WO2024016674A1 - 一种无滑环电力吊舱推进装置及其装配方法 - Google Patents
一种无滑环电力吊舱推进装置及其装配方法 Download PDFInfo
- Publication number
- WO2024016674A1 WO2024016674A1 PCT/CN2023/078897 CN2023078897W WO2024016674A1 WO 2024016674 A1 WO2024016674 A1 WO 2024016674A1 CN 2023078897 W CN2023078897 W CN 2023078897W WO 2024016674 A1 WO2024016674 A1 WO 2024016674A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- connecting flange
- flange
- inner shaft
- shaft
- propulsion device
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 12
- 230000005540 biological transmission Effects 0.000 claims abstract description 11
- 230000002093 peripheral effect Effects 0.000 claims description 6
- 230000008859 change Effects 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 230000007246 mechanism Effects 0.000 description 5
- 239000007789 gas Substances 0.000 description 4
- 230000033001 locomotion Effects 0.000 description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 3
- 239000003921 oil Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000013535 sea water Substances 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000010779 crude oil Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 238000004804 winding Methods 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/07—Arrangements on vessels of propulsion elements directly acting on water of propellers
- B63H5/14—Arrangements on vessels of propulsion elements directly acting on water of propellers characterised by being mounted in non-rotating ducts or rings, e.g. adjustable for steering purpose
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63B—SHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING
- B63B73/00—Building or assembling vessels or marine structures, e.g. hulls or offshore platforms
- B63B73/20—Building or assembling prefabricated vessel modules or parts other than hull blocks, e.g. engine rooms, rudders, propellers, superstructures, berths, holds or tanks
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63H—MARINE PROPULSION OR STEERING
- B63H5/00—Arrangements on vessels of propulsion elements directly acting on water
- B63H5/07—Arrangements on vessels of propulsion elements directly acting on water of propellers
- B63H5/125—Arrangements on vessels of propulsion elements directly acting on water of propellers movably mounted with respect to hull, e.g. adjustable in direction, e.g. podded azimuthing thrusters
- B63H2005/1254—Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis
- B63H2005/1258—Podded azimuthing thrusters, i.e. podded thruster units arranged inboard for rotation about vertical axis with electric power transmission to propellers, i.e. with integrated electric propeller motors
Definitions
- the invention relates to a propeller in the field of shipbuilding and offshore engineering, and in particular to a slip ring-less electric pod propulsion device and its assembly method.
- the pod thruster is a new type of ship propulsion system developed in recent years and is currently the focus of attention in the field of ship propulsion systems. Its appearance adopts a pod-type structure, that is, the combination of the motor and the propeller is installed in a shell, and the shell is "suspended" under the hull with a rotating base.
- the transmission mechanism of the traditional propeller exists It has shortcomings such as low transmission efficiency and large structural size; in addition, the traditional pod propeller is shaped like a pod, and this pod propeller can rotate 360° in the water.
- the slip ring is mainly composed of two parts: a rotating part and a stationary part. The rotating part is connected to the rotating mechanism of the equipment and performs rotational motion, which is called the "rotor". The fixed structure of the stationary part connected to the equipment is called the "stator”.
- Slip rings are divided into conductive slip rings, fluid slip rings, etc.
- Electric slip rings are mainly used in wind power, aviation, and aerospace equipment, while oil and gas slip rings are mostly used in cylinders and hydraulic systems. Although electric slip rings complete the task of transmitting power and signals, signals and power will generate interference signals during the transmission process. If the signal interference is handled improperly, it will seriously affect the normal operation of the equipment. Ordinary electric slip rings If the ring is left in a humid environment for a long time, it is easy for water to enter, which will cause a short circuit inside the slip ring and affect the normal use of the equipment.
- the medium of the hydraulic slip ring is mixed with a small amount of natural gas and crude oil and contains fine sand. Once the amount of wear increases, the slip ring will leak.
- the gas slip ring may also have extremely strong environmental influences. Vibration caused damage to thin-walled bearings and cracking of plastic spindle bearings. Not only that, when the electric pod thruster propels the ship to change direction, the existence of the slip ring will cause the cable to be entangled, making the rotation impossible and causing a certain degree of equipment damage, reducing reliability and efficiency, and the pod The multi-media slip rings used are more prone to the above problems.
- the purpose of the present invention is to provide a slip ring-free electric pod propulsion device that can avoid signal interference while meeting the requirements of the pod's steering speed and steering torque. And its assembly method is provided.
- a slip ring-free electric pod propulsion device including an upper flange, a steering gear, an inner shaft, a bearing, a rim thruster, an outer shell, an outer shaft, a connecting flange one, and a connecting flange two.
- the flange is installed on the deck.
- One end of the inner shaft is fixed to the upper flange, and the other end is connected to the rim thruster.
- the outer shaft is sleeved outside the inner shaft. The two are connected through bearings.
- the rudder The machine is installed on the deck on the upper flange side.
- One end of the outer shaft is connected to the transmission shaft of the steering gear.
- the other end of the outer shaft is interconnected with the outer shell through connecting flange one and two.
- the outer shell is covered with Outside the rim thruster.
- the upper flange provides support for the inner shaft, making the electric pod propulsion device more stable when propelling the ship.
- the upper flange and the inner shaft are hard-connected.
- the upper flange and the inner shaft are fixed and rely on the rotation of the outer shell. Change the direction of advancement.
- the upper half shell, the lower half shell and the connecting flange constitute the shell unit of this thruster, which corresponds to the inner shell unit of this thruster, that is, the rim thruster.
- the rim thruster keeps its own motion unchanged, and the outer shell The unit will rotate under the drive of the steering gear, thereby changing the water exit angle of the rim thruster propeller blades.
- the rim propeller is mainly composed of conduits, motors, iron cores, coils, permanent magnet rotors and propellers.
- the motor, iron core and coil are placed in the inner cavity of the conduit as the stator, and the permanent magnet is placed as the rotor at the root of the propeller blade in the form of a ring.
- the phase magnetic field interaction between the permanent magnet poles and the motor stator drives the propeller blades to rotate.
- the stator and rotor are coated with epoxy resin to prevent seawater from entering the stator and rotor.
- the inner shell is directly connected to the inner shaft, and the rim propeller and the outer shell unit rely on the bearings on the inner shaft for relative movement.
- the outer shell member has a hollow drum-shaped structure, and its opposite two side planes are both open surfaces.
- the shell component includes an upper half shell and a lower half shell.
- the upper half shell and the lower half shell bisect the entire shell component in the radial direction.
- the two are connected by bolts, and the bottom end of the outer shaft is coaxially fixed with a connection method.
- Flange one, a connecting flange two is fixed on the top of the upper half shell, and the connecting flange one and the connecting flange two are fixed coaxially.
- a flange gasket is provided between the connecting surfaces of the first connecting flange and the second connecting flange.
- the upper flange, inner shaft, outer shaft, connecting flange one, connecting flange two, upper half shell, and lower half shell are all on the same center line.
- steering gear and the outer shaft are connected through a chain drive.
- the steering gear is composed of a motor, a reduction gear set, a potentiometer, a control circuit, a housing, and a steering wheel. It provides power for the rotation of the housing unit, thereby propelling the ship to change its direction.
- the steering gear When it is necessary to change the direction, the steering gear provides power, and the chain transmission mechanism transmits the power to the outer shell unit.
- the two open planes of the outer shell part are both water outlets.
- the water outlet has an angle with the opening of the inner shell unit.
- the propeller The water outlet direction will change with the change of the angle, thereby changing the direction of the entire ship's thrust and changing the ship's course; rather than relying on the overall steering of the pod to change the thrust direction.
- a central through hole is opened inside the inner shaft along its axial direction, and various cables are passed through the central through hole from the top of the inner shaft to the bottom of the inner shaft, and are connected to the rim propeller.
- the gas, liquid, and oil cables pass through the central through hole of the inner shaft, enter the interior of the pod, and are directly connected to the rim thruster. No slip rings are used in the middle, which can effectively avoid the entanglement of the cables when changing the propulsion direction.
- the inner shaft and Bearings are installed between the outer shafts. The bearings can ensure that the friction resistance of the outer shafts is small when they rotate.
- An assembly method of the above-mentioned slip ring-free electric pod propulsion device includes the following steps:
- Step 1 Fix the upper flange and steering gear to the deck through bolts
- Step 2 Fixedly connect the connecting flange 2 to the housing, then connect the connecting flange 1 to one end of the outer shaft, and finally connect the connecting flange 1 to the connecting flange 2;
- Step 3 Install the bearing on the outer peripheral surface of the inner shaft, and connect the lower end of the inner shaft to the rim propeller;
- Step 4 Insert the inner shaft into the outer shaft, and connect the upper end of the inner shaft through the deck and the upper flange with bolts, and then connect the inner peripheral wall of the outer shaft to the outer peripheral wall of the inner shaft through the bearing;
- Step 5 Complete the assembly of the shell parts, and the entire electric pod propulsion device is installed.
- This electric pod propulsion device does not use slip rings, which avoids short circuits, leaks and signal interference that may be caused by the use of slip rings.
- the cables are directly connected to the rim thruster through the inner shaft, cleverly avoiding The winding of cables when changing the propulsion direction greatly reduces equipment costs and improves reliability;
- This electric pod propulsion device does not use the traditional method of changing the propulsion direction.
- the direction of the inner shaft and rim thruster always remains unchanged.
- the steering gear transmits power to the outer shell through the transmission mechanism, causing the direction of the outer shell to change. change, ultimately driving a change in the direction of the entire ship;
- the electric pod propulsion device has a simple structure, and it is convenient to assemble and maintain the device.
- Figure 1 is a front view of the present invention
- Figure 2 is a side view of the present invention
- Figure 3 is a top view of the present invention.
- Figure 4 is a front view of the housing unit
- Figure 5 is a side view of the housing unit
- Figure 6 is a front view of the rim propeller
- Figure 7 is a side view of the rim propeller
- Figure 8 is a front view of the outer shell member of the present invention when it changes direction
- Figure 9 is a top view of the housing component of the present invention when its direction is changed.
- a slip ring-free electric pod propulsion device as shown in Figures 1 to 7, includes an upper flange 101, a steering gear 102, an inner shaft 201, a bearing 202, a rim thruster 203, an outer shell, an outer shaft 301, and connections Flange one 302, connecting flange two 303, and the shell component includes an upper half shell 304 and a lower half shell 305.
- the upper flange 101 is installed on the deck.
- One end of the inner shaft 201 is fixed to the center hole of the upper flange 101, and the other end is connected to the rim propeller 203.
- the inner shaft 201 has a central through hole along its axial direction.
- the various cables are respectively passed through the central through hole from the top of the inner shaft 201 to the bottom of the inner shaft 201, and are connected to the rim pusher 203.
- the center hole of the upper flange 101 is connected to the inner shaft 201, which ensures the stability of the entire device during operation.
- the gas, liquid and oil cables pass through the center hole of the upper flange 101 and the center through hole of the inner shaft 201 and are directly connected to the wheel.
- the edge thruster 203 is connected, which not only avoids the use of slip rings, but also avoids the entanglement of cables when changing the propulsion direction.
- the outer shaft 301 is sleeved outside the inner shaft 201, and the two are connected through the bearing 202.
- the steering gear 102 is installed on the deck on the upper flange 101 side.
- One end of the outer shaft 301 is connected to the transmission shaft of the steering gear 102.
- the steering gear 102 It and the outer shaft 301 are driven by a chain, and transmission gears are installed on both.
- the chain transmits the power generated by the steering gear 102 to the outer shaft 301, so that the outer shaft 301 can rotate.
- the upper flange 101 including the inner shaft 201 and the rim propeller 203 remain stationary when the pod changes the water outlet direction; and the inner shaft 201 is equipped with a bearing 202.
- the existence of the bearing 202 realizes the connection between the inner shaft 201 and the outer shaft. 301, and the rim propeller 203 and the outer shell component that are hard-connected to the two can also move relative to each other. In the process of changing direction, only the outer shaft 301 drives the steering of the outer shell component, and other components remain unchanged. movement, reducing the complexity of steering and improving the working efficiency of the entire device.
- the other end of the outer shaft 301 is interconnected with the outer shell part through the first connecting flange 302 and the second connecting flange 303.
- the outer shell part has a hollow drum-shaped structure, and the planes on both opposite sides are open surfaces.
- the upper half shell 304 and the lower half shell The shell 305 bisects the entire shell part along the radial direction, and the two are connected by bolts.
- the bottom end of the outer shaft 301 is fixed with a connecting flange 302 coaxially, and the top of the upper half shell 304 is fixed with a connecting flange 303.
- the connection method The first flange 302 and the second connecting flange 303 are coaxially fixed.
- a flange gasket is provided between the connecting surfaces of the first connecting flange 302 and the second connecting flange 303.
- Dividing the outer shell into an upper half shell 304 and a lower half shell 305 makes it easier to install the rim propeller 203 inside it.
- the inner part of the rim propeller 203 is connected to the inner shaft 201.
- the interior of the rim propeller 203 is composed of blades, ducts, motors, iron cores, coils, and permanent magnet rotors. Epoxy is used between the motor stator and the permanent magnet rotor.
- the resin coating effectively prevents seawater from penetrating into the stator and rotor, and the current between the two cuts the magnetic lines of induction to drive the propeller blades to rotate and achieves shaftless drive with the help of the external rotor motor, changing the traditional shaft drive propeller propulsion method to improve controllability, efficiency and stability.
- the outer shaft 301 of the outer part is softly connected to the inner shaft 201 through the bearing 202.
- the connecting flange one 302 and the connecting flange two 303 connected to the lower end of the outer shaft 301 rotate synchronously.
- the connecting flange one 302 and the connecting flange two 303 There are flange gaskets in between and fixed together with bolts, which can ensure the watertightness of the inner shaft 201 to a certain extent; the first connecting flange 302 and the second connecting flange 303 respectively connect the outer shaft 301 and the upper half shell 304 to form
- the outer part of the main body simplifies the structure and reduces costs.
- the upper half shell 304 is hard-connected to the outer shaft 301, as shown in Figures 8 and 9.
- power is provided by the steering gear 102 and transmitted to the outer shell through the chain transmission mechanism, causing it to rotate to a certain extent. angle to complete the steering change. This way of changing the steering simplifies the structure of the device, saves costs and can improve the efficiency of the electric pod propulsion device.
- the assembly method of the above-mentioned electric pod propulsion device is as follows:
- Step 1 Securely connect the upper flange 101 and the lower end of the steering gear 102 to the deck with bolts;
- Step 2 Fixedly connect the second connecting flange 303 to the upper half shell 304, and fix the connecting flange 302 to the outer shaft 301, and then fix the connecting flange 302 to the second connecting flange 303 to form an outer shaft. the main part of a part;
- Step 3 Connect the bearing 202 to the inner shaft 201, and directly connect the lower end of the inner shaft 201 to the rim propeller 203 to form the entire inner part;
- Step 4 Connect the inner shaft 201 through the deck and the upper flange 101 with bolts, and then connect the outer shaft 301 and the inner shaft 201 through the bearing 202;
- Step 5 After all components are installed, securely connect the lower half shell 305 and the upper half shell 304 with bolts to complete the installation of the electric pod propulsion device.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Ocean & Marine Engineering (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Connection Of Motors, Electrical Generators, Mechanical Devices, And The Like (AREA)
- Power Steering Mechanism (AREA)
- Wind Motors (AREA)
Abstract
一种无滑环电力吊舱推进装置,包括上法兰(101)、舵机(102)、内轴(201)、轴承(202)、轮缘推进器(203)、外壳件、外轴(301)、连接法兰一(302)、连接法兰二(303),上法兰(101)安装于甲板上,内轴(201)两端与上法兰(101)、轮缘推进器(203)连接,外轴(301)通过轴承(202)套设于内轴(201)外,舵机(102)设在上法兰(101)一侧的甲板上,外轴(301)的一端与舵机(102)的传动轴连接,另一端与外壳件通过连接法兰一(302)、连接法兰二(303)互连,外壳件包覆于轮缘推进器(203)外。本装置可避免短路、缠绕以及信号干扰的现象。
Description
本发明涉及船舶海工领域的一种推进器,尤其是涉及一种无滑环电力吊舱推进装置及其装配方法。
吊舱推进器是近年发展起来的一种新型船舶推进系统,是目前船舶推进系统领域引人瞩目的焦点。它的外形采用了吊舱式的结构形式,即将电动机与螺旋桨的组合安装在一个壳体里,并将此壳体用一个旋转基座“悬吊”在船体下方,传统推进器的传动机构存在传动效率低、结构尺寸大等缺点;另外,传统吊舱推进器的外形像一个荚,这种荚式推进器可以在水中360°旋转。滑环主要由旋转部件和静止部件两大部分组成,旋转部分连接设备的旋转机构并随之做旋转运动,称为“转子”,静止部分连接设备的固定结构称为“定子”。
滑环分为导电滑环、流体滑环等,电滑环主要用于风电、航空、航天设备上,油液、气滑环更多的用于气缸、液压系统上。电滑环虽然完成输送电源和信号的工作,但是信号和电源在传输过程中,会产生干扰信号,若对信号干扰的处理方式不恰当,就会严重影响到设备的正常运转,普通的电滑环若长期在潮湿的环境中,很容易进水,进而会导致滑环内部短路,影响设备的正常使用。
液压滑环的介质中夹杂着少量天然气的原油且含有细砂,若磨损量一旦增大,滑环就会处于泄露状态;气滑环除以上两个弊端外,还可能由于环境有极强的振动造成薄壁轴承损坏,塑料主轴轴承开裂。不仅如此,在电力吊舱推进器推进船舶改变方向时,滑环的存在会导致线缆的缠绕,导致回转工作无法进行且会导致一定程度的设备的损坏,降低可靠性及效率,而吊舱使用的多介质滑环更容易出现以上问题。
发明内容
发明目的:针对上述问题,本发明的目的是提供一种无滑环电力吊舱推进装置,在满足吊舱转向速度和转向力矩要求的同时,避免信号干扰。并提供了其装配方法。
技术方案:一种无滑环电力吊舱推进装置,包括上法兰、舵机、内轴、轴承、轮缘推进器、外壳件、外轴、连接法兰一、连接法兰二,上法兰安装于甲板上,内轴的一端与上法兰固定,另一端与轮缘推进器连接,外轴套设于内轴外,两者通过轴承连接,舵
机在上法兰一侧安装于甲板上,外轴的一端与舵机的传动轴连接,外轴的另一端与外壳件通过连接法兰一、连接法兰二互连,外壳件包覆于轮缘推进器外。
上法兰为内轴提供支撑力,使本电力吊舱推进装置推进船舶运行时更加稳定,且上法兰和内轴之间是硬连接,上法兰和内轴固定,依靠外壳件的转动改变推进方向。
上半壳体、下半壳体以及连接法兰二构成本推进器的外壳单元,与本推进器的内壳单元,即轮缘推进器相对应,轮缘推进器保持自身动作不变,外壳单元会在舵机的带动下转动,从而改变轮缘推进器螺旋桨叶的出水角度。
轮缘推进器主要由导管、电机、铁芯、线圈、永磁磁体转子和桨叶等部件组成。电机、铁芯及线圈作为定子安放在导管内腔内,永磁磁体作为转子安放在螺旋桨叶根部以环的形式出现,导管内部和环转子之间存在一定的间隙,两者间靠齿轮磨合进行连接。永磁磁极和电机定子之间通过相磁场相互作用来驱动螺旋桨桨叶旋转。定子与转子使用环氧树脂包覆,可以阻止海水进入定转子。且内壳与内轴直接相连,轮缘推进器与外壳单元之间依靠内轴上的轴承相对运动。
进一步的,外壳件为空心鼓状结构,其相对两侧平面均为开放面。
进一步的,外壳件包括上半壳体、下半壳体,上半壳体与下半壳体沿径向平分整个外壳件,两者通过螺栓连接,外轴的底端同轴固定有连接法兰一,上半壳体的顶部固定有连接法兰二,连接法兰一与连接法兰二同轴固定。
最佳的,连接法兰一与连接法兰二的连接面之间设有法兰垫片。
最佳的,上法兰、内轴、外轴、连接法兰一、连接法兰二、上半壳体、下半壳体均在同一条中心线上。
进一步的,舵机与外轴之间通过链条传动连接。
舵机由电机、减速齿轮组、电位器、控制电路、外壳、以及舵盘组成,为外壳单元的转动提供动力,从而推进船舶改变运行方向。
在需要改变方向时,由舵机提供动力,且由链条传动机构将动力传送给外壳单元,外壳件的两个开放平面均为出水口,出水口与内壳单元的开口有夹角,推进器的出水方向会随着夹角的改变而改变,从而改变整条船的推力的方向,改变船舶航向;而非依靠吊舱的整体转向改变推力方向。
进一步的,内轴的内部沿其轴向开设有中心通孔,多种线缆分别从内轴顶端穿设于中心通孔中至内轴底端,并与轮缘推进器连接。
气、液、油电缆通过内轴的中心通孔,进入到吊舱内部,直接与轮缘推进器相连,中间不使用滑环,可以有效地避免改变推进方向时线缆的缠绕,内轴和外轴之间装有轴承,轴承可以保证外轴在转动时摩擦阻力较小。
一种上述的无滑环电力吊舱推进装置的装配方法,包括以下步骤:
步骤一:将上法兰、舵机分别通过螺栓固定在甲板上;
步骤二:将连接法兰二与外壳件固定连接,再将连接法兰一与外轴的一端固定连接,最后将连接法兰一与连接法兰二固定连接;
步骤三:将轴承安装于内轴的外周面上,并将内轴的下端与轮缘推进器相连;
步骤四:将内轴插入外轴中,并使内轴的上端穿过甲板与上法兰用螺栓固定连接,进而将外轴的内周壁通过轴承与内轴的外周壁配合连接;
步骤五:完成外壳件的装配,整个电力吊舱推进装置安装完毕。
有益效果:与现有技术相比,本发明的优点是:
(1)该电力吊舱推进装置未使用滑环,避免了使用滑环可能导致的短路、泄露以及信号干扰的现象,且将线缆通过内轴与轮缘推进器直接相连,巧妙地避免了改变推进方向时线缆的缠绕,大大降低设备成本,提高可靠性;
(2)该电力吊舱推进装置未使用传统的改变推进方向的方式,内轴以及轮缘推进器的方向始终保持不变,舵机通过传动机构传递动力给外壳件,使外壳件的方向发生改变,最终推动整个船舶的方向发生改变;
(3)该电力吊舱推进装置结构简单,且组装、维护该装置较为方便。
图1为本发明的正视图;
图2为本发明的侧视图;
图3为本发明的俯视图;
图4为外壳单元正视图;
图5为外壳单元侧视图;
图6为轮缘推进器正视图;
图7为轮缘推进器侧视图;
图8本发明外壳件改变方向时的正视图;
图9本发明外壳件改变方向时的俯视图。
下面结合附图和具体实施例,进一步阐明本发明,应理解这些实施例仅用于说明本发明而不用于限制本发明的范围。
一种无滑环电力吊舱推进装置,如图1~7所示,包括上法兰101、舵机102、内轴201、轴承202、轮缘推进器203、外壳件、外轴301、连接法兰一302、连接法兰二303,外壳件包括上半壳体304、下半壳体305。
上法兰101安装于甲板上,内轴201的一端与上法兰101的中心孔固定,另一端与轮缘推进器203连接,内轴201的内部沿其轴向开设有中心通孔,多种线缆分别从内轴201顶端穿设于中心通孔中至内轴201底端,并与轮缘推进器203连接。上法兰101的中心孔与内轴201相连接,保证了整个装置工作时的稳定,且气、液、油电缆通过上法兰101的中心孔以及内轴201的中心通孔后直接与轮缘推进器203相连,不仅避免了滑环的使用,且避免了改变推进方向时线缆的缠绕。
外轴301套设于内轴201外,两者通过轴承202连接,舵机102在上法兰101一侧安装于甲板上,外轴301的一端与舵机102的传动轴连接,舵机102与外轴301通过链条传动,两者上均安装有传动齿轮,链条将舵机102产生的动力传送给外轴301,使外轴301能够转动。
包括内轴201在内的上法兰101以及轮缘推进器203在吊舱改变出水方向时都保持不动;且内轴201上装有轴承202,轴承202的存在实现了内轴201与外轴301的相对运动,且分别与其二者硬连接的轮缘推进器203及外壳件也可以相对运动,实现了在转变方向的过程中,只有外轴301带动外壳件的转向,其他部件则保持不动,降低转向的复杂度,提高了整个装置的工作效率。
外轴301的另一端与外壳件通过连接法兰一302、连接法兰二303互连,外壳件为空心鼓状结构,其相对两侧平面均为开放面,上半壳体304与下半壳体305沿径向平分整个外壳件,两者通过螺栓连接,外轴301的底端同轴固定有连接法兰一302,上半壳体304的顶部固定有连接法兰二303,连接法兰一302与连接法兰二303同轴固定。连接法兰一302与连接法兰二303的连接面之间设有法兰垫片。
将外壳件分为上半壳体304与下半壳体305,更加方便轮缘推进器203安装于其内部。
上法兰101、内轴201、外轴301、连接法兰一302、连接法兰二303、上半壳体304、
下半壳体305均在同一条中心线上。
内部分的轮缘推进器203与内轴201相连,轮缘推进器203内部由桨叶、导管、电机、铁芯、线圈、永磁磁体转子,电机定子与永磁磁体转子之间使用环氧树脂包覆,有效阻止海水渗入定转子,且其二者之间通过相互切割磁感线的电流作用来驱动螺旋桨桨叶旋转并借助外转子电机实现无轴驱动,改变了传统的轴系驱动螺旋桨的推进方式,提高可控性、效率以及稳定性。
外部分的外轴301通过轴承202和内轴201软连接,外轴301下端连接的连接法兰一302与连接法兰二303是同步旋转的,连接法兰一302与连接法兰二303之间有法兰垫片并用螺栓固定在一起,在一定程度上可以保证内轴201的水密性;连接法兰一302和连接法兰二303分别连接外轴301和上半壳体304使其形成外部分的主体,简化结构,降低成本。
上半壳体304与外轴301之间硬连接,如图8、9所示,在吊舱旋转的过程中,由舵机102提供动力,通过链条传动机构传送给外壳件,使其旋转一定的角度,完成转向改变。这种改变转向的方式简化了装置的结构,节省成本且能够提高本电力吊舱推进装置的效率。
上述电力吊舱推进装置的装配方法如下:
步骤一:将上法兰101、舵机102的下端与甲板用螺栓固定连接;
步骤二:将连接法兰二303与上半壳体304固定连接,且将连接法兰一302与外轴301固定连接,进而将连接法兰一302与连接法兰二303固定连接,组成外部分的主体部分;
步骤三:将轴承202与内轴201连接,且将内轴201的下端直接与轮缘推进器203相连,组成内部分的整体;
步骤四:将内轴201穿过甲板与上法兰101用螺栓固定连接,进而将外轴301与内轴201通过轴承202配合连接;
步骤五:在所有部件安装好之后,将下半壳体305与上半壳体304用螺栓固定连接,完成该电力吊舱推进装置的安装。
Claims (8)
- 一种无滑环电力吊舱推进装置,其特征在于:包括上法兰(101)、舵机(102)、内轴(201)、轴承(202)、轮缘推进器(203)、外壳件、外轴(301)、连接法兰一(302)、连接法兰二(303),上法兰(101)安装于甲板上,内轴(201)的一端与上法兰(101)固定,另一端与轮缘推进器(203)连接,外轴(301)套设于内轴(201)外,两者通过轴承(202)连接,舵机(102)在上法兰(101)一侧安装于甲板上,外轴(301)的一端与舵机(102)的传动轴连接,外轴(301)的另一端与外壳件通过连接法兰一(302)、连接法兰二(303)互连,外壳件包覆于轮缘推进器(203)外。
- 根据权利要求1所述的一种无滑环电力吊舱推进装置,其特征在于:外壳件为空心鼓状结构,其相对两侧平面均为开放面。
- 根据权利要求2所述的一种无滑环电力吊舱推进装置,其特征在于:外壳件包括上半壳体(304)、下半壳体(305),上半壳体(304)与下半壳体(305)沿径向平分整个外壳件,两者通过螺栓连接,外轴(301)的底端同轴固定有连接法兰一(302),上半壳体(304)的顶部固定有连接法兰二(303),连接法兰一(302)与连接法兰二(303)同轴固定。
- 根据权利要求3所述的一种无滑环电力吊舱推进装置,其特征在于:连接法兰一(302)与连接法兰二(303)的连接面之间设有法兰垫片。
- 根据权利要求3所述的一种无滑环电力吊舱推进装置,其特征在于:上法兰(101)、内轴(201)、外轴(301)、连接法兰一(302)、连接法兰二(303)、上半壳体(304)、下半壳体(305)均在同一条中心线上。
- 根据权利要求1所述的一种无滑环电力吊舱推进装置,其特征在于:舵机(102)与外轴(301)之间通过链条传动连接。
- 根据权利要求1所述的一种无滑环电力吊舱推进装置,其特征在于:内轴(201)的内部沿其轴向开设有中心通孔,多种线缆分别从内轴(201)顶端穿设于中心通孔中至内轴(201)底端,并与轮缘推进器(203)连接。
- 一种根据权利要求1~7任一所述的无滑环电力吊舱推进装置的装配方法,其特征在于包括以下步骤:步骤一:将上法兰(101)、舵机(102)分别通过螺栓固定在甲板上;步骤二:将连接法兰二(303)与外壳件固定连接,再将连接法兰一(302)与外轴(301)的一端固定连接,最后将连接法兰一(302)与连接法兰二(303)固定连接;步骤三:将轴承(202)安装于内轴(201)的外周面上,并将内轴(201)的下端与轮缘推进器(203)相连;步骤四:将内轴(201)插入外轴(301)中,使内轴(201)的上端穿过甲板与上法兰(101)用螺栓固定连接,进而将外轴(301)的内周壁通过轴承(202)与内轴(201)的外周壁配合连接;步骤五:完成外壳件的装配,整个电力吊舱推进装置安装完毕。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023542993A JP7534002B1 (ja) | 2022-07-21 | 2023-03-01 | スリップリングレス電気式ポッド推進装置及びその組立方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210873301.X | 2022-07-21 | ||
CN202210873301.XA CN115195981B (zh) | 2022-07-21 | 2022-07-21 | 一种无滑环电力吊舱推进装置及其装配方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024016674A1 true WO2024016674A1 (zh) | 2024-01-25 |
Family
ID=83585039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/078897 WO2024016674A1 (zh) | 2022-07-21 | 2023-03-01 | 一种无滑环电力吊舱推进装置及其装配方法 |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7534002B1 (zh) |
CN (1) | CN115195981B (zh) |
WO (1) | WO2024016674A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115195981B (zh) * | 2022-07-21 | 2024-08-30 | 江苏科技大学 | 一种无滑环电力吊舱推进装置及其装配方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007230509A (ja) * | 2006-03-03 | 2007-09-13 | Mitsui Eng & Shipbuild Co Ltd | ポッド推進器及びそれを備えた船舶 |
KR20160053025A (ko) * | 2014-10-30 | 2016-05-13 | 현대중공업 주식회사 | 선박용 추진장치 |
CN209617429U (zh) * | 2019-03-26 | 2019-11-12 | 刘志超 | 一种多角度全回转推进器及水下机器人动力装置 |
CN110697012A (zh) * | 2019-10-15 | 2020-01-17 | 浙江华船海工科技有限公司 | 一种吊舱式电动无轴泵喷推进器 |
CN111017178A (zh) * | 2019-12-27 | 2020-04-17 | 哈尔滨工程大学 | 一种吊舱式轮缘推进器 |
CN115195981A (zh) * | 2022-07-21 | 2022-10-18 | 江苏科技大学 | 一种无滑环电力吊舱推进装置及其装配方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2949574B1 (en) * | 2014-05-30 | 2018-07-11 | ABB Schweiz AG | Pod propulsion unit of a ship |
EP3375705B1 (en) | 2015-11-11 | 2020-04-15 | Yamaha Hatsudoki Kabushiki Kaisha | Ship propulsion device |
CN205808666U (zh) * | 2016-04-22 | 2016-12-14 | 兰州大学 | 一种可控速度角度的自然沙粒发射装置 |
JP2018079742A (ja) | 2016-11-14 | 2018-05-24 | ヤマハ発動機株式会社 | 船舶用推進装置およびそれを備えた船舶 |
CN107719610A (zh) * | 2017-10-23 | 2018-02-23 | 大连海事大学 | 一种船用涡轮轮缘发电拖式吊舱推进器 |
-
2022
- 2022-07-21 CN CN202210873301.XA patent/CN115195981B/zh active Active
-
2023
- 2023-03-01 WO PCT/CN2023/078897 patent/WO2024016674A1/zh active Application Filing
- 2023-03-01 JP JP2023542993A patent/JP7534002B1/ja active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007230509A (ja) * | 2006-03-03 | 2007-09-13 | Mitsui Eng & Shipbuild Co Ltd | ポッド推進器及びそれを備えた船舶 |
KR20160053025A (ko) * | 2014-10-30 | 2016-05-13 | 현대중공업 주식회사 | 선박용 추진장치 |
CN209617429U (zh) * | 2019-03-26 | 2019-11-12 | 刘志超 | 一种多角度全回转推进器及水下机器人动力装置 |
CN110697012A (zh) * | 2019-10-15 | 2020-01-17 | 浙江华船海工科技有限公司 | 一种吊舱式电动无轴泵喷推进器 |
CN111017178A (zh) * | 2019-12-27 | 2020-04-17 | 哈尔滨工程大学 | 一种吊舱式轮缘推进器 |
CN115195981A (zh) * | 2022-07-21 | 2022-10-18 | 江苏科技大学 | 一种无滑环电力吊舱推进装置及其装配方法 |
Also Published As
Publication number | Publication date |
---|---|
CN115195981A (zh) | 2022-10-18 |
CN115195981B (zh) | 2024-08-30 |
JP7534002B1 (ja) | 2024-08-14 |
JP2024531011A (ja) | 2024-08-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101546931B (zh) | 一种集成推进器 | |
CN103818535B (zh) | 集成电机推进装置 | |
CN105109650B (zh) | 对转无轴轮缘驱动推进器 | |
US2714866A (en) | Device for propelling a ship | |
US20080089786A1 (en) | Counter-Rotating Integrated Propeller Assembly | |
CN105346696B (zh) | 集成式对转桨推进器 | |
CN203482005U (zh) | 涵道力矩转子集成螺旋电动喷水推进器 | |
FI75777B (fi) | Undervattensdrivanordning foer propeller. | |
CN102632982A (zh) | 无轴驱动式集成电机推进器 | |
CN105416531A (zh) | 磁耦合全海深推进器 | |
WO2024016674A1 (zh) | 一种无滑环电力吊舱推进装置及其装配方法 | |
CN206456535U (zh) | 基于潜水电机的无轴推进器 | |
CN212172503U (zh) | 一种水润滑轴承支撑的周向多电机驱动的环形电力推进器 | |
CN108730349A (zh) | 一种用于深海有毂轮缘推进器的集成式油润滑轴承 | |
CN103280922A (zh) | 一种电动机 | |
CN107521646A (zh) | 一种磁轴承轮缘式电机驱动的对转螺旋桨驱动装置 | |
CN111152907A (zh) | 一种推进系统及其控制方法 | |
CN108974308A (zh) | 一种新型的无轴式电力推进器 | |
CN114726177A (zh) | 永磁对转推进电机及航行器 | |
US5941744A (en) | Vectored propulsion system for sea-going vessels | |
RU2119875C1 (ru) | Судовая движительно-двигательная установка типа "поворотная колонка" | |
CN111641308A (zh) | 一种轴向磁通电机驱动的环形电力推进器 | |
CN212435560U (zh) | 一种轴向磁通电机驱动的环形电力推进器 | |
CN212709918U (zh) | 一种轴系支撑的周向多电机驱动的环形电力推进器 | |
CN213139105U (zh) | 对转桨式环形电力推进器 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023542993 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23841752 Country of ref document: EP Kind code of ref document: A1 |