WO2024016719A1 - 半炭化耦合炭化工艺处理市政污泥的方法和集成设备 - Google Patents

半炭化耦合炭化工艺处理市政污泥的方法和集成设备 Download PDF

Info

Publication number
WO2024016719A1
WO2024016719A1 PCT/CN2023/084625 CN2023084625W WO2024016719A1 WO 2024016719 A1 WO2024016719 A1 WO 2024016719A1 CN 2023084625 W CN2023084625 W CN 2023084625W WO 2024016719 A1 WO2024016719 A1 WO 2024016719A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat treatment
heat
carbonization
municipal sludge
furnace
Prior art date
Application number
PCT/CN2023/084625
Other languages
English (en)
French (fr)
Inventor
赵维维
于立松
董博超
车磊
Original Assignee
浙江宜可欧环保科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江宜可欧环保科技有限公司 filed Critical 浙江宜可欧环保科技有限公司
Publication of WO2024016719A1 publication Critical patent/WO2024016719A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/02Particle separators, e.g. dust precipitators, having hollow filters made of flexible material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/38Removing components of undefined structure
    • B01D53/40Acidic components
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/10Treatment of sludge; Devices therefor by pyrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/02Multi-step carbonising or coking processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B57/00Other carbonising or coking processes; Features of destructive distillation processes in general
    • C10B57/08Non-mechanical pretreatment of the charge, e.g. desulfurization
    • C10B57/10Drying

Definitions

  • the invention belongs to the technical field of municipal sludge treatment, and particularly relates to a method and integrated equipment for treating municipal sludge using a semi-carbonization coupled carbonization process.
  • Municipal sludge is an inevitable by-product of urban sewage treatment. In recent years, with the rapid growth of sewage treatment capacity, the production of municipal sludge has also increased dramatically. Sludge contains heavy metals, microorganisms and various other contaminants. Improper sludge treatment and disposal can cause secondary environmental problems such as greenhouse gas emissions, groundwater pollution, and land pollution. At present, municipal sludge drying, pyrolysis and carbonization technology has attracted much attention. This technology has the advantages of high degree of reduction and high solidification ratio of heavy metals.
  • Chinese patent document CN107200458A discloses a municipal sludge treatment method that uses a drying furnace and a pyrolysis carbonization furnace to dehydrate and pyrolyze carbonization of municipal sludge. Both the drying furnace and the pyrolysis carbonization furnace use a jacketed rotary furnace. Indirect heating is performed. The heating temperature of the materials in the drying furnace is 100 ⁇ 150°C.
  • the drying furnace uses the auxiliary heating flue gas generated by the drying auxiliary combustion furnace and the pyrolysis furnace jacket derived from the heating jacket of the pyrolysis carbonization furnace. The flue gas provides heat; the pyrolysis carbonization furnace provides heat through the high-temperature heating flue gas generated by the mixed combustion furnace.
  • the pyrolysis carbonization furnace is provided with a pyrolysis gas outlet, and the pyrolysis gas outlet sends the pyrolysis gas generated in the furnace cavity of the pyrolysis carbonization furnace into the mixed combustion furnace for combustion to generate high-temperature heating flue gas.
  • the drying efficiency is relatively low because the heating temperature in the drying furnace is relatively low and indirect heating is used.
  • Chinese patent document CN214400194U discloses a municipal sludge drying pyrolysis carbonization system.
  • the system includes a drying furnace and a pyrolysis carbonization furnace. Both the drying furnace and the pyrolysis carbonization furnace use heating jackets.
  • the drying furnace is provided with a The dry gas outlet pipe is connected to the spray tower, condenser, and heat exchanger in sequence.
  • the pyrolysis gas outlet pipe is connected to the heat exchanger to realize heat exchange between the dry gas and the pyrolysis gas.
  • the dry gas After the heat exchanger, the outlet pipe is divided into two branches leading to the combustion chamber and the drying furnace respectively.
  • the drying furnace adopts two methods: internal heating and external heating.
  • the dry gas is sprayed and heat exchanged and then returned to the drying furnace to achieve partial circulation of the dry gas and achieve internal heating.
  • the high-temperature flue gas generated in the combustion chamber passes through the jackets of the pyrolysis carbonization furnace and drying furnace in sequence to achieve external heating. This solution improves the efficiency of drying through internal circulation of drying gas, and is also helpful in reducing odor at the project site. It represents a technological development trend, but the process of condensing first and then exchanging heat increases energy loss.
  • the purpose of the present invention is to provide a method for treating municipal sludge with a semi-carbonization coupled carbonization process based on the existing technology, and to reduce the odor at the project site on the basis of further improving the heat treatment efficiency.
  • a method of treating municipal sludge by a semi-carbonization coupled carbonization process The municipal sludge is processed through a first heat treatment section and a second heat treatment section.
  • the second heat treatment section is heated by a jacket.
  • the second heat treatment section is equipped with a second heat supply source as a jacket.
  • the air inlet end of the first heat treatment section is located at its discharge end.
  • the first heat treatment section is equipped with a first heat source.
  • the heated flue gas derived from the first heat source enters from the air inlet end of the first heat treatment section.
  • the first heat treatment section is in direct contact with the municipal sludge.
  • the movement direction of the heated flue gas is opposite to the forward direction of the municipal sludge.
  • the temperature of the heated flue gas at the air inlet end is not less than 450°C, so that the municipal sludge is in the back of the first heat treatment section. Partial carbonization occurs in the segment;
  • the first pyrolysis gas generated in the first heat treatment section is led out through the outlet end of the first heat treatment section. After dry dust removal, part of it is directed to the first heat supply source so that part of the first pyrolysis gas is discharged from the first heat treatment section. A cycle is formed between the end, the first heat supply source, and the air inlet end of the first heat treatment section.
  • the first pyrolysis gas is partially led to the second heat supply source so that part of the first pyrolysis gas is utilized through the second heat supply source.
  • the heated flue gas from the second heat treatment section is then discharged after exhaust gas treatment.
  • the "semi-carbonization” mentioned in the present invention refers to the partial carbonization of materials through direct contact with high-temperature flue gas in the latter part of the drying section where the moisture content is relatively low.
  • the first heat treatment section By increasing the temperature of the heated flue gas in the first heat treatment section, partial carbonization is achieved in the first heat treatment section. On the one hand, high temperature accelerates the drying efficiency of municipal sludge in the first heat treatment section. On the other hand, it also increases the carbonization efficiency of the second heat treatment section. Compared with the second heat treatment section using jacketed indirect heating mode, the first heat treatment section adopts jacket indirect heating mode. The direct heating mode of the heat treatment section has higher carbonization efficiency.
  • Partial carbonization can decompose some of the organic matter in the dry gas, thereby reducing the viscosity of the dry gas and reducing the impact of the viscosity of the dry gas on the stability of dry dust removal, which is beneficial to the removal of particulate matter or dust in the first pyrolysis gas .
  • the first pyrolysis gas only uses dry dust removal to ensure the water vapor content of the first pyrolysis gas.
  • the specific heat capacity of the liquid is greater than the specific heat capacity of the gas, which can improve the heat storage performance of the first pyrolysis gas, thereby improving the first heat treatment segment efficiency and reduce equipment scale. If the spray method is used, on the one hand, a large amount of organic wastewater will be generated, and the high-temperature water vapor in the first pyrolysis gas will also condense, thereby reducing the heat storage performance of the first pyrolysis gas; secondly, organic wastewater will also cause odor at the project site. Important sources.
  • the first heat treatment section is equipped with a first heat source. On the one hand, it ensures that the heated flue gas in the first heat treatment section has a high enough temperature. On the other hand, it can remove the organic components in the circulating gas in time and make full use of the organic components. of thermal energy.
  • the first pyrolysis gas is partially led to the second heat supply source and then the heated flue gas of the second heat treatment section is discharged after exhaust gas treatment, which is equivalent to "in the scheme described in Chinese patent document CN214400194U, in the drying process
  • the water vapor precipitated in the air spray stage is transferred to the tail gas treatment section.
  • the content of organic matter in the tail gas has been very low after high-temperature oxidation, which can greatly reduce the generation of odor.
  • the water vapor content in the exhaust gas is relatively high, so the amount of spray water can be reduced in subsequent exhaust gas treatment.
  • At least 50% of the first pyrolysis gas is directed to the first heat source to ensure that there is enough organic matter for combustion in the first heat source.
  • the temperature of the first pyrolysis gas when it is exported through the outlet end of the first heat treatment section is not greater than 300°C to meet the needs of subsequent dry dust removal.
  • the temperature of the heated flue gas generated by the second heat supply source at the air inlet end of the jacket is not less than 850°C.
  • a bag dust collector is used for dust removal in step (4).
  • the dust outlet of the bag dust collector is connected to the feed end of the second heat treatment section.
  • step (4) after dust removal, the first pyrolysis gas is subjected to heat exchange with the heated flue gas tail gas derived from the jacket to increase the temperature of the first pyrolysis gas.
  • the first heat supply source and the second heat supply source are equipped with combustion-supporting air, which exchanges heat with the heated flue gas tail gas derived from the jacket to reduce the temperature of the heated flue gas tail gas.
  • the exhaust gas treatment in step (4) includes deacidification treatment.
  • the invention also provides an integrated equipment for treating municipal sludge with a semi-carbonization coupled carbonization process, including a first heat treatment furnace and a second heat treatment furnace.
  • the second heat treatment furnace is an indirect thermal desorption furnace using jacket heating.
  • the second heat treatment furnace The furnace is equipped with a second heat source to provide a heat source for the jacket.
  • the first heat treatment furnace is a direct thermal desorption furnace.
  • the air inlet end of the first heat treatment furnace is located at its discharge end.
  • the first heat treatment furnace is equipped with a first heat source.
  • the first heat supply source is connected to the air inlet end of the first heat treatment furnace; the air outlet end of the first heat treatment furnace is connected to the dry dust removal device, and the air outlet end of the dry dust removal device is connected to the first heat supply source and the second
  • the heat supply source is connected, the jacket of the second heat treatment furnace is connected to the tail gas treatment device, and the pyrolysis gas outlet of the second heat treatment furnace is connected with the second heat supply source and/or the first heat supply source.
  • the dust outlet of the dry dust removal device is connected to the feed end of the second heat treatment furnace.
  • a first heat exchanger for raising the temperature of the first pyrolysis gas generated by the first heat treatment furnace is provided between the jacket of the second heat treatment furnace and the tail gas treatment device.
  • the tail gas treatment device includes a deacidification tower equipped with an alkali pool.
  • the present invention introduces the concept of semi-carbonization and uses direct contact heating to achieve partial carbonization of materials, thereby improving the heat treatment efficiency and also helping to improve the dust removal efficiency of gases.
  • dry dust removal is used instead of spray washing, which not only reduces heat energy loss, but also helps to further reduce odor at the project site.
  • Figure 1 is a schematic structural diagram of the invention
  • First heat treatment furnace 11. First heat supply source; 12. Dry dust removal device; 20. Second heat treatment furnace; 21. Second heat supply source; 22. Exhaust gas treatment device; 30. First heat exchanger ; 40. Second heat exchanger; 50. Gas supply device.
  • the integrated equipment for municipal sludge treatment by semi-carbonization coupled carbonization process is mainly composed of a first heat treatment furnace 10 and a second heat treatment furnace 20.
  • the first heat treatment furnace 10 is a direct thermal desorption furnace.
  • the first heat treatment furnace 10 is equipped with a first heat supply source 11.
  • the first heat supply source 11 is a drying hot blast furnace.
  • the first heat supply source 11 is connected to the air inlet end of the first heat treatment furnace 10.
  • the air inlet end of the first heat treatment furnace 10 is located at its discharge end.
  • the air outlet end of the first heat treatment furnace 10 is connected to the dry dust removal device 12. catch.
  • the air outlet of the dry dust removal device 12 is connected to the first heat exchanger 30 .
  • the second heat treatment furnace 20 is an indirect thermal desorption furnace using jacket heating.
  • the second heat treatment furnace 20 is equipped with a second heat supply source 21, and the second heat supply source 21 is a combustion chamber.
  • the jacket of the second heat treatment furnace 20 is connected with the first heat exchanger 30, the second heat exchanger 40 and the exhaust gas treatment device 22 in sequence.
  • the first heat treatment furnace 10 and the second heat treatment furnace 20 are equipped with a gas supply device 50 .
  • the heated flue gas exported from the first heat supply source 11 enters the first heat treatment furnace 10 from the air inlet end of the first heat treatment furnace 10 and directly contacts the municipal sludge in countercurrent flow.
  • the initial moisture content of municipal sludge at the feed end of the first heat treatment furnace 10 is 75-85%, and the moisture content at the discharge end is 15-20%.
  • the temperature of the heated flue gas at the air inlet end is 450-550°C, so that the municipal sludge is partially carbonized in the latter part of the first heat treatment section.
  • Municipal sludge is partially carbonized from the first heat treatment furnace 10 and then introduced into the second heat treatment furnace 20 for secondary complete carbonization.
  • the secondary complete carbonization is performed in the second heat treatment furnace 20 .
  • the temperature of the heated flue gas generated by the second heat supply source 21 at the air inlet end of the jacket is 850-950°C. After the carbonization treatment is completed, the municipal sludge is discharged.
  • the first pyrolysis gas generated by the first heat treatment furnace 10 is subjected to dust reduction treatment through the dry dust removal device 12 .
  • the dust removal device is a bag dust collector.
  • the temperature of the first pyrolysis gas when it is led out through the outlet end of the first heat treatment furnace 10 is 200-230°C, and the moisture content is 60-70%.
  • the particles or dust generated during the dust removal process are transported to the second heat treatment furnace 20 for harmless treatment.
  • the dust removal efficiency due to the presence of viscous organic matter in the first pyrolysis gas, the low heat carrying capacity of the flue gas, and the ease of cooling during the circulation process, the dust removal efficiency generally begins to decrease after the operation starts, and the inner walls of the first pyrolysis gas pipeline and the fan are prone to sticking.
  • the first heat treatment section uses pyrolysis gas generated by semi-carbonization.
  • the dust collector efficiency can maintain more than 95% for a long time without cleaning and maintenance.
  • the interior of the pyrolysis gas pipeline, fan and heat exchanger can be maintained once every 3 months.
  • first pyrolysis gas After the first pyrolysis gas is dedusted, heat is exchanged through the first heat exchanger 30 and the heated flue gas tail gas in the jacket of the second heat treatment furnace 20 . 70-80% of the first pyrolysis gas is distributed to the first heat supply source 11 for combustion, and 20-30% of the first pyrolysis gas is distributed to the second heat supply source 21 for combustion and discharge of water vapor.
  • the second pyrolysis gas generated by the second heat treatment furnace 20 is introduced into the second heat supply source 21 and used as fuel for supplementary combustion.
  • the gas supplied by the gas supply device 50 is natural gas, and the amount of natural gas is adjusted to control the temperatures of the first heat supply source 11 and the second heat supply source 21 .
  • the heated flue gas tail gas in the jacket of the second heat treatment furnace 20 and the dust-removed first pyrolysis gas are heat exchanged through the first heat exchanger 30 .
  • the temperature of the heated flue gas is 750-820°C, and the temperature of the first pyrolysis gas is 190-220°C.
  • the temperature of the heated flue gas is about 270-350°C, and the temperature of the first pyrolysis gas is 450-550°C. °C. Therefore, after the heat exchange of the first pyrolysis gas, the temperature is sufficient to support partial carbonization of the sludge in the first heat treatment furnace 10.
  • the first heat source 11 provided in the first heat treatment furnace 10 is mainly for removing the first heat. Decompose the organic components in the gas and perform precise temperature adjustment to stably maintain the temperature of the heated flue gas at the air intake end at 450-550°C.
  • the heated flue gas continues to exchange heat with the combustion air through the second heat exchanger 40, and the heat-exchanged combustion air enters the first heat supply source 11 and the second heat supply source 21 respectively.
  • the temperature of the heated flue gas tail gas is 150-200°C after two heat exchanges.
  • the heated flue gas exhaust enters the exhaust gas treatment device 22 for treatment and then is discharged.
  • the tail gas treatment device 22 includes a deacidification tower equipped with an alkali solution pool. Since the heated flue gas contains a lot of water vapor, the moisture in the exhaust can be condensed and recycled.
  • This system is used at a project site with a daily municipal sludge processing capacity of 60t/d.
  • the specific parameters of the material are: moisture content 75-85%, dry basis organic matter content 50-80%, dry basis calorific value 2200Kcal/kg.
  • the residence time of municipal sludge in the first heat treatment furnace 10 is 45 minutes, which is 20-25 minutes shorter than the residence time of a conventional drying furnace; the residence time of municipal sludge in the second heat treatment furnace 20 is 25 minutes, which is 20-25 minutes shorter than the residence time of a conventional carbonization furnace. It is shortened by 10-15min, and the heat treatment time is shortened by about 30-40min in total.
  • the final product of pyrolysis complies with national standards, and the heat reduction rate is ⁇ 8%.

Abstract

本发明属于市政污泥处理技术领域,特别涉及一种半炭化耦合炭化工艺处理市政污泥的方法和集成设备。该集成设备包括采用直接加热的第一热处理炉(10)和采用夹套加热的第二热处理炉(20),第二热处理炉(20)配设第二供热源(21),第一热处理炉(10)的进气端位于其出料端处,第一热处理炉(10)配设第一供热源(11),第一供热源(11)与第一热处理炉(10)的进气端相接;第一热处理炉(10)的出气端与干法除尘装置(12)相接,第二热处理炉(20)的夹套接尾气处理装置(22)。本发明通过引入半炭化的概念,用直接接触的加热方式实现物料的部分炭化,提高了热处理效率,也有助于提高气体的除尘效率。

Description

半炭化耦合炭化工艺处理市政污泥的方法和集成设备 技术领域
本发明属于市政污泥处理技术领域,特别涉及一种半炭化耦合炭化工艺处理市政污泥的方法和集成设备。
背景技术
市政污泥是城镇污水处理过程中不可避免的副产物。近年来,随着污水处理能力的快速增长,市政污泥的产量也在急剧增加。污泥中含有重金属、微生物和各种其他污染物。污泥处理处置不当,会造成温室气体排放、地下水污染、土地污染等次生环境问题。当前,市政污泥干化热解炭化技术备受关注,该技术具有减量化程度高、重金属固化比例高等优点。
中国专利文献CN107200458A公开了一种市政污泥处理方法,采用干化炉和热解炭化炉对市政污泥进行脱水和热解炭化处理,干化炉和热解炭化炉均采用夹套式回转炉进行间接性加热,干化炉内物料的加热温度为100~150℃,干化炉通过干化辅助燃烧炉产生的辅助加热烟气以及从热解炭化炉加热夹套导出的热解炉夹套烟气进行供热;热解炭化炉通过混合燃烧炉产生的高温加热烟气进行供热。热解炭化炉设置有热解气排口,热解气排口将热解炭化炉炉腔内产生的热解气送入混合燃烧炉内燃烧用以产生高温加热烟气。该方式由于干化炉内的加热温度相对较低,且采用间接加热方式,使得干化效率相对较低。
中国专利文献CN214400194U公开了一种市政污泥干化热解炭化系统,该系统包括干化炉和热解炭化炉,干化炉和热解炭化炉均采用加热夹套,干化炉上设置有干化气导出管,干化气导出管依次连接喷淋塔、冷凝器、换热器,热解气导出管与换热器连通可实现干化气与热解气的换热,干化气导出管在换热器之后分成分别通往燃烧室和干化炉的两个支路。干化炉通过采用内加热和外加热两种方式。干化气通过喷淋、换热后再次回到干化炉内实现干化气的部分循环,实现内加热。燃烧室产生的高温烟气依次通过热解炭化炉、干化炉的夹套,实现外加热。该方案通过干化气内循环的方式提高了干化的效率,也有利于降低项目现场的异味,代表了一种技术发展趋势,但是先冷凝、再换热的工艺增加了能量损耗。
技术问题
本发明的目的是在现有技术的基础上,提供一种半炭化耦合炭化工艺处理市政污泥的方法,在进一步提高热处理效率的基础上,降低项目现场的异味。
技术解决方案
为实现上述目的,本发明的技术方案如下:
半炭化耦合炭化工艺处理市政污泥的方法,市政污泥经第一热处理段、第二热处理段处理,第二热处理段采用夹套加热,第二热处理段配设第二供热源为夹套提供热源:
(1)控制市政污泥在第一热处理段的含水率,使进料端的含水率大于60%,出料端的含水率小于30%;
(2)第一热处理段的进气端位于其出料端处,第一热处理段配设第一供热源,第一供热源导出的加热烟气从第一热处理段的进气端进入第一热处理段并与市政污泥直接接触,加热烟气的运动方向与市政污泥的前进方向相反,加热烟气在进气端的温度不小于450℃使得市政污泥在第一热处理段的后段发生部分炭化;
(3)市政污泥从第一热处理段导出后进入第二热处理段,市政污泥在第二热处理段进行炭化,第二热处理段生成第二热解气,第二热解气导入第二供热源和/或第一供热源进行资源化利用;
(4)第一热处理段产生的第一热解气经第一热处理段的出气端导出,干法除尘后部分导至第一供热源使得部分第一热解气在第一热处理段的出气端、第一供热源、第一热处理段的进气端之间形成循环,第一热解气部分导至第二供热源使得部分第一热解气经第二供热源资源化利用后随第二热处理段的加热烟气经尾气处理后外排。
本发明所述的“半炭化”是指:在含水率已相对较低的干化段后段,通过高温烟气直接接触使物料发生部分炭化。
相对于中国专利文献CN214400194U,本申请的主要创新点在于:
(1)通过提高第一热处理段加热烟气的温度,在第一热处理段中实现部分炭化。一方面高温加速了市政污泥在第一热处理段中的干化效率,另一方面也相当于提高了第二热处理段的炭化效率,相比第二热处理段采用夹套间接加热模式,第一热处理段的直接加热模式炭化效率更高。
(2)部分炭化可以分解部分干化气中的有机物,从而降低干化气的粘度,减少干化气粘度对干法除尘稳定性的影响,有利于第一热解气中颗粒物或粉尘的去除。
(3)第一热解气仅采用干法除尘,保证了第一热解气的水汽含量,液体的比热容大于气体的比热容,可提高第一热解气的储热性能,从而提高第一热处理段的效率、降低设备规模。如果采用喷淋方式,一方面会产生大量有机废水,第一热解气中的高温水汽也会遇冷凝结,从而降低第一热解气的储热性能;其次,有机废水也是项目现场异味的重要来源。
(4)第一热处理段配设第一供热源,一方面保证第一热处理段的加热烟气有足够高的温度,另一方面可及时去除循环气中的有机成分,并充分利用有机成分的热能。
(5)第一热解气部分导至第二供热源后随第二热处理段的加热烟气经尾气处理后外排,相当于将“在中国专利文献CN214400194U所述方案中,在干化气喷淋阶段析出的水汽”转移到在尾气处理段析出,此时尾气中有机物经过高温氧化含量已非常低,可大幅减少异味的产生。而且尾气中水汽含量较高,在后续尾气处理中,可以减少喷淋水的用量。
作为改进,所述第一热解气至少50%的气量导至第一供热源,保证第一供热源中有足够可供燃烧的有机物。
作为改进,所述第一热解气经第一热处理段的出气端导出时的温度不大于300℃,以适应后续干法除尘的需要。
作为改进,所述第二供热源产生的加热烟气在夹套进气端的温度不小于850℃。
作为改进,所述步骤(4)中采用布袋除尘器进行除尘。
作为改进,所述布袋除尘器的出尘口与第二热处理段的进料端连通。
作为改进,所述步骤(4)中第一热解气经除尘处理后与从夹套导出的加热烟气尾气进行换热以提升第一热解气的温度。
作为改进,所述第一供热源、第二供热源配设助燃风,助燃风与从夹套导出的加热烟气尾气进行换热以降低加热烟气尾气的温度。
作为改进,所述步骤(4)中尾气处理包括脱酸处理。
本发明还提供了一种半炭化耦合炭化工艺处理市政污泥的集成设备,包括第一热处理炉和第二热处理炉,第二热处理炉为采用夹套加热的间接热脱附炉,第二热处理炉配设第二供热源为夹套提供热源,第一热处理炉为直接热脱附炉,第一热处理炉的进气端位于其出料端处,第一热处理炉配设第一供热源,第一供热源与第一热处理炉的进气端相接;第一热处理炉的出气端与干法除尘装置相接,干法除尘装置的出气端与第一供热源、第二供热源连通,第二热处理炉的夹套接尾气处理装置,第二热处理炉的热解气出口与第二供热源和/或第一供热源连通。
作为改进,所述干法除尘装置的出尘口与第二热处理炉的进料端连通。
作为改进,所述第二热处理炉的夹套与尾气处理装置之间设置用于为第一热处理炉产生的第一热解气提升温度的第一换热器。
作为改进,所述尾气处理装置包括配设有碱液池的脱酸塔。
有益效果
综上所述,本发明通过引入半炭化的概念,用直接接触的加热方式实现物料的部分炭化,提高了热处理效率,也有助于提高气体的除尘效率。同时用干法除尘替代了喷淋洗涤,不仅降低了热能损耗,也有助于进一步降低项目现场的异味。
附图说明
图1为发明的结构示意图;
10、第一热处理炉;11、第一供热源;12、干法除尘装置;20、第二热处理炉;21、第二供热源;22、尾气处理装置;30、第一换热器;40、第二换热器;50、燃气供应装置。
本发明的最佳实施方式
实施例1
如图1所示,本发明所述的半炭化耦合炭化工艺处理市政污泥的集成设备,主体为第一热处理炉10和第二热处理炉20。第一热处理炉10为直接热脱附炉,第一热处理炉10配设第一供热源11,第一供热源11为干化热风炉。第一供热源11与第一热处理炉10的进气端相接,第一热处理炉10的进气端位于其出料端处,第一热处理炉10的出气端与干法除尘装置12相接。干法除尘装置12的出气口与第一换热器30连接。第二热处理炉20为采用夹套加热的间接热脱附炉,第二热处理炉20配设第二供热源21,第二供热源21为燃烧室。第二热处理炉20的夹套依次连有第一换热器30、第二换热器40和尾气处理装置22。此外,第一热处理炉10和第二热处理炉20配设燃气供应装置50。
第一供热源11导出的加热烟气从第一热处理炉10的进气端进入第一热处理炉10,并与市政污泥直接逆流接触。市政污泥在第一热处理炉10进料端的初始含水率为75-85%,在出料端的含水率为15-20%。加热烟气在进气端的温度为450-550℃从而使得市政污泥在第一热处理段的后段发生部分炭化。
市政污泥从第一热处理炉10部分炭化后导入第二热处理炉20进行二次完全炭化。二次完全炭化在第二热处理炉20内进行。第二供热源21产生的加热烟气在夹套进气端的温度为850-950℃。炭化处理完成后,市政污泥排出。
第一热处理炉10产生的第一热解气通过干法除尘装置12进行降尘处理。除尘装置为布袋除尘器。第一热解气经第一热处理炉10的出气端导出时的温度为200-230℃,含水率为60-70%。除尘过程中产生的颗粒物或粉尘输送到第二热处理炉20中进行无害化处理。常规除尘工艺由于第一热解气中存在粘性有机物,且烟气载热量低、循环过程中易降温,一般在运行开始后除尘效率即开始下降、且第一热解气管道及风机内壁易粘附类似焦油类物质,通常只能维持1~2周的运行时间;第一热处理段采用半炭化产生的热解气,在同等条件下除尘器效率可以长期维持95%以上、无需清理维护,第一热解气管道、风机及换热器内部可以3个月维护一次。
第一热解气除尘后,通过第一换热器30与第二热处理炉20的夹套中的加热烟气尾气进行换热。70-80%的第一热解气分配到第一供热源11内燃烧,20-30%的第一热解气分配到第二供热源21内进行燃烧并实施水汽的外排。
第二热处理炉20产生的第二热解气导入到第二供热源21内,作为燃料进行补充燃烧。燃气供应装置50供应的燃气为天然气,调节天然气量以控制第一供热源11和第二供热源21的温度。
第二热处理炉20的夹套中的加热烟气尾气与除尘后的第一热解气通过第一换热器30进行换热。换热前加热烟气尾气温度为750-820℃,第一热解气温度为190-220℃,换热后加热烟气尾气温度270-350℃左右,第一热解气温度为450-550℃。所以,第一热解气经换热后,温度已足以支持污泥在第一热处理炉10发生部分炭化,第一热处理炉10配设的第一供热源11的主要是为了清除第一热解气中的有机成分并进行精确调温,将加热烟气在进气端的温度稳定保持在450-550℃。
加热烟气尾气继续通过第二换热器40与助燃风进行换热,换热后的助燃风分别进入到第一供热源11和第二供热源21内。加热烟气尾气通过两次换热后温度为150-200℃。加热烟气尾气进入到尾气处理装置22处理后排放。尾气处理装置22包括配设有碱液池的脱酸塔。由于加热烟气尾气中含有较多水蒸气,因此可以冷凝回收利用尾气中的水分。
由于干化气中的有机物成分在系统中循环,并经第一供热源11或第二供热源21的燃烧处理,有机物不会以气态或液态形式逸散到环境中,大大减少了项目现场的异味。
该系统用于某工程现场,市政污泥日处理量60t/d,物料具体参数为:含水率75-85%,干基有机质含量为50-80%,干基热值2200Kcal/kg。
市政污泥在第一热处理炉10的停留时间为45min,比常规的干化炉停留时间缩短20-25min;市政污泥在第二热处理炉20的停留时间为25min,比常规的炭化炉停留时间缩短10-15min,热处理时间共缩短30-40min左右。热解终产物符合国家标准,热酌减率<8%。
本发明的实施方式
在此处键入本发明的实施方式描述段落。
工业实用性
在此处键入工业实用性描述段落。
序列表自由内容
在此处键入序列表自由内容描述段落。

Claims (13)

  1.  半炭化耦合炭化工艺处理市政污泥的方法,市政污泥经第一热处理段、第二热处理段处理,第二热处理段采用夹套加热,第二热处理段配设第二供热源为夹套提供热源,其特征在于:
    (1)控制市政污泥在第一热处理段的含水率,使进料端的含水率大于60%,出料端的含水率小于30%;
    (2)第一热处理段的进气端位于其出料端处,第一热处理段配设第一供热源,第一供热源导出的加热烟气从第一热处理段的进气端进入第一热处理段并与市政污泥直接接触,加热烟气的运动方向与市政污泥的前进方向相反,加热烟气在进气端的温度不小于450℃使得市政污泥在第一热处理段的后段发生部分炭化;
    (3)市政污泥从第一热处理段导出后进入第二热处理段,市政污泥在第二热处理段进行炭化,第二热处理段生成第二热解气,第二热解气导入第二供热源和/或第一供热源进行资源化利用;
    (4)第一热处理段产生的第一热解气经第一热处理段的出气端导出,干法除尘后部分导至第一供热源使得部分第一热解气在第一热处理段的出气端、第一供热源、第一热处理段的进气端之间形成循环,第一热解气部分导至第二供热源使得部分第一热解气经第二供热源资源化利用后随第二热处理段的加热烟气经尾气处理后外排。
  2.  如权利要求1所述的半炭化耦合炭化工艺处理市政污泥的方法,其特征在于:所述第一热解气至少50%的气量导至第一供热源。
  3.  如权利要求1所述的半炭化耦合炭化工艺处理市政污泥的方法,其特征在于:所述第一热解气经第一热处理段的出气端导出时的温度不大于300℃。
  4.  如权利要求1所述的半炭化耦合炭化工艺处理市政污泥的方法,其特征在于:所述第二供热源产生的加热烟气在夹套进气端的温度不小于850℃。
  5.  如权利要求1所述的半炭化耦合炭化工艺处理市政污泥的方法,其特征在于:所述步骤(4)中采用布袋除尘器进行除尘。
  6.  如权利要求5所述的半炭化耦合炭化工艺处理市政污泥的方法,其特征在于:所述布袋除尘器的出尘口与第二热处理段的进料端连通。
  7.  如权利要求1所述的半炭化耦合炭化工艺处理市政污泥的方法,其特征在于:所述步骤(4)中第一热解气经除尘处理后与从夹套导出的加热烟气尾气进行换热以提升第一热解气的温度。
  8.  如权利要求1所述的半炭化耦合炭化工艺处理市政污泥的方法,其特征在于:所述第一供热源、第二供热源配设助燃风,助燃风与从夹套导出的加热烟气尾气进行换热以降低加热烟气尾气的温度。
  9.  如权利要求1所述的半炭化耦合炭化工艺处理市政污泥的方法,其特征在于:所述步骤(4)中尾气处理包括脱酸处理。
  10.  半炭化耦合炭化工艺处理市政污泥的集成设备,包括第一热处理炉(10)和第二热处理炉(20),第二热处理炉(20)为采用夹套加热的间接热脱附炉,第二热处理炉(20)配设第二供热源(21)为夹套提供热源,其特征在于:所述第一热处理炉(10)为直接热脱附炉,第一热处理炉(10)的进气端位于其出料端处,第一热处理炉(10)配设第一供热源(11),第一供热源(11)与第一热处理炉(10)的进气端相接;第一热处理炉(10)的出气端与干法除尘装置(12)相接,干法除尘装置(12)的出气端与第一供热源(11)、第二供热源(21)连通,第二热处理炉(20)的夹套接尾气处理装置(22),第二热处理炉(20)的热解气出口与第二供热源(21)和/或第一供热源(11)连通。
  11.  如权利要求10所述的半炭化耦合炭化工艺处理市政污泥的集成设备,其特征在于:所述干法除尘装置(12)的出尘口与第二热处理炉(20)的进料端连通。
  12.  如权利要求10所述的半炭化耦合炭化工艺处理市政污泥的集成设备,其特征在于:所述第二热处理炉(20)的夹套与尾气处理装置(22)之间设置用于为第一热处理炉(10)产生的第一热解气提升温度的第一换热器(30)。
  13.  如权利要求10所述的半炭化耦合炭化工艺处理市政污泥的集成设备,其特征在于:所述尾气处理装置(22)包括配设有碱液池的脱酸塔。
PCT/CN2023/084625 2022-07-18 2023-03-29 半炭化耦合炭化工艺处理市政污泥的方法和集成设备 WO2024016719A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210838664.XA CN117447039A (zh) 2022-07-18 2022-07-18 半炭化耦合炭化工艺处理市政污泥的方法和集成设备
CN202210838664.X 2022-07-18

Publications (1)

Publication Number Publication Date
WO2024016719A1 true WO2024016719A1 (zh) 2024-01-25

Family

ID=89586053

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084625 WO2024016719A1 (zh) 2022-07-18 2023-03-29 半炭化耦合炭化工艺处理市政污泥的方法和集成设备

Country Status (2)

Country Link
CN (1) CN117447039A (zh)
WO (1) WO2024016719A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130020518A (ko) * 2011-08-19 2013-02-27 박준호 슬러지 탄화시스템 및 이를 활용한 부생연료추출방법
CN108862973A (zh) * 2018-06-22 2018-11-23 山东大学 一种基于微波诱导定向加热技术热解污泥制炭的装置及方法
CN110746070A (zh) * 2019-11-19 2020-02-04 江苏中顺节能科技有限公司 生物质气炭联产耦合污泥深度处置系统及方法
CN210764947U (zh) * 2019-08-28 2020-06-16 广东天源环境科技有限公司 一种污泥干化炭化气化系统
CN211595397U (zh) * 2019-11-19 2020-09-29 江苏中顺节能科技有限公司 生物质气炭联产耦合污泥深度处置系统
CN114477709A (zh) * 2022-02-25 2022-05-13 江苏碧诺环保科技有限公司 一种不易堵塞的重金属污泥炭化系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20130020518A (ko) * 2011-08-19 2013-02-27 박준호 슬러지 탄화시스템 및 이를 활용한 부생연료추출방법
CN108862973A (zh) * 2018-06-22 2018-11-23 山东大学 一种基于微波诱导定向加热技术热解污泥制炭的装置及方法
CN210764947U (zh) * 2019-08-28 2020-06-16 广东天源环境科技有限公司 一种污泥干化炭化气化系统
CN110746070A (zh) * 2019-11-19 2020-02-04 江苏中顺节能科技有限公司 生物质气炭联产耦合污泥深度处置系统及方法
CN211595397U (zh) * 2019-11-19 2020-09-29 江苏中顺节能科技有限公司 生物质气炭联产耦合污泥深度处置系统
CN114477709A (zh) * 2022-02-25 2022-05-13 江苏碧诺环保科技有限公司 一种不易堵塞的重金属污泥炭化系统

Also Published As

Publication number Publication date
CN117447039A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
CN104986934A (zh) 一种连续式污泥热分解方法和装置
CN215886751U (zh) 污泥两级干化热解处置系统
CN104403680B (zh) 低阶煤预干燥热解分级转化的双流体循环发电系统及方法
CN214400194U (zh) 市政污泥干化热解炭化系统
WO2024016719A1 (zh) 半炭化耦合炭化工艺处理市政污泥的方法和集成设备
CN111253965A (zh) 处理村镇有机固废的系统和方法
CN101789725A (zh) 污泥能源梯级利用及联合循环发电工艺
CN209989236U (zh) 一种污泥干化处理系统
CN210952475U (zh) 黄磷炉渣及尾气余热综合回收利用系统
CN110304804B (zh) 一种污泥热调质及干化碳化节能系统
CN113583715A (zh) 一种污泥煤粉的循环流化床气化方法
CN108613507B (zh) 一种复合干化与焚烧耦合的污泥处理装置
CN217997008U (zh) 污泥干化炭化联合热处理设备
CN110736332A (zh) 一种生活垃圾干燥系统及方法
CN205443018U (zh) 污泥发电系统
CN214218533U (zh) 基于火力发电厂既有设备的污泥直接干化处理系统
CN216427220U (zh) 燃气轮机余热利用的生物质气化系统
CN214991096U (zh) 一种污泥烘干系统
CN218435491U (zh) 一种垃圾焚烧发电厂污泥干化系统
CN117843213B (zh) 一种污泥的过热蒸汽干燥工艺
CN217479294U (zh) 一种基于余热回收的垃圾焚烧与污泥干燥系统
CN219701497U (zh) 适应于污泥热解烟气消白的热处理设备
CN220550097U (zh) 市政污泥干化与水泥生产线耦合的系统
CN219955356U (zh) 一种焦化voc气体焚烧处理利用系统
CN115286208A (zh) 水泥窑余热烘干及协同处置污泥的系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23841792

Country of ref document: EP

Kind code of ref document: A1