butt welds.
  • the steel plate counterweights 201 are steel plates with a length of about 2 meters and a width of about 0.74 meters. They are arranged at intervals on both sides of the weld 102 along the length direction of the weld 102, and the steel plate counterweights The length direction of 201 is consistent with the length direction of welding seam 102. In this embodiment, as shown in Figure 5, the distance between the steel plate counterweight 201 and the welding seam 102 is roughly set between 400mm and 500mm.
  • the distance between the two adjacent welding seams is not more than 1.4 meters.
  • concrete counterweight blocks 202 are used for weighting.
  • the concrete counterweight blocks 202 are substantially evenly spaced from each other.
  • Ground is arranged on the steel plate of base plate 10.
  • the concrete KUAI adopts an L-shaped structure. Specifically, the length of the two long sides of the concrete counterweight block 202 is approximately 1.6 meters, and its width and the other two short sides The length is roughly about 0.8 meters.
  • the edge of the bottom plate 10 is welded to the bottom of one end of the first frustum 30 , wherein the shape of the first frustum 30 is generally a cylindrical structure, and the cross-sectional shape of the first frustum 30 can be It can be round, square, elliptical or other special shapes, as long as it matches the shape of the bottom plate 10.
  • the bottom plate 10 is round, so the first frustum 30 adopts a round shape.
  • the other end of the first frustum 30 extends away from the bottom plate 10 .
  • the other end of the first frustum 30 extends upward from the surface of the bottom plate 10 .
  • the second truncated cone 40 is generally annular.
  • Module 1 structurally forms a suspended structure.
  • the steel lining module 1 also includes a support column 50.
  • One end of the support column 50 is fixed to the edge of the second truncated cone 40 away from the first truncated cone 30, and the other end of the support column 50 is fixed.
  • the support column 50 is provided at the outer edge of the second truncated cone 40 to support the second truncated cone 40 , thereby reducing the risk of deformation of the second truncated cone 40 .
  • the number of support columns 50 is 48, and the 48 support columns 50 are evenly and spacedly arranged along the outer circumference of the second frustum 40 .
  • the support column 50 includes a main channel steel, a connecting channel steel and a support channel steel.
  • the bottom of the main channel steel is fixed to the concrete floor in the nuclear island reactor building through bolts, and the top of the main channel steel faces the direction of the second truncated cone 40 Extend, one end of the connecting channel steel is welded to the main channel steel, and the connecting channel steel and the main channel steel are perpendicular to each other.
  • One end of the supporting channel steel is welded to the end of the connecting channel steel away from the main channel steel, and the other end extends upward.
  • the support channel steel can be placed with height-adjusting wedges, and the height of the support column can be adjusted by increasing or decreasing the wedges, so that the outer edge of the second truncated cone 40 is always at the same height, thereby reducing the deformation of the second truncated cone 40 risks of.
  • a plurality of reinforcing ribs 70 are provided on the upper surface of the second truncated cone 40.
  • the cones 40 are distributed at intervals in the circumferential direction.
  • the reinforcing rib 70 adopts an L-shaped structure, and the reinforcing rib 70 is welded to the top surface of the second truncated cone 40 and the side surface of the first truncated cone 30 .
  • a reinforcing plate is provided on the outer edge of the bottom plate 10.
  • a vertical reinforcing plate 301 is provided at the bottom of a truncated cone 30 .
  • the vertical reinforcement plate 301 is offset outward, thereby reducing welding deformation.
  • this embodiment also designs a semi-sunken module assembly platform 80 that takes into account RT detection.
  • the assembly platform 80 uses prefabricated concrete U-shaped grooves, non-structural material backfilling, and concrete leveling. It is a structural form of floor, steel structure keel support and steel plate leveling.
  • the specific implementation plan is as follows: Excavate according to the existing site elevation and the location of the personnel passage to form a semi-sunken arrangement of personnel passages to reduce the amount of backfill; precast concrete U-shaped troughs in blocks according to the layout of the on-site passages and hoist them in place; use non-structural materials to backfill between passages and passages, and between passages and the retaining walls of the assembly site; pour 100mm concrete leveling layer for leveling; install steel structure keels on the concrete leveling layer, using No. 10 channel steel. The spacing between them is 1m; 20mm thick steel plates are intermittently welded on the steel structure keels to complete the final leveling.
  • the flatness accuracy of the assembly platform 80 reaches 5mm every 2m, meeting the flatness requirements of the base plate 10 assembly; the welding seam positions are spliced on site, and the assembly platform 80 is left with three vertical and two horizontal pedestrian passages, using segmented prefabrication
  • the on-site splicing scheme of concrete U-shaped grooves forms personnel passages.
  • the prefabricated components also form the support structure system and retaining wall structure of the platform. Three vertical and two horizontal pedestrian passages are left to greatly improve the RT detection efficiency; semi-sunken design , lowering the platform height, reducing backfilling workload, fast construction speed and low cost.
  • the platform formed by using both prefabricated concrete components and backfill is easier to dismantle.
  • arranging the first lifting point groups on the steel lining module includes: as shown in Figure 11, arranging multiple groups of first lifting point groups in sequence from the center outward along the radial direction of the steel lining module, each group having a A lifting point group includes a plurality of first lifting points 103 spaced apart in the circumferential direction of the steel lining module 1 .
  • each first lifting point group, the number of first lifting point groups, and the number of first lifting points 103 included in each group are not limited, and can be designed according to the specific structure and size of the steel lining.
  • the first lifting point 103 is a lifting lug welded to the position where the first lifting point 103 needs to be set on the base plate 10 for connecting to the sling.
  • connection lines of the first lifting points in the plurality of first lifting point groups form concentric circles on the steel lining module 1.
  • the difference in the radius of any two adjacent concentric circles is equal.
  • the distance between two adjacent first lifting points 103 in a lifting point group is the same.
  • the distance between two adjacent first hanging points 103 is the same.
  • multiple groups of first hanging point groups are provided on the base plate 10 , and at least one group of first hanging point groups 103 is provided on the top of the second truncated cone 40 .
  • 7-9 groups of first hanging point groups are provided on the base plate, and the spacing between each group of first hanging point groups in the radial direction of the base plate is between 2-3m.
  • first lifting points 103 8 groups of first lifting points 103 are provided on the base plate 10 .
  • the distance between each group of first lifting point groups in the radial direction of the base plate 10 is 2.46m.
  • a total of 225 first lifting points are provided on the base plate 10 .
  • one first lifting point 103 is set at the center of the steel-lined bottom plate 10, and 8 first lifting points 103 are evenly distributed on a circle with a radius of 2.46 meters, serving as the second group of first lifting points 103; the third group , the first lifting point groups of the 4th and 5th groups are spaced outwards in sequence by a distance of 2.46m, and there are 24 first lifting points 103 evenly distributed on each group; on the outside of the 5th group of lifting points, they are spaced outwards in sequence.
  • the 6th, 7th, and 8th first lifting point groups are set at a distance of 2.46m, and the number of first lifting points in these three first lifting point groups is 48.
  • first lifting points 103 are set on the bottom plate 10 of the steel lining module 1. And 48 first hanging points 103 are provided at the upper mouth of the second truncated cone 40 . From the above, a total of 9 groups of 273 first lifting points 103 are provided on the entire steel lining module 1 .
  • the layout plan of the first lifting point 103 plays a decisive role in controlling the deformation during the overall hoisting process of the steel lining module 1.
  • Establishing a set of overall module lifting point layout analysis plan is the core content of the overall module construction technology. Since the construction method of the steel lining module 1 in this application is different from the traditional construction method, this construction method involves the overall lifting of the thin-walled steel plate structure. There are no mature standards and methods for the layout analysis method and stress calculation of the first lifting point 103. Experience can be used as a reference, and the design can only be carried out based on the structural characteristics of the overall module and the actual hoisting conditions. Therefore, after the first lifting point 103 plan is initially arranged, the reliability of the overall design plan still needs to be verified.
  • arranging the first lifting point on the steel lining module also includes a verification step: through finite element analysis, simulate the stress situation of the first lifting point on the steel lining module 1 during the lifting process to determine The stress and strain on the steel lining module 1 are used to verify whether the stress and strain of the first lifting point 103 meet the preset conditions to determine whether the layout of the first lifting point is reasonable. By simulating and calculating the stress and strain of the steel lining module 1 during the lifting process, it is determined whether plastic deformation will occur at each first lifting point 103 to verify the rationality of the arrangement of the first lifting point 103, thereby improving the entire steel lining module. 1. Reliability of the hoisting process.
  • the stress and strain of the first lifting point were simulated during the hoisting process to determine the stress and strain of the steel lining module, including:
  • the stress on the first lifting point under the first hoisting condition and the second hoisting condition is simulated; among them, in the first hoisting condition, all the first lifting points on the steel lining module bear the same force. ;In the second lifting condition, the first lifting point on the steel lining module has a maximum stress-bearing lifting point and a minimum stress-bearing lifting point, and the force of the maximum stress-bearing lifting point is not higher than that under the first working condition.
  • the stress on the first lifting point is determined to determine the stress and strain of the steel lining module under the two lifting conditions.
  • the lifting tool 100 is provided with 12 lifting points connected to the lifting equipment 120.
  • the tensile force of the 6 lifting points with larger stress among these 12 lifting points is increased by 10%, and the tensile force of the 6 lifting points with smaller stress is increased by 10%.
  • the tensile force of the six lifting points is reduced by 10%. Under the second working condition, the lifting points on the lifting tool 100 are unevenly stressed.
  • determining the stress and strain of the steel lining module under the two hoisting conditions includes: according to the stress of the first lifting point on the steel lining module.
  • the wind load is calculated through the following steps: obtaining the wind load of the steel lining module according to the preset parameters of the steel lining module; wherein the preset parameters include the height of the steel lining module, the diameter of the steel lining module, the steel lining module The maximum lifting value of the module, the wind speed and wind coefficient of the environment where the steel lining module is located.
  • the following parameters are input according to the structure of the steel lining module 1: the module height is 3.395m, the module diameter is 43.2m, the maximum height of the hoisting is 60m, the calculated wind speed is 10.8m/s, and the wind coefficient is 1.2, to calculate the wind load.
  • the wind load at the highest point is 11222N.
  • the stress and strain of the steel lining module are calculated.
  • the value of the wind load, the dynamic load coefficient and the imbalance coefficient are input; according to the above parameters, the stress and strain of the steel lining module are calculated. strain.
  • the value of the wind load is calculated through the above method
  • the value of the dynamic load coefficient is 1.05
  • the imbalance coefficient is 1.2.
  • the dynamic load coefficient and the imbalance coefficient are the self-weight load coefficients.
  • the maximum stress was 145.7Mpa, which occurred at the edge of the first lifting point 103.
  • the maximum stress did not exceed the allowable stress of the steel lining material P265GH, 179Mpa.
  • the maximum displacement position of the steel lining module 1 is between the first lifting points 103 of the 3rd and 4th groups.
  • the maximum displacement is 46.6mm.
  • the deformation is elastic deformation, which meets the lifting requirements.
  • the lifting point layout plan is reasonable.
  • the analysis and calculation through the finite element model of Embodiment 3 can only be assumed based on the overall structural form of the steel lining module 1 and the hoisting conditions. Therefore, through the finite element model Whether the analytical calculation results can simulate the overall true stress and deformation of the steel lining module 1 during the hoisting process still needs to be verified through simulation tests.
  • the above verification step also includes simulating a lifting test to verify the reliability of the results of the finite element analysis.
  • the position with the greatest deformation of the bottom plate 10 of the steel lining module 1 is located between the third group and the fourth group of first lifting points 103. Therefore, when performing the simulated lifting test, the position between the third group and the fourth group is selected. In the area of the first lifting point 103 of the group, the first lifting point 103 with the largest stress is used to verify the stress and strain of the bottom plate 10 at the most unfavorable cross section.
  • the position of the point to be detected is set on the first hanging point 103 with the largest deformation after finite element analysis. Since the edge constraint conditions of the intercepted simulated workpiece 90 are not consistent with the real hoisting conditions of the steel lining module 1, in this embodiment, two simulated test workpieces are produced for testing and verification. One simulated workpiece 90 is There is no edge constraint without a border, and another simulation workpiece 90 is one with a border that has edge constraints. Specifically, the simulation workpiece 90 includes a first simulation workpiece 901 and a second simulation workpiece 903.
  • the first simulation workpiece 901 is a rectangular steel plate with a length of about 11.5 meters and a width of about 5.89 meters, and its thickness is 6mm;
  • the second simulated workpiece 903 is a rectangular steel plate with a length of about 11.5 meters and a width of about 5.89 meters. Its thickness is 6mm, and a frame 9031 is provided around the edges of the second simulated workpiece 903.
  • the frame 9031 is made of angle steel, and the angle steel and the steel plate are Perform welding. 38 points to be detected 902 are set on both the first simulated workpiece 901 and the second simulated workpiece 903.
  • the points to be detected 902 are distributed in the same manner as the first lifting point 103 with the greatest stress on the base plate 10, and as shown in Figure 16 and Figure As shown in 17, the points to be detected 902 on the first simulated workpiece 901 and the second simulated workpiece 903 are distributed in the same manner.
  • the simulated lifting test includes the following steps: prepare the simulated workpiece and paste the stress strain gauge at the designated position; check the flatness of the simulated workpiece, measure the coordinates of the point to be detected before lifting, and zero the stress strain gauge; lift simulation
  • the workpiece when the distance between the simulated workpiece and the platform is between 0.1-0.5m, remains in the prohibited state for no less than 10 minutes. In this embodiment, the prohibited state is released for 10 minutes, the coordinates of the point to be detected are measured, and the stress and strain are continuously collected. data of the stress and strain gauge; lower the simulated workpiece to the platform and end the data collection of the stress strain gauge, and check the flatness of the simulated workpiece again.
  • the stress strain gauge can realize the computer to automatically and continuously collect strain data and calculate the stress value from the strain transformation. After testing, it was found that the strain fluctuated greatly in the initial stage and the last time period, and was relatively stable in the middle period, which is also consistent with the characteristics of the hoisting process. During data analysis, the average stress value within the first 10 minutes will be extracted as the stress value of the steady state.
  • the peak stress during the hoisting process of the first simulated workpiece 901 is 143.66Mpa
  • the maximum stress in the steady state is 131.98Mpa, which is basically consistent with the theoretically calculated stress of 140Mpa.
  • the actual measured displacement is 44.1mm
  • the theoretical calculated value is 78.5mm.
  • the deformation trend of the base plate 10 in the simulation test and the theoretical calculation is basically consistent.
  • the peak stress during the hoisting process of the second simulated workpiece 903 is 133.12Mpa
  • the maximum stress in the steady state is 121.71Mpa, which is basically consistent with the theoretically calculated maximum stress of 133.9Mpa.
  • the measured value of the displacement is 38.6mm
  • the theoretically calculated value is 48.2mm.
  • the deformation trends of the base plate 10 in the simulation test and the theoretical calculation are basically consistent.
  • a 2m measuring pole was used for measurement, and a total of 18 data to be detected were collected.
  • the flatness of each point to be detected before and after lifting was less than 20mm/2m, and the maximum change in flatness before and after lifting was 3mm, and in After hoisting, the bottom plate 10 can be restored to its original shape without obvious deformation, thus meeting the hoisting requirements.
  • the measured stress in the simulation test is basically consistent with the finite element calculation
  • the measured strain is basically consistent with the deformation trend calculated by the finite element
  • the finite element calculation and analysis method is basically feasible.
  • step S3 as shown in Figure 22 and Figure 23:
  • the first lifting point 103 is connected to the lifting tool 100 through the first sling 110.
  • the first sling 110 includes a first turnbuckle, a rope loop, and a first shackle connected in sequence, wherein the first turnbuckle and the lifting tool 100
  • the first shackle is connected to the first lifting point 103;
  • the lifting tool 100 is connected to the lifting equipment 120 through a second sling, and the second sling includes a hook, a rope, a second shackle, and a third sling connected in sequence.
  • Two flower basket bolts wherein the hook is connected to the hoisting equipment 120, and the second flower basket bolt is connected to the hoisting tool 100.
  • first lifting points 103 Since there are a large number of first lifting points 103 on the steel lining module 1, it is necessary to ensure that each first lifting point 103 is connected to the first sling 110. This ensures that the steel lining module 1 receives balanced forces during the hoisting process, thus reducing the risk of deformation. Therefore, in this embodiment, after the steel lining module 1 is assembled, 541 points to be detected are arranged on the steel lining module 1, and the distance between two adjacent points to be detected is about 1.5m. Then measure the elevation of each point to be detected and the flatness in the area of adjacent points to be detected. It is detected that the elevation range of the bottom plate 10 is between -7.4mm-+43.4mm.
  • the theoretical adjustment length value of the first sling 110 is calculated using the measured actual data of elevation and flatness, and is reviewed on-site by adjusting the tightness of the first flower basket bolt and using a digital display wrench. If the deviation length of the elevation exceeds the adjustable length of the first turnbuckle, the length of the first sling 110 corresponding to the location of the first lifting point 103 needs to be adjusted to ensure that the first sling 110 is stressed within the on-site adjustable range. Balance to prevent the concentration of force at individual first lifting points 103 causing large deformation.
  • This embodiment provides a hoisting tool 100.
  • the hoisting tool 100 is used in the construction process of the steel lining module 1 as above. All the first lifting points 103 on the steel lining module 1 are connected to the hoisting tool 100.
  • the hoisting tool 100 is connected to the hoisting tool 100.
  • the lifting equipment 120 is connected.
  • this embodiment provides a lifting tool 100 that is connected to all the first lifting points 103 on the steel lining module 1 through the lifting tool 100.
  • it is convenient to connect with the lifting equipment 120.
  • it is beneficial to improve the reliability of hoisting and reduce the risk of deformation of the steel lining module 1 .
  • the hoisting tool 100 includes: a hoisting body, a plurality of second hoisting points and a plurality of third hoisting points.
  • the second hoisting points are provided on one side of the hoisting body for use with the hoisting body.
  • the equipment 120 is connected; the third lifting point is set on the other side of the lifting body, a plurality of third lifting points corresponds to the first lifting point 103 on the steel lining module 1, and the third lifting point is used to connect with the first lifting point 103 connected.
  • There is no restriction on the structural form of the hoisting body as long as the second and third lifting points can be set on the upper and lower surfaces of the hoisting body.
  • the lifting lugs can be connected by welding on the lifting body, or the detachable lifting lugs can be provided.
  • the hoisting body includes a plurality of first connecting rods 1001, a plurality of second connecting rods 1002 and a plurality of support rods 1003, wherein the first connecting rods 1001, the second connecting rods 1002 and the support rods 1003 are all rod-shaped structures. , and all use steel model Q235B.
  • the heads and tails of the plurality of first connecting rods 1001 are connected in sequence to form a circular first connecting frame.
  • the plurality of first connecting frames are spaced apart and concentrically arranged in the same plane; the heads and tails of the plurality of second connecting rods 1002 are The tails are connected in sequence to form a circular second connecting frame.
  • a plurality of second connecting frames are spaced apart and concentrically arranged in another same plane, and the first connecting rod 1001 and the second connecting rod 1002 are spaced apart.
  • the two ends of the support rod 1003 are detachably connected to the ends of the first connecting rods 1001 on the two adjacent first connecting frames respectively, thus realizing the connection between the two adjacent first connecting frames.
  • the two ends of the support rod 1003 are detachably connected to the ends of the second connecting rods 1002 on the two adjacent second connecting frames. Similarly, in this way, the connection between the two adjacent second connecting frames is realized.
  • the two ends of the support rod 1003 are detachably connected to the ends of the first connecting rod 1001 and the second connecting rod 1002 respectively.
  • the lifting tool 100 also includes a plurality of connecting parts, and a plurality of connecting holes are provided on the connecting parts; wherein the connecting holes satisfy at least one of the following conditions: the two first connecting rods 1001 are respectively detachable.
  • the two second connecting rods 1002 are detachably connected to the two connecting holes on the same connecting piece; the first connecting rod 1001 and the support rod 1003, the second connecting rod 1002 and the support rod 1003 are respectively detachably connected to two connecting holes on the same connecting piece.
  • the connecting member can be a spherical or three-dimensional structure similar to a polyhedron. Connection holes are provided on different faces of the three-dimensional structure, and internal threads are provided in the connection holes.
  • the first connecting rod 1001 and the second connecting rod 1002 And the two ends of the support rod 1003 are provided with external threads and are threadedly connected with the connection holes on the connector.
  • the connecting member may be a bolt ball, but of course other structures may also be used.
  • the bolt balls are provided with bolt holes corresponding to the directions of each rod for connection with the above three kinds of rods.
  • a bolt hole is opened in the lower part of the bolt ball, which serves as the third lifting point of the steel lining module 1 and is connected to the first lifting point 103 of the steel lining module 1 through lifting eye screws and wire ropes.
  • the first connecting rod 1001, the second connecting rod 1002 and the support rod 1003 are assembled with bolt balls to form a hoisting body of a grid structure, and the upper part is connected to the wire rope and the crane using lifting lugs.
  • the number of second hanging points is 12, and the 12 second hanging points are arranged on the first connecting frame; the third hanging point is arranged on the second connecting frame, and the third hanging point on the second connecting frame
  • the hanging points correspond to the first hanging points 103 on the base plate 10 one-to-one, or one second hanging point on the second connecting frame corresponds to two second hanging points. That is to say, in this embodiment, 12 second lifting points are evenly arranged on the same first connecting frame on the upper surface of the tool body, and the second lifting points are used to connect to the lifting equipment 120, that is, the main hook of the large crane. .
  • a third hanging point is set on a second connecting frame with a different lower surface of the tool body. Specifically, the third hanging point is set up as follows.
  • a third lifting point is set at the center of the tool body, 8 third lifting points are set on the second connecting frame closer to the center, and 8 third connecting frames are arranged outward along the radial direction of the tooling body.
  • 12 24, 24, 24, 48, 48 and 48 third lifting points are respectively set.
  • For the 12 third lifting points on the third connecting frame of the second ring of the tool body they correspond to the 24 first lifting points 103 of the second group of the base plate 10; for the 12 third lifting points on the third connecting frame of the fifth ring of the tool body, The 24 third lifting points correspond to the 48 first lifting points 103 of the fifth group of the base plate 10. That is to say, for the second and fifth circles, one third lifting point on the third connecting frame corresponds to the base plate 10.
  • the third lifting point on the lifting tool 100 can be divided into two lifting points through a balance beam and correspond to the first lifting point 103 on the base plate 10 .
  • the hoisting body is configured in a circular or annular shape.
  • the radius of the circular grid is about 19.706m
  • the height of the spreader is about 2.2m
  • the total weight is about 63t.
  • the hoisting tool 100 can also be configured in a detachable, combined and changeable structure, so that one hoisting tool 100 can meet the needs of two different working conditions.
  • the hoisting body is detachably connected through the first connecting rod 1001, the second connecting rod 1002 and the supporting rod 1003 through connecting pieces, that is, bolt balls.
  • the hoisting body When a circular hoisting tool 100 is required for hoisting, the hoisting body is constructed into a circle; when an annular hoisting tool 100 is required for hoisting, the first connecting rod 1001 and the first connecting rod 1001 in the center of the circular hoisting body can be used for hoisting.
  • the two connecting rods 1002, the support rods 1003 and the bolt balls are disassembled to change the circular hoisting tool 100 into a circular hoisting tool 100.
  • the reliability of the above-mentioned lifting fixture 100 still needs to be verified.
  • the verification method of the above-mentioned lifting fixture 100 is the same as the finite element modeling calculation method of the steel lining module 1 .
  • the same two types of tools as those of the steel lining module 1 are also used to simulate the hoisting process of the lifting tool 100 .
  • the internal forces of the first connecting rod 1001, the second connecting rod 1002 and the support rod 1003 of the lifting tool 100 were also checked, and the component strength and component stability of the lifting tool 100 met the requirements.
  • a load test of the hoisting tool 100 needs to be carried out before formal hoisting.
  • the load test of the hoisting tool 100 also requires that the hoisting tool 100 is subjected to a large force. Stress and strain gauges are pasted on any one or more of the first connecting rod 1001, the second connecting rod 1002 and the support rod 1003 to actually detect the stress and strain values to test the overall stress performance and bearing capacity of the lifting tool 100. Whether it meets the overall lifting requirements of steel lining module 1. Through this test, the reliability of the hoisting of the hoisting tool 100 can be improved, as well as the reliability of the entire hoisting process.
  • the specific test method is: hoist the hoisting tool 100 to the temporary support and attach the strain gauge, check the strain gauge and then connect the collector.
  • the strain detector When lifting the main wire rope connected to the hoisting tool 100 and causing the hoisting tool 100 to break away from the temporary support, set the strain detector to zero, load 1.25 times the rated load for lifting, and then lower the hoisting tool 100 to the temporary support. Repeat this three times.
  • a total of 109 stress detection points are set on the hoisting tool 100, including 24 on the second lifting lug, 28 on the first connecting rod 1001, 34 on the support rod 1003, and 23 on the second connection.
  • the specific locations are as follows As shown in Figures 26 to 28, and the points to be detected are marked, and the numbers of the points to be detected are represented by numbers 1 to 109.
  • the maximum stress value in all the points to be tested is 38.42N/mm 2
  • the first connecting rod 1001, the second connecting rod 1002 and the support rod 1003 of the lifting tool 100 are made of steel model Q235B.
  • Q235B The ultimate strength value is 215N/mm2, and the allowable stress should be 70% of the design strength value of the steel, which is 150.05N/ mm2 .
  • the hoisting tool 100 provided in this embodiment receives the maximum stress during the hoisting process.
  • the value of 38.42N/ mm2 is far less than the allowable stress value. Therefore, it can be seen that the stress detection value during the test of the hoisting fixture 100 did not exceed the design allowable stress value, and the hoisting fixture 100 is reliable and can be put into use for hoisting the steel lining module 1 .
  • this embodiment provides a limiting tool 130.
  • the steel lining module in step S4 in the above-mentioned steel lining module construction method is limited.
  • the limited tooling 130 provided by this technical solution is used for auxiliary positioning, so that the steel lining module can be hoisted accurately in place as a whole. On the one hand, the positioning accuracy is improved, and on the other hand, the hoisting and positioning efficiency is also improved.
  • the limiting tool 130 includes a circumferential limiter 1301 and an axial limiter.
  • One end of the circumferential limiter 1301 is fixed on the outer surface of the first truncated cone 30 , and the other end faces away from the first truncated cone.
  • the direction of the body 30 extends; one end of the axial limiter is fixed on the ground in the nuclear island factory building, and the other end extends upward; the circumferential limiter 1301 contacts the opposite surface of the axial limiter to determine the steel lining module 1 s position.
  • a circumferential stopper 1301 is provided on the outer wall of the first frustum 30 of the steel lining module 1 next to the position where the pipe is installed.
  • a circumferential limiter 1301 is provided at each position where the pipe is installed.
  • Five circumferential limiting parts 1301 are provided on the circumference of the body.
  • 12 radial stoppers 1302 are evenly arranged along the circumferential direction of the first truncated cone 30 .
  • the circumferential limiter 1301 is used to adjust the angle of the steel lining module 1
  • the radial limiter 1302 is used to adjust the radial position of the steel lining module 1.
  • the position of the steel lining module 1 is adjusted through a hand chain hoist.
  • one end of the hand chain hoist is fixed on the channel steel around the foundation pit of the nuclear island factory building, and the other end is connected to the circumferential limiter 1301.
  • This embodiment also provides a guide limiter 1303.
  • One end of the guide limiter 1303 is fixed on the side of the first frustum 30, and the other end extends downward to be flush with the bottom surface of the base plate 10.
  • the guide limiter 1303 is Part 1303 is used to guide and limit the steel lining module 1 when hoisting it.
  • the circumferential stopper 1301 which can be a trapezoidal structure.
  • One bottom surface of the trapezoidal structure is welded to the first frustum 30, and the other bottom surface is used to abut against the radial stopper 1302. or it can be welded by two mutually perpendicular angle steels, one end of one angle steel is welded to the first truncated cone 30 , and the side of the other angle steel is used to fit with the radial stopper 1302 .
  • the radial limiter 1302 can also be a trapezoidal structure.
  • One bottom surface of the trapezoidal structure is fixed to the bottom surface of the nuclear island factory building, and the other end extends upward.
  • the side of the trapezoid structure is used to abut against the circumferential limiter 1301; in this example,
  • the radial stopper 1302 is welded by two channel steels. One channel steel is tilted and one end is welded to the other vertical channel steel. The bottom surfaces of the two channel steels are flush with the ground 60 of the nuclear island factory building. fixed.
  • the steel lining module 1 can be hoisted and positioned accurately as a whole.
  • the steel lining module 1 is accurately positioned with the radius direction deviation within 2cm and the angle deviation within 2cm, meeting the design requirements.
  • the limiting tool also includes a support column, one end of the support column is fixed on the ground in the nuclear island reactor building, and the other end of the support column extends in the direction of the second truncated cone and abuts against the edge of the second truncated cone.
  • the support columns are used to prevent deformation caused by the second truncated cone hanging in the air after the steel lining module is installed in the containment vessel.
  • This application realizes the overall assembly of the modules on the ground by integrally modularizing the steel-lined bottom plate 10 and the first truncated cone 30 and the second truncated cone 40, effectively shortening the critical path construction period of the physical construction by more than 2 months; and improving the
  • the base plate 10 welding working environment greatly improves the pass rate of welding in one pass, reduces cross-over and high-altitude operations, and significantly improves the safety and quality level of construction management.
  • the flatness of base plate 10 is accepted in one pass; a set of standard methods for thin-walled structure module construction is established to master module construction. Core capabilities have greatly improved the constructability of pressurized water reactor nuclear power plants.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Conveying And Assembling Of Building Elements In Situ (AREA)

Abstract

提供了一种钢衬里模块施工方法、吊装工装(100)及限位工装(130)。钢衬里模块施工方法包括以下步骤:将底板(10)、第一截锥体(30)及第二截锥体(40)拼接在一起形成钢衬里模块(1);布置钢衬里模块(1)上的第一吊点(103);连接钢衬里模块(1)上的第一吊点(103)与吊装工装(100),连接吊装工装(100)与吊装设备(120);吊装钢衬里模块(1)至核岛反应堆厂房内的安全壳内。通过该施工方法使得整体装配模块及土建安全壳、内部结构施工相互独立,降低交叉作业风险,从而能够缩短施工进度,提高施工管理安全质量。

Description

钢衬里模块施工方法、吊装工装及限位工装
交叉引用
本申请要求于2022年7月19申请的,申请号为2022108461918、名称为“钢衬里模块施工方法、吊装工装及限位工装”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及核岛反应堆厂房安全壳钢衬里的施工技术领域,特别是涉及钢衬里模块施工方法、吊装工装及限位工装。
背景技术
钢衬里作为核岛第三道安全屏障的组成部分,用于防止辐射离子外泄,位于核岛反应堆厂房内的安全壳的内侧,并与核岛内部结构相连接。核岛钢衬里由底板、截锥体、筒体和穹顶四部分组成。
常规的钢衬里的施工方法为将底板、截锥体、核岛内部结构以及安全壳基础、截锥体、筒体、土建结构以及钢结构进行有次序的搭接施工。但由于目前项目中的钢衬里底板及截锥体处于核岛施工的关键路径上,由于钢衬里本身结构复杂、现场焊接工作量大,并且必须对焊缝进行100%的射线检测(简称RT检测),这就使得现场施工以及安全质量管控面临极大的挑战。
因此,采用上述方法对目前项目的钢衬里进行施工,虽然安全质量风险处于可控状态,由于钢结构和土建施工路径都属于进度关键路径,将钢结构施工与土建施工相互搭接,存在一定程度的交叉作业,对工期影响交大。当然,相关技术中在常规施工的基础上,将筒体作为整体模块进行拼装、吊装,虽然对安全壳基础以上的结构及筒体段的施工带来了便利,但底板拼装、截锥体施工依然影响安全壳和反应堆厂房的内部结构的施工,底板以及截锥体的工期约4个多月,极大影响了施工进度。
综上,相关技术中对于钢衬里的施工方法具有交叉作业导致对工期影响大的缺陷。
发明内容
根据本申请的各种实施例,提供一种钢衬里模块施工方法、吊装工装及限位工装。
第一方面,本申请提供一种钢衬里模块施工方法,所述钢衬里模块包括依次连接的底板、第一截锥体以及第二截锥体;所述钢衬里模块施工方法包括以下步骤:
将底板、第一截锥体及第二截锥体拼接形成所述钢衬里模块;
在所述钢衬里模块上布置第一吊点;
连接所述钢衬里模块上的所述第一吊点与吊装工装,并连接所述吊装工装与吊装设备;
吊装所述钢衬里模块至核岛反应堆厂房内的安全壳内。
在其中一个实施例中,所述在所述钢衬里模块上布置第一吊点包括:
沿所述钢衬里模块的径向由中心向外依次布置多组第一吊点组;其中,每一所述第一吊点组包括多个在所述钢衬里模块的周向上间隔分布的所述第一吊点。
在其中一个实施例中,多组所述第一吊点组中的所述第一吊点的连线形成多个同心圆;所述同心圆,以及同一所述第一吊点组内的任意相邻的两个所述第一吊点之间的距离,满足如下至少一个条件:任意相邻两个所述同心圆的半径之差相等;以及同一所述第一吊点组内的任意相邻的两个所述第一吊点之间的距离相同。
在其中一个实施例中,所述底板的边缘与所述第一截锥体在轴向上的一端焊接,所述第一截锥体在轴向上的另一端向远离所述底板的方向延伸,并与所述第二截锥体焊接,所述第二截锥体远离所述第一截锥体的边缘沿所述第一截锥体的径向方向朝远离所述第一截锥体的方向延伸;
所述底板上设置多组所述第一吊点组,所述第二截锥体的顶部设置至少一组所述第一吊点组。
在其中一个实施例中,所述在所述钢衬里模块上布置第一吊点还包括验证步骤:
通过有限元分析,模拟吊装过程中所述第一吊点的受力确定所述钢衬里模块的应力及应变,以验证所述第一吊点的应力和应变是否满足预设条件,从而确定所述第一吊点的布置位置是否合理。
在其中一个实施例中,所述通过有限元分析,模拟吊装过程中所述第一吊点的受力确定所述钢衬里模块的应力及应变包括:
通过有限元分析,模拟在第一吊装工况下和第二吊装工况下所述第一吊点的受力;其中,在所述第一吊装工况,所述钢衬里模块上的所有所述第一吊点受力相同;在所述第二吊装工况,所述钢衬里模块上所有所述第一吊点中具有最大受力吊点和最小受力吊点,所述最大受力吊点的受力不高于所述第一工况下所述第一吊点的受力的10%,所述最小受力吊点的受力不低于所述第一工况下所述第一吊点的受力的10%;
根据所述第一吊装工况和所述第二吊装工况下所述第一吊点的受力,确定两种吊装工况下所述钢衬里模块的应力和应变。
在其中一个实施例中,所述根据所述第一吊装工况和所述第二吊装工况下所述第一吊点的受力,确定两种吊装工况下所述钢衬里模块的应力和应变包括:
根据所述钢衬里模块上所述第一吊点的受力,以及所述钢衬里模块的风载荷、动载荷系数以及不均衡系数,确定所述钢衬里模块的应力和应变。
在其中一个实施例中,还包括:
根据所述钢衬里模块的预设参数获得所述钢衬里模块的风荷载;其中,所述预设参数包括所述钢衬里模块的高度、所述钢衬里模块的直径、所述钢衬里模块的吊装最高值、所述钢衬里模块所处环境的风速和风力系数。
在其中一个实施例中,所述验证步骤之后还包括:
准备模拟工件,并在指定位置粘贴应力应变片;
检查所述模拟工件平整度,测量起吊前待检测点的坐标,并将应力应变仪进行调零;
起吊所述模拟工件,当所述模拟工件离平台的距离在0.1-0.5m之间时保持禁止状态不少于10min,测量所述待检测点的坐标,并持续采集所述应力应变仪的数据;
将所述模拟工件降至所述平台上并结束所述应力应变仪的数据采集,再次检查所述模拟工件的平整度。
在其中一个实施例中,所述模拟工件包括:
第一模拟工件,所述第一模拟工件为一长方形的钢板;
第二模拟工件,所述第二模拟工件为一长方形的钢板,所述第二模拟工件的四周边缘设置有限位框;
所述第一模拟工件和所述第二模拟工件的厚度与所述底板的厚度一致,在所述第一模拟工件和所述第二模拟工件上均设置多个待检测点,所述第一模拟工件和所述第二模拟工件上的所述检测点的数量相同,所述待检测点与所述底板上的应力最大的所述第一吊点的分布方式一致。
在其中一个实施例中,在所述连接所述钢衬里模块上的所述第一吊点与吊装工装,并连接所述吊装工装与吊装设备时:
所述第一吊点通过第一吊索与所述吊装工装相连接,所述第一吊索包括依次连接的第一花篮螺栓、绳圈、第一卸扣,其中,所述第一花篮螺栓与所述吊装工装相连接,所述第一卸扣与所述第一吊点相连接;
所述吊装工装通过第二吊索与所述吊装设备相连接,所述第二吊索包括依次连接的吊钩、绳索、第二卸扣、第二花篮螺栓,其中,所述吊钩与所述吊装设备相连接,所述第二花篮螺栓与所述吊装工装相连接。
第一方面,本申请提供一种吊装工装,所述吊装工装用于如上所述的钢衬里模块的施工过程中,所述钢衬里模块上的所有的所述第一吊点与所述吊装工装相连接,所述吊装工装与所述吊装设备相连接。
在其中一个实施例中,所述吊装工装包括:
吊装本体;
多个第二吊点,所述第二吊点设置在所述吊装本体的一侧,用于与所述吊装设备连接;
多个第三吊点,所述第三吊点设置在所述吊装本体的另一侧,多个所述第三吊点与所述钢衬里模块上的所述第一吊点相对应,所述第三吊点用于与所述第一吊点相连接。
在其中一个实施例中,所述吊装本体包括:
多个第一连接杆,多个所述第一连接杆的首、尾依次连接构造成一圆形的第一连接架,多个所述第一连接架相间隔并同心地设置在同一平面内;
多个第二连接杆,多个所述第二连接杆的首、尾依次连接构造成一圆形的第二连接架,多个所述第二连接架相间隔并同心地设置在另一同一平面内,并且所述第一连接杆和所述第二连接杆相间隔;
多个支撑杆,其中所述支撑杆满足以下至少一个条件:
所述支撑杆的两端分别与相邻的两个所述第一连接架上的所述第一连接杆的端部可拆卸连接;
所述支撑杆的两端分别与相邻的两个所述第二连接架上的所述第二连接杆的端部可拆卸连接;
所述支撑杆的两端分别与第一连接杆和第二连接杆的端部可拆卸连接。
在其中一个实施例中,所述吊装工装还包括多个连接件,所述连接件上设置有多个连接孔;其中,所述连接孔满足以下至少一条件:
两个所述第一连接杆分别可拆卸地连接于同一所述连接件上的两个所述连接孔;
两个所述第二连接杆分别可拆卸地连接于同一所述连接件上的两个所述连接孔;
所述第一连接杆与所述支撑杆分别可拆卸地连接于同一所述连接件上的两个所述连接孔;
所述第二连接杆与所述支撑杆分别可拆卸地连接于同一所述连接件上的两个所述连接孔。
在其中一个实施例中,
所述第二吊点的数量为不少于12个,所述第二吊点设置于所述第一连接架上;
所述第三吊点设置于所述第二连接架上,所述第三吊点满足一下至少一个条件:
所述第二连接架上的所述第三吊点与所述底板上的所述第一吊点一一对应;
所述第二连接架上的一个所述第三吊点对应两个所述第二吊点。
第一方面,本申请提供一种限位工装,用于在对如上所述的钢衬里模块施工方法中的所述钢衬里模块进行限位。
在其中一个实施例中,所述限位工装包括:
环向限位件,所述环向限位件的一端固定于所述第一截锥体的外侧面上,另一端向背离所述第一截锥体的方向延伸;
轴向限位件,所述轴向限位件的一端固定于核岛厂房内的地面上,另一端向上延伸;
所述环向限位件与所述轴向限位件相对的面接触以确定所述钢衬里模块的位置。
在其中一个实施例中,所述限位工装还包括支撑柱,所述支撑柱的一端固定于所述核岛反应堆厂房内的地面上,所述支撑柱的另一端向所述第二截锥体的方向延伸,并抵靠于所述第二截锥体的边缘。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本申请的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本申请实施例或传统技术中的技术方案,下面将对实施例或传统技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本申请实施例1的钢衬里模块施工方法的流程示意图;
图2为本申请实施例1的钢衬里模块施工方法中的底板的拼装示意图;
图3为本申请实施例1的钢衬里模块施工方法中的底板拼装时配重用的钢板配重块的结构示意图;
图4为本申请实施例1的钢衬里模块施工方法中的底板拼装时配重用的混凝土配重块的结构示意图;
图5为本申请实施例1的钢衬里模块施工方法中的底板拼装时配重块沿着底板的焊缝的分布示意图;
图6为本申请实施例1的钢衬里模块施工方法中的底板拼装时配重块在整个底板上的分布示意图;
图7为本申请实施例1的钢衬里模块施工方法中的支撑柱与第二截锥体与核岛反应厂房地面的连 接示意图;
图8为本申请实施例1的钢衬里模块施工方法中的加强肋与第一截锥体和第二截锥体的连接示意图;
图9为本申请实施例1的钢衬里模块施工方法中的底板与第一截锥体焊接是的立加强板对接示意图;
图10为本申请实施例1的钢衬里模块施工方法中的用于进行底板拼装的临时平台的结构示意图;
图11为本申请实施例2的钢衬里模块施工方法中的钢衬里模块上的第一吊点的布置示意图;
图12为本申请实施例3的钢衬里模块施工方法中对吊装过程进行有限元分析的钢衬里模块的整体应力图;
图13为本申请实施例3的钢衬里模块施工方法中对吊装过程进行有限元分析的钢衬里模块的另一整体应力图;
图14为本申请实施例3的钢衬里模块施工方法中对吊装过程进行有限元分析的钢衬里模块的整体位移图;
图15为本申请实施例3的钢衬里模块施工方法中对吊装过程进行有限元分析的钢衬里模块的另一整体位移图;
图16为本申请实施例4的钢衬里模块施工方法中的第一模拟工件的结构示意图;
图17为本申请实施例4的钢衬里模块施工方法中的第二模拟工件的结构示意图;
图18为本申请实施例4的钢衬里模块施工方法中对第一模拟工件进行有限元分析后的应力图;
图19为本申请实施例4的钢衬里模块施工方法中对第二模拟工件进行有限元分析后的应力图;
图20为本申请实施例4的钢衬里模块施工方法中对第一模拟工件进行有限元分析后的位移图;
图21为本申请实施例4的钢衬里模块施工方法中对第二模拟工件进行有限元分析后的位移图;
图22为本申请实施例4的钢衬里模块施工方法中吊索具的连接示意图;
图23为本申请实施例4的钢衬里模块施工方法中第一吊索的结构示意图;
图24为本申请实施例5的吊装工装与吊装设备连接的示意图;
图25为本申请实施例5的吊装工装的第一连接杆上的应变片粘贴位置示意图;
图26为本申请实施例5的吊装工装的第二连接杆上的应变片粘贴位置示意图;
图27为本申请实施例5的吊装工装的支撑杆上的应变片粘贴位置示意图;
图28位本申请实施例6的限位工装与钢衬里模块的连接示意图;
图29为本申请实施例6的限位工装与钢衬里模块的另一连接示意图。
步骤S1-S4;
钢衬里模块1
底板10;钢板101;焊缝102;第一吊点103;
配重块20;钢板配重块201;混凝土配重块202;
第一截锥体30;立加强板301;
第二截锥体40;
支撑柱50;
核岛厂房地面60;
加强肋70;
拼装平台80;
模拟工件90;第一模拟工件901;待检测点902;第二模拟工件903;边框9031;
吊装工装100;第一连接杆1001;第二连接杆1002;支撑杆1003;
第一吊索110;
吊装设备120;
限位工装130;环向限位件1301;径向限位件1302;导向限位件1303。
具体实施方式
为使本申请的上述目的、特征和优点能够更加明显易懂,下面结合附图对本申请的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本申请。但是本申请能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本申请内涵的情况下做类似改进,因此本申请不受下面公开的具体实施例的限制。
在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本申请中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个 元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
实施例1
参阅图1,图1示出了本申请实施例1中的钢衬里模块施工方法的流程示意图。应该理解的是,虽然图1所示流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,图1中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是一次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。本申请一实施例提供了一种钢衬里模块施工方法,钢衬里模块1包括依次连接的底板10、第一截锥体30以及第二截锥体40;钢衬里模块施工方法包括以下步骤:
步骤S1、将底板10、第一截锥体30及第二截锥体40拼接在一起形成钢衬里模块1;
步骤S2、在布置钢衬里模块1上布置第一吊点103;
步骤S3、连接钢衬里模块1上的第一吊点103与吊装工装100,并连接吊装工装100与吊装设备120;
步骤S4、吊装钢衬里模块1至核岛反应堆厂房内的安全壳内。
在上述的技术方案中,将底板10、第一截锥体30及第二截锥体40拼接成一整体模块,钢衬里模块1的整体拼装过程可在地面上施工,这样可大幅度减少土建结构和钢结构的搭建施工过程中的关键路径的工作。将钢衬里模块1拼装完成后再吊装至核岛反应堆厂房内的安全壳内进行装配,这样可以使得整体装配模块及土建安全壳、内部结构施工相互独立,降低交叉作业风险,同时,两条关键路径可以同步施工,从而缩短施工工期。而且,拼装过程在地面上完成,可提高焊接作业环境,同时也提高了施工管理安全质量的水平。
对于底板10、第一截锥体30以及第二截锥体40的拼接方式不做限制,在本实施例中三者通过焊接的形式拼接在一起。由于底板10通常采用薄壁钢板,因此在拼装和吊装过程中需要控制底板10的平整度及变形。
在传统工艺中,在对钢衬里的底板10进行施工时,底板10的底部通常会预埋用于RT检测的检查槽,底板10被分成多块焊接在检查槽上,检查槽可作为底板10拼装焊接时的背部支撑,从而降低焊接的变形程度。
但是,采用整体拼装后再进行吊装的技术方案,可将底板10在专门的拼装场地拼装后再进行吊装。而在拼装现场本身设置了用于RT检测的预留通道,因此,在底板10上不再布置用于RT检测的检查槽,这就导致底板10上不设置锚固点,由于在底板10的上取消了背部支撑,这就大大增加了底板10拼装过程中焊接变形的风险。而拼装阶段底板10平整度的控制是钢衬里整体模块平整度控制的源头。
具体地,在对底板10、第一截锥体30以及第二截锥体40进行拼装之前,需要先对底板10进行拼装,在本实施例中,如图2所示,底板10有多个钢板拼接而成,当然对于钢板的数量不做限制,钢板的数量尽量控制在12块之内,钢板的厚度在4mm-8mm之间,在本实施例中底板10包括12块钢板101,钢板101的材质为型号为P265GH,厚度为6mm。12块钢板101通过焊接拼装在一起形成钢衬里模块1的底板10,其中,拼接后的底板10的半径为19.7m,面积为1219m2。当然,对于拼装后的底板的形状及尺寸可根据实际需求而定,例如底板可以为圆形或者方形,其尺寸也可以为除半径为19.7m的其他尺寸。与相关技术中的底板10的钢板101数量由16块相比,本方案中的底板10中的钢板101数量减少了4块,从而也将拼装过程中焊缝102的总长度减少了71m,采用减少焊缝长度的方式可有效减少焊接变形。
另外,在对底板10焊接的过程中,在焊缝102的两侧设置配重块20以降低焊接过程中的变形风险。在本实施例中,采用了4吨的混凝土配重块202和1吨的钢板配重块201两种组合的方式压在底板10的钢板上。具体地,在两个钢板的对接焊缝102的两侧采用1吨的钢板配重块201进行压重,由于钢板配重块201的结构相对简单,便于留出焊缝的操作空间,进而方便操作者进行焊接;在除对接焊缝以外的其他位置可采用4吨的混凝土配重块202进行配重。如图3所示,钢板配重块201采用长为2米左右,宽为0.74米左右的钢板,沿着焊缝102的长度方向间隔地设置在焊缝102的两侧,并且钢板配重块201的长度方向与焊缝102的长度方向一致。在本实施例中,如图5所示,钢板配重块201与焊缝102之间的距离大致设置在400mm-500mm之间,沿着焊缝102的长度方向,相邻的两个焊缝102之间的距离不大于1.4米。如图6所示,在底板10的钢板上,除两块钢板的拼接焊缝102的位置外的其他位置均采用混凝土配重块202进行压重,混凝土配重块202基本均匀地并相互间隔地布置在底板10的钢板上。在本实施例中,如图4所示,混凝土KUAI的采用L型结构,具体地,混凝土配重块202的两个长边的长度大致为1.6米左右,其宽度及另外的两个短边的长度大致在0.8米左右。
在其中一个实施例中,底板10的边缘与第一截锥体30的一端的底部焊接,其中第一截锥体30的形状大致为筒状结构,第一截锥体30的横截面形状可以为圆形的、方形的、椭圆形的或者其他异形的,只要与底板10的形状相适配即可,在本实施例中,底板10为圆形的,因此第一截锥体30采用圆筒状结构。第一截锥体30的另一端向远离底板10的方向延伸,在本实施例中,第一截锥体30的另一端自底板10的表面向上延伸。第二截锥体40大致呈环形结构,第一截锥体30远离底板10的一端也就是其顶端与第二截锥体40的内边缘焊接,第二截锥体40远离第一截锥体30的边缘,也就是第二截锥体40的外边缘沿着第一截锥体30的径向方向向远离第一截锥体30的方向延伸,使得第二截锥体40在整个钢衬里模块1结构上形成一悬空结构。
进一步地,如图7所示,钢衬里模块1还包括支撑柱50,支撑柱50的一端固定于第二截锥体40远离第一截锥体30的边缘连接,支撑柱50的另一端固定于核岛反应堆厂房内的地面上。通过在第二截锥体40的外缘处设置支撑柱50,以对第二截锥体40进行支撑,从而降低第二截锥体40变形的风险。具体地,在本实施例中,支撑柱50的数量为48个,48个支撑柱50沿着第二截锥体40的外周均匀并间隔的布置。支撑柱50包括主体槽钢、连接槽钢和支撑槽钢,其中,主体槽钢的底部通过螺栓与核岛反应堆厂房内的混凝土地面固定,主体槽钢的顶部向第二截锥体40的方向延伸,连接槽钢的一端与主体槽钢焊接,并且连接槽钢与主体槽钢相互垂直,支撑槽钢的一端与连接槽钢背离主体槽钢的一端焊接,另一端向上延伸。支撑槽钢可放置调节高度的楔块,通过增加或者减少楔块来调整支撑柱的高度,进而使得第二截锥体40的外边缘始终处于同一高度上,从而降低第二截锥体40变形的风险。
在本实施例中,为了提高第二截锥体40的强度,如图8所示,在第二截锥体40的上表面设置多个加强肋70,多个加强肋70沿着第二截锥体40的周向间隔地分布。加强肋70采用L型结构,加强肋70的与第二截锥体40的顶面以及第一截锥体30的侧面焊接。通过在第二截锥体40上焊接加强肋70,不仅降低了第二截锥体40变形的风险,同时也满足了钢衬里模块1的吊装需求。
在本实施例中,在对底板10与第一截锥体30进行拼装时,为了加强两者之间的连接强度,如图9所示,将底板10的外缘上设置加强板,在第一截锥体30的底部设置立加强板301。在焊接时,将第一截锥体30的位置向外偏移3mm,以减少第一截锥体30与底板10的对接坡口的外侧坡口,从而可减少焊接后第一截锥体30上的立加强板301向外的偏移量,从而减少焊接变形。
需要说明的是,由于钢衬里模块1的整体尺寸较大,拼装时要考虑在临近核岛现场区域开展整体模块的拼装工作,而拼装平台80首先要达到更高的平整度精度要求,以保证底板10拼装平整度,并且拼装平台80叉需要兼顾考虑RT检测空间需求,需要在现场拼装焊缝位置预留人员通道,便于RT检测;而且拼装平台80由于是临时平台,模块化施工完成后需要拆除,必须考虑拆除的便利性。
基于以上现场拼装要求,如图10所示,本实施例还设计了一种兼顾RT检测的半下沉式模块拼装平台80,拼装平台80采用预制混凝土U形槽、非结构料回填、混凝土找平层、钢结构龙骨支撑以及钢板找平的结构形式。具体的实施方案如下:按照现有场地标高,人员通道位置进行开挖,形成半下沉式布置的人员通道,以减少回填量;根据现场通道布置位置,分块预制混凝土U形槽,并吊装就位;通道与通道之间,通道与拼装场地挡土墙之间采用非结构料回填;浇筑100mm混凝土找平层找平;在混凝土找平层上安装钢结构龙骨,采用10号槽钢,槽钢之间的间距为1m;在钢结构龙骨上间断焊接20mm厚钢板,完成最终找平。通过钢结构龙骨支撑以及钢板找平,使得拼装平台80平整度精度达到5mm每2m,满足底板10拼装平整度需求;现场拼接焊缝位置,拼装平台80留置三纵两横人行通道,采用分段预制混凝土U形槽现场拼接方案,形成人员通道,同时预制构件也形成了平台的支撑结构体系和挡土墙结构,留设三纵两横人行通道极大提高了RT检测效率;半下沉式设计,降低平台高度,减少回填工作量,施工速度快、成本低。同时采用混凝土预制构件和回填土形成的平台更便于拆除。
实施例2
本实施例与实施例1的步骤及结构基本上一致,其不同之处在于:
在本实施例中,在所述钢衬里模块上布置第一吊点包括:如图11所示,沿钢衬里模块的径向由中心向外依次布置多组第一吊点组,每组第一吊点组包括多个在钢衬里模块1的周向上间隔分布的第一吊点103。
在本技术方案中,通过在钢衬里模块1结构上布置多组均匀分布的第一吊点103,可使得钢衬里模块1上的受力更加均衡,进而可降低钢衬里模块1变形的风险。每组第一吊点组的分布形式,第一吊点组的组数,以及每组包含的第一吊点103的数量不做限制,可以根据钢衬里的具体结构及尺寸来进行设计。其中,第一吊点103为,在底板10上需要设置第一吊点103的位置焊接用于与吊索相连接的吊耳。
具体地,如图11所示,多组第一吊点组中的第一吊点的连线在钢衬里模块1上形成同心圆,任意相邻两个同心圆的半径之差相等,同一第一吊点组内的相邻的两个第一吊点103之间的距离相同。相邻的两个第一吊点103之间的间距相同。进一步地,底板10上设置多组第一吊点组,第二截锥体40的顶部设置至少一组第一吊点103。更进一步地,底板上设置7-9组第一吊点组,每组第一吊点组在底板的径向方向上的间距在2-3m之间。在本实施例中,在底板10上设置8组第一吊点103,每组第一吊点组在底板10的径向方向上的间距为2.46m,底板10上共设置225个第一吊点103。其中在钢衬里底板10的中心处设置1个第一吊点103,在半径为2.46米的圆上均匀地分布8个第一吊点103,作为第2组第一吊点103;第3组、第4组和第5组第一吊点组依次向外间隔2.46m的距离,并且每组上均匀分布有24个第一吊点103;在第5组吊点的外侧,依次向外间隔2.46m的距离设置有第6组、第7组、第8组第一吊点组,并且这三组第一吊点组中第一吊点的数量均为48个。通过以上的分布方式在钢衬里模块1的底板10上设置225个第一吊点103。并且在第二截锥体40的上口部设置48个第一吊点103。由上,在整个钢衬里模块1上设置9组共273个第一吊点103。
实施例3
在吊装阶段,第一吊点103的布置方案对钢衬里模块1的整体吊装过程中的变形控制起到决定性作用,建立一套整体模块吊点布置分析方案是整体模块施工技术的核心内容。由于本申请中的钢衬里模块1的施工方法不同于传统的施工方法,本施工方法涉及薄壁钢板结构整体吊装,对于第一吊点103的布置分析方法及受力计算并无成熟的标准和经验可以参考,只能根据整体模块结构形式特点及吊装实际工况进行设计。因此,在初步布置好第一吊点103的方案后,还需要对整体设计方案的可靠性进行验证。
本实施例与以上两个实施例的步骤及结构基本上一致,其不同之处在于:
在本实施例中,所述在所述钢衬里模块上布置第一吊点还包括验证步骤:通过有限元分析,模拟吊装过程中钢衬里模块1上的第一吊点的受力情况以确定钢衬里模块1上的应力及应变,从而验证第一吊点103的应力和应变是否满足预设条件,以确定第一吊点的布置位置是否合理。通过模拟计算在吊装过程中钢衬里模块1的应力及应变情况,从而判断各个第一吊点103处是否会发生塑性变形,以验证第一吊点103布置的合理性,从而提高整个钢衬里模块1吊装过程的可靠性。
具体地,通过有限元分析,模拟吊装过程中第一吊点的受力确定钢衬里模块的应力及应变包括:
通过有限元分析,模拟在第一吊装工况下和第二吊装工况下第一吊点的受力;其中,在第一吊装工况,钢衬里模块上的所有第一吊点受力相同;在第二吊装工况,钢衬里模块上所述第一吊点中具有最大受力吊点和最小受力吊点,最大受力吊点的受力不高于所述第一工况下第一吊点的受力的10%,最小受力吊点的受力不低于第一工况下第一吊点的受力的10%;根据第一吊装工况和第二吊装工况下第一吊点的受力,确定两种吊装工况下钢衬里模块的应力和应变。
在本实施例中,吊装工装100上设置有12个与吊装设备120连接的吊点,将这12个吊点中受力较大的6个吊点的拉力增加10%,将受力较小的6个吊点的拉力减小10%,在第二工况下,吊装工装100上的吊点的受力不均匀。
进一步地,根据第一吊装工况和第二吊装工况下第一吊点的受力,确定两种吊装工况下钢衬里模块的应力和应变包括:根据钢衬里模块上第一吊点的受力,以及钢衬里模块的风载荷、动载荷系数以及不均衡系数,确定钢衬里模块的应力和应变。
具体地,通过如下步骤计算风载荷:根据钢衬里模块的预设参数获得钢衬里模块的风荷载;其中,预设参数包括所述钢衬里模块的高度、所述钢衬里模块的直径、钢衬里模块的吊装最高值、钢衬里模块所处环境的风速和风力系数。在本实施例中计算风荷载时根据钢衬里模块1的结构输入如下参数:模块高度为3.395m、模块直径为43.2m、吊装的最高高度为60m、验算风速为10.8m/s、风力系数为1.2,来计算得到风荷载。通过以上参数得到最高点的风荷载为11222N。
更进一步地,计算风载荷后对钢衬里模块的应力及应变进行计算,计算应力及应变时输入风载荷的数值、动载荷系数以及不均衡系数;根据上述的参数计算得到钢衬里模块的应力和应变。在本实施例中,风载荷的数值为通过上述方式计算得到的、动载系数的数值为1.05以及不均衡系数为1.2,其中,动载系数和不均衡系数为自重载荷系数,通过输入以上参数计算得到钢衬里模块1的应力和位移。
具体地,通过施加上述载荷后,并按照两种工况分别计算得到模块的应力和位移,具体分析结果见图12-图15所示:
从计算结果和有限元模型分析可以看出,钢衬里模块1在吊装过程中,最大应力145.7Mpa,发生在第一吊点103的边缘位置,最大应力未超过钢衬里材料P265GH的允许应力179Mpa,钢衬里模块1的位移最大位置为第3组-第4组第一吊点103之间,最大位移量为46.6mm,变形为弹性变形,满足吊装要求,吊点布置方案合理。
实施例4
对于薄壁钢板形式的钢衬里模块1的吊装变形计算,通过实施例3的有限元模型分析计算只能根据钢衬里模块1的整体结构形式和吊装工况条件进行假定,因此,通过有限元模型分析计算结果是否能够模拟出吊装过程中钢衬里模块1的整体的真实应力和变形情况,还需要通过模拟试验进行验证。
本实施例与以上三个实施例的步骤及结构基本上一致,其不同之处在于:
在本实施例中,上述验证步骤之后还包括,模拟吊装试验验证有限元分析的结果的可靠性。由实施例3可知,钢衬里模块1的底板10变形最大的位置位于第三组和第四组第一吊点103之间,因此,在进行模拟吊装试验时,选择在第三组和第四组的第一吊点103的区域内,应力最大的第一吊点103来验证最不利截面处底板10的应力应变情况。
进一步地,待检测点的位置设置在有限元分析后变形最大的第一吊点103上。由于截取的模拟工件90在边缘约束条件上与钢衬里模块1的真实吊装情况并不一致,因此,在本实施例中,分别制作了两种模拟试验工件进行试验予以验证,一种模拟工件90为不带边框不做边缘约束,另一种模拟工件90为为带边框做边缘约束。具体地,模拟工件90包括第一模拟工件901和第二模拟工件903,其中,第一模拟工件901为一长度为11.5米左右、宽度为5.89米左右的长方形的钢板,其厚度为6mm;第二模拟工件903为一长度为11.5米左右、宽度为5.89米左右的长方形的钢板,其厚度为6mm,并且第二模拟工件903的四周边缘设置有边框9031,边框9031采用角钢,将角钢与钢板进行焊接。在第一模拟工件901和第二模拟工件903上均设置38个待检测点902,待检测点902与底板10上的应力最大的第一吊点103的分布方式一致,并且如图16和图17所示,第一模拟工件901和第二模拟工件903上的待检测点902的分布方式一致。
在布置好第一模拟工件901和第二模拟工件903上的待检测点后,先通过与钢衬里模块1的分析方法相同的有限元建模计算模拟工件上的应力应变情况。具体的分析结果如图18-图21所示:
根据上述模拟工件的有限元计算结果,可以看出产生应力最大的地方在于第一吊点103的吊耳的边缘处,而产生应变最大的地方在两个第一吊点103之间。因此,在进行模拟试验时,在模拟工件上,应力和应变较大的地方都粘贴应力应变片,每个模拟工件上设置38个待检测点。应变片通过导线与收集器连接,每个应变片上的导线均用序号标识清楚,收集器连接电脑将所有待检测点的应变收集并储存。
具体地,模拟吊装试验包括如下步骤:准备模拟工件,并在指定位置粘贴应力应变片;检查模拟工件平整度,测量起吊前待待检测点的坐标,并将应力应变仪进行调零;起吊模拟工件,当模拟工件离平台的距离在0.1-0.5m之间时保持禁止状态不少于10min,在本实施例中,爆出禁止状态10min,测量待待检测点的坐标,并持续采集应力应变仪的数据;将模拟工件降至平台上并结束应力应变仪的数据采集,再次检查模拟工件的平整度。
应力应变仪可以实现电脑自动连续收集应变数据,从应变换算出应力值。经试验得知在初始阶段以及最后时间段应变波动较大,中间段比较平稳,这也符合吊装过程特征。数据分析时将提取前10分钟内应力平均值作为稳定状态的应力值。
对于第一模拟工件901,也就是无约束的工况:第一模拟工件901吊装过程中峰值应力143.66Mpa,稳定状态最大应力131.98Mpa,与理论计算应力140Mpa基本符合。位移量实测44.1mm,理论计算值78.5mm,模拟试验与理论计算的底板10变形趋势基本一致。
对于第二模拟工件903,也就是有角钢约束的工况:第二模拟工件903吊装过程中峰值应力为133.12Mpa,稳定状态最大应力为121.71Mpa,与理论计算最大应力133.9Mpa基本符合。位移量实测值为38.6mm,理论计算值为48.2mm,模拟试验与理论计算的底板10变形趋势基本一致。
由上可知,两种工况峰值应力均未超过允许应力179Mpa,模拟吊装过程中钢板始终保持在弹性变形范围内,未发生塑性变形。
另外,除了应力应变数据收集外,在起吊前和起吊落位后,分别对相同待检测点进行了平整度检查
在本实施例中采用2m的测杆测量,一共收集了18个待检测点的数据,起吊前后各待检测点的平整度均小于20mm/2m并且起吊前后平整度的最大变化为3mm,并且在吊装后底板10能很好恢复原状,无明显变形,满足吊装要求。
由以上的分析可知,模拟试验实测应力与有限元计算基本相符,实测应变与有限元计算出的变形趋势基本一致,有限元计算分析方法基本可行。
进一步地,在本实施例中,在步骤S3中如图22及图23所示:
第一吊点103通过第一吊索110与吊装工装100相连接,第一吊索110包括依次连接的第一花篮螺栓、绳圈、第一卸扣,其中,第一花篮螺栓与吊装工装100相连接,第一卸扣与第一吊点103相连接;吊装工装100通过第二吊索与吊装设备120相连接,第二吊索包括依次连接的吊钩、绳索、第二卸扣、第二花篮螺栓,其中,吊钩与吊装设备120相连接,第二花篮螺栓与吊装工装100相连接。
由于钢衬里模块1上的第一吊点103的数量较多,需确保每一个第一吊点103在连接第一吊索110 时受力均衡,这样才能保证钢衬里模块1在吊装过程中受力均衡,从而降低变形的风险。因此,在本实施例中,在将钢衬里模块1拼装完成后,在钢衬里模块1上布置541个待检测点,两个相邻的待检测点之间的间距在1.5m左右。然后对每个待检测点的标高以及对相邻待检测点区域内的平整度进行测量。检测得到底板10的标高范围在-7.4mm-+43.4mm之间。用测量得到的标高及平整度的实际数据计算得出第一吊索110的理论调节长度值,并且通过调整第一花篮螺栓的松紧度以及利用数显例句扳手进行现场复核。若标高的偏差长度超过第一花篮螺栓的可调节长度,则需要调整对应第一吊点103所在位置的第一吊索110的长度,以确保第一吊索110在现场可调范围内受力均衡,防止出现个别第一吊点103的位置受力集中导致产生较大变形的情况发生。
实施例5
本实施例提供一种吊装工装100,吊装工装100用于如上的钢衬里模块1的施工过程中,钢衬里模块1上的所有的第一吊点103与吊装工装100相连接,吊装工装100与吊装设备120相连接。
如图24和图25所示,本实施例提供的一种吊装工装100,通过吊装工装100与钢衬里模块1上的所有的第一吊点103连接,一方面方便与吊装设备120进行连接,另一方面有利于提高吊装可靠性以及降低钢衬里模块1变形的风险。
具体地,如图24和图25所示,吊装工装100包括:吊装本体、多个第二吊点和多个第三吊点,第二吊点设置在吊装本体的一侧,用于与吊装设备120连接;第三吊点设置在吊装本体的另一侧,多个第三吊点与钢衬里模块1上的第一吊点103相对应,第三吊点用于与第一吊点103相连接。对于吊装本体的结构形式不做限制,只要是能在吊装本体的上下表面设置第二吊点和第三吊点即可。对于第二吊点和第三吊点的结构形式也不做限制,可以是通过在吊装本体上焊接连接吊耳,也可以通过设置可拆卸形式的吊耳。
进一步地,吊装本体包括多个第一连接杆1001、多个第二连接杆1002以及多个支撑杆1003,其中,第一连接杆1001、第二连接杆1002及支撑杆1003均为杆状结构,并且均采用型号为Q235B的钢。多个第一连接杆1001的首、尾依次连接构造成一圆形的第一连接架,多个第一连接架相间隔并同心地设置在同一平面内;多个第二连接杆1002的首、尾依次连接构造成一圆形的第二连接架,多个第二连接架相间隔并同心地设置在另一同一平面内,并且第一连接杆1001和第二连接杆1002相间隔。支撑杆1003的两端分别与相邻的两个第一连接架上的第一连接杆1001的端部可拆卸连接,这样就实现了两个相邻的第一连接架之间的连接。支撑杆1003的两端分别与相邻的两个第二连接架上的第二连接杆1002的端部可拆卸连接,同样地,通过这种方式实现了相邻的两个第二连接架之间的连接;支撑杆1003的两端分别与第一连接杆1001和第二连接杆1002的端部可拆卸连接,通过这种连接方式可实现第一连接架和第二连接架之间的连接,同时也使得第一连接架和第二连接支架相间隔设置。
更进一步地,如图25所示,吊装工装100还包括多个连接件,连接件上设置有多个连接孔;其中,连接孔满足以下至少一条件:两个第一连接杆1001分别可拆卸地连接于同一连接件上的两个连接孔;两个第二连接杆1002分别可拆卸地连接于同一连接件上的两个连接孔;第一连接杆1001与支撑杆1003,第二连接杆1002与支撑杆1003分别可拆卸地连接于同一连接件上的两个连接孔。具体地,连接件可以为一圆球形或者是类似多面体形的立体结构,在该立体结构的不同面上设置连接孔,在连接孔内设置内螺纹,第一连接杆1001、第二连接杆1002以及支撑杆1003的两端设置外螺纹并与连接件上的连接孔螺纹连接。在本实施例中,连接件可以采用螺栓球,当然也可以采用其他的结构。螺栓球对应各杆件方向开设螺栓孔,用于与上述三种杆件连接。螺栓球下部开螺栓孔,作为钢衬里模块1的第三吊点,通过吊环螺钉及钢丝绳等与钢衬里模块1的第一吊点103相连接。第一连接杆1001、第二连接杆1002及支撑杆1003与螺栓球组装,形成网架结构的吊装本体,上部采用吊耳与钢丝绳及吊车连接。
在本实施例中,第二吊点的数量为12个,12个第二吊点设置于第一连接架上;第三吊点设置于第二连接架上,第二连接架上的第三吊点与底板10上的第一吊点103一一对应,或者,第二连接架上的一个第二吊点对应两个第二吊点。也就是说,在本实施例中,在工装本体的上表面的同一第一连接架上均匀设置12个第二吊点,第二吊点用于与吊装设备120也就是大吊车主钩相连接。在工装本体的下表面不同的第二连接架上设置第三吊点,具体地,第三吊点的设置方式如下。在工装本体的最中心设置一个第三吊点,在与中心较为接近的第二连接架上设置8个第三吊点,沿着工装本体的径向方向依次向外的8个第三连接架上,分别设置12个、24个、24个、24个、48个、48个、48个第三吊点。对于工装本体的第2圈的第三连接架上的12个第三吊点,对应底板10第二组的24个第一吊点103;对于工装本体的第5圈的第三连接架上的24个第三吊点对应底板10的第5组的48个第一吊点103,也就是说,对于第2圈和第5圈的第三连接架上的一个第三吊点对应底板10上相应位置的两个第一吊点103。具体地,可通过平衡梁将吊装工装100上的第三吊点分成两个吊点并与底板10上的第一吊点103相对应。
在其中一个实施例中,吊装本体被构造为圆形或者圆环形。圆形网架的半径约为19.706m,吊具高约2.2m,总重约63t。当然还可将吊装工装100设置成可拆卸组合变化的结构形式,以实现一个吊装工装100可满足两种不同使用工况的需求。具体地,吊装本体通过第一连接杆1001、第二连接杆1002以及支撑杆1003通过连接件也就是螺栓球进行可拆卸连接。当需要通过圆形的吊装工装100进行吊装时,将吊装本体构造成圆形;当需要圆环形的吊装工装100进行吊装时可将圆形的吊装本体中心部分的第一连接杆1001、第二连接杆1002及支撑杆1003与螺栓球拆卸掉,以将圆形的吊装工装100改变成一圆环形的吊装工装100。
在设计好上述的吊装工装100后,还需要对上述的吊装工装100的可靠性进行验证,具体地,上述的吊装工装100的验证方式与钢衬里模块1的有限元建模计算的方式相同。并且,对于吊装工装100的吊装过程模拟也采用了与钢衬里模块1相同的两种工装。同时,对吊装工装100的第一连接杆1001、第二连接杆1002及支撑杆1003的内力也进行了验算,吊装工装100的构件强度、构件稳定性均满足要求。
为了验证吊装工装100的实际工作性能,在正式吊装前,需要进行吊装工装100的荷载试验,吊装工装100的荷载试验除了采用常规的目测检查和变形观测外,还在吊装工装100受力较大的第一连接杆1001、第二连接杆1002以及支撑杆1003的任意一种或者几种上粘贴了应力应变片,用来实际检测应力应变数值,以检验吊装工装100整体受力性能和承载力是否满足钢衬里模块1整体吊装要求。通过这种试验可提高吊装工装100吊装的可靠性,以及整个吊装过程的可靠性。
具体的试验方法为:将吊装工装100的吊具吊至临时支撑上并粘贴应变片,检查应变片后连接收集器。起吊连接在吊装工装100上的主钢丝绳并使得吊装工装100脱离临时支撑时,将应变检测仪调零,并加载1.25倍额定载荷起吊,然后将吊装工装100降落至临时支撑上,这样重复三次。
在吊装工装100上设置应力待检测点共109处,其中第二吊耳上24处,第一连接杆1001上28处,支撑杆1003上34处,第二连接赶上23处,具体位置如图26-图28所示,并且对待检测点进行标记,待检测点的编号以数字1~109表示。
经检测后得知,所有待检测点中的应力值最大为38.42N/mm2,而吊装工装100的第一连接杆1001、第二连接杆1002及支撑杆1003采用型号为Q235B的钢,Q235B的极限强度值为215N/mm2,允许应力应取值为钢材设计强度值的70%,也就是150.05N/mm2,而本实施例提供的吊装工装100的在吊装过程中收到的应力最大值38.42N/mm2远小于允许的应力值。因此,可知试验吊装工装100的吊具试验时应力检测值未超过设计许用应力值,吊装工装100可靠,可以投入到钢衬里模块1的吊装中使用。
实施例6
本实施例与以上的实施例的步骤及结构基本上一致,其不同之处在于:
由于钢衬里模块1的整体尺寸较大,这导致了钢衬里模块1整体吊装就位难度高,为了解决这个技术问题,如图29所示,本实施例提供了一种限位工装130,用于在对上述的钢衬里模块施工方法中的步骤S4中的钢衬里模块进行限位。通过本技术方案提供的限位工装130进行辅助定位,以使得钢衬里模块整体吊装的精准就位,一方面提高了就位精度,另一方面也提高了吊装就位效率。
具体地,限位工装130包括环向限位件1301和轴向限位件,环向限位件1301的一端固定于第一截锥体30的外侧面上,另一端向背离第一截锥体30的方向延伸;轴向限位件的一端固定于核岛厂房内的地面上,另一端向上延伸;环向限位件1301与轴向限位件相对的面接触以确定钢衬里模块1的位置。在钢衬里模块1的第一截锥体30的外侧壁上设置管道的位置旁边设置环向限位件1301,每一设置管道的位置设置一个环向限位件1301,在整个钢衬里模块1的周向上设置5个环向限位件1301。在核岛厂房内的地面上,沿着第一截锥体30的周向方向均匀地布置12个径向限位件1302。其中,环向限位件1301用于调整钢衬里模块1的角度,径向限位件1302用于调整钢衬里模块1的径向位置。在吊装过程中,通过手拉葫芦调整钢衬里模块1的位置,具体的,手拉葫芦的一端固定在核岛厂房基坑周围的槽钢上,另一端与环向限位件1301连接,通过手拉葫芦来调节钢衬里模块1的位置,当环向限位件1301与径向限位件1302相对的两个面相贴合时,说明钢衬里模块1的角度及径向位置合适。本实施例还提供了一种导向限位件1303,导向限位件1303的一端固定于第一截锥体30的侧面上,另一端向下延伸至与底板10的底面平齐,导向限位件1303用于在对钢衬里模块1进行吊装时,起导向限位的作用。
具体地,对于环向限位件1301的结构形式不做限制,可以为一梯形结构,梯形结构的一个底面与第一截锥体30焊接,另一底面用于与径向限位件1302贴合;也可以为由两个相互垂直的角钢焊接而成,一个角钢的一端与第一截锥体30焊接,另一个角钢的侧面用于与径向限位件1302贴合。径向限位件1302,也可以为一梯形结构,梯形结构的一个底面与核岛厂房的底面固定,另一端向上延伸,梯形结构的侧面用于与环向限位件1301抵靠;在本实施例中,径向限位件1302由两个槽钢焊接而成,一个槽钢倾斜设置一端与另一竖直槽钢焊接,两个槽钢的底面平齐,并与核岛厂房地面60固定。通过以上结构的限位工装130以实现钢衬里模块1的整体吊装精确就位。通过现场设计的限位工装130,钢衬里模块1精确就位,半径方向偏差在2cm以内,角度偏差在2cm以内,满足设计要求。
限位工装还包括支撑柱,支撑柱的一端固定于核岛反应堆厂房内的地面上,支撑柱的另一端向第二截锥体的方向延伸,并抵靠于第二截锥体的边缘。支撑柱用于防止将钢衬里模块装入安全壳内后,第二截锥体悬空导致的变形。
本申请通过将钢衬里的底板10和第一截锥体30以及第二截锥体40整体模块化,实现了模块的地面整体拼装,有效缩短实体建造关键路径工期2个月以上;并且提升了底板10焊接作业环境,大幅提高一次焊接合格率,减少交叉、高空作业,显著提高施工管理安全质量水平,最终底板10平整度一次验收合格;建立一套薄壁结构模块施工标准方法,掌握模块施工核心能力,大幅度提高了压水堆核电厂可建造性。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (19)

  1. 一种钢衬里模块施工方法,其特征在于,所述钢衬里模块包括依次连接的底板、第一截锥体以及第二截锥体;所述钢衬里模块施工方法包括以下步骤:
    将底板、第一截锥体及第二截锥体拼接形成所述钢衬里模块;
    在所述钢衬里模块上布置第一吊点;
    连接所述钢衬里模块上的所述第一吊点与吊装工装,并连接所述吊装工装与吊装设备;
    吊装所述钢衬里模块至核岛反应堆厂房内的安全壳内。
  2. 根据权利要求1所述的钢衬里模块施工方法,其特征在于,所述在所述钢衬里模块上布置第一吊点包括:
    沿所述钢衬里模块的径向由中心向外依次布置多组第一吊点组;其中,每一所述第一吊点组包括多个在所述钢衬里模块的周向上间隔分布的所述第一吊点。
  3. 根据权利要求2所述的钢衬里模块施工方法,其特征在于,多组所述第一吊点组中的所述第一吊点的连线形成多个同心圆;所述同心圆,以及同一所述第一吊点组内的任意相邻的两个所述第一吊点之间的距离,满足如下至少一个条件:任意相邻两个所述同心圆的半径之差相等;以及同一所述第一吊点组内的任意相邻的两个所述第一吊点之间的距离相同。
  4. 根据权利要求2或3所述的钢衬里模块施工方法,其特征在于,所述底板的边缘与所述第一截锥体在轴向上的一端焊接,所述第一截锥体在轴向上的另一端向远离所述底板的方向延伸,并与所述第二截锥体焊接,所述第二截锥体远离所述第一截锥体的边缘沿所述第一截锥体的径向方向朝远离所述第一截锥体的方向延伸;
    所述底板上设置多组所述第一吊点组,所述第二截锥体的顶部设置至少一组所述第一吊点组。
  5. 根据权利要求2所述的钢衬里模块施工方法,其特征在于,所述在所述钢衬里模块上布置第一吊点还包括验证步骤:
    通过有限元分析,模拟吊装过程中所述第一吊点的受力确定所述钢衬里模块的应力及应变,以验证所述第一吊点的应力和应变是否满足预设条件,从而确定所述第一吊点的布置位置是否合理。
  6. 根据权利要求5所述的钢衬里模块施工方法,其特征在于,所述通过有限元分析,模拟吊装过程中所述第一吊点的受力确定所述钢衬里模块的应力及应变包括:
    通过有限元分析,模拟在第一吊装工况下和第二吊装工况下所述第一吊点的受力;其中,在所述第一吊装工况,所述钢衬里模块上的所有所述第一吊点受力相同;在所述第二吊装工况,所述钢衬里模块上所有所述第一吊点中具有最大受力吊点和最小受力吊点,所述最大受力吊点的受力不高于所述第一工况下所述第一吊点的受力的10%,所述最小受力吊点的受力不低于所述第一工况下所述第一吊点的受力的10%;
    根据所述第一吊装工况和所述第二吊装工况下所述第一吊点的受力,确定两种吊装工况下所述钢衬里模块的应力和应变。
  7. 根据权利要求6所述的钢衬里模块施工方法,其特征在于,所述根据所述第一吊装工况和所述第二吊装工况下所述第一吊点的受力,确定两种吊装工况下所述钢衬里模块的应力和应变包括:
    根据所述钢衬里模块上所述第一吊点的受力,以及所述钢衬里模块的风载荷、动载荷系数以及不均衡系数,确定所述钢衬里模块的应力和应变。
  8. 根据权利要求7所述的钢衬里模块的施工方法,其特征在于,还包括:
    根据所述钢衬里模块的预设参数获得所述钢衬里模块的风荷载;其中,所述预设参数包括所述钢衬里模块的高度、所述钢衬里模块的直径、所述钢衬里模块的吊装最高值、所述钢衬里模块所处环境的风速和风力系数。
  9. 根据权利要求5所述的钢衬里模块施工方法,其特征在于,所述验证步骤之后还包括:
    准备模拟工件,并在指定位置粘贴应力应变片;
    检查所述模拟工件平整度,测量起吊前待检测点的坐标,并将应力应变仪进行调零;
    起吊所述模拟工件,当所述模拟工件离平台的距离在0.1-0.5m之间时保持禁止状态不少于10min,测量所述待检测点的坐标,并持续采集所述应力应变仪的数据;
    将所述模拟工件降至所述平台上并结束所述应力应变仪的数据采集,再次检查所述模拟工件的平整度。
  10. 根据权利要求9所述的钢衬里模块施工方法,其特征在于,所述模拟工件包括:
    第一模拟工件,所述第一模拟工件为一长方形的钢板;
    第二模拟工件,所述第二模拟工件为一长方形的钢板,所述第二模拟工件的四周边缘设置有限位框;
    所述第一模拟工件和所述第二模拟工件的厚度与所述底板的厚度一致,在所述第一模拟工件和所述第二模拟工件上均设置多个待检测点,所述第一模拟工件和所述第二模拟工件上的所述检测点的数量相同,所述待检测点与所述底板上的应力最大的所述第一吊点的分布方式一致。
  11. 根据权利要求1所述的钢衬里模块施工方法,其特征在于,在所述连接所述钢衬里模块上的所述第一吊点与吊装工装,并连接所述吊装工装与吊装设备时:
    所述第一吊点通过第一吊索与所述吊装工装相连接,所述第一吊索包括依次连接的第一花篮螺栓、绳圈、第一卸扣,其中,所述第一花篮螺栓与所述吊装工装相连接,所述第一卸扣与所述第一吊点相连接;
    所述吊装工装通过第二吊索与所述吊装设备相连接,所述第二吊索包括依次连接的吊钩、绳索、第二卸扣、第二花篮螺栓,其中,所述吊钩与所述吊装设备相连接,所述第二花篮螺栓与所述吊装工装相连接。
  12. 一种吊装工装,其特征在于,所述吊装工装用于如权利要求1-11中任意一项所述的钢衬里模块的施工过程中,所述钢衬里模块上的所有的所述第一吊点与所述吊装工装相连接,所述吊装工装与所述吊装设备相连接。
  13. 根据权利要求12所述的吊装工装,其特征在于,所述吊装工装包括:
    吊装本体;
    多个第二吊点,所述第二吊点设置在所述吊装本体的一侧,用于与所述吊装设备连接;
    多个第三吊点,所述第三吊点设置在所述吊装本体的另一侧,多个所述第三吊点与所述钢衬里模块上的所述第一吊点相对应,所述第三吊点用于与所述第一吊点相连接。
  14. 根据权利要求13所述的吊装工装,其特征在于,所述吊装本体包括:
    多个第一连接杆,多个所述第一连接杆的首、尾依次连接构造成一圆形的第一连接架,多个所述第一连接架相间隔并同心地设置在同一平面内;
    多个第二连接杆,多个所述第二连接杆的首、尾依次连接构造成一圆形的第二连接架,多个所述第二连接架相间隔并同心地设置在另一同一平面内,并且所述第一连接杆和所述第二连接杆相间隔;
    多个支撑杆,其中所述支撑杆满足以下至少一个条件:
    所述支撑杆的两端分别与相邻的两个所述第一连接架上的所述第一连接杆的端部可拆卸连接;
    所述支撑杆的两端分别与相邻的两个所述第二连接架上的所述第二连接杆的端部可拆卸连接;
    所述支撑杆的两端分别与第一连接杆和第二连接杆的端部可拆卸连接。
  15. 根据权利要求14所述的吊装工装,其特征在于,所述吊装工装还包括多个连接件,所述连接件上设置有多个连接孔;其中,所述连接孔满足以下至少一条件:
    两个所述第一连接杆分别可拆卸地连接于同一所述连接件上的两个所述连接孔;
    两个所述第二连接杆分别可拆卸地连接于同一所述连接件上的两个所述连接孔;
    所述第一连接杆与所述支撑杆分别可拆卸地连接于同一所述连接件上的两个所述连接孔;
    所述第二连接杆与所述支撑杆分别可拆卸地连接于同一所述连接件上的两个所述连接孔。
  16. 根据权利要求14所述的吊装工装,其特征在于:
    所述第二吊点的数量为不少于12个,所述第二吊点设置于所述第一连接架上;
    所述第三吊点设置于所述第二连接架上,所述第三吊点满足一下至少一个条件:
    所述第二连接架上的所述第三吊点与所述底板上的所述第一吊点一一对应;
    所述第二连接架上的一个所述第三吊点对应两个所述第二吊点。
  17. 一种限位工装,其特征在于,用于在对如权利要求1-11中任意一项所述的钢衬里模块施工方法中的所述钢衬里模块进行限位。
  18. 如权利要求17所述的限位工装,其特征在于,所述限位工装包括:
    环向限位件,所述环向限位件的一端固定于所述第一截锥体的外侧面上,另一端向背离所述第一截锥体的方向延伸;
    轴向限位件,所述轴向限位件的一端固定于核岛厂房内的地面上,另一端向上延伸;
    所述环向限位件与所述轴向限位件相对的面接触以确定所述钢衬里模块的位置。
  19. 如权利要求17所述的限位工装,其特征在于,所述限位工装还包括支撑柱,所述支撑柱的一端固定于所述核岛反应堆厂房内的地面上,所述支撑柱的另一端向所述第二截锥体的方向延伸,并抵靠于所述第二截锥体的边缘。
PCT/CN2023/107892 2022-07-19 2023-07-18 钢衬里模块施工方法、吊装工装及限位工装 WO2024017240A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210846191.8A CN115417290A (zh) 2022-07-19 2022-07-19 钢衬里模块施工方法、吊装工装及限位工装
CN202210846191.8 2022-07-19

Publications (1)

Publication Number Publication Date
WO2024017240A1 true WO2024017240A1 (zh) 2024-01-25

Family

ID=84196745

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/107892 WO2024017240A1 (zh) 2022-07-19 2023-07-18 钢衬里模块施工方法、吊装工装及限位工装

Country Status (2)

Country Link
CN (1) CN115417290A (zh)
WO (1) WO2024017240A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115417290A (zh) * 2022-07-19 2022-12-02 中广核工程有限公司 钢衬里模块施工方法、吊装工装及限位工装
CN116537537B (zh) * 2023-05-25 2024-04-12 中国核工业华兴建设有限公司 一种堆坑结构的混凝土模块化施工方法

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113667A (ja) * 1995-10-18 1997-05-02 Hitachi Ltd 原子炉格納容器上部ドライウェルの建設方法及びその建設方法に用いるモジュール
JPH1026687A (ja) * 1996-07-12 1998-01-27 Hitachi Ltd 原子炉格納容器ダイヤフラムフロアの構造及び原子炉格納容器ダイヤフラムフロアの建設モジュール並びに原子炉格納容器ダイヤフラムフロアの建設方法
CN101942895A (zh) * 2010-08-24 2011-01-12 中广核工程有限公司 一种核电站核反应堆厂房钢衬里整体施工方法
JP2012180195A (ja) * 2011-03-02 2012-09-20 Sumitomo Heavy Industries Engineering-Service Co Ltd クレーン用吊具
KR101528612B1 (ko) * 2015-02-16 2015-06-12 삼진공작 (주) 라이너 플레이트용 인양 툴 및 이를 이용한 원자로 격납건물 시공 방법
CN106395605A (zh) * 2016-12-22 2017-02-15 中国核工业二四建设有限公司 一种核电站钢衬里模块吊装系统
CN106744311A (zh) * 2016-12-22 2017-05-31 中国核工业二四建设有限公司 一种核电站安全壳钢衬里模块吊装方法
CN108910674A (zh) * 2018-06-27 2018-11-30 中国核工业华兴建设有限公司 一种核电站cr10与钢筋组合模块整体吊装系统
CN113336079A (zh) * 2021-04-28 2021-09-03 中国建筑第二工程局有限公司 一种核电钢衬里带底板模块吊装方法
CN214531995U (zh) * 2021-04-07 2021-10-29 中国建筑第二工程局有限公司 钢衬里带底板模块吊装用网架
CN215558278U (zh) * 2021-04-28 2022-01-18 中国建筑第二工程局有限公司 核电站钢衬里截锥体吊装装置
CN114291718A (zh) * 2021-12-29 2022-04-08 中国核工业二四建设有限公司 核电站环吊牛腿模块化施工方法及吊索具系统
CN114722686A (zh) * 2022-05-24 2022-07-08 中建安装集团有限公司 一种基于有限元分析的大型设备吊耳设计及优化方法
CN115417290A (zh) * 2022-07-19 2022-12-02 中广核工程有限公司 钢衬里模块施工方法、吊装工装及限位工装

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09113667A (ja) * 1995-10-18 1997-05-02 Hitachi Ltd 原子炉格納容器上部ドライウェルの建設方法及びその建設方法に用いるモジュール
JPH1026687A (ja) * 1996-07-12 1998-01-27 Hitachi Ltd 原子炉格納容器ダイヤフラムフロアの構造及び原子炉格納容器ダイヤフラムフロアの建設モジュール並びに原子炉格納容器ダイヤフラムフロアの建設方法
CN101942895A (zh) * 2010-08-24 2011-01-12 中广核工程有限公司 一种核电站核反应堆厂房钢衬里整体施工方法
JP2012180195A (ja) * 2011-03-02 2012-09-20 Sumitomo Heavy Industries Engineering-Service Co Ltd クレーン用吊具
KR101528612B1 (ko) * 2015-02-16 2015-06-12 삼진공작 (주) 라이너 플레이트용 인양 툴 및 이를 이용한 원자로 격납건물 시공 방법
CN106744311A (zh) * 2016-12-22 2017-05-31 中国核工业二四建设有限公司 一种核电站安全壳钢衬里模块吊装方法
CN106395605A (zh) * 2016-12-22 2017-02-15 中国核工业二四建设有限公司 一种核电站钢衬里模块吊装系统
CN108910674A (zh) * 2018-06-27 2018-11-30 中国核工业华兴建设有限公司 一种核电站cr10与钢筋组合模块整体吊装系统
CN214531995U (zh) * 2021-04-07 2021-10-29 中国建筑第二工程局有限公司 钢衬里带底板模块吊装用网架
CN113336079A (zh) * 2021-04-28 2021-09-03 中国建筑第二工程局有限公司 一种核电钢衬里带底板模块吊装方法
CN215558278U (zh) * 2021-04-28 2022-01-18 中国建筑第二工程局有限公司 核电站钢衬里截锥体吊装装置
CN114291718A (zh) * 2021-12-29 2022-04-08 中国核工业二四建设有限公司 核电站环吊牛腿模块化施工方法及吊索具系统
CN114722686A (zh) * 2022-05-24 2022-07-08 中建安装集团有限公司 一种基于有限元分析的大型设备吊耳设计及优化方法
CN115417290A (zh) * 2022-07-19 2022-12-02 中广核工程有限公司 钢衬里模块施工方法、吊装工装及限位工装

Also Published As

Publication number Publication date
CN115417290A (zh) 2022-12-02

Similar Documents

Publication Publication Date Title
WO2024017240A1 (zh) 钢衬里模块施工方法、吊装工装及限位工装
CN106836498B (zh) 一种超大跨度体育场看台屋盖钢桁架吊装施工工法
CN111364615B (zh) 一种异形、曲面悬挂式钢结构体系的安装方法
CN114086669B (zh) 一种大型空间异形曲面钢网架模块化快速建造方法
CN107090932B (zh) 基于劲性环梁的大跨度薄壁平面拱桁架的施工方法
CN111270852A (zh) 一种钢筋混凝土筒仓穹顶新型模板支撑体系施工方法
CN112343233A (zh) 圆形屋面空间管桁架结构及其施工方法
CN110528891B (zh) 大跨度球形网架整体吊装方法
CN114232805B (zh) 一种超高度大跨度钢混凝土梁吊挂结构的施工方法
CN113356597A (zh) 一种大跨度网架与桁架组合屋盖的提升工艺
CN113982280A (zh) 一种复杂式空间桁架整体吊装系统的施工方法
CN111980165A (zh) 大跨度网架外扩拼装整体顶升施工方法
CN111561175A (zh) 一种预应力托换静力切割拔柱施工工艺
CN112096090B (zh) 大跨度空间管桁架单点支撑对接逐级卸载装置及施工工法
CN107299687B (zh) 一种小角度圆管耗能相贯节点的制作方法
CN113982281A (zh) 一种超大吨位空间桁架提升加固结构及其施工方法
CN202023298U (zh) 适用于交叉式塔吊吊装的整榀分段式屋面钢梁结构
CN111620223B (zh) 一种支座二次受力转换提升网架施工方法
CN111075235B (zh) 核电厂非能动水箱的施工方法
CN113982284A (zh) 大跨度异型钢结构收费棚安装方法
CN112031176A (zh) 工具式钢格构柱提升架高空整体提升大跨度整体拼装焊接球网架施工艺
CN111456454A (zh) 钢网架施工方法
CN116216482B (zh) 一种桁架式风机塔架标准段整体吊装系统及吊装方法
CN219886576U (zh) 一种曲面异型式内砼外钢主塔装饰结构
CN212562460U (zh) 一种钢筋混凝土筒仓穹顶新型模板支撑杆件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842303

Country of ref document: EP

Kind code of ref document: A1