WO2024016669A1 - 空调系统 - Google Patents

空调系统 Download PDF

Info

Publication number
WO2024016669A1
WO2024016669A1 PCT/CN2023/078537 CN2023078537W WO2024016669A1 WO 2024016669 A1 WO2024016669 A1 WO 2024016669A1 CN 2023078537 W CN2023078537 W CN 2023078537W WO 2024016669 A1 WO2024016669 A1 WO 2024016669A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
air conditioning
conditioning system
valve
refrigerant recovery
Prior art date
Application number
PCT/CN2023/078537
Other languages
English (en)
French (fr)
Inventor
颜鹏
孙杨
韩飞
郭小惠
Original Assignee
青岛海信日立空调系统有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210847980.3A external-priority patent/CN115289605A/zh
Priority claimed from CN202210851580.XA external-priority patent/CN115264648A/zh
Application filed by 青岛海信日立空调系统有限公司 filed Critical 青岛海信日立空调系统有限公司
Publication of WO2024016669A1 publication Critical patent/WO2024016669A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/10Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/14Heat exchangers specially adapted for separate outdoor units
    • F24F1/16Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/32Responding to malfunctions or emergencies
    • F24F11/36Responding to malfunctions or emergencies to leakage of heat-exchange fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/50Control or safety arrangements characterised by user interfaces or communication
    • F24F11/61Control or safety arrangements characterised by user interfaces or communication using timers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/64Airborne particle content
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/50Air quality properties
    • F24F2110/65Concentration of specific substances or contaminants

Definitions

  • the present disclosure relates to the technical field of home appliances, and in particular, to an air conditioning system.
  • air conditioners are more and more widely used. Moreover, when air conditioning is needed in multiple small areas in the same area, considering the saving of electric energy, a multi-split air conditioning system consisting of one outdoor unit and multiple indoor units is usually used to control the room temperature in multiple areas.
  • an air conditioning system in one aspect, includes an outdoor unit, an indoor unit, a refrigerant recovery device and a controller.
  • the outdoor unit includes an outdoor refrigerant leakage detection device configured to detect whether refrigerant leakage occurs in the outdoor unit.
  • the indoor unit includes an indoor refrigerant leakage detection device configured to detect whether refrigerant leakage occurs in the indoor unit.
  • the refrigerant recovery device is located between the outdoor unit and the indoor unit, and is configured to recover and store the refrigerant of the air conditioning system when a refrigerant leakage occurs in one of the outdoor unit and the indoor unit.
  • the controller is coupled to the outdoor refrigerant leakage detection device and the indoor refrigerant leakage detection device respectively, and is configured to obtain the detection result of the indoor refrigerant leakage detection device.
  • the detection result of the indoor refrigerant leakage detection device it is determined whether there is an indoor unit with refrigerant leakage. If yes, the air conditioning system is controlled to run the first refrigerant recovery mode; if not, the air conditioning system is controlled to maintain the current operating mode unchanged. And, obtain the detection result of the outdoor refrigerant leakage detection device.
  • the detection result of the outdoor refrigerant leakage detection device it is determined whether refrigerant leakage occurs in the outdoor unit.
  • the air conditioning system is controlled to run the second refrigerant recovery mode; if not, the air conditioning system is controlled to maintain the current operating mode unchanged.
  • the refrigerant in the pipeline of the indoor unit flows into the compressor of the outdoor unit, and then is recovered into the refrigerant recovery device through the outdoor unit.
  • the second refrigerant recovery mode the refrigerant in the pipeline of the outdoor unit flows into the compressor, and then is recovered into the refrigerant recovery device through the indoor unit.
  • an air conditioning system in another aspect, includes an outdoor unit, an indoor unit, a refrigerant recovery device and a controller.
  • the outdoor unit includes an outdoor refrigerant leakage detection device configured to detect whether refrigerant leakage occurs in the outdoor unit.
  • the indoor unit includes an indoor refrigerant leakage detection device configured to detect whether refrigerant leakage occurs in the indoor unit.
  • the refrigerant recovery device is located between the outdoor unit and the indoor unit, and is configured to recover and store the refrigerant in the air conditioning system when a refrigerant leak occurs in one of the outdoor unit and the indoor unit.
  • the controller is coupled to the outdoor refrigerant leakage detection device and the indoor refrigerant leakage detection device, and is configured to obtain a detection result of the indoor refrigerant leakage detection device. According to the detection result of the indoor refrigerant leakage detection device, it is determined whether there is an indoor unit with refrigerant leakage. If yes, the air conditioning system is controlled to run the first refrigerant recovery mode; if not, the air conditioning system is controlled to maintain the current operating mode unchanged. Obtain the detection results of the outdoor refrigerant leakage detection device. According to the detection result of the outdoor refrigerant leakage detection device, it is determined whether refrigerant leakage occurs in the outdoor unit.
  • the air conditioning system is controlled to run the second refrigerant recovery mode; if not, the air conditioning system is controlled to maintain the current operating mode unchanged. And, when one of the first refrigerant recovery mode and the second refrigerant recovery mode is completed, if the controller receives a control signal for instructing the air conditioning system to operate in one of the cooling mode and the heating mode. , then the air conditioning system is controlled to operate in the refrigerant release mode. Wherein, in the first refrigerant recovery mode, the refrigerant in the pipeline of the indoor unit enters the compressor of the outdoor unit, and then is recovered into the refrigerant recovery device through the outdoor unit.
  • the refrigerant in the pipeline of the outdoor unit enters the compressor, and then is recovered into the refrigerant recovery device through the indoor unit.
  • the refrigerant release mode the refrigerant recovered in the refrigerant recovery device is released into the pipeline of the air conditioning system.
  • Figure 1 is a structural diagram of an air conditioning system according to some embodiments.
  • Figure 2 is a block diagram of an air conditioning system according to some embodiments.
  • Figure 3 is a schematic diagram of a refrigerant cycle of an air conditioning system (cooling mode) according to some embodiments
  • Figure 4 is a schematic diagram of the refrigerant cycle of another air conditioning system (heating mode) according to some embodiments
  • Figure 5 is a refrigerant cycle schematic diagram of yet another air conditioning system (first refrigerant recovery mode) according to some embodiments;
  • Figure 6 is a schematic diagram of refrigerant circulation of yet another air conditioning system (second refrigerant recovery mode) according to some embodiments;
  • Figure 7 is a structural diagram of another air conditioning system according to some embodiments.
  • Figure 8 is a schematic diagram of the refrigerant cycle of another air conditioning system (cooling mode) according to some embodiments.
  • Figure 9 is a schematic diagram of the refrigerant cycle of another air conditioning system (heating mode) according to some embodiments.
  • Figure 10 is a refrigerant circulation principle diagram of yet another air conditioning system (first refrigerant recovery mode) according to some embodiments;
  • FIG 11 is a refrigerant cycle schematic diagram of yet another air conditioning system (second refrigerant recovery mode) according to some embodiments;
  • Figure 12 is a schematic diagram of the refrigerant cycle of another air conditioning system (refrigerant release mode, refrigeration working condition) according to some embodiments;
  • Figure 13 is a schematic diagram of the refrigerant cycle of another air conditioning system (refrigerant release mode, heating mode) according to some embodiments;
  • Figure 14 is a control flow chart of an air conditioning system according to some embodiments.
  • Figure 15 is a control flow diagram of another air conditioning system according to some embodiments.
  • Figure 16 is a control flow chart of yet another air conditioning system according to some embodiments.
  • Figure 17 is a control flow chart of yet another air conditioning system according to some embodiments.
  • Figure 18 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 19 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 20 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 21 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 22 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 23 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 24 is a structural diagram of yet another air conditioning system according to some embodiments.
  • Figure 25 is a control flow chart of yet another air conditioning system according to some embodiments.
  • Figure 26 is a control flow chart of yet another air conditioning system according to some embodiments.
  • Figure 27 is a hardware structure diagram of a controller according to some embodiments.
  • first and second are used for descriptive purposes only and cannot be understood as indicating or implying relative importance or implicitly indicating the quantity of indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the embodiments of the present disclosure, unless otherwise specified, "plurality" means two or more.
  • connection should be understood in a broad sense.
  • connection can be a fixed connection, a detachable connection, or an integrated connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • coupled indicates that two or more components are in direct physical or electrical contact.
  • coupled or “communicatively coupled” may also refer to two or more components that are not in direct contact with each other but still cooperate or interact with each other.
  • the embodiments disclosed herein are not necessarily limited by the content herein.
  • At least one of A, B and C has the same meaning as “at least one of A, B or C” and includes the following combinations of A, B and C: A only, B only, C only, A and B The combination of A and C, the combination of B and C, and the combination of A, B and C.
  • a and/or B includes the following three combinations: A only, B only, and a combination of A and B.
  • parallel includes absolutely parallel and approximately parallel, and the acceptable deviation range of approximately parallel may be, for example, a deviation within 5°;
  • perpendicular includes absolutely vertical and approximately vertical, and the acceptable deviation range of approximately vertical may also be, for example, Deviation within 5°.
  • equal includes absolute equality and approximate equality, wherein the difference between the two that may be equal within the acceptable deviation range of approximately equal is less than or equal to 5% of either one, for example.
  • heat transfer tubes such as copper tubes or aluminum tubes
  • the heat transfer tube may be corroded, which may cause the problem of refrigerant leakage.
  • a pair of electronic expansion valves are usually added to the inlet and outlet of the indoor unit of the air conditioning system to prevent leaked refrigerant from flowing into the indoor environment.
  • the refrigerant recovery rate is low, and unrecovered refrigerant may be discharged into the outdoor environment, causing environmental pollution problems.
  • some embodiments of the present disclosure provide an air conditioning system, in which a refrigerant recovery device is provided between the outdoor unit and the indoor unit of the air conditioning system.
  • a refrigerant recovery device is provided between the outdoor unit and the indoor unit of the air conditioning system.
  • the direction of the refrigerant flow is controlled to introduce the refrigerant in the air conditioning system into the liquid storage tank of the refrigerant recovery device, thereby improving the recovery rate of the refrigerant, thus avoiding the refrigerant being discharged into the outdoor environment, causing environmental pollution problems, and thereby improving the air conditioning System environmental protection.
  • a multi-split air conditioning system 100 includes an outdoor unit 200 , an indoor unit 300 and a refrigerant recovery device 400 .
  • the indoor unit 300 may include a plurality of indoor units connected in parallel.
  • the indoor unit 300 may include a first indoor unit 300A and a second indoor unit 300B.
  • the outdoor unit 200 includes a compressor 201, a four-way valve 202 (such as a four-way reversing valve), and an outdoor heat exchanger connected in sequence. 203 and outdoor expansion valve 204.
  • the outdoor heat exchanger 203 is located between the compressor 201 and the refrigerant recovery device 400 .
  • the outdoor heat exchanger 203 has a first end and a second end, which are the A1 end and the A2 end respectively.
  • the A1 end of the outdoor heat exchanger 203 is connected to the compressor 201 through the four-way valve 202, and the A2 end of the outdoor heat exchanger 203 is connected to the refrigerant recovery device 400.
  • the outdoor heat exchanger 203 is configured to perform heat exchange between the refrigerant flowing in the heat transfer tubes of the outdoor heat exchanger 203 and outdoor air.
  • the outdoor expansion valve 204 is located between the outdoor heat exchanger 203 and the refrigerant recovery device 400.
  • the outdoor expansion valve 204 is connected to the A2 end of the outdoor heat exchanger 203 through a pipeline.
  • the compressor 201 is installed between the indoor unit 300 and the outdoor heat exchanger 203.
  • the compressor 201 has an air suction port B1 and an exhaust port B2.
  • Compressor 201 is configured to power a refrigerant cycle. Taking the refrigeration cycle as an example, the compressor 201 delivers the compressed refrigerant to the outdoor heat exchanger 203 through the four-way valve 202 .
  • the compressor 201 is a variable-capacity compressor controlled by an inverter.
  • the four-way valve 202 has four ports, namely D port, C port, S port and E port.
  • the D port of the four-way valve 202 is connected to the exhaust port B2 of the compressor 201
  • the C port of the four-way valve 202 is connected to the A1 end of the outdoor heat exchanger 203
  • the S port of the four-way valve 202 is connected to the suction port B1 of the compressor 201.
  • the E port of the four-way valve 202 is connected to the indoor heat exchanger 301 in the indoor unit 300.
  • the four-way valve 202 realizes mutual conversion between the operating modes (such as cooling mode and heating mode) of the multi-split air conditioning system 100 by changing the flow direction of the refrigerant in the system pipeline.
  • the outdoor unit 200 further includes an outdoor fan 215.
  • the outdoor fan 215 is used to generate airflow flowing through the outside of the outdoor heat exchanger 203 to promote the refrigerant flowing in the heat transfer tube of the outdoor heat exchanger 203 to communicate with the outdoor air. Heat exchange of air.
  • the outdoor unit 200 further includes an outdoor fan motor 216 .
  • the outdoor fan motor 216 is coupled with the outdoor fan 215 to drive the outdoor fan 215 to rotate or change the rotation speed of the outdoor fan 215 .
  • the outdoor unit 200 also includes a gas-liquid separator 205, an oil separator 206, an oil return capillary 207, and an outdoor one-way valve 208.
  • the oil separator 206 has a first end, a second end and a third end, which are F1 end, F2 end and F3 end respectively.
  • the F1 end of the oil separator 206 is connected to the exhaust port B2 of the compressor 201 through a pipeline
  • the F2 end of the oil separator 206 is connected to the outdoor check valve 208 through a pipeline
  • the F3 end of the oil separator 206 is connected to the gas outlet.
  • the liquid separator 205 is connected through pipelines.
  • the outdoor check valve 208 is located between the oil separator 206 and the four-way valve 202, and is connected to the F2 end of the oil separator 206 and the D port of the four-way valve 202 respectively through pipelines, so that the F2 end of the oil separator 206 It is in one-way communication with the D port of the four-way valve 202.
  • the gas-liquid separator 205 has a first port G1 and a second port G2.
  • the first port G1 of the gas-liquid separator 205 is connected to the F3 end of the oil separator 206 and the S port of the four-way valve 202 respectively through pipelines, and the second port G2 of the gas-liquid separator 205 is connected to the suction port of the compressor 201 B1 is connected through pipes.
  • the outdoor unit 200 further includes an outdoor refrigerant leakage detection device 218 .
  • the outdoor refrigerant leakage detection device 218 is configured to detect whether refrigerant leakage occurs in the outdoor unit 200 .
  • the outdoor unit 200 further includes a first outdoor pressure sensor 209 and a second outdoor pressure sensor 210.
  • the first outdoor pressure sensor 209 is disposed at the G1 port of the gas-liquid separator 205.
  • the second outdoor pressure sensor 210 is disposed on the pipeline connecting the outdoor one-way valve 208 and the four-way valve 202 for detecting the pressure value of the refrigerant discharged from the compressor 201 .
  • the first outdoor pressure sensor 209 is a low pressure sensor
  • the second outdoor pressure sensor 210 is a high pressure sensor.
  • the outdoor unit 200 also includes a high-pressure pressure switch 217, configured to monitor the pressure of the pipeline in the multi-split air conditioning system 100.
  • a high-pressure pressure switch 217 configured to monitor the pressure of the pipeline in the multi-split air conditioning system 100.
  • Abnormal information is sent to control the multi-split air conditioning system 100 to shut down, thereby ensuring the normal operation of the multi-split air conditioning system 100 .
  • the multi-split air conditioning system also includes a controller 600, which is coupled to the high-pressure pressure switch 217 and the outdoor refrigerant leakage detection device 218.
  • Controller 600 includes processor 601.
  • the processor 601 may include a central processing unit (CPU), a microprocessor, an application specific integrated circuit (ASIC), and may be configured such that when the processor 601 executes storage coupled to the control When the program in the non-transitory computer-readable medium of the controller 600 is executed, the corresponding operations described in the controller 600 are performed.
  • Non-transitory computer-readable storage media may include magnetic storage devices (e.g., hard drives, floppy disks, or tapes), smart cards, or flash memory devices (e.g., erasable programmable read-only memory (EPROM)), cards , stick or keyboard driver).
  • the indoor unit 300 includes an indoor heat exchanger 301, an indoor expansion valve 302, and an indoor fan 303.
  • the indoor heat exchanger 301 and the four-way valve 202 of the outdoor unit 200 are connected through a first pipeline.
  • the first pipeline is (14) ⁇ (15) ⁇ (16) ⁇ (17) ⁇ (18) in Figure 1 .
  • the indoor unit 300 further includes an indoor refrigerant leakage detection device 304 .
  • the indoor refrigerant leakage detection device 304 is configured to detect whether the refrigerant of the corresponding indoor unit leaks.
  • the indoor refrigerant leakage detection device 304 may be an indoor refrigerant leakage detection sensor.
  • the indoor unit 300 further includes an indoor liquid pipe temperature sensor 305 and an indoor return air temperature sensor 306 .
  • the indoor liquid pipe temperature sensor 305 is configured to detect the refrigerant temperature of the indoor unit pipe.
  • the indoor return air temperature sensor 306 is configured to detect the return air temperature of the indoor unit.
  • the first indoor unit 300A includes a first indoor heat exchanger 301A, a first indoor expansion valve 302A, and a first indoor refrigerant leak detection device.
  • the first indoor unit 300A further includes a first indoor liquid pipe temperature sensor, a first indoor return air temperature sensor, and a first indoor fan 303A.
  • the second indoor unit 300B includes a second indoor heat exchanger 301B, a second indoor expansion valve 302B, and a second indoor refrigerant leak detection device.
  • the second indoor unit 300B further includes a second indoor liquid pipe temperature sensor, a second indoor return air temperature sensor, and a second indoor fan 303B.
  • the following describes the functions and settings of each component in the indoor unit 300.
  • the first indoor heat exchanger 301A is configured to perform heat exchange between the refrigerant flowing in the heat transfer tube of the first indoor heat exchanger 301A and the indoor air.
  • the first indoor expansion valve 302A is disposed between the first indoor heat exchanger 301A and the refrigerant recovery device 400, and is configured to expand and decompress the refrigerant flowing through the first indoor expansion valve 302A, and adjust The supply of refrigerant in the pipeline.
  • the first indoor unit 300A may include a plurality of first indoor expansion valves 302A (such as electronic expansion valves).
  • first indoor expansion valves 302A such as electronic expansion valves.
  • the opening degree of the first indoor expansion valve 302A is reduced, the flow path resistance of the refrigerant passing through the first indoor expansion valve 302A increases.
  • the opening degree of the first indoor expansion valve 302A is increased, the flow path resistance of the refrigerant passing through the first indoor expansion valve 302A decreases. In this way, even if the status of other components in the circuit does not change, when the opening of the first indoor expansion valve 302A changes, the refrigerant flow rate flowing to or out of the first indoor heat exchanger 301A will also change.
  • the first indoor fan 303A generates airflow flowing outside the first indoor heat exchanger 301A to promote heat exchange between the refrigerant flowing in the heat transfer tube of the first indoor heat exchanger 301A and the indoor air.
  • the indoor unit 300 further includes an indoor fan motor 307.
  • the indoor fan motor 307 is coupled with the indoor fan 303 to drive or change the rotation speed of the indoor fan.
  • the first indoor unit 300A further includes a first indoor fan motor 307A
  • the second indoor unit 300B further includes a second indoor fan motor 307B.
  • the indoor unit 300 further includes one or more pressure reducers 308.
  • the pressure reducers 308 are configured to reduce the pressure of the refrigerant in the pipeline, and depressurize the high-pressure refrigerant delivered by the condenser and then deliver it to Evaporator.
  • the indoor unit 300 further includes a humidity sensor 309 configured to detect the relative humidity of the indoor air.
  • the indoor unit 300 further includes a dew point meter 310 configured to detect the ambient dew point temperature near the indoor heat exchanger 301 .
  • the indoor unit 300 further includes a display 311.
  • the display 311 is configured to display the control panel of the multi-split air conditioning system 100.
  • the display 311 may display the indoor temperature or the current operating mode of the indoor unit.
  • the user can output control instructions to the multi-split air conditioning system 100 by operating the control panel of the display 311 .
  • the display 311 may also include at least one of a pressure sensor 3111 or a temperature sensor 3112.
  • the display 311 may receive user instructions and transmit them based on user operations, such as pressing keys, gesture recognition, voice recognition, etc. to the multi-online air conditioning system 100 to realize the human-computer interaction function.
  • the display 311 may be a liquid crystal display or an organic light-emitting diode (OLED) display.
  • OLED organic light-emitting diode
  • the indoor unit 300 of the multi-split air conditioning system 100 may also include more indoor units, which will not be described again here.
  • indoor heat exchanger 301 indoor expansion valve 302, indoor fan 303, indoor refrigerant leakage detection device 304, indoor liquid pipe temperature sensor 305, indoor return air temperature sensor 306, indoor fan motor 307, pressure reducer 308 , humidity sensor 309, dew point meter 310 and display 311 are coupled with the controller 600.
  • the refrigerant recovery device 400 includes a first solenoid valve 401 , a second solenoid valve 402 , a third solenoid valve 403 and a liquid storage tank 404 .
  • the liquid storage tank 404 has a first opening 4041 and a second opening 4042.
  • the first opening 4041 of the liquid storage tank 404 is connected to the outdoor expansion valve 204 through the first solenoid valve 401, and the second opening 4042 of the liquid storage tank 404 is connected to the indoor expansion valve 302 through the second solenoid valve 402.
  • the liquid storage tank 404 is used to store the refrigerant recovered by the multi-split air conditioning system 100 in the refrigerant recovery mode (ie, the first refrigerant recovery mode and the second refrigerant recovery mode).
  • the first solenoid valve 401 has a first end and a second end, which are H1 end and H2 end respectively.
  • the H1 end of the first solenoid valve 401 is connected to the outdoor expansion valve 204 through a pipeline, and the H2 end of the first solenoid valve 401 is connected to the first opening 4041 of the liquid storage tank 404 .
  • the second solenoid valve 402 has a first end and a second end, which are respectively the I1 end and the I2 end.
  • the I1 end of the second solenoid valve 402 is connected to the second opening 4042 of the liquid storage tank 404, and the I2 end of the second solenoid valve 402 is connected to the indoor expansion valve 302 in each indoor unit through a pipeline.
  • the third solenoid valve 403 has a first end and a second end, which are J1 end and J2 end respectively.
  • the J1 end of the third solenoid valve 403 is connected to the pipeline between the outdoor expansion valve 204 and the first solenoid valve 401, and the J2 end of the third solenoid valve 403 is connected between the indoor expansion valve 302 and the second solenoid valve 402 in each indoor unit. pipelines between. Therefore, the controller 600 controls the flow direction of the refrigerant in the multi-split air conditioning system 100 by controlling the closing or opening of the first solenoid valve 401, the second solenoid valve 402 and the third solenoid valve 403.
  • the refrigerant recovery device 400 further includes a fourth solenoid valve 405.
  • the fourth solenoid valve 405 is disposed on the pipeline (ie, the first pipeline) between the four-way valve 202 and the indoor heat exchanger 301.
  • the fourth solenoid valve 405 has a first end and a second end, which are K1 end and K2 end respectively.
  • the K1 end of the fourth solenoid valve 405 is connected to the four-way valve 202 through a pipeline, and the K2 end of the fourth solenoid valve 405 is connected to the indoor heat exchanger 301 in each indoor unit through a pipeline.
  • the fourth solenoid valve 405 is configured to control whether the refrigerant can flow through the first pipeline of the four-way valve 202 connecting the indoor unit 300 and the outdoor unit 200 .
  • the above-mentioned multi-split air conditioning system 100 has one or more of the following modes: cooling mode, heating mode, first refrigerant recovery mode, and second refrigerant recovery mode.
  • cooling mode cooling mode
  • heating mode first refrigerant recovery mode
  • second refrigerant recovery mode second refrigerant recovery mode
  • the fourth solenoid valve 405 is in an open state. This ensures that the refrigerant can circulate in the first pipeline.
  • the above modes are introduced below.
  • the outdoor heat exchanger 203 works as a condenser
  • the indoor heat exchanger works as an evaporator
  • the first solenoid valve 401 is in a closed state
  • the second solenoid valve 402 is in a closed state
  • the third solenoid valve 403 is in an open state.
  • the refrigerant circulation in the cooling mode of the multi-split air conditioning system 100 will be described.
  • the D port of the four-way valve 202 is connected to the C port, and the E port is connected to the S port.
  • the first solenoid valve 401 and the second solenoid valve 402 are closed, the third solenoid valve 403 and the fourth solenoid valve 405 are opened, and the expansion valve (including the indoor expansion valve 302 and the outdoor expansion valve 204) is opened.
  • the refrigerant circuit flowing through the first indoor unit 300A in the indoor unit 300 is: (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9 ) ⁇ (10) ⁇ (12) ⁇ (14) ⁇ (15) ⁇ (16) ⁇ (17) ⁇ (18) ⁇ (19) ⁇ (1).
  • the refrigerant circuit flowing through the second indoor unit 300B of the indoor unit 300 is: (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9 ) ⁇ (11) ⁇ (13) ⁇ (14) ⁇ (15) ⁇ (16) ⁇ (17) ⁇ (18) ⁇ (19) ⁇ (1).
  • (14) ⁇ (15) ⁇ (16) ⁇ (17) is just an example, and the (14) ⁇ (15) ⁇ (16) ⁇ (17) shown in some embodiments of the present disclosure can be used One line or multiple line replacements. For example, replace it with the pipeline (16), that is, there is only the fourth solenoid valve 405 on the pipeline.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 201 first flows to the outdoor heat exchanger 203 and then flows to the indoor heat exchanger 301.
  • the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 201 enters the oil separator 206, and the refrigerant entering the oil separator 206 is divided into two parts. Part of it enters the first port G1 of the gas-liquid separator 205 through the oil return capillary 207 .
  • Another part of the high-temperature and high-pressure gaseous refrigerant that passes through the oil separator 206 enters the outdoor heat exchanger 203 through the outdoor one-way valve 208 and the four-way valve 202 .
  • the high-temperature and high-pressure gaseous refrigerant is condensed into a medium-temperature and high-pressure liquid refrigerant in the outdoor heat exchanger 203 .
  • the medium-temperature and high-pressure liquid refrigerant condensed by the outdoor heat exchanger 203 passes through the outdoor expansion valve 204 and the third solenoid valve 403 in sequence and is divided into two parts.
  • One part flows into the first indoor expansion valve 302A of the first indoor unit 300A to form a low-temperature refrigerant.
  • the low-pressure liquid refrigerant flows into the first indoor heat exchanger 301A, and is evaporated into a low-temperature and low-pressure gaseous refrigerant through the first indoor heat exchanger 301A.
  • the low-temperature and low-pressure liquid refrigerant then flows into the second indoor heat exchanger 301B and evaporates into a low-temperature and low-pressure liquid refrigerant through the second indoor heat exchanger 301B. gaseous refrigerant.
  • low-temperature and low-pressure gaseous refrigerant enters the gas-liquid separator 205 .
  • the low-temperature and low-pressure gaseous refrigerant flowing out from the gas-liquid separator 205 enters the suction port B1 of the compressor 201.
  • the low-temperature and low-pressure gaseous refrigerant is compressed by the compressor 201 into a high-temperature and high-pressure gaseous refrigerant, and then passes through the exhaust port B2 of the compressor 201. discharge, and the cooling operation of the multi-split air conditioning system 100 is completed.
  • the outdoor heat exchanger 203 works as an evaporator
  • the indoor heat exchanger 301 works as a condenser
  • the first solenoid valve 401 is in a closed state
  • the second solenoid valve 402 is in a closed state.
  • the third solenoid valve 403 is in the open state.
  • the refrigerant circulation in the heating mode of the multi-split air conditioning system 100 will be described.
  • the S port of the four-way valve 202 is connected to the C port, and the E port is connected to the D port.
  • the first solenoid valve 401 and the second solenoid valve 402 are closed, the third solenoid valve 403 and the fourth solenoid valve 405 are opened, and the expansion valve (including the indoor expansion valve 302 and the outdoor expansion valve 204) is opened.
  • the refrigerant circuit flowing through the first indoor unit 300A in the indoor unit 300 is: (1) ⁇ (2) ⁇ (18) ⁇ (17) ⁇ (16) ⁇ (15) ⁇ (14) ⁇ (12) ⁇ (10 ) ⁇ (9) ⁇ (8) ⁇ (7) ⁇ (6) ⁇ (5) ⁇ (4) ⁇ (3) ⁇ (19) ⁇ (1).
  • the refrigerant circuit flowing through the second indoor unit 300B of the indoor unit 300 is: (1) ⁇ (2) ⁇ (18) ⁇ (17) ⁇ (16) ⁇ (15) ⁇ (14) ⁇ (13) ⁇ (11 ) ⁇ (9) ⁇ (8) ⁇ (7) ⁇ (6) ⁇ (5) ⁇ (4) ⁇ (3) ⁇ (19) ⁇ (1).
  • the high-temperature and high-pressure gaseous refrigerant coming out of the oil separator 206 first flows to the indoor heat exchanger 301, where it is condensed into a medium-temperature and high-pressure liquid refrigerant. Then it enters the outdoor heat exchanger 203, evaporates into a low-temperature and low-pressure gaseous refrigerant through the outdoor heat exchanger 203, and finally returns to the compressor 201.
  • the high-temperature and high-pressure gaseous refrigerant coming out of the oil separator 206 passes through the outdoor one-way valve 208, the four-way valve 202 and the fourth solenoid valve 405 in sequence, and then enters the first indoor heat exchanger 301A and the first indoor heat exchanger 301A of the first indoor unit 300A respectively.
  • the second indoor heat exchanger 301B of the second indoor unit 300B is
  • the first indoor heat exchanger 301A and the second indoor heat exchanger 301B respectively condense the incoming high-temperature and high-pressure gaseous refrigerant into a medium-temperature and high-pressure liquid refrigerant.
  • the condensed medium-temperature and high-pressure liquid refrigerant passes through the first indoor expansion valve 302A and the second indoor expansion valve 302B respectively and then merges.
  • the combined refrigerant passes through the third solenoid valve 403 and the outdoor expansion valve 204 in sequence, it becomes a low-temperature and low-pressure liquid refrigerant.
  • the low-temperature and low-pressure liquid refrigerant evaporates through the outdoor heat exchanger 203 and becomes a low-temperature and low-pressure gaseous refrigerant. Then return to the compressor 201. At this point, the heating mode operation of the multi-split air conditioning system 100 is completed.
  • the outdoor heat exchanger 203 works as a condenser
  • the indoor heat exchanger 301 works as an evaporator
  • the first solenoid valve 401 is in an open state
  • the second solenoid valve 402 In the closed state
  • the third solenoid valve 403 is in the closed state.
  • the multi-split air conditioning system 100 when refrigerant leakage in the indoor unit is detected, if the multi-split air conditioning system 100 is in the heating mode, the multi-split air conditioning system 100 is controlled to switch to the cooling mode operation; if the multi-split air conditioning system 100 is in the cooling mode, Then continue to run in the current mode. Furthermore, the first solenoid valve 401 is controlled to be in an open state, the second solenoid valve 402 is in a closed state, and the third solenoid valve 403 is controlled to be in a closed state.
  • the D port of the four-way valve 202 is connected to the C port, and the E port is connected to the S port.
  • the first indoor expansion valve 302A is closed, the second solenoid valve 402 and the third solenoid valve 403 are closed, the first solenoid valve 401 and the fourth solenoid valve 405 are opened, and the expansion valves (including the second indoor expansion valve 302B and the outdoor expansion valve 204) Turn on.
  • the flow direction of the refrigerant flowing through the outdoor unit 200 is: (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (20).
  • the refrigerant flow direction flowing through the second indoor unit 300B in the indoor unit 300 is: (8) ⁇ (9) ⁇ (11) ⁇ (13) ⁇ (14) ⁇ (15) ⁇ (16) ⁇ (17) ⁇ (18 ) ⁇ (19) ⁇ (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (20).
  • the refrigerant in pipeline (8) and pipeline (9) can flow to the compressor 201 through the second indoor unit 300B (that is, the indoor unit without refrigerant leakage), and be discharged or recovered by the compressor 201 to Refrigerant recovery device 400.
  • the refrigerant passage from the outdoor unit 200 to the indoor unit 300 is disconnected.
  • the refrigerant discharged from the compressor 201 flows through the refrigerant recovery device 400, it is recovered by the refrigerant recovery device 400 and stored in the liquid storage tank 404, and the remaining refrigerant in the pipeline leading to the indoor unit 300 flows through the second indoor unit 300B. Return to the compressor 201.
  • the refrigerant discharged from the compressor 201 is condensed into a medium temperature and high pressure liquid refrigerant through the outdoor heat exchanger 203, and is stored after passing through the outdoor expansion valve 204, the first solenoid valve 401 and the first opening 4041 of the liquid storage tank 404 in sequence. in the liquid storage tank 404.
  • the medium-temperature and high-pressure liquid refrigerant in pipeline (8) and pipeline (9) flows into the second indoor expansion valve of the second indoor unit 300B and becomes low-temperature and low-pressure liquid refrigerant
  • the low-temperature and low-pressure liquid refrigerant then flows into the second indoor unit for heat exchange.
  • 301B evaporates into a low-temperature and low-pressure gaseous refrigerant through the second indoor heat exchanger 301B.
  • the low-temperature and low-pressure gaseous refrigerant enters the four-way valve 202 through the fourth solenoid valve 405, and then returns to the compressor 201. At this point, the operation of the first refrigerant recovery mode of the multi-split air conditioning system 100 is completed.
  • the indoor expansion valve corresponding to the indoor unit with refrigerant leakage is closed, and the opening of the indoor expansion valve corresponding to the indoor unit without refrigerant leakage is opened to the maximum. value.
  • the first indoor expansion valve 302A is closed and the opening of the second indoor expansion valve 302B is opened to the maximum value.
  • the outdoor heat exchanger 203 works as an evaporator
  • the indoor heat exchanger 301 works as a condenser
  • the first solenoid valve 401 is in a closed state
  • the second solenoid valve 402 is in the open state
  • the third solenoid valve 403 is in the closed state.
  • the multi-split air conditioning system 100 when a refrigerant leakage is detected in the outdoor unit 200, if the multi-split air conditioning system 100 is in If the multi-split air conditioning system 100 is in the cooling mode, the multi-split air conditioning system 100 is controlled to switch to the heating mode. And the first solenoid valve 401 is controlled to be in a closed state, the second solenoid valve 402 is in an open state, and the third solenoid valve 403 is in a closed state.
  • the S port of the four-way valve 202 is connected to the C port, and the E port is connected to the D port.
  • the first solenoid valve 401 and the third solenoid valve 403 are closed, the second solenoid valve 402 and the fourth solenoid valve 405 are opened, and the expansion valve (including the indoor expansion valve 302 and the outdoor expansion valve 204) is opened.
  • the refrigerant flow direction flowing through the first indoor unit 300A in the indoor unit 300 is: (1) ⁇ (2) ⁇ (18) ⁇ (17) ⁇ (16) ⁇ (15) ⁇ (14) ⁇ (12) ⁇ (10 ) ⁇ (9) ⁇ (21).
  • the refrigerant flow direction flowing through the second indoor unit 300B in the indoor unit 300 is: (1) ⁇ (2) ⁇ (18) ⁇ (17) ⁇ (16) ⁇ (15) ⁇ (14) ⁇ (13) ⁇ (11 ) ⁇ (9) ⁇ (21).
  • the refrigerant flow direction of the outdoor unit 200 is: (3) ⁇ (19) ⁇ (1).
  • the refrigerant passage from the indoor unit 300 to the outdoor unit 200 is disconnected.
  • the refrigerant discharged from the compressor 201 is recovered by the refrigerant recovery device 400 after passing through the indoor unit 300 and stored in the liquid storage tank 404 .
  • the remaining refrigerant in the pipeline leading to the outdoor unit 200 returns to the compressor 201 .
  • the refrigerant discharged from the compressor 201 is condensed into a medium temperature and high pressure liquid refrigerant through the first indoor heat exchanger 301A and the second indoor heat exchanger 301B, and then merges after passing through the first indoor expansion valve 302A and the second indoor expansion valve 302B.
  • the combined medium-temperature and high-pressure liquid refrigerant is stored in the liquid storage tank 404 after passing through the second solenoid valve 402 and the second opening 4042 of the liquid storage tank 404 .
  • the refrigerant in the outdoor unit 200 evaporates into a low-temperature and low-pressure gaseous refrigerant through the outdoor heat exchanger 203, and then returns to the compressor 201. At this point, the operation of the second refrigerant recovery mode of the multi-split air conditioning system 100 is completed.
  • the multi-split air conditioning system 100 can provide modes corresponding to different scenarios. For example, when cooling is required, the controller 600 switches the operating mode of the multi-split air conditioning system 100 to the cooling mode to reduce the indoor ambient temperature. When heating is required, the controller 600 switches the operating mode of the multi-split air conditioning system 100 to the heating mode to increase the indoor ambient temperature. When it is necessary to recover the refrigerant leaked from the indoor unit, the controller 600 switches the multi-split air conditioning system 100 to the first refrigerant recovery mode, and uses the refrigerant recovery device 400 to recover the refrigerant leaked from the indoor unit.
  • the controller 600 switches the multi-split air conditioning system 100 to the second refrigerant recovery mode, and uses the refrigerant recovery device 400 to recover the refrigerant leaked from the outdoor unit 200 .
  • the refrigerant recovery device 400 further includes a fifth solenoid valve 406 disposed between the fourth solenoid valve 405 and the indoor heat exchanger 301 in each indoor unit.
  • the fifth solenoid valve 406 has a first end and a second end, which are the L1 end and the L2 end respectively.
  • the L1 end of the fifth solenoid valve 406 is connected to the K2 end of the fourth solenoid valve 405 through a pipeline, and the L2 end of the fifth solenoid valve 406 is connected to the indoor heat exchanger 301 in each indoor unit through a pipeline.
  • the fifth solenoid valve 406 is in an open state.
  • the fifth solenoid valve 406 is also configured to control whether the refrigerant can flow through the first pipeline of the four-way valve 202 connecting the indoor unit 300 and the outdoor unit 200 .
  • the refrigerant recovery device 400 releases the recovered refrigerant from the liquid storage tank 404 to the multi-split air conditioner.
  • the recovered refrigerant can be rationally utilized, the consumption of refrigerant resources can be reduced, and the environmental protection of the multi-split air conditioning system 100 can be improved.
  • the refrigerant recovery device 400 further includes a first expansion valve 411 .
  • the liquid storage tank 404 also has a third opening 4043.
  • the third opening 4043 of the liquid storage tank 404 is connected to the first pipeline through the first expansion valve 411.
  • the third opening 4043 of the liquid storage tank 404 is provided at the bottom of the liquid storage tank 404, which can improve the refrigerant release efficiency.
  • the multi-split air conditioning system 100 has at least one or more of the following modes: cooling mode, heating mode, first refrigerant recovery mode, second refrigerant recovery mode, and refrigerant release mode.
  • cooling mode heating mode
  • first refrigerant recovery mode second refrigerant recovery mode
  • refrigerant release mode refrigerant release mode.
  • the refrigerant circulation process in the refrigerant release mode 100 is explained below. It should be noted that in the refrigerant release mode, the fourth solenoid valve and the fifth solenoid valve are in an open state, and the first expansion valve 411 is opened to release the refrigerant in the liquid storage tank 404 .
  • the first solenoid valve 401 When the multi-split air conditioning system 100 is in the refrigerant release mode, the first solenoid valve 401 is in a closed state, the second solenoid valve 402 is in a closed state, the third solenoid valve 403 is in an open state, and the first expansion valve 411 is in an open state.
  • One of the heater 203 and the indoor heat exchanger 301 operates as an evaporator, and the other operates as a condenser.
  • Scenario 1 When the multi-split air conditioning system 100 is in the cooling mode and the recovered refrigerant needs to be released, the outdoor heat exchanger 203 works as a condenser, the indoor heat exchanger 301 works as an evaporator, and the first solenoid valve 401 In the closed state, the second solenoid valve 402 is in the closed state, the third solenoid valve 403 is in the open state, and the first expansion valve 411 is in the open state.
  • Scenario 2 When the multi-split air conditioning system 100 is in the heating mode and the refrigerant recovered by the refrigerant recovery device 400 needs to be released, the outdoor heat exchanger 203 works as an evaporator and the indoor heat exchanger 301 works as a condenser.
  • the first solenoid valve 401 is in a closed state
  • the second solenoid valve 402 is in a closed state
  • the third solenoid valve 403 is in an open state
  • the first expansion valve 411 is in an open state.
  • the D port of the four-way valve 202 is connected to the C port, and the E port is connected to the S port.
  • the first solenoid valve 401 and the second solenoid valve 402 are closed, the third solenoid valve 403, the fourth solenoid valve 405, the fifth solenoid valve and the first expansion valve 411 are opened, and the expansion valves (including the indoor expansion valve 302 and the outdoor expansion valve 204 ) is turned on.
  • the refrigerant circuit flowing through the first indoor unit 300A in the indoor unit 300 is: (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9 ) ⁇ (10) ⁇ (12) ⁇ (14) ⁇ (15) ⁇ (16) ⁇ (17) ⁇ (18) ⁇ (19) ⁇ (1).
  • the refrigerant circuit flowing through the second indoor unit 300B of the indoor unit 300 is: (1) ⁇ (2) ⁇ (3) ⁇ (4) ⁇ (5) ⁇ (6) ⁇ (7) ⁇ (8) ⁇ (9 ) ⁇ (11) ⁇ (13) ⁇ (14) ⁇ (15) ⁇ (16) ⁇ (17) ⁇ (18) ⁇ (19) ⁇ (1).
  • the refrigerant branch flowing through the outdoor unit is: (15) ⁇ (16) ⁇ (17) ⁇ (18) ⁇ (19) ⁇ (1) ⁇ (2) ⁇ (3) ⁇ (4) and (22) ⁇ (17) ⁇ (18) ⁇ (19) ⁇ (1) ⁇ (2) ⁇ (3) ⁇ (4).
  • the liquid refrigerant stored in the liquid storage tank 404 flows out from the third opening 4043 (see FIG. 7 ) and is throttled into low-temperature and low-pressure refrigerant through the first expansion valve 411 .
  • the low-temperature and low-pressure refrigerant merges with the low-temperature and low-pressure gaseous refrigerant flowing out from each indoor unit, it enters the four-way valve 202 through the fourth solenoid valve 405, and then enters the compressor 201.
  • the liquid storage tank of the multi-split air conditioner in the cooling mode is completed. Release of refrigerant in 404.
  • the S port of the four-way valve 202 is connected to the C port, and the E port is connected to the D port.
  • the first solenoid valve 401 and the second solenoid valve 402 are closed, the first expansion valve 411, the third solenoid valve 403, the fourth solenoid valve 405 and the fifth solenoid valve 406 are opened, the expansion valve (including the indoor expansion valve 302 and the outdoor expansion valve 204) is turned on.
  • the refrigerant circuit flowing through the first indoor unit 300A in the indoor unit 300 is (1) ⁇ (2) ⁇ (18) ⁇ (17) ⁇ (16) ⁇ (15) ⁇ (14) ⁇ (12) ⁇ (10) ⁇ (9) ⁇ (8) ⁇ (7) ⁇ (6) ⁇ (5) ⁇ (4) ⁇ (3) ⁇ (19) ⁇ (1) and (22) ⁇ (15) ⁇ (14) ⁇ ( 12) ⁇ (10) ⁇ (9) ⁇ (8) ⁇ (7) ⁇ (6) ⁇ (5) ⁇ (4) ⁇ (3) ⁇ (19) ⁇ (1).
  • the refrigerant circuit flowing through the second indoor unit 300B of the indoor unit 300 is (1) ⁇ (2) ⁇ (18) ⁇ (17) ⁇ (16) ⁇ (15) ⁇ (14) ⁇ (13) ⁇ (11) ⁇ (9) ⁇ (8) ⁇ (7) ⁇ (6) ⁇ (5) ⁇ (4) ⁇ (3) ⁇ (19) ⁇ (1) and (22) ⁇ (15) ⁇ (14) ⁇ ( 13) ⁇ (11) ⁇ (9) ⁇ (8) ⁇ (7) ⁇ (6) ⁇ (5) ⁇ (4) ⁇ (3) ⁇ (19) ⁇ (1).
  • the liquid refrigerant stored in the liquid storage tank 404 flows out from the third opening 4043 and is throttled into low-temperature and low-pressure refrigerant through the first expansion valve 411 .
  • the low-temperature and low-pressure refrigerant merges with the high-temperature and high-pressure gaseous refrigerant that passes through the four-way valve 202 and the fourth solenoid valve 405 in sequence, it then enters the first indoor heat exchanger 301A of the first indoor unit 300A and the second heat exchanger of the second indoor unit 300B respectively. Indoor heat exchanger 301B.
  • the release of the refrigerant in the liquid storage tank 404 of the multi-split air conditioning system in the heating mode is completed.
  • the refrigerant flow direction in the refrigerant release mode can also be adjusted in combination with other application scenarios, such as changing the cooling mode and heating mode in the above scenario one and two to other modes (such as dehumidification mode, drying mode wait).
  • the refrigerant release mode is first turned on to completely release the refrigerant in the refrigerant recovery device 400, and then other modes (such as cooling mode, heating mode, dehumidification mode and drying mode).
  • the operating mode of the multi-split air conditioning system 100 can be adjusted to the refrigerant release mode, and the recovered refrigerant can be released into the first pipeline for supply.
  • the multi-split air conditioning system 100 uses the recovered refrigerant during cooling mode or heating mode operation.
  • the multi-split air conditioning system 100 also includes a power supply device 500 that supplies power to various components, such as a battery 501 and a power management chip 502 .
  • the battery 501 can be coupled to the controller 600 through the power management chip 502, so that the power consumption management function of the multi-split air conditioning system 100 is implemented through the power supply device 500.
  • the controller 600 is coupled to the indoor refrigerant leakage detection device 304 .
  • the controller 600 is configured to: obtain the detection result of the indoor refrigerant leakage detection device 304, and the detection result of the indoor refrigerant leakage detection device 304 is used to indicate whether refrigerant leakage occurs in the indoor unit where the indoor refrigerant leakage detection device 304 is located.
  • the controller 600 determines whether there is an indoor unit with refrigerant leakage in the indoor unit 300 based on the detection result of the indoor refrigerant leakage detection device 304 .
  • the controller 600 controls the multi-split air conditioning system 100 to switch to the first refrigerant recovery mode to recover the refrigerant in the indoor unit 300 to the refrigerant recovery device 400 .
  • the controller 600 is further configured to: when the multi-split air conditioning system 100 is running the first refrigerant recovery mode, close the indoor expansion valve in the indoor unit where the refrigerant leakage occurs, so as to prevent the refrigerant from continuing to enter the indoor unit where the refrigerant leakage occurs. In the indoor unit, the refrigerant in the indoor unit where refrigerant leakage occurs is prevented from leaking into the indoor environment, thereby ensuring the reliability of the multi-split air conditioning system 100.
  • the opening of the indoor expansion valve of the indoor unit where refrigerant leakage does not occur in the indoor unit 300 is adjusted to the maximum value to prevent refrigerant leakage from occurring.
  • the refrigerant in the pipeline connected to the indoor expansion valve of the indoor unit passes through the indoor unit 300 and the outdoor unit 200 more quickly, and is finally recovered to the refrigerant recovery device 400, thereby increasing the recovery speed of the refrigerant leaking from the indoor unit and ensuring that the multi-line system Refrigerant recovery efficiency of the air conditioning system 100.
  • the controller 600 is coupled to the outdoor refrigerant leak detection device 218 of the outdoor unit 200 .
  • the controller 600 is further configured to obtain a detection result of the outdoor refrigerant leakage detection device 218 , and the detection result of the outdoor refrigerant leakage detection device 218 is used to indicate whether refrigerant leakage occurs in the outdoor unit 200 .
  • the controller 600 determines whether refrigerant leakage occurs in the outdoor unit 200 based on the detection result of the outdoor refrigerant leakage detection device 218 . If the detection result of the outdoor refrigerant leakage detection device 218 indicates that refrigerant leakage occurs in the outdoor unit 200, the controller 600 controls the multi-split air conditioning system 100 to switch to the second refrigerant recovery mode. Thereby, the refrigerant leaked from the outdoor unit 200 is recovered into the refrigerant recovery device 400 .
  • the controller 600 controls the outdoor expansion valve 204 to be at a preset opening value, for example, the preset opening value is the maximum opening value. In this way, the refrigerant in the pipeline connected to the outdoor expansion valve 204 can be recovered more quickly through the outdoor unit 200 and the indoor unit 300 to the refrigerant recovery device 400, thereby increasing the recovery speed of the refrigerant leaking from the outdoor unit 200 and ensuring multi-connection. Refrigerant recovery efficiency of air conditioning system 100.
  • the controller 600 detects refrigerant leakage from the indoor unit or the outdoor unit 200, the refrigerant is recovered through the refrigerant recovery device 400. On the one hand, it can prevent the refrigerant of the indoor unit from leaking into the indoor environment and improve the reliability of the multi-split air conditioning system 100 . On the other hand, the refrigerant leaked from the outdoor unit 200 can be greatly reduced from being discharged into the outdoor environment. The amount of refrigerant improves the environmental protection of the multi-split air conditioning system 100.
  • the controller 600 is further configured to: when the air conditioning system is in one of the first refrigerant recovery mode and the second refrigerant recovery mode, if the refrigerant recovery stop condition is met, the controller 600 controls the fourth solenoid valve 405 to close .
  • the refrigerant recovery stop condition includes one or more of the following: the multi-split air conditioning system 100 operates one of the first refrigerant recovery mode and the second refrigerant recovery mode for a preset time period, or the pressure of the refrigerant entering the compressor 201 is at a preset time limit. within the pressure range.
  • the above preset pressure range can be determined based on the atmospheric pressure of the outdoor environment.
  • the pressure of the refrigerant in the compressor 201 is detected by the first outdoor pressure sensor 209 provided at the suction port B1 of the compressor 201 as shown in FIG. 1 .
  • the timing to end the refrigerant recovery can be determined, so that the multi-split air conditioning system 100 can recover the refrigerant when there is refrigerant in the pipeline, thereby avoiding the pipes of the multi-split air conditioning system 100.
  • the first refrigerant recovery mode or the second refrigerant recovery mode is still executed, causing the multi-split air conditioning system 100 to be abnormal or damaged, thereby improving the reliability of the multi-split air conditioning system 100 and conducive to extending the life of the multi-split air conditioning system 100. service life.
  • the controller 600 is further configured to: when the multi-split air conditioning system 100 is in one of the first refrigerant recovery mode and the second refrigerant recovery mode, if the refrigerant recovery stop condition is met, the controller 600 controls the fifth electromagnetic Valve 406 is closed.
  • the controller 600 can ensure that the refrigerant recovery device 400 closes by controlling the first solenoid valve 401, the second solenoid valve 402, the third solenoid valve 403, the fourth solenoid valve 405 and the fifth solenoid valve 406. , the independence of the outdoor unit 200 and the indoor unit 300.
  • the pipelines connecting the refrigerant recovery device 400, the indoor unit 300 and the outdoor unit 200 are disconnected, so that the refrigerant recovery device 400 is not affected during the replacement of the indoor unit or outdoor unit 200 that has leaked refrigerant, and prevents The refrigerant recovered in the refrigerant recovery device 400 leaks.
  • the refrigerant recovery device 400 further includes a first stop valve 407 , a second stop valve 408 , a third stop valve 409 and a fourth stop valve 410 .
  • the first stop valve 407 is provided on the pipeline between the four-way valve 202 and the fourth solenoid valve 405 .
  • the first end of the first stop valve 407 is connected to the four-way valve 202 through a pipeline
  • the second end of the first stop valve 407 is connected to the K1 end of the fourth solenoid valve 405 through a pipeline.
  • the second stop valve 408 is provided on the pipeline between the fourth solenoid valve 405 and the indoor heat exchanger 301 .
  • the first end of the second stop valve 408 is connected to the L2 end of the fourth solenoid valve 405 through a pipeline
  • the second end of the second stop valve 408 is connected to the indoor heat exchanger 301 in each indoor unit through a pipeline.
  • the second stop valve 408 is provided on the pipeline between the fifth solenoid valve 406 and the indoor heat exchanger 301.
  • the third stop valve 409 is provided on the pipeline between the outdoor expansion valve 204 and the first solenoid valve 401 .
  • the first end of the third stop valve 409 is connected to the outdoor expansion valve 204 through a pipeline
  • the second end of the third stop valve 409 is connected to the H1 end of the first solenoid valve 401 through a pipeline.
  • the fourth stop valve 410 is provided on the pipeline between the second solenoid valve 402 and the indoor heat exchanger 301 .
  • the first end of the fourth stop valve 410 is connected to the I2 end of the second solenoid valve 402 through a pipeline
  • the second end of the fourth stop valve 410 is connected to the indoor expansion valve 302 in each indoor unit through a pipeline.
  • the first stop valve 407 and the second stop valve 407 When the multi-split air conditioning system 100 is operating in any one of the cooling mode, the heating mode, the first refrigerant recovery mode, the second refrigerant recovery mode, and the refrigerant release mode, the first stop valve 407 and the second stop valve 407 The valve 408, the third stop valve 409 and the fourth stop valve 410 are in an open state. After the operation of the first refrigerant recovery mode or the second refrigerant recovery mode is completed, the first stop valve 407, the second stop valve 408, the third stop valve 409 and the fourth stop valve 410 are in a closed state to further prevent the location of the above stop valves. The circulation of refrigerant in the pipeline.
  • the outdoor unit 200 further includes a fifth stop valve 211 and a sixth stop valve 212 .
  • the fifth stop valve 211 is provided on the pipeline between the four-way valve 202 and the first stop valve 407 .
  • the first end of the fifth stop valve 211 is connected to the four-way valve 202 through a pipeline
  • the second end of the fifth stop valve 211 is connected to the first end of the first stop valve 407 through a pipeline.
  • the sixth stop valve 212 is provided on the pipeline between the outdoor expansion valve 204 and the third stop valve 409 .
  • the sixth The first end of the stop valve 212 is connected to the outdoor expansion valve 204 through a pipeline
  • the second end of the sixth stop valve 212 is connected to the first end of the third stop valve 409 through a pipeline.
  • the fifth stop valve 211 and the sixth stop valve 212 are in an open state.
  • the fifth stop valve 211 and the sixth stop valve 212 are in a closed state to better prevent the flow of refrigerant in the pipeline corresponding to the above stop valve.
  • the indoor unit may further include a seventh stop valve 312 and an eighth stop valve 313 .
  • the seventh stop valve 312 and the eighth stop valve 313 are respectively provided at both ends of the indoor unit 300. That is, one of the seventh stop valve 312 and the eighth stop valve 313 is provided at one end of the indoor unit 300 communicating with the four-way valve 202 , and the other of the seventh stop valve 312 and the eighth stop valve 313 is provided At one end of the indoor unit 300 and the refrigerant recovery device 400 .
  • the eighth stop valve 313 is provided on the pipeline (14), and the seventh stop valve 312 is provided on the pipeline (9).
  • the outdoor unit 200 further includes a sixth solenoid valve 213 and a seventh solenoid valve 214 .
  • the sixth solenoid valve 213 and the seventh solenoid valve 214 are provided on the pipeline connecting the outdoor unit 200 and the refrigerant recovery device 400 .
  • the sixth solenoid valve 213 is provided on the pipeline between the four-way valve 202 and the fifth stop valve 211 .
  • the sixth solenoid valve 213 has a first end and a second end, which are M1 end and M2 end respectively.
  • the M1 end of the sixth solenoid valve 213 is connected to the four-way valve 202 through a pipeline, and the M2 end of the sixth solenoid valve 213 is connected to the first end of the fifth stop valve 211 through a pipeline.
  • the seventh solenoid valve 214 is provided on the pipeline between the outdoor expansion valve 204 and the sixth stop valve 212 .
  • the seventh solenoid valve 214 has a first end and a second end, which are N1 end and N2 end respectively.
  • the N1 end of the seventh solenoid valve 214 is connected to the outdoor expansion valve 204 through a pipeline, and the N2 end of the seventh solenoid valve 214 is connected to the first end of the sixth stop valve 212 through a pipeline.
  • the sixth solenoid valve 213 and the seventh solenoid valve 214 are in an open state.
  • the sixth solenoid valve 213 and the seventh solenoid valve 214 are controlled to close, so that the pipelines between the outdoor unit 200 and the refrigerant recovery device 400 and the indoor unit 300 are disconnected to facilitate the replacement of components of the outdoor unit 200
  • the process is not affected by the refrigerant recovery device 400 and the indoor unit 300, thereby improving the convenience of installing or replacing the outdoor unit 200.
  • control method of the multi-split air conditioning system 100 is described below. Referring to FIG. 14 , the control method of the multi-split air conditioning system 100 includes steps S101 to S104.
  • Step S101 determine the leakage of refrigerant in the indoor unit 300 and the outdoor unit 200.
  • step S102 when it is determined that there is an indoor unit with refrigerant leakage, the controller 600 controls the multi-split air conditioning system 100 to run the first refrigerant recovery mode.
  • step S103 when it is determined that refrigerant leakage occurs in the outdoor unit 200, the controller 600 controls the multi-split air conditioning system 100 to run the second refrigerant recovery mode.
  • Step S104 when it is determined that there is no leakage of refrigerant in the indoor unit 300 and the outdoor unit 200, the controller 600 controls the multi-split air conditioning system 100 to keep the current operating mode unchanged.
  • the current operating mode can be cooling mode, heating mode, dehumidification mode, etc.
  • control method for the multi-split air conditioning system 100 in the first refrigerant recovery mode includes steps S201 to S206.
  • step S201 the controller 600 determines whether there is an indoor unit with refrigerant leakage based on the detection result of the indoor refrigerant leakage detection device 304.
  • the indoor unit that has refrigerant leakage can send out an early warning message.
  • the early warning message is used to indicate that the indoor unit has refrigerant leakage.
  • the warning information can be voice, text or light, etc.
  • Step S202 determine whether the multi-split air conditioning system 100 is in the cooling mode. If not, execute step S203; if yes, execute step S204.
  • step S203 after switching the multi-split air conditioning system 100 to the cooling mode, step S204 is executed.
  • step S204 the controller 600 controls the indoor expansion valve 302 corresponding to the indoor unit where refrigerant leakage occurs to close, the first solenoid valve 401 to open, and the second solenoid valve 402 and the third solenoid valve 403 to close.
  • Step S205 when the refrigerant recovery stop condition is met, the controller 600 controls the fourth solenoid valve 405 to close and sends the first replacement information.
  • the first replacement information is used to prompt the user to replace the indoor unit that has leaked refrigerant.
  • step S206 the controller 600 controls the multi-split air conditioning system 100 to stop running.
  • control method for the multi-split air conditioning system 100 in the second refrigerant recovery mode includes steps S301 to S306.
  • step S301 the controller 600 determines that refrigerant leakage occurs in the outdoor unit 200 based on the detection result of the outdoor refrigerant leakage detection device 218.
  • the outdoor unit 200 can send out early warning information.
  • the early warning message is used to indicate that the outdoor unit has refrigerant leakage.
  • the warning information can be voice, text or light, etc.
  • Step S302 Determine whether the multi-split air conditioning system 100 is in the heating mode. If not, execute step S303; if yes, execute step S304.
  • step S303 after switching the multi-split air conditioning system 100 to the heating mode, step S304 is executed.
  • step S304 the controller 600 controls the first solenoid valve 401 to close, the second solenoid valve 402 to open, and the third solenoid valve 403 to close.
  • Step S305 when the refrigerant recovery stop condition is met, the controller 600 controls the fourth solenoid valve 405 to close and sends the second replacement message.
  • the second replacement information is used to prompt the user to replace the outdoor unit 200 .
  • the refrigerant recovery stop condition includes one or more of the following: when the multi-split air conditioning system 100 operates one of the first refrigerant recovery mode and the second refrigerant recovery mode for a preset time period, or when the refrigerant entering the compressor The pressure is within the preset pressure range.
  • step S306 the controller 600 controls the multi-split air conditioning system 100 to stop running.
  • control method of the multi-split air conditioning system 100 includes step S401 and step S402.
  • Step S401 when the first refrigerant recovery mode or the second refrigerant recovery mode is completed, if a control signal for instructing the multi-split air conditioning system 100 to operate in the cooling mode is received, the controller 600 controls the multi-split air conditioning system. 100 runs the first refrigerant release mode.
  • the outdoor heat exchanger 203 works as a condenser
  • the indoor heat exchanger 301 works as an evaporator
  • the first solenoid valve 401 is in a closed state.
  • the second solenoid valve 402 is in a closed state
  • the third solenoid valve 403 is in an open state
  • the first expansion valve 411 is in an open state.
  • Step S402 When the first refrigerant recovery mode or the second refrigerant recovery mode is completed, if a control signal for instructing the multi-split air conditioning system 100 to operate in the heating mode is received, the controller 600 controls the multi-split air conditioner. System 100 operates in the second refrigerant release mode.
  • the outdoor heat exchanger 203 works as an evaporator
  • the indoor heat exchanger 301 works as a condenser
  • the first solenoid valve 401 is in a closed state.
  • the second solenoid valve 402 is in a closed state
  • the third solenoid valve 403 is in an open state
  • the first expansion valve 411 is in an open state.
  • the refrigerant recovery device 400 further includes a second expansion valve 412 .
  • the reservoir 404 also includes a fourth opening 4044.
  • the fourth opening is located at the top of reservoir 404 .
  • the second expansion valve 412 has the following two arrangements.
  • the first end of the second expansion valve 412 is connected to the fourth opening 4044 of the liquid storage tank 404, the second end of the second expansion valve 412 is connected to the second pipeline, and the second pipeline It is the pipeline between the fourth solenoid valve 405 and the fifth solenoid valve 406.
  • the second pipeline is pipeline (16) as shown in Figure 3.
  • the first end of the second expansion valve 412 is connected to the second end of the fourth solenoid valve 405 through a pipeline
  • the second end of the second expansion valve 412 is connected to the second end of the first solenoid valve 401 through a pipeline. It should be noted that this setting method is suitable for the first refrigerant recovery mode.
  • the first end of the second expansion valve 412 is connected to the third pipeline
  • the second end of the second expansion valve 412 is connected to the second pipeline
  • the third pipeline is the first solenoid valve. 401 and the first opening 4041 of the liquid storage tank 404.
  • the first end of the second expansion valve 412 is connected to the second end of the fourth solenoid valve 405 through a pipeline
  • the second end of the second expansion valve 412 is connected to the fourth opening 4044 of the liquid storage tank 404 through a pipeline. It should be noted that this setting method is applicable to both the first refrigerant recovery mode and the second refrigerant recovery mode.
  • the second expansion valve 412 When the multi-split air conditioning system 100 is operating in one of the cooling mode, heating mode and refrigerant release mode, the second expansion valve 412 is in a closed state. When the multi-split air conditioning system 100 is in the first refrigerant recovery mode and the second refrigerant recovery mode, When operating in formula one, the second expansion valve 412 is opened, and when the refrigerant recovery is completed, the second expansion valve 412 is closed.
  • the amount of refrigerant circulating in the multi-split air conditioning system 100 is getting smaller and smaller, and the low pressure in the pipeline of the multi-split air conditioning system 100 is getting closer and closer to the preset pressure range (usually refers to the pressure range of the multi-split air conditioning system 100).
  • the preset pressure range usually refers to the pressure range of the multi-split air conditioning system 100.
  • the exhaust temperature of the compressor 201 will become higher and higher, which will affect the reliability of the compressor 201.
  • the second expansion valve 412 is opened to allow part of the refrigerant to flow to the compressor 201 to reduce the exhaust temperature of the compressor 201, thereby ensuring the stability of the compressor 201 during the refrigerant recovery process.
  • the refrigerant entering the liquid storage tank 404 may be a gaseous and a liquid two-phase refrigerant.
  • the refrigerant stored in the liquid storage tank 404 is The total mass will be reduced, thus affecting the effect of refrigerant recovery. Therefore, during the refrigerant recovery process, the second expansion valve 412 is opened to allow the gaseous refrigerant to flow out through the second expansion valve 412 to improve the refrigerant recovery effect.
  • the refrigerant recovery device 400 further includes a first subcooler 413 .
  • the first subcooler 413 has a first channel 416 and a second channel 417.
  • the third opening 4043 of the liquid storage tank 404 is connected to the first pipeline through the first expansion valve 411 and the first channel 416 of the first subcooler 413 in sequence.
  • the third solenoid valve 403 is connected to the outdoor expansion valve 204 through the second passage 417 of the first subcooler 413 .
  • the refrigerant recovery device 400 further includes a first temperature sensor 420 .
  • the controller 600 is coupled with the first temperature sensor 420.
  • the first temperature sensor 420 is provided on the pipeline (22).
  • the first temperature sensor 420 is configured to detect the temperature value of the refrigerant flowing out from the first channel 416 of the first subcooler 413 .
  • the refrigerant recovery device 400 further includes a throttling device 414 and a second subcooler 415 .
  • the second subcooler 415 has a third channel 418 and a fourth channel 419.
  • the third opening 4043 of the liquid storage tank 404 is connected to the first pipeline through the throttling device 414 and the third channel 418 of the second subcooler 415 in sequence.
  • the third solenoid valve 403 is connected to the indoor expansion valve 302 through the fourth channel 419 of the second subcooler 415 .
  • the refrigerant recovery device 400 further includes a second temperature sensor 421 .
  • the controller 600 is coupled with the second temperature sensor 421.
  • the second temperature sensor 421 is configured to detect the temperature value of the refrigerant flowing out from the third channel 418 .
  • the second temperature sensor 421 may be disposed at point C.
  • the refrigerant flows Through the second channel 417 of the first subcooler 413.
  • the second channel 417 cools down the flowing refrigerant to release corresponding heat.
  • the first channel 416 uses the heat released by the second channel 417 to heat the recovered refrigerant flowing through the first channel 416, so that the liquid refrigerant in the two-phase refrigerant is converted into gaseous refrigerant during the recovery process, thereby reducing the amount of heat released by the refrigerant recovery device.
  • the content of liquid refrigerant in the two-phase refrigerant increases the content of gaseous refrigerant in the released refrigerant to ensure the use efficiency of the recovered refrigerant.
  • the refrigerant recovery device releases the recovered refrigerant to the outdoor unit 200.
  • Compressor 201 the content of liquid refrigerant in the refrigerant released by the refrigerant recovery device is reduced, which will reduce the liquid return of the compressor and increase the service life of the compressor.
  • the refrigerant recovery device 400 releases the recovered refrigerant to the indoor heat exchanger of the indoor unit, and the gaseous refrigerant in the released recovered refrigerant Increasing the content will increase the amount of refrigerant recycled into the indoor heat exchanger and improve the utilization rate of recycled refrigerant.
  • the opening of the first expansion valve 411 can be controlled.
  • the control method of the multi-connection air conditioning system 100 includes steps S501 to S505.
  • Step S501 when the multi-split air conditioning system 100 operates in the refrigerant release mode, the controller 600 obtains the first temperature value detected by the first temperature sensor and the pressure value detected by the first outdoor pressure sensor 209.
  • step S502 the controller 600 determines the second temperature value according to the pressure value detected by the first outdoor pressure sensor 209.
  • the second temperature value is the saturation temperature value corresponding to the pressure value detected by the first outdoor pressure sensor 209 .
  • Step S503 Determine whether the difference between the first temperature value and the second temperature value is less than the first preset temperature value. If not, Then execute step S504; if yes, execute step S505.
  • step S504 the controller 600 controls the first expansion valve 411 to increase the opening.
  • Step S505 the controller 600 controls the first expansion valve 411 to reduce the opening.
  • the first temperature difference between the first temperature value and the second temperature value is obtained.
  • the opening of the first expansion valve is controlled based on the relationship between the first temperature difference and the first preset temperature value to ensure that the opening of the first expansion valve is within a reasonable range, thereby ensuring the amount of refrigerant released by the refrigerant recovery device. Within a reasonable range.
  • the multi-split air conditioning system 100 in some embodiments of the present disclosure, on the one hand, prevents the refrigerant recovery device 400 from releasing too much refrigerant, causing the entire multi-split air conditioning system 100 to have too much refrigerant in the pipeline, causing the multi-split air conditioning system 100 to The refrigerant is not handled in time. On the other hand, it is avoided that the amount of refrigerant released by the refrigerant recovery device 400 is too small, resulting in too little refrigerant in the pipeline of the entire multi-line air conditioning system 100, thereby reducing the working efficiency of the multi-line air conditioning system 100 (such as reducing the cooling speed or heating). speed).
  • the refrigerant recovered in the refrigerant recovery device 400 is throttled by the throttling device 414 and then flows through the third channel 418 of the second subcooler 415 .
  • the refrigerant flows through the fourth channel 419 of the second subcooler 415.
  • the fourth channel 419 cools the refrigerant flowing through the fourth channel 419 to release corresponding heat.
  • the third channel 418 uses the heat released by the fourth channel 419 to heat the recovered refrigerant flowing through the third channel 418, so that the liquid refrigerant in the recovered two-phase refrigerant is converted into gaseous refrigerant, thereby reducing the liquid refrigerant released by the refrigerant recovery device 400.
  • the content of refrigerant increases the content of gaseous refrigerant in the released refrigerant to ensure the use efficiency of the recovered refrigerant.
  • the refrigerant release process of the refrigerant recovery device 400 can be controlled.
  • the control method of the multi-split air conditioning system 100 includes steps S601 to S605.
  • Step S601 when the multi-split air conditioning system 100 operates in the refrigerant release mode, the controller 600 obtains the third temperature value detected by the second temperature sensor and the pressure value detected by the first outdoor pressure sensor 209.
  • Step S602 Determine the second temperature value according to the pressure value detected by the first outdoor pressure sensor.
  • the second temperature value is the saturation temperature value corresponding to the pressure value detected by the first outdoor pressure sensor.
  • Step S603 Determine whether the difference between the third temperature value and the second temperature value is less than the second preset temperature value. If not, execute step S604; if yes, execute step S605.
  • step S604 the controller 600 controls the multi-split air conditioning system 100 to stop operating the refrigerant release mode.
  • step S605 the controller 600 controls the multi-split air conditioning system 100 to continue operating the refrigerant release mode.
  • first preset temperature value and second preset temperature value are determined according to the refrigerant type and compressor type, and the second preset temperature value is a smaller value.
  • the refrigerant released from the liquid storage tank 404 flows through three points A, B, and C in FIG. 23 .
  • the refrigerant temperatures at points A and B are the same, and the refrigerant temperatures at points B and C will change due to the amount of refrigerant in the liquid storage tank 404 .
  • the refrigerant temperatures at points B and C are approximately equal.
  • the refrigerant temperature at point C is greater than the refrigerant temperature at point B.
  • the second temperature difference between the third temperature value and the second temperature value is obtained. Based on the relationship between the second temperature difference and the second preset temperature value, the release process of the refrigerant recovery device is reasonably controlled to ensure that the refrigerant recovery device 400 can release refrigerant only when there is sufficient refrigerant.
  • controller 600 also includes a memory 602 and a communication interface 603 connected to the processor 601.
  • the processor 601, the memory 602 and the communication interface 603 are connected through a bus 604.
  • the processor 601 has a data processing function, and the memory 602 is configured to store data.
  • the memory 602 may be a random access memory (Random Access Memory, RAM).
  • RAM Random Access Memory
  • memory 602 contains computer program code.
  • the processor 601 is configured to execute the computer program code stored in the memory 602, thereby implementing the embodiments of the present disclosure. provided control methods.
  • the communication interface 603 can be used to communicate with other devices or communication networks (such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN)), etc.
  • the communication interface 603 may be a module, a circuit, a transceiver, or any device capable of communication.
  • the bus 604 may be a Peripheral Component Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus, etc. Information can be transferred between components through bus 604. For ease of presentation, only one thick line is used in Figure 27, but it does not mean that there is only one bus or one type of bus.
  • PCI Peripheral Component Interconnect
  • EISA Extended Industry Standard Architecture
  • Embodiments of the present invention also provide a computer-readable storage medium.
  • the computer-readable storage medium includes computer-executable instructions. When the computer-executed instructions are run on a computer, they cause the computer to execute the method provided in the above embodiments.
  • Embodiments of the present invention also provide a computer program product, which can be directly loaded into a memory and contains software code. After being loaded and executed by a computer, the computer program product can implement the method provided by the above embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Human Computer Interaction (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

提供一种空调系统(100),包括室外机(200)、室内机(300)、冷媒回收装置(400)和控制器(600),室外机(200)包括室外冷媒泄漏检测装置(218),室内机(300)包括室内冷媒泄漏检测装置(304)。冷媒回收装置(400)位于室外机(200)和室内机(300)之间,被配置为在室外机(200)和室内机(300)之一发生冷媒泄漏时,回收并存储空调系统(100)中的冷媒。控制器(600)分别与室外冷媒泄漏检测装置(218)和室内冷媒泄漏检测装置(304)耦接。控制器(600)被配置为确定室内机(300)和室外机(200)是否发生冷媒泄漏;若确定室内机(300)发生冷媒泄漏,则控制空调系统(100)运行第一冷媒回收模式;若确定室外机(200)发生冷媒泄漏,则控制空调系统(100)运行第二冷媒回收模式。

Description

空调系统
本申请要求于2022年7月19日提交的、申请号为202210847980.3的中国专利申请的优先权,于2022年7月19日提交的、申请号为202210851580.X的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及家电技术领域,尤其涉及一种空调系统。
背景技术
随着经济社会的发展,空调被越来越被广泛地使用。并且,当在同一区域中的多个小区域需要使用空调时,考虑到电能的节省,通常采用由一个室外机和多个室内机组成的多联机空调系统实现对多区域室温的调控。
发明内容
一方面,提供一种空调系统。所述空调系统包括室外机、室内机、冷媒回收装置和控制器。所述室外机包括室外冷媒泄漏检测装置,被配置为检测所述室外机是否发生冷媒泄漏。所述室内机包括室内冷媒泄漏检测装置,被配置为检测所述室内机是否发生冷媒泄漏。所述冷媒回收装置位于所述室外机和所述室内机之间,被配置为在所述室外机和所述室内机之一发生冷媒泄漏时,回收并存储所述空调系统的冷媒。所述控制器分别与所述室外冷媒泄漏检测装置和所述室内冷媒泄漏检测装置耦接,被配置为:获取所述室内冷媒泄漏检测装置的检测结果。根据所述室内冷媒泄漏检测装置的所述检测结果,判断是否存在发生冷媒泄漏的室内机。若是,则控制所述空调系统运行第一冷媒回收模式;若否,则控制所述空调系统保持当前的运行模式不变。以及,获取所述室外冷媒泄漏检测装置的检测结果。根据所述室外冷媒泄漏检测装置的所述检测结果,判断所述室外机是否发生冷媒泄漏。若是,则控制所述空调系统运行第二冷媒回收模式;若否,则控制所述空调系统保持当前的运行模式不变。其中,在所述第一冷媒回收模式下,所述室内机的管路中的冷媒流向所述室外机的压缩机内,再经过所述室外机被回收至所述冷媒回收装置内。在所述第二冷媒回收模式下,所述室外机的管路中的冷媒流向所述压缩机内,再经过所述室内机被回收至所述冷媒回收装置内。
另一方面,提供一种空调系统。所述空调系统包括室外机、室内机、冷媒回收装置和控制器。所述室外机包括室外冷媒泄漏检测装置,被配置为检测所述室外机是否发生冷媒泄漏。所述室内机包括室内冷媒泄漏检测装置,被配置为检测所述室内机是否发生冷媒泄漏。所述冷媒回收装置位于所述室外机和所述室内机之间,被配置为在所述室外机和所述室内机之一发生冷媒泄漏时,回收并存储所述空调系统中的冷媒。所述控制器与所述室外冷媒泄漏检测装置和所述室内冷媒泄漏检测装置耦接,被配置为:获取所述室内冷媒泄漏检测装置的检测结果。根据所述室内冷媒泄漏检测装置的所述检测结果,判断是否存在发生冷媒泄漏的室内机。若是,则控制所述空调系统运行第一冷媒回收模式;若否,则控制所述空调系统保持当前的运行模式不变。获取所述室外冷媒泄漏检测装置的检测结果。根据所述室外冷媒泄漏检测装置的所述检测结果,判断所述室外机是否发生冷媒泄漏。若是,则控制所述空调系统运行第二冷媒回收模式;若否,则控制所述空调系统保持当前的运行模式不变。以及,在完成所述第一冷媒回收模式和所述第二冷媒回收模式之一的情况下,若所述控制器接收到用于指示空调系统在制冷模式和制热模式之一下运行的控制信号,则控制所述空调系统运行冷媒释放模式。其中,在所述第一冷媒回收模式下,所述室内机的管路中的冷媒进入所述室外机的压缩机内,再经过所述室外机被回收至所述冷媒回收装置内。在所述第二冷媒回收模式下,所述室外机的管路中的冷媒进入所述压缩机内,再经过所述室内机被回收至所述冷媒回收装置内。在所述冷媒释放模式下,所述冷媒回收装置中回收的所述冷媒被释放至所述空调系统的管路中。
附图说明
为了更清楚地说明本公开中的技术方案,下面将对本公开一些实施例中所需要 使用的附图作简单地介绍,然而,下面描述中的附图仅仅是本公开的一些实施例的附图,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的附图。此外,以下描述中的附图可以视作示意图,并非对本公开实施例所涉及的产品的实际尺寸、方法的实际流程、信号的实际时序等的限制。
图1为根据一些实施例的一种空调系统的结构图;
图2为根据一些实施例的一种空调系统的框图;
图3为根据一些实施例的一种空调系统的冷媒循环原理图(制冷模式);
图4为根据一些实施例的另一种空调系统的冷媒循环原理图(制热模式);
图5为根据一些实施例的又一种空调系统的冷媒循环原理图(第一冷媒回收模式);
图6为根据一些实施例的又一种空调系统的冷媒循环原理图(第二冷媒回收模式);
图7为根据一些实施例的另一种空调系统的结构图;
图8为根据一些实施例的又一种空调系统的冷媒循环原理图(制冷模式);
图9为根据一些实施例的又一种空调系统的冷媒循环原理图(制热模式);
图10为根据一些实施例的又一种空调系统的冷媒循环原理图(第一冷媒回收模式);
图11为根据一些实施例的又一种空调系统的冷媒循环原理图(第二冷媒回收模式);
图12为根据一些实施例的又一种空调系统的冷媒循环原理图(冷媒释放模式,制冷工况);
图13为根据一些实施例的又一种空调系统的冷媒循环原理图(冷媒释放模式,制热工况);
图14为根据一些实施例的一种空调系统的控制流程图;
图15为根据一些实施例的另一种空调系统的控制流程图;
图16为根据一些实施例的又一种空调系统的控制流程图;
图17为根据一些实施例的又一种空调系统的控制流程图;
图18为根据一些实施例的又一种空调系统的结构图;
图19为根据一些实施例的又一种空调系统的结构图;
图20为根据一些实施例的又一种空调系统的结构图;
图21为根据一些实施例的又一种空调系统的结构图;
图22为根据一些实施例的又一种空调系统的结构图;
图23为根据一些实施例的又一种空调系统的结构图;
图24为根据一些实施例的又一种空调系统的结构图;
图25为根据一些实施例的又一种空调系统的控制流程图;
图26为根据一些实施例的又一种空调系统的控制流程图;
图27为根据一些实施例的一种控制器的硬件结构图。
具体实施方式
下面将结合附图,对本公开一些实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开所提供的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开保护的范围。
除非上下文另有要求,否则,在整个说明书和权利要求书中,术语“包括(comprise)”及其其他形式例如第三人称单数形式“包括(comprises)”和现在分词形式“包括(comprising)”被解释为开放、包含的意思,即为“包含,但不限于”。在说明书的描述中,术语“一个实施例(one embodiment)”、“一些实施例(some embodiments)”、“示例性实施例(exemplary embodiments)”、“示例(example)”、“特定示例(specific example)”或“一些示例(some examples)”等旨在表明与该实施例或示例相关的特定特征、结构、材料或特性包括在本公开的至少一个实施例或示例中。上述术语的示意性表 示不一定是指同一实施例或示例。此外,所述的特定特征、结构、材料或特点可以以任何适当方式包括在任何一个或多个实施例或示例中。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在描述一些实施例时,可能使用了“耦接”和“连接”及其衍伸的表达。术语“连接”应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或成一体;可以是直接相连,也可以通过中间媒介间接相连。术语“耦接”表明两个或两个以上部件有直接物理接触或电接触。术语“耦接”或“通信耦合(communicatively coupled)”也可能指两个或两个以上部件彼此间并无直接接触,但仍彼此协作或相互作用。这里所公开的实施例并不必然限制于本文内容。
“A、B和C中的至少一个”与“A、B或C中的至少一个”具有相同含义,均包括以下A、B和C的组合:仅A,仅B,仅C,A和B的组合,A和C的组合,B和C的组合,及A、B和C的组合。
“A和/或B”,包括以下三种组合:仅A,仅B,及A和B的组合。
本文中“适用于”或“被配置为”的使用意味着开放和包容性的语言,其不排除适用于或被配置为执行额外任务或步骤的设备。
如本文所使用的那样,“约”、“大致”或“近似”包括所阐述的值以及处于特定值的可接受偏差范围内的平均值,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。
如本文所使用的那样,“平行”、“垂直”、“相等”包括所阐述的情况以及与所阐述的情况相近似的情况,该相近似的情况的范围处于可接受偏差范围内,其中所述可接受偏差范围如由本领域普通技术人员考虑到正在讨论的测量以及与特定量的测量相关的误差(即,测量系统的局限性)所确定。例如,“平行”包括绝对平行和近似平行,其中近似平行的可接受偏差范围例如可以是5°以内偏差;“垂直”包括绝对垂直和近似垂直,其中近似垂直的可接受偏差范围例如也可以是5°以内偏差。“相等”包括绝对相等和近似相等,其中近似相等的可接受偏差范围内例如可以是相等的两者之间的差值小于或等于其中任一者的5%。
相关技术中,在空调系统的使用过程中,需要采用换热器上的传热管(如铜管或者铝管)来传热。然而,传热管长期暴露在室外环境中,可能会被腐蚀,从而可能会引起冷媒泄漏的问题。
为避免冷媒泄漏带来的风险,通常在空调系统的室内机的进出口增加一对电子膨胀阀,来阻止发生泄漏的冷媒流入到室内环境中。然而,冷媒回收率较低,未被回收的冷媒可能会被排出至室外环境中,从而引起环境污染的问题。
为解决上述问题,本公开一些实施例提供一种空调系统,在空调系统的室外机和室内机之间设置冷媒回收装置。在冷媒发生泄漏时,结合室外机和室内机待进入的运行模式,通过控制冷媒回收装置中的第一电磁阀、第二电磁阀和第三电磁阀的关闭和开启状态,对空调系统中的冷媒流动的方向进行控制,以将空调系统中的冷媒引入至冷媒回收装置的储液罐中,提高了冷媒的回收率,从而避免冷媒被排出至室外环境中,引发环境污染问题,进而提高空调系统的环保性。
需要说明的是,本公开一些实施例主要以空调系统为多联机空调系统为例进行说明,然而,这并不能理解为对本公开的限制。
如图1所示,多联机空调系统100包括室外机200、室内机300和冷媒回收装置400。室内机300可以包括多个并联的室内机,例如,室内机300包括第一室内机300A和第二室内机300B。
【室外机】
室外机200包括依次连接的压缩机201、四通阀202(如四通换向阀)、室外换热器 203以及室外膨胀阀204。
在一些实施例中,室外换热器203位于压缩机201和冷媒回收装置400之间。室外换热器203具有第一端和第二端,分别为A1端和A2端。例如,室外换热器203的A1端通过四通阀202与压缩机201相连,室外换热器203的A2端与冷媒回收装置400相连。室外换热器203被配置为使室外换热器203的传热管中流动的冷媒与室外空气之间进行热交换。
室外膨胀阀204位于室外换热器203和冷媒回收装置400之间,室外膨胀阀204与室外换热器203的A2端通过管路连接。
压缩机201设置于室内机300与室外换热器203之间,压缩机201具有吸气口B1和排气口B2。压缩机201被配置为为冷媒循环提供动力。以制冷循环为例,压缩机201将压缩后的冷媒经由四通阀202输送至室外换热器203。
例如,压缩机201为基于逆变器的转速控制的容量可变的压缩机。
在一些实施例中,如图1所示,四通阀202具有四个端口,分别为D端口、C端口、S端口和E端口。四通阀202的D端口连接压缩机201的排气口B2,四通阀202的C端口连接室外换热器203的A1端,四通阀202的S端口连接压缩机201的吸气口B1,四通阀202的E端口连接室内机300中的室内换热器301。四通阀202通过改变冷媒在系统管路内的流向来实现多联机空调系统100运行模式(如制冷模式和制热模式)之间的相互转换。
在一些实施例中,室外机200还包括室外风扇215,室外风扇215用于产生流经室外换热器203外部的气流,以促进在室外换热器203的传热管中流动的冷媒与室外空气的热交换。
在一些实施例中,室外机200还包括室外风扇马达216,室外风扇马达216与室外风扇215耦接,以驱动室外风扇215转动或改变室外风扇215的转速。
在一些实施例中,室外机200还包括气液分离器205、油分离器206、回油毛细管207和室外单向阀208。
如图1所示,油分离器206具有第一端、第二端和第三端,分别为F1端、F2端和F3端。例如,油分离器206的F1端与压缩机201的排气口B2通过管路连接,油分离器206的F2端与室外单向阀208通过管路连接,油分离器206的F3端与气液分离器205通过管路连接。
室外单向阀208位于油分离器206和四通阀202之间,且分别与油分离器206的F2端和四通阀202的D端口通过管路连接,以使油分离器206的F2端和四通阀202的D端口单向连通。
气液分离器205具有第一端口G1和第二端口G2。气液分离器205的第一端口G1分别与油分离器206的F3端和四通阀202的S端口通过管路连接,气液分离器205的第二端口G2与压缩机201的吸气口B1通过管路连接。
在一些实施例中,如图2所示,室外机200还包括室外冷媒泄漏检测装置218。室外冷媒泄漏检测装置218被配置为检测室外机200是否发生冷媒泄漏。
在一些实施例中,如图1所示,室外机200还包括第一室外压力传感器209和第二室外压力传感器210,第一室外压力传感器209设置在气液分离器205的G1端口处,用于检测从气液分离器205进入压缩机201的冷媒的压力值。第二室外压力传感器210设置于室外单向阀208与四通阀202连接的管路上,用于检测从压缩机201排出的冷媒的压力值。例如,第一室外压力传感器209为低压力传感器,第二室外压力传感器210为高压力传感器。
在一些实施例中,如图2所示,室外机200还包括高压压力开关217,被配置为监控多联机空调系统100中管路的压力,在多联机空调系统100的管路压力异常时,发送异常信息,以便控制多联机空调系统100停机,从而保证多联机空调系统100的正常运行。
需要说明的是,多联机空调系统还包括控制器600,控制器600与高压压力开关217和室外冷媒泄漏检测装置218耦接。
控制器600包括处理器601。处理器601可以包括中央处理器(central processing unit,CPU)、微处理器(microprocessor)、专用集成电路(application specific integrated circuit,ASIC),并且可以被配置为当处理器601执行存储在耦合到控制器600的非暂时性计算机可读介质中的程序时,执行控制器600中描述的相应操作。非暂时性计算机可读存储介质可以包括磁存储设备(例如,硬盘、软盘或磁带)、智能卡或闪存设备(例如,可擦除可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或键盘驱动器)。
【室内机】
室内机300包括室内换热器301、室内膨胀阀302和室内风扇303。室内换热器301与室外机200的四通阀202通过第一管路连接。例如,第一管路如图1中的(14)→(15)→(16)→(17)→(18)。
在一些实施例中,如图2所示,室内机300还包括室内冷媒泄漏检测装置304。室内冷媒泄漏检测装置304被配置为检测对应的室内机的冷媒是否发生泄漏。例如,室内冷媒泄漏检测装置304可以为室内冷媒泄漏检测传感器。
在一些实施例中,室内机300还包括室内液管温度传感器305和室内回风温度传感器306。室内液管温度传感器305被配置为检测室内机管路的冷媒温度。室内回风温度传感器306被配置为检测室内机的回风温度。
如图1所示,第一室内机300A包括第一室内换热器301A、第一室内膨胀阀302A和第一室内冷媒泄漏检测装置。
在一些实施例中,第一室内机300A还包括第一室内液管温度传感器、第一室内回风温度传感器以及第一室内风扇303A。
如图1所示,第二室内机300B包括第二室内换热器301B、第二室内膨胀阀302B和第二室内冷媒泄漏检测装置。
在一些实施例中,第二室内机300B还包括第二室内液管温度传感器、第二室内回风温度传感器以及第二室内风扇303B。
下面以第一室内机300A为例,对室内机300中的各个部件的功能及设置情况进行说明。
在一些实施例中,第一室内换热器301A被配置为使第一室内换热器301A的传热管内流动的冷媒与室内空气之间进行热交换。
在一些实施例中,第一室内膨胀阀302A设置于第一室内换热器301A和冷媒回收装置400之间,被配置为使流经第一室内膨胀阀302A的冷媒膨胀而减压,以及调节管路内冷媒的供应量。
例如,第一室内机300A可以包括多个第一室内膨胀阀302A(如电子膨胀阀)。若第一室内膨胀阀302A减小开度,则通过第一室内膨胀阀302A的冷媒的流路阻力增加。若第一室内膨胀阀302A增大开度,则通过第一室内膨胀阀302A的冷媒的流路阻力减小。这样,即使回路中其他器件的状态不变化,当第一室内膨胀阀302A的开度变化时,流向第一室内换热器301A或流出第一室内换热器301A的冷媒流量也会变化。
需要说明的是,图1所示的室内膨胀阀302的数量和室外膨胀阀204的数量仅为示例,本公开对此不作限定。
在一些实施例中,第一室内风扇303A产生流经第一室内换热器301A外部的气流,以促进在第一室内换热器301A的传热管中流动的冷媒与室内空气的热交换。
在一些实施例中,室内机300还包括室内风扇马达307,室内风扇马达307与室内风扇303耦接,以驱动或变更室内风扇的转速。如图1所示,第一室内机300A还包括第一室内风扇马达307A,第二室内机300B还包括第二室内风扇马达307B。
在一些实施例中,参照图2,室内机300还包括一个或多个减压器308,减压器308被配置为降低管道内冷媒的压力,将冷凝器输送的高压冷媒降压后输送至蒸发器。
在一些实施例中,室内机300还包括湿度传感器309,湿度传感器309被配置为检测室内空气的相对湿度。
在一些实施例中,室内机300还包括露点仪310,露点仪310被配置为检测室内换热器301附近的环境露点温度。
在一些实施例中,室内机300还包括显示器311。显示器311被配置为显示多联机空调系统100的控制面板,例如,显示器311可以显示室内温度或室内机的当前运行模式。用户可以通过操作显示器311的控制面板,对多联机空调系统100输出控制指令。
在一些实施例中,显示器311还可以包括压力感应器3111或温度感应器3112中的至少一个,显示器311可以根据用户的操作,例如按压按键、手势识别、语音识别等,来接收用户指令并传输至多联机空调系统100以实现人机交互功能。例如,显示器311可以是液晶显示器或有机发光二极管(Organic Light-Emitting Diode,OLED)显示器等。需要说明的是,在一些实施例中,多联机空调系统100的室内机300还可以包括更多个室内机,在此不再赘述。
需要说明的是,室内换热器301、室内膨胀阀302、室内风扇303、室内冷媒泄漏检测装置304、室内液管温度传感器305、室内回风温度传感器306、室内风扇马达307、减压器308、湿度传感器309、露点仪310以及显示器311与控制器600耦接。
【冷媒回收装置】
如图1所示,冷媒回收装置400包括第一电磁阀401、第二电磁阀402、第三电磁阀403以及储液罐404。
储液罐404具有第一开口4041和第二开口4042。储液罐404的第一开口4041通过第一电磁阀401与室外膨胀阀204连接,储液罐404的第二开口4042通过第二电磁阀402与室内膨胀阀302连接。储液罐404用于存储多联机空调系统100在冷媒回收模式下(即第一冷媒回收模式和第二冷媒回收模式)回收的冷媒。
例如,第一电磁阀401具有第一端和第二端,分别为H1端和H2端。第一电磁阀401的H1端与室外膨胀阀204通过管路连接,第一电磁阀401的H2端与储液罐404的第一开口4041连接。
第二电磁阀402具有第一端和第二端,分别为I1端和I2端。第二电磁阀402的I1端与储液罐404的第二开口4042连接,第二电磁阀402的I2端与各个室内机中的室内膨胀阀302通过管路连接。
第三电磁阀403具有第一端和第二端,分别为J1端和J2端。第三电磁阀403的J1端连通室外膨胀阀204和第一电磁阀401之间的管路,第三电磁阀403的J2端连通各个室内机中的室内膨胀阀302和第二电磁阀402之间的管路。从而,控制器600通过控制第一电磁阀401、第二电磁阀402和第三电磁阀403的关闭或开启,控制冷媒在多联机空调系统100中的流向。
在一些实施例中,冷媒回收装置400还包括第四电磁阀405,第四电磁阀405设置于四通阀202与室内换热器301之间的管路(即第一管路)上。
第四电磁阀405具有第一端和第二端,分别为K1端和K2端。第四电磁阀405的K1端与四通阀202通过管路连接,第四电磁阀405的K2端与各个室内机中的室内换热器301通过管路连接。
需要说明的是,第四电磁阀405被配置为控制冷媒是否能在连通室内机300与室外机200的四通阀202的第一管路上流通。
在一些实施例中,上述多联机空调系统100具有以下模式中的一种或者多种:制冷模式、制热模式、第一冷媒回收模式以及第二冷媒回收模式。在多联机空调系统100处于制冷模式、制热模式、第一冷媒回收模式和第二冷媒回收模式中的任一种时,第四电磁阀405处于开启状态。由此,保证冷媒能在第一管路中循环流通。下面对上述模式分别进行介绍。
1、制冷模式
在多联机空调系统100处于制冷模式时,室外换热器203作为冷凝器进行工作,室内换热器作为蒸发器进行工作,第一电磁阀401处于关闭状态,第二电磁阀402处于关闭状态,第三电磁阀403处于开启状态。
以第一室内机300A以及第二室内机300B分别为需要制冷的室内机为例,对多联机空调系统100的制冷模式的冷媒循环进行说明。如图3所示,四通阀202的D端口与C端口连接、E端口与S端口连接。第一电磁阀401和第二电磁阀402关闭,第三电磁阀403和第四电磁阀405打开,膨胀阀(包括室内膨胀阀302和室外膨胀阀204)开启。
流经室内机300中第一室内机300A的冷媒回路为:(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(10)→(12)→(14)→(15)→(16)→(17)→(18)→(19)→(1)。
流经室内机300中第二室内机300B的冷媒回路为:(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(11)→(13)→(14)→(15)→(16)→(17)→(18)→(19)→(1)。
需要说明的是,(14)→(15)→(16)→(17)只是一个示例,本公开一些实施例所示的该(14)→(15)→(16)→(17)可以用一个管路或多个管路替换。例如用管路(16)替换,即管路上只有第四电磁阀405。
在制冷模式下,压缩机201排出的高温高压气态冷媒先流向室外换热器203,再流向室内换热器301。例如,压缩机201排出的高温高压气态冷媒进入油分离器206,进入油分离器206的冷媒被分成两部分。一部分通过回油毛细管207进入气液分离器205的第一端口G1。另一部分通过油分离器206出来的高温高压气态冷媒经过室外单向阀208和四通阀202进入室外换热器203。该高温高压的气态冷媒在室外换热器203中冷凝为中温高压的液态冷媒。
经室外换热器203冷凝成的中温高压的液态冷媒依次经过室外膨胀阀204和第三电磁阀403后,被分流成两部分,一部分流入第一室内机300A的第一室内膨胀阀302A形成低温低压的液态冷媒后,低温低压的液态冷媒再流入第一室内换热器301A,经第一室内换热器301A蒸发成低温低压的气态冷媒。另一部分流入第二室内机300B的第二室内膨胀阀302B形成低温低压的液态冷媒后,低温低压的液态冷媒再流入第二室内换热器301B,经第二室内换热器301B蒸发成低温低压的气态冷媒。
经过第一室内换热器301A、第二室内换热器301B蒸发后的低温低压气态冷媒汇合,经过第四电磁阀405进入四通阀202,然后回到压缩机201内。例如,低温低压的气态冷媒进入气液分离器205。从气液分离器205流出的低温低压的气态冷媒进入压缩机201的吸气口B1,低温低压的气态冷媒经压缩机201压缩成高温高压的气态冷媒,再从压缩机201的排气口B2排出,至此完成了多联机空调系统100的制冷运行。
2、制热模式
在多联机空调系统100处于制热模式时,室外换热器203作为蒸发器进行工作,室内换热器301作为冷凝器进行工作,第一电磁阀401处于关闭状态,第二电磁阀402处于关闭状态,第三电磁阀403处于开启状态。
以第一室内机300A以及第二室内机300B为需要制热的室内机为例,对多联机空调系统100的制热模式的冷媒循环进行说明。
如图4所示,四通阀202的S端口与C端口连接、E端口与D端口连接。第一电磁阀401和第二电磁阀402关闭,第三电磁阀403和第四电磁阀405打开,膨胀阀(包括室内膨胀阀302和室外膨胀阀204)开启。
流经室内机300中第一室内机300A的冷媒回路为:(1)→(2)→(18)→(17)→(16)→(15)→(14)→(12)→(10)→(9)→(8)→(7)→(6)→(5)→(4)→(3)→(19)→(1)。
流经室内机300中第二室内机300B的冷媒回路为:(1)→(2)→(18)→(17)→(16)→(15)→(14)→(13)→(11)→(9)→(8)→(7)→(6)→(5)→(4)→(3)→(19)→(1)。
与制冷模式相比,在制热模式下,通过油分离器206出来的高温高压气态冷媒先流向室内换热器301,在室内换热器301中冷凝为中温高压的液态冷媒。再进入室外换热器203,经室外换热器203蒸发成为低温低压的气态冷媒,最后回到压缩机201内。
例如,通过油分离器206出来的高温高压气态冷媒依次经过室外单向阀208、四通阀202和第四电磁阀405后,分别进入第一室内机300A的第一室内换热器301A和第二室内机300B的第二室内换热器301B。
第一室内换热器301A和第二室内换热器301B分别对进入的高温高压气态冷媒进行冷凝,冷凝成中温高压的液态冷媒。冷凝后的中温高压的液态冷媒分别经过第一室内膨胀阀302A和第二室内膨胀阀302B后汇合。
汇合后的冷媒依次经过第三电磁阀403和室外膨胀阀204后,成为低温低压的液态冷媒。低温低压的液态冷媒经过室外换热器203蒸发成为低温低压的气态冷媒。然后回到压缩机201内。至此完成了多联机空调系统100的制热模式运行。
3、第一冷媒回收模式
在多联机空调系统100处于第一冷媒回收模式时,室外换热器203作为冷凝器进行工作,室内换热器301作为蒸发器进行工作,第一电磁阀401处于开启状态,第二电磁阀402处于关闭状态,第三电磁阀403处于关闭状态。
在一些实施例中,在检测到室内机发生冷媒泄漏时,若多联机空调系统100处于制热模式,则控制多联机空调系统100切换为制冷模式运行;若多联机空调系统100处于制冷模式,则继续保持当前模式运行。并且,控制第一电磁阀401处于开启状态,第二电磁阀402处于关闭状态,第三电磁阀403处于关闭状态。
以第一室内机300A的冷媒发生泄漏且第二室内机300B的冷媒没有发生泄漏为例,对多联机空调系统100的第一冷媒回收模式的运行循环进行说明。
如图5所示,四通阀202的D端口与C端口连接、E端口与S端口连接。第一室内膨胀阀302A关闭、第二电磁阀402和第三电磁阀403关闭,第一电磁阀401和第四电磁阀405开启,膨胀阀(包括第二室内膨胀阀302B和室外膨胀阀204)开启。
流经室外机200的冷媒流向为:(1)→(2)→(3)→(4)→(5)→(6)→(20)。
流经室内机300中第二室内机300B的冷媒流向为:(8)→(9)→(11)→(13)→(14)→(15)→(16)→(17)→(18)→(19)→(1)→(2)→(3)→(4)→(5)→(6)→(20)。
需要说明的是,管路(8)和管路(9)中的冷媒能通过第二室内机300B(即未发生冷媒泄漏的室内机)流通至压缩机201,被压缩机201排出或回收至冷媒回收装置400。
在第一冷媒回收模式下,室外机200流向室内机300的冷媒通路被断开。压缩机201排出的冷媒流经冷媒回收装置400时,被冷媒回收装置400回收并存储至储液罐404中,并且,通向室内机300的管路中剩余的冷媒流经第二室内机300B回到压缩机201内。
例如,压缩机201排出的冷媒经室外换热器203冷凝成的中温高压的液态冷媒,并依次经过室外膨胀阀204、第一电磁阀401和储液罐404的第一开口4041后,被存储在储液罐404中。
管路(8)和管路(9)中的中温高压的液态冷媒流入第二室内机300B的第二室内膨胀阀成为低温低压的液态冷媒后,低温低压的液态冷媒再流入第二室内换热器301B,经第二室内换热器301B蒸发成为低温低压的气态冷媒。
该低温低压的气态冷媒经过第四电磁阀405进入四通阀202,然后回到压缩机201内。至此完成了多联机空调系统100的第一冷媒回收模式的运行。
在一些实施例中,在第一冷媒回收模式运行过程中,将发生冷媒泄漏的室内机对应的室内膨胀阀关闭,并且将未发生冷媒泄漏的室内机对应的室内膨胀阀的开度开至最大值。
例如,当第一室内机300A的冷媒发生泄漏且第二室内机300B的冷媒没有发生泄漏时,第一室内膨胀阀302A关闭,并且第二室内膨胀阀302B开度开至最大值。
4、第二冷媒回收模式
在多联机空调系统100处于第二冷媒回收模式时,室外换热器203作为蒸发器进行工作,室内换热器301作为冷凝器进行工作,第一电磁阀401处于关闭状态,第二电磁阀402处于开启状态,第三电磁阀403处于关闭状态。
在一些实施例中,在检测到室外机200发生冷媒泄漏时,若多联机空调系统100处于 制热模式,则继续保持当前模式运行;若多联机空调系统100是处于制冷模式,则控制多联机空调系统100切换为制热模式运行。并且控制第一电磁阀401处于关闭状态,第二电磁阀402处于开启状态,第三电磁阀403处于关闭状态。
以下对多联机空调系统100的第二冷媒回收模式的运行循环进行说明。如图6所示,四通阀202的S端口与C端口连接、E端口与D端口连接。第一电磁阀401和第三电磁阀403关闭,第二电磁阀402和第四电磁阀405打开,膨胀阀(包括室内膨胀阀302和室外膨胀阀204)开启。
流经室内机300中第一室内机300A的冷媒流向为:(1)→(2)→(18)→(17)→(16)→(15)→(14)→(12)→(10)→(9)→(21)。
流经室内机300中第二室内机300B的冷媒流向为:(1)→(2)→(18)→(17)→(16)→(15)→(14)→(13)→(11)→(9)→(21)。
室外机200的冷媒流向为:(3)→(19)→(1)。
在第二冷媒回收模式下,室内机300流向室外机200的冷媒通路被断开。压缩机201排出的冷媒经过室内机300后被冷媒回收装置400回收并存储至储液罐404中。通向室外机200的管路中剩余的冷媒回到压缩机201内。
例如,压缩机201排出的冷媒经第一室内换热器301A和第二室内换热器301B冷凝成中温高压的液态冷媒,并经过第一室内膨胀阀302A和第二室内膨胀阀302B后汇合,汇合后的中温高压的液态冷媒经过第二电磁阀402和储液罐404的第二开口4042后,被存储至储液罐404中。
室外机200中的冷媒经过室外换热器203蒸发成低温低压的气态冷媒,然后回到压缩机201内。至此完成了多联机空调系统100的第二冷媒回收模式的运行。
基于上述四种不同运行模式,多联机空调系统100可以针对不同的场景提供与场景对应的模式。例如,在需要制冷时,控制器600将多联机空调系统100的运行模式切换为制冷模式,以降低室内环境温度。在需要制热时,控制器600将多联机空调系统100的运行模式切换为制热模式,以提高室内环境温度。在需要对室内机泄漏的冷媒进行回收时,控制器600将多联机空调系统100切换至第一冷媒回收模式,通过冷媒回收装置400对室内机泄漏的冷媒进行回收。在需要对室外机200泄漏的冷媒进行回收时,控制器600将多联机空调系统100切换至第二冷媒回收模式,通过冷媒回收装置400对室外机200泄漏的冷媒进行回收。
在一些实施例中,冷媒回收装置400还包括第五电磁阀406,第五电磁阀406设置于第四电磁阀405和各个室内机中的室内换热器301之间。第五电磁阀406具有第一端和第二端,分别为L1端和L2端。
例如,第五电磁阀406的L1端与第四电磁阀405的K2端通过管路连接,第五电磁阀406的L2端与各个室内机中的室内换热器301通过管路连接。在多联机空调系统处于制冷模式、制热模式、第一冷媒回收模式和第二冷媒回收模式之一时,第五电磁阀406处于开启状态。
需要说明的是,第五电磁阀406也被配置为控制冷媒是否能在连通室内机300与室外机200的四通阀202的第一管路上流通。
在一些实施例中,当冷媒泄漏情况被修复完成后,多联机空调系统100再次进入正常的制冷或制热模式运行时,冷媒回收装置400将回收的冷媒从储液罐404中释放至多联机空调系统100的第一管路中,以实现对回收的冷媒进行合理利用,减少冷媒资源的消耗,提高多联机空调系统100的环保性。
如图7所示,冷媒回收装置400还包括第一膨胀阀411。储液罐404还具有第三开口4043。储液罐404的第三开口4043通过第一膨胀阀411与第一管路连通。例如,储液罐404的第三开口4043设置于储液罐404的底部,这样能够提高冷媒释放效率。
在一些实施例中,上述多联机空调系统100至少具有以下模式中的一种或者多种:制冷模式、制热模式、第一冷媒回收模式、第二冷媒回收模式以及冷媒释放模式。如图8至图11所示,在多联机空调系统100处于制冷模式、制热模式、第一冷媒回收模式和第二 冷媒回收模式之一时,第一膨胀阀411处于关闭状态,冷媒流向与上述不包括第一膨胀阀411的多联机空调系统100的冷媒流向相同,在此不再赘述。
下面对冷媒释放模式100下冷媒的循环过程进行说明。需要说明的是,在冷媒释放模式下,第四电磁阀和第五电磁阀处于开启状态,且第一膨胀阀411开启,以释放储液罐404中的冷媒。
5、冷媒释放模式
在多联机空调系统100处于冷媒释放模式时,第一电磁阀401处于关闭状态,第二电磁阀402处于关闭状态,第三电磁阀403处于开启状态,第一膨胀阀411处于开启状态,室外换热器203和室内换热器301中的一个作为蒸发器工作,另一个作为冷凝器工作。
例如有以下两种应用场景:
场景一、在多联机空调系统100处于制冷模式下,需对回收的冷媒进行释放时,室外换热器203作为冷凝器进行工作,室内换热器301作为蒸发器进行工作,第一电磁阀401处于关闭状态,第二电磁阀402处于关闭状态,第三电磁阀403处于开启状态,第一膨胀阀411处于开启状态。
场景二、在多联机空调系统100处于制热模式下,需对冷媒回收装置400回收的冷媒进行释放时,室外换热器203作为蒸发器进行工作,室内换热器301作为冷凝器进行工作,第一电磁阀401处于关闭状态,第二电磁阀402处于关闭状态,第三电磁阀403处于开启状态,第一膨胀阀411处于开启状态。
在场景一中,以第一室内机300A以及第二室内机300B为需要制冷的室内机为例,对多联机空调系统100的冷媒释放模式的冷媒循环进行说明。
如图12所示,四通阀202的D端口与C端口连接、E端口与S端口连接。第一电磁阀401和第二电磁阀402关闭,第三电磁阀403、第四电磁阀405、第五电磁阀和第一膨胀阀411打开,膨胀阀(包括室内膨胀阀302和室外膨胀阀204)开启。
流经室内机300中第一室内机300A的冷媒回路为:(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(10)→(12)→(14)→(15)→(16)→(17)→(18)→(19)→(1)。
流经室内机300中第二室内机300B的冷媒回路为:(1)→(2)→(3)→(4)→(5)→(6)→(7)→(8)→(9)→(11)→(13)→(14)→(15)→(16)→(17)→(18)→(19)→(1)。
流经室外机的冷媒支路为:(15)→(16)→(17)→(18)→(19)→(1)→(2)→(3)→(4)和(22)→(17)→(18)→(19)→(1)→(2)→(3)→(4)。
例如,在制冷模式下,储液罐404存储的液态冷媒从第三开口4043(参照图7)流出,并经过第一膨胀阀411节流成低温低压的冷媒。该低温低压的冷媒与从各个室内机流出的低温低压气态冷媒汇合后,经过第四电磁阀405进入四通阀202,然后进入压缩机201,至此完成了多联机空调在制冷模式下储液罐404中冷媒的释放。
在场景二中,以第一室内机300A以及第二室内机300B为需要制热的室内机为例,对多联机空调系统100的冷媒释放模式的冷媒循环进行说明。
如图13所示,四通阀202的S端口与C端口连接、E端口与D端口连接。第一电磁阀401和第二电磁阀402关闭,第一膨胀阀411、第三电磁阀403、第四电磁阀405和第五电磁阀406打开,膨胀阀(包括室内膨胀阀302和室外膨胀阀204)开启。
流经室内机300中第一室内机300A的冷媒回路为(1)→(2)→(18)→(17)→(16)→(15)→(14)→(12)→(10)→(9)→(8)→(7)→(6)→(5)→(4)→(3)→(19)→(1)和(22)→(15)→(14)→(12)→(10)→(9)→(8)→(7)→(6)→(5)→(4)→(3)→(19)→(1)。
流经室内机300中第二室内机300B的冷媒回路为(1)→(2)→(18)→(17)→(16)→(15)→(14)→(13)→(11)→(9)→(8)→(7)→(6)→(5)→(4)→(3)→(19)→(1)和(22)→(15)→(14)→(13)→(11)→(9)→(8)→(7)→(6)→(5)→(4)→(3)→(19)→(1)。
例如,在制热模式下,储液罐404存储的液态冷媒从第三开口4043流出,并经过第一膨胀阀411节流成低温低压的冷媒。该低温低压冷媒与依次经过四通阀202和第四电磁阀405的高温高压气态冷媒汇合后,再分别进入第一室内机300A的第一室内换热器301A和第二室内机300B的第二室内换热器301B。至此完成了多联机空调系统在制热模式下储液罐404中冷媒的释放。
需要说明的是,上述两种场景只是示例性的。在一些实施例中,也可以结合其他应用场景,来调节冷媒释放模式下的冷媒流向,例如将上述场景一和场景二中的制冷模式和制热模式改为其他模式(如除湿模式、干燥模式等)。
在一些实施例中,在检测到冷媒回收装置400中有冷媒的情况下,先开启冷媒释放模式将冷媒回收装置400中的冷媒释放完全后,再运行其他模式(如制冷模式、制热模式、除湿模式和干燥模式)。
基于冷媒释放模式,在需要对冷媒回收装置400中回收的冷媒进行利用时,可以将多联机空调系统100的运行模式调整至冷媒释放模式,将回收的冷媒释放至第一管路中,以供多联机空调系统100在制冷模式或制热模式运行过程中使用该回收的冷媒。
在一些实施例中,如图2所示,多联机空调系统100还包括给各个部件供电的电源装置500,例如电池501和电源管理芯片502。电池501可以通过电源管理芯片502与控制器600耦接,从而通过电源装置500实现多联机空调系统100的功耗管理功能。
在一些实施例中,控制器600与室内冷媒泄漏检测装置304耦接。控制器600被配置为:获取室内冷媒泄漏检测装置304的检测结果,室内冷媒泄漏检测装置304的检测结果用于指示室内冷媒泄漏检测装置304所在的室内机是否发生冷媒泄漏。
控制器600根据室内冷媒泄漏检测装置304的检测结果,判断室内机300中是否存在发生冷媒泄漏的室内机。
若室内机300中存在发生冷媒泄漏的室内机,则控制器600控制多联机空调系统100切换至第一冷媒回收模式运行,将室内机300中的冷媒回收至冷媒回收装置400中。
在一些实施例中,控制器600还被配置为:在多联机空调系统100运行第一冷媒回收模式时,关闭发生冷媒泄漏的室内机中的室内膨胀阀,以阻止冷媒继续进入发生冷媒泄漏的室内机中,从而避免发生冷媒泄漏的室内机中的冷媒泄漏至室内环境中,进而保证多联机空调系统100的可靠性。
在一些实施例中,在多联机空调系统100运行第一冷媒回收模式时,将室内机300中未发生冷媒泄漏的室内机的室内膨胀阀的开度调节至最大值,以使与发生冷媒泄漏的室内机的室内膨胀阀所连通的管路中的冷媒更加快速地经过室内机300和室外机200,最终回收至冷媒回收装置400,从而提高对室内机泄漏的冷媒的回收速度,保证多联机空调系统100的冷媒回收效率。
在一些实施例中,控制器600与室外机200的室外冷媒泄漏检测装置218耦接。控制器600还被配置为:获取室外冷媒泄漏检测装置218的检测结果,室外冷媒泄漏检测装置218的检测结果用于指示室外机200是否发生冷媒泄漏。
控制器600根据室外冷媒泄漏检测装置218的检测结果,判断室外机200是否发生冷媒泄漏。若室外冷媒泄漏检测装置218的检测结果指示室外机200发生冷媒泄漏,则控制器600控制多联机空调系统100切换至第二冷媒回收模式运行。从而将室外机200泄漏的冷媒回收至冷媒回收装置400中。
在一些实施例中,在多联机空调系统100运行第二冷媒回收模式时,控制器600控制室外膨胀阀204处于预设开度值,例如,预设开度值为最大开度值。这样,可以使室外膨胀阀204所连通的管路中的冷媒更加快速地经过室外机200和室内机300回收至冷媒回收装置400,从而提高对室外机200泄漏的冷媒的回收速度,保证多联机空调系统100冷媒的回收效率。
这样,控制器600在检测到室内机或室外机200发生冷媒泄漏的情况下,通过冷媒回收装置400回收冷媒。一方面,能够避免室内机的冷媒泄漏至室内环境中,提高多联机空调系统100的可靠性。另一方面,能够大大减少室外机200泄漏的冷媒排放至室外环境中 的冷媒量,提高多联机空调系统100的环保性。
在一些实施例中,控制器600还被配置为:在空调系统处于第一冷媒回收模式和第二冷媒回收模式之一时,若满足冷媒回收停止条件,则控制器600控制第四电磁阀405关闭。
冷媒回收停止条件包括以下一项或者多项:多联机空调系统100运行第一冷媒回收模式和第二冷媒回收模式之一的时长达到预设时长,或者,进入压缩机201的冷媒的压力位于预设压力范围内。
需要说明的是,上述预设压力范围可根据室外环境的大气压力确定。
例如,上述压缩机201的冷媒的压力通过如图1所示的设置在压缩机201的吸气口B1的第一室外压力传感器209检测得到。
这样,通过设定冷媒回收停止条件,能确定出结束冷媒回收的时机,以使多联机空调系统100在管路中存在冷媒的情况下对冷媒进行回收,从而避免在多联机空调系统100的管路中无冷媒情况下,依然执行第一冷媒回收模式或第二冷媒回收模式,造成多联机空调系统100异常或损坏,进而提高多联机空调系统100的可靠性,有利于延长多联机空调系统100的使用寿命。
在一些实施例中,控制器600还被配置为:在多联机空调系统100处于第一冷媒回收模式和第二冷媒回收模式之一时,若满足冷媒回收停止条件,则控制器600控制第五电磁阀406关闭。
这样,在冷媒回收完成后,控制器600通过控制第一电磁阀401,第二电磁阀402、第三电磁阀403、第四电磁阀405和第五电磁阀406关闭,能够保证冷媒回收装置400、室外机200和室内机300各自的独立性。使得冷媒回收装置400、室内机300以及室外机200之间连接的管路断开,以便于在更换发生冷媒泄漏的室内机或室外机200的过程中,冷媒回收装置400不受影响,并防止回收至冷媒回收装置400的冷媒发生泄漏。
在一些实施例中,参照图1,冷媒回收装置400还包括第一截止阀407、第二截止阀408、第三截止阀409和第四截止阀410。
第一截止阀407设置在四通阀202与第四电磁阀405之间的管路上。例如,第一截止阀407的第一端与四通阀202通过管路连接,第一截止阀407的第二端与第四电磁阀405的K1端通过管路连接。
第二截止阀408设置在第四电磁阀405与室内换热器301之间的管路上。例如,第二截止阀408的第一端与第四电磁阀405的L2端通过管路连接,第二截止阀408的第二端与各个室内机中的室内换热器301通过管路连接。
需要说明的是,在多联机空调系统100包括第五电磁阀406的情况下,第二截止阀408设置在第五电磁阀406与室内换热器301之间的管路上。
第三截止阀409设置在室外膨胀阀204和第一电磁阀401之间的管路上。例如,第三截止阀409的第一端与室外膨胀阀204通过管路连接,第三截止阀409的第二端与第一电磁阀401的H1端通过管路连接。
第四截止阀410设置在第二电磁阀402与室内换热器301之间的管路上。例如,第四截止阀410的第一端与第二电磁阀402的I2端通过管路连接,第四截止阀410的第二端与各个室内机中的室内膨胀阀302通过管路连接。
例如,在多联机空调系统100处于制冷模式、制热模式、第一冷媒回收模式、第二冷媒回收模式和冷媒释放模式中的任意一种模式下运行时,第一截止阀407、第二截止阀408、第三截止阀409和第四截止阀410处于开启状态。在第一冷媒回收模式或第二冷媒回收模运行完成后,第一截止阀407、第二截止阀408、第三截止阀409和第四截止阀410处于关闭状态,以进一步阻止上述截止阀所在的管路中冷媒的流通。
在一些实施例中,室外机200还包括第五截止阀211和第六截止阀212。
第五截止阀211设置在四通阀202与第一截止阀407之间的管路上。例如,第五截止阀211的第一端与四通阀202通过管路连接,第五截止阀211的第二端与第一截止阀407的第一端通过管路连接。
第六截止阀212设置在室外膨胀阀204与第三截止阀409之间的管路上。例如,第六 截止阀212的第一端与室外膨胀阀204通过管路连接,第六截止阀212的第二端与第三截止阀409的第一端通过管路连接。
例如,在多联机空调系统100处于制冷模式、制热模式、第一冷媒回收模式、第二冷媒回收模式和冷媒释放模式之一运行时,第五截止阀211和第六截止阀212处于开启状态。在第一冷媒回收模式或第二冷媒回收模式完成后,第五截止阀211和第六截止阀212处于关闭状态,以更好地阻止与上述截止阀对应管路中冷媒的流通。
需要说明的是,多联机空调系统100设置的截止阀数量可以根据需求而定。例如,在一些实施例中,如图24所示,室内机还可以包括第七截止阀312和第八截止阀313。第七截止阀312和第八截止阀313分别设置在室内机300的两端。即第七截止阀312和第八截止阀313中的一个截止阀设置在室内机300与四通阀202连通的一端,且第七截止阀312和第八截止阀313中的另一个截止阀设置在室内机300与冷媒回收装置400的一端。例如,第八截止阀313设置在管路(14)上,第七截止阀312设置在管路(9)上。
在一些实施例中,如图1所示,室外机200还包括第六电磁阀213和第七电磁阀214。第六电磁阀213和第七电磁阀214设置于连通室外机200与冷媒回收装置400的管路上。
例如,第六电磁阀213设置在四通阀202与第五截止阀211之间的管路上。第六电磁阀213具有第一端和第二端,分别为M1端和M2端。第六电磁阀213的M1端与四通阀202通过管路连接,第六电磁阀213的M2端与第五截止阀211的第一端通过管路连接。
第七电磁阀214设置在室外膨胀阀204与第六截止阀212之间的管路上。第七电磁阀214具有第一端和第二端,分别为N1端和N2端。第七电磁阀214的N1端与室外膨胀阀204通过管路连接,第七电磁阀214的N2端与第六截止阀212的第一端通过管路连接。
在多联机空调系统100处于制冷模式、制热模式、第一冷媒回收模式、第二冷媒回收模式和冷媒释放模式之一运行时,第六电磁阀213和第七电磁阀214处于开启状态。
在冷媒回收完成后,通过控制第六电磁阀213和第七电磁阀214关闭,使得室外机200与冷媒回收装置400以及室内机300之间的管路断开,以便于更换室外机200的部件的过程中不受冷媒回收装置400和室内机300的影响,提高安装或更换室外机200的便捷性。
下面描述多联机空调系统100的控制方法。参照图14,多联机空调系统100的控制方法包括步骤S101至步骤S104。
步骤S101,确定室内机300和室外机200中冷媒的泄漏情况。
步骤S102,在确定存在发生冷媒泄漏的室内机的情况下,控制器600控制多联机空调系统100运行第一冷媒回收模式。
步骤S103,在确定室外机200发生冷媒泄漏的情况下,控制器600控制多联机空调系统100运行第二冷媒回收模式。
步骤S104,在确定室内机300和室外机200中冷媒无泄漏的情况下,控制器600控制多联机空调系统100保持当前运行模式不变。
需要说明的是,当前的运行模式可以是制冷模式、制热模式、除湿模式等。
下面描述多联机空调系统100处于第一冷媒回收模式的控制方法。如图15所示,多联机空调系统100的控制方法包括步骤S201至步骤S206。
步骤S201,控制器600根据室内冷媒泄漏检测装置304的检测结果存在发生冷媒泄漏的室内机。该发生冷媒泄漏的室内机可以发出预警信息。预警信息用于指示该室内机发生冷媒泄漏。例如,预警信息可以是语音、文字或灯光等。
步骤S202,判断多联机空调系统100是否处于制冷模式。若否,则执行步骤S203;若是,则执行步骤S204。
步骤S203,将多联机空调系统100切换至制冷模式后,再执行步骤S204。
步骤S204,控制器600控制发生冷媒泄漏的室内机对应的室内膨胀阀302关闭、第一电磁阀401开启、第二电磁阀402和第三电磁阀403关闭。
步骤S205,当满足冷媒回收停止条件时,控制器600控制第四电磁阀405关闭,并发出第一更换信息。该第一更换信息用于提示用户更换发生冷媒泄漏的室内机。
步骤S206,控制器600控制多联机空调系统100停止运行。
下面描述多联机空调系统100处于第二冷媒回收模式的控制方法。如图16所示,多联机空调系统100的控制方法包括步骤S301至步骤S306。
步骤S301,控制器600根据室外冷媒泄漏检测装置218的检测结果确定室外机200发生冷媒泄漏。该室外机200可以发出预警信息。预警信息用于指示该室外机发生冷媒泄漏。例如,预警信息可以是语音、文字或灯光等。
步骤S302,判断多联机空调系统100是否处于制热模式。若否,则执行步骤S303;若是,则执行步骤S304。
步骤S303,将多联机空调系统100切换至制热模式后,再执行步骤S304。
步骤S304,控制器600控制第一电磁阀401关闭,第二电磁阀402开启,第三电磁阀403关闭。
步骤S305,当满足冷媒回收停止条件时,控制器600控制第四电磁阀405关闭,并发出第二更换信息。该第二更换信息用于提示用户更换室外机200。
例如,冷媒回收停止条件包括以下一项或多项:在多联机空调系统100运行第一冷媒回收模式和第二冷媒回收模式之一的时长达到预设时长,或者,在进入压缩机的冷媒的压力位于预设压力范围内。
步骤S306,控制器600控制多联机空调系统100停止运行。
下面描述多联机空调系统100在冷媒释放过程中的控制方法。如图17所示,多联机空调系统100的控制方法包括步骤S401和步骤S402。
步骤S401,在完成第一冷媒回收模式或完成第二冷媒回收模式的情况下,若接收到用于指示多联机空调系统100在制冷模式下运行的控制信号,则控制器600控制多联机空调系统100运行第一冷媒释放模式。
需要说明的是,在多联机空调系统100处于第一冷媒释放模式时,室外换热器203作为冷凝器进行工作,室内换热器301作为蒸发器进行工作,第一电磁阀401处于关闭状态,第二电磁阀402处于关闭状态,第三电磁阀403处于开启状态,第一膨胀阀411处于开启状态。
步骤S402,在完成第一冷媒回收模式或完成第二冷媒回收模式的情况下,若接收到用于指示多联机空调系统100在制热模式下运行的控制信号,则控制器600控制多联机空调系统100运行第二冷媒释放模式。
需要说明的是,在多联机空调系统100处于第二冷媒释放模式时,室外换热器203作为蒸发器进行工作,室内换热器301作为冷凝器进行工作,第一电磁阀401处于关闭状态,第二电磁阀402处于关闭状态,第三电磁阀403处于开启状态,第一膨胀阀411处于开启状态。
如图18至图21所示,在一些实施例中,冷媒回收装置400还包括第二膨胀阀412。储液罐404还包括第四开口4044。例如,第四开口位于储液罐404的顶部。第二膨胀阀412具有以下两种设置方式。
如图18和图20所示,第二膨胀阀412的第一端与储液罐404的第四开口4044连接,第二膨胀阀412的第二端与第二管路连通,第二管路为第四电磁阀405和第五电磁阀406之间的管路。例如,第二管路为如图3所示的管路(16)。例如,第二膨胀阀412的第一端与第四电磁阀405的第二端通过管路连接,第二膨胀阀412的第二端与第一电磁阀401的第二端通过管路连接。需要说明的是,该设置方式适用于第一冷媒回收模式。
如图19和图21所示,第二膨胀阀412的第一端与第三管路连通,第二膨胀阀412的第二端与第二管路连通,第三管路为第一电磁阀401与储液罐404的第一开口4041之间的管路。例如,第二膨胀阀412的第一端与第四电磁阀405的第二端通过管路连接,第二膨胀阀412的第二端与储液罐404的第四开口4044通过管路连接。需要说明的是,该设置方式对第一冷媒回收模式和第二冷媒回收模式均适用。
在一些实施例中,第二膨胀阀412可以有多个,并且可以分别使用不同的设置方式。
在多联机空调系统100处于制冷模式、制热模式和冷媒释放模式之一运行时,第二膨胀阀412处于关闭状态。在多联机空调系统100处于第一冷媒回收模式和第二冷媒回收模 式之一运行时,第二膨胀阀412开启,并且当冷媒回收完成后,第二膨胀阀412关闭。
这样,在冷媒回收过程中,多联机空调系统100内循环的冷媒量越来越少,多联机空调系统100管路的低压越来越接近预设压力范围(通常是指多联机空调系统100所处环境的大气压力)的情况下,压缩机201的排气温度会越来越高,这样会影响压缩机201的可靠性。通过在第一电磁阀401和第四电磁阀405之间设置第二膨胀阀412,或者,在第四电磁阀405与储液罐404之间设置第二膨胀阀412。在冷媒回收过程中,打开该第二膨胀阀412,使一部分冷媒流通至压缩机201,以降低压缩机201的排气温度,从而确保冷媒回收过程中压缩机201的稳定性。
另外,在冷媒回收过程中,进入储液罐404的冷媒可能是气态和液态两相态冷媒,相较于液态冷媒,由于两相态冷媒的平均密度较小,储液罐404储存的冷媒的总质量就会减少,从而影响冷媒回收的效果。因此,在冷媒回收过程中,打开第二膨胀阀412,使气态冷媒通过第二膨胀阀412流出,以提高冷媒回收的效果。
如图22所示,在一些实施例中,冷媒回收装置400还包括第一过冷器413。第一过冷器413具有第一通道416和第二通道417。储液罐404的第三开口4043依次通过第一膨胀阀411和第一过冷器413的第一通道416与第一管路连通。第三电磁阀403通过第一过冷器413的第二通道417与室外膨胀阀204连接。
如图22所示,在一些实施例中,冷媒回收装置400还包括第一温度传感器420。控制器600与第一温度传感器420耦接。例如,第一温度传感器420设置在管路(22)上。第一温度传感器420被配置为检测从第一过冷器413的第一通道416流出的冷媒的温度值。
如图23所示,在一些实施例中,冷媒回收装置400还包括节流装置414以及第二过冷器415。第二过冷器415具有第三通道418和第四通道419。储液罐404的第三开口4043依次通过节流装置414和第二过冷器415的第三通道418与第一管路连通。第三电磁阀403通过第二过冷器415的第四通道419与室内膨胀阀302连接。
如图23所示,在一些实施例中,冷媒回收装置400还包括第二温度传感器421。控制器600与第二温度传感器421耦接。第二温度传感器421被配置为检测从第三通道418流出的冷媒的温度值。例如,第二温度传感器421可以设置在C点。
下面对冷媒回收装置400的上述各个部件的功能及设置情况进行说明。
在一些实施例中,通过设置第一过冷器413,使得冷媒回收装置400中回收的冷媒流经第一过冷器413的第一通道416,多联机空调系统100在运行过程中,冷媒流经第一过冷器413的第二通道417。第二通道417对流经的冷媒进行降温,以释放相应的热量。第一通道416利用第二通道417释放的热量对流经第一通道416的回收的冷媒进行加热,使得在回收的过程中两相态冷媒中的液态冷媒转换成气态冷媒,减少冷媒回收装置释放的两相态冷媒中液态冷媒的含量,提高释放的冷媒中气态冷媒的含量,以保证回收的冷媒的使用效率。
需要说明的是,通过设置第一过冷器413,一方面,在多联机空调系统100处于制冷模式下对回收的冷媒进行释放的过程中,冷媒回收装置将回收的冷媒释放至室外机200的压缩机201,冷媒回收装置释放的冷媒中液态冷媒的含量减少,会减少压缩机回液,提高压缩机的使用寿命。另一方面,在多联机空调系统100处于制热模式下对回收的冷媒进行释放过程中,冷媒回收装置400将回收的冷媒释放至室内机的室内换热器,释放的回收的冷媒中气态冷媒的含量增加,会增加进入室内换热器回收的冷媒量,提高回收冷媒的利用率。
在一些实施例中,通过设置第一温度传感器420,可以实现对第一膨胀阀411的开度的控制。例如,参照图25,多联机空调系统100的控制方法包括步骤S501至步骤S505。
步骤S501,在多联机空调系统100运行冷媒释放模式时,控制器600获取第一温度传感器检测到的第一温度值,以及第一室外压力传感器209检测到的压力值。
步骤S502,控制器600根据第一室外压力传感器209检测到的压力值确定第二温度值。该第二温度值为第一室外压力传感器209检测到的压力值对应的饱和温度值。
步骤S503,判断第一温度值与第二温度值之间的差值是否小于第一预设温度值。若否, 则执行步骤S504;若是,则执行步骤S505。
步骤S504,控制器600控制第一膨胀阀411增大开度。
步骤S505,控制器600控制第一膨胀阀411减小开度。
这样,通过比较第一过冷器413的第一通道416流出的冷媒的第一温度值与第二温度值,得到第一温度值与第二温度值之间的第一温度差值。基于该第一温度差值与第一预设温度值的大小关系对第一膨胀阀的开度进行控制,以保证第一膨胀阀的开度处于合理范围,从而保证冷媒回收装置释放的冷媒量处于合理范围内。
本公开一些实施例中的多联机空调系统100,一方面,避免冷媒回收装置400释放的冷媒量过多,使得整个多联机空调系统100管路中冷媒量过多,而导致多联机空调系统100对冷媒处理不及时。另一方面,避免因冷媒回收装置400释放的冷媒量过少,导致整个多联机空调系统100管路中冷媒量过少,而降低多联机空调系统100的工作效率(如降低制冷速度或制热速度)。
通过节流装置414和第二过冷器415,冷媒回收装置400中回收的冷媒通过节流装置414节流后,流经第二过冷器415的第三通道418。多联机空调系统100在运行过程中冷媒流经过第二过冷器415的第四通道419。第四通道419对流经该第四通道419的冷媒进行降温,以释放相应的热量。第三通道418利用第四通道419释放的热量对流经第三通道418的回收的冷媒进行加热,使得回收的两相态冷媒中液态冷媒转换成气态冷媒,减少冷媒回收装置400释放的冷媒中液态冷媒的含量,提高所释放的冷媒中气态冷媒的含量,以保证回收的冷媒的使用效率。
在一些实施例中,通过设置第二温度传感器421,能实现对冷媒回收装置400的冷媒释放过程的控制。例如,如图26所示,多联机空调系统100的控制方法包括步骤S601至步骤S605。
步骤S601,在多联机空调系统100运行冷媒释放模式时,控制器600获取第二温度传感器检测到的第三温度值,以及第一室外压力传感器209检测到的压力值。
步骤S602,根据第一室外压力传感器检测到的压力值确定第二温度值。该第二温度值为第一室外压力传感器检测到的压力值对应的饱和温度值。
步骤S603,判断第三温度值与第二温度值之间的差值是否小于第二预设温度值。若否,则执行步骤S604;若是,则执行步骤S605。
步骤S604,控制器600控制多联机空调系统100停止运行冷媒释放模式。
步骤S605,控制器600控制多联机空调系统100继续运行冷媒释放模式。
需要说明的是,上述第一预设温度值和第二预设温度值根据制冷剂类型和压缩机类型确定,且第二预设温度值是一个较小的值。
另外,从储液罐404中释放的冷媒流经图23中的A、B和C三个点。这三个点中A和B两点的冷媒温度相同,B点和C点两点的冷媒温度会因为储液罐404中冷媒的冷媒量而变化。例如,在储液罐404中有冷媒的情况下,B点和C点两点冷媒温度大致相等。在储液罐404中没有冷媒的情况下,C点冷媒温度大于B点冷媒温度。
这样,通过比较第二过冷器415的第三通道418流出的冷媒的第三温度值与第二温度值,得到第三温度值与第二温度值之间的第二温度差值。基于该第二温度差值与第二预设温度值的大小关系对冷媒回收装置的释放过程进行合理控制,以保证冷媒回收装置400在有充足冷媒的情况下才能释放冷媒。避免冷媒回收装置中无冷媒的情况下,多联机空调系统100依然执行冷媒释放模式,导致多联机空调系统100中冷媒量异常少,而降低多联机空调系统100工作效率。
本公开一些实施例还提供一种控制器的硬件结构图,如图27所示,控制器600还包括与处理器601连接的存储器602和通信接口603。处理器601、存储器602和通信接口603通过总线604连接。
处理器601具有数据处理功能,存储器602被配置存储数据。存储器602可以为随机存取存储器(Random Access Memory,RAM)。例如,存储器602中包含计算机程序代码。处理器601被配置为执行存储器602中存储的计算机程序代码,从而实现本公开实施例提 供的控制方法。
通信接口603可以用于与其他设备或通信网络(如以太网,无线接入网(Radio Access Network,RAN),无线局域网(Wireless Local Area Networks,WLAN))等通信。通信接口603可以是模块、电路、收发器或者任何能够实现通信的装置。
总线604可以是外设部件互连标准(Peripheral Component Interconnect,PCI)总线或扩展工业标准结构(Extended Industry Standard Architecture,EISA)总线等。各部件之间可通过总线604进行信息传送。为便于表示,图27中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本发明实施例还提供一种计算机可读存储介质,计算机可读存储介质包括计算机执行指令,当计算机执行指令在计算机上运行时,使得计算机执行如上述实施例提供的方法。
本发明实施例还提供一种计算机程序产品,该计算机程序产品可直接加载到存储器中,并含有软件代码,该计算机程序产品经由计算机载入并执行后能够实现上述实施例提供的方法。
本领域的技术人员将会理解,本发明的公开范围不限于上述具体实施例,并且可以在不脱离本申请的精神的情况下对实施例的某些要素进行修改和替换。本申请的范围受所附权利要求的限制。

Claims (27)

  1. 一种空调系统,包括:
    室外机,包括室外冷媒泄漏检测装置,被配置为检测所述室外机是否发生冷媒泄漏;
    室内机,包括室内冷媒泄漏检测装置,被配置为检测所述室内机是否发生冷媒泄漏;
    冷媒回收装置,位于所述室外机和所述室内机之间,被配置为在所述室外机和所述室内机之一发生冷媒泄漏时,回收并存储所述空调系统的冷媒;以及
    控制器,分别与所述室外冷媒泄漏检测装置和所述室内冷媒泄漏检测装置耦接,被配置为:
    获取所述室内冷媒泄漏检测装置的检测结果;
    根据所述室内冷媒泄漏检测装置的所述检测结果,判断是否存在发生冷媒泄漏的室内机;
    若是,则控制所述空调系统运行第一冷媒回收模式;若否,则控制所述空调系统保持当前的运行模式不变;以及
    获取所述室外冷媒泄漏检测装置的检测结果;
    根据所述室外冷媒泄漏检测装置的所述检测结果,判断所述室外机是否发生冷媒泄漏;
    若是,则控制所述空调系统运行第二冷媒回收模式;若否,则控制所述空调系统保持当前的运行模式不变;其中,
    在所述第一冷媒回收模式下,所述室内机的管路中的冷媒流向所述室外机的压缩机内,再经过所述室外机被回收至所述冷媒回收装置内;
    在所述第二冷媒回收模式下,所述室外机的管路中的冷媒流向所述压缩机内,再经过所述室内机被回收至所述冷媒回收装置内。
  2. 根据权利要求1所述的空调系统,其中,所述冷媒回收装置包括储液罐,所述储液罐被配置为存储所述冷媒回收装置回收的冷媒。
  3. 根据权利要求2所述的空调系统,其中,
    所述室外机还包括四通阀、室外换热器以及室外膨胀阀;
    所述室内机还包括室内换热器以及室内膨胀阀,所述室内换热器与所述四通阀通过第一管路连接,所述第一管路为所述室内换热器和所述四通阀之间的管路;
    所述冷媒回收装置还包括:
    第一电磁阀,所述储液罐通过所述第一电磁阀与所述室外膨胀阀连接;
    第二电磁阀,所述储液罐通过所述第二电磁阀与所述室内膨胀阀连接;以及
    第三电磁阀,所述第三电磁阀的第一端连通所述室外膨胀阀与所述第一电磁阀之间的管路,所述第三电磁阀的第二端连通所述室内膨胀阀与所述第二电磁阀之间的管路。
  4. 根据权利要求3所述的空调系统,其中,
    在所述空调系统处于所述第一冷媒回收模式时,所述室外换热器作为冷凝器进行工作,所述室内换热器作为蒸发器进行工作,所述第一电磁阀处于开启状态,所述第二电磁阀处于关闭状态,所述第三电磁阀处于关闭状态;
    在所述空调系统处于所述第二冷媒回收模式时,所述室外换热器作为蒸发器进行工作,所述室内换热器作为冷凝器进行工作,所述第一电磁阀处于关闭状态,所述第二电磁阀处于开启状态,所述第三电磁阀处于关闭状态。
  5. 根据权利要求4所述的空调系统,其中,所述控制器还被配置为:
    在所述空调系统运行所述第一冷媒回收模式时,关闭发生冷媒泄漏的室内机中的所述室内膨胀阀;
    在所述空调系统运行所述第二冷媒回收模式时,控制所述室外膨胀阀处于预设开度值。
  6. 根据权利要求5所述的空调系统,其中,
    所述冷媒回收装置还包括第四电磁阀,所述第四电磁阀分别与所述四通阀和所述室内换热器连接;
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,所述第四电磁阀处于开启状态。
  7. 根据权利要求6所述的空调系统,其中,所述控制器还被配置为:
    在所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若满足冷媒回收停止条件,则所述控制器控制所述第四电磁阀关闭;
    其中,所述冷媒回收停止条件包括以下至少之一:
    所述空调系统运行所述第一冷媒回收模式和所述第二冷媒回收模式之一的时长达到预设时长;或者,
    进入所述压缩机的冷媒的压力位于预设压力范围内。
  8. 根据权利要求6所述的空调系统,其中,
    所述冷媒回收装置还包括第五电磁阀,所述第五电磁阀分别与所述第四电磁阀和各个所述室内机中的所述室内换热器连接;
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,所述第五电磁阀处于开启状态。
  9. 根据权利要求8所述的空调系统,其中,所述控制器还被配置为:
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若满足冷媒回收停止条件,则控制所述第五电磁阀关闭;
    其中,所述冷媒回收停止条件包括以下至少之一:
    所述空调系统运行所述第一冷媒回收模式和所述第二冷媒回收模式之一的时长已达到预设时长;或者,
    进入所述压缩机的冷媒的压力位于预设压力范围内。
  10. 根据权利要求8所述的空调系统,其中,
    所述冷媒回收装置还包括第二膨胀阀;所述第二膨胀阀满足以下之一:
    所述第二膨胀阀分别与所述储液罐和第二管路连通,所述第二管路为所述第四电磁阀和所述第五电磁阀之间的管路;
    或者,
    所述第二膨胀阀分别与所述第二管路和第三管路连通,所述第三管路为所述第一电磁阀和所述储液罐之间的管路;
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,所述第二膨胀阀处于开启状态。
  11. 根据权利要求7所述的空调系统,其中,所述冷媒回收装置还包括:
    第一截止阀,设置在所述四通阀和所述第四电磁阀之间的管路上;
    第二截止阀,设置在所述第四电磁阀和所述室内换热器之间的管路上;
    第三截止阀,设置在所述室外膨胀阀和所述第一电磁阀之间的管路上;以及
    第四截止阀,设置在所述第二电磁阀和所述室内换热器之间的管路上;其中,
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,所述第一截止阀、所述第二截止阀、所述第三截止阀和所述第四截止阀开启;
    所述控制器还被配置为:在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若满足所述冷媒回收停止条件,则所述控制器控制所述第一截止阀、所述第二截止阀、所述第三截止阀和所述第四截止阀关闭。
  12. 根据权利要求11所述的空调系统,其中,所述室外机还包括:
    第五截止阀,设置在所述四通阀和所述第一截止阀之间的管路上;以及
    第六截止阀,设置在所述室外膨胀阀和所述第三截止阀之间的管路上;其中,
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,所述第五截止阀和所述第六截止阀开启;
    所述控制器还被配置为:在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若满足所述冷媒回收停止条件,则所述控制器控制所述第五截止阀和所述第六截止阀关闭。
  13. 根据权利要求12所述的空调系统,其中,所述室外机还包括:
    第六电磁阀,设置在所述四通阀和所述第五截止阀之间的管路上;以及
    第七电磁阀,设置在所述室外膨胀阀和所述第六截止阀之间的管路上;其中,
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,所述第六电磁阀和所述第七电磁阀开启;
    所述控制器还被配置为:在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若满足所述冷媒回收停止条件,则所述控制器控制所述第六电磁阀和所述第七电磁阀关闭。
  14. 一种空调系统,包括:
    室外机,包括室外冷媒泄漏检测装置,被配置为检测所述室外机是否发生冷媒泄漏;
    室内机,包括室内冷媒泄漏检测装置,被配置为检测所述室内机是否发生冷媒泄漏;
    冷媒回收装置,位于所述室外机和所述室内机之间,被配置为在所述室外机和所述室内机之一发生冷媒泄漏时,回收并存储所述空调系统中的冷媒;以及
    控制器,与所述室外冷媒泄漏检测装置和所述室内冷媒泄漏检测装置耦接,被配置为:
    获取所述室内冷媒泄漏检测装置的检测结果;
    根据所述室内冷媒泄漏检测装置的所述检测结果,判断是否存在发生冷媒泄漏的室内机;
    若是,则控制所述空调系统运行第一冷媒回收模式;若否,则控制所述空调系统保持当前的运行模式不变;
    获取所述室外冷媒泄漏检测装置的检测结果;
    根据所述室外冷媒泄漏检测装置的所述检测结果,判断所述室外机是否发生冷媒泄漏;
    若是,则控制所述空调系统运行第二冷媒回收模式;若否,则控制所述空调系统保持当前的运行模式不变;以及
    在完成所述第一冷媒回收模式和所述第二冷媒回收模式之一的情况下,若所述控制器接收到用于指示空调系统在制冷模式和制热模式之一下运行的控制信号,则控制所述空调系统运行冷媒释放模式;其中,
    在所述第一冷媒回收模式下,所述室内机的管路中的冷媒进入所述室外机的压缩机内,再经过所述室外机被回收至所述冷媒回收装置内;
    在所述第二冷媒回收模式下,所述室外机的管路中的冷媒进入所述压缩机内,再经过所述室内机被回收至所述冷媒回收装置内;
    在所述冷媒释放模式下,所述冷媒回收装置中回收的所述冷媒被释放至所述空调系统的管路中。
  15. 根据权利要求14所述的空调系统,其中,所述冷媒回收装置包括储液罐,所述储液罐被配置为存储所述冷媒回收装置回收的冷媒。
  16. 根据权利要求15所述的空调系统,其中,
    所述室外机还包括四通阀和室外膨胀阀;
    所述室内机包括室内换热器和室内膨胀阀,所述室内换热器与所述四通阀连接;
    所述冷媒回收装置还包括:
    第一电磁阀,所述储液罐通过所述第一电磁阀与所述室外膨胀阀连接;
    第二电磁阀,所述储液罐通过所述第二电磁阀与所述室内膨胀阀连接;
    第三电磁阀,所述第三电磁阀的第一端连通所述第一电磁阀与所述室外膨胀阀之间的管路,所述第三电磁阀的第二端连通所述第二电磁阀与所述室内膨胀阀之间的管路;以及
    第一膨胀阀,所述储液罐通过所述第一膨胀阀与第一管路连通,所述第一管路为所述室内换热器和所述四通阀之间的管路。
  17. 根据权利要求16所述的空调系统,其中,
    在所述空调系统处于所述第一冷媒回收模式时,所述室外换热器作为冷凝器进行工作,所述室内换热器作为蒸发器进行工作,所述第一电磁阀处于开启状态,所述第二电磁阀处于关闭状态,所述第三电磁阀处于关闭状态,所述第一膨胀阀处于关闭状态;
    在所述空调系统处于所述第二冷媒回收模式时,所述室外换热器作为蒸发器进行工 作,所述室内换热器作为冷凝器进行工作,所述第一电磁阀处于关闭状态,所述第二电磁阀处于开启状态,所述第三电磁阀处于关闭状态,所述第一膨胀阀处于关闭状态;
    在所述空调系统处于所述冷媒释放模式时,所述第一电磁阀处于关闭状态,所述第二电磁阀处于关闭状态,所述第三电磁阀处于开启状态,所述第一膨胀阀处于开启状态,所述储液罐中的冷媒通过所述第一膨胀阀释放至所述第一管路中,所述室外换热器和所述室内换热器中的一个作为蒸发器进行工作,另一个作为冷凝器进行工作。
  18. 根据权利要求17所述的空调系统,其中,
    所述冷媒回收装置还包括第一过冷器,所述第一过冷器具有第一通道和第二通道;所述储液罐通过所述第一膨胀阀和所述第一通道与所述第一管路连通;所述第三电磁阀的所述第一端通过所述第二通道与所述室外膨胀阀连接。
  19. 根据权利要求18所述的空调系统,其中,
    所述冷媒回收装置还包括第一温度传感器,所述第一温度传感器被配置为检测从所述第一过冷器的所述第一通道流出的冷媒的温度值;
    所述室外机还包括气液分离器和第一室外压力传感器,所述第一室外压力传感器被配置为检测从所述气液分离器进入所述压缩机的冷媒的压力值;
    所述控制器还被配置为:
    在所述空调系统运行所述冷媒释放模式时,获取所述第一温度传感器检测到的第一温度值,以及所述第一室外压力传感器检测到的压力值;
    根据所述第一室外压力传感器检测到的所述压力值确定第二温度值,所述第二温度值为所述第一室外压力传感器检测到的所述压力值对应的饱和温度值;
    判断所述第一温度值与所述第二温度值之间的差值是否小于第一预设温度值;
    若是,则所述控制器控制所述第一膨胀阀减小开度;若否,则所述控制器控制所述第一膨胀阀增大开度。
  20. 根据权利要求19所述的空调系统,其中,
    所述冷媒回收装置还包括节流装置以及第二过冷器;所述第二过冷器具有第三通道和第四通道;所述储液罐通过所述节流装置和所述第二过冷器的所述第三通道与所述第一管路连通;所述第三电磁阀的所述第二端通过所述第二过冷器的所述第四通道与所述室内膨胀阀连接。
  21. 根据权利要求20所述的空调系统,其中,
    所述冷媒回收装置还包括第二温度传感器,所述第二温度传感器被配置为检测从所述第二过冷器的所述第三通道流出的冷媒的温度值;
    所述控制器还被配置为:
    在所述空调系统运行所述冷媒释放模式时,获取所述第二温度传感器检测到的第三温度值,以及所述第一室外压力传感器检测到的所述压力值;
    根据所述第一室外压力传感器检测到的所述压力值确定所述第二温度值;
    判断所述第三温度值与所述第二温度值之间的差值是否小于第二预设温度值;
    若是,则所述控制器控制所述空调系统继续运行所述冷媒释放模式;若否,则所述控制器控制所述空调系统结束运行所述冷媒释放模式。
  22. 根据权利要求17所述的空调系统,其中,
    所述冷媒回收装置还包括第四电磁阀,所述第四电磁阀分别与所述四通阀和所述室内换热器连接;
    在所述空调系统处于所述第一冷媒回收模式、所述第二冷媒回收模式和所述冷媒释放模式之一时,所述第四电磁阀处于开启状态;
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若满足冷媒回收停止条件,则所述控制器控制所述第四电磁阀关闭;
    其中,所述冷媒回收停止条件包括以下至少之一:
    所述空调系统运行所述第一冷媒回收模式和所述第二冷媒回收模式之一的时长达到预设时长;或者,
    进入所述压缩机的冷媒的压力位于预设压力范围内。
  23. 根据权利要求22所述的空调系统,其中,
    所述冷媒回收装置还包括第五电磁阀,所述第五电磁阀分别与所述第四电磁阀和所述室内换热器连接;
    在所述空调系统处于所述第一冷媒回收模式、所述第二冷媒回收模式和所述冷媒释放模式之一时,所述第五电磁阀处于开启状态;
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若满足所述冷媒回收停止条件,则所述控制器控制所述第五电磁阀关闭。
  24. 根据权利要求23所述的空调系统,其中,
    所述冷媒回收装置还包括第二膨胀阀;所述第二膨胀阀满足以下之一:
    所述第二膨胀阀分别与所述储液罐和第二管路连通,所述第二管路为所述第四电磁阀和所述第五电磁阀之间的管路;
    或者,
    所述第二膨胀阀分别与所述第二管路和第三管路连通,所述第三管路为所述第一电磁阀和所述储液罐之间的管路;
    在所述空调系统处于所述冷媒释放模式时,所述第二膨胀阀关闭;
    在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,所述第二膨胀阀处于开启状态。
  25. 根据权利要求24所述的空调系统,其中,所述冷媒回收装置还包括:
    第一截止阀,设置在所述四通阀和所述第四电磁阀之间的管路上;
    第二截止阀,设置在所述第五电磁阀和所述室内换热器之间的管路上;
    第三截止阀,设置在所述室外膨胀阀和所述第一电磁阀之间的管路上;
    第四截止阀,设置在所述第二电磁阀和所述室内换热器之间的管路上;
    在所述空调系统处于所述第一冷媒回收模式、所述第二冷媒回收模式和所述冷媒释放模式之一时,所述第一截止阀、所述第二截止阀、所述第三截止阀和所述第四截止阀开启;
    所述控制器还被配置为:在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若满足所述冷媒回收停止条件,则所述控制器控制所述第一截止阀、所述第二截止阀、所述第三截止阀和所述第四截止阀关闭。
  26. 根据权利要求25所述的空调系统,其中,所述室外机还包括:
    第五截止阀,所述第五截止阀设置在所述四通阀和所述第一截止阀之间的管路上;
    第六截止阀,所述第六截止阀设置在所述室外膨胀阀和所述第三截止阀之间的管路上;
    在所述空调系统处于所述第一冷媒回收模式、所述第二冷媒回收模式和所述冷媒释放模式之一时,所述第五截止阀和所述第六截止阀开启;
    所述控制器还被配置为:在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若满足所述冷媒回收停止条件,则所述控制器控制所述第五截止阀和所述第六截止阀关闭。
  27. 根据权利要求26所述的空调系统,其中,所述室外机还包括:
    第六电磁阀,所述第六电磁阀设置在所述四通阀和所述第五截止阀之间的管路上;
    第七电磁阀,所述第七电磁阀设置在所述室外膨胀阀和所述第六截止阀之间的管路上;
    在所述空调系统处于所述第一冷媒回收模式、所述第二冷媒回收模式和所述冷媒释放模式之一时,所述第六电磁阀和所述第七电磁阀开启;
    所述控制器还被配置为:在所述空调系统处于所述第一冷媒回收模式和所述第二冷媒回收模式之一时,若满足冷媒回收停止条件,则所述控制器控制所述第六电磁阀和所述第七电磁阀关闭。
PCT/CN2023/078537 2022-07-19 2023-02-27 空调系统 WO2024016669A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210847980.3 2022-07-19
CN202210847980.3A CN115289605A (zh) 2022-07-19 2022-07-19 一种多联机空调系统
CN202210851580.X 2022-07-19
CN202210851580.XA CN115264648A (zh) 2022-07-19 2022-07-19 一种多联机空调系统

Publications (1)

Publication Number Publication Date
WO2024016669A1 true WO2024016669A1 (zh) 2024-01-25

Family

ID=89616907

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/078537 WO2024016669A1 (zh) 2022-07-19 2023-02-27 空调系统

Country Status (1)

Country Link
WO (1) WO2024016669A1 (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109692A (ja) * 1996-06-25 1998-01-16 Hitachi Ltd 空調機
CN103322641A (zh) * 2012-03-21 2013-09-25 广东美芝精密制造有限公司 使用可燃性冷媒空调器的安全控制方法
CN104566637A (zh) * 2013-10-29 2015-04-29 广东美的暖通设备有限公司 多联机系统及其室内机和室外机的控制方法
JP2015094574A (ja) * 2013-11-14 2015-05-18 ダイキン工業株式会社 空気調和機
JP2015209979A (ja) * 2014-04-23 2015-11-24 ダイキン工業株式会社 空気調和装置
CN109269011A (zh) * 2018-09-11 2019-01-25 奥克斯空调股份有限公司 一种空调器
CN115264620A (zh) * 2022-07-19 2022-11-01 青岛海信日立空调系统有限公司 一种多联机空调系统
CN115264648A (zh) * 2022-07-19 2022-11-01 青岛海信日立空调系统有限公司 一种多联机空调系统
CN115289553A (zh) * 2022-07-19 2022-11-04 青岛海信日立空调系统有限公司 一种多联机空调系统
CN115289605A (zh) * 2022-07-19 2022-11-04 青岛海信日立空调系统有限公司 一种多联机空调系统

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH109692A (ja) * 1996-06-25 1998-01-16 Hitachi Ltd 空調機
CN103322641A (zh) * 2012-03-21 2013-09-25 广东美芝精密制造有限公司 使用可燃性冷媒空调器的安全控制方法
CN104566637A (zh) * 2013-10-29 2015-04-29 广东美的暖通设备有限公司 多联机系统及其室内机和室外机的控制方法
JP2015094574A (ja) * 2013-11-14 2015-05-18 ダイキン工業株式会社 空気調和機
JP2015209979A (ja) * 2014-04-23 2015-11-24 ダイキン工業株式会社 空気調和装置
CN109269011A (zh) * 2018-09-11 2019-01-25 奥克斯空调股份有限公司 一种空调器
CN115264620A (zh) * 2022-07-19 2022-11-01 青岛海信日立空调系统有限公司 一种多联机空调系统
CN115264648A (zh) * 2022-07-19 2022-11-01 青岛海信日立空调系统有限公司 一种多联机空调系统
CN115289553A (zh) * 2022-07-19 2022-11-04 青岛海信日立空调系统有限公司 一种多联机空调系统
CN115289605A (zh) * 2022-07-19 2022-11-04 青岛海信日立空调系统有限公司 一种多联机空调系统

Similar Documents

Publication Publication Date Title
US8844302B2 (en) Air-conditioning apparatus
EP2940395B1 (en) Air conditioner
EP2341295B1 (en) Air conditioner
US20180340700A1 (en) Variable refrigerant flow system
US10816224B2 (en) Heat-pump air-conditioning hot-water supply device
US20110297363A1 (en) Air-conditioning apparatus
CN104676796A (zh) 空调系统及其控制方法
WO2015158109A1 (zh) 热回收多联机及控制方法
CN208635259U (zh) 一种制冷系统及空调
CN104848587A (zh) 变频多联式热泵系统及旁通电子膨胀阀的控制方法
US20220333836A1 (en) Three-pipe multi-split system and control method thereof
WO2020192087A1 (zh) 多联机空调及其控制方法
CN104633867A (zh) 复合型机房空调系统及其控制方法
CN104748307A (zh) 空调系统及其控制方法
CN115289553A (zh) 一种多联机空调系统
CN201373632Y (zh) 一种多联式空调系统
CN115264620A (zh) 一种多联机空调系统
CN107084547B (zh) 空调系统及用于空调系统的控制方法
CN110542196B (zh) 用于空调器的检测组件、控制方法、控制装置及空调器
KR20100002770A (ko) 멀티형 공기조화기 및 그 제어방법
KR100700545B1 (ko) 복수의 압축기를 구비한 공기조화기의 운전제어장치 및방법
CN114110739A (zh) 一拖多制冷制热空调机
WO2024016669A1 (zh) 空调系统
CN110671799B (zh) 一种空调系统及制冷剂流量控制方法
WO2023207126A1 (zh) 复叠式热泵系统及其控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841747

Country of ref document: EP

Kind code of ref document: A1