WO2024016728A1 - 空调系统 - Google Patents

空调系统 Download PDF

Info

Publication number
WO2024016728A1
WO2024016728A1 PCT/CN2023/085877 CN2023085877W WO2024016728A1 WO 2024016728 A1 WO2024016728 A1 WO 2024016728A1 CN 2023085877 W CN2023085877 W CN 2023085877W WO 2024016728 A1 WO2024016728 A1 WO 2024016728A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air conditioning
conditioning system
solenoid valve
indoor
Prior art date
Application number
PCT/CN2023/085877
Other languages
English (en)
French (fr)
Inventor
颜鹏
孙杨
郭小惠
韩飞
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210847977.1A external-priority patent/CN115289553A/zh
Priority claimed from CN202210855318.2A external-priority patent/CN115264620A/zh
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2024016728A1 publication Critical patent/WO2024016728A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B45/00Arrangements for charging or discharging refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2140/00Control inputs relating to system states
    • F24F2140/20Heat-exchange fluid temperature

Definitions

  • the present disclosure relates to the technical field of home appliances, and in particular, to an air conditioning system.
  • the air conditioning system includes an outdoor unit, an indoor unit, a refrigerant recovery device and a controller.
  • the outdoor unit includes an outdoor refrigerant leakage detection device, and the outdoor refrigerant leakage detection device is configured to detect whether refrigerant leakage occurs in the outdoor unit.
  • the indoor unit includes an indoor refrigerant leakage detection device configured to detect whether refrigerant leakage occurs in the indoor unit.
  • the refrigerant recovery device is located between the outdoor unit and the indoor unit, and is configured to recover and store the refrigerant of the air conditioning system when a refrigerant leakage occurs in one of the outdoor unit and the indoor unit.
  • the controller is configured to: obtain the detection result of the indoor refrigerant leakage detection device and the detection result of the outdoor refrigerant leakage detection device; if the detection result of the indoor refrigerant leakage detection device indicates that refrigerant leakage occurs in the indoor unit , the air conditioning system is controlled to run the first refrigerant recovery mode; if the detection result of the outdoor refrigerant leak detection device indicates that refrigerant leakage occurs in the outdoor unit, the air conditioning system is controlled to run the second refrigerant recovery mode.
  • the air conditioning system operates in the refrigeration mode, and the refrigerant in the air conditioning system flows through the outdoor unit and is recovered into the refrigerant recovery device.
  • the second refrigerant recovery mode the air conditioning system operates in the heating mode, and the refrigerant in the air conditioning system flows through the indoor unit and is recovered into the refrigerant recovery device.
  • Figure 1 is a structural diagram of an air conditioning system according to some embodiments.
  • Figure 2 is a block diagram of an air conditioning system according to some embodiments.
  • Figure 3 is a structural diagram of another air conditioning system according to some embodiments.
  • Figure 4 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 5 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 6 is a schematic diagram of a refrigerant cycle of an air conditioning system according to some embodiments.
  • Figure 7 is another refrigerant cycle schematic diagram of an air conditioning system according to some embodiments.
  • Figure 8 is another refrigerant cycle schematic diagram of an air conditioning system according to some embodiments.
  • Figure 9 is another refrigerant cycle schematic diagram of an air conditioning system according to some embodiments.
  • Figure 10 is another refrigerant cycle schematic diagram of an air conditioning system according to some embodiments.
  • Figure 11 is another refrigerant cycle schematic diagram of an air conditioning system according to some embodiments.
  • Figure 12 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 13 is a schematic diagram of a refrigerant cycle of yet another air conditioning system according to some embodiments.
  • Figure 14 is another refrigerant cycle schematic diagram of yet another air conditioning system according to some embodiments.
  • Figure 15 is another refrigerant cycle schematic diagram of another air conditioning system according to some embodiments.
  • Figure 16 is another refrigerant cycle schematic diagram of another air conditioning system according to some embodiments.
  • Figure 17 is another refrigerant cycle schematic diagram of another air conditioning system according to some embodiments.
  • Figure 18 is another refrigerant cycle schematic diagram of another air conditioning system according to some embodiments.
  • Figure 19 is another refrigerant cycle schematic diagram of another air conditioning system according to some embodiments.
  • Figure 20 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 21 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 22 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 23 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 24 is a hardware structure diagram of a controller according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • coupled indicates that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximate equality is less than or equal to 5% of either one, for example.
  • heat transfer tubes such as copper tubes or aluminum tubes
  • the heat transfer tube may be corroded, causing the problem of refrigerant leakage.
  • a pair of electronic expansion valves are usually added to the inlet and outlet of the indoor unit to block the leaked refrigerant in the indoor unit from flowing into the indoor environment.
  • the refrigerant recovery rate in this method is low, and unrecovered refrigerant may be discharged to the outdoor environment, causing environmental pollution problems.
  • some embodiments of the present disclosure provide an air conditioning system in which a refrigerant recovery device is provided between the outdoor unit and the indoor unit, and a first indoor expansion valve and a second indoor expansion valve are provided in the indoor unit.
  • a refrigerant recovery device is provided between the outdoor unit and the indoor unit, and a first indoor expansion valve and a second indoor expansion valve are provided in the indoor unit.
  • the closing and opening states of the first indoor expansion valve and the second indoor expansion valve are controlled to control the flow direction of the refrigerant in the multi-line air conditioning system, so as to introduce the refrigerant in the multi-line air conditioning system into the liquid storage tank of the refrigerant recovery device. , improves the recovery rate of refrigerant, avoids refrigerant being discharged into the outdoor environment and causes environmental pollution problems, thereby improving the environmental protection of the multi-split air conditioning system.
  • the multi-split air conditioning system 100 includes an outdoor unit 200 , an indoor unit 300 and a refrigerant recovery device 400 .
  • the refrigerant recovery device 400 is configured to recover and store the refrigerant in the multi-split air conditioning system 100 when leakage of refrigerant occurs in the outdoor unit 200 or the indoor unit 300 .
  • the outdoor unit 200 includes a compressor 201 , a four-way valve group (for example, a first four-way valve 202A and a second four-way valve 202B), an outdoor heat exchanger 203 and an outdoor expansion valve 204 connected in sequence.
  • the first four-way valve 202A has a first end, a second end, a third end and a fourth end, which are S port, D port, E port and C port respectively.
  • the second four-way valve 202B has a first end, a second end, a third end and a fourth end, which are S' port, D' port, E' port and C' port respectively.
  • the first four-way valve 202A and the second four-way valve 202B are four-way directional valves.
  • the first four-way valve 202A and the second four-way valve 202B realize mutual conversion between different operating modes (such as cooling mode and heating mode) of the multi-split air conditioning system 100 by changing the flow direction of the refrigerant in the system pipeline.
  • the compressor 201 has an exhaust port B1 and an air intake port B2.
  • Compressor 201 is configured to provide power to the refrigerant cycle.
  • the exhaust port B1 of the compressor 201 is respectively connected to the D port of the first four-way valve 202A and the D' port of the second four-way valve 202B.
  • the air inlet B2 of the compressor 201 is connected to the first four-way valve 202A through pipelines.
  • the S port and the S' port of the second four-way valve 202B are connected.
  • the compressor 201 is a variable capacity compressor based on inverter speed control.
  • the outdoor heat exchanger 203 has a first end A1 and a second end A2.
  • the first end A1 of the outdoor heat exchanger 203 is connected to the C port of the first four-way valve 202A, and the second end A2 of the outdoor heat exchanger 203 is connected to the refrigerant recovery device 400 through the outdoor expansion valve 204 .
  • the outdoor heat exchanger 203 is configured to perform heat exchange between the refrigerant flowing in the heat transfer tubes of the outdoor heat exchanger 203 and outdoor air.
  • the outdoor unit 200 further includes a gas-liquid separator 205, an oil separator 206, an oil return capillary 207, and a one-way valve 208.
  • oil separator 206 has a first end F1, a second end F2, and a third end F3.
  • the exhaust port B1 of the compressor 201 is connected to the second end F2 of the oil separator 206 through a pipeline.
  • One-way valve 208 has an inlet H1 and an outlet H2 and is located at the first end F1 of oil separator 206 .
  • the first end F1 of the oil separator 206 is connected to the inlet H1 of the one-way valve 208 through a pipeline, and the outlet H2 of the one-way valve 208 is respectively connected to the D port of the first four-way valve 202A and the D' of the second four-way valve 202B.
  • the ports are connected by tubing.
  • the gas-liquid separator 205 has a first opening G1 and a second opening G2.
  • the first opening G1 of the gas-liquid separator 205 is connected to the air inlet B2 of the compressor 201 through a pipeline, and the second opening G2 of the gas-liquid separator 205 is connected to the third end F3 and the first four ends of the oil separator 206 respectively.
  • the S port of the one-way valve 202A and the S' port of the second four-way valve 202B are connected through a pipeline.
  • the outdoor unit 200 further includes an outdoor refrigerant leakage detection device 218 , and the outdoor refrigerant leakage detection device 218 is configured to detect whether refrigerant leakage occurs in the outdoor unit 200 .
  • the outdoor unit 200 further includes a first outdoor pressure sensor 209 and a second outdoor pressure sensor 210 .
  • the first outdoor pressure sensor 209 is disposed at the second port G2 of the gas-liquid separator 205 and is configured to detect the pressure value of the refrigerant at the second port G2 of the gas-liquid separator 205.
  • the pressure value can be used to characterize the incoming The pressure of the refrigerant in the compressor 201.
  • the second outdoor pressure sensor 210 is provided at the position of the outlet H2 of the one-way valve 208 and is configured to detect the pressure value of the refrigerant discharged from the compressor 201 .
  • the first outdoor pressure sensor 209 is a low pressure sensor
  • the second outdoor pressure sensor 210 is a high pressure sensor.
  • the outdoor unit 200 further includes an outdoor fan 215 configured to generate airflow through the outdoor heat exchanger 203 to promote heat transfer in the heat transfer tubes of the outdoor heat exchanger 203 . Heat exchange between flowing refrigerant and outdoor air.
  • the outdoor unit 200 further includes an outdoor fan motor 216 , which is coupled to the outdoor fan 215 and configured to drive the outdoor fan 215 to rotate or change the rotation speed of the outdoor fan 215 .
  • the outdoor unit 200 further includes a high-pressure switch 217 .
  • the high-pressure switch 217 is configured to monitor the pressure of the pipeline of the multi-split air conditioning system 100 , and when the pressure of the pipeline of the multi-split air conditioning system 100 is abnormal, send a signal to the multi-split air conditioning system 100 .
  • the air conditioning system 100 sends abnormal information to control the multi-split air conditioning system 100 to shut down and ensure the normal operation of the multi-split air conditioning system 100 .
  • the multi-split air conditioning system also includes a controller 600, which is coupled to the high-pressure pressure switch 217 and the outdoor refrigerant leakage detection device 218.
  • Controller 600 includes processor 601.
  • the processor 601 may include a central processing unit (CPU), a microprocessor (Microprocessor), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), and may be configured to be coupled to the controller when the processor executes When the program in the non-transitory computer-readable medium of 600 is executed, the corresponding operations described in the controller 600 are performed.
  • CPU central processing unit
  • Microprocessor Microprocessor
  • ASIC Application Specific Integrated Circuit
  • the indoor unit 300 of the multi-split air conditioning system 100 includes multiple indoor units.
  • the indoor unit 300 includes two indoor units (for example, a first indoor unit 300A and a second indoor unit 300B).
  • Each indoor unit includes an indoor heat exchanger 301 and an indoor expansion valve 302 .
  • the indoor expansion valve 302 includes a first indoor expansion valve 3022, a second indoor expansion valve 3023, and a third indoor expansion valve 3021.
  • the first indoor unit 300A includes a first indoor heat exchanger 301A, a first indoor expansion valve 3022A, a second indoor expansion valve 3023A, and a third indoor expansion valve 3021A.
  • the first indoor heat exchanger 301A is connected to the first four-way valve 202A and the second four-way valve 202B.
  • the second indoor unit 300B includes a second indoor heat exchanger 301B, a first indoor expansion valve 3022B, a second indoor expansion valve 3023B, and a third indoor expansion valve 3021B.
  • the second indoor heat exchanger 301B is connected to the first four-way valve 202A and the second four-way valve 202B.
  • the above-mentioned indoor heat exchanger 301 includes a first indoor heat exchanger 301A or a second indoor heat exchanger 301B.
  • the indoor expansion valve 302 includes a first indoor expansion valve 3022A, a second indoor expansion valve 3023A, and a third indoor expansion valve 3021A; or the indoor expansion valve 302 includes a first indoor expansion valve 3022B, a second indoor expansion valve 3023B, and a third indoor expansion valve 3021A. Expansion valve 3021B.
  • the first end of the first indoor heat exchanger 301A is connected to the S port of the first four-way valve 202A and the S' port of the second four-way valve 202B through the first indoor expansion valve 3022A.
  • the first end of the second indoor heat exchanger 301B is connected to the S port of the first four-way valve 202A and the S' port of the second four-way valve 202B through the first indoor expansion valve 3022B.
  • the first end of the first indoor heat exchanger 301A is connected to the E' port of the second four-way valve 202B through the second indoor expansion valve 3023A, such as (12A) ⁇ (14A) ⁇ (15A) ⁇ (16A) ⁇ (17A) ⁇ (18A).
  • the first end of the second indoor heat exchanger 301B is connected to the E' port of the second four-way valve 202B through the second indoor expansion valve 3023B. (12B) ⁇ (14A) ⁇ (15A) ⁇ (16A) ⁇ (17A) ⁇ (18A).
  • the pipeline connecting the indoor heat exchanger 301 of each indoor unit to the S port of the first four-way valve 202A and the S' port of the second four-way valve 202B is hereinafter referred to as a first pipeline.
  • the first pipeline is (14B) ⁇ (15B) ⁇ (16B) ⁇ (17B) ⁇ (18B).
  • the pipeline connecting the indoor heat exchanger 301 of each indoor unit to the E' port of the second four-way valve 202B is called a second pipeline.
  • the second pipeline is (14A) ⁇ (15A) ⁇ (16A) ⁇ (17A) ⁇ (18A).
  • the indoor heat exchanger 301 of each indoor unit passes through the first indoor expansion valve 3022 (including the first indoor expansion valve 3022A). and the first indoor expansion valve 3022B) is connected to the first pipeline, and is connected to the second pipeline through the second indoor expansion valve 3023 (including the second indoor expansion valve 3023A and the second indoor expansion valve 3023B).
  • each indoor unit of the indoor unit 300 further includes an indoor refrigerant leakage detection device 304 .
  • the indoor refrigerant leakage detection device 304 is configured to detect whether the refrigerant of each indoor unit of the indoor unit 300 has leaked.
  • the indoor refrigerant leakage detection device 304 is an indoor refrigerant leakage detection sensor.
  • each indoor unit of the indoor unit 300 further includes an indoor liquid pipe temperature sensor 305 and an indoor return air temperature sensor 306 .
  • the indoor liquid pipe temperature sensor 305 is configured to detect the refrigerant temperature of the indoor unit pipe.
  • the indoor return air temperature sensor 306 is configured to detect the return air temperature of each indoor unit in the indoor unit 300 .
  • the indoor heat exchanger 301 is configured to perform heat exchange between the refrigerant flowing in the heat transfer tube and the indoor air.
  • the third indoor expansion valve 3021 (including the third indoor expansion valve 3021A and the third indoor expansion valve 3021B) of each indoor unit is disposed between the indoor heat exchanger 301 and the refrigerant recovery device 400, and is configured as It expands and reduces the pressure of the refrigerant flowing through it, and regulates the supply of refrigerant in the pipeline.
  • each indoor unit may include a plurality of third indoor expansion valves 3021.
  • the first indoor unit 300A may include a plurality of third indoor expansion valves 3021A (such as electronic expansion valves). If the third indoor expansion valve 3021A decreases the opening degree, the resistance of the refrigerant passing through the third indoor expansion valve 3021A increases. When the opening degree of the third indoor expansion valve 3021A is increased, the resistance of the refrigerant passing through the third indoor expansion valve 3021A decreases. In this way, even if the status of other components in the circuit does not change, when the opening of the third indoor expansion valve 3021A changes, the refrigerant flow rate flowing into or out of the first indoor heat exchanger 301A will also change.
  • the indoor unit 300 further includes an indoor fan 303 .
  • the first indoor unit 300A also includes a first indoor fan 303A.
  • the first indoor fan 303A generates airflow flowing through the first indoor heat exchanger 301A to promote heat exchange between the refrigerant flowing in the heat transfer tube of the first indoor heat exchanger 301A and the indoor air.
  • the indoor unit 300 further includes an indoor fan motor 307 , which is coupled to the indoor fan 303 and configured to drive the indoor fan 303 to rotate or change the rotation speed of the indoor fan 303 .
  • the indoor unit 300 also includes one or more pressure reducers 312.
  • the pressure reducers 312 are configured to reduce the pressure of the refrigerant in the pipeline, and depressurize the high-pressure refrigerant delivered by the condenser before delivery. to the evaporator.
  • the indoor unit 300 further includes a humidity sensor 309 configured to detect the relative humidity of the indoor air.
  • the indoor unit 300 further includes a dew point meter 310 configured to detect the ambient dew point temperature near the indoor heat exchanger 301 .
  • the indoor unit 300 further includes a display 311.
  • the display 311 is configured to display the control interface of the multi-split air conditioning system 100 .
  • the display 311 may display the indoor temperature or the current operating mode of the indoor unit.
  • the user can output control instructions to the multi-split air conditioning system 100 by operating the control panel of the display 311 .
  • the display 311 also includes at least one of a pressure sensor 3111 or a temperature sensor 3112.
  • the display 311 can receive user instructions according to the user's gesture operations (such as pressing a button, etc.) and transmit them to the multi-connected air conditioning system 100 to Realize human-computer interaction function.
  • the indoor unit 300 of the multi-split air conditioning system 100 may also include three, four or more indoor units, and the indoor units of the indoor unit 300 may be in different operating modes (such as cooling mode, heating mode). etc.), this disclosure does not limit this.
  • the refrigerant recovery device 400 includes a first solenoid valve 401 and a liquid storage tank 404 .
  • the liquid storage tank 404 has a first opening 4041 and a second opening 4042.
  • the first opening 4041 of the liquid storage tank 404 is connected to the outdoor heat exchanger 203 through the first solenoid valve 401.
  • the refrigerant recovery device 400 further includes a second solenoid valve 402 .
  • the second opening 4042 of the liquid storage tank 404 is connected to the indoor heat exchanger 301 in each indoor unit through the second solenoid valve 402.
  • the first end of the second solenoid valve 402 is connected to the second opening 4042 of the liquid storage tank 404 through the pipeline
  • the second end of the second solenoid valve 402 is connected to the second opening 4042 of the liquid storage tank 404.
  • the second end of the indoor heat exchanger 301 of each indoor unit is connected through a pipeline to form a refrigerant branch flowing to the liquid storage tank 404 to recover the refrigerant leaked from the outdoor unit 200 in the multi-split air conditioning system 100 .
  • the refrigerant recovery device 400 includes a third solenoid valve 403.
  • the first end of the third solenoid valve 403 is connected to the pipeline between the outdoor heat exchanger 203 and the first solenoid valve 401.
  • the third solenoid valve 403 has a The second end is connected to the pipeline between the indoor heat exchanger 301 and the second solenoid valve 402 in each indoor unit.
  • the above-mentioned multi-split air conditioning system 100 has at least one or more of the following operating modes: synchronous cooling mode (ie, cooling mode), synchronous heating mode (ie, heating mode), first asynchronous cooling mode Thermal mode, the second asynchronous cooling and heating mode, the first refrigerant recovery mode and the second refrigerant recovery mode.
  • the indoor unit 300 may include at least one indoor unit in heating operation and at least one indoor unit in cooling operation.
  • the refrigerant recovery device 400 further includes a fourth solenoid valve 405A and a fifth solenoid valve 405B.
  • the fourth solenoid valve 405A is disposed between the S port of the first four-way valve 202A and the indoor heat exchanger in each indoor unit.
  • the fifth solenoid valve 405B is disposed between the E' port of the second four-way valve 202B and the first end of the indoor heat exchanger 301 in each indoor unit. On the pipeline.
  • the fourth solenoid valve 405A can be used to control the on-off state of the refrigerant on the pipeline between the S port of the first four-way valve 202A and the first end of the indoor heat exchanger 301 in each indoor unit
  • the fifth solenoid valve 405B can control the on-off state of the refrigerant on the pipeline between the E' port of the second four-way valve 202B and the first end of the indoor heat exchanger 301 in each indoor unit, so as to control the above-mentioned
  • the refrigerant in the pipeline is more refined and more rationally controlled.
  • the fourth solenoid valve 405A and the fifth solenoid valve 405B are in an open state. In this way, the refrigerant can be ensured to circulate in the corresponding pipelines.
  • the controller 600 controls the fourth solenoid valve 405A and the fifth solenoid valve 405B to close.
  • the refrigerant recovery stop condition includes one or more of the following: the multi-split air conditioning system 100 runs the second refrigerant recovery mode for a preset time period, or the pressure of the refrigerant entering the compressor 201 is within a preset pressure range.
  • the above preset pressure range is determined based on the atmospheric pressure of the outdoor environment.
  • the pressure of the refrigerant entering the compressor 201 is detected by the first outdoor pressure sensor 209 .
  • the refrigerant recovery device 400 further includes a sixth solenoid valve 406A and a seventh solenoid valve 406B.
  • the sixth solenoid valve 406A is disposed between the fourth solenoid valve 405A and the first end of the indoor heat exchanger 301 in each indoor unit. between ends.
  • the seventh solenoid valve 406B is provided between the fifth solenoid valve 405B and the first end of the indoor heat exchanger 301 in each indoor unit.
  • the sixth solenoid valve 406A and the seventh solenoid valve 406B are in an open state to ensure that the refrigerant can circulate in the corresponding pipelines.
  • the controller 600 controls the sixth solenoid valve 406A and the seventh solenoid valve 406B to close.
  • the controller 600 controls the fourth solenoid valve 405A, the fifth solenoid valve 405B, the sixth solenoid valve 406A, and the seventh solenoid valve 406B to close, so that the indoor unit 300
  • the pipelines between the indoor unit where refrigerant leaks occur, the refrigerant recovery device 400 and the outdoor unit 200 are disconnected, so that the process of replacing the indoor unit where refrigerant leaks occurs is not affected by the refrigerant recovery device 400 and the outdoor unit 200, thereby improving installation or Convenience of replacing indoor units.
  • the refrigerant recovery device 400 further includes a first stop valve 407A, a second stop valve 407B, a third stop valve 408A, a fourth stop valve 408B, a fifth stop valve 409 and a sixth stop valve 410.
  • the first stop valve 407A is provided on the pipeline between the fourth solenoid valve 405A and the S port of the first four-way valve 202A.
  • the first end of the first stop valve 407A is connected to the S port of the first four-way valve 202A through a pipeline
  • the second end of the first stop valve 407A is connected to the first end of the fourth solenoid valve 405A through a pipeline.
  • the second stop valve 407B is provided on the connecting pipeline between the fifth solenoid valve 405B and the E' port of the second four-way valve 202B.
  • the first end of the second stop valve 407B is connected to the E' port of the second four-way valve 202B through a pipeline
  • the second end of the second stop valve 407B is connected to the first end of the fifth solenoid valve 405B through a pipeline.
  • the third stop valve 408A is provided on the pipeline between the sixth solenoid valve 406A and the first end of the indoor heat exchanger 301 in each indoor unit.
  • the first end of the third stop valve 408A is connected to the second end of the sixth solenoid valve 406A through a pipeline, and the second end of the third stop valve 408A is respectively connected to the first indoor expansion valve 3022A and the first indoor expansion valve 3022A of the first indoor unit 300A.
  • the first indoor expansion valve 3022B of the second indoor unit 300B is connected through a pipeline.
  • the fourth stop valve 408B is provided on the pipeline between the seventh solenoid valve 406B and the first end of the indoor heat exchanger 301 in each indoor unit.
  • the first end of the fourth stop valve 408B is connected to the second end of the seventh solenoid valve 406B through a pipeline
  • the second end of the fourth stop valve 408B is connected to the second indoor expansion valve 3023A and the second indoor expansion valve 3023A of the first indoor unit 300A.
  • the second indoor expansion valve 3023B of the two indoor units 300B is connected through a pipeline.
  • the fifth stop valve 409 is provided on the pipeline connecting the second end of the outdoor heat exchanger 203 to the first solenoid valve 401 .
  • the first end of the fifth stop valve 409 is connected to the second end of the outdoor heat exchanger 203 through a pipeline
  • the second end of the fifth stop valve 409 is connected to the first end of the first solenoid valve 401 through a pipeline.
  • the second end of the first solenoid valve 401 is connected to the first opening of the liquid storage tank 404 through a pipeline.
  • the sixth stop valve 410 is provided on a pipeline connecting the third solenoid valve 403 to the second end of the indoor heat exchanger in each indoor unit.
  • the first end of the sixth stop valve 410 is connected to the second end of the third solenoid valve 403, and the second end of the sixth stop valve 410 is connected to the second end of the third indoor expansion valve 3021 in each indoor unit.
  • first stop valve 407A, second stop valve 407B, third stop valve 408A, fourth stop valve 408B, fifth stop valve 409 and sixth stop valve 410 is on.
  • the first stop valve 407A, the second stop valve 407B, the third stop valve 408A, the fourth stop valve 408B, the fifth stop valve 409 and the sixth stop valve 410 are in a closed state to better prevent
  • the above-mentioned stop valve corresponds to the circulation of refrigerant in the pipeline.
  • the outdoor unit 200 further includes a seventh stop valve 211A, an eighth stop valve 211B, and a ninth stop valve 212 .
  • the seventh stop valve 211A is provided on the pipeline between the first stop valve 407A and the S port of the first four-way valve 202A.
  • the first end of the seventh stop valve 211A is connected to the first end of the first four-way valve 202A
  • the second end of the seventh stop valve 211A is connected to the first end of the first stop valve 407A.
  • the eighth stop valve 211B is provided on the pipeline connecting the second stop valve 407B and the third end of the second four-way valve 202B.
  • the first end of the eighth stop valve 211B is connected to the E' port of the second four-way valve 202B, and the second end of the eighth stop valve 211B is connected to the first end of the second stop valve 407B.
  • the ninth stop valve 212 is provided on the connecting pipeline between the second end of the outdoor heat exchanger 203 and the first end of the first solenoid valve 401 .
  • the first end of the ninth stop valve 212 is connected to the second end of the outdoor heat exchanger 203
  • the second end of the ninth stop valve 212 is connected to the first end of the fifth stop valve 409 .
  • the controller 600 controls the seventh stop valve 211A, the eighth stop valve 211B, and the ninth stop valve 212 to be open to ensure that the refrigerant circulates in the pipeline.
  • the controller 600 controls the seventh stop valve 211A, the eighth stop valve 211B, and the ninth stop valve 212 to close, so that the pipelines between the outdoor unit 200, the refrigerant recovery device 400, and the indoor unit 300 are disconnected from each other. , so that the process of replacing the outdoor unit 200 is not affected by the refrigerant recovery device 400 and the indoor unit 300, thereby improving the convenience of installing or replacing the outdoor unit 200.
  • the outdoor unit 200 further includes an eighth solenoid valve 213A, a ninth solenoid valve 213B, and a tenth solenoid valve 214.
  • the first end of the eighth solenoid valve 213A is connected to the S port of the first four-way valve 202A, and the second end of the eighth solenoid valve 213A is connected to the first end of the seventh stop valve 211A.
  • the first end of the ninth solenoid valve 213B is connected to the E′ port of the second four-way valve 202B, and the second end of the ninth solenoid valve 213B is connected to the first end of the eighth stop valve 211B.
  • the first end of the tenth solenoid valve 214 is connected to the second end of the outdoor heat exchanger 203 , and the second end of the tenth solenoid valve 214 is connected to the first end of the ninth stop valve 212 .
  • the controller 600 controls the eighth solenoid valve 213A, the ninth solenoid valve 213B and the tenth solenoid valve 214 to be open to ensure that the refrigerant circulates in the pipeline. in the cold After the refrigerant recovery is completed, the controller 600 controls the eighth solenoid valve 213A, the ninth solenoid valve 213B and the tenth solenoid valve 214 to be in a closed state, so that the pipelines between the outdoor unit 200, the refrigerant recovery device 400 and the indoor unit 300 are interconnected. Disconnected, so that the process of replacing the outdoor unit 200 is not affected by the refrigerant recovery device 400 and the indoor unit 300, thereby improving the convenience of installing or replacing the outdoor unit 200.
  • the number of stop valves provided in the multi-split air conditioning system 100 can be set according to actual needs.
  • three stop valves may also be provided at both ends of the indoor unit 300 , that is, the indoor unit 300 further includes a tenth stop valve 313A, an eleventh stop valve 313B, and a twelfth stop valve 314 .
  • the tenth stop valve 313A is provided on the first pipeline in which the indoor unit 300 communicates with the S port of the first four-way valve 202A and the S' port of the second four-way valve 202B.
  • the eleventh stop valve 313B is provided on the second pipeline connecting the indoor unit 300 and the E' port of the second four-way valve 202B.
  • the twelfth stop valve 314 is provided on a pipeline connecting the indoor unit 300 and the refrigerant recovery device 400 .
  • the tenth stop valve 313A, the eleventh stop valve 313B and the twelfth stop valve 314 are controlled to close, so that the indoor unit 300 and the refrigerant recovery device 400 are independent of each other, which facilitates the replacement of the indoor unit in the indoor unit 300. machine.
  • the indoor unit 300 also includes a thirteenth stop valve 308A and a fourteenth stop valve 308B.
  • the thirteenth stop valve 308A and the fourteenth stop valve 308B are respectively provided in the first indoor heat exchanger 301B and the second indoor heat exchanger 301B. at the first end of the position.
  • the pipeline between the first indoor heat exchanger 301A and the first indoor expansion valve 3022A and the second indoor expansion valve 3023A can be controlled through the thirteenth stop valve 308A
  • the fourteenth stop valve 308B can control the pipeline between the first indoor heat exchanger 301A and the first indoor expansion valve 3022A and the second indoor expansion valve 3023A.
  • the pipeline between the second indoor heat exchanger 301B and the first indoor expansion valve 3022B and the second indoor expansion valve 3023B is controlled.
  • the synchronous cooling mode, the synchronous heating mode, the first asynchronous cooling and heating mode, the second asynchronous cooling and heating mode, the first refrigerant recovery mode and the second refrigerant recovery mode of the multi-split air conditioning system 100 are introduced below respectively.
  • the first indoor unit 300A operates as a cooling operation
  • the second indoor unit 300B operates as a heating operation.
  • the fourth solenoid valve 405A, the fifth solenoid valve 405B, the sixth solenoid valve 406A, the seventh solenoid valve 406B, and the eighth solenoid valve The valve 213A, the ninth solenoid valve 213B, and the tenth solenoid valve 214 are opened; the first stop valve 407A, the second stop valve 407B, the third stop valve 408A, the fourth stop valve 408B, the fifth stop valve 409, and the sixth stop valve 410.
  • the seventh stop valve 211A, the eighth stop valve 211B, the ninth stop valve 212, the thirteenth stop valve 308A, and the fourteenth stop valve 308B are opened.
  • the outdoor heat exchanger 203 works as a condenser
  • the first indoor heat exchanger 301A and the second indoor heat exchanger 301B work as evaporators.
  • the first solenoid valve 401 is in a closed state
  • the second solenoid valve 402 is in a closed state
  • the third solenoid valve 403 is in an open state.
  • the first indoor expansion valve 3022 of each indoor unit and the second indoor expansion valve 3023 of each indoor unit are in an open state.
  • the D port of the first four-way valve 202A is connected to the C port, and the E port is connected to the S port.
  • the D' port of the second four-way valve 202B is connected to the C' port, and the E' port is connected to the S' port. connect.
  • the first solenoid valve 401 is closed, the second solenoid valve 402 is closed, the third solenoid valve 403 is opened, the fourth solenoid valve 405A is opened, and the fifth solenoid valve 405B is opened.
  • the first indoor expansion valve 3022 of each indoor unit is opened, and the second indoor expansion valve 3023 of each indoor unit is opened.
  • the refrigerant circuit flowing through the first indoor unit 300A in the indoor unit 300 is: (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9) ⁇ (10) ⁇ (12A) ⁇ (14A) ⁇ (15A) ⁇ (16A) ⁇ (17A) ⁇ (18A) ⁇ (19) ⁇ (1) and (1) ⁇ (2 ) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9) ⁇ (10) ⁇ (13A) ⁇ (14B) ⁇ (15B) ⁇ (16B) ⁇ (17B) ⁇ (18B) ⁇ (19) ⁇ (1).
  • the refrigerant circuit flowing through the second indoor unit 300B in the indoor unit 300 is: (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9) ⁇ (11) ⁇ (12B) ⁇ (14A) ⁇ (15A) ⁇ (16A) ⁇ (17A) ⁇ (18A) ⁇ (19) ⁇ (1) and (1) ⁇ (2 ) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9) ⁇ (11) ⁇ (13B) ⁇ (14B) ⁇ (15B) ⁇ (16B) ⁇ (17B) ⁇ (18B) ⁇ (19) ⁇ (1).
  • (14B) ⁇ (15B) ⁇ (16B) ⁇ (17B) and (14A) ⁇ (15A) ⁇ (16A) ⁇ (17A) are just examples, and the (14B) ⁇ shown in this disclosure (15B) ⁇ (16B) ⁇ (17B) can be replaced with one pipeline or multiple pipelines, for example, with pipeline (16B), that is, there is only the fourth solenoid valve 405A on the pipeline, or the fourth solenoid valve 405A and The first stop valve 407A is not limited in this disclosure.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 201 first flows to the outdoor heat exchanger 203, and then flows to the first indoor heat exchanger 301A and the second indoor heat exchanger 301B, via the first pipe and the second pipe.
  • the road returns to the compressor 201.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 201 enters the oil separator 206, and the refrigerant entering the oil separator 206 is divided into two parts. Part of it enters the second port G2 of the gas-liquid separator 205 through the oil return capillary 207 . Another part of the high-temperature and high-pressure gaseous refrigerant that passes through the oil separator 206 enters the outdoor heat exchanger 203 through the one-way valve 208 and the first four-way valve 202A.
  • the high-temperature and high-pressure gaseous refrigerant is condensed into a medium-temperature and high-pressure liquid refrigerant in the outdoor heat exchanger 203 .
  • the medium-temperature and high-pressure liquid refrigerant condensed by the outdoor heat exchanger 203 passes through the third solenoid valve 403 of the refrigerant recovery device 400 in sequence and is divided into two parts.
  • One part flows into the third indoor expansion valve 3021A of the first indoor unit 300A to form a low-temperature and low-pressure state.
  • the low-temperature and low-pressure liquid refrigerant flows into the first indoor heat exchanger 301A, and is evaporated into a low-temperature and low-pressure gaseous refrigerant through the first indoor heat exchanger 301A.
  • the low-temperature and low-pressure liquid refrigerant then flows into the second indoor heat exchanger 301B and evaporates into a low-temperature and low-pressure liquid refrigerant through the second indoor heat exchanger 301B. gaseous refrigerant.
  • the low-temperature and low-pressure gaseous refrigerant that has evaporated through the first indoor heat exchanger 301A and the second indoor heat exchanger 301B is divided and then merged.
  • the low-temperature and low-pressure gaseous refrigerant evaporated by the first indoor heat exchanger 301A is diverted to the first indoor expansion valve 3022A and the second indoor expansion valve 3023A.
  • the low-temperature and low-pressure gaseous refrigerant evaporated by the second indoor heat exchanger 301B is diverted to the first indoor expansion valve 3022B and the second indoor expansion valve 3023B.
  • the low-temperature and low-pressure refrigerant flowing out through the first indoor expansion valve 3022A merges with the low-temperature and low-pressure refrigerant flowing out through the first indoor expansion valve 3022B and then flows through the first pipeline.
  • the combined refrigerant is the first refrigerant.
  • the low-temperature and low-pressure refrigerant flowing out through the second indoor expansion valve 3023A and the low-temperature and low-pressure refrigerant flowing out through the second indoor expansion valve 3023B merge and flow through the second pipeline.
  • the combined refrigerant is the second refrigerant.
  • the first refrigerant passes through the fourth solenoid valve 405A, it merges again with the second refrigerant that passes through the fifth solenoid valve 405B and the second four-way valve 202B in sequence, and enters the second port G2 of the gas-liquid separator 205 together, and then passes through the gas-liquid separator 205.
  • the liquid flows out from the first port G1 of the liquid separator 205.
  • the low-temperature and low-pressure gaseous refrigerant enters the air inlet B2 of the compressor 201, is compressed again by the compressor 201 into a high-temperature and high-pressure gaseous refrigerant, and is discharged from the exhaust port B1 of the compressor 201. At this point, the synchronization of the multi-split air conditioning system 100 is completed. Description of cooling operation.
  • the outdoor heat exchanger 203 works as an evaporator
  • the first indoor heat exchanger 301A and the second indoor heat exchanger 301B work as condensers.
  • the first solenoid valve 401 is in a closed state
  • the second solenoid valve 402 is in a closed state
  • the third solenoid valve 403 is in an open state.
  • the first indoor expansion valve 3022 of each indoor unit is in a closed state
  • the second indoor expansion valve 3023 of each indoor unit is in an open state.
  • the operation cycle of the synchronous heating mode of the multi-split air conditioning system 100 will be described.
  • the S port of the first four-way valve 202A is connected to the C port, and the E port is connected to the D port.
  • the S' port of the second four-way valve 202B is connected to the C' port, and the E' port is connected to the D' port. connect.
  • the first solenoid valve 401 is closed, the second solenoid valve 402 is closed, the third solenoid valve 403 is opened, and the fifth solenoid valve 405B is opened.
  • the first indoor expansion valve 3022 of each indoor unit is closed, and the second indoor expansion valve 3023 of each indoor unit is opened.
  • the refrigerant circuit flowing through the first indoor unit 300A in the indoor unit 300 is: (1) ⁇ (2) ⁇ (18A) ⁇ (17A) ⁇ (16A) ⁇ (15A) ⁇ (14A) ⁇ ( 12A) ⁇ (10) ⁇ (9) ⁇ (8) ⁇ (7) ⁇ (6) ⁇ (5) ⁇ (4) ⁇ (3) ⁇ (19) ⁇ (1).
  • the refrigerant circuit flowing through the second indoor unit 300B of the indoor unit 300 is: (1) ⁇ (2) ⁇ (18A) ⁇ (17A) ⁇ (16A) ⁇ (15A) ⁇ (14A) ⁇ ( 12B) ⁇ (11) ⁇ (9) ⁇ (8) ⁇ (7) ⁇ (6) ⁇ (5) ⁇ (4) ⁇ (3) ⁇ (19) ⁇ (1).
  • the high-temperature and high-pressure gaseous refrigerant coming out of the oil separator 206 first flows to the first indoor heat exchanger 301A and the second indoor heat exchanger 301B. It is condensed into a medium temperature and high pressure liquid refrigerant; then it enters the outdoor heat exchanger 203, and is evaporated into a low temperature and low pressure gaseous refrigerant through the outdoor heat exchanger 203, and finally returns to the compressor 201.
  • the high-temperature and high-pressure gaseous refrigerant coming out of the oil separator 206 passes through the one-way valve 208, the second four-way valve 202B, and the fifth solenoid valve 405B in sequence, and then passes through the second indoor expansion valve 3023A and enters the first indoor heat exchanger 301A.
  • the second indoor expansion valve 3023B enters the second indoor heat exchanger 301B.
  • the first indoor heat exchanger 301A and the second indoor heat exchanger 301B respectively condense the incoming high-temperature and high-pressure gaseous refrigerant into a medium-temperature and high-pressure liquid refrigerant.
  • the medium temperature and high pressure liquid refrigerant passes through the third indoor expansion valve 3021A and the third indoor expansion valve 3021B respectively and then merges.
  • the combined refrigerant passes through the third solenoid valve 403 and the outdoor expansion valve 204 in sequence and is throttled to form a low-temperature and low-pressure liquid refrigerant.
  • the low-temperature and low-pressure liquid refrigerant evaporates into a low-temperature and low-pressure gaseous refrigerant through the outdoor heat exchanger 203.
  • the low-temperature and low-pressure gaseous refrigerant returns to the compressor 201 through the gas-liquid separator 205. At this point, the synchronous heating mode operation of the air conditioning system is completed. describe.
  • the outdoor heat exchanger 203 works as a condenser
  • the first indoor heat exchanger 301A of the first indoor unit 300A works as an evaporator
  • the second indoor unit 300A works as an evaporator.
  • the second indoor heat exchanger 301B of 300B operates as a condenser.
  • the first indoor expansion valve 3022A is in an open state
  • the second indoor expansion valve 3023A is in a closed state
  • the second indoor expansion valve 3023B is in an open state
  • the first indoor expansion valve 3022B is in a closed state.
  • the first solenoid valve 401 is in a closed state
  • the second solenoid valve 402 is in a closed state
  • the third solenoid valve 403 is in an open state.
  • the operation cycle of the first asynchronous cooling and heating mode of the multi-split air conditioning system 100 will be described.
  • the D port of the first four-way valve 202A is connected to the C port, and the E port is connected to the S port.
  • the D' port of the second four-way valve 202B is connected to the E' port, and the C' port is connected to S'. port connection.
  • the first solenoid valve 401 is closed, the second solenoid valve 402 is closed, and the third solenoid valve 403 is opened.
  • the fourth solenoid valve 405A and the fifth solenoid valve 405B are opened, the first indoor expansion valve 3022A of the first indoor unit 300A and the second indoor expansion valve 3023B of the second indoor unit 300B are opened, and the second indoor expansion valve of the first indoor unit 300A is opened.
  • the valve 3023A and the first indoor expansion valve 3022B of the second indoor unit 300B are closed.
  • the refrigerant circuit flowing through the first indoor unit 300A in the indoor unit 300 is: (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9) ⁇ (10) ⁇ (13A) ⁇ (14B) ⁇ (15B) ⁇ (16B) ⁇ (17B) ⁇ (18B) ⁇ (19) ⁇ (1) and (1) ⁇ (2 ) ⁇ (18A) ⁇ (17A) ⁇ (16A) ⁇ (15A) ⁇ (14A) ⁇ (12B) ⁇ (11) ⁇ (10) ⁇ (13A) ⁇ (14B) ⁇ (15B) ⁇ (16B) ⁇ (17B) ⁇ (18B) ⁇ (19) ⁇ (1).
  • the refrigerant circuit flowing through the second indoor unit 300B in the indoor unit 300 is: (1) ⁇ (2) ⁇ (18A) ⁇ (17A) ⁇ (16A) ⁇ (15A) ⁇ (14A) ⁇ (12B) ⁇ (11) ⁇ (10) ⁇ (13A) ⁇ (14B) ⁇ (15B) ⁇ (16B) ⁇ (17B) ⁇ (18B) ⁇ (19) ⁇ (1).
  • the high-temperature and high-pressure gaseous refrigerant coming out of the oil separator 206 flows to the outdoor heat exchanger 203 and the second indoor heat exchanger 301B.
  • the refrigerant is condensed into a medium-temperature and high-pressure liquid refrigerant; then it enters the first indoor heat exchanger 301B, evaporates into a low-temperature and low-pressure gaseous refrigerant through the outdoor heat exchanger 203, and finally returns to the compressor 201.
  • the high-temperature and high-pressure gaseous refrigerant coming out of the oil separator 206 is divided into two parts after passing through the one-way valve 208 .
  • a part of the refrigerant enters the outdoor heat exchanger 203 through the first four-way valve 202A.
  • the high-temperature and high-pressure gaseous refrigerant is condensed into a medium-temperature and high-pressure liquid refrigerant by the outdoor heat exchanger 203.
  • the medium-temperature and high-pressure liquid refrigerant passes through the outdoor expansion valve 204 and refrigerant recovery in turn.
  • the third solenoid valve 403 of the device 400 flows out.
  • the high-temperature and high-pressure refrigerant that flows out The gaseous refrigerant sequentially passes through the fifth solenoid valve 405B and the second indoor expansion valve 3023B of the second indoor unit 300B, enters the second indoor heat exchanger 301B, is condensed into a medium temperature and high pressure liquid refrigerant by the second indoor heat exchanger 301B, and then passes through the second indoor heat exchanger 301B.
  • the refrigerant flowing out of the third indoor expansion valve 3021B is combined with the refrigerant flowing out of the third solenoid valve 403 of the refrigerant recovery device 400.
  • the combined refrigerant enters the first indoor unit for heat exchange through the third indoor expansion valve 3021A of the first indoor unit 300A. 301A, and is evaporated into a low-temperature and low-pressure gaseous refrigerant.
  • the low-temperature and low-pressure gaseous refrigerant sequentially passes through the first indoor expansion valve 3022A and the fourth solenoid valve 405A of the first indoor unit 300A and then enters the gas-liquid separator 205 . After returning to the compressor 201 through the gas-liquid separator 205, the description of the first asynchronous cooling and heating mode is completed.
  • the outdoor heat exchanger 203 works as an evaporator
  • the first indoor heat exchanger 301A of the first indoor unit 300A works as an evaporator
  • the second indoor unit The second indoor heat exchanger 301B of 300B operates as a condenser.
  • the first indoor expansion valve 3022A is in an open state
  • the second indoor expansion valve 3023A is in a closed state
  • the first indoor expansion valve 3022B is in a closed state
  • the second indoor expansion valve 3023A is in an open state.
  • the operation cycle of the second asynchronous cooling and heating mode of the multi-split air conditioning system will be described.
  • the D port of the first four-way valve 202A is connected to the E port, and the C port is connected to the S port.
  • the D' port of the second four-way valve 202B is connected to the E' port, and the C' port is connected to the S' port. connect.
  • the first solenoid valve 401 is closed, the second solenoid valve 402 is closed, the third solenoid valve 403 is opened, the fourth solenoid valve 405A is opened, and the fifth solenoid valve 405B is opened.
  • the first indoor expansion valve 3022A of the first indoor unit 300A and the second The second indoor expansion valve 3023B of the indoor unit 300B is opened, and the second indoor expansion valve 3023A of the first indoor unit 300A and the first indoor expansion valve 3022B of the second indoor unit 300B are closed.
  • the refrigerant circuit flowing through the first indoor unit 300A in the indoor unit 300 is: (1) ⁇ (2) ⁇ (18A) ⁇ (17A) ⁇ (16A) ⁇ (15A) ⁇ (14A) ⁇ ( 12B) ⁇ (11) ⁇ (10) ⁇ (13A) ⁇ (14B) ⁇ (15B) ⁇ (16B) ⁇ (17B) ⁇ (18B) ⁇ (19) ⁇ (1).
  • the refrigerant circuit flowing through the second indoor unit 300B in the indoor unit 300 is: (1) ⁇ (2) ⁇ (18A) ⁇ (17A) ⁇ (16A) ⁇ (15A) ⁇ (14A) ⁇ (12B ) ⁇ (11) ⁇ (9) ⁇ (8) ⁇ (7) ⁇ (6) ⁇ (5) ⁇ (4) ⁇ (3) ⁇ (19) ⁇ (1) and (1) ⁇ (2) ⁇ (18A) ⁇ (17A) ⁇ (16A) ⁇ (15A) ⁇ (14A) ⁇ (12B) ⁇ (11) ⁇ (10) ⁇ (13A) ⁇ (14B) ⁇ (15B) ⁇ (16B) ⁇ (17B ) ⁇ (18B) ⁇ (19) ⁇ (1).
  • the high-temperature and high-pressure gaseous refrigerant coming out of the oil separator 206 flows to the second indoor heat exchanger 301B, where it is condensed into a medium-temperature and high-pressure liquid refrigerant. Then it enters the outdoor heat exchanger 203 and the first indoor heat exchanger 301A respectively, evaporates into a low-temperature and low-pressure gaseous refrigerant through the outdoor heat exchanger 203 and the first indoor heat exchanger 301A, and finally returns to the compressor 201.
  • the high-temperature and high-pressure gaseous refrigerant that comes out of the oil separator 206 flows out through the one-way valve 208 and the second four-way valve 202B in sequence.
  • the second indoor expansion valve 3023B enters the second indoor heat exchanger 301B, is condensed into a medium temperature and high pressure liquid refrigerant in the second indoor heat exchanger 301B, and flows out through the third indoor expansion valve 3021B.
  • the refrigerant flowing out through the third indoor expansion valve 3021B is divided into two parts.
  • a part of the refrigerant enters the first indoor heat exchanger 301A through the third indoor expansion valve 3021A of the first indoor unit 300A, and evaporates through the first indoor heat exchanger 301A.
  • After turning into a low-temperature and low-pressure gaseous refrigerant it enters the gas-liquid separator 205 through the fourth solenoid valve 405A.
  • Another part of the refrigerant enters the outdoor heat exchanger 203 through the third solenoid valve 403 in sequence.
  • the outdoor heat exchanger 203 works as a condenser.
  • the first indoor heat exchanger 301A and the second indoor heat exchanger 301B work as evaporators
  • the first solenoid valve 401 is in the open state
  • the second solenoid valve 402 is in the closed state
  • the third solenoid valve 403 is in the closed state
  • the first indoor expansion valve 3022 is in an open state
  • the second indoor expansion valve 2023 is in an open state.
  • the third indoor expansion valve corresponding to the indoor unit where refrigerant leakage occurs is closed, and the third indoor expansion valve corresponding to the indoor unit where refrigerant leakage does not occur is opened.
  • the D port of the first four-way valve 202A is connected to the C port, and the E port is connected to the S port.
  • the D' port of the second four-way valve 202B is connected to the C' port, and the E' port is connected to the S' port. connect.
  • the first solenoid valve 401 is in an open state
  • the second solenoid valve 402 is in a closed state
  • the third solenoid valve 403 is in a closed state.
  • the fourth solenoid valve 405A and the fifth solenoid valve 405B are in an open state.
  • the first indoor expansion valve 3022 and the second indoor expansion valve 3023 are in an open state.
  • the third indoor expansion valve 3021A of the first indoor unit 300A is closed, and the third indoor expansion valve 3021B of the second indoor unit 300B is opened.
  • closing the third indoor expansion valve corresponding to the indoor unit where refrigerant leakage occurs will help prevent the refrigerant from continuing to enter the indoor unit where refrigerant leakage occurs, thereby preventing the refrigerant in the indoor unit where refrigerant leakage occurs from leaking into the indoor environment.
  • the reliability of the multi-split air conditioning system 100 is ensured.
  • the refrigerant flow direction flowing through the second indoor unit 300B in the indoor unit 300 is: (8) ⁇ (9) ⁇ (11) ⁇ (12B) ⁇ (14A) ⁇ (15A) ⁇ (16A) ⁇ (17A) ⁇ (18A) ⁇ (19) ⁇ (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (20) and (8) ⁇ (9) ⁇ (11 ) ⁇ (13B) ⁇ (14B) ⁇ (15B) ⁇ (16B) ⁇ (17B) ⁇ (18B) ⁇ (19) ⁇ (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (20).
  • the refrigerant flow direction of the outdoor unit 200 is: (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (20).
  • the multi-split air conditioning system 100 operates in the synchronous refrigeration mode, and the refrigerant in the pipeline of the multi-split air conditioning system 100 is recovered to the liquid storage tank 404 via the outdoor unit 200 and the first solenoid valve 401 .
  • the remaining refrigerant in the pipeline of the indoor unit 300 returns to the compressor 201 through an indoor unit without leakage (such as the second indoor unit 300B), and is then discharged by the compressor 201.
  • the refrigerant discharged from the compressor 201 is recovered into the liquid storage tank 404 via the outdoor unit 200 and the first solenoid valve 401 .
  • the medium-temperature and high-pressure gaseous refrigerant coming out of the oil separator 206 enters the outdoor heat exchanger 203, it is condensed into a medium-temperature and high-pressure liquid refrigerant.
  • the medium-temperature and high-pressure liquid refrigerant passes through the outdoor expansion valve 204 and the first solenoid valve 401 of the refrigerant recovery device 400 in sequence, the medium-temperature and high-pressure liquid refrigerant is stored in the liquid storage tank 404 .
  • the low-temperature and low-pressure liquid refrigerant in the pipeline (8) and the pipeline (9) flows into the third indoor expansion valve 3021B of the second indoor unit 300B to form a low-temperature and low-pressure liquid refrigerant, and then the low-temperature and low-pressure liquid refrigerant flows into the second indoor unit.
  • the heat exchanger 301B evaporates into a low-temperature and low-pressure gaseous refrigerant through the second indoor heat exchanger 301B. After the low-temperature and low-pressure gaseous refrigerant passes through the second pipeline and the first pipeline respectively, it enters the gas-liquid separator 205 and finally returns to the compressor 201. At this point, the operation of the first refrigerant recovery mode of the multi-split air conditioning system 100 is completed. description of.
  • the outdoor heat exchanger 203 works as an evaporator
  • the first indoor heat exchanger 301A and the second indoor heat exchanger 301B work as condensers
  • the first solenoid valve 401 is in a closed state
  • the second solenoid valve 402 is in an open state
  • the third solenoid valve 403 is in a closed state.
  • the first indoor expansion valve 3022 of each indoor unit is in a closed state
  • the second indoor expansion valve 3023 of each indoor unit is in an open state.
  • the S port of the first four-way valve 202A is connected to the C port, and the E port is connected to the D port.
  • the S' port of the second four-way valve 202B is connected to the C' port, and the E' port is connected to the D' port. connect.
  • the first solenoid valve 401 is closed, the third solenoid valve 403 is closed, the second solenoid valve 402 is opened, the fifth solenoid valve 405B is opened, the first indoor expansion valve 3022 is closed, and the second indoor expansion valve 3023 is opened.
  • the refrigerant flow direction flowing through the first indoor unit 300A of the indoor unit 300 is: (7) ⁇ (6) ⁇ (5) ⁇ (4) ⁇ (3) ⁇ (19) ⁇ (1) ⁇ ( 2) ⁇ (18A) ⁇ (17A) ⁇ (16A) ⁇ (15A) ⁇ (14A) ⁇ (12A) ⁇ (10) ⁇ (9) ⁇ (21).
  • the refrigerant circuit flowing through the second indoor unit 300B of the indoor unit 300 is: (7) ⁇ (6) ⁇ (5) ⁇ (4) ⁇ (3) ⁇ (19) ⁇ (1) ⁇ ( 2) ⁇ (18A) ⁇ (17A) ⁇ (16A) ⁇ (15A) ⁇ (14A) ⁇ (12B) ⁇ (11) ⁇ (9) ⁇ (21).
  • the refrigerant flow direction of the outdoor unit 200 is: (3) ⁇ (19) ⁇ (1).
  • the operation in the synchronous heating mode remains unchanged. If the multi-split air conditioning system 100 is in one of the synchronous cooling mode, the first asynchronous cooling and heating mode, and the second asynchronous cooling and heating mode, the multi-split air conditioning system 100 is switched to the synchronous heating mode.
  • the multi-split air conditioning system 100 operates in the synchronous heating mode, and the refrigerant in the pipeline of the multi-split air conditioning system 100 is recovered to the liquid storage tank 404 via the indoor unit 300 and the second solenoid valve 402 .
  • the remaining refrigerant in the pipeline of the outdoor unit 200 enters the compressor 201 through the outdoor heat exchanger 203 and the first solenoid valve 401, and is then discharged from the compressor 201.
  • the refrigerant discharged from the compressor 201 is recovered into the liquid storage tank 404 through the first indoor heat exchanger 301A, the second indoor heat exchanger 301B, and the second solenoid valve 402 .
  • the high-temperature and high-pressure gas refrigerant coming out of the oil separator 206 enters the first indoor heat exchanger 301A and the second indoor heat exchanger 301B through the second pipeline, and is condensed into a medium-temperature and high-pressure liquid refrigerant.
  • the condensed medium-temperature and high-pressure liquid refrigerant passes through the third indoor expansion valve 3021A of the first indoor unit 300A and the third indoor expansion valve 3021B of the second indoor unit 300B respectively, and then merges.
  • the combined refrigerant passes through the second solenoid valve 402 and is stored in the liquid storage tank 404 .
  • the refrigerant in the outdoor unit 200 evaporates into a low-temperature and low-pressure gaseous refrigerant through the outdoor heat exchanger 203.
  • the low-temperature and low-pressure gaseous refrigerant enters the gas-liquid separator 205 and returns to the compressor 201. This completes the first step of the multi-split air conditioning system 100. 2. Description of the operation of the refrigerant recovery mode.
  • the multi-split air conditioning system 100 can provide operating modes corresponding to different scenarios. For example, when the indoor ambient temperature is too high and multiple indoor units need cooling, the operating mode of the multi-split air conditioning system 100 is switched to the synchronous cooling mode to reduce the indoor ambient temperature. When the indoor ambient temperature is too low and multiple indoor units need heating, the operating mode of the multi-split air conditioning system 100 is switched to the synchronous heating mode to increase the indoor ambient temperature. When some indoor units need heating and some indoor units need cooling, the operating mode of the multi-split air conditioning system 100 is switched to one of the first asynchronous cooling and heating mode and the second asynchronous cooling and heating mode to flexibly adjust each indoor unit. indoor ambient temperature.
  • the multi-split air conditioning system 100 can be switched to the first refrigerant recovery mode, and the refrigerant recovery device 400 can be used to recover the refrigerant leaking from the indoor unit.
  • the multi-split air conditioning system 100 can be switched to the second refrigerant recovery mode, and the refrigerant recovered from the outdoor unit 200 can be recovered through the refrigerant recovery device 400 .
  • the multi-split air conditioning system 100 may also include a power supply device 500 that supplies power to various components.
  • the power supply device 500 includes a power supply 501 and a power management chip 502 .
  • the power supply device 500 is coupled to the controller 600, and functions such as power consumption management of the multi-split air conditioning system 100 can be implemented through the power supply device 500.
  • the controller 600 is coupled to the indoor refrigerant leak detection device 218 in each indoor unit.
  • the controller 600 is configured to obtain the detection results of each indoor refrigerant leakage detection device 218, and the detection results of the indoor refrigerant leakage detection device 218 are used to indicate whether refrigerant leakage occurs in the indoor unit where the refrigerant leakage detection device 218 is located. According to the obtained detection results of the indoor refrigerant leakage detection device 218, it is determined whether there is an indoor unit with refrigerant leakage in the indoor unit 300. If there is, the controller 600 controls the multi-split air conditioning system 100 to run the first refrigerant recovery mode.
  • the multi-split air conditioning system 100 can determine whether there is an indoor unit with refrigerant leakage among the indoor units 300 based on the detection results of the indoor refrigerant leakage detection device 218 .
  • the controller 600 controls the multi-split air conditioning system 100 to switch to the first refrigerant recovery mode to recover the leaked refrigerant from the indoor units to the refrigerant recovery device 400 .
  • it prevents the refrigerant of the indoor unit from leaking into the indoor environment and improves the reliability of the multi-split air conditioning system 100 .
  • the refrigerant is recovered through the refrigerant recovery device 400, which greatly reduces the amount of refrigerant discharged from the outdoor unit 200 into the outdoor environment and improves the environmental protection of the multi-split air conditioning system 100.
  • controller 600 is further configured to close the third indoor expansion valve in the indoor unit where refrigerant leakage occurs when the multi-split air conditioning system 100 operates in the first refrigerant recovery mode.
  • the third indoor expansion valve in the indoor unit where refrigerant leakage occurs is closed to prevent the refrigerant from continuing to enter the indoor unit where refrigerant leakage occurs, thereby avoiding In an indoor unit where refrigerant leakage occurs, refrigerant leaks into the indoor environment.
  • the opening of the third indoor expansion valve of the indoor unit without refrigerant leakage in the indoor unit 300 is adjusted to the second target opening value,
  • the second target opening value is the maximum value, so that the refrigerant in the pipeline connected to the third indoor expansion valve of the indoor unit with refrigerant leakage can be more quickly recovered to the refrigerant through the indoor unit and outdoor unit 200 without leakage.
  • the recovery device 400 can thereby increase the recovery speed of the refrigerant leaked from the indoor unit and ensure the refrigerant recovery efficiency of the multi-split air conditioning system 100 .
  • the controller 600 is coupled to the outdoor refrigerant leak detection device 218 of the outdoor unit 200 .
  • the controller 600 is also configured to: obtain the detection result of the outdoor refrigerant leakage detection device 218.
  • the detection result of the outdoor refrigerant leakage detection device 218 is used to indicate whether refrigerant leakage occurs in the outdoor unit 200; if the detection result of the outdoor refrigerant leakage detection device 218 indicates Refrigerant leakage occurs in the outdoor unit 200, and the multi-split air conditioning system 100 is controlled to run the second refrigerant recovery mode.
  • the multi-split air conditioning system 100 can determine whether refrigerant leakage occurs in the outdoor unit 200 based on the detection result of the outdoor refrigerant leakage detection device 218 .
  • the controller 600 controls the multi-split air conditioning system 100 to switch to the second refrigerant recovery mode to recover the leaked refrigerant from the outdoor unit 200 into the refrigerant recovery device 400 , thereby passing through the refrigerant recovery device 400 Recycling the refrigerant greatly reduces the amount of refrigerant discharged from the outdoor unit 200 into the outdoor environment, and improves the environmental protection of the multi-split air conditioning system.
  • the outdoor expansion valve 204 is controlled to be at the first target opening value (ie, the target opening value).
  • the first target opening value is the maximum value.
  • the outdoor expansion valve 204 is controlled to be at the maximum opening value, so that the refrigerant in the pipeline connected to the outdoor expansion valve 204 passes through the outdoor unit 200 and the indoor unit more quickly.
  • the refrigerant is recovered to the refrigerant recovery device 400, thereby increasing the recovery speed of the refrigerant leaked from the outdoor unit 200 and ensuring the refrigerant recovery efficiency of the multi-split air conditioning system.
  • the controller 600 is further configured to: when the multi-split air conditioning system 100 is in the first refrigerant recovery mode, detect whether the refrigerant recovery stop condition is met; if so, the controller 600 controls the fourth solenoid valve 405A and the third solenoid valve 405A. The fifth solenoid valve 405B is closed; or, when the multi-split air conditioning system 100 is in the second refrigerant recovery mode, it is detected whether the refrigerant recovery stop condition is met; if so, the controller 600 controls the fourth solenoid valve 405A and the fifth solenoid valve 405B to close.
  • the refrigerant recovery stop condition includes one or more of the following: the multi-split air conditioning system 100 runs the first refrigerant recovery mode or the second refrigerant recovery mode for a preset time; or, the pressure of the refrigerant entering the compressor 201 is at a preset time. within the pressure range.
  • the fourth solenoid valve 405A and the fifth solenoid valve 405B are controlled to be in a closed state to prevent refrigerant from circulating in the corresponding pipelines.
  • the timing to end the refrigerant recovery can be determined, so that the refrigerant is recovered when the amount of refrigerant in the pipeline of the multi-split air conditioning system 100 is within a reasonable range, thereby avoiding the failure of the multi-split air conditioning system 100
  • the first refrigerant recovery mode or the second refrigerant recovery mode is still executed, causing the multi-split air conditioning system 100 to be abnormal or damaged, thereby improving the reliability and service life of the multi-split air conditioning system 100 .
  • the controller 600 is further configured to: when the multi-split air conditioning system 100 is in one of the first refrigerant recovery mode and the second refrigerant recovery mode, if it is determined that the refrigerant recovery stop condition is met, the controller 600 controls the first refrigerant recovery mode. Sixth solenoid valve 406A and seventh solenoid valve 406B are closed.
  • the controller 600 controls the fourth solenoid valve 405A and the fifth solenoid valve 405B, and the sixth solenoid valve 406A and the seventh solenoid valve 406B to close, so that the indoor unit where refrigerant leakage occurs in the indoor unit 300
  • the pipelines connected to the refrigerant recovery device 400 and the outdoor unit 200 are disconnected, so that the indoor unit that has leaked refrigerant is not affected by the refrigerant recovery device 400 and the outdoor unit 200 during replacement, thereby improving the convenience of installing or replacing the indoor unit 300.
  • the control method of the multi-split air conditioning system 100 is described below.
  • the control method of the multi-split air conditioning system 100 includes steps S101 to S104.
  • Step S101 Determine the leakage of refrigerant in the indoor unit and outdoor unit.
  • Step S102 When it is determined that there is an indoor unit with refrigerant leakage, control the multi-split air conditioning system to run the first refrigerant recovery mode.
  • Step S103 When it is determined that refrigerant leakage occurs in the outdoor unit 200, the multi-split air conditioning system is controlled to run the second refrigerant recovery mode.
  • Step S104 When it is determined that there is no leakage of refrigerant in the indoor unit 300 and the outdoor unit 200, the multi-split air conditioning system 100 keeps the current operating mode unchanged.
  • the original operating mode may be a synchronous cooling mode, a synchronous heating mode, a first asynchronous cooling and heating mode, a second asynchronous cooling and heating mode, a dehumidification mode, etc.
  • the outdoor heat exchanger 203 works as a condenser
  • the indoor heat exchanger 301 works as an evaporator
  • the first solenoid valve 401 is in an open state
  • the second solenoid valve 402 In the closed state
  • the third solenoid valve 403 is in the closed state.
  • the outdoor heat exchanger 203 works as an evaporator
  • the indoor heat exchanger 301 works as a condenser
  • the first solenoid valve 401 is in a closed state
  • the second solenoid valve 402 is in the open state
  • the third solenoid valve 403 is in the closed state.
  • the control method of the controller 600 includes steps S201 to S206.
  • Step S201 It is determined based on the detection result of the indoor refrigerant leakage detection device 304 that there is an indoor unit that has leaked refrigerant.
  • the indoor unit where refrigerant leaks occur can send out an early warning message.
  • the early warning message is used to indicate that the indoor unit has refrigerant leakage.
  • the warning information can be voice, text or light, etc.
  • Step S202 determine whether the multi-split air conditioning system 100 is in the synchronous cooling mode. If not, execute step S203; if yes, execute step S204.
  • Step S203 switch the multi-split air conditioning system 100 to the synchronous cooling mode. After that, step S204 is executed.
  • the indoor heat exchanger 301 of each indoor unit operates as an evaporator
  • the outdoor heat exchanger 203 operates as a condenser
  • Step S204 Control the third indoor expansion valve corresponding to the indoor unit where refrigerant leakage occurs to close, control the first solenoid valve 401 to open, and the second solenoid valve 402 and the third solenoid valve 403 to close.
  • Step S205 when the refrigerant recovery stop condition is met, the fourth solenoid valve 405A is controlled to close and the first replacement information is sent.
  • the first replacement information is used to prompt the user to replace the indoor unit that has leaked refrigerant.
  • Step S206 Control the multi-split air conditioning system 100 to stop running.
  • control method for the multi-split air conditioning system 100 in the second refrigerant recovery mode includes steps S301 to S306.
  • Step S301 It is determined that refrigerant leakage occurs in the outdoor unit 200 based on the detection result of the outdoor refrigerant leakage detection device 218.
  • the outdoor unit can send out early warning messages.
  • the early warning message is used to indicate that the outdoor unit has refrigerant leakage.
  • the warning information can be voice, text or light, etc.
  • Step S302 Determine whether the multi-split air conditioning system 100 is in the synchronous heating mode. If not, execute step S303; if yes, execute step S304.
  • Step S303 switch the multi-split air conditioning system 100 to the synchronous heating mode. After that, step S304 is executed.
  • the indoor heat exchanger 301 of each indoor unit operates as a condenser
  • the outdoor heat exchanger 203 operates as an evaporator
  • Step S304 Control the first solenoid valve 401 to close, the second solenoid valve 402 to open, and the third solenoid valve 403 to close.
  • Step S305 when the refrigerant recovery stop condition is met, the fourth solenoid valve 405 is controlled to close and the second replacement message is sent.
  • the second replacement information is used to prompt the user to replace the outdoor unit 200 .
  • the refrigerant recovery stop condition includes one or more of the following: when the multi-split air conditioning system 100 runs the second refrigerant recovery mode for a preset time period, or when the pressure of the refrigerant entering the compressor is within a preset pressure range.
  • Step S306 Control the multi-split air conditioning system 100 to stop running.
  • the multi-split air conditioning system 100 recovers the refrigerant from the refrigerant recovery device 400
  • the refrigerant is released from the liquid storage tank 404 into the first pipeline and the second pipeline of the multi-split air conditioning system 100, so as to rationally utilize the recovered refrigerant, save the consumption of refrigerant resources, and improve the environmental protection of the multi-split air conditioning system 100.
  • the refrigerant recovery device 400 further includes a first expansion valve 411 .
  • the liquid storage tank 404 also has a third opening 4043, and the third opening 4043 of the liquid storage tank 404 is connected to the first pipeline and the second pipeline through the first expansion valve 411.
  • the third opening 4043 of the liquid storage tank 404 is usually provided at the bottom of the liquid storage tank 404 .
  • the multi-split air conditioning system 100 has one or more of the following operating modes: a synchronous cooling mode, a synchronous heating mode, a first asynchronous cooling and heating mode, a second asynchronous cooling and heating mode, a third asynchronous cooling and heating mode, and a first asynchronous cooling and heating mode.
  • a refrigerant recovery mode, a second refrigerant recovery mode and a refrigerant release mode are included in the multi-split air conditioning system 100 .
  • the first expansion valve 411 is in a closed state.
  • the refrigerant flow path of the multi-split air conditioning system 100 is the same as the refrigerant flow path of the multi-split air conditioning system 100 not including the first expansion valve 411 , and will not be described again here.
  • the refrigerant release mode is introduced below.
  • the outdoor heat exchanger 203 works as a condenser
  • the indoor heat exchanger 301 works as an evaporator
  • the first solenoid valve 401 is in a closed state
  • the second solenoid valve 402 is in a closed state.
  • the third solenoid valve 403 is in the open state
  • the first expansion valve 411 is in the open state.
  • the operation cycle of the refrigerant release mode of the air conditioning system will be described.
  • the D port of the first four-way valve 202A is connected to the C port, and the E port is connected to the S port.
  • the D' port of the second four-way valve 202B is connected to the C' port, and the E' port is connected to the S' port. connect.
  • the first solenoid valve 401 is closed, the second solenoid valve 402 is closed, the third solenoid valve 403 is opened, the fourth solenoid valve 405A is opened, the fifth solenoid valve 405B is opened, the indoor expansion valve 302 of each indoor unit is opened, and the first expansion valve 411 Open.
  • solenoid valves including the sixth solenoid valve 406A, the seventh solenoid valve 406B, the eighth solenoid valve 213A, the ninth solenoid valve 213B, and the tenth solenoid valve 214) and other expansion valves in the multi-split air conditioning system 100 shown in Figure 19 (including outdoor expansion valve 204, indoor expansion valve 302) and stop valves (including first stop valve 407A, second stop valve 407B, third stop valve 408A, fourth stop valve 408B, fifth stop valve 409, sixth stop valve
  • the valve 410, the seventh stop valve 211A, the eighth stop valve 211B, the ninth stop valve 212, the thirteenth stop valve 308A, the fourteenth stop valve 308B) are opened.
  • the refrigerant circulation circuit flowing through the first indoor unit 300A of the indoor unit 300 is: (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9) ⁇ (10) ⁇ (12A) ⁇ (14A) ⁇ (15A) ⁇ (16A) ⁇ (17A) ⁇ (18A) ⁇ (19) ⁇ (1) and (1) ⁇ (2 ) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9) ⁇ (10) ⁇ (13A) ⁇ (14B) ⁇ (15B) ⁇ (16B) ⁇ (17B) ⁇ (18B) ⁇ (19) ⁇ (1).
  • the refrigerant circulation loop flowing through the second indoor unit 300B in the indoor unit 300 is: (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ ( 8) ⁇ (9) ⁇ (11) ⁇ (12B) ⁇ (14A) ⁇ (15A) ⁇ (16A) ⁇ (17A) ⁇ (18A) ⁇ (19) ⁇ (1) and (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9) ⁇ (11) ⁇ (13B) ⁇ (14B) ⁇ (15B) ⁇ (16B) ⁇ ( 17B) ⁇ (18B) ⁇ (19) ⁇ (1).
  • the refrigerant release flow path for refrigerant release is: (22) ⁇ (23) ⁇ (16A) ⁇ (17A) ⁇ (18A) ⁇ (19) ⁇ (1) and (22) ⁇ (24) ⁇ (16B) ⁇ (17B) ⁇ (18B) ⁇ (19) ⁇ (1).
  • the multi-split air conditioning system 100 operates in the synchronous refrigeration mode, and the refrigerant in the liquid storage tank 404 is released into the first pipeline and the second pipeline through the first expansion valve 411.
  • the combined first refrigerant and the refrigerant released to the first pipeline in the liquid storage tank 404 through the first expansion valve 411 are combined into a third refrigerant, and the combined second refrigerant and the refrigerant in the liquid storage tank 404 after the first expansion are combined into a third refrigerant.
  • Valve 411 releases to second line The refrigerants are combined into the fourth refrigerant.
  • the third refrigerant passes through the fourth solenoid valve 405A, it merges again with the fourth refrigerant that has passed through the fifth solenoid valve 405B and the second four-way valve 202B in sequence to form a low-temperature and low-pressure gaseous refrigerant, and returns to the gas-liquid separator 205 through the gas-liquid separator 205 .
  • the description of the refrigerant release mode of the air conditioning system is completed.
  • the multi-split air conditioning system 100 can be adjusted to the refrigerant release mode to release the recovered refrigerant into the first pipeline and the second pipeline for use by multiple units.
  • the online air conditioning system 100 uses the recovered refrigerant during cooling operation or heating operation.
  • control method of the multi-split air conditioning system 100 in the refrigerant release mode includes steps S401 to S402.
  • the multi-split air conditioning system after completing the first refrigerant recovery mode or completing the second refrigerant recovery mode, if a control signal for instructing the multi-split air conditioning system to operate in other modes other than the synchronous refrigeration mode is received, the multi-split air conditioning system will The air conditioning system 100 switches to the synchronous cooling mode and then runs the refrigerant release mode. It should be noted that the above-mentioned other modes include synchronous heating mode, first asynchronous cooling and heating mode, second asynchronous cooling and heating mode, dehumidification mode, etc.
  • the present disclosure is not limited to the refrigerant recovery device 400 including the first expansion valve 411 .
  • the refrigerant recovery device 400 also includes a second expansion valve 412 to solve the problem of refrigerant circulating in the multi-connected air conditioning system 100 during the refrigerant recovery process.
  • the second expansion valve 412 includes the following two arrangements.
  • the liquid storage tank also has a fourth opening 4044, the first end of the second expansion valve 412 is connected to the fourth opening 4044 of the liquid storage tank 404, and the second The second end of the expansion valve 412 is connected to the third pipeline and the fourth pipeline.
  • the third pipeline is the pipeline between the fourth solenoid valve 405A and the sixth solenoid valve 406A.
  • the fourth pipeline is the fifth solenoid valve. 405B and the seventh solenoid valve 406B.
  • the third pipeline is pipeline (16B)
  • the fourth pipeline is pipeline (16A). It should be noted that the above-mentioned first setting method is generally applicable to the first refrigerant recovery mode.
  • the first end of the second expansion valve 412 is connected to the fifth pipeline, and the second end of the second expansion valve 412 is connected to the third pipeline and the fourth pipeline.
  • the pipelines are connected, and the fifth pipeline is the pipeline between the first solenoid valve 401 and the first opening 4041 of the liquid storage tank 404 . It should be noted that the above second setting method is applicable to the first refrigerant recovery mode and the second refrigerant recovery mode.
  • the second expansion valve 412 When the multi-split air conditioning system 100 is operating in one of the cooling mode, the heating mode, the first asynchronous cooling and heating mode, the second asynchronous cooling and heating mode, and the refrigerant release mode, the second expansion valve 412 is in a closed state. When the multi-split air conditioning system 100 is operating in the first refrigerant recovery mode or the second refrigerant recovery mode, the second expansion valve 412 is opened, and when the refrigerant recovery is completed, the second expansion valve 412 is closed.
  • a second expansion valve 412 is added between the fifth pipeline and the third pipeline and between the fifth pipeline and the fourth pipeline, so that during the refrigerant recovery process (first refrigerant recovery mode or second refrigerant recovery mode (below), by opening the second expansion valve 412 and allowing a part of the refrigerant to flow to the compressor 201, the exhaust temperature of the compressor 201 is reduced to reduce the temperature of the compressor 201, thereby ensuring the reliability of the compressor 201 during the refrigerant recovery process. sex.
  • the refrigerant entering the liquid storage tank 404 may be a gaseous and a liquid two-phase refrigerant.
  • the refrigerant entering the liquid storage tank 404 is a two-phase refrigerant
  • due to the average density of the two-phase refrigerant If it is small, the amount of refrigerant stored in the liquid storage tank 404 will be reduced, thereby affecting the refrigerant recovery effect. Therefore, during the refrigerant recovery process, the second expansion valve 412 is opened to allow the gaseous refrigerant to flow out, so as to improve the refrigerant recovery effect.
  • the refrigerant recovery device 400 may include a plurality of second expansion valves 412, and the plurality of second expansion valves 412 may use different arrangements.
  • the refrigerant recovery device 400 further includes a first subcooler 413 , and the first subcooler 413 includes a first channel 416 and a second channel 417 .
  • the third opening 4043 of the liquid storage tank 404 is connected to the first pipeline and the second pipeline through the first expansion valve 411 and the first channel 416 of the first subcooler 413 in sequence.
  • the first end of the third solenoid valve 403 is connected to the second end of the outdoor heat exchanger 203 through the second channel of the first subcooler 413 .
  • the refrigerant flow recovered in the refrigerant recovery device 400 passes through the first channel 416 of the first subcooler 413.
  • the refrigerant flow passes through the second channel 417 of the first subcooler 413.
  • the second channel 417 cools the refrigerant flowing through the second channel 417 to release corresponding heat.
  • the first channel 416 uses the heat released by the second channel 417 to heat the recovered refrigerant flowing through the first channel 416, so that the liquid refrigerant in the two-phase gaseous and liquid refrigerants is converted into gaseous refrigerant, thereby reducing the amount of heat released by the refrigerant recovery device 400.
  • the content of liquid refrigerant in the refrigerant increases the content of gaseous refrigerant in the released refrigerant to ensure the use efficiency of the recovered refrigerant.
  • the refrigerant recovery device 400 releases the recovered refrigerant to the compressor 201 of the outdoor unit 200.
  • the refrigerant released by the refrigerant recovery device 400 is in a liquid state. Reducing the refrigerant content will reduce the liquid return of the compressor 201 and increase the service life of the compressor 201.
  • the refrigerant recovery device 400 further includes a first temperature sensor 420 .
  • the first temperature sensor 420 is provided on the pipeline (22) as shown in Figure 23.
  • the first temperature sensor 420 is configured to detect the temperature value of the refrigerant flowing out from the first channel 416 of the first subcooler 413 .
  • the refrigerant recovery device 400 further includes a throttling device 414 and a second subcooler 415 .
  • the second subcooler 415 includes a third channel 418 and a fourth channel 419.
  • the third opening 4043 of the liquid storage tank 404 is connected to the first pipeline through the throttling device 414 and the third channel 418 of the second subcooler 415 in sequence.
  • the second end of the third solenoid valve 403 is connected to the third indoor expansion valve 2021 through the fourth channel 419 of the second subcooler 415 .
  • the refrigerant recovered in the refrigerant recovery device 400 is throttled by the throttling device 414 and then flows through the third channel 418 of the second subcooler 415 .
  • the refrigerant flows through the fourth channel 419 of the second subcooler 415.
  • the fourth channel 419 cools the refrigerant flowing through the fourth channel 419 to release corresponding heat.
  • the third channel 418 uses the heat released by the fourth channel 419 to heat the refrigerant flowing through the third channel 418, so that the liquid refrigerant in the two-phase gaseous and liquid refrigerants is converted into gaseous refrigerant, thereby reducing the refrigerant released by the refrigerant recovery device 400.
  • the content of liquid refrigerant in the medium is increased, and the content of gaseous refrigerant in the released refrigerant is increased to ensure the use efficiency of the recovered refrigerant.
  • the refrigerant recovery device 400 further includes a second temperature sensor 421 .
  • the second temperature sensor 421 is provided on the pipeline (23) as shown in Figure 23.
  • the second temperature sensor 421 is configured to detect the temperature value of the refrigerant flowing out from the third channel 418 of the second subcooler 415 .
  • the opening of the first expansion valve 411 can be controlled.
  • the control method of the multi-connection air conditioning system 100 includes steps S501 to S505.
  • Step S501 When the multi-split air conditioning system 100 is running in the refrigerant release mode, the first temperature value detected by the first temperature sensor 420 and the pressure value detected by the first outdoor pressure sensor 209 are obtained.
  • Step S502 Determine the second temperature value according to the pressure value detected by the first outdoor pressure sensor 209.
  • the second temperature value is the saturation temperature value corresponding to the pressure value detected by the first outdoor pressure sensor 209 .
  • Step S503 Determine whether the difference between the first temperature value and the second temperature value is less than the first preset temperature value. If not, execute step S504; if yes, execute step S505.
  • Step S504 control the first expansion valve 411 to increase the opening.
  • Step S505 control the opening of the first expansion valve 411 to decrease.
  • the above-mentioned first preset temperature value is determined according to the type of compressor 201 and the type of refrigerant.
  • the opening of the first expansion valve 411 is controlled according to the relationship between the temperature difference and the first preset temperature value to ensure that the opening of the first expansion valve 411 is within a reasonable range, thereby ensuring that the refrigerant recovery device 400 releases The amount of refrigerant is within a reasonable range.
  • the refrigerant recovery device 400 it is to prevent the refrigerant recovery device 400 from releasing too much refrigerant, causing too much refrigerant in the pipeline of the entire multi-split air conditioning system 100, and causing the multi-split air conditioning system 100 to fail to process the refrigerant in a timely manner.
  • avoid refrigerant return If the amount of refrigerant released by the collection device 400 is too small, the amount of refrigerant in the pipeline of the entire multi-split air conditioning system 100 will be too small, thereby reducing the working efficiency of the multi-split air conditioning system 100, such as reducing the cooling speed or heating speed.
  • the refrigerant release process of the refrigerant recovery device 400 can be controlled.
  • the control method of the multi-split air conditioning system 100 includes steps S601 to S605.
  • Step S601 When the multi-split air conditioning system 100 operates in the refrigerant release mode, the third temperature value detected by the second temperature sensor and the pressure value detected by the first outdoor pressure sensor 209 are obtained.
  • Step S602 Determine the second temperature value according to the pressure value detected by the first outdoor pressure sensor.
  • the second temperature value is the saturation temperature value corresponding to the pressure value detected by the first outdoor pressure sensor.
  • Step S603 Determine whether the difference between the third temperature value and the second temperature value is less than the second preset temperature value. If not, execute step S604; if yes, execute step S605.
  • Step S604 control the multi-split air conditioning system 100 to stop operating the refrigerant release mode.
  • Step S605 control the multi-split air conditioning system 100 to continue operating the refrigerant release mode.
  • the above-mentioned second preset temperature value is determined according to the type of compressor 201 and the type of refrigerant.
  • the first temperature is obtained The temperature difference between the value and the saturation temperature value.
  • the release process of the refrigerant recovery device is reasonably controlled to ensure that the refrigerant recovery device 400 can release refrigerant only when there is sufficient refrigerant to avoid no refrigerant in the refrigerant recovery device.
  • the refrigerant release mode is still executed, causing the amount of refrigerant in the multi-split air conditioning system to be abnormally small, thereby improving the working efficiency of the multi-split air conditioning system.
  • the controller 600 also includes a memory 602 and a communication interface 603 connected to the processor 601.
  • the processor 601, the memory 602 and the communication interface 603 are connected through a bus 604.
  • the processor 601 has a data processing function, and the memory 602 is configured to store data.
  • the memory 602 may exist independently or be integrated with the processor 601.
  • Memory 602 may contain computer program code.
  • the processor 601 is used to execute the computer program code stored in the memory 602, thereby implementing the control method provided by the embodiment of the present disclosure.
  • the communication interface 603 can be used to communicate with other devices or communication networks (such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), etc.).
  • the communication interface 603 can be a module or circuit , transceiver or any device capable of communication.
  • the bus 604 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc. Information can be transferred between components through bus 604. For ease of presentation, only one thick line is used in Figure 24, but it does not mean that there is only one bus or one type of bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

提供一种空调系统,包括室外机、室内机、冷媒回收装置和控制器。所述室外机包括第一四通阀、第二四通阀和室外冷媒泄漏检测装置。所述室内机包括室内换热器和室内冷媒泄漏检测装置。所述室内换热器分别与所述第一四通阀和所述第二四通阀连接。所述冷媒回收装置位于所述室外机和所述室内机之间,被配置为在所述室外机和所述室内机之一发生冷媒泄漏时,回收并存储所述空调系统中的冷媒。所述控制器被配置为确定所述室内机和所述室外机是否发生冷媒泄漏;若确定所述室内机发生冷媒泄漏,则控制所述空调系统运行第一冷媒回收模式;若确定所述室外机发生冷媒泄漏,则控制所述空调系统运行第二冷媒回收模式。

Description

空调系统
本申请要求于2022年7月19日提交的、申请号为202210847977.1的中国专利申请的优先权,于2022年7月19日提交的、申请号为202210855318.2的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及家电技术领域,尤其涉及一种空调系统。
背景技术
随着经济社会的发展,空调越来越被广泛使用。当在同一区域中的多个小区域需要使用空调时,考虑到电能的节省,常采用由一个室外机和多个室内机组成的多联机空调系统实现对多区域室温的调控。
发明内容
提供一种空调系统。所述空调系统包括室外机、室内机、冷媒回收装置以及控制器。所述室外机包括室外冷媒泄漏检测装置,所述室外冷媒泄漏检测装置被配置为检测所述室外机是否发生冷媒泄漏。所述室内机包括室内冷媒泄漏检测装置,所述室内冷媒泄漏检测装置被配置为检测所述室内机是否发生冷媒泄漏。所述冷媒回收装置位于所述室外机和所述室内机之间,被配置为在所述室外机和所述室内机之一发生冷媒泄漏时,回收并存储所述空调系统的冷媒。所述控制器被配置为:获取所述室内冷媒泄漏检测装置的检测结果和所述室外冷媒泄漏检测装置的检测结果;若所述室内冷媒泄漏检测装置的所述检测结果指示室内机发生冷媒泄漏,则控制所述空调系统运行第一冷媒回收模式;若所述室外冷媒泄漏检测装置的所述检测结果指示所述室外机发生冷媒泄漏,则控制所述空调系统运行第二冷媒回收模式。其中,在所述第一冷媒回收模式下,所述空调系统运行制冷模式,空调系统中的冷媒流经所述室外机后被回收至所述冷媒回收装置内。在所述第二冷媒回收模式下,所述空调系统运行制热模式,空调系统中的冷媒流经所述室内机后被回收至所述冷媒回收装置内。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种空调系统的结构图;
图2为根据一些实施例的一种空调系统的框图;
图3为根据一些实施例的另一种空调系统的结构图;
图4为根据一些实施例的又一种空调系统的结构图;
图5为根据一些实施例的又一种空调系统的结构图;
图6为根据一些实施例的一种空调系统的一种冷媒循环原理图;
图7为根据一些实施例的一种空调系统的另一种冷媒循环原理图;
图8为根据一些实施例的一种空调系统的又一种冷媒循环原理图;
图9为根据一些实施例的一种空调系统的又一种冷媒循环原理图;
图10为根据一些实施例的一种空调系统的又一种冷媒循环原理图;
图11为根据一些实施例的一种空调系统的又一种冷媒循环原理图;
图12为根据一些实施例的又一种空调系统的结构图;
图13为根据一些实施例的又一种空调系统的一种冷媒循环原理图;
图14为根据一些实施例的又一种空调系统的另一种冷媒循环原理图;
图15为根据一些实施例的又一种空调系统的又一种冷媒循环原理图;
图16为根据一些实施例的又一种空调系统的又一种冷媒循环原理图;
图17为根据一些实施例的又一种空调系统的又一种冷媒循环原理图;
图18为根据一些实施例的又一种空调系统的又一种冷媒循环原理图;
图19为根据一些实施例的又一种空调系统的又一种冷媒循环原理图;
图20为根据一些实施例的又一种空调系统的结构图;
图21为根据一些实施例的又一种空调系统的结构图;
图22为根据一些实施例的又一种空调系统的结构图;
图23为根据一些实施例的又一种空调系统的结构图;
图24为根据一些实施例的一种控制器的硬件结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
相关技术中,在多联机空调系统的使用过程中,需要采用换热器上的传热管(如铜管或者铝管)来传热。然而,传热管长期暴露在室外环境中,可能会被腐蚀,从而引起冷媒泄漏的问题。
为避免冷媒泄漏带来的风险,通常在室内机的进出口增加一对电子膨胀阀,来阻断室内机中发生泄漏的冷媒流入到室内环境中。然而,该方式下冷媒回收率较低,未被回收的冷媒可能会被排出至室外环境中而引起环境污染问题。
为解决上述问题,本公开一些实施例提供一种空调系统,在室外机和室内机之间设置冷媒回收装置,并且在室内机中设置了第一室内膨胀阀和第二室内膨胀阀。在冷媒发生泄漏时,根据室外机和室内机待进入的运行模式,通过对冷媒回收装置中第一电磁阀、第二电磁阀和第三电磁阀的关闭和开启状态,以及各室内机的第一室内膨胀阀和第二室内膨胀阀的关闭和开启状态进行控制,来控制多联机空调系统中的冷媒流动的方向,以将多联机空调系统中的冷媒引入至冷媒回收装置的储液罐中,提高了冷媒的回收率,避免冷媒被排出至室外环境中而引发环境污染问题,进而提高多联机空调系统的环保性。
如图1所示,该多联机空调系统100包括室外机200、室内机300以及冷媒回收装置400。冷媒回收装置400被配置为在室外机200或室内机300发生冷媒泄漏时,回收并存储多联机空调系统100中的冷媒。
【室外机】
如图1所示,室外机200包括依次连接的压缩机201、四通阀组(例如第一四通阀202A以及第二四通阀202B)、室外换热器203以及室外膨胀阀204。第一四通阀202A具有第一端、第二端、第三端和第四端,分别为S端口、D端口、E端口、C端口。第二四通阀202B具有第一端、第二端、第三端和第四端,分别为S'端口、D'端口、E'端口、C'端口。
在一些实施例中,第一四通阀202A和第二四通阀202B为四通换向阀。第一四通阀202A和第二四通阀202B通过改变冷媒在系统管路内的流向来实现多联机空调系统100不同运行模式(如制冷模式以及制热模式)之间的相互转换。
压缩机201具有排气口B1和进气口B2。压缩机201被配置为向冷媒循环提供动力。压缩机201的排气口B1分别连接第一四通阀202A的D端口以及第二四通阀202B的D'端口,压缩机201的进气口B2分别通过管路与第一四通阀202A的S端口以及第二四通阀202B的S'端口连通。
在一些实施例中,压缩机201是基于逆变器的转速控制的容量可变的压缩机。
在一些实施例中,室外换热器203具有第一端A1和第二端A2。室外换热器203的第一端A1与第一四通阀202A的C端口连通,室外换热器203的第二端A2通过室外膨胀阀204与冷媒回收装置400相连。室外换热器203被配置为使室外换热器203的传热管中流动的冷媒与室外空气之间进行热交换。
在一些实施例中,室外机200还包括气液分离器205、油分离器206、回油毛细管207和单向阀208。
如图1所示,油分离器206具有第一端F1、第二端F2和第三端F3。压缩机201的排气口B1与油分离器206的第二端F2通过管路连接。
单向阀208具有入口H1和出口H2,位于油分离器206的第一端F1处。油分离器206的第一端F1与单向阀208的入口H1通过管路连接,单向阀208的出口H2分别与第一四通阀202A的D端口和第二四通阀202B的D'端口通过管路连接。
气液分离器205具有第一开口G1和第二开口G2。气液分离器205的第一开口G1与压缩机201的进气口B2通过管路连通,且气液分离器205的第二开口G2分别与油分离器206的第三端F3、第一四通阀202A的S端口和第二四通阀202B的S'端口通过管路连接。
在一些实施例中,如图2所示,室外机200还包括室外冷媒泄漏检测装置218,室外冷媒泄漏检测装置218被配置为检测室外机200是否发生冷媒泄漏。
在一些实施例中,如图1所示,室外机200还包括第一室外压力传感器209和第二室外压力传感器210。第一室外压力传感器209设置在气液分离器205的第二端口G2处,被配置为检测气液分离器205的第二端口G2处的冷媒的压力值,该压力值可用来表征进入 压缩机201的冷媒的压力。第二室外压力传感器210设置于单向阀208的出口H2的位置处,被配置为检测从压缩机201排出的冷媒的压力值。例如,第一室外压力传感器209为低压力传感器,第二室外压力传感器210为高压力传感器。
在一些实施例中,如图1所示,室外机200还包括室外风扇215,室外风扇215被配置为产生通过室外换热器203的气流,以促进在室外换热器203的传热管中流动的冷媒与室外空气的热交换。
在一些实施例中,如图1所示,室外机200还包括室外风扇马达216,室外风扇马达216与室外风扇215耦接,被配置为驱动室外风扇215转动或改变室外风扇215的转速。
在一些实施例中,室外机200还包括高压压力开关217,高压压力开关217被配置为监控多联机空调系统100管路的压力,在多联机空调系统100管路的压力异常时,向多联机空调系统100发送异常信息,以便控制多联机空调系统100停机,保证多联机空调系统100的正常运行。
需要说明的是,多联机空调系统还包括控制器600,控制器600与高压压力开关217和室外冷媒泄漏检测装置218耦接。
控制器600包括处理器601。处理器601可以包括中央处理器(Central Processing Unit,CPU)、微处理器(Microprocessor)、专用集成电路(Application Specific Integrated Circuit,ASIC),并且可以被配置为当处理器执行存储在耦合到控制器600的非暂时性计算机可读介质中的程序时,执行控制器600中描述的相应操作。
【室内机】
如图1所示,多联机空调系统100的室内机300包括多个室内机,例如,室内机300包括两个室内机(例如第一室内机300A和第二室内机300B)。各个室内机包括室内换热器301和室内膨胀阀302。
在一些实施例中,室内膨胀阀302包括第一室内膨胀阀3022、第二室内膨胀阀3023和第三室内膨胀阀3021。
例如,第一室内机300A包括第一室内换热器301A、第一室内膨胀阀3022A、第二室内膨胀阀3023A和第三室内膨胀阀3021A。第一室内换热器301A与第一四通阀202A和第二四通阀202B相连。
例如,第二室内机300B包括第二室内换热器301B、第一室内膨胀阀3022B、第二室内膨胀阀3023B和第三室内膨胀阀3021B。第二室内换热器301B与第一四通阀202A和第二四通阀202B相连。
需要说明的是,上述室内换热器301包括第一室内换热器301A或第二室内换热器301B。室内膨胀阀302包括第一室内膨胀阀3022A、第二室内膨胀阀3023A和第三室内膨胀阀3021A;或者,室内膨胀阀302包括第一室内膨胀阀3022B、第二室内膨胀阀3023B和第三室内膨胀阀3021B。
如图1所示,第一室内换热器301A的第一端通过第一室内膨胀阀3022A连接第一四通阀202A的S端口和第二四通阀202B的S'端口。对应图1中的(13A)→(14B)→(15B)→(16B)→(17B)→(18B)。第二室内换热器301B的第一端通过第一室内膨胀阀3022B连接第一四通阀202A的S端口和第二四通阀202B的S'端口。对应图1中的(13B)→(14B)→(15B)→(16B)→(17B)→(18B)。
第一室内换热器301A的第一端通过第二室内膨胀阀3023A连接第二四通阀202B的E'端口,如(12A)→(14A)→(15A)→(16A)→(17A)→(18A)。第二室内换热器301B的第一端通过第二室内膨胀阀3023B连接第二四通阀202B的E'端口。(12B)→(14A)→(15A)→(16A)→(17A)→(18A)。
为便于说明,以下将各室内机的室内换热器301连接第一四通阀202A的S端口和第二四通阀202B的S'端口的管路称为第一管路。例如,第一管路为(14B)→(15B)→(16B)→(17B)→(18B)。各室内机的室内换热器301连接第二四通阀202B的E'端口的管路称为第二管路。例如,第二管路为(14A)→(15A)→(16A)→(17A)→(18A)。即,各室内机的室内换热器301分别通过第一室内膨胀阀3022(包括第一室内膨胀阀3022A 和第一室内膨胀阀3022B)与第一管路连通,并且通过第二室内膨胀阀3023(包括第二室内膨胀阀3023A和第二室内膨胀阀3023B)与第二管路连通。
在一些实施例中,如图2所示,室内机300的各室内机还包括室内冷媒泄漏检测装置304。室内冷媒泄漏检测装置304被配置为检测室内机300的各室内机的冷媒是否发生泄漏。例如,室内冷媒泄漏检测装置304为室内冷媒泄漏检测传感器。
在一些实施例中,室内机300的各室内机还包括室内液管温度传感器305和室内回风温度传感器306。室内液管温度传感器305被配置为检测室内机管路的冷媒温度。室内回风温度传感器306被配置为检测室内机300中各室内机的回风温度。
在一些实施例中,室内换热器301被配置为使传热管内流动的冷媒与室内空气之间进行热交换。
在一些实施例中,各室内机的第三室内膨胀阀3021(包括第三室内膨胀阀3021A和第三室内膨胀阀3021B)设置于室内换热器301和冷媒回收装置400之间,被配置为使流经的冷媒膨胀而减压,以及调节管路内冷媒的供应量。
在一些实施例中,各室内机可以包括多个第三室内膨胀阀3021。以第一室内机300A为例,第一室内机300A可以包括多个第三室内膨胀阀3021A(如电子膨胀阀)。若第三室内膨胀阀3021A减小开度,则通过第三室内膨胀阀3021A的冷媒的阻力增加。若第三室内膨胀阀3021A增大开度,则通过第三室内膨胀阀3021A的冷媒的阻力减小。这样,即使回路中其他部件的状态不变化,当第三室内膨胀阀3021A的开度变化时,流向第一室内换热器301A或流出第一室内换热器301A的冷媒流量也会变化。
需要说明的是,图1所示的室内膨胀阀302的数量和室外膨胀阀204的数量仅为示例,本公开对此不作限定。
在一些实施例中,如图1所示,室内机300还包括室内风扇303。以第一室内机300A为例,第一室内机300A还包括第一室内风扇303A。第一室内风扇303A产生流经第一室内换热器301A的气流,以促进在第一室内换热器301A的传热管中流动的冷媒与室内空气的热交换。
在一些实施例中,如图2所示,室内机300还包括室内风扇马达307,室内风扇马达307与室内风扇303耦接,被配置为驱动室内风扇303转动或改变室内风扇303的转速。
在一些实施例中,如图2所示,室内机300还包括一个或多个减压器312,减压器312被配置为降低管道内冷媒压力,将冷凝器输送的高压冷媒降压后输送至蒸发器。
在一些实施例中,室内机300还包括湿度传感器309,湿度传感器309被配置为检测室内空气的相对湿度。
在一些实施例中,室内机300还包括露点仪310,露点仪310被配置为检测室内换热器301附近的环境露点温度。
在一些实施例中,室内机300还包括显示器311。显示器311被配置为显示多联机空调系统100的控制界面。显示器311可以显示室内温度或室内机的当前运行模式。例如,用户可以通过操作显示器311的控制面板对多联机空调系统100输出控制指令。
在一些实施例中,显示器311还包括压力感应器3111或温度传感器3112中的至少一个,显示器311可以根据用户的手势操作(例如按压按键等),来接收用户指令并传输至多联机空调系统100以实现人机交互功能。需要说明的是,多联机空调系统100的室内机300还可以包括三个、四个或更多个室内机,并且室内机300的室内机可分别处于不同运行模式(如制冷模式、制热模式等),本公开对此不做限定。
【冷媒回收装置】
如图1和图3所示,冷媒回收装置400包括第一电磁阀401以及储液罐404。储液罐404具有第一开口4041和第二开口4042。储液罐404的第一开口4041通过第一电磁阀401与室外换热器203连接。
在一些实施例中,冷媒回收装置400还包括第二电磁阀402。储液罐404的第二开口4042通过第二电磁阀402连接各个室内机中的室内换热器301。这样,将第二电磁阀402的第一端与储液罐404的第二开口4042通过管路连接,并将第二电磁阀402的第二端与 各个室内机的室内换热器301的第二端通过管路连接,构成了流向储液罐404的冷媒支路,以对多联机空调系统100中室外机200发生泄漏的冷媒进行回收。
在一些实施例中,冷媒回收装置400包括第三电磁阀403,第三电磁阀403的第一端连通室外换热器203与第一电磁阀401之间的管路,第三电磁阀403的第二端连通各个室内机中的室内换热器301与第二电磁阀402之间的管路。
在一些实施例中,上述多联机空调系统100至少具有以下工作模式中的一种或者多种:同步制冷模式(即制冷模式)、同步制热模式(即制热模式)、第一异步制冷制热模式、第二异步制冷制热模式、第一冷媒回收模式以及第二冷媒回收模式。在第一异步制冷制热模式与第二异步制冷制热模式中任一模式下,室内机300中可以存在制热运行的至少一个室内机以及制冷运行的至少一个室内机。
在一些实施例中,冷媒回收装置400还包括第四电磁阀405A和第五电磁阀405B,第四电磁阀405A设置在第一四通阀202A的S端口与各个室内机中的室内换热器301的第一端之间的第一管路上,第五电磁阀405B设置在第二四通阀202B的E'端口与各个室内机中的室内换热器301的第一端之间的第二管路上。
这样,通过第四电磁阀405A可以实现对第一四通阀202A的S端口与各个室内机中的室内换热器301的第一端之间的管路上冷媒的通断状态的控制,并且,通过第五电磁阀405B可以实现对第二四通阀202B的E'端口与各个室内机中的室内换热器301的第一端之间的管路上冷媒的通断状态的控制,以对上述管路中的冷媒进行更加细化以及更加合理的控制。
在多联机空调系统100处于上述的任一工作模式时,第四电磁阀405A和第五电磁阀405B处于开启状态。这样,可以保证冷媒在对应的管路中循环流通。
在一些实施例中,在第一冷媒回收模式或者第二冷媒回收模式下,若确定满足冷媒回收停止条件,则控制器600控制第四电磁阀405A和第五电磁阀405B关闭。
例如,冷媒回收停止条件包括以下一项或多项:在多联机空调系统100运行第二冷媒回收模式的时长达到预设时长,或者,进入压缩机201的冷媒的压力位于预设压力范围内。
需要说明的是,上述预设压力范围根据室外环境的大气压力确定。上述进入压缩机201的冷媒的压力通过第一室外压力传感器209检测得到。
可以理解的是,通过关闭第一电磁阀401、第二电磁阀402、第三电磁阀403、第四电磁阀405A和第五电磁阀405B,可以保证冷媒回收装置400与室外机200的独立性。
在一些实施例中,冷媒回收装置400还包括第六电磁阀406A和第七电磁阀406B,第六电磁阀406A设置在第四电磁阀405A与各个室内机中的室内换热器301的第一端之间。第七电磁阀406B设置在第五电磁阀405B与各个室内机中的室内换热器301的第一端之间。
在多联机空调系统100处于上述的任一工作模式时,第六电磁阀406A和第七电磁阀406B处于开启状态,以保证冷媒能在对应的管路中循环流通。
在一些实施例中,在冷媒回收完成后,控制器600控制第六电磁阀406A和第七电磁阀406B关闭。
在冷媒回收完成后,即在满足冷媒回收停止条件时,通过控制器600控制第四电磁阀405A、第五电磁阀405B、第六电磁阀406A和第七电磁阀406B关闭,使得室内机300中发生冷媒泄漏的室内机与冷媒回收装置400和室外机200之间的管路断开,使得在更换发生冷媒泄漏的室内机的过程中不受冷媒回收装置400和室外机200影响,提高安装或更换室内机的便捷性。
在一些实施例中,冷媒回收装置400还包括第一截止阀407A、第二截止阀407B、第三截止阀408A、第四截止阀408B、第五截止阀409以及第六截止阀410。
第一截止阀407A设置在第四电磁阀405A与第一四通阀202A的S端口之间的管路上。例如,第一截止阀407A的第一端与第一四通阀202A的S端口通过管路连接,第一截止阀407A的第二端与第四电磁阀405A的第一端通过管路连接。
第二截止阀407B设置在第五电磁阀405B与第二四通阀202B的E'端口的连接管路上。 例如,第二截止阀407B的第一端与第二四通阀202B的E'端口通过管路连接,第二截止阀407B的第二端与第五电磁阀405B的第一端通过管路连接。
第三截止阀408A设置在第六电磁阀406A与各个室内机中的室内换热器301的第一端之间的管路上。例如,第三截止阀408A的第一端与第六电磁阀406A的第二端通过管路连接,第三截止阀408A的第二端分别与第一室内机300A的第一室内膨胀阀3022A和第二室内机300B的第一室内膨胀阀3022B通过管路连接。
第四截止阀408B设置在第七电磁阀406B与各个室内机中的室内换热器301的第一端之间的管路上。例如,第四截止阀408B的第一端与第七电磁阀406B的第二端通过管路连接,第四截止阀408B的第二端与第一室内机300A的第二室内膨胀阀3023A和第二室内机300B的第二室内膨胀阀3023B通过管路连接。
第五截止阀409设置在室外换热器203的第二端与第一电磁阀401连接的管路上。例如,第五截止阀409的第一端与室外换热器203的第二端通过管路连接,第五截止阀409的第二端与第一电磁阀401的第一端通过管路连接,第一电磁阀401的第二端与储液罐404的第一开口通过管路连接。
第六截止阀410设置在第三电磁阀403与各个室内机中的室内换热器的第二端连接的管路上。例如,第六截止阀410的第一端与第三电磁阀403的第二端连接,第六截止阀410的第二端与各个室内机中的第三室内膨胀阀3021的第二端连接。
在多联机空调系统100处于上述任一工作模式时,上述的第一截止阀407A、第二截止阀407B、第三截止阀408A、第四截止阀408B、第五截止阀409和第六截止阀410处于开启状态。
在冷媒回收完成后,第一截止阀407A、第二截止阀407B、第三截止阀408A、第四截止阀408B、第五截止阀409和第六截止阀410处于关闭状态,以更好地阻止上述截止阀对应管路中冷媒的流通。
在一些实施例中,如图1所示,室外机200还包括第七截止阀211A、第八截止阀211B以及第九截止阀212。
第七截止阀211A设置在第一截止阀407A与第一四通阀202A的S端口之间的管路上。例如,第七截止阀211A的第一端与第一四通阀202A的第一端连接,第七截止阀211A的第二端与第一截止阀407A的第一端连接。
第八截止阀211B设置在第二截止阀407B与第二四通阀202B的第三端连接的管路上。例如,第八截止阀211B的第一端与第二四通阀202B的E'端口连接,第八截止阀211B的第二端与第二截止阀407B的第一端连接。
第九截止阀212设置在室外换热器203的第二端与第一电磁阀401的第一端的连接管路上。例如,第九截止阀212的第一端与室外换热器203的第二端连接,第九截止阀212的第二端与第五截止阀409的第一端连接。
在多联机空调系统100处于上述的任一工作模式时,控制器600控制第七截止阀211A、第八截止阀211B以及第九截止阀212处于开启状态,以保证冷媒在管路中循环流通。
在冷媒回收完成后,控制器600控制第七截止阀211A、第八截止阀211B以及第九截止阀212关闭,使得室外机200与冷媒回收装置400和室内机300之间的管路相互断开,以便于更换室外机200的过程中不受冷媒回收装置400和室内机300的影响,提高安装或更换室外机200的便捷性。
在一些实施例中,室外机200还包括第八电磁阀213A、第九电磁阀213B以及第十电磁阀214。第八电磁阀213A的第一端与第一四通阀202A的S端口连接,第八电磁阀213A的第二端与第七截止阀211A的第一端连接。第九电磁阀213B的第一端与与第二四通阀202B的E'端口连接,第九电磁阀213B的第二端与第八截止阀211B的第一端连接。第十电磁阀214的第一端与与室外换热器203的第二端连接,第十电磁阀214的第二端与第九截止阀212的第一端连接。
在多联机空调系统100处于上述的任一工作模式时,控制器600控制第八电磁阀213A、第九电磁阀213B和第十电磁阀214处于开启状态,以保证冷媒在管路中循环流通。在冷 媒回收完成后,通过控制器600控制第八电磁阀213A、第九电磁阀213B和第十电磁阀214处于关闭状态,使得室外机200与冷媒回收装置400和室内机300之间的管路相互断开,以便于更换室外机200的过程中不受冷媒回收装置400和室内机300的影响,提高安装或更换室外机200的便捷性。
需要说明的是,多联机空调系统100设置的截止阀数量可以根据实际需求设置。
如图5所示,还可以在室内机300的两端设置三个截止阀,即室内机300还包括第十截止阀313A、第十一截止阀313B和第十二截止阀314。例如,第十截止阀313A设置在室内机300与第一四通阀202A的S端口和第二四通阀202B的S'端口连通的第一管路上。第十一截止阀313B设置在室内机300与第二四通阀202B的E'端口连通的第二管路上。第十二截止阀314设置在室内机300与冷媒回收装置400连接的管路上。在冷媒回收完成后,通过控制第十截止阀313A、第十一截止阀313B和第十二截止阀314关闭,以使室内机300与冷媒回收装置400相互独立,便于更换室内机300中的室内机。
室内机300还包括第十三截止阀308A和第十四截止阀308B,第十三截止阀308A和第十四截止阀308B分别设置在第一室内换热器301B和第二室内换热器301B的第一端的位置处。这样,通过第十三截止阀308A可对第一室内换热器301A与第一室内膨胀阀3022A和第二室内膨胀阀3023A之间的管路进行控制,通过第十四截止阀308B可对第二室内换热器301B与第一室内膨胀阀3022B和第二室内膨胀阀3023B之间的管路进行控制。
下面对上述多联机空调系统100的同步制冷模式、同步制热模式、第一异步制冷制热模式、第二异步制冷制热模式、第一冷媒回收模式以及第二冷媒回收模式分别进行介绍。为了便于理解,在异步制冷制热模式下以第一室内机300A作为制冷运行,将第二室内机300B作为制热运行为例来进行说明。
需要说明的是,如图6至图11所示,在上述的任一工作模式下,第四电磁阀405A、第五电磁阀405B、第六电磁阀406A、第七电磁阀406B、第八电磁阀213A、第九电磁阀213B、第十电磁阀214开启;第一截止阀407A、第二截止阀407B、第三截止阀408A、第四截止阀408B、第五截止阀409、第六截止阀410、第七截止阀211A、第八截止阀211B、第九截止阀212、第十三截止阀308A、第十四截止阀308B开启。
1、同步制冷模式
在多联机空调系统100处于同步制冷模式时,室外换热器203作为冷凝器进行工作,第一室内换热器301A和第二室内换热器301B作为蒸发器进行工作。第一电磁阀401处于关闭状态,第二电磁阀402处于关闭状态,第三电磁阀403处于开启状态。各室内机的第一室内膨胀阀3022以及各室内机的第二室内膨胀阀3023处于开启状态。
以第一室内机300A以及第二室内机300B为需要制冷的室内机为例,对多联机空调系统100的同步制冷模式的运行循环进行说明。
如图6所示,第一四通阀202A的D端口与C端口连接、E端口与S端口连接,第二四通阀202B的D'端口与C'端口连接、E'端口与S'端口连接。第一电磁阀401关闭、第二电磁阀402关闭、第三电磁阀403打开、第四电磁阀405A打开、第五电磁阀405B打开。各室内机的第一室内膨胀阀3022打开,各室内机的第二室内膨胀阀3023打开。
图6所示的多联机空调系统100中的其他膨胀阀(包括室外膨胀阀204、第三室内膨胀阀3021)开启。
如图6所示流经室内机300中的第一室内机300A的冷媒回路为:(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(10)→(12A)→(14A)→(15A)→(16A)→(17A)→(18A)→(19)→(1)以及(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(10)→(13A)→(14B)→(15B)→(16B)→(17B)→(18B)→(19)→(1)。
如图6所示流经室内机300中的第二室内机300B的冷媒回路为:(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(11)→(12B)→(14A)→(15A)→(16A)→(17A)→(18A)→(19)→(1)以及(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(11)→(13B)→(14B)→(15B)→(16B)→(17B) →(18B)→(19)→(1)。
需要说明的是,(14B)→(15B)→(16B)→(17B)和(14A)→(15A)→(16A)→(17A)只是一个示例,本公开所示的该(14B)→(15B)→(16B)→(17B)可以用一个管路或多个管路替换,例如用管路(16B)替换,即其管路上只有第四电磁阀405A,或第四电磁阀405A和第一截止阀407A,本公开对此不做限定。
在同步制冷模式下,压缩机201排出的高温高压气态冷媒先流向室外换热器203,再流向第一室内换热器301A和第二室内换热器301B,经由第一管路和第二管路回到压缩机201内。
例如,压缩机201排出的高温高压气态冷媒进入油分离器206,进入油分离器206的冷媒被分成两部分。一部分通过回油毛细管207进入气液分离器205的第二端口G2。另一部分通过油分离器206出来的高温高压气态冷媒经过单向阀208和第一四通阀202A进入室外换热器203。该高温高压的气态冷媒在室外换热器203冷凝为中温高压的液态冷媒。
经过室外换热器203冷凝成的中温高压的液态冷媒依次经过冷媒回收装置400的第三电磁阀403后,分流成两部分,一部分流入第一室内机300A的第三室内膨胀阀3021A形成低温低压的液态冷媒后,低温低压的液态冷媒再流入第一室内换热器301A,经第一室内换热器301A蒸发成低温低压的气态冷媒。另一部分流入第二室内机300B的第三室内膨胀阀3021B形成低温低压的液态冷媒后,低温低压的液态冷媒再流入第二室内换热器301B,经第二室内换热器301B蒸发成低温低压的气态冷媒。
经过第一室内换热器301A、第二室内换热器301B蒸发后的低温低压气态冷媒分流后再汇合。例如,经第一室内换热器301A蒸发后的低温低压气态冷媒分流至第一室内膨胀阀3022A和第二室内膨胀阀3023A。经第二室内换热器301B蒸发后的低温低压气态冷媒分流至第一室内膨胀阀3022B和第二室内膨胀阀3023B。
之后,经过第一室内膨胀阀3022A流出的低温低压冷媒与经过第一室内膨胀阀3022B流出的低温低压冷媒汇合后流经第一管路,该汇合后的冷媒为第一冷媒。经过第二室内膨胀阀3023A流出的低温低压冷媒和经过第二室内膨胀阀3023B流出的低温低压冷媒汇合后流经第二管路,该汇合后的冷媒为第二冷媒。第一冷媒经过第四电磁阀405A后,与依次经过第五电磁阀405B和第二四通阀202B的第二冷媒再次汇合,一并进入气液分离器205的第二端口G2,再从气液分离器205的第一端口G1流出。该低温低压的气态冷媒进入压缩机201的进气口B2,再次经压缩机201压缩成高温高压的气态冷媒,从压缩机201的排气口B1排出,至此完成了多联机空调系统100的同步制冷运行的描述。
2、同步制热模式
在多联机空调系统100处于同步制热模式时,室外换热器203作为蒸发器进行工作,第一室内换热器301A和第二室内换热器301B作为冷凝器进行工作。第一电磁阀401处于关闭状态,第二电磁阀402处于关闭状态,第三电磁阀403处于开启状态。各室内机的第一室内膨胀阀3022处于关闭状态,各室内机第二室内膨胀阀3023处于开启状态。
以第一室内机300A以及第二室内机300B为需要制热的室内机为例,对多联机空调系统100的同步制热模式的运行循环进行说明。
如图7所示,第一四通阀202A的S端口与C端口连接、E端口与D端口连接,第二四通阀202B的S'端口与C'端口连接、E'端口与D'端口连接。第一电磁阀401关闭,第二电磁阀402关闭,第三电磁阀403打开,第五电磁阀405B打开。各室内机的第一室内膨胀阀3022关闭,各室内机的第二室内膨胀阀3023打开。
图7所示的多联机空调系统100中的其他膨胀阀(包括室外膨胀阀204、第三室内膨胀阀3021)开启。
如图7所示流经室内机300中第一室内机300A的冷媒回路为:(1)→(2)→(18A)→(17A)→(16A)→(15A)→(14A)→(12A)→(10)→(9)→(8)→(7)→(6)→(5)→(4)→(3)→(19)→(1)。
如图7所示流经室内机300中第二室内机300B的冷媒回路为:(1)→(2)→(18A)→(17A)→(16A)→(15A)→(14A)→(12B)→(11)→(9)→(8)→(7)→ (6)→(5)→(4)→(3)→(19)→(1)。
与同步制冷模式相比,在同步制热模式下,通过油分离器206出来的高温高压气态冷媒先流向第一室内换热器301A和第二室内换热器301B,在室内换热器301中冷凝为中温高压的液态冷媒;再进入室外换热器203,经室外换热器203蒸发成为低温低压的气态冷媒,最后回到压缩机201内。
例如,通过油分离器206出来的高温高压气态冷媒依次经过单向阀208、第二四通阀202B和第五电磁阀405B,再分别经过第二室内膨胀阀3023A进入第一室内换热器301A,以及第二室内膨胀阀3023B进入第二室内换热器301B。第一室内换热器301A和第二室内换热器301B分别对进入的高温高压气态冷媒进行冷凝,冷凝成中温高压的液态冷媒。该中温高压的液态冷媒分别经过第三室内膨胀阀3021A和第三室内膨胀阀3021B后汇合。
汇合后的冷媒依次经过第三电磁阀403和室外膨胀阀204后节流形成低温低压的液态冷媒。该低温低压的液态冷媒经过室外换热器203蒸发成为低温低压的气态冷媒,该低温低压的气态冷媒经由气液分离器205回到压缩机201,至此完成了空调系统的同步制热模式运行的描述。
3、第一异步制冷制热模式
在多联机空调系统100处于第一异步制冷制热模式时,室外换热器203作为冷凝器进行工作,第一室内机300A的第一室内换热器301A作为蒸发器进行工作,第二室内机300B的第二室内换热器301B作为冷凝器进行工作。第一室内膨胀阀3022A处于开启状态,第二室内膨胀阀3023A处于关闭状态。第二室内膨胀阀3023B处于开启状态,第一室内膨胀阀3022B处于关闭状态。第一电磁阀401处于关闭状态,第二电磁阀402处于关闭状态,第三电磁阀403处于开启状态。
以第一室内机300A为需要制冷的室内机,第二室内机300B为需要制热的室内机为例,对多联机空调系统100的第一异步制冷制热模式的运行循环进行说明。
如图8所示,第一四通阀202A的D端口与C端口连接、E端口与S端口连接,且第二四通阀202B的D'端口与E'端口连接、C'端口与S'端口连接。第一电磁阀401关闭、第二电磁阀402关闭,第三电磁阀403打开。第四电磁阀405A以及第五电磁阀405B打开,第一室内机300A的第一室内膨胀阀3022A和第二室内机300B的第二室内膨胀阀3023B打开,第一室内机300A的第二室内膨胀阀3023A和第二室内机300B的第一室内膨胀阀3022B关闭。
图8所示的多联机空调系统100中的其他膨胀阀(包括室外膨胀阀204、第三室内膨胀阀3021)开启。
如图8所示流经室内机300中的第一室内机300A的冷媒回路为:(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(10)→(13A)→(14B)→(15B)→(16B)→(17B)→(18B)→(19)→(1)以及(1)→(2)→(18A)→(17A)→(16A)→(15A)→(14A)→(12B)→(11)→(10)→(13A)→(14B)→(15B)→(16B)→(17B)→(18B)→(19)→(1)。
如图8所示流经室内机300中的第二室内机300B的冷媒回路为:(1)→(2)→(18A)→(17A)→(16A)→(15A)→(14A)→(12B)→(11)→(10)→(13A)→(14B)→(15B)→(16B)→(17B)→(18B)→(19)→(1)。
在第一异步制冷制热模式下,通过油分离器206出来的高温高压气态冷媒流向室外换热器203和第二室内换热器301B,在室内换热器301和第二室内换热器301B中冷凝为中温高压的液态冷媒;再进入第一室内换热器301B,经室外换热器203蒸发成为低温低压的气态冷媒,最后回到压缩机201内。
例如,通过油分离器206出来的高温高压气态冷媒经过单向阀208后被分成两部分。一部分冷媒通过第一四通阀202A进入室外换热器203,高温高压气态的气态冷媒被室外换热器203冷凝为中温高压的液态冷媒,中温高压的液态冷媒依次经过室外膨胀阀204和冷媒回收装置400的第三电磁阀403流出。
经过单向阀208后的另外一部分冷媒经过第二四通阀202B流出,流出的高温高压的 气态冷媒依次经过第五电磁阀405B和第二室内机300B的第二室内膨胀阀3023B进入第二室内换热器301B,被第二室内换热器301B冷凝为中温高压的液态冷媒,再经过第三室内膨胀阀3021B流出。
上述经第三室内膨胀阀3021B流出的冷媒与上述冷媒回收装置400的第三电磁阀403流出冷媒汇合,汇合后的冷媒经第一室内机300A的第三室内膨胀阀3021A进入第一室内换热器301A,并被蒸发成为低温低压的气态冷媒。该低温低压的气态冷媒依次经过第一室内机300A的第一室内膨胀阀3022A和第四电磁阀405A后进入气液分离器205。经气液分离器205回到压缩机201内,即完成第一异步制冷制热模式的描述。
4、第二异步制冷制热模式
在多联机空调系统100处于第二异步制冷制热模式时,室外换热器203作为蒸发器进行工作,第一室内机300A的第一室内换热器301A作为蒸发器进行工作,第二室内机300B的第二室内换热器301B作为冷凝器进行工作。第一室内膨胀阀3022A处于开启状态,第二室内膨胀阀3023A处于关闭状态。第一室内膨胀阀3022B处于关闭状态,第二室内膨胀阀3023A处于开启状态。
以第一室内机300A为需要制冷的室内机,第二室内机300B为需要制热的室内机为例,对多联机空调系统的第二异步制冷制热模式的运行循环进行说明。
如图9所示,第一四通阀202A的D端口与E端口连接、C端口与S端口连接,第二四通阀202B的D'端口与E'端口连接、C'端口与S'端口连接。第一电磁阀401关闭、第二电磁阀402关闭、第三电磁阀403打开、第四电磁阀405A打开、第五电磁阀405B打开,第一室内机300A的第一室内膨胀阀3022A和第二室内机300B的第二室内膨胀阀3023B打开,第一室内机300A的第二室内膨胀阀3023A和第二室内机300B的第一室内膨胀阀3022B关闭。
图9所示的多联机空调系统100中的其他膨胀阀(包括室外膨胀阀204、第三室内膨胀阀3021)。
如图9所示流经室内机300中第一室内机300A的冷媒回路为:(1)→(2)→(18A)→(17A)→(16A)→(15A)→(14A)→(12B)→(11)→(10)→(13A)→(14B)→(15B)→(16B)→(17B)→(18B)→(19)→(1)。
如图9所示流经室内机300中第二室内机300B冷媒回路为:(1)→(2)→(18A)→(17A)→(16A)→(15A)→(14A)→(12B)→(11)→(9)→(8)→(7)→(6)→(5)→(4)→(3)→(19)→(1)以及(1)→(2)→(18A)→(17A)→(16A)→(15A)→(14A)→(12B)→(11)→(10)→(13A)→(14B)→(15B)→(16B)→(17B)→(18B)→(19)→(1)。
在第二异步制冷制热模式下,通过油分离器206出来的高温高压气态冷媒流向第二室内换热器301B,在第二室内换热器301B中冷凝为中温高压的液态冷媒。再分别进入室外换热器203和第一室内换热器301A,经室外换热器203和第一室内换热器301A蒸发成为低温低压的气态冷媒,最后回到压缩机201内。
例如,通过油分离器206出来的高温高压气态冷媒依次经过单向阀208和第二四通阀202B流出,流出的高温高压的气态冷媒依次经过第五电磁阀405B和第二室内机300B的第二室内膨胀阀3023B进入第二室内换热器301B,在第二室内换热器301B中冷凝为中温高压的液态冷媒,经过第三室内膨胀阀3021B流出。
经过第三室内膨胀阀3021B流出的冷媒被分流成两部分,一部分冷媒经过第一室内机300A的第三室内膨胀阀3021A进入第一室内换热器301A中,经第一室内换热器301A蒸发成低温低压的气态冷媒后,经过第四电磁阀405A进入气液分离器205。另一部分冷媒依次经过第三电磁阀403进入室外换热器203中,经室外换热器203蒸发成低温低压的气态冷媒后,经过第一四通阀202A和气液分离器205回到压缩机201中,即完成第二异步制冷制热模式的描述。
5、第一冷媒回收模式
在多联机空调系统100处于第一冷媒回收模式时,室外换热器203作为冷凝器进行工 作,第一室内换热器301A和第二室内换热器301B作为蒸发器进行工作,第一电磁阀401处于开启状态,第二电磁阀402处于关闭状态,第三电磁阀403处于关闭状态,第一室内膨胀阀3022处于开启状态,第二室内膨胀阀2023处于开启状态。并且,发生冷媒泄漏的室内机对应的第三室内膨胀阀关闭,未发生冷媒泄漏的室内机对应的第三室内膨胀阀开启。
以第一室内机300A的冷媒发生泄漏,第二室内机300B的冷媒未发生泄漏为例,对多联机空调系统100的第一冷媒回收模式的运行循环进行说明。
如图10所示,第一四通阀202A的D端口与C端口连接、E端口与S端口连接,第二四通阀202B的D'端口与C'端口连接、E'端口与S'端口连接。第一电磁阀401处于开启状态,第二电磁阀402处于关闭状态,第三电磁阀403处于关闭状态。第四电磁阀405A以及第五电磁阀405B处于开启状态。第一室内膨胀阀3022和第二室内膨胀阀3023处于开启状态。并且,第一室内机300A的第三室内膨胀阀3021A关闭,第二室内机300B的第三室内膨胀阀3021B开启。这样,将发生冷媒泄露的室内机对应的第三室内膨胀阀关闭,有利于阻止冷媒继续进入发生冷媒泄漏的室内机中,从而可以避免发生冷媒泄漏的室内机中的冷媒泄漏至室内环境中,进而保证多联机空调系统100的可靠性。
图10所示的多联机空调系统100中的其他膨胀阀(包括室外膨胀阀204)开启。
如图10所示,流经室内机300中的第二室内机300B冷媒流向为:(8)→(9)→(11)→(12B)→(14A)→(15A)→(16A)→(17A)→(18A)→(19)→(1)→(2)→(3)→(4)→(5)→(6)→(20)以及(8)→(9)→(11)→(13B)→(14B)→(15B)→(16B)→(17B)→(18B)→(19)→(1)→(2)→(3)→(4)→(5)→(6)→(20)。
如图10所示,室外机200的冷媒流向为:(1)→(2)→(3)→(4)→(5)→(6)→(20)。
在第一冷媒回收模式下,多联机空调系统100处于同步制冷模式运行,多联机空调系统100管路中的冷媒经由室外机200和第一电磁阀401回收至储液罐404中。例如,室内机300管路中剩余的冷媒经由未发生泄漏的室内机(如第二室内机300B)回到压缩机201内,再被压缩机201排出。压缩机201排出的冷媒经由室外机200和第一电磁阀401回收至储液罐404中。
例如,通过油分离器206出来的高温高压气态冷媒进入室外换热器203后,被冷凝为中温高压的液态冷媒。该中温高压的液态冷媒依次经过室外膨胀阀204、冷媒回收装置400的第一电磁阀401后,该中温高压的液态冷媒存储在储液罐404中。
管路(8)和管路(9)中的低温低压的液态冷媒流入第二室内机300B的第三室内膨胀阀3021B形成低温低压的液态冷媒后,该低温低压的液态冷媒再流入第二室内换热器301B,经第二室内换热器301B蒸发成低温低压的气态冷媒。该低温低压的气态冷媒分别经过第二管路以及第一管路后,进入气液分离器205,最终回到压缩机201内,至此完成了多联机空调系统100的第一冷媒回收模式的运行的描述。
6、第二冷媒回收模式
在多联机空调系统100处于第二冷媒回收模式时,室外换热器203作为蒸发器进行工作,第一室内换热器301A和第二室内换热器301B作为冷凝器进行工作,第一电磁阀401处于关闭状态,第二电磁阀402处于开启状态,第三电磁阀403处于关闭状态。各室内机的第一室内膨胀阀3022处于关闭状态,各室内机的第二室内膨胀阀3023处于开启状态。
以室外机200发生泄漏为例,对多联机空调系统100的第二冷媒回收模式的运行循环进行说明。
如图11所示,第一四通阀202A的S端口与C端口连接、E端口与D端口连接,第二四通阀202B的S'端口与C'端口连接、E'端口与D'端口连接。第一电磁阀401关闭、第三电磁阀403关闭、第二电磁阀402打开、第五电磁阀405B打开,第一室内膨胀阀3022关闭,第二室内膨胀阀3023打开。
图11所示的多联机空调系统100中的其他膨胀阀(包括室外膨胀阀204、第三室内膨 胀阀3021)。
如图11所示流经室内机300中第一室内机300A的冷媒流向为:(7)→(6)→(5)→(4)→(3)→(19)→(1)→(2)→(18A)→(17A)→(16A)→(15A)→(14A)→(12A)→(10)→(9)→(21)。
如图11所示流经室内机300中第二室内机300B的冷媒回路为:(7)→(6)→(5)→(4)→(3)→(19)→(1)→(2)→(18A)→(17A)→(16A)→(15A)→(14A)→(12B)→(11)→(9)→(21)。
室外机200的冷媒流向:(3)→(19)→(1)。
需要说明的是,在检测到室外机200发生冷媒泄漏时,若多联机空调系统100处于同步制热模式,则保持同步制热模式运行不变。若多联机空调系统100处于同步制冷模式、第一异步制冷制热模式和第二异步制冷制热模式之一,则将多联机空调系统100切换为同步制热模式运行。
在第二冷媒回收模式下,多联机空调系统100处于同步制热模式运行,多联机空调系统100管路中的冷媒经由室内机300和第二电磁阀402回收至储液罐404中。例如,室外机200的管路中剩余的冷媒经室外换热器203和第一电磁阀401进入压缩机201,再由压缩机201排出。压缩机201排出的冷媒经过第一室内换热器301A、第二室内换热器301B以及第二电磁阀402回收至储液罐404中。
例如,通过油分离器206出来的高温高压气态冷媒经过第二管路进入第一室内换热器301A和第二室内换热器301B,被冷凝成中温高压的液态冷媒。冷凝后的中温高压的液态冷媒分别经过第一室内机300A的第三室内膨胀阀3021A和第二室内机300B的第三室内膨胀阀3021B后汇合。汇合后的冷媒经过第二电磁阀402存储至储液罐404中。
室外机200中的冷媒经过室外换热器203蒸发成低温低压的气态冷媒,该低温低压的气态冷媒进入气液分离器205,回到压缩机201内,至此完成了多联机空调系统100的第二冷媒回收模式的运行的描述。
基于上述六种不同运行模式,多联机空调系统100可以针对不同的场景提供与场景对应的工作模式。例如,在室内环境温度过高,多个室内机需要制冷时,将多联机空调系统100的运行模式切换为同步制冷模式,以降低室内环境温度。在室内环境温度过低,多个室内机需要制热时,将多联机空调系统100的运行模式切换为同步制热模式,以提高室内环境温度。在部分室内机需要制热,部分室内机需要制冷时,将多联机空调系统100的运行模式切换为第一异步制冷制热模式和第二异步制冷制热模式之一,以灵活调节各个室内机的室内环境温度。在需要对室内机泄漏的冷媒进行回收时,可以将多联机空调系统100切换至第一冷媒回收模式,通过冷媒回收装置400对室内机泄漏的冷媒进行回收。在需要对室外机200泄漏的冷媒进行回收时,可以将多联机空调系统100切换至第二冷媒回收模式,通过冷媒回收装置400对室外机200泄漏的冷媒进行回收。
在一些实施例中,如图2所示,多联机空调系统100还可以包括给各个部件供电的电源装置500,电源装置500包括电源501和电源管理芯片502。电源装置500与控制器600耦接,通过电源装置500可实现对多联机空调系统100的功耗管理等功能。
在一些实施例中,控制器600与各室内机中的室内冷媒泄漏检测装置218耦接。控制器600被配置为:获取每个室内冷媒泄漏检测装置218的检测结果,室内冷媒泄漏检测装置218的检测结果用于指示冷媒泄漏检测装置218所在的室内机是否发生冷媒泄漏。根据所获取的室内冷媒泄漏检测装置218的检测结果,确定室内机300中是否存在发生冷媒泄漏的室内机,若存在,则控制器600控制多联机空调系统100运行第一冷媒回收模式。
这样,多联机空调系统100能够通过室内冷媒泄漏检测装置218的检测结果确定室内机300中是否存在发生冷媒泄漏的室内机。在室内机300中有室内机发生冷媒泄漏的情况下,控制器600控制多联机空调系统100切换至第一冷媒回收模式运行,将室内机中泄漏的冷媒回收至冷媒回收装置400中。一方面,避免室内机的冷媒泄漏至室内环境中,提高多联机空调系统100的可靠性。另一方面,通过冷媒回收装置400回收冷媒,大大减少室外机200的冷媒排放至室外环境中冷媒量,提高多联机空调系统100环保性。
在一些实施例中,控制器600还被配置为:在多联机空调系统100运行第一冷媒回收模式时,关闭发生冷媒泄漏的室内机中的第三室内膨胀阀。
在一些实施例中,在多联机空调系统100运行第一冷媒回收模式时,关闭发生冷媒泄漏的室内机中的第三室内膨胀阀,以阻止冷媒继续进入发生冷媒泄漏的室内机中,从而避免发生冷媒泄漏的室内机中冷媒泄漏至室内环境中。
在一些实施例中,在多联机空调系统100运行第一冷媒回收模式时,将室内机300中未发生冷媒泄漏的室内机的第三室内膨胀阀的开度调至第二目标开度值,例如第二目标开度值为最大值,以使发生冷媒泄漏的室内机的第三室内膨胀阀所连通的管路中的冷媒更加快速地经过未发生泄漏的室内机和室外机200回收至冷媒回收装置400,从而提高对室内机泄漏的冷媒的回收速度,保证多联机空调系统100冷媒回收效率。
在一些实施例中,控制器600与室外机200的室外冷媒泄漏检测装置218耦接。控制器600还被配置为:获取室外冷媒泄漏检测装置218的检测结果,室外冷媒泄漏检测装置218的检测结果用于指示室外机200是否发生冷媒泄漏;若室外冷媒泄漏检测装置218的检测结果指示室外机200发生冷媒泄漏,控制多联机空调系统100运行第二冷媒回收模式。
这样,多联机空调系统100能够通过室外冷媒泄漏检测装置218的检测结果确定室外机200是否发生冷媒泄漏。在室外机200发生冷媒泄漏的情况下,控制器600控制多联机空调系统100切换至第二冷媒回收模式运行,将室外机200泄漏的冷媒回收至冷媒回收装置400中,从而通过冷媒回收装置400回收冷媒,大大减少室外机200的冷媒排放至室外环境中冷媒量,提高多联机空调系统环保性。
在一些实施例中,在多联机空调系统100运行第二冷媒回收模式时,控制室外膨胀阀204处于第一目标开度值(即目标开度值),例如,第一目标开度值为最大值。
这样,在多联机空调系统运行第二冷媒回收模式时,控制室外膨胀阀204处于最大开度值,以使室外膨胀阀204所连通的管路中的冷媒更加快速地经过室外机200和室内机回收至冷媒回收装置400,从而提高对室外机200泄漏的冷媒的回收速度,保证多联机空调系统冷媒回收效率。
在一些实施例中,控制器600还被配置为:在多联机空调系统100处于第一冷媒回收模式时,检测是否满足冷媒回收停止条件;若是,则控制器600控制第四电磁阀405A以及第五电磁阀405B关闭;或者,在多联机空调系统100处于第二冷媒回收模式时,检测是否满足冷媒回收停止条件;若是,则控制器600控制第四电磁阀405A以及第五电磁阀405B关闭。
例如,冷媒回收停止条件包括以下一项或者多项:多联机空调系统100运行第一冷媒回收模式或第二冷媒回收模式的时长达到预设时长;或者,进入压缩机201的冷媒的压力位于预设压力范围内。
这样,在多联机空调系统100满足冷媒回收停止条件时,控制第四电磁阀405A和第五电磁阀405B处于关闭状态,以阻止冷媒在对应的管路中循环流通。
另外,通过设定冷媒回收停止条件,能确定出结束冷媒回收的时机,以使多联机空调系统100的管路中的冷媒量处于合理范围时对冷媒进行回收,从而避免多联机空调系统100的管路中无冷媒情况下,依然执行第一冷媒回收模式或第二冷媒回收模式,造成多联机空调系统100异常或损坏,进而提高多联机空调系统100的可靠性和使用寿命。
在一些实施例中,控制器600还被配置为:在多联机空调系统100处于第一冷媒回收模式下和第二冷媒回收模式之一时,若确定满足冷媒回收停止条件,则控制器600控制第六电磁阀406A和第七电磁阀406B关闭。
这样,在冷媒回收完成后,通过控制器600控制第四电磁阀405A和第五电磁阀405B,以及第六电磁阀406A和第七电磁阀406B关闭,使得室内机300中发生冷媒泄漏的室内机与冷媒回收装置400和室外机200连接的管路断开,以便于更换发生冷媒泄漏的室内机过程中不受冷媒回收装置400和室外机200影响,提高安装或更换室内机300的便捷性。
下面描述多联机空调系统100的控制方法。多联机空调系统100的控制方法包括步骤S101至步骤S104。
步骤S101,确定室内机和室外机中冷媒的泄漏情况。
步骤S102,在确定存在发生冷媒泄漏的室内机的情况下,控制多联机空调系统运行第一冷媒回收模式。
步骤S103,在确定室外机200发生冷媒泄漏的情况下,控制多联机空调系统运行第二冷媒回收模式。
步骤S104,在确定室内机300和室外机200中冷媒无泄漏的情况下,多联机空调系统100保持当前运行模式不变。
需要说明的是,原来的运行模式可以是同步制冷模式、同步制热模式、第一异步制冷制热模式、第二异步制冷制热模式或除湿模式等。
在多联机空调系统100处于第一冷媒回收模式时,室外换热器203作为冷凝器进行工作,室内换热器301作为蒸发器进行工作,第一电磁阀401处于开启状态,第二电磁阀402处于关闭状态,第三电磁阀403处于关闭状态。在多联机空调系统100处于第二冷媒回收模式时,室外换热器203作为蒸发器进行工作,室内换热器301作为冷凝器进行工作,第一电磁阀401处于关闭状态,第二电磁阀402处于开启状态,第三电磁阀403处于关闭状态。
在一些实施例中,多联机空调系统100处于第一冷媒回收模式时控制器600的控制方法包括步骤S201至步骤S206。
步骤S201,根据室内冷媒泄漏检测装置304的检测结果确定存在发生冷媒泄漏的室内机。
需要说明的是,该发生冷媒泄漏的室内机可以发出预警信息。预警信息用于指示该室内机发生冷媒泄漏。例如,预警信息可以是语音、文字或灯光等。
步骤S202,判断多联机空调系统100是否处于同步制冷模式。若否,则执行步骤S203;若是,则执行步骤S204。
步骤S203,将多联机空调系统100切换至同步制冷模式运行。之后,再执行步骤S204。
需要说明的是,多联机空调系统100处于同步制冷模式时,各室内机的室内换热器301作为蒸发器运行,室外换热器203作为冷凝器运行。
步骤S204,控制发生冷媒泄漏的室内机对应的第三室内膨胀阀关闭,并且控制第一电磁阀401开启、第二电磁阀402和第三电磁阀403关闭。
步骤S205,当满足冷媒回收停止条件时,控制第四电磁阀405A关闭,并发出第一更换信息。
需要说明的是,该第一更换信息用于提示用户更换发生冷媒泄漏的室内机。
步骤S206,控制多联机空调系统100停止运行。
在一些实施例中,多联机空调系统100处于第二冷媒回收模式的控制方法包括步骤S301至步骤S306。
步骤S301,根据室外冷媒泄漏检测装置218的检测结果确定室外机200发生冷媒泄漏。
需要说明的是,该室外机可以发出预警信息。预警信息用于指示该室外机发生冷媒泄漏。例如,预警信息可以是语音、文字或灯光等。
步骤S302,判断多联机空调系统100是否处于同步制热模式。若否,则执行步骤S303;若是,则执行步骤S304。
步骤S303,将多联机空调系统100切换至同步制热模式运行。之后,再执行步骤S304。
需要说明的是,多联机空调系统100处于同步制热模式时,各室内机的室内换热器301作为冷凝器运行,室外换热器203作为蒸发器运行。
步骤S304,控制第一电磁阀401关闭、第二电磁阀402开启、第三电磁阀403关闭。
步骤S305,当满足冷媒回收停止条件时,控制第四电磁阀405关闭,并发出第二更换信息。
需要说明的是,该第二更换信息用于提示用户更换室外机200。
例如,冷媒回收停止条件包括以下一项或多项:在多联机空调系统100运行第二冷媒回收模式的时长达到预设时长,或者,在进入压缩机的冷媒的压力位于预设压力范围内。
步骤S306,控制多联机空调系统100停止运行。
在一些实施例中,在冷媒泄漏问题被解决后,多联机空调系统100再次进入正常运行模式(如同步制冷模式或同步制热模式等)时,多联机空调系统100将冷媒回收装置400中回收的冷媒从储液罐404释放至多联机空调系统100的第一管路和第二管路中,以对回收的冷媒进行合理利用,节约冷媒资源的消耗,提高多联机空调系统100的环保性。
如图12所示,冷媒回收装置400还包括第一膨胀阀411。储液罐404还具有第三开口4043,储液罐404的第三开口4043通过第一膨胀阀411与第一管路和第二管路连通。另外,为了提高冷媒的释放效率,通常将储液罐404的第三开口4043设置在储液罐404的底部。
在一些实施例中,该多联机空调系统100具有以下工作模式中的一种或者多种:同步制冷模式、同步制热模式、第一异步制冷制热模式、第二异步制冷制热模式、第一冷媒回收模式、第二冷媒回收模式以及冷媒释放模式。
如图13至图18所示,在多联机空调系统100处于同步制冷模式、同步制热模式、第一异步制冷制热模式、第二异步制冷制热模式、第一冷媒回收模式和第二冷媒回收模式之一时,第一膨胀阀411处于关闭状态。多联机空调系统100的冷媒流路与上述不包括第一膨胀阀411的多联机空调系统100的冷媒流路相同,在此不做赘述。下面对冷媒释放模式进行介绍。
7、冷媒释放模式
在多联机空调系统100处于冷媒释放模式时,室外换热器203作为冷凝器进行工作,室内换热器301作为蒸发器进行工作,第一电磁阀401处于关闭状态,第二电磁阀402处于关闭状态,第三电磁阀403处于开启状态,第一膨胀阀411处于开启状态。
例如,以第一室内机300A以及第二室内机300B为需要制冷的室内机为例,对空调系统的冷媒释放模式的运行循环进行说明。
如图19所示,第一四通阀202A的D端口与C端口连接、E端口与S端口连接,第二四通阀202B的D'端口与C'端口连接、E'端口与S'端口连接。第一电磁阀401关闭、第二电磁阀402关闭、第三电磁阀403打开、第四电磁阀405A打开、第五电磁阀405B打开,各室内机的室内膨胀阀302打开,第一膨胀阀411打开。
图19所示的多联机空调系统100中其他电磁阀(包括第六电磁阀406A、第七电磁阀406B、第八电磁阀213A、第九电磁阀213B、第十电磁阀214)、其他膨胀阀(包括室外膨胀阀204、室内膨胀阀302)和截止阀(包括第一截止阀407A、第二截止阀407B、第三截止阀408A、第四截止阀408B、第五截止阀409、第六截止阀410、第七截止阀211A、第八截止阀211B、第九截止阀212、第十三截止阀308A、第十四截止阀308B)开启。
如图19所示流经室内机300中第一室内机300A的冷媒循环回路为:(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(10)→(12A)→(14A)→(15A)→(16A)→(17A)→(18A)→(19)→(1)以及(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(10)→(13A)→(14B)→(15B)→(16B)→(17B)→(18B)→(19)→(1)。
如图19所示流经室内机300中第二室内机300B冷媒循环回路为:(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(11)→(12B)→(14A)→(15A)→(16A)→(17A)→(18A)→(19)→(1)以及(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(11)→(13B)→(14B)→(15B)→(16B)→(17B)→(18B)→(19)→(1)。
如图19所示冷媒释放的冷媒释放流路为:(22)→(23)→(16A)→(17A)→(18A)→(19)→(1)以及(22)→(24)→(16B)→(17B)→(18B)→(19)→(1)。
在冷媒释放模式下,多联机空调系统100以同步制冷模式运行,储液罐404中的冷媒经过第一膨胀阀411释放至第一管路和第二管路中。
例如,汇合后的第一冷媒与储液罐404中经过第一膨胀阀411释放至第一管路的冷媒汇合成第三冷媒,汇合后的第二冷媒与储液罐404中经过第一膨胀阀411释放至第二管路 的冷媒汇合成第四冷媒。
第三冷媒经过第四电磁阀405A后,与依次经过第五电磁阀405B和第二四通阀202B后的第四冷媒再次汇合,形成低温低压的气态冷媒,并经由气液分离器205回到压缩机201内,至此完成了空调系统的冷媒释放模式的描述。
这样,在需要对冷媒回收装置400中回收的冷媒进行利用时,可以将多联机空调系统100调整至冷媒释放模式,将回收的冷媒释放至第一管路和第二管路中,以供多联机空调系统100在制冷运行或制热运行过程中使用该回收的冷媒。
在一些实施例中,多联机空调系统100在冷媒释放模式下的控制方法包括步骤S401至步骤S402。
S401,在完成第一冷媒回收模式或完成第二冷媒回收模式的情况下,若接收到用于指示多联机空调系统100在同步制冷模式下运行的控制信号,则控制多联机空调系统100运行冷媒释放模式。
S402,在完成第一冷媒回收模式或完成第二冷媒回收模式的情况下,若接收到用于指示多联机空调系统在除同步制冷模式之外的其他模式下运行的控制信号,则将多联机空调系统100切换至同步制冷模式后再运行冷媒释放模式。需要说明的是,上述的其他模式包括同步制热模式、第一异步制冷制热模式、第二异步制冷制热模式、除湿模式等。
本公开并不限于冷媒回收装置400包括第一膨胀阀411。如图3、图4、图20和图21所示,在一些实施例中,冷媒回收装置400还包括第二膨胀阀412,以解决在冷媒回收过程中,多联机空调系统100内循环的冷媒量越来越少,且多联机空调系统100的低压越来越接近预设压力范围内(通常是指多联机空调系统100所处环境的大气压力)的情况下,压缩机201的排气温度会越来越高,导致压缩机201的可靠性低的问题。第二膨胀阀412包括以下两种设置方式。
如图4和图21所示,在第一种设置方式中,储液罐还具有第四开口4044,第二膨胀阀412的第一端与储液罐404的第四开口4044连接,第二膨胀阀412的第二端与第三管路和第四管路连通,第三管路为第四电磁阀405A和第六电磁阀406A之间的管路,第四管路为第五电磁阀405B和第七电磁阀406B之间的管路。例如,第三管路为管路(16B),第四管路为管路(16A)。需要说明的是,上述第一种设置方式通常适用于第一冷媒回收模式。
如图3和图20所示,在第二种设置方式中,第二膨胀阀412的第一端与第五管路连通,第二膨胀阀412的第二端与第三管路和第四管路连通,第五管路为第一电磁阀401与储液罐404的第一开口4041之间的管路。需要说明的是,上述第二种设置方式适用于第一冷媒回收模式和第二冷媒回收模式。
在多联机空调系统100处于制冷模式、制热模式、第一异步制冷这热模式、第二异步制冷制热模式和冷媒释放模式之一运行时,第二膨胀阀412处于关闭状态。在多联机空调系统100处于第一冷媒回收模式或第二冷媒回收模式运行时,第二膨胀阀412开启,并且当冷媒回收完成后,第二膨胀阀412关闭。
这样,通过在储液罐404的第四开口4044与第三管路之间、以及在储液罐404的第四开口4044和第四管路之间增加一个第二膨胀阀412,或者,在第五管路与第三管路之间以及在第五管路和第四管路之间增加一个第二膨胀阀412,使得在冷媒回收过程中(第一冷媒回收模式或第二冷媒回收模式下),通过打开该第二膨胀阀412,使一部分冷媒流通至压缩机201,来降低压缩机201的排气温度,以降低压缩机201的温度,从而确保冷媒回收过程中压缩机201的可靠性。
另外,在冷媒回收过程中,进入储液罐404的冷媒可能是气态和液态两相态冷媒,在进入储液罐404的冷媒为两相态冷媒的情况下,由于两相态冷媒的平均密度小,储液罐404储存冷媒的量就会减少,从而影响冷媒回收的效果。因此,在冷媒回收过程中,打开第二膨胀阀412,使气态冷媒流出,以提高冷媒回收的效果。
在一些实施例中,冷媒回收装置400可包括多个第二膨胀阀412,且多个第二膨胀阀412可以分别使用不同的设置方式。
在一些实施例中,如图22所示,冷媒回收装置400还包括第一过冷器413,第一过冷器413包括第一通道416和第二通道417。储液罐404的第三开口4043依次通过第一膨胀阀411、第一过冷器413的第一通道416与第一管路和第二管路连通。第三电磁阀403的第一端通过第一过冷器413的第二通道与室外换热器203的第二端连接。
这样,冷媒回收装置400中回收的冷媒流经过第一过冷器413的第一通道416,多联机空调系统100在运行过程中冷媒流经过第一过冷器413的第二通道417。第二通道417对流经该第二通道417的冷媒进行降温处理,以释放相应的热量。第一通道416利用第二通道417释放的热量对流经第一通道416的回收的冷媒进行加热,使得气态和液态的两相态冷媒中的液态冷媒转换成气态冷媒,减少冷媒回收装置400释放的冷媒中液态冷媒的含量,提高释放的冷媒中气态冷媒的含量,以保证回收的冷媒的使用效率。
另外,在多联机空调系统100处于同步制冷工作模式下对回收的冷媒进行释放过程中,冷媒回收装置400将回收的冷媒释放至室外机200的压缩机201,冷媒回收装置400释放的冷媒中液态冷媒的含量减少,会减少压缩机201回液,提高压缩机201的使用寿命。
在一些实施例中,如图23所示,冷媒回收装置400还包括第一温度传感器420。例如,第一温度传感器420设置在如图23所示的管路(22)上。该第一温度传感器420被配置为检测从第一过冷器413的第一通道416流出的冷媒的温度值。
如图23所示,冷媒回收装置400还包括节流装置414以及第二过冷器415。第二过冷器415包括第三通道418和第四通道419。储液罐404的第三开口4043依次通过节流装置414以及第二过冷器415的第三通道418与第一管路连通。第三电磁阀403的第二端通过第二过冷器415的第四通道419与第三室内膨胀阀2021连接。
这样,冷媒回收装置400中回收的冷媒通过节流装置414节流后,流经过第二过冷器415的第三通道418。多联机空调系统100在运行过程中冷媒流经过第二过冷器415的第四通道419。第四通道419对流经该第四通道419的冷媒进行降温处理,以释放相应的热量。第三通道418利用第四通道419释放的热量对流经第三通道418的冷媒进行加热,使得气态和液态的两相态的冷媒中的液态冷媒转换成气态冷媒,减少冷媒回收装置400释放的冷媒中液态冷媒的含量,提高释放的冷媒中气态冷媒的含量,以保证回收的冷媒的使用效率。
在一些实施例中,如图23所示,冷媒回收装置400还包括第二温度传感器421。例如,第二温度传感器421设置在如图23所示的管路(23)上。该第二温度传感器421被配置为检测从第二过冷器415的第三通道418流出的冷媒的温度值。
在一些实施例中,通过设置第一温度传感器420,可以实现对第一膨胀阀411的开度的控制。例如,多联机空调系统100的控制方法包括步骤S501至步骤S505。
步骤S501,在多联机空调系统100运行冷媒释放模式时,获取第一温度传感器420检测到的第一温度值,以及第一室外压力传感器209检测到的压力值。
步骤S502,根据第一室外压力传感器209检测到的压力值确定第二温度值。该第二温度值为第一室外压力传感器209检测到的压力值对应的饱和温度值。
步骤S503,判断第一温度值与第二温度值之间的差值是否小于第一预设温度值。若否,则执行步骤S504;若是,则执行步骤S505。
步骤S504,控制第一膨胀阀411增大开度。
步骤S505,控制第一膨胀阀411减小开度。
需要说明的是,上述第一预设温度值根据压缩机201的类型以及冷媒类型来确定。
这样,通过比较第一过冷器413的第一通道416流出的冷媒的第一温度值与气液分离器205的第二端口G2处的冷媒的压力值对应的饱和温度(即,第二温度值),得到第一温度值与饱和温度值之间的温度差值。根据该温度差值与第一预设温度值的大小关系对第一膨胀阀411的开度进行控制,以保证第一膨胀阀411打开的开度处于合理范围,从而保证冷媒回收装置400释放的冷媒量处于合理范围。
一方面,避免冷媒回收装置400释放的冷媒量过多,使得整个多联机空调系统100管路中冷媒量太多,而导致多联机空调系统100对冷媒处理不及时。另一方面,避免冷媒回 收装置400释放的冷媒量过少,使得整个多联机空调系统100管路中冷媒量太少,而降低多联机空调系统100的工作效率,如降低制冷速度或制热速度。
在一些实施例中,通过设置第二温度传感器421,能实现对冷媒回收装置400的冷媒释放过程的控制。例如,多联机空调系统100的控制方法包括步骤S601至步骤S605。
步骤S601,在多联机空调系统100运行冷媒释放模式时,获取第二温度传感器检测到的第三温度值,以及第一室外压力传感器209检测到的压力值。
步骤S602,根据第一室外压力传感器检测到的压力值确定第二温度值。该第二温度值为第一室外压力传感器检测到的压力值对应的饱和温度值。
步骤S603,判断第三温度值与第二温度值之间的差值是否小于第二预设温度值。若否,则执行步骤S604;若是,则执行步骤S605。
步骤S604,控制多联机空调系统100停止运行冷媒释放模式。
步骤S605,控制多联机空调系统100继续运行冷媒释放模式。
需要说明的是,上述第二预设温度值根据压缩机201的类型和冷媒类型确定。
这样,通过比较第二过冷器415的第三通道418流出的冷媒的第一温度值与气液分离器入口处的冷媒的压力值对应的饱和温度,即第二温度值,得到第一温度值与饱和温度值之间的温度差值。基于该温度差值与第二预设温度值的大小关系对冷媒回收装置的释放过程进行合理控制,以保证冷媒回收装置400在有充足冷媒的情况下才能释放冷媒,避免冷媒回收装置中无冷媒的情况下,依然执行冷媒释放模式,使得多联机空调系统中冷媒量异常少,从而提高多联机空调系统的工作效率。
本公开一些实施例还提供一种控制器的硬件结构图,如图24所示,控制器600还包括与处理器601连接的存储器602和通信接口603。处理器601、存储器602和通信接口603通过总线604连接。
处理器601具有数据处理功能,存储器602被配置为存储数据,存储器602可以是独立存在,也可以和处理器601集成在一起。存储器602中可以包含计算机程序代码。处理器601用于执行存储器602中存储的计算机程序代码,从而实现本公开实施例提供的控制方法。
通信接口603可以用于与其他设备或通信网络通信(如以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN)等。通信接口603可以是模块、电路、收发器或者任何能够实现通信的装置。
总线604可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。各部件之间可通过总线604进行信息传送。为便于表示,图24中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (21)

  1. 一种空调系统,包括:
    室外机,包括室外冷媒泄漏检测装置,被配置为检测所述室外机是否发生冷媒泄漏;
    室内机,包括室内冷媒泄漏检测装置,被配置为检测所述室内机是否发生冷媒泄漏;
    冷媒回收装置,位于所述室外机和所述室内机之间,被配置为在所述室外机和所述室内机之一发生冷媒泄漏时,回收并存储所述空调系统的冷媒;以及
    控制器,被配置为:
    获取所述室内冷媒泄漏检测装置的检测结果和所述室外冷媒泄漏检测装置的检测结果;
    若所述室内冷媒泄漏检测装置的所述检测结果指示室内机发生冷媒泄漏,则控制所述空调系统运行第一冷媒回收模式;
    若所述室外冷媒泄漏检测装置的所述检测结果指示所述室外机发生冷媒泄漏,则控制所述空调系统运行第二冷媒回收模式;其中,
    在所述第一冷媒回收模式下,所述空调系统运行制冷模式,空调系统中的冷媒流经所述室外机后被回收至所述冷媒回收装置内;
    在所述第二冷媒回收模式下,所述空调系统运行制热模式,空调系统的冷媒流经所述室内机后被回收至所述冷媒回收装置内。
  2. 根据权利要求1所述的空调系统,其中,所述冷媒回收装置还包括储液罐,所述储液罐被配置为存储所述空调系统回收的冷媒。
  3. 根据权利要求2所述的空调系统,其中,所述室外机还包括:
    第一四通阀;
    第二四通阀;
    压缩机,具有进气口和排气口,被配置为向冷媒循环提供动力,所述压缩机的排气口分别与所述第一四通阀和所述第二四通阀连通;以及
    室外换热器,与所述第一四通阀连通;
    所述室内机还包括:
    室内换热器,被配置为与室内空气进行热交换;
    第一室内膨胀阀,所述室内换热器通过所述第一室内膨胀阀与第一管路连通,所述第一管路为所述室内换热器与所述第一四通阀之间的管路,且所述第一管路与所述第二四通阀以及所述压缩机的所述进气口连通;以及
    第二室内膨胀阀,所述室内换热器通过所述第二室内膨胀阀与第二管路连通,所述第二管路为所述室内换热器与所述第二四通阀之间的管路;
    所述冷媒回收装置还包括:
    第一电磁阀,所述储液罐通过所述第一电磁阀与所述室外换热器连接;
    第二电磁阀,所述储液罐通过所述第二电磁阀与所述室内换热器连接;以及
    第三电磁阀,所述第三电磁阀的第一端连通所述室外换热器与所述第一电磁阀之间的管路,所述第三电磁阀的第二端连通所述室内换热器与所述第二电磁阀之间的管路。
  4. 根据权利要求3所述的空调系统,其中,
    在所述空调系统处于所述第一冷媒回收模式时,所述室外换热器作为冷凝器进行工作,所述室内换热器作为蒸发器进行工作,所述第一电磁阀处于开启状态,所述第二电磁阀处于关闭状态,所述第三电磁阀处于关闭状态,所述第一室内膨胀阀处于开启状态,所述第二室内膨胀阀处于开启状态;
    在所述空调系统处于所述第二冷媒回收模式时,所述室外换热器作为蒸发器进行工作,所述室内换热器作为冷凝器进行工作,所述第一电磁阀处于关闭状态,所述第二电磁阀处于开启状态,所述第三电磁阀处于关闭状态,所述第一室内膨胀阀处于关闭状态,所述第二室内膨胀阀处于开启状态。
  5. 根据权利要求4所述的空调系统,其中,所述室内机还包括第三室内膨胀阀;所述第三室内膨胀阀设置在所述第二电磁阀与所述室内换热器之间;
    在所述空调系统处于所述第一冷媒回收模式时,发生冷媒泄漏的室内机中的所述第三 室内膨胀阀关闭。
  6. 根据权利要求4所述的空调系统,其中,所述室外机还包括室外膨胀阀,所述室外膨胀阀设置在所述室外换热器与所述第一电磁阀之间;
    在所述空调系统处于所述第二冷媒回收模式时,所述室外膨胀阀处于目标开度值。
  7. 根据权利要求3至6中任一项所述的空调系统,其中,所述控制器还被配置为:
    在完成所述第一冷媒回收模式和所述第二冷媒回收模式之一的情况下,若所述控制器接收到用于指示空调系统在制冷模式和制热模式之一下运行的控制信号,则控制所述空调系统运行冷媒释放模式;其中,在所述冷媒释放模式下,所述冷媒回收装置中回收的所述冷媒被释放至所述空调系统的管路中。
  8. 根据权利要求7所述的空调系统,其中,所述冷媒回收装置还包括第一膨胀阀,所述储液罐通过所述第一膨胀阀与所述第一管路和所述第二管路连通。
  9. 根据权利要求8所述的空调系统,其中,
    在所述空调系统处于所述冷媒释放模式时,所述室外换热器作为冷凝器进行工作,所述室内换热器作为蒸发器进行工作,所述第一电磁阀处于关闭状态,所述第二电磁阀处于关闭状态,所述第三电磁阀处于开启状态,所述第一膨胀阀处于开启状态,所述储液罐中的冷媒通过所述第一膨胀阀释放至所述空调系统的所述第一管路和所述第二管路中,所述第一室内膨胀阀处于开启状态,所述第二室内膨胀阀处于开启状态。
  10. 根据权利要求9所述的空调系统,其中,所述冷媒回收装置还包括第一过冷器,所述储液罐通过所述第一膨胀阀和所述第一过冷器的第一通道与所述第一管路以及所述第二管路连通;所述第三电磁阀通过所述第一过冷器的第二通道与所述室外换热器连接。
  11. 根据权利要求10所述的空调系统,其中,
    所述冷媒回收装置还包括第一温度传感器,所述第一温度传感器被配置为检测从所述第一过冷器的所述第一通道流出的冷媒的温度值;
    所述室外机还包括:
    气液分离器,位于所述压缩机与所述第一管路之间,且所述气液分离器具有:
    第一端口,与所述压缩机的所述进气口连通;和
    第二端口,与所述第一管路连通;以及
    第一室外压力传感器,位于所述气液分离器的所述第一端口处,且被配置为检测所述气液分离器的所述第一端口处的冷媒的压力值;
    所述控制器还被配置为:
    在所述空调系统运行所述冷媒释放模式时,获取所述第一温度传感器检测到的第一温度值,以及所述第一室外压力传感器检测到的压力值;
    根据所述第一室外压力传感器检测到的所述压力值确定第二温度值,所述第二温度值为所述第一室外压力传感器检测到的所述压力值对应的饱和温度值;
    若确定所述第一温度值与所述第二温度值之间的差值小于第一预设温度值,则所述控制器控制所述第一膨胀阀减小开度;
    若确定所述第一温度值与所述第二温度值之间的差值大于或等于所述第一预设温度值,则所述控制器控制所述第一膨胀阀增大开度。
  12. 根据权利要求11所述的空调系统,其中,所述室内机还包括第三室内膨胀阀;所述第三室内膨胀阀设置在所述第二电磁阀与所述室内换热器之间;
    所述冷媒回收装置还包括节流装置以及第二过冷器;所述储液罐依次通过所述节流装置和所述第二过冷器的第三通道与所述第一管路以及所述第二管路连通;所述第三电磁阀通过所述第二过冷器的第四通道与所述第三室内膨胀阀连接。
  13. 根据权利要求12所述的空调系统,其中,
    所述冷媒回收装置还包括第二温度传感器,所述第二温度传感器被配置为检测从所述第二过冷器的所述第三通道流出的冷媒的温度值;
    所述控制器还被配置为:
    在所述空调系统运行所述冷媒释放模式时,获取所述第二温度传感器检测到的第三温 度值,以及所述第一室外压力传感器检测到的所述压力值;
    根据所述第一室外压力传感器检测到的所述压力值确定所述第二温度值;
    若确定所述第三温度值与所述第二温度值之间的差值大于或等于第二预设温度值,则控制所述空调系统停止运行所述冷媒释放模式;
    若确定所述第三温度值与所述第二温度值之间的差值小于所述第二预设温度值,则控制所述空调系统继续运行所述冷媒释放模式。
  14. 根据权利要求3至13中任一项所述的空调系统,其中,所述冷媒回收装置还包括第四电磁阀和第五电磁阀,所述第四电磁阀设置在所述第一管路上,所述第五电磁阀设置在所述第二管路上。
  15. 根据权利要求14所述的空调系统,其中,
    在所述空调系统处于所述第一冷媒回收模式时,所述第四电磁阀和所述第五电磁阀开启;
    在所述空调系统处于所述第二冷媒回收模式时,所述第四电磁阀和所述第五电磁阀开启。
  16. 根据权利要求14所述的空调系统,其中,
    在所述空调系统处于冷媒释放模式时,所述第四电磁阀和所述第五电磁阀开启。
  17. 根据权利要求15所述的空调系统,其中,所述控制器还被配置为:
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若确定满足冷媒回收停止条件,则控制所述第四电磁阀和所述第五电磁阀关闭;
    其中,所述冷媒回收停止条件包括以下至少之一:
    所述空调系统运行所述第一冷媒回收模式和所述第二冷媒回收模式之一的时长达到预设时长;或者,
    进入所述压缩机的冷媒的压力位于预设压力范围内。
  18. 根据权利要求17所述的空调系统,其中,
    所述冷媒回收装置还包括第六电磁阀和第七电磁阀;所述第六电磁阀设置在所述第四电磁阀与所述第一室内膨胀阀之间;所述第七电磁阀设置在所述第五电磁阀与所述第二室内膨胀阀之间;所述控制器还被配置为:
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若确定满足冷媒回收停止条件,则控制所述第六电磁阀和所述第七电磁阀关闭。
  19. 根据权利要求18所述的空调系统,其中,所述冷媒回收装置还包括第二膨胀阀;所述第二膨胀阀满足以下之一:
    所述第二膨胀阀的第一端连通第三管路,所述第三管路为所述第一电磁阀与所述储液罐之间的管路;所述第二膨胀阀的第二端分别连通所述第四电磁阀与第六电磁阀之间的管路以及所述第五电磁阀与所述第七电磁阀之间的管路;
    或者,
    所述第二膨胀阀的第一端连通所述储液罐;所述第二膨胀阀的第二端分别连通所述第四电磁阀与所述第六电磁阀之间的管路以及所述第五电磁阀与所述第七电磁阀之间的管路;
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,所述第二膨胀阀开启。
  20. 根据权利要求18所述的空调系统,其中,
    在所述空调系统处于冷媒释放模式时,所述第六电磁阀和所述第七电磁阀开启。
  21. 根据权利要求19所述的空调系统,其中,
    在所述空调系统处于冷媒释放模式时,所述第二膨胀阀关闭。
PCT/CN2023/085877 2022-07-19 2023-04-03 空调系统 WO2024016728A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210855318.2 2022-07-19
CN202210847977.1A CN115289553A (zh) 2022-07-19 2022-07-19 一种多联机空调系统
CN202210847977.1 2022-07-19
CN202210855318.2A CN115264620A (zh) 2022-07-19 2022-07-19 一种多联机空调系统

Publications (1)

Publication Number Publication Date
WO2024016728A1 true WO2024016728A1 (zh) 2024-01-25

Family

ID=89616940

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/085877 WO2024016728A1 (zh) 2022-07-19 2023-04-03 空调系统

Country Status (1)

Country Link
WO (1) WO2024016728A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053756A (ja) * 2011-08-31 2013-03-21 Fujitsu General Ltd 冷凍サイクル装置
CN203671764U (zh) * 2013-10-29 2014-06-25 广东美的暖通设备有限公司 多联机系统
CN104566637A (zh) * 2013-10-29 2015-04-29 广东美的暖通设备有限公司 多联机系统及其室内机和室外机的控制方法
CN115264620A (zh) * 2022-07-19 2022-11-01 青岛海信日立空调系统有限公司 一种多联机空调系统
CN115289553A (zh) * 2022-07-19 2022-11-04 青岛海信日立空调系统有限公司 一种多联机空调系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013053756A (ja) * 2011-08-31 2013-03-21 Fujitsu General Ltd 冷凍サイクル装置
CN203671764U (zh) * 2013-10-29 2014-06-25 广东美的暖通设备有限公司 多联机系统
CN104566637A (zh) * 2013-10-29 2015-04-29 广东美的暖通设备有限公司 多联机系统及其室内机和室外机的控制方法
CN115264620A (zh) * 2022-07-19 2022-11-01 青岛海信日立空调系统有限公司 一种多联机空调系统
CN115289553A (zh) * 2022-07-19 2022-11-04 青岛海信日立空调系统有限公司 一种多联机空调系统

Similar Documents

Publication Publication Date Title
CN106642416B (zh) 空调系统、复合冷凝器、空调系统的运行控制方法及装置
EP2940395B1 (en) Air conditioner
US8844302B2 (en) Air-conditioning apparatus
EP2413055B1 (en) Air conditioner
EP2375188B1 (en) Air conditioner
CN208635259U (zh) 一种制冷系统及空调
WO2021228020A1 (zh) 多联式空调系统的控制方法
EP2295896A2 (en) Air conditioner
WO2020192087A1 (zh) 多联机空调及其控制方法
CN104748307A (zh) 空调系统及其控制方法
CN115289553A (zh) 一种多联机空调系统
CN115264620A (zh) 一种多联机空调系统
EP4067778A1 (en) Heat recovery air conditioner hot water system and refrigerant flow control method thereof
EP4023961B1 (en) Oil return control method of multifunctional multi-split system with two four-way valves
US20220205692A1 (en) Oil return control method of multi-functional multi-split system with double four-way valves
KR20100002770A (ko) 멀티형 공기조화기 및 그 제어방법
CN110671799B (zh) 一种空调系统及制冷剂流量控制方法
WO2024016728A1 (zh) 空调系统
CN108050719A (zh) 一种基于温差计算制冷剂泵能力的自然冷却系统及其控制方法
JP2007032857A (ja) 冷凍装置
CN217817534U (zh) 空调机组
WO2023207126A1 (zh) 复叠式热泵系统及其控制方法
US20230013910A1 (en) Multi-split system with partitioned control and selfidentification control method thereof
CN115289605A (zh) 一种多联机空调系统
WO2024016669A1 (zh) 空调系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841801

Country of ref document: EP

Kind code of ref document: A1