WO2024016909A1 - 胸外按压反馈方法及装置、存储介质和电子设备 - Google Patents

胸外按压反馈方法及装置、存储介质和电子设备 Download PDF

Info

Publication number
WO2024016909A1
WO2024016909A1 PCT/CN2023/100187 CN2023100187W WO2024016909A1 WO 2024016909 A1 WO2024016909 A1 WO 2024016909A1 CN 2023100187 W CN2023100187 W CN 2023100187W WO 2024016909 A1 WO2024016909 A1 WO 2024016909A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression
chest
rebound
period
duration
Prior art date
Application number
PCT/CN2023/100187
Other languages
English (en)
French (fr)
Inventor
孔伟方
章军辉
龚玉麒
Original Assignee
苏州尚领医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州尚领医疗科技有限公司 filed Critical 苏州尚领医疗科技有限公司
Publication of WO2024016909A1 publication Critical patent/WO2024016909A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H31/00Artificial respiration or heart stimulation, e.g. heart massage
    • A61H31/004Heart stimulation
    • A61H31/006Power driven

Definitions

  • the present application relates to the field of medical devices, and in particular to a chest compression feedback method and device, storage media and electronic equipment.
  • Cardiac arrest refers to a near-death state that is directly caused by arrhythmia and/or the disappearance of the effective beating of the heart, which directly leads to the sudden cessation of the mechanical activity of the heart's pumping function, resulting in interruption of systemic blood circulation, cessation of breathing, and loss of consciousness.
  • Cardiopulmonary resuscitation is the cornerstone of saving the lives of cardiac arrest patients. During most of the time of cardiac arrest, sufficient blood flow must be generated through effective chest compressions to deliver oxygen and metabolic substrates to key organs and tissues; whether the patient can Restoration of spontaneous circulation depends on the adequacy of myocardial oxygen and blood flow delivered to the heart during cardiopulmonary resuscitation.
  • the expansion of the chest generates negative pressure relative to the atmospheric pressure in the chest, which promotes venous return and increases the preload of the thoracic pump. Blood flows from the venous system "Flow back into the pump - the heart", ready for pumping out during the next compression.
  • chest compression feedback devices that can collect, analyze, and provide feedback on data during manual compressions. , thereby providing a basis for the evaluation and guidance of chest compressions.
  • a chest compression feedback device for example, US Patent Publication No. US6390996B1 discloses a CPR auxiliary device that only uses an accelerometer to measure the depth of compression.
  • This CPR auxiliary device only relies on acceleration data obtained by the accelerometer. Estimate the depth of compression. It is foreseeable that if the user shakes the CPR auxiliary device, the accelerometer can also obtain acceleration data, so that the CPR auxiliary device will not perform real compressions. The number of compressions and depth of compressions are obtained under this condition, which is obviously inaccurate.
  • the acceleration sensor will also receive acceleration data generated by non-real compressions, and the CPR auxiliary equipment will obtain the same result as the real compressions. This is also inaccurate for different number of compressions and depth of compressions.
  • Another chest compression feedback device for example, US patent publication number US5496257A discloses a device for assisting cardiopulmonary resuscitation; US patent publication number US6125299A discloses an AED with a force sensor. These devices only measure the force exerted on the patient's chest, but not the actual depth of compression. It is understandable that due to the different physiques of different patients, the depth of compression cannot be accurately inferred by detecting the pressure exerted on the patient's chest. Therefore, these devices cannot accurately provide compression depth.
  • embodiments of the present application provide a chest compression feedback method and device, a storage medium and an electronic device to solve at least one problem existing in the background art.
  • embodiments of the present application provide a chest compression feedback method.
  • the method includes: acquiring pressure data collected by a pressure sensor and acceleration data collected by an acceleration sensor; and based on the pressure data and the acceleration data. Determine a time node during the chest compression process; determine a quality parameter of the chest compression based on the time node; and provide feedback information to the user based on the quality parameter.
  • determining the time node during chest compression based on the pressure data and the acceleration data includes: based on the pressure data and the acceleration data Determine the starting time point of each compression during the chest compression process, the ending time point of the compression descending period, the starting time point of chest rebound, and the ending time point of the ascending period of chest rebound; determining the time point of chest compression based on the time nodes
  • the quality parameter includes at least one of the following: determining the compression decline period and the duration of the compression decline period based on the compression start time point and the compression decline period end time point, and determining the compression decline period and the duration of the compression decline period based on the acceleration during the compression decline period.
  • the data and the duration of the compression decline period determine the compression depth this time; determine the rising period and chest rebound based on the starting time point of the chest rebound and the end time point of the rising chest rebound period.
  • the duration of the rising period is determined based on the acceleration data during the rising period of the chest rebound and the length of the rising period of the chest rebound; the height of the chest rebound is determined based on the start time of the chest rebound.
  • the next compression start time point and the next compression start time point to determine the current chest rebound period, and determine whether there is retention pressure based on the pressure data during the current chest rebound period; based on this current compression start time point and the next compression start time point Determine the duration of this compression cycle based on the compression start time point, and determine the compression frequency based on the length of at least one compression cycle; determine the duration of this compression period based on this compression start time point and the chest rebound start time point, based on this compression cycle duration The duration of the chest rebound period is determined based on the duration of at least one compression period and the start time of the next compression. The length of the spring period determines the compression rebound ratio.
  • the determination of the quality parameters of the chest compression based on the time node includes: based on the end time point of the current chest rebound rising period and the next compression The starting time point determines the current chest rebound plateau and the duration of the chest rebound plateau. If the current chest rebound plateau is greater than or equal to the first preset duration threshold, the current chest rebound plateau will be determined based on the current chest rebound plateau.
  • the determination of the quality parameters of the chest compression based on the time node also includes: based on the first compression during the chest compression process
  • the compression start time point and the latest acquisition time are used to determine the cardiopulmonary resuscitation period and the duration of the cardiopulmonary resuscitation period, and the total compression interruption duration is determined based on the compression interruption duration during the cardiopulmonary resuscitation period.
  • the length of the cardiopulmonary resuscitation phase determines the chest compression ratio.
  • the method further includes: if it is detected that the time length between the end time point of this chest rebound rising period and the latest acquisition time is greater than or equal to If the first preset duration threshold is set above, and the next compression start time point is not detected, then the length of time between the end time point of the rising chest rebound period and the most recent acquisition time and at least the time before this time will be used.
  • the duration of one chest rebound plateau is determined as the compression interruption update duration; the total compression interruption update duration is determined based on the compression interruption duration and the compression interruption update duration during each cardiopulmonary resuscitation period, and the compression interruption update total duration is determined based on the compression interruption update duration and The duration of the cardiopulmonary resuscitation period determines the chest compression update ratio; until the next compression start time is detected, the current chest compression is determined based on the end time of the chest rebound rising period and the next compression start time.
  • the rebound plateau period and the duration of the chest rebound plateau period determine the duration of this compression interruption based on the current chest rebound plateau period and the duration of at least one previous chest rebound plateau period.
  • Duration updates the duration of the chest rebound plateau period this time.
  • determining whether there is retention pressure based on the pressure data during the chest rebound period includes:
  • the pressure data during the chest cavity rebound period is compared with the zero position. If it is detected that the comparison result is that the pressure data is greater than the zero position, then it is identified that there is retention pressure.
  • the quality parameters include at least one of the following: compression depth, chest rebound height, presence of residual pressure, compression interruption update duration, chest compression ratio, compression Frequency, compression rebound ratio; providing feedback information to the user based on the quality parameters includes at least one of the following: corresponding to the quality parameters including compression depth, determining the average compression based on several compression depths within a preset time period Depth, provided to the user based on the relationship between the average compression depth and the endpoint value of the preset compression depth range Corresponding feedback information; corresponding to the quality parameters including compression depth and chest rebound height, if the chest rebound height is less than the compression depth, corresponding feedback information is provided to the user; corresponding to the quality parameters including presence In the case of retention pressure, if there is retention pressure, corresponding feedback information is provided to the user; corresponding to the quality parameters including the compression interruption update duration, if the compression interruption update duration exceeds the second preset duration threshold, corresponding feedback information is provided to the user.
  • Feedback information corresponding to the quality parameter including chest compression ratio, if the chest compression ratio is not greater than the preset ratio threshold, corresponding feedback information is provided to the user; corresponding to the quality parameter including compression frequency, according to The relationship between the pressing frequency and the endpoint value of the preset pressing frequency range provides corresponding feedback information to the user; corresponding to the quality parameter including the pressing rebound ratio, corresponding feedback information is provided to the user according to the pressing rebound ratio.
  • determining the time node during chest compression based on the pressure data and the acceleration data includes at least one of the following: based on the pressure data and the acceleration data The acceleration data determines the starting time point of each compression during the chest compression process, and determines the time for the pressure data to change from zero or a trough value within a preset range with zero to a high pressure value that meets the preset conditions.
  • the pressure data and the acceleration data determine the starting time point of chest rebound each time during the chest compression process, and determine that the pressure data changes from a high pressure value that meets the preset conditions to zero or is within a preset range from zero.
  • the time point at which the trough value within and the velocity data obtained after processing the acceleration data changes from zero to reverse velocity, and the time point is determined as the starting time point of the chest rebound; according to the pressure data and the The acceleration data determines the end time point of the chest rebound rising period each time during the chest compression process, and determines the pressure data to be zero or a trough value within a preset range between zero and the acceleration data after data processing.
  • the time point when the speed data changes from the reverse speed to zero, and the time point is determined as the end time point of the chest rebound rising period.
  • the pressure sensor that collects the pressure data is synchronized with the clock of the acceleration sensor that collects the acceleration data, or the process of collecting the pressure data is synchronized with the clock of the acceleration sensor that collects the acceleration data. Acceleration data are recorded using the same clock.
  • the pressing force measured by the pressure sensor when the pressing force measured by the pressure sensor is positive, the acceleration data of the chest subsidence process is converted into chest compression depth; the pressing force measured by the pressure sensor When returning to zero, the acceleration data of the chest rebound is converted into the height of the chest rebound.
  • the feedback information provided to the user at least includes the remaining unrebounded height value and the rebounded height ratio. , one of the remaining unrebounded height ratios.
  • a chest compression feedback device including: a data acquisition module, Used to obtain the pressure data collected by the pressure sensor and the acceleration data collected by the acceleration sensor; a data processing module used to determine the time node in the chest compression process according to the pressure data and the acceleration data, and according to the time node Determine the quality parameters of chest compression; a feedback module is used to provide feedback information to the user according to the quality parameters.
  • an embodiment of the present application provides a computer-readable storage medium that stores instructions that, when executed by a processor of an electronic device, enable the electronic device to execute The chest compression feedback method provided by any one of the above first aspects.
  • an embodiment of the present application provides an electronic device.
  • the electronic device includes: a processor; a memory used to store computer-executable instructions; the processor is used to execute the computer-executable instructions, To implement the chest compression feedback method described in any one of the above first aspects.
  • the chest compression feedback method and device, storage medium and electronic device provided by the embodiments of the present application, wherein the chest compression feedback method includes: obtaining the pressure data collected by the pressure sensor and the acceleration data collected by the acceleration sensor; according to the pressure data and acceleration data to determine the time node during the chest compression process; determine the quality parameters of the chest compression based on the time node; provide feedback information to the user based on the quality parameters; in this way, the feedback accuracy of the quality parameters of the chest compression is improved and helps improve The success rate of cardiopulmonary resuscitation.
  • the chest compression feedback method and device, storage medium and electronic equipment provided by the embodiments of the present application obtain pressure data and acceleration data. If the user only holds the chest compression feedback device and shakes it, what is different from real compression is that at this time The user will not produce real regular compression pressure on the chest compression feedback device. Therefore, in this case, the chest compression feedback device will not recognize the acceleration data generated by non-compression shaking as the number of compressions and Compression depth improves the feedback accuracy of chest compression quality parameters.
  • the chest compression feedback method and device, storage medium and electronic equipment provided by the embodiments of the present application can determine whether there is retention pressure based on the pressure data during the chest rebound period, improving the quality parameters of chest compressions. feedback accuracy.
  • the chest compression feedback method and device, storage medium and electronic equipment provided by the embodiments of the present application can accurately measure the pressure exerted on the patient's chest by detecting the pressure exerted on the patient's chest according to the different physiques of different patients by acquiring pressure data and acceleration data. And feedback the depth of compression. Additional aspects and advantages of the present application will be set forth in part in the description below.
  • Figure 1 is a schematic diagram of the hardware structure of a chest compression feedback device provided by an embodiment of the present application
  • FIGS. 2a and 2b are schematic diagrams of usage scenarios of the chest compression feedback device provided by an embodiment of the present application.
  • Figure 3 is a schematic flow chart of a chest compression feedback method provided by an embodiment of the present application.
  • Figure 4 is a schematic flow chart of a chest compression feedback method provided by a specific example of this application.
  • FIG. 5 is a structural block diagram of a chest compression feedback device provided by an embodiment of the present application.
  • Figure 6 is a structural block diagram of an electronic device provided by an embodiment of the present application.
  • the "plurality” mentioned in this application means two or more.
  • “And/or” describes the relationship between related objects, indicating that three relationships can exist.
  • “A and/or B” can mean: A alone exists, A and B exist simultaneously, and B exists alone.
  • the terms “first”, “second”, “third”, etc. involved in this application only distinguish similar objects and do not represent a specific ordering of the objects.
  • FIG 1 is a schematic diagram of the hardware structure of the chest compression feedback device provided by an embodiment of the present application.
  • the structure of the chest compression feedback device 100 can be referred to Figure 1.
  • Figures 2a and 2b are A schematic diagram of a usage scenario of the chest compression feedback device 100 provided by an embodiment of the present application.
  • the usage scenario of the chest compression feedback device 100 please refer to Figure 2a and Figure 2b.
  • the patient lies on his back on the ground or uses an external chest compression plate to pad his shoulders.
  • the rescuer can use different postures such as kneeling on one side of the patient's body.
  • the rescuer can hold the outside of the chest
  • the compression feedback device 100 is placed above the patient's chest, and the rescuer places both hands on the chest compression feedback device 100 to perform manual cardiopulmonary resuscitation.
  • Rescuers should try their best to ensure continuous and effective chest compressions, fast and powerful, and without interruption.
  • patient is intended to include any person who may require acute care due to, for example, cardiac arrest, respiratory distress, traumatic injury, shock, and other conditions that may require resuscitation; rescuers, for example, to perform manual chest
  • the caregiver or rescuer who performs compressions is also at least one of the users of the chest compression feedback device 100, and is generally a user who directly uses the chest compression feedback device 100; however, the users may not only include rescuers, but also It may include other people who indirectly use the chest compression feedback device 100, such as other people who view the quality parameters fed back by the chest compression feedback device 100.
  • the quality parameters of chest compressions can include: (1) Chest Compression Fraction (CCF), or chest compression index, The proportion value should be greater than 60%, and the duration of any compression interruption should be controlled within 10 seconds; (2) chest compression frequency, its value range should be strictly controlled at 100-120 times/minute; (3) chest compression depth , its value range should be 5.0-6.0 cm; (4) Compression rebound ratio, that is, the ratio of compression period length/thoracic rebound period length, the ratio should be 50%:50%; (5) Full degree of chest rebound, When measuring this value, the chest should be allowed to fully rebound and not lean on the patient's chest between two compressions; (6) Ventilation times and ventilation time. Avoid excessive ventilation by controlling the ventilation times and ventilation time.
  • CCF Chest Compression Fraction
  • the calculation of each of the above quality parameters is basically related to time.
  • the calculation results of some quality parameters at various time points during chest compression are not accurate.
  • the compression depth is converted from the compression force value measured by the pressure sensor and the compression duration, and the process of applying pressure is regarded as the process of increasing the depth of chest compression.
  • the patient's chest cavity is damped, and each patient Patients' chest compression damping is different. It may happen that at a certain moment, although the pressure continues to be applied, the compression depth no longer increases. This is similar to placing the compression feedback device on a hard surface. No matter how high the compression force is, the actual compression force will not increase.
  • the compression depth should all be zero, so if it is uncertain when the compression decline period ends, the compression feedback device will obviously feedback that the compression depth continues to increase.
  • an acceleration sensor is used to determine the start/end of compression and rebound and other time nodes by judging changes in acceleration.
  • the operating steps are to first turn on the computer and connect the chest compression feedback device 100 power supply. During this process, any shaking of the hand-held chest compression feedback device 100 or the process of placing it on the patient's chest, the acceleration sensor will produce corresponding acceleration value changes. These are non-compression spurious signals.
  • Cardiopulmonary resuscitation is an effective means of rescuing patients with cardiac arrest. During most of the time of cardiac arrest, sufficient blood flow must be generated through effective chest compressions to deliver oxygen and metabolic substrates to key organs and tissues. Considering that the cardiopulmonary resuscitation process requires a race against time and the chest compression process is performed very quickly, it is very difficult to judge each time node during the chest compression process through manual observation or visual inspection.
  • FIG. 3 is a schematic flow chart of a chest compression feedback method provided by an embodiment of the present application. As shown in Figure 3, the method includes:
  • Step 301 Obtain the pressure data collected by the pressure sensor and the acceleration data collected by the acceleration sensor. according to;
  • Step 302 Determine the time node during chest compression based on the pressure data and acceleration data
  • Step 303 Determine the quality parameters of chest compression according to the time node
  • Step 304 Provide feedback information to the user according to the quality parameters.
  • this embodiment determines the time node during the chest compression process, and specifically combines the pressure data and acceleration data as the basis for determining the time node during the chest compression process, which can more accurately determine the time node.
  • the quality parameters of chest compressions can be determined more accurately, avoiding false compression data errors caused by the patient's body shaking up and down due to other rescue measures, and also avoiding non-linear depth measurement errors of pressure sensing technology. This improves the feedback accuracy of chest compression quality parameters and helps improve the success rate of cardiopulmonary resuscitation.
  • the chest compression feedback device 100 may include a housing 170 , a pressure sensor 110 , an acceleration sensor 120 , a processing unit 130 , a storage unit 140 , a feedback unit 160 , and the like.
  • the shell 170 encapsulates each component inside, protects each component from loss, and makes the entire device easy to carry.
  • the pressure sensor 110 is configured to collect pressure data; the pressure data reflects the value of the pressing force exerted by the rescuer at each collection moment.
  • the acceleration sensor 120 is configured to collect acceleration data; the acceleration data reflects the changes in the sternum acceleration of the patient's chest surface at each collection moment, including the subsidence acceleration caused by the compression of the chest and the rebound acceleration during the rebound period of the chest.
  • the processing unit 130 is configured to obtain the pressure data collected by the pressure sensor 110 and the acceleration data collected by the acceleration sensor 120, and determine time nodes and calculate quality parameters based on the obtained pressure data and acceleration data.
  • the processing unit 130 instructs the feedback unit 160 to provide feedback information to the user according to the calculated quality parameters.
  • the processing unit 130 can also transmit the quality parameters to external devices, such as computers or other medical devices, to provide feedback information to the user through the external device; the external device can provide the feedback information to the remote user in real time, or it can Perform data storage and/or analysis for later review of actions taken during the rescue period.
  • the feedback unit 160 completes specific information feedback work under the instruction of the processing unit 130.
  • the feedback work performed by the feedback unit 160 helps to provide notifications, instructions, and/or reminders to the user;
  • the feedback unit 160 can provide feedback in any suitable form, including but not limited to: visual feedback, such as through indicator lights. On/off, flashing, different colors, etc. feedback different information content to the user, and display relevant information to the user through the display screen; sound feedback, such as reminder sounds, voice instructions; tactile feedback, such as vibration, etc.
  • the clocks of the pressure sensor 110 for collecting pressure data and the acceleration sensor 120 for collecting acceleration data are synchronized, or the collection processes of both are recorded using the same clock.
  • the time of collecting data is close to real-time collection. According to the collected pressure data, each acceleration data and the time of collecting the data, the pressure change curve and the acceleration change curve can be obtained. Furthermore, the displacement change curve and/or can also be obtained based on the collected acceleration data and the time of collecting the data. or speed change curve.
  • Each time point during the chest compression process includes, for example, at least one of the following: the compression start time point (denoted as t0), the end time point of the compression decline period (denoted as t1), and the chest rebound start time point (denoted as t2).
  • the end time point of the cavity rebound rising period (recorded as t3); it can be understood that since the chest compression process generally includes multiple compressions, under normal circumstances, the beginning of each compression to the beginning of the next compression is regarded as a compression cycle, or called "One compression", then the above time nodes are the time nodes included in the compression cycle of each compression; for the entire chest compression process, it can specifically include multiple of the above time nodes, for example, including: the beginning of the first compression Time point, the end time point of the compression down phase of the first compression, the start time point of the chest rebound of the first compression, the end time point of the rising phase of the chest rebound of the first compression, the start time point of the second compression, The end time point of the compression decline phase of the second compression, the start time point of the chest rebound of the second compression, the end time point of the rising phase of the chest rebound rebound of the second compression, the start time point of the third compression...
  • this article uses “this time” to represent any of the above, uses “next time” to represent the next time that occurs after “this time” and is closest to “this time”, and uses “last time” to represent the time that occurs on The last time before “this time” and closest to the time of “this time”, use “most recent” to represent the time closest to the current moment. Since under normal circumstances, the start of the next compression represents the end of this compression cycle, when determining this compression cycle, you may also need to use the next compression start time point; here, the next compression start time point is recorded as t4.
  • determining the time node during the chest compression process based on the pressure data and acceleration data may include: determining each compression start time point during the chest compression process based on the pressure data and acceleration data, and determining The time point when the pressure data changes from zero or zero within a preset range, such as a trough value close to zero, to a high pressure value that meets the preset conditions, and this time point is determined as the pressing start time point.
  • the pressure data may not drop to zero, in which case the trough value near zero is regarded as the case where no pressure is applied. It should be understood that on the pressure change curve, it is often easy to identify the pressure data at the trough value.
  • the pressure data decreases from the high pressure value and gradually approaches zero but rebounds before reaching zero.
  • the minimum value in this process is Trough value close to zero.
  • the valley value close to zero can also be determined by setting the zero point threshold range. For example, the valley value within the preset zero point threshold range is the valley value close to zero.
  • the high pressure value can be determined by setting a high threshold. For example, if the pressure data exceeds the high threshold, it is determined to meet the preset conditions. The moment when the pressure data exceeds the high threshold is determined as the time point when it changes to a high pressure value that satisfies the preset conditions.
  • the compression start time point t0 when the compression pressure monitored by the pressure sensor is higher than the zero pressure potential and is at a high level, it is identified as the compression start time point t0. This time point is used as the subsequent chest subsidence acceleration caused by compression to measure the compression depth. The calculation start time of Dp.
  • determining the time node during the chest compression process based on the pressure data and acceleration data may also include: determining each compression step during the chest compression process based on the pressure data and acceleration data.
  • the end time of the compression decline period, and specifically the time point when the pressure data is a high pressure value that meets the preset conditions and the speed data obtained after processing the acceleration data changes from the forward speed to zero is determined as the end time of the compression decline period point.
  • the direction in which the pressing force is applied is defined as the forward direction
  • the direction in which the chest cavity rebounds is defined as the reverse direction.
  • the forward speed refers to the speed in the same direction as the pressing direction
  • the reverse speed refers to the speed in the same direction as the chest rebound direction.
  • T1 is the duration of this compression decline period
  • t1 is the end time point of this compression decline period
  • t0 is the current compression start time point.
  • the velocity V(t) By integrating the acceleration during the compression decline period within the duration of the compression decline period, the velocity V(t) can be obtained. Specifically, the following formula (1) is used for calculation:
  • V(t) is the velocity and a is the acceleration.
  • the current compression depth Dp can be obtained by integrating the acceleration of the current compression decline period twice within the duration of the compression decline period. Specifically, after calculating the speed V(t) through the above formula (1),
  • acceleration a is the acceleration after filtering the collected acceleration data.
  • Filtering the acceleration data may specifically include: filtering out the DC signal of the gravity acceleration g in the acceleration data through high-pass filtering, thereby eliminating the baseline drift caused by detecting the offset of the gravity acceleration g; it may also include: filtering through low-pass filtering. Filtering to remove high frequency interference and/or noise signals.
  • the curve of the pressing speed changing with time can be obtained, which can also be called the “speed change curve”; the pressing depth changing curve with time can also be obtained, which can also be called the “displacement changing curve”.
  • determining the time node during the chest compression process based on the pressure data and acceleration data may also include: determining the starting time point of the chest rebound each time during the chest compression process based on the pressure data and acceleration data. , and specifically change the pressure data from a high pressure value that meets the preset conditions to zero or a trough value that is close to zero within a preset range, and the velocity data obtained after processing the acceleration data changes from zero to a reverse velocity.
  • the time point is determined as the starting time point of the chest rebound.
  • the identification is the time point.
  • the chest rebound starting time point t2 also represents the end time point of this compression.
  • the rescuers still apply compression force, but at this time the chest position has basically changed.
  • the chest no longer continues to decline, and the applied compression force reaches a balance with the resilience of the patient's chest; since the chest compression depth is generally required to be about 5.0-6.0 cm, the rescuer will feel that the compression depth roughly meets the requirements.
  • the rescuer will remove the compression force and the patient's chest will begin to recoil. Therefore, during the compression plateau period, the compression depth Dp should not be calculated cumulatively.
  • determining the time node during the chest compression process based on the pressure data and acceleration data may also include: determining the end of each chest rebound rising period during the chest compression process based on the pressure data and acceleration data.
  • the time point, and specifically the time point when the pressure data is a trough value of zero or close to zero and the velocity data after data processing from the acceleration data changes from reverse velocity to zero is determined as the end time point of the chest rebound rising period.
  • the current chest rebound height Dr can be obtained.
  • the acceleration data of the chest cavity subsidence process is converted into the chest compression depth; only when the pressing force measured by the pressure sensor returns to zero, the acceleration data of the chest rebound is converted Convert to chest rebound height; thereby improving the accuracy of chest compression quality parameters.
  • next compression start time point t4 also represents the end time point of this current chest rebound plateau period. In other words, the next pressing start time point t4 is determined using the same method steps as the current pressing start time point t0 .
  • the rescuer has not yet started the next compression, this should not be considered an interruption time.
  • the chest rebound plateau period is necessary for the entire rescue process. After the chest rebound rising period, the chest rebound speed is accelerated to the maximum. During the chest rebound plateau period, the chest rebound speed will be rapid. drops to zero. In this process, the chest cavity is fully rebounded and the blood can return. After the rescuer senses this moment, the next compression will begin. On the other hand, if the rescuer fails to perform the next compression in time, the time after the reasonable chest rebound plateau period should be considered as interruption time.
  • determining the quality parameters of chest compressions based on time nodes may include: determining the current compression drop period and compression drop based on the current compression start time point t0 and the compression drop period end time point t1
  • the period duration T1 is based on the acceleration data during the compression decline period and the compression decline period time. Long T1 determines the compression depth Dp this time.
  • determining the quality parameters of chest compressions based on time nodes may include: determining this time's chest rebound based on the current chest rebound starting time point t2 and the chest rebound rising period end time point t3
  • the chest rebound height Dr is determined based on the acceleration data during the chest rebound rising period and the chest rebound rising period duration T3. .
  • determining the quality parameters of the chest compression based on the time node may include: determining the current chest rebound based on the current chest rebound start time point t2 and the next compression start time point t4 During period Tr, determine whether there is retention pressure Pr based on the pressure data during this chest cavity rebound period.
  • the average pressure value measured by the pressure sensor during the chest rebound period can be compared with the zero position. If it is greater than the zero position, it is identified that there is retention pressure, and there is a phenomenon of leaning against the patient's chest between two compressions.
  • the pressure data during the chest cavity rebound period can also be directly compared with the zero position. If the comparison result is detected that the pressure data is greater than the zero position, it is recognized that there is retention pressure.
  • determining the quality parameters of the chest compression based on the time node may include: determining the current chest compression based on the end time point t3 of the current chest rebound rising period and the next compression start time point t4. The rebound plateau period and the duration of the chest rebound plateau period T4. If the current chest rebound plateau period T4 is greater than or equal to the first preset duration threshold, based on the current chest rebound plateau period T4 and the previous The duration of the chest rebound plateau period at least once determines the current compression interruption duration Th.
  • the duration of the chest cavity rebound plateau period based on at least one before this time can be based on the last duration of the chest cavity rebound plateau period, or based on the average length of multiple chest cavity rebound plateau periods before this time, or it can be It is based on the duration of the chest rebound plateau period before this time.
  • the multiple chest cavity rebound plateau durations before this one remove the maximum and minimum values, and take the average of the remaining chest cavity rebound plateau durations. In this way, an estimated chest rebound plateau duration can be determined based on at least one chest rebound plateau duration before this time.
  • the current chest rebound plateau duration is updated based on at least one previous chest rebound plateau duration. The length of the plateau period.
  • the first preset duration threshold is set to 2 seconds, for example. It can be understood that if the chest rebound plateau period is longer than or equal to 2 seconds, the compression should be interrupted. For subsequent calculation needs, the above estimated chest rebound plateau duration can be updated to the current chest rebound plateau duration.
  • determining the quality parameters of chest compressions based on the time node may also include: determining the cardiopulmonary resuscitation period and the duration of the cardiopulmonary resuscitation period Ttot based on the compression start time point of the first compression and the latest acquisition time during the chest compression process, according to The total duration of compression interruptions Tht is determined by the duration of each compression interruption Th during the cardiopulmonary resuscitation period.
  • the chest compression ratio CCF is determined based on the total duration of compression interruptions Tht and the duration of the cardiopulmonary resuscitation period Ttot.
  • CCF (Ttot-Tht)/Ttot.
  • Figure 4 is a schematic flow chart of a chest compression feedback method provided by a specific example of this application.
  • the speed curve and pressure curve are first calculated based on the data collected by the acceleration sensor and pressure sensor; then, the quality parameters of the chest compression are calculated based on the speed curve and pressure curve; then, the chest compression quality parameters can be calculated Feedback on compression quality based on quality parameters.
  • next compression start time is not detected after the current chest rebound ends, then the compression may have been interrupted. If you wait until the next compression start time is detected and then feedback the duration of the compression interruption, it will obviously only be used as data statistics, but will not effectively serve as a real-time monitoring and reminder. Therefore, in the specific example, a step is also set to determine whether there is the next press within 2 seconds. If there is a press, the whole process can continue in a loop; if there is no press, the press interruption time is counted, and the CCF is updated in real time until the press resumes. .
  • next compression start time point is determined as the compression interruption update based on the length of time between the end of the current chest rebound rising period and the latest acquisition time and the length of the chest rebound plateau period at least once before this time. duration;
  • the chest rebound plateau period and the duration of the chest rebound plateau period are determined based on the end time point of the chest rebound rising period and the start time point of the next compression.
  • the duration of this chest rebound plateau period and the length of at least one chest rebound plateau period before this time determine the duration of this compression interruption.
  • determining the quality parameters of chest compressions based on time nodes may include: determining the duration of this compression cycle based on the current compression start time point t0 and the next compression start time point t4. The duration of at least one compression cycle determines the compression frequency.
  • the average compression frequency can also be determined based on the duration of multiple compression cycles, thereby improving the accuracy of the compression frequency.
  • determining the quality parameters of chest compressions based on time nodes may include: determining the duration of the compression period Tp based on the current compression start time point t0 and the chest rebound start time point t2.
  • the current chest rebound start time point t2 and the next compression start time point t4 determine the chest rebound period duration Tr.
  • the compression rebound ratio is determined based on at least one compression period duration Tp and the chest rebound period duration Tr. .
  • the compression rebound ratio is equal to the average value of Tp divided by the average value of Tr, for example. In this way, the common situation of press-to-rebound ratio can be better reflected.
  • the quality parameters may include at least one of the following: compression depth, chest rebound height, There are retention pressure conditions, compression interruption update duration, chest compression ratio, compression frequency, and compression rebound ratio.
  • Provide feedback information to the user based on the quality parameters for example, including: corresponding to the quality parameters including the compression depth, determining the average compression depth based on the most recent compression depths, and providing feedback information to the user based on the relationship between the average compression depth and the endpoint value of the preset compression depth range. Provide appropriate feedback.
  • the current compression depth should be regarded as the average compression depth, thereby providing corresponding feedback information to the user.
  • the depths of the most recent compressions are, for example, the most recent 3 times, or the most recent 8 times, etc. If the number exceeds 4 times, the average compression depth is determined based on the recent compression depths. Specifically, it can be as follows: among the recent compression depths, remove a maximum value, remove a minimum value, and take the remaining compression depth. The average value is used as the average compression depth. In this way, the accuracy of the average compression depth caused by accidental errors is avoided.
  • the above is only an optional implementation and should not be understood as a limitation on the method for determining the average compression depth.
  • providing feedback information to the user according to the quality parameter includes, for example: corresponding to the quality parameter including the pressing depth, and providing corresponding feedback information to the user according to the relationship between the pressing depth and the endpoint value of the preset pressing depth range.
  • corresponding to the quality parameters including compression depth and chest rebound height, if the chest rebound height is less than the compression depth, corresponding feedback information is provided to the user.
  • the chest rebound height and compression depth are the chest rebound height and compression depth for the same compression.
  • the feedback information provided to the user may specifically include at least one of the following: the remaining height value that has not rebounded, the height ratio that has rebounded, and the remaining height ratio that has not rebounded.
  • Providing feedback information to the user according to the quality parameters includes: corresponding to the quality parameter including the presence of retention pressure, and if the status of the presence of retention pressure is yes, corresponding feedback information is provided to the user.
  • Providing feedback information to the user according to the quality parameters includes: corresponding to the quality parameter including the press interruption update duration, and if the press interruption update duration exceeds the second preset duration threshold, corresponding feedback information is provided to the user.
  • the pressing interruption updating duration can be compared with the second preset duration threshold in real time; here, the second preset duration threshold is set to 10 seconds, for example; if the pressing interruption update duration exceeds 10 seconds , then provide corresponding feedback information to the user.
  • the interruption update duration can be understood as the change of the interruption duration over time.
  • the interruption update duration is the current interruption duration. In this way, not only can the CCF status be provided to the user, but also timely feedback on the duration of any compression interruption can be achieved, effectively reminding the user of changes in the interruption duration.
  • the compression interruption update duration can also help determine whether the ventilation time is too long.
  • Providing feedback information to the user based on the quality parameters includes: corresponding to the quality parameters including the chest compression ratio, if the chest compression ratio is not greater than the preset ratio threshold, corresponding feedback information is provided to the user.
  • Providing feedback information to the user based on the quality parameters includes, for example: corresponding to the quality parameters including compression frequency, providing corresponding feedback information to the user based on the relationship between the compression frequency and the endpoint value of the preset compression frequency range.
  • Providing feedback information to the user based on the quality parameters includes, for example: corresponding to the quality parameters including the pressing rebound ratio, and providing corresponding feedback information to the user based on the pressing rebound ratio.
  • all or part of the corresponding feedback information provided to the user can be implemented by instructing the feedback unit 160 in the chest compression feedback device 100, or can be implemented by an external device; the feedback can be real-time or stored for preparation. User review.
  • inventions of the present application also provide a chest compression feedback device; please refer to Figure 5, which is a structural block diagram of a chest compression feedback device provided by an embodiment of the present application.
  • the chest compression feedback device 100 includes:
  • the data acquisition module 101 is used to acquire the pressure data collected by the pressure sensor and the acceleration data collected by the acceleration sensor;
  • the data processing module 102 is used to determine the time node in the chest compression process based on the pressure data and acceleration data, and determine the quality parameters of the chest compression based on the time node;
  • the feedback module 103 is used to provide feedback information to the user according to the quality parameters.
  • the data processing module 102 is specifically configured to determine the compression start time point, the compression drop period end time point, and the chest rebound start time point of each time during the chest compression process based on the pressure data and acceleration data. , and the end time point of the chest rebound rising period;
  • Determine the quality parameters of chest compressions based on time points including at least one of the following:
  • the compression decline period and the duration of the compression decline period are determined based on the compression start time point and the compression decline period end time.
  • the compression decline period and compression decline period duration are determined based on the acceleration data during the compression decline period and the compression decline period duration. depth of compression;
  • the duration of this compression cycle is determined based on the current compression start time point and the next compression start time point, and the compression frequency is determined based on the duration of at least one compression cycle;
  • the compression rebound ratio is determined based on the duration of at least one compression period and the duration of the chest rebound period.
  • determining the quality parameters of the chest compression based on the time node includes: determining the current chest rebound platform based on the end time point of the rising chest rebound period and the start time point of the next compression. period and the duration of the chest rebound plateau period. If the current chest rebound plateau period is greater than or equal to the first preset duration threshold, based on the current chest rebound plateau period and at least one chest rebound before this time, The length of the plateau period determines the duration of this compression interruption;
  • Determining the quality parameters of chest compressions based on time nodes also includes: determining the cardiopulmonary resuscitation period and the duration of the cardiopulmonary resuscitation period based on the compression start time point of the first compression during the chest compression process and the latest acquisition time.
  • the duration of each compression interruption determines the total compression interruption duration
  • the chest compression ratio is determined based on the total compression interruption duration and the length of the cardiopulmonary resuscitation period.
  • the data processing module 102 is also used to:
  • the chest rebound plateau period and the duration of the chest rebound plateau period are determined based on the end time point of the chest rebound rising period and the start time point of the next compression.
  • the duration of this chest rebound plateau period and the length of at least one chest rebound plateau period before this time determine the duration of this compression interruption.
  • the data processing module 102 is also configured to: if the duration of the current chest rebound plateau is greater than or equal to the first preset duration threshold, based on at least one previous chest rebound plateau, Period Duration Updates the duration of this chest rebound plateau.
  • the quality parameters include at least one of the following: compression depth, chest rebound height, presence of retained pressure, compression interruption update duration, chest compression ratio, compression frequency, compression rebound ratio;
  • the feedback module 103 is specifically used for at least one of the following:
  • the quality parameters including compression depth it is determined based on the depth of several recent compressions within a preset time period. Determine the average compression depth, and provide corresponding feedback information to the user based on the relationship between the average compression depth and the endpoint value of the preset compression depth range;
  • the pressing interruption update duration if the pressing interruption update duration exceeds the second preset duration threshold, corresponding feedback information is provided to the user;
  • the chest compression ratio is not greater than the preset ratio threshold, corresponding feedback information is provided to the user;
  • corresponding feedback information is provided to the user based on the relationship between the compression frequency and the endpoint value of the preset compression frequency range;
  • determining the time node during chest compression based on pressure data and acceleration data includes at least one of the following:
  • the end time point of each compression drop period during the chest compression process is determined, and the pressure data is determined to be a high pressure value that meets the preset conditions and the velocity data obtained after processing the acceleration data is from the forward direction.
  • the starting time point of chest rebound during each chest compression process is determined, and the pressure data is determined to change from a high pressure value that meets the preset conditions to a trough value of zero or close to zero, and the acceleration data is processed by The time point when the velocity data obtained after processing changes from zero to the reverse velocity, and this time point is determined as the starting time point of the chest rebound;
  • the end time point of the chest rebound rising period of each time during the chest compression process is determined, and the pressure data is determined to be zero or close to the trough value of zero, and the velocity data after processing the acceleration data is calculated by reverse The time point when the velocity changes to zero, and this time point is determined as the end time point of the chest rebound rising period.
  • the clocks of the pressure sensor that collects pressure data and the acceleration sensor that collects acceleration data are synchronized, or the process of collecting pressure data and the process of collecting acceleration data are recorded using the same clock.
  • the acceleration data of the chest cavity subsidence process is converted into the chest compression depth; when the pressing force measured by the pressure sensor returns to zero, the acceleration data of the chest cavity rebound is converted Speed data is converted to chest rebound height.
  • the feedback information provided to the user at least includes the remaining unrebounded height value, the rebounded height ratio, and the remaining unrebounded height. A term in proportion.
  • the data acquisition module 101, the data processing module 102 and the feedback module 103 are, for example, at least part of the aforementioned processing unit 130.
  • An embodiment of the present application also provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions that, when executed by a processor of the electronic device, enable the electronic device to perform steps in the chest compression feedback method of any of the above embodiments.
  • Embodiments of the present application may be systems, methods and/or computer program products.
  • the computer program product may include a computer-readable storage medium having thereon computer-readable program instructions for causing a processor to implement various aspects of the present application.
  • the computer program product can be written in any combination of one or more programming languages to write program codes for performing the operations of the embodiments of the present application.
  • the programming languages include object-oriented programming languages, such as Java, C++, etc., and also include conventional programming languages.
  • a procedural programming language such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computing device, partly on the user's device, as a stand-alone software package, partly on the user's computing device and partly on a remote computing device, or entirely on the remote computing device or server execute on.
  • the remote computer can be connected to the user's computer through any kind of network, including a local area network (LAN) or a wide area network (WAN), or it can be connected to an external computer (such as an Internet service provider through the Internet). connect).
  • an electronic circuit such as a programmable logic circuit, a field programmable gate array (FPGA), or a programmable logic array (PLA)
  • FPGA field programmable gate array
  • PLA programmable logic array
  • Computer-readable storage media can take the form of any combination of one or more computer-readable media.
  • the readable medium may be a readable signal medium or a readable storage medium.
  • a computer-readable storage medium is a tangible device that can retain and store instructions for use by an instruction execution device.
  • the readable storage medium may include, for example, but is not limited to, electrical, magnetic, optical, electromagnetic, infrared, or semiconductor systems, devices or devices, or any combination thereof.
  • readable storage media include: portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or Flash memory), Static Random Access Memory (SRAM), Compact Disk Read Only Memory (CD-ROM), Digital Versatile Disk (DVD), Memory Stick, Floppy Disk, Mechanically encoded device, such as a punch hole with instructions stored on it The protruding structure in the card or groove, and any suitable combination of the above.
  • RAM random access memory
  • ROM read only memory
  • EPROM or Flash memory erasable programmable read only memory
  • SRAM Static Random Access Memory
  • CD-ROM Compact Disk Read Only Memory
  • DVD Digital Versatile Disk
  • Memory Stick Memory Stick
  • Mechanically encoded device such as a punch hole with instructions stored on it The protruding structure in the card or groove, and any suitable combination of the above.
  • computer-readable storage media are not to be construed as transient signals per se, such as radio waves or other freely propagating electromagnetic waves, electromagnetic waves propagating through waveguides or other transmission media (e.g., light pulses through fiber optic cables), or through electrical wires. transmitted electrical signals.
  • Computer-readable program instructions described herein may be downloaded from a computer-readable storage medium to various computing/processing devices, or to an external computer over a network, such as the Internet, a local area network, a wide area network, and/or a wireless network. machine or external storage device.
  • the network may include copper transmission cables, fiber optic transmission, wireless transmission, routers, firewalls, switches, gateway computers, and/or edge servers.
  • a network adapter card or network interface in each computing/processing device receives computer-readable program instructions from the network and forwards the computer-readable program instructions for storage on a computer-readable storage medium in the respective computing/processing device .
  • These computer-readable program instructions may be provided to a processor of a general-purpose computer, a special-purpose computer, or other programmable data processing apparatus, thereby producing a machine that, when executed by the processor of the computer or other programmable data processing apparatus, , resulting in an apparatus that implements the functions/actions specified in one or more blocks in the flowchart and/or block diagram.
  • These computer-readable program instructions can also be stored in a computer-readable storage medium. These instructions cause the computer, programmable data processing device and/or other equipment to work in a specific manner. Therefore, the computer-readable medium storing the instructions includes An article of manufacture that includes instructions that implement aspects of the functions/acts specified in one or more blocks of the flowcharts and/or block diagrams.
  • Computer-readable program instructions may also be loaded onto a computer, other programmable data processing apparatus, or other equipment, causing a series of operating steps to be performed on the computer, other programmable data processing apparatus, or other equipment to produce a computer-implemented process , thereby causing instructions executed on a computer, other programmable data processing apparatus, or other equipment to implement the functions/actions specified in one or more blocks in the flowcharts and/or block diagrams.
  • FIG. 6 is a schematic structural diagram of an electronic device provided by an embodiment of the present application.
  • the electronic device 600 includes: one or more processors 601 and memory 602; the memory 602 stores computer-executable instructions; the processor 601 is used to execute the computer-executable instructions to implement any of the above. Steps in the chest compression feedback method of an embodiment.
  • the processor 601 may be a central processing unit (CPU) or other form of processing unit with data processing capabilities and/or instruction execution capabilities, and may control other components in the electronic device to perform desired functions.
  • CPU central processing unit
  • Memory 602 may include one or more computer program products, which may include various forms of computer-readable storage media, such as volatile memory and/or non-volatile memory.
  • Volatile memory may include, for example, random access memory (RAM) and/or cache memory (cache), etc.
  • Non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, etc.
  • One or more computer program instructions may be stored on a computer-readable storage medium, and the processor 601 may execute the program instructions to implement the steps and/or other desired functions in the text recognition method of various embodiments of the present application. .
  • the electronic device 600 may further include an input device and an output device, and these components are interconnected through a bus system and/or other forms of connection mechanisms (not shown in the figure).
  • the electronic device 600 may also include any other appropriate components depending on the specific application.
  • the electronic device 600 may be the aforementioned chest compression feedback device 100 or a part of the aforementioned chest compression feedback device 100.
  • the processor 601 is specifically the processing unit 130
  • the memory 602 is specifically the storage unit 140.
  • this application does not rule out the situation that the electronic device 600 is located at a remote end.
  • the electronic device 600 may not be packaged in the housing 170 together with the pressure sensor 110 and the acceleration sensor 120. After the pressure sensor 110 and the acceleration sensor 120 collect data, The data can be sent to the remote electronic device 600, and the electronic device 600 performs data processing and control.
  • chest compression feedback method embodiments chest compression feedback device embodiments, computer readable storage medium embodiments and electronic device embodiments provided in the embodiments of the present application belong to the same concept; the technology described in each embodiment The various technical features in the solution can be combined arbitrarily as long as there is no conflict.

Landscapes

  • Health & Medical Sciences (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Percussion Or Vibration Massage (AREA)

Abstract

一种胸外按压反馈方法及装置(100)、存储介质和电子设备,其中,胸外按压反馈方法包括:获取由压力传感器(110)采集的压力数据和由加速度传感器(120)采集的加速度数据(301);根据压力数据和加速度数据确定胸外按压过程中的时间节点(302);根据时间节点确定胸外按压的质量参数(303);根据质量参数向用户提供反馈信息(304);该方法提高了胸外按压的质量参数的反馈准确性,协助改善了心肺复苏成功率。

Description

胸外按压反馈方法及装置、存储介质和电子设备
本申请要求在2022年7月22日提交中国专利局、申请号为202210865986.3、发明名称为“胸外按压反馈方法及装置、存储介质和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及医疗器械领域,特别是涉及一种胸外按压反馈方法及装置、存储介质和电子设备。
背景技术
心脏骤停,是指由于心律失常和/或心脏有效搏动消失而直接导致心脏泵血功能机械活动突然停止,造成全身血液循环中断、呼吸停止和意识丧失的濒临死亡状态。心肺复苏是挽救心脏骤停患者生命的基石,在心脏骤停的大部分时间内,必须通过有效的胸外按压产生足够的血流,给关键器官和组织输送氧气和代谢底物;患者能否恢复自主循环取决于心肺复苏期输送给的心肌氧和血流量是否充足。
在胸外按压期,通过按压胸骨,胸骨下陷,使位于胸骨和脊柱之间的心脏受到挤压而将血液泵出心脏,同时,胸外按压产生胸腔内外血管系统压力梯度,血管收到“挤压”,将血液向前推动,使其流向胸外压力较低的动脉。静脉瓣和动脉瓣的存在阻止了血液逆流,保证血液在按压期间单向流动。在胸腔回弹放松期,由于胸廓具有弹性,利用储存在其内的按压动能被动扩张,胸廓扩张使胸腔内产生相对于大气压的负压,促进静脉回流、增加胸泵前负荷,血液从静脉系统“回流到泵内-心脏”,为下一次按压时泵出做好准备。
临床大数据已证实,高质量的胸外按压才能改善心脏骤停患者的复苏成功率,为此,目前国际指南均要求严格控制胸外按压的质量,并对各项胸外按压的质量参数提出了具体指标。然而,有研究表明,手动按压很少能够符合指南的规定,即使是训练有素的人也是如此,因为救援人员的疲劳会对按压的质量产生负面的影响。
进行高质量的胸外按压的困难还在于救援人员无法准确的判断按压的时间和深度,在一些实施例中,已有胸外按压反馈装置能够对人工按压过程中的数据进行采集、分析和反馈,从而为胸外按压的评判和指导提供依据。
一种胸外按压反馈装置,例如,公开号为US6390996B1的美国专利,公开了一种仅使用加速度计来测量按压深度的CPR辅助设备,这种CPR辅助设备仅依靠加速度计获得的加速度的数据来推测按压深度。可以预见的是,如果使用者晃动该CPR辅助设备,那么加速度计也能够获得加速度数据,从而该CPR辅助设备会在没有真实按压的 情况下得出按压次数和按压深度,这显然是不准确的。同样可以预见的是,在实际救援的过程中,如果患者和CPR辅助设备受到晃动或者震动,加速度传感器也会因为接收到非真实按压产生的加速度数据,而该CPR辅助设备会得出与真实按压不同的按压次数和按压深度,这也是不准确的。
另一种胸外按压反馈装置,例如,公开号为US5496257A的美国专利,公开了一种辅助应用心肺复苏术的装置;公开号为US6125299A的美国专利,公开了一种带力传感器的AED。这些设备只测量施加在患者胸部的力,而不测量实际的按压深度,可以理解的是,由于不同患者的体质的不同,通过检测施加在患者胸部的压力,并不能准确推测出按压的深度。因此,这些设备也不能准确的提供按压深度。
可见,上述胸外按压反馈装置提供的按压深度、按压次数等数据的准确性均存在不足之处。因此,提高胸外按压反馈的准确性是本领域始终致力解决的重要技术问题。
发明内容
有鉴于此,本申请实施例为解决背景技术中存在的至少一个问题而提供一种胸外按压反馈方法及装置、存储介质和电子设备。
第一方面,本申请实施例提供了一种胸外按压反馈方法,所述方法包括:获取由压力传感器采集的压力数据和由加速度传感器采集的加速度数据;根据所述压力数据和所述加速度数据确定胸外按压过程中的时间节点;根据所述时间节点确定胸外按压的质量参数;根据所述质量参数向用户提供反馈信息。
结合本申请的第一方面,在一可选实施方式中,所述根据所述压力数据和所述加速度数据确定胸外按压过程中的时间节点,包括:根据所述压力数据和所述加速度数据确定胸外按压过程中各次的按压开始时间点、按压下降期结束时间点、胸腔回弹开始时间点、以及胸腔回弹上升期结束时间点;所述根据所述时间节点确定胸外按压的质量参数,包括以下至少之一:根据本次的按压开始时间点和按压下降期结束时间点确定本次的按压下降期及按压下降期时长,根据在本次的所述按压下降期内的加速度数据以及本次的所述按压下降期时长确定本次的按压深度;根据本次的胸腔回弹开始时间点和胸腔回弹上升期结束时间点确定本次的胸腔回弹上升期及胸腔回弹上升期时长,根据在本次的所述胸腔回弹上升期内的加速度数据以及本次的所述胸腔回弹上升期时长确定本次的胸腔回弹高度;根据本次的胸腔回弹开始时间点和下次的按压开始时间点确定本次的胸腔回弹期,根据在本次的所述胸腔回弹期内的压力数据确定是否存在滞留压;根据本次的按压开始时间点和下次的按压开始时间点确定本次的按压周期时长,根据至少一次的按压周期时长确定按压频率;根据本次的按压开始时间点和胸腔回弹开始时间点确定本次的按压期时长,根据本次的胸腔回弹开始时间点和下次的按压开始时间点确定本次的胸腔回弹期时长,根据至少一次的按压期时长和胸腔回 弹期时长确定按压回弹比。
结合本申请的第一方面,在一可选实施方式中,所述根据所述时间节点确定胸外按压的质量参数,包括:根据本次的胸腔回弹上升期结束时间点和下次的按压开始时间点确定本次的胸腔回弹平台期及胸腔回弹平台期时长,若本次的胸腔回弹平台期时长大于或等于第一预设时长阈值,根据本次的胸腔回弹平台期时长以及本次之前的至少一次的胸腔回弹平台期时长确定本次的按压中断时长;所述根据所述时间节点确定胸外按压的质量参数,还包括:根据胸外按压过程中第一次按压的按压开始时间点和最近一次采集时间确定心肺复苏期及心肺复苏期时长,根据在所述心肺复苏期内各次的按压中断时长确定按压中断总时长,根据所述按压中断总时长和所述心肺复苏期时长确定胸外按压比例。
结合本申请的第一方面,在一可选实施方式中,所述方法还包括:若检测到本次的胸腔回弹上升期结束时间点距最近一次采集时间之间的时间长度大于或等于所述第一预设时长阈值,且并未检测到下次的按压开始时间点,则根据本次的胸腔回弹上升期结束时间点距最近一次采集时间之间的时间长度以及本次之前的至少一次的胸腔回弹平台期时长确定为按压中断更新时长;根据在所述心肺复苏期内各次的按压中断时长和按压中断更新时长确定按压中断更新总时长,根据所述按压中断更新总时长和所述心肺复苏期时长确定胸外按压更新比例;直至检测到下次的按压开始时间点,则根据本次的胸腔回弹上升期结束时间点和下次的按压开始时间点确定本次的胸腔回弹平台期及胸腔回弹平台期时长,根据本次的胸腔回弹平台期时长以及本次之前的至少一次的胸腔回弹平台期时长确定本次的按压中断时长。
结合本申请的第一方面,在一可选实施方式中,若本次的胸腔回弹平台期时长大于或等于第一预设时长阈值,则根据本次之前的至少一次的胸腔回弹平台期时长更新本次的胸腔回弹平台期时长。
结合本申请的第一方面,在一可选实施方式中,所述根据在本次的所述胸腔回弹期内的压力数据确定是否存在滞留压,包括:
根据在本次的所述胸腔回弹期内的压力数据确定平均压力值,根据所述平均压力值与零位进行比较,如果所述平均压力值大于零位,则识别为存在滞留压;
根据在本次的所述胸腔回弹期内的压力数据与零位进行比较,如果检测到比较结果为压力数据大于零位,则识别为存在滞留压。
结合本申请的第一方面,在一可选实施方式中,所述质量参数包括以下至少之一:按压深度、胸腔回弹高度、存在滞留压情况、按压中断更新时长、胸外按压比例、按压频率、按压回弹比;所述根据所述质量参数向用户提供反馈信息,包括以下至少之一:对应于所述质量参数包括按压深度,根据预设时间段内若干次的按压深度确定平均按压深度,根据所述平均按压深度与预设按压深度范围的端点值的关系向用户提供 相应的反馈信息;对应于所述质量参数包括按压深度和胸腔回弹高度,若所述胸腔回弹高度小于所述按压深度,则向用户提供相应的反馈信息;对应于所述质量参数包括存在滞留压情况,若存在滞留压,则向用户提供相应的反馈信息;对应于所述质量参数包括按压中断更新时长,若所述按压中断更新时长超过第二预设时长阈值,则向用户提供相应的反馈信息;对应于所述质量参数包括胸外按压比例,若所述胸外按压比例不大于预设比例阈值,则向用户提供相应的反馈信息;对应于所述质量参数包括按压频率,根据所述按压频率与预设按压频率范围的端点值的关系向用户提供相应的反馈信息;对应于所述质量参数包括按压回弹比,根据所述按压回弹比向用户提供相应的反馈信息。
结合本申请的第一方面,在一可选实施方式中,所述根据所述压力数据和所述加速度数据确定胸外按压过程中的时间节点,包括以下至少之一:根据所述压力数据和所述加速度数据确定胸外按压过程中各次的按压开始时间点,并且确定将所述压力数据由零或与零在预设范围内的波谷值变化成满足预设条件的高位压力值的时间点,以及将所述时间点确定为所述按压开始时间点;根据所述压力数据和所述加速度数据确定胸外按压过程中各次的按压下降期结束时间点,并且确定将所述压力数据为满足预设条件的高位压力值且由加速度数据经处理后得到的速度数据由正向速度变化成零的时间点,以及将所述时间点确定为所述按压下降期结束时间点;根据所述压力数据和所述加速度数据确定胸外按压过程中各次的胸腔回弹开始时间点,并且确定将所述压力数据由满足预设条件的高位压力值变化成零或与零在预设范围内的波谷值且由加速度数据经处理后得到的速度数据由零变化成反向速度的时间点,以及将所述时间点确定为所述胸腔回弹开始时间点;根据所述压力数据和所述加速度数据确定胸外按压过程中各次的胸腔回弹上升期结束时间点,并且确定将所述压力数据为零或与零在预设范围内的波谷值且由加速度数据经数据处理后的速度数据由反向速度变化成零的时间点,以及将所述时间点确定为所述胸腔回弹上升期结束时间点。
结合本申请的第一方面,在一可选实施方式中,采集所述压力数据的压力传感器与采集所述加速度数据的加速度传感器的时钟同步,或者,采集所述压力数据的过程和采集所述加速度数据的过程使用同一时钟记录。
结合本申请的第一方面,在一可选实施方式中,所述压力传感器测量的按压力为正时,将胸腔下陷过程的加速度数据转算为胸腔按压深度;所述压力传感器测量的按压力归零时,将胸腔回弹的加速度数据转算为胸腔回弹高度。
结合本申请的第一方面,在一可选实施方式中,响应于识别到胸腔回弹不充分的事件,向用户提供的反馈信息至少包括剩余未回弹的高度值、已回弹的高度比例、剩余未回弹的高度比例中的一项。
第二方面,本申请实施例提供了一种胸外按压反馈装置,包括:数据获取模块, 用于获取由压力传感器采集的压力数据和由加速度传感器采集的加速度数据;数据处理模块,用于根据所述压力数据和所述加速度数据确定胸外按压过程中的时间节点,根据所述时间节点确定胸外按压的质量参数;反馈模块,用于根据所述质量参数向用户提供反馈信息。
第三方面,本申请一实施例提供了一种计算机可读存储介质,所述计算机可读存储介质存储有指令,当所述指令由电子设备的处理器执行时,使得所述电子设备能够执行上述第一方面中任意一项提供的胸外按压反馈方法。
第四方面,本申请一实施例提供了一种电子设备,所述电子设备包括:处理器;用于存储计算机可执行指令的存储器;所述处理器,用于执行所述计算机可执行指令,以实现上述第一方面中任意一项所述的胸外按压反馈方法。
本申请实施例所提供的胸外按压反馈方法及装置、存储介质和电子设备,其中,胸外按压反馈方法包括:获取由压力传感器采集的压力数据和由加速度传感器采集的加速度数据;根据压力数据和加速度数据确定胸外按压过程中的时间节点;根据时间节点确定胸外按压的质量参数;根据质量参数向用户提供反馈信息;如此,提高了胸外按压的质量参数的反馈准确性,协助改善了心肺复苏成功率。
本申请实施例所提供的胸外按压反馈方法及装置、存储介质和电子设备,通过获取压力数据和加速度数据,如果使用者仅仅手持胸外按压反馈装置晃动,与真实按压不同的是,此时使用者不会对该胸外按压反馈装置产生真实的有规律的按压压力,因此,在这种情况下,该胸外按压反馈装置不会将非按压的晃动产生的加速度数据识别为按压次数和按压深度,提高了胸外按压质量参数的反馈准确性。
本申请实施例所提供的胸外按压反馈方法及装置、存储介质和电子设备,能够根据在本次的所述胸腔回弹期内的压力数据确定是否存在滞留压,提高了胸外按压质量参数的反馈准确性。
本申请实施例所提供的胸外按压反馈方法及装置、存储介质和电子设备,通过获取压力数据和加速度数据,能够根据不同患者的体质的不同,通过检测施加在患者胸部的压力,准确的测量并反馈出按压的深度。本申请附加的方面和优点将在下面的描述中部分给出。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1为本申请一实施例提供的胸外按压反馈装置的硬件结构示意图;
图2a和图2b为本申请一实施例提供的胸外按压反馈装置的使用场景示意图;
图3为本申请一实施例提供的胸外按压反馈方法的流程示意图;
图4为本申请一具体示例提供的胸外按压反馈方法的流程示意图;
图5为本申请一实施例提供的胸外按压反馈装置的结构框图;
图6为本申请一实施例提供的电子设备的结构框图。
具体实施方式
为使本申请的技术方案和有益效果能够更加明显易懂,下面通过列举具体实施例的方式进行详细说明。其中,附图不一定是按比例绘制的,局部特征可以被放大或缩小,以更加清楚的显示局部特征的细节;除非另有定义,本文所使用的技术和科学术语与本申请所属的技术领域中的技术和科学术语的含义相同。
除另作定义外,本申请所涉及的技术术语或者科学术语应具有本申请所属技术领域具备一般技能的人所理解的一般含义。在本申请中的“一”、“一个”、“一种”、“该”、“这些”等类似的词并不表示数量上的限制,它们可以是单数或者复数。在本申请中所涉及的术语“包括”、“包含”、“具有”及其任何变体,其目的是涵盖不排他的包含;例如,包含一系列步骤或模块(单元)的过程、方法和系统、产品或设备并未限定于列出的步骤或模块(单元),而可包括未列出的步骤或模块(单元),或者可包括这些过程、方法、产品或设备固有的其他步骤或模块(单元)。在本申请中所涉及的“多个”是指两个或两个以上。“和/或”描述关联对象的关联关系,表示可以存在三种关系,例如,“A和/或B”可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。在本申请中所涉及的术语“第一”、“第二”、“第三”等,只是对相似对象进行区分,并不代表针对对象的特定排序。
本申请提供的方法实施例可以在终端、计算机或者类似的运算装置中执行。比如在胸外按压反馈装置上执行,图1为本申请一实施例提供的胸外按压反馈装置的硬件结构示意图,该胸外按压反馈装置100的结构可以参考图1,图2a和图2b为本申请一实施例提供的胸外按压反馈装置的使用场景示意图,该胸外按压反馈装置100的使用场景可以参考图2a和图2b。如图2a和图2b所示,患者仰卧于平地上或用胸外按压板垫于其肩背下,施救人员可采用跪式等不同体位处于患者身体的一侧,施救人员将胸外按压反馈装置100安放在患者胸腔上方,施救人员双手放置在胸外按压反馈装置100之上实施徒手心肺复苏。施救人员应尽量保证持续有效的胸外按压,快速有力,中间不间断。
本申请中,患者指的是包含例如由于心脏骤停、呼吸窘迫、创伤性损伤、休克、以及可能需要复苏处置的其它状况而可能需要急性护理的任何人;施救人员,例如为实施手动胸部按压的护理者或救助者,同时,也至少为使用胸外按压反馈装置100的用户之一,且一般为直接使用胸外按压反馈装置100的用户;但是,用户不仅可以包括施救人员,还可以包括其他间接使用胸外按压反馈装置100的人员,如其他查看由胸外按压反馈装置100反馈的质量参数的人员。
胸外按压的质量参数(或称胸外按压的按压质量物理指标)按重要性排序可以包括:(1)胸外按压比例(Chest Compression Fraction,CCF),或称胸外按压指数, 其比例值应当大于60%,且任何一次按压中断时长应控制在10秒内;(2)胸外按压频率,其数值范围应严格控制在100-120次/分钟;(3)胸外按压深度,其数值范围应在5.0-6.0厘米;(4)按压回弹比,即按压期时长/胸腔回弹期时长比,其比值应为50%:50%;(5)胸廓充分回弹程度,在衡量该数值时应让胸廓充分回弹,两次按压之间不倚靠在患者胸廓上;(6)通气次数及通气时间,通过控制通气次数与通气时间这两个数值避免过度通气。
上述各质量参数的计算基本都与时间有关。在一些实施例中,一些质量参数的计算方法在对胸外按压过程中的各时间节点的计算结果并不准确。例如,根据压力传感器测得的按压力值以及按压的时长折算按压深度,将施加压力的过程均认定为胸外按压深度增加的过程,然而,事实上患者的胸腔是存在阻尼的,并且每位患者的胸腔按压阻尼不一样,可能会出现在某一时刻压力虽然继续施加但按压深度已经不再增加的情况,这就类似于将按压反馈装置放置在硬地面上,不管按压力多大,实际的按压深度均应为零,因此,如果不确定出按压下降期是何时结束的,按压反馈装置显然会反馈按压深度在继续增加。又如,采用加速度传感器,通过判断加速度的变化确定按压开始/结束以及回弹等各时间节点,采用此方式时,在临床试验中,操作步骤是先开机、接通胸外按压反馈装置100的电源,在此过程中手持胸外按压反馈装置100的任何晃动或者将其放置在患者胸腔上的过程,加速度传感器都会产生对应的加速度值变化,这些都属于非按压伪信号,如果将这些信号或者这些信号中的部分信号错误的认定为按压过程中的时间节点,显然会导致质量参数的计算错误;除此之外,还有很多可能会导致仪器误判的情况,比如,加速度传感器脱离患者胸腔上下晃动,患者胸腔的上下晃动(如除颤、通气、转运期晃动或因其他治疗所需移动患者导致的晃动),如果被错误的认定为按压过程,将直接影响胸外按压比例CCF、按压频率等质量参数的准确性。由此可见,在没有准确确定胸外按压过程中的各时间节点的情况下,利用感测数据计算各质量参数是导致质量参数的反馈准确性不尽人意的因素之一。
心肺复苏是挽救心脏骤停患者的有效手段,在心脏骤停的大部分时间内,必须通过有效的胸外按压产生足够的血流,给关键器官和组织输送氧气和代谢底物。考虑到心肺复苏过程需要争分夺秒,且胸外按压过程实施的非常快速,因此想要通过人工观察或视觉检测的方法判断胸外按压过程中的各时间节点是十分困难的。如果增设更加复杂的部件来实现各时间节点的确定,不仅会增加胸外按压反馈的成本,也会导致胸外按压反馈装置体积和重量的增加,从而不利于装置的携带和使用;同时,增设的时间节点的确定部件与原有部件之间的时钟同步问题以及时间传输误差问题也会为反馈的准确性带来不利影响。
基于此,本申请实施例提出了一种胸外按压反馈方法,图3为本申请一实施例提供的胸外按压反馈方法的流程示意图,如图3所示,该方法包括:
步骤301、获取由压力传感器采集的压力数据和由加速度传感器采集的加速度数 据;
步骤302、根据压力数据和加速度数据确定胸外按压过程中的时间节点;
步骤303、根据时间节点确定胸外按压的质量参数;
步骤304、根据质量参数向用户提供反馈信息。
可以理解的,本实施例对胸外按压过程中的时间节点进行了确定,并具体结合压力数据和加速度数据二者作为胸外按压过程中的时间节点的确定依据,能够更为准确地判断出各时间节点,进而更为准确地确定胸外按压的质量参数,避免了由于其他抢救措施所致的患者人体上下晃动造成伪按压数据错误,也避免了压力传感技术的非线性深度测量误差,从而提高了胸外按压的质量参数的反馈准确性,协助改善了心肺复苏的成功率。
请继续参考图1,胸外按压反馈装置100可以包括:壳体170、压力传感器110、加速度传感器120、处理单元130、存储单元140、以及反馈单元160等。其中,壳体170将各部件封装在内部,保护各部件不受损失,并且使得整个装置便于携带。压力传感器110,被配置为采集压力数据;该压力数据反映了在各采集时刻施救人员所施加的按压力的值。加速度传感器120,被配置为采集加速度数据;该加速度数据反映了在各采集时刻患者胸腔面胸骨加速度的变化,包括胸腔被按压所致的下陷加速度和胸腔回弹期的回弹加速度等。处理单元130,被配置为获取由压力传感器110采集的压力数据和由加速度传感器120采集的加速度数据,并根据获取到的压力数据和加速度数据进行时间节点的确定和质量参数的计算。处理单元130根据计算得到的质量参数指示反馈单元160向用户提供反馈信息。当然,处理单元130也可以将质量参数传输给外部设备,如计算机或其他医疗装置等,以通过外部设备向用户提供反馈信息;外部设备可以向位于远端的用户实时提供该反馈信息,也可以进行数据存储和/或分析等,以供稍后复查救助期间内所进行的动作。反馈单元160在处理单元130的指示下,完成具体的信息反馈工作。这里,反馈单元160所进行的反馈工作有助于向用户提供通知、指示、和/或提醒;反馈单元160可以以任何合适的形式进行反馈,包括但不限于:视觉反馈,如通过指示灯的亮起/关闭、闪烁、不同颜色等向用户反馈不同的信息内容,又如通过显示屏幕向用户展示相关信息;声音反馈,如提醒音、语音指示;触觉反馈,如震动等。
其中,压力传感器110采集压力数据和加速度传感器120采集加速度数据的时钟同步,或者二者的采集过程使用同一时钟记录。采集数据的时间趋近于实时采集。根据采集到的各压力数据和各加速度数据以及采集数据的时间,可以得到压力变化曲线和加速度变化曲线,进一步的,还可以根据采集到的各加速度数据和采集数据的时间得到位移变化曲线和/或速度变化曲线。
胸外按压过程中的各时间节点,例如包括以下至少之一:按压开始时间点(记为t0)、按压下降期结束时间点(记为t1)、胸腔回弹开始时间点(记为t2)、以及胸 腔回弹上升期结束时间点(记为t3);可以理解的是,由于胸外按压过程一般包括多次按压,正常情况下以每次按压开始至下次按压开始作为一个按压周期,或称“一次按压”,则上述各时间节点为各次按压的按压周期内包含的各时间节点;对于整个胸外按压过程,具体可以包括多个上述各时间节点,例如包括:第一次按压的开始时间点、第一次按压的按压下降期结束时间点、第一次按压的胸腔回弹开始时间点、第一次按压的胸腔回弹上升期结束时间点、第二次按压的开始时间点、第二次按压的按压下降期结束时间点、第二次按压的胸腔回弹开始时间点、第二次按压的胸腔回弹上升期结束时间点、第三次按压的开始时间点……为便于描述,本文使用“本次”代表上述中的任意一次,使用“下次”代表发生在“本次”之后的且与“本次”时间最临近的下一次,使用“上次”代表发生在“本次”之前的且与“本次”时间最临近的上一次,使用“最近一次”代表与当前时刻最为临近的一次。由于在正常情况下,下次按压开始代表了本次按压周期结束,因此在确定本次按压周期时,还可能需要利用下次的按压开始时间点;这里将下次的按压开始时间点记为t4。
作为一种可选的实施方式,根据压力数据和加速度数据确定胸外按压过程中的时间节点,可以包括:根据压力数据和加速度数据确定胸外按压过程中各次的按压开始时间点,并且确定将压力数据由零或与零在预设范围内如接近零的波谷值变化成满足预设条件的高位压力值的时间点,以及将该时间点确定为按压开始时间点。
这里,考虑到如果在某两次按压之间存在滞留压,那么压力数据可能不会下降为零,此时将接近零的波谷值视为未施加压力的情况。应当理解的是,在压力变化曲线上,压力数据位于波谷值往往是容易识别的,压力数据由高位压力值下降,逐渐接近零但未到零时反弹,则这一过程中的最小值即为接近零的波谷值。此外,为了降低识别误差,还可以通过设置零位点位阈值范围的方式确定接近零的波谷值,例如在预设的零位点位阈值范围内的波谷值为接近零的波谷值。
如此,本次的按压开始时间点t0,以及下次的按压开始时间点记为t4,均可以采用上述步骤确定。
在胸外按压过程中,施救人员在患者胸腔上施加的按压力一般是瞬时增大,即变化成高位压力值,这在压力变化曲线上也是容易识别的。为了避免设备将搭扶、倚靠等非按压力产生的压力值错误的识别为按压力,可以通过设置高位阈值的方式确定高位压力值,如将压力数据超过高位阈值确定为满足预设条件,将压力数据超过高位阈值的时刻确定为变化成满足预设条件的高位压力值的时间点。
在实际应用中,当压力传感器监测的按压压力高于零位压力电位且处于高位时,识别为本次的按压开始时间点t0,此时间点作为后续胸腔被按压所致的下陷加速度测量按压深度Dp的计算开始时间点。
作为一种可选的实施方式,根据压力数据和加速度数据确定胸外按压过程中的时间节点,还可以包括:根据压力数据和加速度数据确定胸外按压过程中各次的按压下 降期结束时间点,并且具体将压力数据为满足预设条件的高位压力值且由加速度数据经处理后得到的速度数据由正向速度变化成零的时间点确定为所述按压下降期结束时间点。本申请实施例中,将施加按压力的方向定义为正向,将胸腔回弹的方向定义为反向。在此基础上,可以理解的是,正向速度指的是方向与按压方向一致的速度;相应的,反向速度指的是方向与胸腔回弹方向一致的速度。
在实际应用中,当压力传感器监测的按压压力处于高位且由加速度数据经处理后得到的速度数据由正向速度变化成零的时间点,识别为本次的按压下降期结束时间点t1。
如此,可以计算出本次的按压下降期时长T1=t1-t0。其中,T1为本次的按压下降期时长,t1为本次的按压下降期结束时间点,t0为本次的按压开始时间点。
通过在该按压下降期时长内对本次按压下降期的加速度积分,可以得到速度V(t),具体采用下面的公式(1)进行计算:
其中,V(t)为速度,a为加速度。
在此基础上,通过在该按压下降期时长内对本次按压下降期的加速度进行二次积分,可以得到本次的按压深度Dp。具体的,在通过上述公式(1)计算得到速度V(t)之后,
再采用下面的公式(2)对速度V(t)进行积分,得到按压深度Dp:
其中,加速度a是对采集得到的加速度数据进行滤波处理后的加速度。对加速度数据进行滤波处理,具体可以包括:通过高通滤波,滤除加速度数据中的重力加速度g的直流信号,从而消除因检测重力加速度g偏移而造成的基线漂移;还可以包括:经过低通滤波,滤除高频干扰和/或噪声信号。
如此,可以获得按压速度随时间变化的曲线,也可以称为“速度变化曲线”;还可以获得按压深度随时间的变化曲线,也可以称为“位移变化曲线”。
作为一种可选的实施方式,根据压力数据和加速度数据确定胸外按压过程中的时间节点,还可以包括:根据压力数据和加速度数据确定胸外按压过程中各次的胸腔回弹开始时间点,并且具体将压力数据由满足预设条件的高位压力值变化成零或与零在预设范围内如接近零的波谷值且由加速度数据经处理后得到的速度数据由零变化成反向速度的时间点确定为所述胸腔回弹开始时间点。
在实际应用中,当压力传感器监测的按压力电位由高位转为接近零位点位、且由加速度传感器测量值经处理后得到的速度数据由零变化成反向速度的时间点,识别为本次的胸腔回弹开始时间点t2(也表示本次的按压的结束时间点)。
如此,可以计算出本次的按压平台期时长T2=t2-t1。
可以理解的是,在按压平台期,施救人员仍然施加按压力,但此时胸腔位置已基 本不再继续下降,施加的按压力与患者的胸腔的回弹力达到平衡;由于一般要求胸外按压深度在5.0-6.0厘米左右,因此施救人员在感觉到按压深度大致符合要求后会出现一段停顿时间,而后施救人员将会撤销按压力,患者的胸腔开始回弹。因此,在按压平台期,不应累积计算按压深度Dp。
如此,本次的按压期时长Tp=T1+T2。
作为一种可选的实施方式,根据压力数据和加速度数据确定胸外按压过程中的时间节点,还可以包括:根据压力数据和加速度数据确定胸外按压过程中各次的胸腔回弹上升期结束时间点,并且具体将压力数据为零或接近零的波谷值且由加速度数据经数据处理后的速度数据由反向速度变化成零的时间点确定为所述胸腔回弹上升期结束时间点。
可以理解的,若压力数据为零,则可以表示不存在滞留压;相反的,若压力数据为接近零的波谷值,则可以表示存在滞留压。
在实际应用中,例如当加速度传感器测量值经数据处理后的速度数据由反向速度变化成零的时间点,识别为本次的胸腔回弹上升期结束时间点t3。
如此,可以计算出胸腔回弹上升期时长T3=t3-t2。通过在该胸腔回弹上升期时长内对本次胸腔回弹上升期的加速度积分,可以得到本次的胸腔回弹高度Dr。
在本申请实施例中,压力传感器测量的按压力为正时,才将胸腔下陷过程的加速度数据转算为胸腔按压深度;压力传感器测量的按压力归零时,才将胸腔回弹的加速度数据转算为胸腔回弹高度;从而提高胸外按压的质量参数的准确性。
接下来,如果加速度传感器测量值经数据处理后的速度数据由反向速度变化成零后,压力传感器测量值由接近或等于零位点位转为高位按压压力,则可以识别出下次的按压开始时间点t4。在正常情况下,下次的按压开始时间点t4也表示本次的胸腔回弹平台期的结束时间点。换言之,利用与本次的按压开始时间点t0相同的方法步骤确定下次的按压开始时间点t4。
如此,可以计算出本次的胸腔回弹平台期时长T4=t4-t3。
本次的胸腔回弹期时长Tr=T3+T4。
可以理解的是,在胸腔回弹平台期,施救人员虽然还未开始下一次按压,但不应将其认定为属于中断时间。胸腔回弹平台期对于整个施救过程而言是必要的,在经过胸腔回弹上升期后,胸腔回弹的速度被加速到最大,在胸腔回弹平台期内,胸腔回弹的速度将快速降为零,在这个过程中,胸腔得到充分回弹,血液得以回流。施救人员感知到这一时刻后,将会开始下一次按压。反之,如果施救人员没有及时进行下一次按压,那么在合理的胸腔回弹平台期过后的时间应当被认为属于中断时间。
作为一种可选的实施方式,根据时间节点确定胸外按压的质量参数,可以包括:根据本次的按压开始时间点t0和按压下降期结束时间点t1确定本次的按压下降期及按压下降期时长T1,根据在本次的按压下降期内的加速度数据以及本次的按压下降期时 长T1确定本次的按压深度Dp。
作为一种可选的实施方式,根据时间节点确定胸外按压的质量参数,可以包括:根据本次的胸腔回弹开始时间点t2和胸腔回弹上升期结束时间点t3确定本次的胸腔回弹上升期及胸腔回弹上升期时长T3,根据在本次的所述胸腔回弹上升期内的加速度数据以及本次的所述胸腔回弹上升期时长T3确定本次的胸腔回弹高度Dr。
作为一种可选的实施方式,根据时间节点确定胸外按压的质量参数,可以包括:根据本次的胸腔回弹开始时间点t2和下次的按压开始时间点t4确定本次的胸腔回弹期Tr,根据在本次的胸腔回弹期内的压力数据确定是否存在滞留压Pr。
在实际应用中,可以根据胸腔回弹期内的压力传感器测量的平均压力值与零位进行比较,如果大于零位,则识别为存在滞留压,两次按压之间存在倚靠患者胸腔的现象。此外,也可以直接根据胸腔回弹期内的压力数据与零位进行比较,如果检测到比较结果为压力数据大于零位,则识别为存在滞留压。
作为一种可选的实施方式,根据时间节点确定胸外按压的质量参数,可以包括:根据本次的胸腔回弹上升期结束时间点t3和下次的按压开始时间点t4确定本次的胸腔回弹平台期及胸腔回弹平台期时长T4,若本次的胸腔回弹平台期时长T4大于或等于第一预设时长阈值,根据本次的胸腔回弹平台期时长T4以及本次之前的至少一次的胸腔回弹平台期时长确定本次的按压中断时长Th。
这里,根据本次之前的至少一次的胸腔回弹平台期时长可以为根据上次的胸腔回弹平台期时长,或者根据本次之前的多次的胸腔回弹平台期时长的平均值,也可以为根据本次之前的某一次的胸腔回弹平台期时长。可选的,在本次之前的多次的胸腔回弹平台期时长中,去掉最大值和最小值,取剩余胸腔回弹平台期时长的平均值。如此,可以根据本次之前的至少一次的胸腔回弹平台期时长确定一个估算胸腔回弹平台期时长。
将本次的胸腔回弹平台期时长T4减去估算胸腔回弹平台期时长即得到本次的按压中断时长Th。
作为一种可选的实施方式,若本次的胸腔回弹平台期时长大于或等于第一预设时长阈值,则根据本次之前的至少一次的胸腔回弹平台期时长更新本次的胸腔回弹平台期时长。
这里,第一预设时长阈值例如设定为2秒。可以理解的是,如果本次的胸腔回弹平台期时长大于或等于2秒,则应当是出现了按压中断的情况。为了后续计算需要,可以将上述估算胸腔回弹平台期时长更新为本次的胸腔回弹平台期时长。
进一步地,根据时间节点确定胸外按压的质量参数,还可以包括:根据胸外按压过程中第一次按压的按压开始时间点和最近一次采集时间确定心肺复苏期及心肺复苏期时长Ttot,根据在心肺复苏期内各次的按压中断时长Th确定按压中断总时长Tht,根据按压中断总时长Tht和心肺复苏期时长Ttot确定胸外按压比例CCF。
具体的,CCF=(Ttot-Tht)/Ttot。
接下来,请参考图4,图4为本申请一具体示例提供的胸外按压反馈方法的流程示意图。在具体示例中,开始按压反馈后,首先根据加速度传感器和压力传感器采集得到的数据计算得到速度曲线和压力曲线;接下来,根据速度曲线和压力曲线计算得到胸外按压的质量参数;然后,可以根据质量参数对按压质量进行反馈。
可以理解的是,如果本次的胸腔回弹结束后,一直没有检测到下次的按压开始时间点,那么有可能已经出现了按压中断。如果等到检测到下次的按压开始时间点再反馈按压中断时长,显然只能作为数据统计,而无法有效起到实时监测和提醒的作用。因此,在具体示例中,还设置了判断2秒内是否有下一次按压的步骤,如果有按压,整个过程可以循环继续;如果无按压,则按压中断时间计时,并实时更新CCF,直至按压恢复。
如此,作为一种可选的实施方式,若检测到本次的胸腔回弹上升期结束时间点距最近一次采集时间之间的时间长度大于或等于第一预设时长阈值,且并未检测到下次的按压开始时间点,则根据本次的胸腔回弹上升期结束时间点距最近一次采集时间之间的时间长度以及本次之前的至少一次的胸腔回弹平台期时长确定为按压中断更新时长;
根据在心肺复苏期内各次的按压中断时长和按压中断更新时长确定按压中断更新总时长,根据按压中断更新总时长和心肺复苏期时长确定胸外按压更新比例;
直至检测到下次的按压开始时间点,则根据本次的胸腔回弹上升期结束时间点和下次的按压开始时间点确定本次的胸腔回弹平台期及胸腔回弹平台期时长,根据本次的胸腔回弹平台期时长以及本次之前的至少一次的胸腔回弹平台期时长确定本次的按压中断时长。
作为一种可选的实施方式,根据时间节点确定胸外按压的质量参数,可以包括:根据本次的按压开始时间点t0和下次的按压开始时间点t4确定本次的按压周期时长,根据至少一次的按压周期时长确定按压频率。
可以理解的是,本次的按压周期时长=Tp+Tr。在实际应用中,可以根据本次的按压周期时长确定本次的按压频率,即按压频率=60秒/按压周期时长。当然,也可以根据多次按压周期时长确定平均按压频率,从而提高按压频率的准确性。
作为一种可选的实施方式,根据时间节点确定胸外按压的质量参数,可以包括:根据本次的按压开始时间点t0和胸腔回弹开始时间点t2确定本次的按压期时长Tp,根据本次的胸腔回弹开始时间点t2和下次的按压开始时间点t4确定本次的胸腔回弹期时长Tr,根据至少一次的按压期时长Tp和胸腔回弹期时长Tr确定按压回弹比。
在实际应用中,按压回弹比例如等于Tp的平均值除以Tr的平均值。这样,可以更好地反应按压回弹比的普遍情况。
在本申请实施例中,质量参数可以包括以下至少之一:按压深度、胸腔回弹高度、 存在滞留压情况、按压中断更新时长、胸外按压比例、按压频率、按压回弹比。
根据质量参数向用户提供反馈信息,例如包括:对应于质量参数包括按压深度,根据最近的若干次的按压深度确定平均按压深度,根据平均按压深度与预设按压深度范围的端点值的关系向用户提供相应的反馈信息。
其中,对于按压深度的计算,如果本次为第一次按压,显然应当将本次的按压深度视为平均按压深度,从而向用户提供相应的反馈信息。
在实际应用中,最近的若干次的按压深度具体例如为最近的3次,或者最近的8次等。如果若干次超过4次,则根据最近的若干次的按压深度确定平均按压深度,具体可以为:在最近的若干次的按压深度中,去掉一个最大值,去掉一个最小值,取剩余的按压深度的平均值作为平均按压深度。如此,避免了偶然误差造成的平均按压深度的准确性降低。当然,以上仅为一种可选的实施方式,不应理解为对平均按压深度确定方法的限制。
此外,根据质量参数向用户提供反馈信息,例如包括:对应于质量参数包括按压深度,根据所述按压深度与预设按压深度范围的端点值的关系向用户提供相应的反馈信息。
这样,只要出现按压深度不符合预设按压深度范围要求的情况,即向用户提供相应的反馈信息,保证了反馈的及时性。
根据质量参数向用户提供反馈信息,例如包括:对应于质量参数包括按压深度和胸腔回弹高度,若胸腔回弹高度小于按压深度,则向用户提供相应的反馈信息。
可以理解的是,如果胸腔回弹高度小于按压深度,则识别为胸腔回弹不充分,向用户提供相应的反馈信息。这里,胸腔回弹高度和按压深度为同一次按压的胸腔回弹高度和按压深度。
其中,对应于识别为胸腔回弹不充分的情况,向用户提供的反馈信息具体可以包括以下至少之一:剩余未回弹的高度值、已回弹的高度比例、剩余未回弹的高度比例。可以理解的,剩余未回弹的高度值指的是按压深度与胸腔回弹高度的差值;比如,按压深度为5厘米,胸腔回弹高度为4厘米,则向用户提供的反馈信息包括剩余未回弹的高度值为1厘米(5厘米-4厘米=1厘米);已回弹的高度比例指的是胸腔回弹高度与按压深度的比值,具体可以为胸腔回弹高度占按压深度的百分比;仍然以按压深度为5厘米、胸腔回弹高度为4厘米为例,向用户提供的反馈信息包括已回弹的高度比例为80%(4厘米÷5厘米=80%);剩余未回弹的高度比例指的是按压深度与胸腔回弹高度的差值与按压深度的比值,即剩余未回弹的高度值与按压深度的比值;在上面的举例中,向用户提供的反馈信息包括剩余未回弹的高度比例为20%,具体计算过程为:(5厘米-4厘米)÷5厘米=20%。
根据质量参数向用户提供反馈信息,例如包括:对应于质量参数包括存在滞留压情况,若存在滞留压情况为是,则向用户提供相应的反馈信息。
根据质量参数向用户提供反馈信息,例如包括:对应于质量参数包括按压中断更新时长,若按压中断更新时长超过第二预设时长阈值,则向用户提供相应的反馈信息。
对应于质量参数包括按压中断更新时长,可以将按压中断更新时长实时与第二预设时长阈值进行比较;这里,第二预设时长阈值例如设定为10秒;如果按压中断更新时长超过10秒,则向用户提供相应的反馈信息。中断更新时长可以理解为中断时长随时间的变化情况,当检测到下次的按压开始时间点时,中断更新时长即为本次的中断时长。这样,不仅可以向用户提供CCF的情况,同时也做到了对任何一次按压中断时长的及时反馈,有效地向用户提醒了中断时长的变化情况。此外,按压中断更新时长还能够辅助判断通气时间是否过长。
根据质量参数向用户提供反馈信息,例如包括:对应于质量参数包括胸外按压比例,若胸外按压比例不大于预设比例阈值,则向用户提供相应的反馈信息。
根据质量参数向用户提供反馈信息,例如包括:对应于质量参数包括按压频率,根据按压频率与预设按压频率范围的端点值的关系向用户提供相应的反馈信息。
根据质量参数向用户提供反馈信息,例如包括:对应于质量参数包括按压回弹比,根据按压回弹比向用户提供相应的反馈信息。
如前所述,向用户提供相应的反馈信息中的全部或者部分可以通过指示胸外按压反馈装置100中的反馈单元160实现,也可以通过外部设备实现;可以实时反馈,也可以进行存储以备用户复查。
在此基础上,本申请实施例还提供了一种胸外按压反馈装置;请参考图5,图5为本申请一实施例提供的胸外按压反馈装置的结构框图,在一些实施例中,胸外按压反馈装置100包括:
数据获取模块101,用于获取由压力传感器采集的压力数据和由加速度传感器采集的加速度数据;
数据处理模块102,用于根据压力数据和加速度数据确定胸外按压过程中的时间节点,根据时间节点确定胸外按压的质量参数;
反馈模块103,用于根据质量参数向用户提供反馈信息。
作为一种可选的实施方式,数据处理模块102,具体用于根据压力数据和加速度数据确定胸外按压过程中各次的按压开始时间点、按压下降期结束时间点、胸腔回弹开始时间点、以及胸腔回弹上升期结束时间点;
根据时间节点确定胸外按压的质量参数,包括以下至少之一:
根据本次的按压开始时间点和按压下降期结束时间点确定本次的按压下降期及按压下降期时长,根据在本次的按压下降期内的加速度数据以及本次的按压下降期时长确定本次的按压深度;
根据本次的胸腔回弹开始时间点和胸腔回弹上升期结束时间点确定本次的胸腔回弹上升期及胸腔回弹上升期时长,根据在本次的胸腔回弹上升期内的加速度数据以及 本次的胸腔回弹上升期时长确定本次的胸腔回弹高度;
根据本次的胸腔回弹开始时间点和下次的按压开始时间点确定本次的胸腔回弹期,根据在本次的胸腔回弹期内的压力数据确定是否存在滞留压;
根据本次的按压开始时间点和下次的按压开始时间点确定本次的按压周期时长,根据至少一次的按压周期时长确定按压频率;
根据本次的按压开始时间点和胸腔回弹开始时间点确定本次的按压期时长,根据本次的胸腔回弹开始时间点和下次的按压开始时间点确定本次的胸腔回弹期时长,根据至少一次的按压期时长和胸腔回弹期时长确定按压回弹比。
作为一种可选的实施方式,根据时间节点确定胸外按压的质量参数,包括:根据本次的胸腔回弹上升期结束时间点和下次的按压开始时间点确定本次的胸腔回弹平台期及胸腔回弹平台期时长,若本次的胸腔回弹平台期时长大于或等于第一预设时长阈值,根据本次的胸腔回弹平台期时长以及本次之前的至少一次的胸腔回弹平台期时长确定本次的按压中断时长;
根据时间节点确定胸外按压的质量参数,还包括:根据胸外按压过程中第一次按压的按压开始时间点和最近一次采集时间确定心肺复苏期及心肺复苏期时长,根据在心肺复苏期内各次的按压中断时长确定按压中断总时长,根据按压中断总时长和心肺复苏期时长确定胸外按压比例。
作为一种可选的实施方式,数据处理模块102还用于:
若检测到本次的胸腔回弹上升期结束时间点距最近一次采集时间之间的时间长度大于或等于第一预设时长阈值,且并未检测到下次的按压开始时间点,则根据本次的胸腔回弹上升期结束时间点距最近一次采集时间之间的时间长度以及本次之前的至少一次的胸腔回弹平台期时长确定为按压中断更新时长;
根据在心肺复苏期内各次的按压中断时长和按压中断更新时长确定按压中断更新总时长,根据按压中断更新总时长和心肺复苏期时长确定胸外按压更新比例;
直至检测到下次的按压开始时间点,则根据本次的胸腔回弹上升期结束时间点和下次的按压开始时间点确定本次的胸腔回弹平台期及胸腔回弹平台期时长,根据本次的胸腔回弹平台期时长以及本次之前的至少一次的胸腔回弹平台期时长确定本次的按压中断时长。
作为一种可选的实施方式,数据处理模块102还用于:若本次的胸腔回弹平台期时长大于或等于第一预设时长阈值,则根据本次之前的至少一次的胸腔回弹平台期时长更新本次的胸腔回弹平台期时长。
作为一种可选的实施方式,质量参数包括以下至少之一:按压深度、胸腔回弹高度、存在滞留压情况、按压中断更新时长、胸外按压比例、按压频率、按压回弹比;
反馈模块103具体用于以下至少之一:
对应于质量参数包括按压深度,根据预设时间段内如最近的若干次的按压深度确 定平均按压深度,根据平均按压深度与预设按压深度范围的端点值的关系向用户提供相应的反馈信息;
对应于质量参数包括按压深度和胸腔回弹高度,若胸腔回弹高度小于按压深度,则向用户提供相应的反馈信息;
对应于质量参数包括存在滞留压情况,若存在滞留压情况为是,即存在滞留压,则向用户提供相应的反馈信息;
对应于质量参数包括按压中断更新时长,若按压中断更新时长超过第二预设时长阈值,则向用户提供相应的反馈信息;
对应于质量参数包括胸外按压比例,若胸外按压比例不大于预设比例阈值,则向用户提供相应的反馈信息;
对应于质量参数包括按压频率,根据按压频率与预设按压频率范围的端点值的关系向用户提供相应的反馈信息;
对应于质量参数包括按压回弹比,根据按压回弹比向用户提供相应的反馈信息。
作为一种可选的实施方式,根据压力数据和加速度数据确定胸外按压过程中的时间节点,包括以下至少之一:
根据压力数据和加速度数据确定胸外按压过程中各次的按压开始时间点,并且确定将压力数据由零或与零在预设范围内如接近零的波谷值变化成满足预设条件的高位压力值的时间点,以及将该时间点确定为按压开始时间点;
根据压力数据和加速度数据确定胸外按压过程中各次的按压下降期结束时间点,并且确定将压力数据为满足预设条件的高位压力值且由加速度数据经处理后得到的速度数据由正向速度变化成零的时间点,以及将该时间点确定为所述按压下降期结束时间点;
根据压力数据和加速度数据确定胸外按压过程中各次的胸腔回弹开始时间点,并且确定将压力数据由满足预设条件的高位压力值变化成零或接近零的波谷值且由加速度数据经处理后得到的速度数据由零变化成反向速度的时间点,以及将该时间点确定为所述胸腔回弹开始时间点;
根据压力数据和加速度数据确定胸外按压过程中各次的胸腔回弹上升期结束时间点,并且确定将压力数据为零或接近零的波谷值且由加速度数据经数据处理后的速度数据由反向速度变化成零的时间点,以及将该时间点确定为所述胸腔回弹上升期结束时间点。
作为一种可选的实施方式,采集压力数据的压力传感器与采集加速度数据的加速度传感器的时钟同步,或者,采集压力数据的过程和采集加速度数据的过程使用同一时钟记录。
作为一种可选的实施方式,压力传感器测量的按压力为正时,将胸腔下陷过程的加速度数据转算为胸腔按压深度;压力传感器测量的按压力归零时,将胸腔回弹的加 速度数据转算为胸腔回弹高度。
作为一种可选的实施方式,响应于识别到胸腔回弹不充分的事件,向用户提供的反馈信息至少包括剩余未回弹的高度值、已回弹的高度比例、剩余未回弹的高度比例中的一项。
在具体应用中,数据获取模块101、数据处理模块102以及反馈模块103例如为前述处理单元130的至少一部分。
本申请实施例还提供了一种计算机可读存储介质。该计算机可读存储介质存储有指令,当该指令由电子设备的处理器执行时,使得电子设备能够执行如上述任一实施例的胸外按压反馈方法中的步骤。
本申请实施例可以是系统、方法和/或计算机程序产品。计算机程序产品可以包括计算机可读存储介质,其上载有用于使处理器实现本申请的各个方面的计算机可读程序指令。计算机程序产品可以以一种或多种程序设计语言的任意组合来编写用于执行本申请实施例操作的程序代码,程序设计语言包括面向对象的程序设计语言,诸如Java、C++等,还包括常规的过程式程序设计语言,诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算设备上执行、部分地在用户设备上执行、作为一个独立的软件包执行、部分在用户计算设备上部分在远程计算设备上执行、或者完全在远程计算设备或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络—包括局域网(LAN)或广域网(WAN)—连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。在一些实施例中,通过利用计算机可读程序指令的状态信息来个性化定制电子电路,例如可编程逻辑电路、现场可编程门阵列(FPGA)或可编程逻辑阵列(PLA),该电子电路可以执行计算机可读程序指令,从而实现本申请的各个方面。
计算机可读存储介质可以采用一个或多个可读介质的任意组合。可读介质可以是可读信号介质或者可读存储介质。计算机可读存储介质是可以保持和存储由指令执行设备使用的指令的有形设备。可读存储介质例如可以包括但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。可读存储介质的更具体的例子(非穷举的列表)包括:便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、静态随机存取存储器(SRAM)、便携式压缩盘只读存储器(CD-ROM)、数字多功能盘(DVD)、记忆棒、软盘、机械编码设备、例如其上存储有指令的打孔卡或凹槽内凸起结构、以及上述的任意合适的组合。这里所使用的计算机可读存储介质不被解释为瞬时信号本身,诸如无线电波或者其他自由传播的电磁波、通过波导或其他传输媒介传播的电磁波(例如,通过光纤电缆的光脉冲)、或者通过电线传输的电信号。
这里所描述的计算机可读程序指令可以从计算机可读存储介质下载到各个计算/处理设备,或者通过网络、例如因特网、局域网、广域网和/或无线网下载到外部计算 机或外部存储设备。网络可以包括铜传输电缆、光纤传输、无线传输、路由器、防火墙、交换机、网关计算机和/或边缘服务器。每个计算/处理设备中的网络适配卡或者网络接口从网络接收计算机可读程序指令,并转发该计算机可读程序指令,以供存储在各个计算/处理设备中的计算机可读存储介质中。
这里参照根据本申请实施例的方法、装置(系统)和计算机程序产品的流程图和/或框图描述了本申请的各个方面。应当理解,流程图和/或框图的每个方框以及流程图和/或框图中各方框的组合,都可以由计算机可读程序指令实现。
这些计算机可读程序指令可以提供给通用计算机、专用计算机或其它可编程数据处理装置的处理器,从而生产出一种机器,使得这些指令在通过计算机或其它可编程数据处理装置的处理器执行时,产生了实现流程图和/或框图中的一个或多个方框中规定的功能/动作的装置。也可以把这些计算机可读程序指令存储在计算机可读存储介质中,这些指令使得计算机、可编程数据处理装置和/或其他设备以特定方式工作,从而,存储有指令的计算机可读介质则包括一个制造品,其包括实现流程图和/或框图中的一个或多个方框中规定的功能/动作的各个方面的指令。
也可以把计算机可读程序指令加载到计算机、其它可编程数据处理装置、或其它设备上,使得在计算机、其它可编程数据处理装置或其它设备上执行一系列操作步骤,以产生计算机实现的过程,从而使得在计算机、其它可编程数据处理装置、或其它设备上执行的指令实现流程图和/或框图中的一个或多个方框中规定的功能/动作。
本申请实施例还提供了一种电子设备。图6所示为本申请一实施例提供的电子设备的结构示意图。如图6所示,该电子设备600包括:一个或多个处理器601和存储器602;存储器602中存储有计算机可执行指令;处理器601,用于执行计算机可执行指令,以实现如上述任一实施例的胸外按压反馈方法中的步骤。
处理器601可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其他形式的处理单元,并且可以控制电子设备中的其他组件以执行期望的功能。
存储器602可以包括一个或多个计算机程序产品,计算机程序产品可以包括各种形式的计算机可读存储介质,例如易失性存储器和/或非易失性存储器。易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。在计算机可读存储介质上可以存储一个或多个计算机程序指令,处理器601可以运行程序指令,以实现上文的本申请的各个实施例的文本识别方法中的步骤以及/或者其他期望的功能。
在一个示例中,电子设备600还可以包括:输入装置和输出装置,这些组件通过总线系统和/或其他形式的连接机构(图中未示出)互连。
当然,为了简化,图6中仅示出了该电子设备600中与本申请有关的组件中的一部分,省略了诸如总线、输入装置/输出接口等组件。除此之外,根据具体应用情况,电子设备600还可以包括任何其他适当的组件。
应当说明的是,该电子设备600可以为前述胸腔按压反馈装置100或前述胸腔按压反馈装置100的一部分,例如,处理器601具体为处理单元130,存储器602具体为存储单元140。此外,本申请也不排除该电子设备600位于远端的情况,该电子设备600可以不与压力传感器110和加速度传感器120共同封装在壳体170内,压力传感器110和加速度传感器120采集数据后,可以将数据发送至远端的电子设备600,电子设备600进行数据处理和控制。
需要说明的是,本申请实施例提供的胸外按压反馈方法实施例、胸外按压反馈装置实施例、计算机可读存储介质实施例和电子设备实施例属于同一构思;各实施例所记载的技术方案中各技术特征之间,在不冲突的情况下,可以任意组合。
应当理解,以上实施例均为示例性的,不用于包含权利要求所包含的所有可能的实施方式。在不脱离本公开的范围的情况下,还可以在以上实施例的基础上做出各种变形和改变。同样的,也可以对以上实施例的各个技术特征进行任意组合,以形成可能没有被明确描述的本申请的另外的实施例。因此,上述实施例仅表达了本申请的几种实施方式,不对本申请专利的保护范围进行限制。

Claims (14)

  1. 一种胸外按压反馈方法,其特征在于,所述方法包括:
    获取由压力传感器采集的压力数据和由加速度传感器采集的加速度数据;
    根据所述压力数据和所述加速度数据确定胸外按压过程中的时间节点;
    根据所述时间节点确定胸外按压的质量参数;
    根据所述质量参数向用户提供反馈信息。
  2. 根据权利要求1所述的胸外按压反馈方法,其特征在于,所述根据所述压力数据和所述加速度数据确定胸外按压过程中的时间节点,包括:根据所述压力数据和所述加速度数据确定胸外按压过程中各次的按压开始时间点、按压下降期结束时间点、胸腔回弹开始时间点、以及胸腔回弹上升期结束时间点;
    所述根据所述时间节点确定胸外按压的质量参数,包括以下至少之一:
    根据本次的按压开始时间点和按压下降期结束时间点确定本次的按压下降期及按压下降期时长,根据在本次的所述按压下降期内的加速度数据以及本次的所述按压下降期时长确定本次的按压深度;
    根据本次的胸腔回弹开始时间点和胸腔回弹上升期结束时间点确定本次的胸腔回弹上升期及胸腔回弹上升期时长,根据在本次的所述胸腔回弹上升期内的加速度数据以及本次的所述胸腔回弹上升期时长确定本次的胸腔回弹高度;
    根据本次的胸腔回弹开始时间点和下次的按压开始时间点确定本次的胸腔回弹期,根据在本次的所述胸腔回弹期内的压力数据确定是否存在滞留压;
    根据本次的按压开始时间点和下次的按压开始时间点确定本次的按压周期时长,根据至少一次的按压周期时长确定按压频率;
    根据本次的按压开始时间点和胸腔回弹开始时间点确定本次的按压期时长,根据本次的胸腔回弹开始时间点和下次的按压开始时间点确定本次的胸腔回弹期时长,根据至少一次的按压期时长和胸腔回弹期时长确定按压回弹比。
  3. 根据权利要求2所述的胸外按压反馈方法,其特征在于,所述根据所述时间节点确定胸外按压的质量参数,包括:根据本次的胸腔回弹上升期结束时间点和下次的按压开始时间点确定本次的胸腔回弹平台期及胸腔回弹平台期时长,若本次的胸腔回弹平台期时长大于或等于第一预设时长阈值,根据本次的胸腔回弹平台期时长以及本次之前的至少一次的胸腔回弹平台期时长确定本次的按压中断时长;
    所述根据所述时间节点确定胸外按压的质量参数,还包括:根据胸外按压过程中第一次按压的按压开始时间点和最近一次采集时间确定心肺复苏期及心肺复苏期时长,根据在所述心肺复苏期内各次的按压中断时长确定按压中断总时长,根据所述按压中断总时长和所述心肺复苏期时长确定胸外按压比例。
  4. 根据权利要求3所述的胸外按压反馈方法,其特征在于,所述方法还包括:
    若检测到本次的胸腔回弹上升期结束时间点距最近一次采集时间之间的时间长度大于或等于所述第一预设时长阈值,且并未检测到下次的按压开始时间点,则根据本次的胸腔回弹上升期结束时间点距最近一次采集时间之间的时间长度以及本次之前的至少一次的胸腔回弹平台期时长确定为按压中断更新时长;
    根据在所述心肺复苏期内各次的按压中断时长和按压中断更新时长确定按压中断更新总时长,根据所述按压中断更新总时长和所述心肺复苏期时长确定胸外按压更新比例;
    直至检测到下次的按压开始时间点,则根据本次的胸腔回弹上升期结束时间点和下次的按压开始时间点确定本次的胸腔回弹平台期及胸腔回弹平台期时长,根据本次的胸腔回弹平台期时长以及本次之前的至少一次的胸腔回弹平台期时长确定本次的按压中断时长。
  5. 根据权利要求3所述的胸外按压反馈方法,其特征在于,若本次的胸腔回弹平台期时长大于或等于第一预设时长阈值,则根据本次之前的至少一次的胸腔回弹平台期时长更新本次的胸腔回弹平台期时长。
  6. 根据权利要求2所述的胸外按压反馈方法,其特征在于,所述根据在本次的所述胸腔回弹期内的压力数据确定是否存在滞留压,包括:
    根据在本次的所述胸腔回弹期内的压力数据确定平均压力值,根据所述平均压力值与零位进行比较,如果所述平均压力值大于零位,则识别为存在滞留压;
    根据在本次的所述胸腔回弹期内的压力数据与零位进行比较,如果检测到比较结果为压力数据大于零位,则识别为存在滞留压。
  7. 根据权利要求1所述的胸外按压反馈方法,其特征在于,所述质量参数包括以下至少之一:按压深度、胸腔回弹高度、存在滞留压情况、按压中断更新时长、胸外按压比例、按压频率、按压回弹比;
    所述根据所述质量参数向用户提供反馈信息,包括以下至少之一:
    对应于所述质量参数包括按压深度,根据预设时间段内若干次的按压深度确定平均按压深度,根据所述平均按压深度与预设按压深度范围的端点值的关系向用户提供相应的反馈信息;
    对应于所述质量参数包括按压深度和胸腔回弹高度,若所述胸腔回弹高度小于所述按压深度,则向用户提供相应的反馈信息;
    对应于所述质量参数包括存在滞留压情况,若存在滞留压,则向用户提供相应的反馈信息;
    对应于所述质量参数包括按压中断更新时长,若所述按压中断更新时长超过第二预设时长阈值,则向用户提供相应的反馈信息;
    对应于所述质量参数包括胸外按压比例,若所述胸外按压比例不大于预设比例阈值,则向用户提供相应的反馈信息;
    对应于所述质量参数包括按压频率,根据所述按压频率与预设按压频率范围的端点值的关系向用户提供相应的反馈信息;
    对应于所述质量参数包括按压回弹比,根据所述按压回弹比向用户提供相应的反馈信息。
  8. 根据权利要求1至7中任意一项所述的胸外按压反馈方法,其特征在于,所述根据所述压力数据和所述加速度数据确定胸外按压过程中的时间节点,包括以下至少之一:
    根据所述压力数据和所述加速度数据确定胸外按压过程中各次的按压开始时间点,并且确定将所述压力数据由零或与零在预设范围内的波谷值变化成满足预设条件的高位压力值的时间点,以及将所述时间点确定为所述按压开始时间点;
    根据所述压力数据和所述加速度数据确定胸外按压过程中各次的按压下降期结束时间点,并且确定将所述压力数据为满足预设条件的高位压力值且由加速度数据经处理后得到的速度数据由正向速度变化成零的时间点,以及将所述时间点确定为所述按压下降期结束时间点;
    根据所述压力数据和所述加速度数据确定胸外按压过程中各次的胸腔回弹开始时间点,并且确定将所述压力数据由满足预设条件的高位压力值变化成零或与零在预设范围内的波谷值且由加速度数据经处理后得到的速度数据由零变化成反向速度的时间点,以及将所述时间点确定为所述胸腔回弹开始时间点;
    根据所述压力数据和所述加速度数据确定胸外按压过程中各次的胸腔回弹上升期结束时间点,并且确定将所述压力数据为零或与零在预设范围内的波谷值且由加速度数据经数据处理后的速度数据由反向速度变化成零的时间点,以及将所述时间点确定为所述胸腔回弹上升期结束时间点。
  9. 根据权利要求1所述的胸外按压反馈方法,其特征在于,采集所述压力数据的压力传感器与采集所述加速度数据的加速度传感器的时钟同步,或者,采集所述压力数据的过程和采集所述加速度数据的过程使用同一时钟记录。
  10. 根据权利要求1所述的胸外按压反馈方法,其特征在于,所述压力传感器测量的按压力为正时,将胸腔下陷过程的加速度数据转算为胸腔按压深度;所述压力传感器测量的按压力归零时,将胸腔回弹的加速度数据转算为胸腔回弹高度。
  11. 根据权利要求1所述的胸外按压反馈方法,其特征在于,响应于识别到胸腔回弹不充分的事件,向用户提供的反馈信息至少包括剩余未回弹的高度值、已回弹的高度比例、剩余未回弹的高度比例中的一项。
  12. 一种胸外按压反馈装置,其特征在于,包括:
    数据获取模块,用于获取由压力传感器采集的压力数据和由加速度传感器采集的加速度数据;
    数据处理模块,用于根据所述压力数据和所述加速度数据确定胸外按压过程中的时间节点,根据所述时间节点确定胸外按压的质量参数;
    反馈模块,用于根据所述质量参数向用户提供反馈信息。
  13. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有指令,当所述指令由电子设备的处理器执行时,使得所述电子设备能够执行上述权利要求1至11中任意一项所述的胸外按压反馈方法。
  14. 一种电子设备,其特征在于,所述电子设备包括:
    处理器;
    用于存储计算机可执行指令的存储器;
    所述处理器,用于执行所述计算机可执行指令,以实现上述权利要求1至11中任 意一项所述的胸外按压反馈方法。
PCT/CN2023/100187 2022-07-22 2023-06-14 胸外按压反馈方法及装置、存储介质和电子设备 WO2024016909A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210865986.3 2022-07-22
CN202210865986.3A CN115154258A (zh) 2022-07-22 2022-07-22 胸外按压反馈方法及装置、存储介质和电子设备

Publications (1)

Publication Number Publication Date
WO2024016909A1 true WO2024016909A1 (zh) 2024-01-25

Family

ID=83496182

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/100187 WO2024016909A1 (zh) 2022-07-22 2023-06-14 胸外按压反馈方法及装置、存储介质和电子设备

Country Status (2)

Country Link
CN (1) CN115154258A (zh)
WO (1) WO2024016909A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115154258A (zh) * 2022-07-22 2022-10-11 苏州尚领医疗科技有限公司 胸外按压反馈方法及装置、存储介质和电子设备

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001346A1 (en) * 2009-07-03 2011-01-06 Koninklijke Philips Electronics N.V. A cardiopulmonary resuscitation (cpr) feedback system
CN104274172A (zh) * 2013-07-08 2015-01-14 深圳迈瑞生物医疗电子股份有限公司 一种胸外按压深度的监测方法、系统和除颤仪
US20170000688A1 (en) * 2015-06-12 2017-01-05 Zoll Medical Corporation Assisting a CPR Treatment
CN206651984U (zh) * 2016-12-06 2017-11-21 汕头大学 心肺复苏辅助按压垫
CN108205941A (zh) * 2018-01-04 2018-06-26 苏州尚领医疗科技有限公司 一种实时检测胸腔弹性系数的方法及胸外按压反馈系统
CN108231182A (zh) * 2018-01-04 2018-06-29 苏州尚领医疗科技有限公司 基于压力传感器的心肺复苏胸外按参数检测和反馈方法
US20180261128A1 (en) * 2017-03-09 2018-09-13 Zoll Medical Corporation Automated detection of cardiopulmonary resuscitation chest compressions
CN111135053A (zh) * 2020-01-15 2020-05-12 久心医疗科技(苏州)有限公司 一种便携式心肺复苏视听反馈装置及方法
CN113345308A (zh) * 2021-05-21 2021-09-03 北京理工大学 一种监测心肺复苏操作安全性的反馈装置
CN115154258A (zh) * 2022-07-22 2022-10-11 苏州尚领医疗科技有限公司 胸外按压反馈方法及装置、存储介质和电子设备

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011001346A1 (en) * 2009-07-03 2011-01-06 Koninklijke Philips Electronics N.V. A cardiopulmonary resuscitation (cpr) feedback system
CN104274172A (zh) * 2013-07-08 2015-01-14 深圳迈瑞生物医疗电子股份有限公司 一种胸外按压深度的监测方法、系统和除颤仪
US20170000688A1 (en) * 2015-06-12 2017-01-05 Zoll Medical Corporation Assisting a CPR Treatment
CN206651984U (zh) * 2016-12-06 2017-11-21 汕头大学 心肺复苏辅助按压垫
US20180261128A1 (en) * 2017-03-09 2018-09-13 Zoll Medical Corporation Automated detection of cardiopulmonary resuscitation chest compressions
CN108205941A (zh) * 2018-01-04 2018-06-26 苏州尚领医疗科技有限公司 一种实时检测胸腔弹性系数的方法及胸外按压反馈系统
CN108231182A (zh) * 2018-01-04 2018-06-29 苏州尚领医疗科技有限公司 基于压力传感器的心肺复苏胸外按参数检测和反馈方法
CN111135053A (zh) * 2020-01-15 2020-05-12 久心医疗科技(苏州)有限公司 一种便携式心肺复苏视听反馈装置及方法
CN113345308A (zh) * 2021-05-21 2021-09-03 北京理工大学 一种监测心肺复苏操作安全性的反馈装置
CN115154258A (zh) * 2022-07-22 2022-10-11 苏州尚领医疗科技有限公司 胸外按压反馈方法及装置、存储介质和电子设备

Also Published As

Publication number Publication date
CN115154258A (zh) 2022-10-11

Similar Documents

Publication Publication Date Title
US20220280378A1 (en) Assisting a cpr treatment
US20230148876A1 (en) Methods and Apparatuses for Assessment and Management of Hemodynamic Status
US20230263405A1 (en) Processing impedance signals for breath detection
WO2024016909A1 (zh) 胸外按压反馈方法及装置、存储介质和电子设备
CN104135917B (zh) 脉搏计
US11672730B2 (en) Chest compliance directed chest compressions
EP3524137B1 (en) Calibration method for blood pressure measuring device, and blood pressure measuring device
RU2684704C2 (ru) Система обратной связи для получения информации о качестве сердечно-легочной реанимации
CN111685992B (zh) 一种心肺复苏反馈系统
CN102843961B (zh) 血量监测器
JP7396726B2 (ja) データ管理サーバ、データ管理方法及びデータ管理プログラム
JP2022517630A (ja) 患者の輸液反応性の予測方法
CN115154259A (zh) 胸外按压参数的确定方法及装置、存储介质和电子设备
Amemiya et al. Poster: depth and rate estimation for chest compression CPR with smartphone
EP3295817A2 (en) Apparatus and method for assisting chest compressions
CN114983794B (zh) 胸外按压的风险反馈装置、存储介质和电子设备
US11850039B2 (en) Apparatus and method for determining a change in left ventricular twist of a subject's heart
US11517502B2 (en) Cardiopulmonary resuscitation assisting apparatus
JP5807700B2 (ja) カロリー消費量計算装置及びカロリー消費量計算方法
Chau et al. Design and Development of a Mobile Application and Wearable System for CPR Training
JP2015109890A (ja) 運動状態計測システム、運動状態計測装置、運動状態計測サーバー及び運動状態計測端末
US20230320667A1 (en) Contactless physiological measurement device and method
TW201438665A (zh) 呼吸分析顯示系統及方法
KR102009337B1 (ko) Cpr시의 기계적 임피던스 감시 시스템 및 방법
Jesus Accelerometer signals for detection of pulse presence and blood pressure inference

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841975

Country of ref document: EP

Kind code of ref document: A1