WO2024017095A1 - 转轴组件和电子设备 - Google Patents

转轴组件和电子设备 Download PDF

Info

Publication number
WO2024017095A1
WO2024017095A1 PCT/CN2023/106810 CN2023106810W WO2024017095A1 WO 2024017095 A1 WO2024017095 A1 WO 2024017095A1 CN 2023106810 W CN2023106810 W CN 2023106810W WO 2024017095 A1 WO2024017095 A1 WO 2024017095A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
passing
line
shaft
wire
Prior art date
Application number
PCT/CN2023/106810
Other languages
English (en)
French (fr)
Inventor
董雷
王俊平
唐辉俊
何攀
张德军
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2024017095A1 publication Critical patent/WO2024017095A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C11/00Pivots; Pivotal connections
    • F16C11/04Pivotal connections
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements

Definitions

  • the present application relates to the technical field of terminal equipment, specifically, to a rotating shaft assembly and electronic equipment.
  • the hinge assembly can be widely used in foldable electronic devices, such as foldable mobile phones, foldable laptops, foldable keyboards, etc.
  • the inside of the foldable keyboard cover can be regarded as a hinge assembly.
  • the hinge assembly can be used to connect the keyboard and the electronic device.
  • the wired connection line can be set on the hinge assembly. internally and through the shaft of the shaft assembly to reduce line redundancy.
  • the rotating shaft of the rotating shaft assembly not only needs to maintain the stability of the overall structure of the rotating shaft assembly, but also needs to maintain the reliability of the wired connection line connection.
  • This application provides a rotating shaft assembly and electronic equipment.
  • the rotating shaft of the rotating shaft assembly is connected to the structural members on both sides of the rotating shaft respectively.
  • the rotating shaft assembly can also provide wired connection paths for the components on both sides of the rotating shaft, which is beneficial to improving the rotating shaft assembly. Structural stability.
  • a rotating shaft assembly in a first aspect, includes: a first connecting part, the first connecting part is provided with a first connecting line, and the first connecting line is used to connect a first electronic device; a second connecting part , the second connection part is provided with a second connection line, the second connection line is used to connect the second electronic device; the rotating shaft part includes a first wire passing rotating shaft and a second wire passing rotating shaft, the first wire passing rotating shaft An end of the rotating shaft adjacent to the second line-passing rotating shaft is provided with a first pin hole, and an end of the second line-passing rotating shaft adjacent to the first line-passing rotating shaft is provided with a first shaft pin, and the first shaft pin Extend into the first pin hole;
  • first connection line and the second connection line are connected through the first line passing shaft and the second line passing shaft;
  • first line passing shaft includes a first locking lug, and the first locking lug is connected to
  • the first connecting part is connected to the second wire-passing rotating shaft and includes a second locking lug, and the second locking lug is connected to the second connecting part.
  • the first wire-passing rotating shaft and the second wire-passing rotating shaft are provided with an electrical connection structure, and the electrical connection structure is used to connect the first connection line and the second connection line.
  • the first wire-passing rotating shaft and the second wire-passing rotating shaft may be made of conductive material, and the conductive material forms an electrical connection structure.
  • a wire passage can be opened inside the first wire passing rotating shaft and the second wire passing rotating shaft, and the first connecting line and/or the second connecting line can pass through the wire passing channel, or the A connection line for connecting the first connection line and the second connection line is provided inside the wire passage, thereby realizing the electrical connection between the first connection line and the second connection line.
  • two line-passing rotating shafts are provided for conducting the first connection line and the second connecting line, and the two line-passing rotating shafts are provided with locking lugs to connect with the connection parts on both sides of the rotating shaft respectively, which is beneficial to improve the efficiency of the connection.
  • the stability of the connection between the rotating shaft and the connecting part. Connecting the two over-the-line rotating shafts through the matching method of the shaft pin and the pin hole is beneficial to reducing the gap between the rotating shafts, helping to reduce dust, particles, etc. in the external space of the rotating shafts from entering between the rotating shafts, and is beneficial to reducing the wear between the rotating shafts. , improve the durability of the rotating shaft assembly.
  • the first connection part is provided with a power receiving coil, the power receiving coil is electrically connected to the first connection line, and the power receiving coil is used to communicate with the first
  • the electronic equipment is coupled to generate current
  • the second connection part is provided with a first electrical connection member, the first electrical connection member is electrically connected to the second connection line, and the first electrical connection member is used to electrically connect the second electronic equipment.
  • the first connection line is used to connect the power receiving coil
  • the second connection line is used to connect the first connector
  • a first wire passing passage is provided in the first wire passing rotating shaft, a second wire passing channel is provided in the second wire passing rotating shaft, and the first wire passing rotating shaft is provided with a second wire passing channel.
  • the wire channel is connected to the second wire channel; the first connection line passes through the first wire channel and the second wire channel, and is connected to the second connection line; or, the second connection line Pass through the first wire passage and the second wire passage and be connected to the first connection line; or, the first connection line and the second connection line are connected to the first wire passage or the third connection line.
  • wire passages are respectively provided inside the two wire passing rotating shafts, and the two wire passing channels are connected to each other.
  • the connecting lines can pass through the provided wire passing channels, thereby realizing the mutual connection of the two connecting lines.
  • the connecting lines do not need to be exposed outside the rotating shaft, which can prevent the wear or damage of the lines caused by the mutual movement between the rotating shaft and other structural parts, which is conducive to improving the durability of the rotating shaft assembly and simplifying the layout of the internal circuits of the rotating shaft assembly.
  • a first wire passing port is opened in the circumferential direction of the first wire passing rotating shaft, and the first wire passing port is connected with the first wire passing channel, and the second wire passing passage is
  • a second wire passing port is provided in the circumferential direction of the wire passing rotating shaft, and the second wire passing port is connected with the second wire passing channel.
  • the entrance and exit ports of the lines entering the line passage and the lines extending out of the line passage are arranged in the axial direction of the line passing shaft.
  • it is beneficial to Reducing the redundancy of the circuit will help reduce the length of the circuit exposed to the outside of the rotating shaft, protect the wired connection lines, and improve the durability of the rotating shaft assembly.
  • the first wire passing port and the first locking lug are located on the same side of the first wire passing shaft, and the second wire passing port and the second lock The ear is located on the same side of the second wire-passing axis.
  • the locking lug and the wire passing port located on the same side of the wire passing rotating shaft mean that they are located on the same side in the axial direction of the wire passing rotating shaft.
  • the wire-passing port and the locking lug are arranged on the same side of the wire-passing rotating shaft.
  • the wire extending into or out of the wire-passing port can rotate synchronously with the locking lug. This helps reduce wire redundancy.
  • chamfers are provided in the circumferential direction of the first wire-passing port and the second wire-passing port.
  • chamfering is provided at the port where the line enters and exits the line passage, which is beneficial to reducing the probability of unreliable line connection due to wear near the port, and is conducive to improving the durability of the rotating shaft assembly.
  • the first wire passing channel and the second wire passing channel are coaxial.
  • the first wire crossing channel and the second wire crossing channel are coaxial, which is beneficial to reducing the redundancy of the lines inside the wire crossing channel, reducing the gap between the rotating shafts, and reducing dust and dust in the outer space of the rotating shafts. Particles etc. entering between the rotating shafts will help reduce the wear between the rotating shafts and improve the durability of the rotating shaft components.
  • the first wire passing channel is coaxial with the first wire passing rotating shaft
  • the second wire passing channel is coaxial with the second wire passing rotating shaft
  • the line passing channel is arranged coaxially with the line passing rotating shaft, which is beneficial to reducing the wear of the lines inside the line passing channel caused by the relative rotation between the line passing rotating shafts, and is conducive to avoiding the redundancy of the lines inside the line passing channel. , which is helpful to improve the durability of the rotating shaft assembly.
  • a conductive medium is connected between the first shaft pin and the first pin hole, and a third connection line is provided on the shaft wall of the first wire-passing shaft. , the third connection line is used to conduct the first connection line and the conductive medium, and a fourth connection line is provided on the axis wall of the second wire-passing shaft, and the fourth connection line is used to conduct the second connection. lines and this conductive medium.
  • a conductive medium is provided between the shaft pin and the pin hole between the two wire-passing rotating shafts connected to each other, and a conductive line connected to the conductive medium is provided on the outer walls of the two wire-passing rotating shafts, and the The conductive lines and the lines on the connecting part are connected to each other, thereby helping to avoid opening a channel inside the line-passing rotating shaft, reducing the complexity of the line-passing rotating shaft structure, and improving the assembly efficiency of the rotating shaft assembly.
  • connection line is plated on the shaft wall of the first line passing shaft through a laser direct forming LDS process
  • fourth connection line is plated on the shaft wall through the LDS process. on the axis wall of the second line-passing rotating shaft.
  • connecting lines are plated and engraved on the shaft wall of the rotating shaft through the LDS process, which is beneficial to reducing the impact of setting wires on the wire-passing rotating shaft, and is conducive to improving the connection reliability of the wired connecting lines improved by the rotating shaft assembly.
  • the first locking lug is provided with a first soldering pad
  • the third connecting line and the first connecting line are connected at the first soldering pad
  • the A second soldering pad is provided on the second locking lug
  • the fourth connecting line and the second connecting line are connected at the second soldering pad.
  • a welding pad is provided on the locking lug of the rotating shaft, and the welding pad is used to connect the connecting line on the rotating shaft and the connecting line in the connecting part, which is beneficial to reducing the complexity of the line connection and improving the reliability of the line connection.
  • the axis of the first thread-passing rotating shaft is in the plane where the first locking lug is located, and the axis of the second thread-passing rotating shaft is in the plane where the second locking lug is located.
  • the axis of the thread-passing rotating shaft passes through the plane where the locking lug is located, that is, the locking lug is in the longitudinal section of the thread-passing rotating axis, and the connections between the two adjacent thread-passing rotating shafts and the two connecting parts are in symmetrical positions. , which is conducive to improving the uniformity of the force on the connecting parts on both sides of the rotating shaft during the rotation of the rotating shaft, helping to prevent damage to the rotating shaft component due to uneven stress on the two connecting parts, and improving the durability of the rotating shaft component.
  • the rotating shaft part further includes a supporting rotating shaft, and the end of the supporting rotating shaft is connected to the end of the first over-the-line rotating shaft, or the end of the supporting rotating shaft is connected to the end of the first over-the-line rotating shaft.
  • the end of the second wire-passing rotating shaft is connected.
  • the end of the supporting rotating shaft can be connected to an end of the first line passing rotating shaft away from the second line passing rotating shaft, or the end of the supporting rotating shaft can be connected to an end of the second line passing rotating shaft away from the first line passing rotating shaft.
  • the rotating shaft part of the rotating shaft assembly is also provided with a supporting rotating shaft, which is connected to the end of the over-the-line rotating shaft.
  • a supporting rotating shaft which is connected to the end of the over-the-line rotating shaft.
  • Different types of rotating shafts can be used to undertake different types of functions of the rotating shaft part, and the supporting rotating shaft can be used for filling.
  • the gap between the first connecting part and the second connecting part enhances the overall mechanical properties of the rotating shaft part, thereby helping to reduce damage to the various structures of the rotating shaft assembly caused by foreign matter from the gap due to the existence of the gap.
  • the end of the support rotating shaft is provided with a second pin
  • the end of the first line passing shaft away from the second line passing shaft is provided with a second pin hole.
  • the second shaft pin extends into the second pin hole; or, an end of the second line passing shaft away from the first line passing shaft is provided with a second pin hole, and the second shaft pin extends into the second pin hole.
  • the end of the support rotating shaft is provided with a second pin hole, and an end of the first line-passing rotation shaft away from the second line-passing rotation shaft is provided with a second pin.
  • the second shaft pin extends into the second pin hole; or, an end of the second line passing shaft away from the first line passing shaft is provided with a second shaft pin, and the second shaft pin extends into the second pin hole.
  • the supporting rotating shaft and the line-passing rotating shaft are connected through the matching method of the shaft pin and the pin hole, so that relative rotation can occur between the line-passing rotating shaft and the supporting rotating shaft.
  • the rotation structure between other rotating shafts is damaged, there can be a supporting third shaft.
  • the relative rotation structure between the first connecting part and the second connecting part is beneficial to improving the stability of the performance of the rotating shaft assembly.
  • the support rotating shaft is connected to a third locking lug, and the third locking lug is connected to the first connecting part or the second connecting part.
  • the supporting rotating shaft in addition to the wire-passing rotating shaft, can also be provided with locking lugs, and the locking lugs are used to connect with the first connecting part or the second connecting part, which is beneficial to strengthening the rotating shaft part and the first connecting part and the second connecting part. Connection stability.
  • the number of the first line-passing rotating shafts is multiple, and the number of the second line-passing rotating shafts is the same as the number of the first line-passing rotating shafts.
  • the number of the supporting rotating shafts is multiple.
  • multiple line-passing rotating shafts and/or multiple supporting rotating shafts can be provided to share the interaction force between each rotating shaft and the connecting part, which is beneficial to reducing the load of each rotating shaft and extending the life of the rotating shaft assembly. life.
  • the first line passing shaft and the second line passing shaft are made of one or more of the following materials: iron alloy, zinc alloy, and aluminum alloy.
  • the first line passing shaft and the second line passing shaft are made of one or more of the following materials: liquid crystal polymer, polycarbonate ester, polyamide fiber and fiberglass.
  • an electronic device in a second aspect, includes: a keyboard, the keyboard is provided with a second electrical connector; as in the first aspect and any possible implementation thereof, the rotating shaft assembly passes through the third electrical connector. Two electrical connectors are electrically connected to the keyboard.
  • Figure 1 is an application scenario of a rotating shaft assembly provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of a rotating shaft assembly provided by an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another rotating shaft assembly provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of yet another rotating shaft assembly provided by an embodiment of the present application.
  • Figure 5 is a schematic structural diagram of yet another rotating shaft assembly provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a rotating shaft part of a rotating shaft assembly provided by an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a rotating shaft part of another rotating shaft assembly provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a rotating shaft part of yet another rotating shaft assembly provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a rotating shaft part of yet another rotating shaft assembly provided by an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a rotating shaft part of yet another rotating shaft assembly provided by an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a rotating shaft part of yet another rotating shaft assembly provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a rotating shaft part of yet another rotating shaft assembly provided by an embodiment of the present application.
  • FIG 1 shows an application scenario of a rotating shaft assembly 100 provided by an embodiment of the present application.
  • the rotating shaft assembly 100 may be a foldable plate-like structure.
  • a part of the plate-like structure of the rotating shaft assembly 100 is connected with the first electronic device 200 (for example, a tablet computer), another part of the plate-like structure can be connected to the second electronic device 300 (such as a keyboard), and can be connected to the two parts of the rotating shaft assembly 100 through a rotating shaft, so that the two parts of the rotating shaft assembly 100 can be connected to each other. It can rotate around the axis within a certain angle range.
  • the first electronic device 200 can be connected to the rotating shaft assembly 100 through magnetic attraction, adhesion, buckling, etc., to achieve relative fixation between the first electronic device 200 and the rotating shaft assembly 100 .
  • the second electronic device 300 can be connected to the rotating shaft assembly 100 through magnetic attraction, adhesion, buckle, wire, etc., to achieve relative fixation between the second electronic device 300 and the rotating shaft assembly 100 .
  • the second electronic device 300 When the second electronic device 300 is a keyboard, the second electronic device 300 can be connected to the first electronic device 200 through Bluetooth connection, wired connection, etc., so that the user can input data and information to the first electronic device 200 through the keyboard.
  • a wired connection line is provided inside the rotating shaft assembly 100. One end of the line is connected to the first electronic device 200, and the other end of the line is connected to the second electronic device 300. Through the wired connection line, it can be realized A wired connection between the first electronic device 200 and the second electronic device 300 .
  • a charging circuit is provided inside the rotating shaft assembly 100. One end of the charging circuit is connected to the first electronic device 200, and the other end of the charging circuit is connected to the second electronic device 300. Through the charging circuit, the first electronic device 200 is connected to the charging circuit. The electronic device 200 can realize mutual power supply or power receiving functions with the second electronic device 300 .
  • FIG. 2 shows a rotating shaft assembly 100 provided by an embodiment of the present application.
  • the rotating shaft assembly 100 may include a supporting part 110 and a connecting part 120.
  • the supporting part 110 may also be called a first connecting part 110.
  • the connecting part 120 It can also be called the second connection part 120 .
  • the rotating shaft assembly 100 may also be provided with a rotating shaft part 130 , and the supporting part 110 and the connecting part 120 are connected through the rotating shaft part 130 .
  • the surface of the rotating shaft assembly 100 may be covered with a protective film (or protective layer).
  • the protective film may be made of leather, artificial leather, or other soft materials.
  • the protective film may be used to prevent the supporting part from 110.
  • the internal components of the rotating shaft assembly 100 such as the connecting part 120 and the rotating shaft part 130 are exposed, which can protect the rotating shaft assembly 100 and improve the user experience.
  • the support part 110 may be in the shape of a thin plate.
  • the support part 110 may be a glass fiber board, a carbon fiber board, a basalt fiber board or an aramid fiber board.
  • the surface of the thin plate may be provided with a wire groove, and the wire groove may be used to accommodate wires.
  • the support part 110 may be provided with a wireless charging coil 111, which may also be called a power receiving coil 111.
  • the wireless charging coil 111 is connected to a first connection line 112.
  • the first connection line 112 may be a flexible printed circuit (FPC).
  • the first connection line 112 may include one or more branches or branches.
  • the first electronic device 200 may be provided with a wireless charging coil, which may also be called a power transmitting coil.
  • a wireless charging coil which may also be called a power transmitting coil.
  • the power transmitting coil and the power receiving coil 111 are close to each other and meet the power supply conditions (for example, the distance between the power transmitting coil and the power receiving coil 111 is less than a preset value), the power transmitting coil and the power receiving coil 111 interact through electromagnetic interaction, and the power receiving coil 111 A current is generated in the first connection line 112 and can be transmitted to the other end of the first connection line 112 away from the power receiving coil 111 through the first connection line 112 .
  • the connecting part 120 may be in the shape of a thin plate.
  • the connecting part 120 may be a glass fiber board, a carbon fiber board, a basalt fiber board or an aramid fiber board.
  • the surface of the thin plate may be provided with a wire groove, and the wire groove may be used to accommodate wires.
  • the connection part 120 may be provided with a first electrical connector 121, which is connected to a second connection line 122.
  • the second connection line 122 is electrically connected to the first connection line 112.
  • the power receiving coil 111 When the power receiving coil 111 is connected to the third connection line 112, When a connection line 112 outputs current, the current can be transmitted to the first electrical connector 121 through the first connection line 112 and the second connection line 122 .
  • the second connection line 122 may be an FPC, and the second connection line 122 may also include one or more branch lines or branch lines.
  • the first electrical connector 121 is a spring loaded contact, or a pogo pin connector, or a spring pin.
  • the pogo pin connector may include components such as a needle, a spring, and a needle tube.
  • the second electronic device 300 may be provided with a second electrical connector 310 (see (b) in FIG. 1 ).
  • a second electrical connector 310 see (b) in FIG. 1 .
  • the current generated in the power receiving coil 111 can be input to the second electronic device 300 through the first connection line 112, the second connection line 122, the first electrical connector 121 and the second electrical connector 310, thereby realizing the second electronic device 300 powered.
  • the first connection line 112 includes multiple branch lines, and the second connection line 122 also includes multiple branch lines. In this case, all of the first connection line 112 can be connected to all of the second connection line 122, Alternatively, a portion of the first connection line 112 is connected to a portion of the second connection line 122 .
  • the rotating shaft part 130 can be provided with a variety of rotating shafts.
  • the multiple rotating shafts can be wire passing rotating shafts provided with wire passing channels.
  • the multiple rotating shafts can be support rotating shafts without wire passing channels.
  • the multiple rotating shafts can be provided with locking lugs (
  • the rotating shaft (rotating shaft extension part) may also be a rotating shaft without a locking lug.
  • the locking lug of the rotating shaft can be regarded as the rotating shaft extension portion or the rotating shaft extending arm obtained by extending the shaft wall of the rotating shaft in the axial direction away from the rotating shaft.
  • the extension portion of the rotating shaft and the shaft body can be manufactured by integral molding.
  • the locking lug can be used to fixedly connect the supporting part 110 and/or the connecting part 120 to the shaft body of the rotating shaft.
  • the rotating shaft part 130 and the supporting part 110 or the connecting part 120 can be lowered to a certain extent. The complexity of the assembly process improves the production efficiency of the rotating shaft assembly 100 .
  • a reinforcing structure may be provided at the location where the locking lug is connected to the shaft wall of the rotating shaft.
  • the reinforcing structure may be wedge-shaped, and the reinforcing structure may include an adjacent first The connecting surface and the second connecting surface, wherein the first connecting surface is connected to the locking lug, and the second connecting surface is connected to the shaft wall of the rotating shaft, that is, the reinforcing structure is arranged near the connection position between the locking lug and the rotating shaft (or called locking lug). the roots).
  • the transmission line of the current transmitted from the power receiving coil 111 to the first electrical connector 121 can pass through the rotating shaft part 130.
  • the conductive line can extend from the side of the rotating shaft close to the supporting part 110 into a passing line of the rotating shaft part 130.
  • the rotating shaft extends a certain distance along the axial direction of the rotating shaft and extends out of the rotating shaft portion 130 from the side of another over-the-line rotating shaft close to the connecting portion 120 .
  • the arrangement of the corresponding conductive lines may also be different.
  • the rotating shaft part 130 may be provided with multiple wire-passing rotating shafts 131 , the rotating shaft part 130 may also be provided with multiple supporting rotating shafts 132 , and the wire-passing rotating shaft 131 may be provided with locking lugs,
  • the supporting rotating shaft 132 may be provided with a locking lug, which is 132A, or the supporting rotating shaft 132 may not be provided with a locking lug, which is 132B.
  • the locking lugs of two adjacent rotating shafts provided with locking lugs can be connected to the supporting part 110 and the connecting part 120 respectively, for example, the supporting rotating shaft 132A in Figure 2 and the adjacent wire-passing rotating shaft 131.
  • the locking lugs of the supporting rotating shaft 132A Connected to the supporting part 110 , the locking lugs of the adjacent wire-passing rotating shafts 131 are connected to the connecting part 120 .
  • a rotation structure can be provided between the support rotating shaft 132A and the adjacent line passing rotating shaft 131, so that the supporting rotating shaft 132A and the adjacent line passing rotating shaft 131 can relatively rotate around the axial direction of the rotating shaft, thereby driving the support connected to the rotating shaft.
  • the part 110 and/or the connecting part 120 rotate around the axial direction of the rotating shaft.
  • the rotating shaft part 130 may have multiple rotating shafts, and each of the multiple rotating shafts is provided with a locking lug. shaft, so that multiple rotating shafts are fixedly connected to the supporting part 110 or the connecting part 120 through the locking lugs, which is beneficial to improving the stability and reliability of the connection between the rotating shaft part 130 and the supporting part 110, and is beneficial to improving the connection between the rotating shaft part 130 and the connecting part 120 stability and reliability.
  • the supporting rotating shaft 132A is adjacent to the line-passing rotating shaft 131 , and both the supporting rotating shaft 132A and the line-passing rotating shaft 131 are provided with locking lugs, wherein the locking lugs of the supporting rotating shaft 132A are fixed to the connecting portion 120 connection, the locking lug of the wire passing rotating shaft 131 is fixedly connected to the connecting part 120, that is, the locking lug of the supporting rotating shaft 132A and the locking lug of the wire passing rotating shaft 131 are connected to the same side.
  • the support shaft 132A and the wire passing shaft 131 may be two parts of one rotating shaft, which may be called a first part and a second part, for example. There is no wire passing passage inside the first part, and there is no wire passing passage inside the second part. Set up the over-the-line channel.
  • the first connection line 112 may include a first branch line 112A and a second branch line 112B.
  • an incoming line port or an outgoing line port may be provided thereon.
  • the port opened by the cable passing shaft 131 faces the support part 110 , and this port can be used as a cable inlet for the second branch line 112B.
  • the port opened on the cable passing shaft 131 faces the connecting portion 120 , and the port can be used as the outlet of the second branch line 112B.
  • part or all of the above-mentioned first connection line 112 can extend into the same wire-passing rotating shaft 131 and extend from another wire-passing rotating shaft 131 .
  • part or all of the second connection line 122 may extend into the same wire-passing rotating shaft 131 and extend from another wire-passing rotating shaft 131 .
  • part or all of the first connecting line 112 may extend into the same passing shaft 131 and be connected to part or all of the second connecting line 122 inside the passing shaft 131 .
  • the first connection line 112 may include a first branch line 112A and a second branch line 112B
  • the second connection line 122 may include a third branch line 122A and a fourth branch line 122B
  • the second connection line 112 may include a third branch line 122A and a fourth branch line 122B.
  • the branch line 112B can extend from the adjacent line-passing rotating shaft on the right side of the line-passing rotating shaft 131 and extend from the line-passing rotating shaft 131 to be connected to the fourth branch line 122B at the connecting portion 120 .
  • both incoming and outgoing wire ports can be provided on the same wire-passing rotating shaft, so that when multiple lines need to pass through the rotating shaft portion 130 , the multiple lines can share the same wire-passing rotating shaft.
  • the supporting rotating shaft is mainly explained by taking the supporting rotating shaft 132B as an example, and the supporting rotating shaft 132A is also applicable.
  • FIG. 6 shows a schematic structural diagram of a rotating shaft part 130 provided by an embodiment of the present application.
  • a line passing port 133A is provided on the axis wall of the line passing rotating shaft 131A.
  • the line passing port 133A may be a circular port or a rectangular port, etc.
  • the line passing port 133A extends from the axis wall of the line passing rotating shaft 131A in the axial direction, and is connected with the axis wall of the line passing rotating shaft 131A.
  • the wire passing passage 134A inside the wire passing rotating shaft 131A is opened.
  • the axis of the through hole formed by extending the wire passing port 133A may be coplanar with the plane where the axis of the wire passing rotating shaft 131A is located.
  • the above-mentioned wire-passing port may be a strip-shaped opening, and the strip-shaped opening may extend along the axial direction of the rotating shaft.
  • the first connection line and/or the second connection line may extend into and/or out of the strip-shaped opening. Open your mouth.
  • the connection between the length direction and the width direction of the strip opening may be provided with chamfers, that is to say, the port may be provided with chamfers in the axial direction.
  • the outer edge of the strip-shaped opening is further provided with a protective layer made of soft material.
  • the protective layer can prevent the edge of the strip-shaped opening from being worn on the wires near the opening.
  • a wire passing channel 134A is provided inside the wire passing rotating shaft 131A, and the extending direction of the wire passing channel 134A may be parallel to the axis of the wire passing rotating shaft 131A.
  • the axis of the wire passing channel 134A coincides with the axis of the wire passing rotating shaft 131A, that is, the wire passing channel 134A is coaxial with the wire passing rotating shaft 131A.
  • One end of the line-passing rotating shaft 131A may be provided with a cylindrical protrusion 135, which may also be called a shaft pin 135.
  • the diameter of the shaft pin 135 is smaller than the diameter of the line-passing rotating shaft 131A.
  • the extension direction of the shaft pin 135 is consistent with the extension direction of the aforementioned wire passing channel 134A.
  • the wire passing channel 134A can penetrate from an end of the shaft pin 135 close to the wire passing rotating shaft 131A to an end of the shaft pin 135 away from the wire passing rotating shaft 131A.
  • the diameter of the wire passage 134A is smaller than the diameter of the shaft pin 135 .
  • the shaft pin 135 is provided with a through hole in the axial direction, and the through hole is connected with the wire passage 134A.
  • the wire passing shaft 131A may include one or more locking lugs 137A, and the one or more locking lugs 137A may be positioned to avoid the wire passing port 133A.
  • the plane of the locking lug 137A is coplanar with the plane of the axis of the cable passing shaft 131A, and is also coplanar with the axis of the through hole formed by extending the cable passing port 133A.
  • a wire passing port 133B is provided on the axis wall of the wire passing rotating shaft 131B.
  • the wire passing port 133B may be a circular port or a rectangular port, etc.
  • the wire passing port 133B extends from the axis wall of the wire passing rotating shaft 131B in the axial direction and is connected with the axial wall of the wire passing rotating shaft 131B.
  • the wire passing passage 134B inside the wire passing rotating shaft 131B is opened.
  • the axis of the through hole formed by extending the wire passing port 133B may be coplanar with the plane where the axis of the wire passing rotating shaft 131B is located.
  • the wire passing port on the same wire passing rotating shaft may be located on the same side as the locking lug on the wire passing rotating shaft, or the wire passing port on the same wire passing rotating shaft may also be located on the same side as the locking lug on the wire passing rotating shaft.
  • the locking lugs are located on both sides of the thread passing shaft. It should be understood that here, the locking lug and the wire passing port located on the same side of the wire passing rotating shaft mean that they are located on the same side in the axial direction of the wire passing rotating shaft.
  • the wire-passing port and the locking lug are arranged on the same side of the wire-passing rotating shaft.
  • the wire extending into or out of the wire-passing port can rotate synchronously with the locking lug, thus helping to reduce the number of wires. of redundancy.
  • a wire passing channel 134B is provided inside the wire passing rotating shaft 131B, and the extending direction of the wire passing channel 134B may be parallel to the axis of the wire passing rotating shaft 131B.
  • the axis of the wire passing channel 134B coincides with the axis of the wire passing rotating shaft 131B, that is, the wire passing channel 134B and the wire passing rotating shaft 131B are coaxial.
  • One end of the thread passing shaft 131B may be provided with a groove 136.
  • the groove 136 may also be called a pin hole 136.
  • the diameter of the pin hole 136 is smaller than the diameter of the thread passing shaft 131B.
  • the extension direction of the pin hole 136 is consistent with the extension direction of the wire passage 134B.
  • the diameter of the wire passage 134B may be smaller than, larger than, or equal to the diameter of the pin hole 136 .
  • the wire passing shaft 131B may include one or more locking lugs 137B, and the one or more locking lugs 137B may be positioned to avoid the wire passing port 133B.
  • the plane of the locking lug 137B is coplanar with the plane of the axis of the cable passing shaft 131B, and is also coplanar with the axis of the through hole formed by extending the cable passing port 133B.
  • the diameter of the pin 135 of the wire passing shaft 131A is smaller than the diameter of the pin hole 136 of the wire passing shaft 131B.
  • the shaft pin 135 can extend into the pin hole 136, so that the wire passing channel 134A can be connected with the wire passing channel 134B. Further, The wire can extend from the wire port 133A into the wire channel 134A, then enter the wire channel 134B, and then extend out from the wire port 133B.
  • the wire passage 134A may be coaxial with the wire passage 134B.
  • the shaft pin 135 can also be coaxial with the pin hole 136 .
  • a gap is provided between the outer wall of the shaft pin 135 and the hole wall of the pin hole 136, that is, the outer wall of the shaft pin 135 and the hole wall of the pin hole 136 Do not touch each other.
  • the difference between the diameter of the pin hole 136 and the diameter of the shaft pin 135 ranges from 0.05 mm to 0.25 mm.
  • a gap is provided between the end of the line passing shaft 131A close to the shaft pin 135 and the end of the line passing shaft 131B close to the pin hole 136, That is, the adjacent end surfaces between the two interconnected line-passing rotating shafts do not abut each other.
  • a gap is provided between adjacent end surfaces of two interconnected wire-passing rotating shafts, and the gap ranges from 0.05 mm to 0.25 mm.
  • the shaft pin 135 extending into the pin hole 136 can rotate relative to the pin hole 136, so that the thread-passing rotating shaft 131A can rotate relative to the thread-passing rotating shaft 131B.
  • the conductor P1P2 segments extending into the line-passing rotating shaft 131A only rotate around point P2
  • the conductor P3P4 segments extending out of the line-passing rotating shaft 131B only rotate around the P2 point.
  • the rotation axis of the support part 110 and/or the connection part 120 passes through the rotation center of the conductor, which can reduce the redundancy of the conductor to a certain extent. Remain.
  • the wire passing rotating shaft 131A and the wire passing rotating shaft 131B may be made of one or more of the following materials: iron alloy (such as stainless steel), zinc alloy or aluminum alloy, etc.
  • FIG. 7 it is a schematic structural diagram of another rotating shaft part 130 provided by an embodiment of the present application.
  • the rotating shaft part 130 is provided with a supporting rotating shaft 132B, a supporting rotating shaft 132C, a wire passing rotating shaft 131A and a wire passing rotating shaft 131B.
  • the wire passing rotating shaft 131A and the wire passing rotating shaft 131B are both provided with a wire passing port, a wire passing channel and a locking lug.
  • the arrangement of the wire port, the wire passage and the locking lug is similar to that of the embodiment shown in Figure 6. For details, please refer to the corresponding description in Figure 6. For the sake of simplicity, they will not be described again here. The following mainly introduces the connection method between each rotating shaft in this embodiment.
  • Pin holes 136 are provided at both ends of the line-passing rotating shaft 131A, and the pin holes at both ends penetrate the interior of the line-passing rotating shaft 131A.
  • the pin holes 136A cooperate with the pins provided at one end of the supporting rotating shaft 132B, and the pins can extend into the pin holes.
  • the supporting rotating shaft 132B can rotate relative to the line passing rotating shaft 131A.
  • the pin hole 136B cooperates with the shaft pin 135 provided at one end of the line passing shaft 131B.
  • the shaft pin 135 It can extend into the pin hole 136B, so that the thread-passing rotating shaft 131B can rotate relative to the thread-passing rotating shaft 131A.
  • a shaft pin 135 is provided at one end of the line passing rotating shaft 131B, and the shaft pin 135 can extend into the pin hole 136B, so that the line passing rotating shaft 131B can rotate relative to the line passing rotating shaft 131A.
  • the other end of the line passing shaft 131B is provided with a pin hole 136C.
  • the pin hole 136C can cooperate with the shaft pin provided at one end of the supporting shaft 132C.
  • the shaft pin can extend into the pin hole 136C, so that the supporting shaft 132C can cooperate with the line passing shaft 131B. Relative rotation occurs.
  • a gap is provided between the outer wall of the shaft pin 135 and the hole wall of the pin hole 136B, that is, the outer wall of the shaft pin 135 and the hole wall of the pin hole 136B Do not touch each other.
  • the difference between the diameter of pin hole 136B and the diameter of shaft pin 135 ranges from 0.05 mm to 0.25 mm.
  • a gap is set between a pair of matching shaft pins and the pin holes, that is, The outer wall of the shaft pin and the wall of the pin hole do not abut each other.
  • the difference between the diameter of the pin hole and the diameter of the shaft pin ranges from 0.05 mm to 0.25 mm.
  • a gap is provided between the end of the rotating shaft close to the pin hole and the end of the rotating shaft close to the pin hole, that is, they are connected to each other.
  • the adjacent end surfaces between the two rotating shafts do not abut each other.
  • a gap is provided between adjacent end surfaces of two interconnected rotating shafts, and the gap ranges from 0.05 mm to 0.25 mm.
  • the line passing rotating shaft and the supporting rotating shaft may be made of one or more of the following materials: iron alloy (such as stainless steel), zinc alloy or aluminum alloy, etc.
  • FIG. 9 it is a schematic structural diagram of another rotating shaft part 130 provided by an embodiment of the present application.
  • the rotating shaft part 130 is provided with a supporting rotating shaft 132B, a supporting rotating shaft 132C, a wire passing rotating shaft 131A and a wire passing rotating shaft 131B.
  • the wire passing rotating shaft 131A and the wire passing rotating shaft 131B are both provided with a wire passing port, a wire passing channel and a locking lug.
  • the arrangement of the wire port, the wire passage and the locking lug is similar to that of the embodiment shown in Figure 6. For details, please refer to the corresponding description in Figure 6. For the sake of simplicity, they will not be described again here. The following mainly introduces the connection methods between the various rotating shafts in this embodiment.
  • the shaft pin 135A can cooperate with the pin hole provided on one end of the supporting rotating shaft 132B.
  • the shaft pin 135A can extend into the pin hole to support the space between the rotating shaft 132B and the over-the-line rotating shaft 131A. Relative rotation can occur.
  • the other end of the line passing shaft 131A is provided with a pin hole 136A.
  • the pin hole 136A can cooperate with the shaft pin 135B provided at one end of the line passing shaft 131B.
  • the pin hole 136A can be used to accommodate the shaft pin 135B, so that the line passing shaft 131A and Relative rotation can occur between the thread-passing rotating shafts 131B.
  • One end of the line passing shaft 131B is provided with a shaft pin 135B.
  • the shaft pin 135B can cooperate with the pin hole 136A provided at one end of the line passing shaft 131A.
  • the shaft pin 135B can extend into the pin hole 136A, so that the line passing shaft 131A is connected to the line passing shaft 131A. Relative rotation can occur between the wire shafts 131B.
  • the other end of the over-the-line rotating shaft 131B is provided with a pin hole 136B.
  • the pin hole 136B can cooperate with the shaft pin provided at one end of the supporting rotating shaft 132C.
  • the pin hole 136B can be used to accommodate the pin of the supporting rotating shaft, so that the over-the-line rotating shaft 131B and Relative rotation can occur between the supporting rotating shafts 132C.
  • a gap is provided between the outer wall of the shaft pin 135B and the hole wall of the pin hole 136A, that is, the outer wall of the shaft pin 135B and the hole wall of the pin hole 136A Do not touch each other.
  • the difference between the diameter of pin hole 136A and the diameter of shaft pin 135B ranges from 0.05 mm to 0.25 mm.
  • a gap is set between a pair of matching shaft pins and the pin holes, that is, The outer wall of the shaft pin and the wall of the pin hole do not abut each other.
  • the difference between the diameter of the pin hole and the diameter of the shaft pin ranges from 0.05 mm to 0.25 mm.
  • the end of the rotating shaft close to the pin is in contact with the rotating shaft.
  • a gap is provided between the ends near one end of the pin hole, that is, the adjacent end surfaces between the two connected rotating shafts do not abut each other.
  • a gap is provided between adjacent end surfaces of two interconnected rotating shafts, and the gap ranges from 0.05 mm to 0.25 mm.
  • the line passing rotating shaft and the supporting rotating shaft may be made of one or more of the following materials: iron alloy (such as stainless steel), zinc alloy or aluminum alloy, etc.
  • FIG. 10 it is a schematic structural diagram of yet another rotating shaft part 130 provided by an embodiment of the present application.
  • the rotating shaft part 130 is provided with a supporting rotating shaft 132B, a supporting rotating shaft 132C, a wire passing rotating shaft 131A and a wire passing rotating shaft 131B.
  • the wire passing rotating shaft 131A and the wire passing rotating shaft 131B are both provided with a wire passing port, a wire passing channel and a locking lug.
  • the arrangement of the wire port, the wire passage and the locking lug is similar to that of the embodiment shown in Figure 6. For details, please refer to the corresponding description in Figure 6. For the sake of simplicity, they will not be described again here. The following mainly introduces the connection methods between the various rotating shafts in this embodiment.
  • the shaft pin 135A can cooperate with the pin hole provided on one end of the supporting rotating shaft 132B.
  • the shaft pin 135A can extend into the pin hole to support the space between the rotating shaft 132B and the over-the-line rotating shaft 131A. Relative rotation can occur.
  • the other end of the line passing shaft 131A is provided with a pin hole 136A.
  • the pin hole 136A can cooperate with the shaft pin 135B provided at one end of the line passing shaft 131B.
  • the pin hole 136A can be used to accommodate the shaft pin 135B, so that the line passing shaft 131A and Relative rotation can occur between the thread-passing rotating shafts 131B.
  • One end of the line passing shaft 131B is provided with a shaft pin 135B.
  • the shaft pin 135B can cooperate with the pin hole 136A provided at one end of the line passing shaft 131A.
  • the shaft pin 135B can extend into the pin hole 136A, so that the line passing shaft 131A is connected to the line passing shaft 131A. Relative rotation can occur between the wire shafts 131B.
  • the other end of the line passing shaft 131B is also provided with a shaft pin 135C.
  • the shaft pin 135C cooperates with the pin hole provided at one end of the supporting shaft 132C.
  • the shaft pin 135C can extend into the pin hole, so that the line passing shaft 131B and the supporting shaft 132C are connected. Relative rotation can occur between them.
  • a gap is provided between the outer wall of the shaft pin 135B and the hole wall of the pin hole 136A, that is, the outer wall of the shaft pin 135B and the hole wall of the pin hole 136A Do not touch each other.
  • the difference between the diameter of pin hole 136A and the diameter of shaft pin 135B ranges from 0.05 mm to 0.25 mm.
  • a gap is set between a pair of matching shaft pins and the pin holes, that is, The outer wall of the shaft pin and the wall of the pin hole do not abut each other.
  • the difference between the diameter of the pin hole and the diameter of the shaft pin ranges from 0.05 mm to 0.25 mm.
  • a gap is provided between the end of the rotating shaft close to the pin hole and the end of the rotating shaft close to the pin hole, that is, they are connected to each other.
  • the adjacent end surfaces between the two rotating shafts do not abut each other.
  • a gap is provided between adjacent end surfaces of two interconnected rotating shafts, and the gap ranges from 0.05 mm to 0.25 mm.
  • the line passing rotating shaft and the supporting rotating shaft may be made of one or more of the following materials: iron alloy (such as stainless steel), zinc alloy or aluminum alloy, etc.
  • FIG. 11 it is a schematic structural diagram of yet another rotating shaft portion 130 provided by an embodiment of the present application.
  • the rotating shaft part 130 is provided with a supporting rotating shaft 132B, a supporting rotating shaft 132C, a wire passing rotating shaft 131A and a wire passing rotating shaft 131B.
  • the wire passing rotating shaft 131A and the wire passing rotating shaft 131B are both provided with a wire passing port, a wire passing channel and a locking lug.
  • the arrangement of the wire port, the wire passage and the locking lug is similar to that of the embodiment shown in Figure 6. For details, please refer to the corresponding description in Figure 6. For the sake of simplicity, they will not be described again here. The following mainly introduces the connection methods between the various rotating shafts in this embodiment.
  • Pin holes are provided at both ends of the line-passing rotating shaft 131A, and the pin holes at both ends penetrate the interior of the line-passing rotating shaft 131A.
  • the pin hole 136A cooperates with the shaft pin provided at one end of the supporting shaft 132B, and the shaft pin can extend into the pin hole. 136A, so that the supporting rotating shaft 132B can rotate relative to the line passing rotating shaft 131A.
  • the pin hole 136B cooperates with the shaft pin 135 provided at one end of the line passing rotating shaft 131B.
  • the shaft pin 135 can extend into the pin hole 136B, so that the line passing rotating shaft 131B can rotate relative to the line passing rotating shaft 131A.
  • One end of the line passing shaft 131B is provided with a shaft pin 135B.
  • the shaft pin 135B can cooperate with the pin hole 136A provided at one end of the line passing shaft 131A.
  • the shaft pin 135B can extend into the pin hole 136A, so that the line passing shaft 131A is connected to the line passing shaft 131A. Relative rotation can occur between the wire shafts 131B.
  • the other end of the line-passing rotating shaft 131B is also provided with a shaft pin 135C.
  • the shaft pin 135C matches the pin hole provided at one end of the supporting rotating shaft 132B. When combined, the shaft pin 135C can extend into the pin hole, so that relative rotation can occur between the line-passing rotating shaft 131B and the supporting rotating shaft 132B.
  • a gap is provided between the outer wall of the shaft pin 135 and the hole wall of the pin hole 136B, that is, the outer wall of the shaft pin 135 and the hole wall of the pin hole 136B Do not touch each other.
  • the difference between the diameter of pin hole 136B and the diameter of shaft pin 135 ranges from 0.05 mm to 0.25 mm.
  • a gap is set between a pair of matching shaft pins and the pin hole, that is, The outer wall of the shaft pin and the wall of the pin hole do not abut each other.
  • the difference between the diameter of the pin hole and the diameter of the shaft pin ranges from 0.05 mm to 0.25 mm.
  • a gap is provided between the end of the rotating shaft close to the pin hole and the end of the rotating shaft close to the pin hole, that is, they are connected to each other.
  • the adjacent end surfaces between the two rotating shafts do not abut each other.
  • a gap is provided between adjacent end surfaces of two interconnected rotating shafts, and the gap ranges from 0.05 mm to 0.25 mm.
  • the line passing rotating shaft and the supporting rotating shaft may be made of one or more of the following materials: iron alloy (such as stainless steel), zinc alloy or aluminum alloy, etc.
  • FIG. 12 it is a schematic diagram of another structure of the rotating shaft part 130 provided by the embodiment of the present application.
  • connection method between adjacent rotating shafts in the previous embodiment is applicable to the embodiment of the present application.
  • Figure 12 is only an example. One of the connection methods is schematically shown. For the sake of simplicity, other connection methods will not be described again here. For details, please refer to the descriptions in the related embodiments.
  • the rotating shaft part 130 is provided with a supporting rotating shaft 132B, a line passing rotating shaft 131A and a line passing rotating shaft 131B.
  • the supporting rotating shaft 132B and the line passing rotating shaft 131A can be connected by a shaft pin and a pin hole.
  • the supporting rotating shaft 132B and the line passing rotating shaft 131B They can be connected by a shaft pin and a pin hole, and the line passing shaft 131A and the line passing shaft 131B can also be connected by a shaft pin and a pin hole.
  • a pin hole 136 is provided at one end of the line-passing rotating shaft 131A adjacent to the line-passing rotating shaft 131B.
  • a pin 135 is provided at an end of the corresponding line-passing rotating shaft 131B adjacent to the line-passing rotating shaft 131A.
  • the axis pin 135 can extend into the pin hole.
  • an electrical connection can be provided between the shaft pin 135 and the pin hole 136.
  • a conductive medium 139 such as graphite
  • an electrical connection point 138A may be provided on the locking lug of the wire-passing rotating shaft 131A, and the electrical connection point 138A may be a solder pad.
  • the locking lug of the wire-passing shaft 131B may be provided with an electrical connection point 138B, and the electrical connection point 138B may also be a solder pad.
  • a third connection line 140A is provided between the electrical connection point 138A and the aforementioned conductive medium 139.
  • the surface of the wire-passing shaft 131A can be plated with a conductive line, and the third connection line 140A is used for connection.
  • a fourth connection line 140B is provided between the electrical connection point 138B and the aforementioned conductive medium 139.
  • the surface of the wire-passing shaft 131B can be plated with a conductive line.
  • the fourth connection line 140B is used to connect the conductive medium 139 and the electrical connection. Point 138B.
  • one end of the electrical connection point 138A is connected to the first connection line 112 and the other end is connected to the third connection line 140A.
  • One end of the electrical connection point 138B is connected to the second connection line 122, and the other end is connected to the fourth connection line 140B.
  • the electrical connection points 138A and 138B may not be provided on the locking lug, the first connection line 112 and the third connection line 140A are one line, and the second connection line 122 and the fourth connection line 140B are one line.
  • the wire passing shaft 131A and the wire passing rotating shaft 131B can be made of one or more of the following materials: liquid crystal polymer (liquid crystal polymer, LCP), polycarbonate (PC), polycarbonate Amide fiber (polyamide, PA), glass fiber (glass fiber, GF), etc.
  • a conductive line can be plated on the surface of the wire shaft through a laser circuit board (laser direct structuring, LDS), and the conductive line is used to connect the conductive medium 139 and the electrical connection point 138B.
  • LDS laser direct structuring

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Pivots And Pivotal Connections (AREA)
  • Electric Cable Arrangement Between Relatively Moving Parts (AREA)

Abstract

本申请提供了一种转轴组件和电子设备,该转轴组件的第一连接部用于连接第一电子设备,该转轴组件的第二连接部用于连接第二电子设备,该转轴组件的转轴部包括第一转轴和第二转轴,第一转轴通过第一锁耳与第一连接部连接,第二转轴通过第二锁耳与第二连接部连接。第一连接部上的第一连接线路与第二连接部上的第二连接线路可以通过第一转轴和第二转轴导通。本申请提供的转轴组件和电子设备有利于在为转轴两边的元器件提供有线连接通道的前提下,提高转轴组件和电子设备结构的稳定性,有利于延长电子设备的使用寿命,有利于提升电子设备用户的使用体验。

Description

转轴组件和电子设备
本申请要求于2022年07月21日提交中国专利局、申请号为202221884631.0、发明名称为“转轴组件和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及终端设备技术领域,具体的,涉及一种转轴组件和电子设备。
背景技术
转轴组件可以广泛应用于可折叠的电子设备中,例如可折叠的手机、可折叠的笔记本电脑,可折叠的键盘等等。可折叠的键盘套内部可以视为一种转轴组件,该转轴组件可以用于连接键盘和电子设备,当键盘和电子设备之间需要进行有线连接时,该有线连接的线路可以设置在转轴组件的内部,并穿过该转轴组件的转轴以减少线路的冗余。在这种情况下,转轴组件的转轴既需要维持转轴组件整体结构的稳定性,还需要维持有线连接线路连接的可靠性。
因而,如何在提供可靠的有线连接线路的前提下,维持转轴与其他结构连接的稳定性以及相互连接的多个结构之间相对运动的稳定性是值得考虑的。
发明内容
本申请提供一种转轴组件和电子设备,该转轴组件的转轴分别与转轴两侧的结构件连接,且该转轴组件还可以为转轴两侧的元器件提供有线连接的通路,有利于提升转轴组件结构的稳定性。
第一方面,提供了一种转轴组件,该转轴组件包括:第一连接部,该第一连接部设置有第一连接线路,该第一连接线路用于连接第一电子设备;第二连接部,该第二连接部设置有第二连接线路,该第二连接线路用于连接第二电子设备;转轴部,该转轴部包括第一过线转轴和第二过线转轴,该第一过线转轴的与该第二过线转轴相邻的一端设置有第一销孔,该第二过线转轴的与该第一过线转轴相邻的一端设置有第一轴销,该第一轴销伸入该第一销孔;
其中,该第一连接线路和该第二连接线路之间通过该第一过线转轴和该第二过线转轴导通;该第一过线转轴包括第一锁耳,该第一锁耳与该第一连接部连接,该第二过线转轴包括第二锁耳,该第二锁耳与该第二连接部连接。
在一种可能的实现方式中,第一过线转轴和第二过线转轴设置有电连接结构,该电连接结构用于连接第一连接线路和第二连接线路。示例性的,该第一过线转轴和第二过线转轴的部分或全部可以为导电材料构成,该导电材料组成电连接结构。
在另一种可能的实现方式中,第一过线转轴和第二过线转轴内部可以开设过线通道,第一连接线路和/或第二连接线路可以穿过该过线通道,或者,该过线通道内部设置有用于连接第一连接线路和第二连接线路的连接线路,从而实现第一连接线路和第二连接线路的电连接。
本技术方案中,设置两个过线转轴用于导通第一连接线路和第二连接线路,且这两个过线转轴均设置了锁耳分别与转轴两侧的连接部连接,有利于提高转轴与连接部连接的稳定性。通过轴销和销孔的配合方式来连接两个过线转轴,有利于减少转轴之间的空隙,有利于减少转轴外部空间的粉尘、颗粒等进入转轴之间,有利于降低转轴之间的磨损,提高转轴组件的耐用程度。
结合第一方面,在第一方面的某些实现方式中,该第一连接部设置有受电线圈,该受电线圈与该第一连接线路电气连接,该受电线圈用于与该第一电子设备耦合产生电流;该第二连接部设置有第一电连接件,该第一电连接件与该第二连接线路电气连接,该第一电连接件用于电气连接该第二电子设备。
本技术方案中,第一连接线路用于连接受电线圈,第二连接线路用于连接第一连接件,从而转轴组件具备了通过受电线圈生电后向第二电子设备供电的物理电路条件,有利于丰富转轴组件的功能, 有利于将转轴组件应用于与电子设备充放电相关的应用场景中。
结合第一方面,在第一方面的某些实现方式中,该第一过线转轴内设置有第一过线通道,该第二过线转轴内设置有第二过线通道,该第一过线通道与该第二过线通道导通;该第一连接线路穿过该第一过线通道和该第二过线通道,并与该第二连接线路导通;或者,该第二连接线路穿过该第一过线通道和该第二过线通道,并与该第一连接线路导通;或者,该第一连接线路与该第二连接线路连接于该第一过线通道或该第二过线通道的内部。
本技术方案中,在两个过线转轴内部分别设置过线通道,且两个过线通道相互连通,连接线路可以穿过设置的过线通道,进而实现两个连接线路的相互连接。连接线路不需要暴露在转轴外部,可以防止转轴以及其他结构件之间的相互运动导致的线路的磨损或破坏,有利于提升转轴组件的耐用性,有利于简化转轴组件内部线路的布置。
结合第一方面,在第一方面的某些实现方式中,该第一过线转轴的周向上开设第一过线端口,该第一过线端口与该第一过线通道连通,该第二过线转轴的周向上开设第二过线端口,该第二过线端口与该第二过线通道连通。
本技术方案中,将线路进入过线通道和线路伸出过线通道的进出端口均设置在过线转轴的轴向上,相较于从转轴的端部伸入过线通道的方式,有利于减少线路的冗余,有利于减少线路暴露在转轴外部的长度,有利于保护有线连接的线路,有利于提升转轴组件的耐用性。
结合第一方面,在第一方面的某些实现方式中,该第一过线端口和该第一锁耳位于该第一过线转轴的同一侧,该第二过线端口和该第二锁耳位于该第二过线转轴的同一侧。
应理解,这里锁耳与过线端口位于过线转轴的同一侧是指位于过线转轴的轴向的同一侧。
本技术方案中,将过线端口与锁耳设置在过线转轴的同一侧,相邻转轴之间发生相对转动时,伸入或伸出过线端口的导线可以与锁耳发生同步的转动,从而有利于减少导线的冗余。
结合第一方面,在第一方面的某些实现方式中,该第一过线端口的周向和该第二过线端口的周向设置有倒角。
本技术方案中,在线路进出过线通道的端口处设置倒角,有利于降低线路在端口附近由于磨损导致线路连接不可靠的机率,有利于提高有利于提升转轴组件的耐用性。
结合第一方面,在第一方面的某些实现方式中,该第一过线通道与该第二过线通道同轴。
本技术方案中,第一过线通道与第二过线通道同轴,有利于减少线路在过线通道内部的冗余,有利于减少转轴之间的间隙,有利于减少转轴外部空间的粉尘、颗粒等进入转轴之间,有利于降低转轴之间的磨损,提高转轴组件的耐用程度。
结合第一方面,在第一方面的某些实现方式中,该第一过线通道与该第一过线转轴同轴,该第二过线通道与该第二过线转轴同轴。
当相邻两个过线转轴发生绕轴向的相对转动时,若过线通道与转轴不同轴,则处于两个过线转轴内的两段过线通道会相互分离,处于通道内部的线路会发生轴向和周向的移动。本技术方案中,将过线通道设置与过线转轴同轴,有利于减少过线转轴之间的相对转动导致的过线通道内部的线路的磨损,有利于避免过线通道内部线路的冗余,有利于提升转轴组件的耐用性。
结合第一方面,在第一方面的某些实现方式中,该第一轴销与该第一销孔之间连接有导电介质,该第一过线转轴的轴壁上设置有第三连接线路,该第三连接线路用于导通该第一连接线路与该导电介质,该第二过线转轴的轴壁上设置有第四连接线路,该第四连接线路用于导通该第二连接线路与该导电介质。
本技术方案中,在相互连接的两个过线转轴之间的轴销和销孔之间设置导电介质,并在两个过线转轴的外壁上设置与导电介质连通的导电线路,并使得该导电线路与连接部上的线路相互连接,从而有利于避免在过线转轴内部开设通道,有利于降低过线转轴结构的复杂程度,有利于提高转轴组件装配的效率。
结合第一方面,在第一方面的某些实现方式中,该第三连接线路通过激光直接成型LDS工艺镀在该第一过线转轴的轴壁上,该第四连接线路通过LDS工艺镀在该第二过线转轴的轴壁上。
本技术方案中,通过LDS工艺在转轴的轴壁上镀刻连接线路,有利于降低设置导线对于过线转轴的影响,有利于提高转轴组件提高的有线连接线路的连接可靠性。
结合第一方面,在第一方面的某些实现方式中,该第一锁耳上设置有第一焊盘,该第三连接线路与该第一连接线路在该第一焊盘处连接,该第二锁耳上设置有第二焊盘,该第四连接线路与该第二连接线路在该第二焊盘处连接。
本技术方案中,在转轴的锁耳上设置焊盘,并利用焊盘来连接转轴上的连接线路和连接部内的连接线路,有利于降低线路连接的复杂程度,有利于提升线路连接的可靠性。
结合第一方面,在第一方面的某些实现方式中,该第一过线转轴的轴线处于该第一锁耳所在平面,该第二过线转轴的轴线处于该第二锁耳所在平面。
本技术方案中,使过线转轴的轴线通过锁耳所在的平面,即锁耳处于过线转轴过轴线的纵截面,相邻的两个过线转轴与两个连接部的连接处于对称的位置,有利于提升转轴转动过程中处于转轴两侧的连接部受力的均匀性,有利于防止两个连接部由于受力不均导致的转轴组件的损坏,有利于提高转轴组件的耐用性。
结合第一方面,在第一方面的某些实现方式中,该转轴部还包括支撑转轴,该支撑转轴的端部与该第一过线转轴端部连接,或者,该支撑转轴的端部与该第二过线转轴端部连接。
具体的,该支撑转轴的端部可以与第一过线转轴远离第二过线转轴的一端连接,或者,该支撑转轴的端部可以与第二过线转轴远离第一过线转轴的一端连接。
本技术方案中,转轴组件的转轴部还设置有支撑转轴,该支撑转轴与过线转轴的端部连接,不同类型的转轴可以用于承担转轴部的不同类型的功能,支撑转轴可以用于填充第一连接部与第二连接部之间的空隙,增强了转轴部的整体的力学性能,从而有利于降低由于间隙的存在导致异物从间隙处对转轴组件各结构的破坏。
结合第一方面,在第一方面的某些实现方式中,该支撑转轴的端部设置有第二轴销,该第一过线转轴远离该第二过线转轴的一端设置有第二销孔,该第二轴销伸入该第二销孔;或者,该第二过线转轴远离该第一过线转轴的一端设置有第二销孔,该第二轴销伸入该第二销孔。
结合第一方面,在第一方面的某些实现方式中,该支撑转轴的端部设置有第二销孔,该第一过线转轴远离该第二过线转轴的一端设置有第二轴销,该第二轴销伸入该第二销孔;或者,该第二过线转轴远离该第一过线转轴的一端设置有第二轴销,该第二轴销伸入该第二销孔。
本技术方案中,通过轴销和销孔配合的方法连接支撑转轴与过线转轴,从而过线转轴和支撑转轴之间可以发生相对转动,其他转轴之间的转动结构损坏时,可以有支撑第一连接部和第二连接部之间相对转动的转动结构,有利于提高转轴组件性能的稳定性。
结合第一方面,在第一方面的某些实现方式中,该支撑转轴连接有第三锁耳,该第三锁耳与该第一连接部或该第二连接部连接。
本技术方案中,除过线转轴外,支撑转轴也可以设置锁耳,并利用锁耳与第一连接部或第二连接部连接,有利于增强转轴部与第一连接部和第二连接部连接的稳定性。
结合第一方面,在第一方面的某些实现方式中,该第一过线转轴的数量为多个,该第二过线转轴的数量与该第一过线转轴的数量相同。
结合第一方面,在第一方面的某些实现方式中,该支撑转轴的数量为多个。
本技术方案中,设置多个过线转轴和/或多个支撑转轴可以分担每一个转轴与连接部之间实现连接的相互作用力,有利于减少每一个转轴的负载,有利于延长转轴组件的寿命。
结合第一方面,在第一方面的某些实现方式中,该第一过线转轴和该第二过线转轴由以下材料中的一种或多种制成:铁合金、锌合金和铝合金。
结合第一方面,在第一方面的某些实现方式中,该第一过线转轴和该第二过线转轴由以下材料中的一种或多种制成:液晶高分子聚合物、聚碳酸酯、聚酰胺纤维和玻璃纤维。
第二方面,提供了一种电子设备,该电子设备包括:键盘,该键盘设置有第二电连接器;如第一方面及其任意可能的实现方式中的转轴组件,该转轴组件通过该第二电连接器与该键盘电气连接。
附图说明
图1是本申请实施例提供的一种转轴组件的应用场景。
图2是本申请实施例提供的一种转轴组件的结构示意图。
图3是本申请实施例提供的另一种转轴组件的结构示意图。
图4是本申请实施例提供的又一种转轴组件的结构示意图。
图5是本申请实施例提供的又一种转轴组件的结构示意图。
图6是本申请实施例提供的一种转轴组件的转轴部的结构示意图。
图7是本申请实施例提供的另一种转轴组件的转轴部的结构示意图。
图8是本申请实施例提供的又一种转轴组件的转轴部的结构示意图。
图9是本申请实施例提供的又一种转轴组件的转轴部的结构示意图。
图10是本申请实施例提供的又一种转轴组件的转轴部的结构示意图。
图11是本申请实施例提供的又一种转轴组件的转轴部的结构示意图。
图12是本申请实施例提供的又一种转轴组件的转轴部的结构示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
下面详细描述本申请的实施例,本申请实施例的示例在附图中示出。在附图中,相同或相似的标号表示相同或相似的元件或具有相同或相似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
除非另作定义,此处使用的技术术语或者科学数据应当为本申请所属技术领域内具有一般技能的人士所理解的通常意义。在本申请的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或按时所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
图1所示为本申请实施例提供的一种转轴组件100的应用场景,该转轴组件100可以为可折叠的板状结构,该转轴组件100的板状结构的一部分与第一电子设备200(例如平板电脑)连接,该板状结构的另一部分可以与第二电子设备300(例如键盘)连接,与转轴组件100的两部分之间可以通过转轴连接,从而,转轴组件100的两部分之间可以绕着转轴在一定角度范围内转动。
第一电子设备200可以与转轴组件100之间通过磁吸、粘接、卡扣等方式连接,以实现第一电子设备200与转轴组件100之间的相对固定。第二电子设备300可以与转轴组件100之间通过磁吸、粘接、卡扣、有线等方式连接,以实现第二电子设备300与转轴组件100之间的相对固定。
在第二电子设备300为键盘的情况下,第二电子设备300可以与第一电子设备200通过蓝牙连接、有线连接等方式连接,从而用户可以通过键盘向第一电子设备200输入数据和信息。
在一些实施例中,转轴组件100的内部设置有有线连接线路,该线路的一端与第一电子设备200连接,该线路的另一端与第二电子设备300连接,通过该有线连接线路,可以实现第一电子设备200与第二电子设备300的有线连接。
在另一些实施例中,转轴组件100内部设置有充电线路,该充电线路的一端与第一电子设备200连接,该充电线路的另一端与第二电子设备300连接,通过该充电线路,第一电子设备200可以与第二电子设备300之间实现相互供电或受电的功能。
如图2所示为本申请实施例提供的一种转轴组件100,该转轴组件100可以包括支撑部110和连接部120,该支撑部110又可以称为第一连接部110,该连接部120又可以称为第二连接部120。该转轴组件100还可以设置有转轴部130,支撑部110与连接部120通过转轴部130连接。
在一些实施例中,该转轴组件100的表面可以包覆有防护膜(或称保护层),例如该防护膜可以为皮革、人造皮革等软质材料制成,利用该保护膜可以防止支撑部110、连接部120、转轴部130等转轴组件100的内部部件暴露,进而可以起到保护转轴组件100,提升用户使用体验等作用。
支撑部110可以为薄板状,该支撑部110可以为玻璃纤维板、碳纤维板、玄武岩纤维板或芳纶纤维板等,该薄板的表面可以设置有导线槽,该导线槽可以用于容置导线。
支撑部110可以设置有无线充电线圈111,无线充电线圈111又可称为受电线圈111。该无线充电线圈111连接有第一连接线路112,该第一连接线路112可以为柔性电路板(flexible printed circuit,FPC), 该第一连接线路112可以包括一个或多个分线或支线。
第一电子设备200可以设置有无线充电线圈,该无线充电线圈又可以称为送电线圈,当第一电子设备200与支撑部110连接(例如磁吸连接),上述送电线圈与受电线圈111相互靠近且满足供电条件(例如,例如送电线圈与受电线圈111之间的距离小于预设值)时,送电线圈与受电线圈111之间通过电磁相互作用,在受电线圈111内产生电流,电流可以通过第一连接线路112传输至第一连接线路112远离受电线圈111的另一端。
连接部120可以为薄板状,该连接部120可以为玻璃纤维板、碳纤维板、玄武岩纤维板或芳纶纤维板等,该薄板的表面可以设置有导线槽,该导线槽可以用于容置导线。
连接部120可以设置有第一电连接件121,该第一电连接件121连接有第二连接线路122,该第二连接线路122与第一连接线路112导通,当受电线圈111向第一连接线路112输出电流时,电流可以通过第一连接线路112和第二连接线路122传输至第一电连接件121。该第二连接线路122可以为FPC,该第二连接线路122也可以包括一个或多个分线或支线。
在一些实施例中,该第一电连接件121为弹簧承载端子(spring loaded contact)或称pogo pin连接器或称弹簧针,该pogo pin连接器可以包括:针头、弹簧和针管等部件。
第二电子设备300可以设置第二电连接件310(参见图1中的(b)),在第一电连接件121与第二电连接件310之间实现电连接或电导通的情况下,受电线圈111内产生的电流可以通过第一连接线路112、第二连接线路122、第一电连接件121和第二电连接件310输入至第二电子设备300,从而实现为第二电子设备300供电。
在一些实施例中,第一连接线路112包括多个支线,第二连接线路122也包括多个支线,在这种情况下,第一连接线路112可以全部与第二连接线路122的全部连接,或者,第一连接线路112的部分与第二连接线路122的部分连接。
转轴部130可以设置多种转轴,该多种转轴可以是设置有过线通道的过线转轴,该多种转轴可以是不设置过线通道的支撑转轴,该多种转轴可以是设置锁耳(转轴延伸部)的转轴或者也可以是不设置锁耳的转轴。
转轴的锁耳可以视为转轴的轴壁向远离转轴的轴线方向延伸得到的转轴延伸部或转轴延伸臂,转轴的延伸部与轴体可以通过一体成型的方式制造。该锁耳可以用于使支撑部110和/或连接部120与转轴的轴体固定连接,对于不设置锁耳的支撑转轴,可以在一定程度上降低转轴部130与支撑部110或连接部120之间的装配的工艺复杂程度,提高转轴组件100的生产效率。
在一些实施例中,对于设置锁耳的转轴,锁耳与转轴的轴壁连接的部位可以设置补强结构,例如,该补强结构可以为楔形,该补强结构可以包括相邻的第一连接面和第二连接面,其中,第一连接面与锁耳连接,第二连接面与转轴的轴壁连接,即该补强结构设置在锁耳与转轴连接位置的附近(或称锁耳的根部)。
通过在锁耳与转轴连接位置的附近设置补强结构,有利于减少转轴在转动过程中由于锁耳根部的应力集中导致的锁耳与转轴分离,或锁耳在根部断裂的情况发生,有利于延长转轴的使用寿命。
前述受电线圈111传输至第一电连接件121的电流的传输线路可以穿过转轴部130,示例性的,导电线路可以从转轴靠近支撑部110的一侧伸入转轴部130的一个过线转轴,并沿转轴的轴向延伸一定距离后从另一个过线转轴靠近连接部120的一侧的伸出该转轴部130。根据转轴部130的结构不同,相应的导电线路的设置也可以不同。
在一些实施例中,如图2所示,转轴部130可以设置有多个过线转轴131,该转轴部130也可以设置有多个支撑转轴132,该过线转轴131可以设置有锁耳,该支撑转轴132可以设置有锁耳,即为132A,该支撑转轴132也可以不设置有锁耳,即为132B。
设置有锁耳的相邻的两个转轴的锁耳可以分别与支撑部110和连接部120连接,例如图2中的支撑转轴132A与相邻的过线转轴131,该支撑转轴132A的锁耳与支撑部110连接,相邻的过线转轴131的锁耳与连接部120连接。该支撑转轴132A与相邻的过线转轴131之间可以设置转动结构,以使得支撑转轴132A与相邻的过线转轴131之间可以绕转轴的轴向相对转动,从而带动与转轴连接的支撑部110和/或连接部120绕转轴的轴向转动。
在另一些实施例中,如图3所示,转轴部130可以多个转轴,该多个转轴中均为设置有锁耳的转 轴,这样多个转轴均通过锁耳与支撑部110或连接部120固定连接,有利于提高转轴部130与支撑部110连接的稳定性和可靠性,有利于提高转轴部130与连接部120连接的稳定性和可靠性。
在又一些实施例中,如图4所示,支撑转轴132A与过线转轴131相邻,支撑转轴132A和过线转轴131均设置有锁耳,其中支撑转轴132A的锁耳与连接部120固定连接,过线转轴131的锁耳与连接部120固定连接,即支撑转轴132A的锁耳与过线转轴131的锁耳连接于同一侧。在这种情况下,支撑转轴132A与过线转轴131之间无法发生相对转动,进而支撑转轴132A与过线转轴131之间可以不设置转动结构。在一个实施例中,支撑转轴132A与过线转轴131之间可以是一个转轴的两个部分,例如可以称为第一部分和第二部分,其中第一部分内部不设置过线通道,第二部分内部设置过线通道。
结合图2和图5,第一连接线路112可以包括第一分线112A和第二分线112B,对于过线转轴131,其上可以开设进线端口或者也可以开设出线端口。示例性的,如图2所示,过线转轴131开设的端口面向支撑部110,该端口可以作为第二分线112B的进线口。如图5所示,过线转轴131开设的端口面向连接部120,该端口可以作为第二分线112B的出线口。
在一些实施例中,上述第一连接线路112的部分或全部可以伸入同一过线转轴131并从另一过线转轴131的伸出。或者,上述第二连接线路122的部分或全部可以伸入同一过线转轴131并从另一过线转轴131伸出。或者,上述第一连接线路112的部分或全部可以伸入同一过线转轴131并在该过线转轴131的内部与第二连接线路122的部分或全部连接。
示例性的,如图5所示,第一连接线路112可以包含第一分线112A和第二分线112B,第二连接线路122可以包含第三分线122A和第四分线122B,第二分线112B可以从过线转轴131右侧相邻的过线转轴伸入,并从过线转轴131伸出,从而与第四分线122B连接于连接部120。
在一些实施例中,同一个过线转轴上既可以开设进线端口也可以同时开设出线端口,从而当有多条线路需要穿过转轴部130时,多条线路可以共用同一个过线转轴。
以下结合图6至图12介绍前述过线转轴、支撑转轴的详细结构以及转轴之间的连接方式等。需要说明的是,以下实施例中支撑转轴主要以支撑转轴132B为例进行说明,支撑转轴132A也同样可以适用。
图6中示出了本申请实施例提供的一种转轴部130的结构示意图。
过线转轴131A的轴壁上开设有过线端口133A,该过线端口133A可以是圆形端口或者为矩形端口等,过线端口133A由过线转轴131A的轴壁向轴线方向延伸,并与过线转轴131A内部的过线通道134A打通。由过线端口133A延伸形成的通孔的轴线可以与过线转轴131A轴线所在的平面共面。
在一些实施例中,上述过线端口可以为条状开口,该条状开口可以沿转轴的轴向延伸,第一连接线路和/或第二连接线路可以伸入和/或伸出该条状开口。该条状开口长度方向和宽度方向的连接处可以设置有倒角,也就是说,该端口的轴向上可以设置有倒角。
在一个实施例中,该条状开口的外边缘还设置有软质材料构成的防护层,该防护层可以防止条状开口边缘对于开口附近导线的磨损。
过线转轴131A的内部设置有过线通道134A,该过线通道134A的延伸方向可以与过线转轴131A的轴线平行。在一个实施例中,过线通道134A的轴线与过线转轴131A的轴线重合,即过线通道134A与过线转轴131A同轴。
过线转轴131A的一端可以设置有柱状凸起135,该柱状凸起135还可以称为轴销135,该轴销135的直径小于过线转轴131A的直径。该轴销135的延伸方向与前述过线通道134A的延伸方向一致。过线通道134A可以从轴销135靠近过线转轴131A的一端贯穿至轴销135远离该过线转轴131A的一端。过线通道134A的直径小于轴销135的直径。或者说,轴销135的轴向上开设有通孔,该通孔与过线通道134A打通。
过线转轴131A可以包括一个或多个锁耳137A,该一个或多个锁耳137A设置的位置可以避让过线端口133A。在一些实施例中,锁耳137A所在平面与过线转轴131A的轴线所在平面共面,同时还与过线端口133A延伸形成的通孔的轴线共面。
过线转轴131B的轴壁上开设有过线端口133B,该过线端口133B可以是圆形端口或者为矩形端口等,过线端口133B由过线转轴131B的轴壁向轴线方向延伸,并与过线转轴131B内部的过线通道134B打通。由过线端口133B延伸形成的通孔的轴线可以与过线转轴131B轴线所在的平面共面。
在一些实施例中,上述同一个过线转轴上的过线端口可以与该过线转轴上锁耳位于同一侧,或者同一个过线转轴上的过线端口也可以与该过线转轴上的锁耳分别位于过线转轴的两侧。应理解,这里锁耳与过线端口位于过线转轴的同一侧是指位于过线转轴的轴向的同一侧。
将过线端口与锁耳设置在过线转轴的同一侧,相邻转轴之间发生相对转动时,伸入或伸出过线端口的导线可以与锁耳发生同步的转动,从而有利于减少导线的冗余。
过线转轴131B的内部设置有过线通道134B,该过线通道134B的延伸方向可以与过线转轴131B的轴线平行。在一个实施例中,过线通道134B的轴线与过线转轴131B的轴线重合,即过线通道134B与过线转轴131B同轴。
过线转轴131B的一端可以设置有凹槽136,该凹槽136还可以称为销孔136,该销孔136的直径小于过线转轴131B的直径。该销孔136的延伸方向与过线通道134B的延伸方向一致。过线通道134B的直径可以小于、大于或者等于销孔136的直径。
过线转轴131B可以包括一个或多个锁耳137B,该一个或多个锁耳137B设置的位置可以避让过线端口133B。在一些实施例中,锁耳137B所在平面与过线转轴131B的轴线所在平面共面,同时还与过线端口133B延伸形成的通孔的轴线共面。
过线转轴131A的轴销135的直径小于过线转轴131B的销孔136的直径,轴销135可以伸入到销孔136内,从而过线通道134A可以与过线通道134B连通,进一步地,导线可以从过线端口133A伸入到过线通道134A再进入过线通道134B,进而从过线端口133B伸出。过线通道134A可以与过线通道134B同轴。轴销135也可以与销孔136同轴。
在一些实施例中,当轴销135伸入到销孔136中时,轴销135的外壁与销孔136的孔壁之间设置有间隙,即轴销135的外壁与销孔136的孔壁不相互抵接。在一个实施例中,销孔136的直径与轴销135的直径之间的差值范围在0.05mm到0.25mm之间。
在轴销与销孔之间设置间隙,有利于防止相邻转轴之间相互转动的过程中,轴销与销孔之间的摩擦力过大影响转动效果,也有利于减少轴销与销孔之间的相对转动导致的结构磨损,有利于延长转轴的使用寿命。
在一些实施例中,当轴销135伸入到销孔136中时,过线转轴131A靠近轴销135一端的端部与过线转轴131B靠近销孔136一端的端部之间设置有间隙,即相互连接的两个过线转轴之间的相邻端面不相互抵接。在一个实施例中,相互连接的两个过线转轴之间的相邻端面之间设置有间隙,该间隙的范围在0.05mm到0.25mm之间。
在相连的两个过线转轴的相邻端面之间设置间隙,有利于减小过线转轴在相对转动过程中,端面由于相互接触造成的磨损,有利于延长转轴的使用寿命。
伸入销孔136内的轴销135可以与销孔136发生相对转动,从而过线转轴131A可以与过线转轴131B发生相对转动。
在一个实施例中,当过线转轴131A与过线转轴131B发生相对转动的过程中,伸入过线转轴131A的导线P1P2段仅围绕P2点转动,伸出过线转轴131B的导线P3P4段仅围绕P3点转动,其中点P2和点P3分别处于过线转轴131A的轴线和过线转轴131B的轴线上。在这种情况下,当支撑部110和/或连接部120绕转轴部130发生转动时,支撑部110和/或连接部120的旋转轴线经过导线的旋转中心,可以一定程度上减少导线的冗余。
本申请实施例中,过线转轴131A和过线转轴131B可以由以下材料中的一种或多种制成:铁合金(例如不锈钢)、锌合金或铝合金等。
如图7所示,为本申请实施例提供的另一转轴部130的结构示意图。
该转轴部130设置有支撑转轴132B、支撑转轴132C、过线转轴131A和过线转轴131B,其中过线转轴131A和过线转轴131B均设置有过线端口和过线通道以及锁耳,该过线端口、过线通道和锁耳的设置与图6所示实施例的设置方式类似,具体可以参考图6中对应的描述,为了简洁,此处不再赘述。以下主要介绍本实施例中各个转轴之间的连接方式。
过线转轴131A的两端均设置有销孔136,且两端的销孔在过线转轴131A的内部贯通,其中销孔136A与支撑转轴132B一端设置的轴销配合,该轴销可以伸入销孔136A中,从而支撑转轴132B可以与过线转轴131A发生相对转动。销孔136B与过线转轴131B一端设置的轴销135配合,该轴销135 可以伸入销孔136B中,从而过线转轴131B可以与过线转轴131A发生相对转动。
过线转轴131B的一端设置有轴销135,该轴销135可以伸入销孔136B中,从而过线转轴131B可以与过线转轴131A发生相对转动。过线转轴131B的另一端设置有销孔136C,该销孔136C可以与支撑转轴132C一端设置的轴销配合,该轴销可以伸入销孔136C中,从而支撑转轴132C可以与过线转轴131B发生相对转动。
在一些实施例中,当轴销135伸入到销孔136B中时,轴销135的外壁与销孔136B的孔壁之间设置有间隙,即轴销135的外壁与销孔136B的孔壁不相互抵接。在一个实施例中,销孔136B的直径与轴销135的直径之间的差值范围在0.05mm到0.25mm之间。
当支撑转轴的轴销伸入到过线转轴的销孔中,或者当支撑转轴的销孔容置过线转轴的轴销时,相互配合的一对轴销和销孔之间设置间隙,即轴销外壁与销孔孔壁不相互抵接。在一个实施例中,销孔的直径与轴销的直径之间的差值范围在0.05mm到0.25mm之间。
在轴销与销孔之间设置间隙,有利于防止相邻转轴之间相互转动的过程中,轴销与销孔之间的摩擦力过大影响转动效果,也有利于减少轴销与销孔之间的相对转动导致的结构磨损,有利于延长转轴的使用寿命。
在一些实施例中,当相邻的两个转轴的轴销伸入到销孔中时,转轴靠近轴销一端的端部与转轴靠近销孔一端的端部之间设置有间隙,即相互连接的两个转轴之间的相邻端面不相互抵接。在一个实施例中,相互连接的两个转轴之间的相邻端面之间设置有间隙,该间隙的范围在0.05mm到0.25mm之间。
在相连的两个转轴的相邻端面之间设置间隙,有利于减小转轴在相对转动过程中,端面由于相互接触造成的磨损,有利于延长转轴的使用寿命。本申请实施例中,过线转轴和支撑转轴可以由以下材料中的一种或多种制成:铁合金(例如不锈钢)、锌合金或铝合金等。
如图8所示,当支撑转轴132B、过线转轴131A和过线转轴131B之间通过轴销和销孔的相互配合连接时,相邻转轴之间的缝隙可以忽略不计,从而有利于减小转轴之间存在缝隙对键盘保护膜的不利影响,有利于延长转轴组件100的使用寿命。
图9所示,为本申请实施例提供的又一种转轴部130的结构示意图。
该转轴部130设置有支撑转轴132B、支撑转轴132C、过线转轴131A和过线转轴131B,其中过线转轴131A和过线转轴131B均设置有过线端口和过线通道以及锁耳,该过线端口、过线通道和锁耳的设置与图6所示实施例的设置方式类似,具体可以参考图6中对应的描述,为了简洁,此处不再赘述。以下主要介绍本实施例中各个转轴之间的连接方式。
过线转轴131A的一端设置有轴销135A,该轴销135A可以与支撑转轴132B一端设置的销孔配合,该轴销135A可以伸入销孔中,从而支撑转轴132B与过线转轴131A之间可以发生相对转动。过线转轴131A的另一端设置有销孔136A,该销孔136A可以与过线转轴131B一端设置的轴销135B配合,该销孔136A可以用于容置轴销135B,从而过线转轴131A与过线转轴131B之间可以发生相对转动。
过线转轴131B的一端设置有轴销135B,该轴销135B可以与过线转轴131A一端设置的销孔136A配合,该轴销135B可以伸入该销孔136A中,从而过线转轴131A与过线转轴131B之间可以发生相对转动。过线转轴131B的另一端设置有销孔136B,该销孔136B可以与支撑转轴132C一端设置的轴销配合,该销孔136B可以用于容置支撑转轴该轴销,从而过线转轴131B与支撑转轴132C之间可以发生相对转动。
在一些实施例中,当轴销135B伸入到销孔136A中时,轴销135B的外壁与销孔136A的孔壁之间设置有间隙,即轴销135B的外壁与销孔136A的孔壁不相互抵接。在一个实施例中,销孔136A的直径与轴销135B的直径之间的差值范围在0.05mm到0.25mm之间。
当支撑转轴的轴销伸入到过线转轴的销孔中,或者当支撑转轴的销孔容置过线转轴的轴销时,相互配合的一对轴销和销孔之间设置间隙,即轴销外壁与销孔孔壁不相互抵接。在一个实施例中,销孔的直径与轴销的直径之间的差值范围在0.05mm到0.25mm之间。
在轴销与销孔之间设置间隙,有利于防止相邻转轴之间相互转动的过程中,轴销与销孔之间的摩擦力过大影响转动效果,也有利于减少轴销与销孔之间的相对转动导致的结构磨损,有利于延长转轴的使用寿命。
在一些实施例中,当相邻的两个转轴的轴销伸入到销孔中时,转轴靠近轴销一端的端部与转轴靠 近销孔一端的端部之间设置有间隙,即相互连接的两个转轴之间的相邻端面不相互抵接。在一个实施例中,相互连接的两个转轴之间的相邻端面之间设置有间隙,该间隙的范围在0.05mm到0.25mm之间。
在相连的两个转轴的相邻端面之间设置间隙,有利于减小转轴在相对转动过程中,端面由于相互接触造成的磨损,有利于延长转轴的使用寿命。
本申请实施例中,过线转轴和支撑转轴可以由以下材料中的一种或多种制成:铁合金(例如不锈钢)、锌合金或铝合金等。
如图10所示,为本申请实施例提供的又一种转轴部130的结构示意图。
该转轴部130设置有支撑转轴132B、支撑转轴132C、过线转轴131A和过线转轴131B,其中过线转轴131A和过线转轴131B均设置有过线端口和过线通道以及锁耳,该过线端口、过线通道和锁耳的设置与图6所示实施例的设置方式类似,具体可以参考图6中对应的描述,为了简洁,此处不再赘述。以下主要介绍本实施例中各个转轴之间的连接方式。
过线转轴131A的一端设置有轴销135A,该轴销135A可以与支撑转轴132B一端设置的销孔配合,该轴销135A可以伸入销孔中,从而支撑转轴132B与过线转轴131A之间可以发生相对转动。过线转轴131A的另一端设置有销孔136A,该销孔136A可以与过线转轴131B一端设置的轴销135B配合,该销孔136A可以用于容置轴销135B,从而过线转轴131A与过线转轴131B之间可以发生相对转动。
过线转轴131B的一端设置有轴销135B,该轴销135B可以与过线转轴131A一端设置的销孔136A配合,该轴销135B可以伸入该销孔136A中,从而过线转轴131A与过线转轴131B之间可以发生相对转动。过线转轴131B的另一端也设置有轴销135C,该轴销135C与支撑转轴132C一端设置的销孔配合,该轴销135C可以伸入该销孔中,从而过线转轴131B与支撑转轴132C之间可以发生相对转动。
在一些实施例中,当轴销135B伸入到销孔136A中时,轴销135B的外壁与销孔136A的孔壁之间设置有间隙,即轴销135B的外壁与销孔136A的孔壁不相互抵接。在一个实施例中,销孔136A的直径与轴销135B的直径之间的差值范围在0.05mm到0.25mm之间。
当支撑转轴的轴销伸入到过线转轴的销孔中,或者当支撑转轴的销孔容置过线转轴的轴销时,相互配合的一对轴销和销孔之间设置间隙,即轴销外壁与销孔孔壁不相互抵接。在一个实施例中,销孔的直径与轴销的直径之间的差值范围在0.05mm到0.25mm之间。
在轴销与销孔之间设置间隙,有利于防止相邻转轴之间相互转动的过程中,轴销与销孔之间的摩擦力过大影响转动效果,也有利于减少轴销与销孔之间的相对转动导致的结构磨损,有利于延长转轴的使用寿命。
在一些实施例中,当相邻的两个转轴的轴销伸入到销孔中时,转轴靠近轴销一端的端部与转轴靠近销孔一端的端部之间设置有间隙,即相互连接的两个转轴之间的相邻端面不相互抵接。在一个实施例中,相互连接的两个转轴之间的相邻端面之间设置有间隙,该间隙的范围在0.05mm到0.25mm之间。
在相连的两个转轴的相邻端面之间设置间隙,有利于减小转轴在相对转动过程中,端面由于相互接触造成的磨损,有利于延长转轴的使用寿命。
本申请实施例中,过线转轴和支撑转轴可以由以下材料中的一种或多种制成:铁合金(例如不锈钢)、锌合金或铝合金等。
如图11所示,为本申请实施例提供的又一种转轴部130的结构示意图。
该转轴部130设置有支撑转轴132B、支撑转轴132C、过线转轴131A和过线转轴131B,其中过线转轴131A和过线转轴131B均设置有过线端口和过线通道以及锁耳,该过线端口、过线通道和锁耳的设置与图6所示实施例的设置方式类似,具体可以参考图6中对应的描述,为了简洁,此处不再赘述。以下主要介绍本实施例中各个转轴之间的连接方式。
过线转轴131A的两端均设置有销孔,且两端的销孔在过线转轴131A的内部贯通,其中销孔136A与支撑转轴132B一端设置的轴销配合,该轴销可以伸入销孔136A中,从而支撑转轴132B可以与过线转轴131A发生相对转动。销孔136B与过线转轴131B一端设置的轴销135配合,该轴销135可以伸入销孔136B中,从而过线转轴131B可以与过线转轴131A发生相对转动。
过线转轴131B的一端设置有轴销135B,该轴销135B可以与过线转轴131A一端设置的销孔136A配合,该轴销135B可以伸入该销孔136A中,从而过线转轴131A与过线转轴131B之间可以发生相对转动。过线转轴131B的另一端也设置有轴销135C,该轴销135C与支撑转轴132B一端设置的销孔配 合,该轴销135C可以伸入该销孔中,从而过线转轴131B与支撑转轴132B之间可以发生相对转动。
在一些实施例中,当轴销135伸入到销孔136B中时,轴销135的外壁与销孔136B的孔壁之间设置有间隙,即轴销135的外壁与销孔136B的孔壁不相互抵接。在一个实施例中,销孔136B的直径与轴销135的直径之间的差值范围在0.05mm到0.25mm之间。
当支撑转轴的轴销伸入到过线转轴的销孔中,或者当支撑转轴的销孔容置过线转轴的轴销时,相互配合的一对轴销和销孔之间设置间隙,即轴销外壁与销孔孔壁不相互抵接。在一个实施例中,销孔的直径与轴销的直径之间的差值范围在0.05mm到0.25mm之间。
在轴销与销孔之间设置间隙,有利于防止相邻转轴之间相互转动的过程中,轴销与销孔之间的摩擦力过大影响转动效果,也有利于减少轴销与销孔之间的相对转动导致的结构磨损,有利于延长转轴的使用寿命。
在一些实施例中,当相邻的两个转轴的轴销伸入到销孔中时,转轴靠近轴销一端的端部与转轴靠近销孔一端的端部之间设置有间隙,即相互连接的两个转轴之间的相邻端面不相互抵接。在一个实施例中,相互连接的两个转轴之间的相邻端面之间设置有间隙,该间隙的范围在0.05mm到0.25mm之间。
在相连的两个转轴的相邻端面之间设置间隙,有利于减小转轴在相对转动过程中,端面由于相互接触造成的磨损,有利于延长转轴的使用寿命。
本申请实施例中,过线转轴和支撑转轴可以由以下材料中的一种或多种制成:铁合金(例如不锈钢)、锌合金或铝合金等。
如图12所示,为本申请实施例提供的又一种转轴部130结构的示意图。
与前述实施例不同,本申请实施例中过线转轴内部可以不开设过线通道,前述实施例中任一种相邻转轴之间的连接方式均适用于本申请实施例,图12中仅示例性的展示了其中一种连接方式,为了简洁,对于其他连接方式此处不再赘述,详细内容可以参考前述相关实施例中的描述。
该转轴部130设置有支撑转轴132B、过线转轴131A和过线转轴131B,支撑转轴132B与过线转轴131A之间可以通过轴销和销孔配合的方式连接,支撑转轴132B与过线转轴131B之间可以通过轴销和销孔配合的方式连接,过线转轴131A与过线转轴131B之间也可以通过轴销和销孔配合的方式连接。
过线转轴131A与过线转轴131B相邻的一端设置有销孔136,对应的过线转轴131B与过线转轴131A相邻的一端设置有轴销135,该轴销135可以伸入到销孔136中,轴销135与销孔136之间可以设置电连接。示例性的,在轴销135的端部与销孔136的内壁之间可以填充有导电介质139(例如石墨),从而实现过线转轴131A与过线转轴131B之间的电气连接。
在一些实施例中,过线转轴131A的锁耳上可以设置有电连接点138A,该电连接点138A可以为焊盘。过线转轴131B的锁耳上可以设置有电连接点138B,该电连接点138B也可以为焊盘。
在一些实施例中,电连接点138A与前述导电介质139之间设置有第三连接线路140A,示例性的,过线转轴131A的表面可以镀有导电线路,该第三连接线路140A用于连接导电介质139和电连接点138A。电连接点138B与前述导电介质139之间设置有第四连接线路140B,示例性的,过线转轴131B的表面可以镀有导电线路,该第四连接线路140B用于连接导电介质139和电连接点138B。
在一些实施例中,电连接点138A的一端连接第一连接线路112,另一端连接第三连接线路140A。电连接点138B的一端连接第二连接线路122,另一端连接第四连接线路140B。
在另一些实施例中,锁耳上可以不设置电连接点138A和138B,第一连接线路112和第三连接线路140A为一条线路,第二连接线路122和第四连接线路140B为一条线路。
本申请实施例中,过线转轴131A和过线转轴131B可以采用以下材料中的一种或多种:液晶高分子聚合物(liquid crystal polymer,LCP)、聚碳酸酯(polycarbonate,PC)、聚酰胺纤维(polyamide,PA)、玻璃纤维(glass fiber,GF)等
在一些实施例中,可以通过激光电路板(laser direct structuring,LDS)在过线转轴的表面镀上导电线路,该导电线路用于连接导电介质139和电连接点138B。
在本说明书中描述的参考“一个实施例”或“一些实施例”等意味着在本申请的一个或多个实施例中包括结合该实施例描述的特定特征、结构或特点。由此,在本说明书中的不同之处出现的语句“在一个实施例中”、“在一些实施例中”、“在其他一些实施例中”、“在另外一些实施例中”等不是 必然都参考相同的实施例,而是意味着“一个或多个但不是所有的实施例”,除非是以其他方式另外特别强调。术语“包括”、“包含”、“具有”及它们的变形都意味着“包括但不限于”,除非是以其他方式另外特别强调。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种转轴组件(100),其特征在于,包括:
    第一连接部(110),所述第一连接部(110)设置有第一连接线路(112),所述第一连接线路(112)用于连接第一电子设备;
    第二连接部(120),所述第二连接部(120)设置有第二连接线路(122),所述第二连接线路(122)用于连接第二电子设备;
    转轴部(130),所述转轴部(130)包括第一过线转轴和第二过线转轴,所述第一过线转轴与所述第二过线转轴相邻的一端设置有第一销孔,所述第二过线转轴与所述第一过线转轴相邻的一端设置有第一轴销,所述第一轴销伸入所述第一销孔;
    其中,所述第一连接线路(112)和所述第二连接线路(122)之间通过所述第一过线转轴和所述第二过线转轴导通;
    所述第一过线转轴包括第一锁耳,所述第一锁耳与所述第一连接部(110)连接,所述第二过线转轴包括第二锁耳,所述第二锁耳与所述第二连接部(120)连接。
  2. 根据权利要求1所述的转轴组件(100),其特征在于,所述第一连接部(110)设置有受电线圈(111),所述受电线圈(111)与所述第一连接线路(112)电气连接,所述受电线圈(111)用于与所述第一电子设备耦合产生电流;
    所述第二连接部(120)设置有第一电连接件(121),所述第一电连接件(121)与所述第二连接线路(122)电气连接,所述第一电连接件(121)用于电气连接所述第二电子设备。
  3. 根据权利要求2所述的转轴组件(100),其特征在于,所述第一过线转轴内设置有第一过线通道,所述第二过线转轴内设置有第二过线通道,所述第一过线通道与所述第二过线通道导通;
    所述第一连接线路(112)穿过所述第一过线通道和所述第二过线通道,并与所述第二连接线路(122)导通;或者,
    所述第二连接线路(122)穿过所述第一过线通道和所述第二过线通道,并与所述第一连接线路(112)导通;或者,
    所述第一连接线路(112)与所述第二连接线路(122)连接于所述第一过线通道或所述第二过线通道的内部。
  4. 根据权利要求3所述的转轴组件(100),其特征在于,所述第一过线转轴的周向上开设第一过线端口,所述第一过线端口与所述第一过线通道连通,所述第二过线转轴的周向上开设第二过线端口,所述第二过线端口与所述第二过线通道连通。
  5. 根据权利要求4所述的转轴组件(100),其特征在于,所述第一过线端口和所述第一锁耳位于所述第一过线转轴的同一侧,所述第二过线端口和所述第二锁耳位于所述第二过线转轴的同一侧。
  6. 根据权利要求5所述的转轴组件(100),其特征在于,所述第一过线端口的周向和所述第二过线端口的周向设置有倒角。
  7. 根据权利要求3至6中任一项所述的转轴组件(100),其特征在于,所述第一过线通道与所述第一过线转轴同轴,所述第二过线通道与所述第二过线转轴同轴。
  8. 根据权利要求3至6中任一项所述的转轴组件(100),其特征在于,所述第一过线通道与所述第二过线通道同轴。
  9. 根据权利要求2所述的转轴组件(100),其特征在于,所述第一轴销与所述第一销孔之间连接有导电介质(139),所述第一过线转轴的轴壁上设置有第三连接线路,所述第三连接线路用于导通所述第一连接线路(112)与所述导电介质(139),所述第二过线转轴的轴壁上设置有第四连接线路,所述第四连接线路用于导通所述第二连接线路(122)与所述导电介质(139)。
  10. 根据权利要求9所述的转轴组件(100),其特征在于,所述第三连接线路通过激光直接成型LDS工艺镀在所述第一过线转轴的轴壁上,所述第四连接线路通过LDS工艺镀在所述第二过线转轴的轴壁上。
  11. 根据权利要求9或10所述的转轴组件(100),其特征在于,所述第一锁耳上设置有第一焊 盘,所述第三连接线路与所述第一连接线路(112)在所述第一焊盘处连接,所述第二锁耳上设置有第二焊盘,所述第四连接线路与所述第二连接线路(122)在所述第二焊盘处连接。
  12. 根据权利要求1至6或者权利要求9或10中任一项所述的转轴组件(100),其特征在于,所述第一过线转轴的轴线处于所述第一锁耳所在平面,所述第二过线转轴的轴线处于所述第二锁耳所在平面。
  13. 根据权利要求1至6或者权利要求9或10中任一项所述的转轴组件(100),其特征在于,所述转轴部(130)还包括支撑转轴(132),所述支撑转轴(132)的端部与所述第一过线转轴端部连接,或者,所述支撑转轴(132)的端部与所述第二过线转轴的端部连接。
  14. 根据权利要求13所述的转轴组件(100),其特征在于,所述支撑转轴(132)的端部设置有第二轴销,所述第一过线转轴远离所述第二过线转轴的一端设置有第二销孔,所述第二轴销伸入所述第二销孔;或者,
    所述第二过线转轴远离所述第一过线转轴的一端设置有第二销孔,所述第二轴销伸入所述第二销孔。
  15. 根据权利要求14所述的转轴组件(100),其特征在于,所述支撑转轴(132)的端部设置有第二销孔,所述第一过线转轴远离所述第二过线转轴的一端设置有第二轴销,所述第二轴销伸入所述第二销孔;或者,
    所述第二过线转轴远离所述第一过线转轴的一端设置有第二轴销,所述第二轴销伸入所述第二销孔。
  16. 根据权利要求13所述的转轴组件(100),其特征在于,所述支撑转轴(132)连接有第三锁耳,所述第三锁耳与所述第一连接部(110)或所述第二连接部(120)连接。
  17. 根据权利要求1至6或者权利要求9或10中任一项所述的转轴组件(100),其特征在于,所述第一过线转轴的数量为多个,所述第二过线转轴的数量与所述第一过线转轴的数量相同。
  18. 根据权利要求13或14所述的转轴组件(100),其特征在于,所述支撑转轴(132)的数量为多个。
  19. 根据权利要求1至6中任一项所述的转轴组件(100),其特征在于,所述第一过线转轴和所述第二过线转轴由以下材料中的一种或多种制成:铁合金、锌合金和铝合金。
  20. 根据权利要求9或10所述的转轴组件(100),其特征在于,所述第一过线转轴和所述第二过线转轴由以下材料中的一种或多种制成:液晶高分子聚合物、聚碳酸酯、聚酰胺纤维和玻璃纤维。
  21. 一种电子设备,其特征在于,包括:
    键盘,所述键盘设置有第二电连接件(310);
    如权利要求1至20中任一项所述的转轴组件(100),所述转轴组件通过所述第二电连接件(310)与所述键盘电气连接。
PCT/CN2023/106810 2022-07-21 2023-07-11 转轴组件和电子设备 WO2024017095A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221884631.0U CN218882773U (zh) 2022-07-21 2022-07-21 转轴组件和电子设备
CN202221884631.0 2022-07-21

Publications (1)

Publication Number Publication Date
WO2024017095A1 true WO2024017095A1 (zh) 2024-01-25

Family

ID=85949344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106810 WO2024017095A1 (zh) 2022-07-21 2023-07-11 转轴组件和电子设备

Country Status (2)

Country Link
CN (1) CN218882773U (zh)
WO (1) WO2024017095A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN218882773U (zh) * 2022-07-21 2023-04-18 华为技术有限公司 转轴组件和电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170139445A1 (en) * 2015-11-17 2017-05-18 Lenovo (Beijing) Limited Connecting apparatus, rotating shaft and electronic device
CN108990330A (zh) * 2018-08-29 2018-12-11 Oppo广东移动通信有限公司 壳体组件及电子设备
CN209402552U (zh) * 2018-10-26 2019-09-17 Oppo广东移动通信有限公司 折叠式电子设备转轴连接件、壳体组件以及电子设备
CN110805610A (zh) * 2019-09-29 2020-02-18 华为技术有限公司 一种转轴组件及电子设备
CN111367363A (zh) * 2020-03-30 2020-07-03 联想(北京)有限公司 一种转轴组件、电子设备及组装电子设备的方法
CN111556931A (zh) * 2018-04-17 2020-08-18 华为技术有限公司 开合机构及电子设备
CN211501303U (zh) * 2019-12-13 2020-09-15 上海闻泰信息技术有限公司 转轴组件及电子设备
CN211778483U (zh) * 2019-12-23 2020-10-27 九阳股份有限公司 一种能够通线的合页和吸油烟机
JP6843206B1 (ja) * 2019-10-04 2021-03-17 レノボ・シンガポール・プライベート・リミテッド ヒンジ装置及び携帯用情報機器
CN218882773U (zh) * 2022-07-21 2023-04-18 华为技术有限公司 转轴组件和电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170139445A1 (en) * 2015-11-17 2017-05-18 Lenovo (Beijing) Limited Connecting apparatus, rotating shaft and electronic device
CN111556931A (zh) * 2018-04-17 2020-08-18 华为技术有限公司 开合机构及电子设备
CN108990330A (zh) * 2018-08-29 2018-12-11 Oppo广东移动通信有限公司 壳体组件及电子设备
CN209402552U (zh) * 2018-10-26 2019-09-17 Oppo广东移动通信有限公司 折叠式电子设备转轴连接件、壳体组件以及电子设备
CN110805610A (zh) * 2019-09-29 2020-02-18 华为技术有限公司 一种转轴组件及电子设备
JP6843206B1 (ja) * 2019-10-04 2021-03-17 レノボ・シンガポール・プライベート・リミテッド ヒンジ装置及び携帯用情報機器
CN211501303U (zh) * 2019-12-13 2020-09-15 上海闻泰信息技术有限公司 转轴组件及电子设备
CN211778483U (zh) * 2019-12-23 2020-10-27 九阳股份有限公司 一种能够通线的合页和吸油烟机
CN111367363A (zh) * 2020-03-30 2020-07-03 联想(北京)有限公司 一种转轴组件、电子设备及组装电子设备的方法
CN218882773U (zh) * 2022-07-21 2023-04-18 华为技术有限公司 转轴组件和电子设备

Also Published As

Publication number Publication date
CN218882773U (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2024017095A1 (zh) 转轴组件和电子设备
US9130317B2 (en) Connector assembly
US8602795B2 (en) Electrical connector
MX2014005608A (es) Conector electronico de orientacion dual con contactos externos.
TWI720482B (zh) 高速線端連接器製造方法
US8144475B2 (en) Electrical components coupled to circuit boards
US20140235163A1 (en) Data transport in portable electronic devices
CN107124490A (zh) 电子设备
WO2019137433A1 (zh) 射频线缆头及射频性能测试装置
US20150333458A1 (en) Releasable plug connector system
CN203103611U (zh) 插头连接器和双面插头连接器
CN101953029A (zh) 电连接器线缆及应用其的装置
US20090156260A1 (en) Method and apparatus for electrical interconnection for a rotationally opening electronic device
US20220045457A1 (en) Electromagnetic connectors
TWM579828U (zh) Connector plug with guide post capable of guiding the tongue to accurately interface
WO2024002002A1 (zh) 连接器母座、连接器组件及电子设备
US20180090878A1 (en) Magnetic rf connectors
US20060002058A1 (en) Hinge for an electronic device
JP2013242976A (ja) コネクタ接続構造及び電子機器
WO2019095618A1 (zh) 数据线公头接口、数据线母座接口及数据线
CN109687245A (zh) 转接器及连接器组件
US20220352683A1 (en) Connector, a data wire and an electronic device
WO2021103916A1 (zh) 电连接件、电路组件以及电子设备
US11226657B2 (en) Display apparatus
US11609616B2 (en) Portable electronic apparatus having detachable key cap

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23842160

Country of ref document: EP

Kind code of ref document: A1