WO2024016607A1 - 一种清淤机器人 - Google Patents

一种清淤机器人 Download PDF

Info

Publication number
WO2024016607A1
WO2024016607A1 PCT/CN2022/143870 CN2022143870W WO2024016607A1 WO 2024016607 A1 WO2024016607 A1 WO 2024016607A1 CN 2022143870 W CN2022143870 W CN 2022143870W WO 2024016607 A1 WO2024016607 A1 WO 2024016607A1
Authority
WO
WIPO (PCT)
Prior art keywords
dredging
frame
arm
robot
desilting
Prior art date
Application number
PCT/CN2022/143870
Other languages
English (en)
French (fr)
Inventor
曹衍龙
王立忠
王明瑞
马孝林
黄六一
王振
王浩丞
王敬
Original Assignee
青岛求是工业技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛求是工业技术研究院 filed Critical 青岛求是工业技术研究院
Publication of WO2024016607A1 publication Critical patent/WO2024016607A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/88Dredgers; Soil-shifting machines mechanically-driven with arrangements acting by a sucking or forcing effect, e.g. suction dredgers
    • E02F3/90Component parts, e.g. arrangement or adaptation of pumps
    • E02F3/92Digging elements, e.g. suction heads
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/28Dredgers or soil-shifting machines for special purposes for cleaning watercourses or other ways
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F7/00Equipment for conveying or separating excavated material
    • E02F7/10Pipelines for conveying excavated materials

Definitions

  • the invention relates to a desilting robot.
  • the current bottleneck problem in the research on dredging and load reduction behind the wharf is mainly reflected in two aspects: First, due to the dense arrangement of pile foundations under the high-pile wharf, the narrow water area behind the wharf, and the limited water depth, traditional dredging construction facilities cannot enter due to size and water depth restrictions. The dredging operation is carried out behind the wharf; secondly, the traditional dredging technology has problems such as the need to modify the construction ship, high cost, low efficiency, and increased siltation behind the wharf after dredging, and the dredging and load reduction effect is not good.
  • the current research on port dredging and load reduction technology is mainly carried out on the wharf front, harbor basin and channel.
  • traditional jet dredgers, chain bucket dredgers and buckets are mainly used.
  • Dredgers, grab dredgers, cutter suction dredgers, trailing suction dredgers, pneumatic sludging methods and other dredging methods mostly use manual operations, which is difficult to achieve in shallow and narrow waters behind the dock. and walking independently on the beach.
  • the object of the present invention is to provide a smart desilting robot that can dive into the bottom of the water to perform dredging operations, and can enter narrow spaces such as wharf pile groups to perform dredging operations.
  • a desilting robot including: a frame, which is provided with a migration mechanism, desilting tools and a control system; the migration mechanism is located under the frame, and the desilting tools are arranged on the machine rack front end;
  • Migration agencies enable the movement of equipment from one place to another
  • Dredging equipment enables the crushing, gathering and removal of silted soil and/or undisturbed soil from the current area
  • the control system sends control instructions to the migration mechanism and dredging mechanism and controls their operations
  • the ratio of the height of the bottom of the dredging robot's frame from the ground to the height of the dredging robot is 0.06 to 0.12.
  • the dredging robot not only has sufficient obstacle-clearing height, but also improves the robot's anti-siltation performance in silted soil or undisturbed soil environments.
  • the left and right sides of the frame are respectively provided with migration mechanism installation parts, and the front end of the frame is the installation part of the dredging equipment; the installation part of the dredging equipment is provided with a movable arm and a fixed arm, and the movable arm is fixed on the above the support arm;
  • the movable arm includes a first arm and a first arm base.
  • the first arm base is fixed to the installation part of the dredging equipment.
  • One end of the first arm is connected to the first arm base.
  • the first arm is opposite to the first arm base.
  • the arm base has a degree of freedom of rotation.
  • the other end of the first arm is connected to the dredging machine.
  • the first arm has a degree of freedom of rotation relative to the dredging machine.
  • the first arm has a first arm and a second arm.
  • the first arm is connected to the dredging machine.
  • the second arm can move relative to complete the expansion and contraction of the first arm;
  • the fixed support arm includes a second support arm and a pin shaft, the pin shaft is connected to the dredging machine tool, and the dredging machine tool has rotational freedom relative to the pin shaft;
  • the center plane of the frame in the height direction is used as the second reference plane, the movable arm is located above the second reference plane, and the migration mechanism mounting portion is located below the second reference plane.
  • the dredging machine adopts the solution provided by the first aspect of the present invention.
  • the base plane is arranged symmetrically, and the fixed support arm is arranged symmetrically with respect to the third base plane; there are strip-shaped connectors between the diagonal first arm base and the second arm base. In this way, the stability and reliability of the dredging robot are maintained during operation.
  • the mud conveying pipe interface of the dredging machine is connected to the mud conveying pipe.
  • the other end of the mud conveying pipe is connected to the dredging pump.
  • the dredging pump provides negative pressure to cause the mud-water mixture in the dredging equipment to move away from the dredging equipment through the mud pipe.
  • the dredging pump is installed on the frame, with the front-to-back direction as the length direction, and the center plane in the length direction as the fourth datum plane.
  • the dredging equipment and the dredging pump are respectively located on both sides of the fourth datum plane.
  • the plane at the rearmost end of the frame is used as the fifth datum plane.
  • the fifth datum plane is parallel to the fourth datum plane.
  • the distance from the output port of the desilting pump to the fourth datum plane is the same as the distance from the output port of the desilting pump to the fifth datum plane.
  • the distance ratio of the datum plane is 1:3 to 2:7. In this way, the robot can keep the dredging operation smooth and improve the dredging efficiency.
  • the rack includes a load frame and a bottom plate.
  • the bottom plate is a plate fixed at the bottom of the load frame.
  • the bottom plate includes a flat portion located at the lowest position and a front sloping plate and a rear sloping plate located at the front and rear ends and extending obliquely upward respectively.
  • the base plate is used to increase the support force of the robot and improve the anti-siltation and anti-rollover performance of the fuselage.
  • a plurality of holes are provided on the bottom plate.
  • the setting of the holes makes the machine lightweight, which is beneficial to improving the robot's operating performance in water.
  • the load-carrying frame includes a main frame formed by welding strip profiles and a left-wing frame and a right-hand frame provided on the left and right sides of the main frame.
  • a left-hand transfer mechanism installation part is provided below the left-hand frame, and a right-hand transfer mechanism is provided below the right-hand frame.
  • the mechanism installation part and the dredging equipment installation part are on the main frame or part of the main frame; there are strip connectors on the top of the main frame and the leftmost side of the left wing frame, and there is a strip connector on the top of the main frame and on the rightmost side of the right wing frame.
  • a long connector is provided.
  • the load frame can carry various necessary components of the desilting robot with reasonable weight and good stability.
  • the dredging volume reaches more than 150 cubic meters per hour. It has stable power and stable control.
  • Figure 1 is a perspective view of the present invention from one angle.
  • Figure 2 is a perspective view of the present invention from another angle.
  • Figure 3 is a side view of the present invention.
  • Figure 4 is a schematic structural diagram of the desilting machine.
  • Figure 5 is a schematic structural diagram of the first buoyancy mechanism of the desilting robot.
  • Figure 6 is a schematic diagram of the internal structure of the first buoyancy mechanism box of the desilting robot.
  • Figure 7 is a schematic structural diagram of a desilting robot equipped with the second buoyancy mechanism.
  • Figure 8a is a schematic diagram of the second buoyancy mechanism airbag filling state.
  • Figure 8b is a schematic diagram of the depressurized state of the second buoyancy mechanism air bag.
  • Figure 9 is a perspective view of the dredging robot control system from one angle.
  • Figure 10 is a perspective view of the dredging robot control system from another angle.
  • Figure 11 is a schematic diagram of the internal structure of the dredging robot control system.
  • Figure 12 is a perspective view of the desilting robot valve block from one angle.
  • Figure 13 is a perspective view of the desilting robot valve block from another angle.
  • Figure 14 is a hydraulic system piping diagram of the desilting robot valve block.
  • Figure 15 is a hydraulic system piping diagram of the brake valve of the desilting robot.
  • Figure 16 is a hydraulic system piping diagram of the multi-way valve B of the desilting robot.
  • Figure 17 is a hydraulic system piping diagram of the multi-way valve A of the desilting robot.
  • FIG. 1-7 1. Frame; 101. Dredging equipment installation part; 2. Dredging equipment; 201. Dredging reamer; 202. Knife cover; 203. Sludge pipe interface; 205. Crushed soil collection part ; 206. Support arm; 3. Movable support arm; 4. Migration mechanism; 41. Driving wheel; 42. Road wheel; 43. Idler wheel; 44. Support pulley; 45. Flexible track; 5. Buoyancy mechanism; 501 , box; 502. sealable cavity; 503. partition; 504.; connection part; 505. inflation port; 506. water filling and discharging port; 507. floating plate group; 508. buoyancy unit; 509. cage; 6.
  • Control system 601, cylinder; 602, first end cover; 603, second end cover; 604, cantilever; 605, multi-way valve A; 606, multi-way valve B; 607, hydraulic lock; 608, multi-way valve Controller; 609, valve block; 609-1, main oil supply port; 609-1A, oil supply port A; 609-1B, oil supply port B; 609-1C, oil supply port C; 609-2, main return Oil port; 609-2A, oil return port A; 609-2B, oil return port B; 609-2C, oil return port C; 609-2D, oil return port D; 609-3, main oil discharge port; 609- 3A, oil discharge port A; 609-3B, oil discharge port B; 609-3C, oil discharge port C; 609-4, process hole; 609-5, installation threaded hole; 610, through-plate connector; 611, sonar bracket ; 612. Single beam sonar; 613. Pressure sensor; 614. IMU; 615. Control component; 616. Sealing groove;
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection.
  • Detachable connection, or integral connection it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a fixed connection.
  • Detachable connection, or integral connection it can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium; it can be an internal connection between two components.
  • the desilting robot in the present invention refers to a working robot that can dive into the ocean water or underwater in lakes and rivers to carry out dredging operations for crushing and extracting silted soil and undisturbed soil from their original positions.
  • a desilting robot including: a frame 1, the frame 1 is provided with a migration mechanism 4, a desilting tool 2 and a control system 6; the migration mechanism 4 is located under the frame 1, and the desilting tool 2 is provided on the machine Frame 1 front end;
  • the migration mechanism 4 realizes the movement of equipment from one place to another
  • the dredging machine 2 realizes the crushing, gathering and removal of silted soil and/or undisturbed soil and removal from the current area; the dredging reamer of the dredging machine performs shearing action on the undisturbed soil and/or silted soil;
  • the control system 6 sends control instructions to the migration mechanism 4 and the dredging mechanism 2 and controls their operations.
  • the control system 6 includes a protective shell.
  • a hydraulic control component 615 and an electronic control component are provided inside the protective shell.
  • the protective shell includes a cylinder 601, a first end cover 602 and a second end cover 603. The two end covers are respectively Sealedly connected to the cylinder 601, the first end cap 602 is used to install hydraulic control components, and the second end cap 603 is used to install electronic control components;
  • the hydraulic control assembly includes a valve block 609, a multi-way valve, a multi-way valve controller 608 and a hydraulic lock 607.
  • the valve block 609 is installed on the first end cover 602.
  • the first end cover 602 is provided with a suspension beam assembly.
  • the suspension beam assembly includes multiple Root cantilever 604, the first end of the cantilever 604 is fixed to the first end cap 602, and the second end of the cantilever 604 is suspended, which means that it is not in contact with the cylinder 601 and/or the second end cap 603; multi-way valve, multi-way valve
  • the road valve controller 608 and the hydraulic lock 607 are fixed on the cantilever assembly through their respective mounting brackets.
  • the multi-way valve, the multi-way valve controller 608 and the hydraulic lock 607 are located in the cylinder 601; the valve block 609 is exposed outside the protective shell.
  • the outer end face has a main oil supply port 609-1 and a main oil return port 609-2.
  • the driving liquid medium enters from the main oil supply port 609-1, and the driving liquid medium is output from the main oil return port 609-2, so that the robot can
  • the center plane in the width direction is the datum plane, and the main oil supply port 609-1 and the main oil return port 609-2 are on both sides of the datum plane respectively.
  • the hydraulically driven dredging robot has stable power and stable control, and can provide the dredging robot with continuous and stable power with a dredging volume of more than 150 cubic meters per hour.
  • the inner end surface of the valve block 609 located in the protective shell is provided with multiple sub-oil return ports and multiple sub-oil supply ports, and all sub-oil return ports are connected to the main oil return port 609- through their respective oil return channels. 2 are connected, all sub-oil supply ports are connected to the main oil supply port 609-1 through self-feeding channels; the sub-oil return port is located on the same side, the sub-oil supply port is located on the same side, and the sub-oil return port and sub-oil supply port are located on the reference plane both sides.
  • the valve block 609 is provided with a main oil discharge port 609-3 and a sub-oil discharge port.
  • the main oil discharge port 609-3 is located on the outer end surface of the valve block 609, between the inner end surface and the outer end surface of the valve block 609.
  • the control system 6 includes a protective shell.
  • a hydraulic control component 615 and an electronic control component are provided inside the protective shell.
  • the protective shell includes a cylinder 601, a first end cover 602 and a second end cover. Cover 603, the two end caps are sealedly connected to the cylinder 601 respectively; the top of the first end cap 602 is provided with a sonar bracket 611, and the sonar bracket 611 is provided with a single-beam sonar 612; the bottom of the cylinder 601 is provided with an IMU 614, and the cylinder The top of 601 is provided with a pressure sensor 613 close to the sonar bracket 611;
  • the valve block 609 is provided with an oil supply channel, an oil return channel and an oil unloading channel.
  • the oil supply channel consists of oil supply port A609-1A, oil supply port B609-1B, and oil supply port C609-1C. It is connected with the main oil supply port 609-1.
  • the oil supply port A609-1A is connected to the multi-way valve A060, and the multi-way valve A606 is connected to the desludging pump motor, spiral reamer motor A, and spiral reamer motor B to provide cleaning The power required for the sludge pump, spiral reamer A and spiral reamer B;
  • the oil supply port B is connected to the multi-way valve B, and the multi-way valve B605 is connected to the left travel motor, the right travel motor, the left attitude adjustment hydraulic cylinder, the right
  • the attitude adjustment hydraulic cylinder provides the power required for walking and attitude adjustment;
  • the oil supply port C is connected to the brake valve to provide the power required for the brake valve;
  • the main oil supply port is connected to the external hydraulic power system to provide power for the entire device;
  • the oil return channel is Oil port A, oil return port B, oil return port C, oil return port D and the main oil return port are connected;
  • oil return port A and oil return port B are the oil return channels of multi-way valve A, and oil return
  • the multi-way valve A606 includes two parallel working modules A, and the two working modules A are respectively referred to as the first working module A and the second working module A;
  • Port A of the first working module A is connected to the oil inlet of the dredging pump motor of the dredging equipment.
  • Port B of the first working module B is connected to the oil outlet of the dredging pump motor of the dredging equipment.
  • the dredging pump motor The oil drain port is connected to the oil unloading port A;
  • Port A of the second working module A is connected to the oil inlet of the spiral reamer motor A of the dredging tool through pipeline A, and port B of the second working module A is connected to the oil outlet of the spiral reamer motor A through pipeline B.
  • the oil drain port of spiral reamer motor A is connected to the oil unloading port B;
  • the Ls port of multi-way valve A is connected to the Lx port of multi-way valve B, the T0 port of multi-way valve A is connected to the control oil return pipeline of the valve block of multi-way valve A, and the T1 port of multi-way valve A is connected to the valve block's
  • the oil return port A is connected, the T2 port of the multi-way valve A is connected to the oil return port B of the valve block, and the P port of the multi-way valve A is connected to the oil supply port A of the valve block.
  • the multi-way valve B includes four parallel working modules B.
  • the four working modules B are respectively referred to as the first working module B, the second working module B, the third working module B and the fourth working module. B;
  • the A port of the first working module B is connected to the A port of the left traveling motor of the migration mechanism, and the B port of the first working module B is connected to the B port of the left traveling motor of the migration mechanism;
  • the A port of the second working module B is connected to the A port of the right traveling motor of the migration mechanism;
  • the B port of the second working module B is connected to the B port of the right traveling motor of the migration mechanism;
  • the T port of the right traveling motor is connected to The T port of the left traveling motor is connected to the oil unloading port A;
  • the Pb port of the right traveling motor is connected to the Pb port of the left traveling motor and then connected to the Pb port of the brake valve;
  • the Ps port of the right traveling motor is connected to the left After the Ps of the side traveling motor is connected, it is connected to the brake displacement control branch oil circuit of the traveling motor;
  • the A port of the third working module B is connected to the V1 port of the two-way hydraulic lock A, the B port of the third working module B is connected to the V2 port of the two-way hydraulic lock B; the C1 port of the two-way hydraulic lock A is connected to the left attitude adjustment hydraulic cylinder
  • the rodless cavity is connected, and the C2 port of the two-way hydraulic lock A is connected to the rod cavity of the left attitude adjustment hydraulic cylinder; the left attitude adjustment hydraulic cylinder is connected between the dredging machine and the frame, and the left attitude adjustment hydraulic cylinder realizes Pitch adjustment of dredging equipment;
  • Port A of the fourth working module B is connected to the V1 port of the two-way hydraulic lock B.
  • Port B of the fourth working module B is connected to the V2 port of the two-way hydraulic lock B;
  • port C1 of the two-way hydraulic lock B is connected to the right attitude adjustment hydraulic cylinder.
  • Rodless cavity connection, the C2 port of the two-way hydraulic lock B is connected to the rod cavity of the right attitude adjustment hydraulic cylinder;
  • the right attitude adjustment hydraulic cylinder is connected between the dredging tool and the frame, and the right attitude adjustment hydraulic cylinder realizes cleaning Pitch adjustment of siltation equipment;
  • the Ls port of multi-way valve B is blocked, the P port of multi-way valve B is connected to the oil supply port B, and the T port of multi-way valve B is connected to the oil return port C.
  • the L port of the brake valve is connected to the oil discharge port C of the valve block.
  • the P port of the brake valve is connected to the oil supply port C of the valve block.
  • the Pb port of the brake valve is connected to the Pb port of the right traveling motor and the Pb of the left traveling motor. Port connection, the T port of the brake valve is connected to the oil return port D.
  • a dredging tool includes a dredging reamer 201, a knife cover 202, a mud pipe interface 203 and a driving motor 204;
  • the dredging reamer 201 has a main shaft and a mud guide plate concentrically arranged with the main shaft, The mud guide plate is spirally arranged along the outer end face of the main shaft;
  • the cutter cover 202 has two end plates and a cutter cover connecting the two end plates. The two ends of the main shaft of the desilting reamer 201 are respectively supported by the end plates of the cutter cover 202 and driven.
  • the motor 204 is installed on the end plate, and the mud pipe interface 203 is set on the knife housing; the ratio of the pitch of the mud guide plate to the minimum distance from the outer edge of the mud guide plate to the inner wall of the knife housing is 50:1 to 60:1 .
  • This kind of dredging machine can carry out quantitative automatic cleaning construction of underwater siltation soil and or undisturbed soil in designated areas, with controllable dredging quality. It can provide dredging robots with a dredging volume of more than 150 cubic meters/hour of siltation soil. , the crushing ability of the undisturbed soil.
  • the drive motor 204 drives the main shaft to rotate, and the mud guide plate spirally arranged along the outer side of the main shaft cuts and gathers the silted soil and/or undisturbed soil into pieces in the area of the knife cover through a rotary cutting motion, so as to facilitate the cutting. of soil or mud to be removed.
  • the combination of the mud guide plate and the knife cover can not only quickly cut the silt soil and/or undisturbed soil, but also avoid the jamming of the mud guide plate and the spindle. At the same time, it ensures that the Venturi effect can pass between the spindle, the mud guide plate and the knife cover.
  • the spindle speed is controllable
  • the mud guide plate pitch and thread height are controllable
  • the dredging efficiency is controllable
  • the dredging area is controllable
  • the dredging depth is controllable
  • the dredging quality is controllable.
  • the mud guide plate has two sections, a first section of mud guide plate and a second section of mud guide plate.
  • the spiral directions of the two sections of mud guide plate are opposite.
  • the first section of mud guide plate and the second section of mud guide plate There is a spacing between them, and this spacing forms a broken soil collection part 205, and the broken soil collection part 205 is within the coverage area of the mud pipe interface 203.
  • the two sections of mud guide plates rotate, cutting and crushing the soil while sending the crushed soil from the outside inward.
  • the crushed soil is first collected at the crushed soil collection part, and then cleared out from the interface of the mud conveying pipe.
  • the ratio of the minimum width of the broken soil collecting portion 205 to the minimum distance from the outer edge of the mud deflector to the inner wall of the knife housing is 55:1 to 70:1.
  • the dredging reamer 201 operates underwater.
  • the mud guide plate rotates on one side to cut the silt soil and/or undisturbed soil.
  • the crushed soil forms a mud-water mixture in the water.
  • the main shaft of the dredging reamer rotates driven by the drive motor, and the soil is broken.
  • the collection part 205 works together with the mud guide plate and the knife cover.
  • the particle size of the mud-water mixture is appropriate, and there is basically no jamming of the dredging reamer.
  • the mud-water mixture collects into the broken soil collection part under the Venturi effect. And discharged from the mud pipe interface 203.
  • the broken soil collection part 205 is centered with the main shaft, and the two mud guide plates are arranged symmetrically about the central plane of the main shaft.
  • the central plane of the main shaft refers to the central plane of the main shaft in the length direction, and the central plane is consistent with the main shaft. vertical.
  • the closest parts of the two mud guide plates and the knife cover are on both sides of the spindle axis, the knife cover is above the axis, and the closest parts of the two mud guide plates are closest to each other.
  • the location is below the axis.
  • the broken soil collects under the mud pipe interface 203 and has a tendency to flow toward the mud pipe interface 203 .
  • the area between the two end plates of the blade cover 202 includes a blade cover shell and an open portion.
  • the area formed by the blade cover shell and the open portion surrounds the desilting reamer 201, and the blade cover shell covers The ratio of the central angle of the circle to the central angle of the circle covered by the open part is 0.9:1 to 1.1:1.
  • the knife cover covers the working area of the dredging reamer 201.
  • the cross-section of the knife housing is fan-shaped, and the knife housing is provided with a cavity connected to the mud pipe interface 203.
  • This cavity is cut from the knife housing in cross section.
  • This cavity has a pair of
  • the knife cover has vertical front side panels, rear side panels, a pair of left side panels and right side panels, and a top panel connecting the front side panels, rear side panels, left side panels, and right side panels. There are through holes on the top panel. The hole is connected with the mud pipe interface 203. This cavity caches the mud-water mixture.
  • the left side plate and the right side plate have straight plate sections and inclined plate sections respectively.
  • the straight plate section is connected to the knife cover.
  • the bottom of the straight plate section has an arc-shaped groove, and the groove wall is connected to the outer edge of the mud guide plate.
  • the minimum distance is equal to the minimum distance between the inner end surface of the knife housing and the outer edge of the mud guide plate.
  • the cavity is aligned with the knife housing, and the mud pipe interface is centered with the cavity; the outer end surfaces of the four side plates of the cavity are respectively provided with ribs, and the first edge of the ribs is in the vector of the side plate, The second edge of the rib and the knife cover.
  • the two ends of the knife housing are respectively connected to the end plates, and the two sides of the knife housing are respectively provided with extension plates extending outward.
  • the extension plates on the upper side extend obliquely upward, and the lower side extends obliquely upward.
  • the extension plate extends diagonally downward.
  • a pair of support arms 206 are provided on the cutter housing.
  • the two support arms 206 are disposed on both sides of the mud pipe interface 203.
  • Each support arm 206 has two connection holes, and the first connection hole is connected to the cutter.
  • the distance from the outer end surface of the cover is greater than the distance from the second connecting hole to the outer end surface of the knife cover, and the three-point line connecting the center of the first connecting hole, the center of the second connecting hole and the center of the circle of the knife cover forms a triangle.
  • the connecting hole is connected to the mechanism that drives the dredging machine, the triangular stability is used to support the dredging machine firmly.
  • the pitch adjustment of the desilting tool can be realized.
  • This dredging machine can be installed on a dredging ship or on a dredging robot that can dive into the bottom of the water to perform underwater operations.
  • one drive motor 204 is provided on each end plate of the blade guard 202, namely, the spiral reamer motor A and the spiral reamer motor B.
  • the two drive motors have the same output torque and opposite rotation directions. In this way, it not only achieves the balance of the dredging machine itself, but also increases the operating torque of the dredging reamer.
  • the dredging robot includes: a frame 1, which is provided with a migration mechanism 4, a dredging tool 2 and a control system 6; the migration mechanism 6 is located under the frame, and the dredging tool 2 is provided at the front of the rack;
  • the migration mechanism 4 realizes the movement of equipment from one place to another
  • the dredging machine 2 realizes the crushing, gathering and removal of silted soil and/or undisturbed soil from the current area;
  • the control system 6 sends control instructions to the migration mechanism 4 and the dredging machine 2 and controls their operations;
  • the ratio of the height of the bottom of the desilting robot's frame 1 from the ground to the height of the desilting robot is 0.06 to 0.12.
  • the dredging robot not only has sufficient obstacle-clearing height, but also improves the robot's anti-siltation performance in silted soil or undisturbed soil environments.
  • the dredging robot can dive into the bottom of the water to carry out dredging operations, and can dexterously enter narrow spaces such as dock pile groups to perform operations.
  • the left and right sides of the frame 1 are respectively provided with migration mechanism installation parts, and the front end of the frame is the dredging equipment installation part 101; the dredging equipment installation part 101 is provided with a movable arm 3 and a fixed support. Arm, the movable arm is on the fixed arm;
  • the movable arm includes a first arm and a first arm base.
  • the first arm base is fixed to the installation part 101 of the dredging equipment.
  • One end of the first arm is connected to the first arm base.
  • the first arm is opposite to the first arm base.
  • the arm base has a degree of freedom of rotation.
  • the other end of the first arm is connected to the dredging machine.
  • the first arm has a degree of freedom of rotation relative to the dredging machine.
  • the first arm has a first arm and a second arm. The first arm It can move relative to the second arm to complete the expansion and contraction of the first arm;
  • the fixed support arm includes a second support arm and a pin shaft, the pin shaft is connected to the dredging machine tool, and the dredging machine tool has rotational freedom relative to the pin shaft;
  • the movable arm is located above the second reference plane, and the migration mechanism mounting portion is located below the second reference plane.
  • the dredging machine adopts the solution provided by the first aspect of the present invention.
  • the center plane of the frame 1 in the width direction is used as the third reference plane.
  • the moving support arm 3 is arranged symmetrically with respect to the third datum plane, and the fixed support arm is arranged symmetrically with respect to the third datum plane; there are strip-shaped connectors between the diagonal first arm seats and the second arm seats. In this way, the stability and reliability of the dredging robot are maintained during operation.
  • the mud conveying pipe 7 is connected to the mud conveying pipe interface 203 of the dredging machine. There is a space under the diagonal connector in the dredging machine installation part 101 to allow the mud conveying pipe 7 to pass.
  • the mud conveying pipe The other end of 7 is connected to a dredging pump 8.
  • the dredging pump 8 provides negative pressure to cause the mud-water mixture in the dredging tool 2 to move away from the dredging tool 2 through the mud conveying pipe 7.
  • the dredging pump 8 is installed on the frame 1, with the front-to-back direction as the length direction, the center plane of the length direction as the fourth datum plane, and the dredging equipment and the dredging pump are respectively located on the fourth datum plane. both sides.
  • the plane at the rearmost end of the frame 1 is used as the fifth datum plane
  • the fifth datum plane is parallel to the fourth datum plane
  • the distance from the output port of the desilting pump 8 to the fourth datum plane is equal to
  • the ratio of the distance from the output port of 8 to the fifth datum plane is 1:3 to 2:7. In this way, the robot can keep the dredging operation smooth and improve the dredging efficiency.
  • the rack 1 includes a carrier frame and a bottom plate.
  • the bottom plate is a plate fixed at the bottom of the carrier frame.
  • the bottom plate includes a flat portion located at the lowest point and a front inclined plate located at the front and rear ends and extending obliquely upward respectively. and rear ramp.
  • the base plate is used to increase the support force of the robot and improve the anti-siltation and anti-rollover performance of the fuselage.
  • the base plate is provided with a plurality of holes.
  • the setting of the holes makes the machine lightweight, which is beneficial to improving the robot's operating performance in water.
  • the load-carrying frame includes a main frame formed by welding strip profiles and a left wing frame and a right wing frame arranged on the left and right sides of the main frame.
  • a left transfer mechanism installation part is provided below the left wing frame, and a left transfer mechanism installation part is provided below the right wing frame.
  • the load frame can carry various necessary components of the desilting robot with reasonable weight and good stability.
  • the dredging robot includes: a frame 1, which is provided with a migration mechanism 4, a dredging tool 2 and a control system 6; the migration mechanism 6 is located under the frame 1, and the dredging tool 2 Set at the front end of rack 1;
  • the migration mechanism 4 realizes the movement of equipment from one place to another
  • the dredging tool 2 realizes the crushing, gathering and removal of silted soil and/or undisturbed soil and removal from the current area; the dredging reamer of the dredging tool 2 performs shearing action on the undisturbed soil and/or silted soil;
  • the control system 6 sends control instructions to the migration mechanism and the dredging mechanism and controls their operations;
  • the rack 1 includes a load-carrying frame.
  • the load-carrying frame includes a main frame formed by welding strip profiles and a left-wing frame and a right-wing frame arranged on the left and right sides of the main frame.
  • the left-hand frame is provided with a left-side migration mechanism installation part under the right-hand frame.
  • the left wing frame and the right wing frame are respectively provided with buoyancy mechanisms 5.
  • the buoyancy mechanism 5 includes an outer frame and a sealable cavity.
  • the ratio of the volume of the cavity to the swept volume of the dredging reamer is 0.027 to 0.0507. In this way, the minimum grounding pressure of the entire robot under water is controlled within a reasonable range, so that the robot can hover in a designated area during dredging operations and improve the anti-siltation performance.
  • the dredging robot can hover underwater and perform dredging operations stably in soft silt soil and undisturbed soil.
  • the ratio of the volume of the cavity to the swept volume of the dredging reamer 201 is 0.039 ⁇ 0.041.
  • the minimum grounding pressure of the entire robot under water is controlled at about 3KPA, so that the robot can hover in the designated area during dredging operations and improve the anti-siltation performance.
  • the outer frame is a box 501
  • the sealable cavity 502 includes the cavity of the flexible bag and the inner cavity of the box.
  • the flexible bag is inside the box, and the inner cavity of the box other than the flexible bag is called the auxiliary cavity.
  • a partition 503 is provided in the box, and the partition 503 and the bottom plate or top plate of the box work together to limit the position of the flexible bag;
  • the outer frame is provided with a connecting portion 504 connected to the frame.
  • the flexible bag can be filled with a certain amount of water or air, and the auxiliary cavity is filled with air to provide buoyancy for the robot to operate underwater.
  • the flexible bag has a water filling and discharging port. Water filling and discharging can share one port, or two ports 505 and 506, so as to realize the filling and discharging of water in the flexible bag to adjust the buoyancy of the equipment underwater and indirectly adjust the relationship between the robot and the seabed (underwater) mud. Surface grounding specific voltage.
  • the partition 503 and the box 501 play a role in fixing and protecting the flexible bag, extending the service life of the flexible bag.
  • the bag can be filled with water and air, so that water and air can coexist in the bag.
  • the weight of the robot can be changed by adjusting the amount of water, thereby changing the buoyancy of the robot.
  • the partition 503 is provided with multiple through holes.
  • the existence of through holes allows air circulation in the box and facilitates the filling and discharge of water in the flexible bladder.
  • the flexible bladder is disposed under the partition 503, and ribs are provided on the upper or lower surface of the partition 503, and the ribs are provided along the width direction of the outer frame.
  • the length direction of the outer frame is consistent with the length direction of the robot, and the width direction of the outer frame is consistent with the width direction of the robot.
  • the outer frame is a skeleton connected by strip-shaped connectors, and a floating plate group 507 is provided on the outer frame, and the floating plate group 507 encloses the outer frame.
  • the floating plate group 507 has a plurality of floating plates, and the floating plate 507 is a plate-shaped object made of a corrosion-resistant flexible material (such as a foam board) with a density lower than water. In addition to providing buoyancy, the floating plate group 507 also protects the buoyancy mechanism and avoids rigid collisions.
  • the specific structure of another buoyancy mechanism is: the buoyancy mechanism includes multiple buoyancy units 508.
  • Each buoyancy unit 508 has its own outer frame and flexible bladder.
  • the outer frame is a hollow cage 509, and the flexible bladder is installed in the outer frame; left side
  • the buoyancy mechanism of the buoyancy mechanism and the buoyancy mechanism on the right have the same number of buoyancy units and the same layout;
  • the outer frame of the bottom buoyancy unit has a connection part connected to the frame, and the outer frames of adjacent buoyancy units of the buoyancy mechanism on the same side are mutually exclusive. connect.
  • the weight of the robot is also reduced, which is beneficial to reducing the grounding specific pressure of the robot.
  • the flexible bag is an air bag
  • the air bag has an inflation and deflation port, and the inflation and deflation ports share one interface, or the inflation port is one interface, and the deflation port is another interface;
  • the inflation and deflation pipe installation part on the outer frame The air release port is connected to the pipe, the pipe extends out of the outer frame through the mounting part, and the mounting part limits the position of the pipe.
  • the inflation and deflation port of the air bag is connected to the air compressor on the water surface through a pipeline to achieve inflation and deflation, thereby adjusting the buoyancy of the robot.
  • the mutual restriction between the inflation and deflation ports and the outer frame makes the buoyancy mechanism reasonably arranged on the entire robot, which is beneficial to the stable operation of the robot during underwater dredging operations.
  • the outer frame includes a cylindrical cage body and front and rear end covers provided at both ends of the cage body, and the mounting portion of the air filling and deflation port is provided on the rear end cover.
  • the pipe extends outward from the rear end of the robot, making the pipe connection stable and not interfering with underwater dredging operations.
  • the cage body is a hollow metal piece
  • the front end cover is a hollow metal piece
  • the rear end cover is a hollow metal piece
  • the connecting piece between adjacent buoyancy units is a hollow metal piece.
  • the migration mechanism 4 includes a driving wheel 41, a road wheel 42, an induction wheel 43 and a supporting pulley 44, and a flexible crawler track 45 surrounding the driving wheel, road wheel, driven wheel and supporting pulley.
  • the outer end surface of the crawler track has grounding teeth
  • the inner end surface of the flexible crawler track has driving teeth.
  • the driving teeth are meshed with the driving wheel, the road wheel, the induction wheel and the supporting pulley respectively; the migration mechanism 4 has a large grounding area, which is conducive to moving on soft mud. walk.
  • connection line between the driving wheel center and the driven wheel center is used as the reference line
  • the supporting pulley is above the reference line
  • the road wheel is below the reference line
  • the supporting pulley is
  • the line connecting the wheel centers is parallel to the datum line; there are multiple road wheels, and the line connecting the wheel centers is parallel to the datum line.
  • the ratio of the distance between adjacent supporting pulleys and the distance between adjacent road wheels is: 5:2 to 2:1.
  • the fourth aspect of the present invention aims to provide a device for dredging silted soil and undisturbed soil behind and below the port wharf, which can be submerged for underwater operations, with a dredging volume of more than 150 cubic meters per hour, and has stable and controllable power. Stable dredging robot.
  • a dredging robot an anti-siltation dredging robot, includes: a frame 1, the frame 1 is provided with a migration mechanism 4, a dredging tool 2 and a control system 6; the migration mechanism 4 is located under the frame, The dredging equipment is installed at the front end of the frame;
  • the migration mechanism 4 realizes the movement of equipment from one place to another
  • the dredging machine 2 realizes the crushing, gathering and removal of silted soil and/or undisturbed soil and removal from the current area; the dredging reamer of the dredging machine performs shearing action on the undisturbed soil and/or silted soil;
  • the control system 6 sends control instructions to the migration mechanism 4 and the dredging mechanism 2 and controls their operations;
  • the control system 6 includes a protective shell, and a hydraulic control component and an electric control component 615 are provided inside the protective shell.
  • the protective shell includes a cylinder, a first end Cover and second end cover, the two end covers are sealingly connected to the cylinder respectively, the first end cover is used to install hydraulic control components, and the second end cover is used to install electronic control components;
  • the hydraulic control component includes a valve block 609, a multi-way valve, a multi-way valve controller and a hydraulic lock.
  • the valve block is installed on the first end cover.
  • the first end cover is provided with a cantilever component.
  • the cantilever component includes multiple cantilevers. The first end is fixed to the first end cover, and the second end of the cantilever is suspended.
  • Suspension means that it is not in contact with the cylinder and/or the second end cover; the multi-way valve, multi-way valve controller and hydraulic lock are installed through their respective brackets Fixed on the cantilever assembly, the multi-way valve, multi-way valve controller and hydraulic lock are located in the cylinder; the outer end surface of the valve block exposed outside the protective shell has a main oil supply port 609-1 and a main oil return port 609-2 , the driving liquid medium enters from the main oil supply port 609-1, and the driving liquid medium is output from the main oil return port. Taking the center plane of the robot in the width direction as the datum plane, the main oil supply port and the main oil return port are respectively at the datum both sides of the face.
  • the main oil supply port 609-1 and the main oil return port 609-2 are on both sides of the reference plane respectively.
  • the center of the main oil supply port 609-1 and the center of the main oil return port 609-2 are respectively on both sides of the reference plane.
  • the inner end surface of the valve block 609 located in the protective shell is provided with multiple sub-oil return ports and multiple sub-oil supply ports, and all sub-oil return ports are connected to the main oil return port 609- through their respective oil return channels. 2 are connected, all sub-oil supply ports are connected to the main oil supply port 609-1 through self-feeding channels; the sub-oil return port is located on the same side, the sub-oil supply port is located on the same side, and the sub-oil return port and sub-oil supply port are located on the reference plane both sides.
  • the valve block 609 is provided with a main oil discharge port and a sub-oil discharge port.
  • the main oil discharge port 609-3 is located on the outer end surface of the valve block.
  • Each embodiment of the present invention can be used as an independent technical solution, or can be combined with each other to form a combined technical solution.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Earth Drilling (AREA)

Abstract

一种清淤机器人,包括:机架(1),机架(1)上设有迁移机构(4)、清淤机具(2)和控制系统(6);迁移机构(4)设于机架(1)之下,清淤机具(2)设置于机架(1)前端;迁移机构(4)实现清淤机器人从一处移动到另一处;清淤机具(2)实现淤积土和、或原状土的破碎、聚拢以及从当前区域清除;控制系统(6)对迁移机构(4)和清淤机具(2)发送控制指令、并控制其作业;清淤机器人的机架(1)底部离地高度与清淤机器人高度的比值为0.06~0.12。

Description

一种清淤机器人 技术领域
本发明涉及一种清淤机器人。
背景技术
近年来,大型港口高桩码头后方回淤问题愈发严重,泥面淤积高度逐年升高。同时为了满足大型船舶靠泊水深不断增大的需求,码头前沿定期浚深,导致码头桩基前后泥面高差不断增大,引起桩基损伤断裂,存在严重安全隐患。通过调查发现,浙江沿海万吨级以上港口码头均采用高桩梁板式码头结构型式。通过对浙江沿海百余个高桩码头泊位后方回淤情况调查发现,约90%的码头存在码头下方及后方严重淤积问题,其中部分码头后沿最大淤高已达15.5m,水下岸坡坡比接近1:2,为码头安全运营带来严重安全隐患。近年来,码头后方回淤诱发的桩基失稳事故频发,如2006年福州港码头大面积坍塌事故、2019年宁波舟山港口码头坍塌事故、2020年舟山甬东码头坍塌事故等,造成人员伤亡和巨大直接经济损失,更为严重的是导致整个港口停运。
目前针对码头后方清淤减载研究瓶颈问题主要体现在两个方面:一是由于高桩码头下方桩基排列密集、后方水域狭窄、水深有限,传统的疏浚施工设施因尺寸及水深限制,无法进入码头后方进行清淤作业;二是传统清淤技术存在需对施工船改造、成本高、效率低、疏浚后码头后方回淤加剧等问题,清淤减载效果不佳。
目前关于港口码头清淤减载技术研究主要是针对码头前沿、港池 和航道展开,在码头前沿水域和航道疏浚过程中,主要采用传统的射流清淤船、链斗式挖泥船、铲斗式挖泥船、抓斗式挖泥船、绞吸式挖泥船、耙吸式挖泥船、气动冲淤法等清淤方式,多采用人工作业方式,难以实现在码头后方浅窄水域和滩涂上自主行走。此外,在码头后方区域,由于高桩码头下方群桩密布,狭窄水域空间内传统的挖泥船和清淤船受限于自身尺寸,无法进入码头后方进行清淤作业。
发明内容
随着我国港口建设体量的高速发展,大批新建码头及泊位以快速投入运营。同时,由于码头附近土体长时间淤积导致码头结构安全性能降低,而港口高桩码头下方存在密集群桩,在时间因素下,受潮汐、风浪挟泥或码头靠泊升级等影响,需要对码头下方和码头后方的淤积土和原状土进行清理施工,由于空间狭窄,现有的大中型成熟挖泥设备无法进行作业。目前,此类清淤工程主要采用泥浆泵直吸和以人工高压水枪冲刷的方式实施,工效低下、安全隐患大、质量控制度差。
本发明的目的在于提供一种能够潜入水底进行清淤作业,并且,能够进入诸如码头群桩等狭窄空间进行清淤作业的灵巧的清淤机器人。
本发明采用的技术方案是:一种清淤机器人,包括:机架,机架上设有迁移机构、清淤机具和控制系统;迁移机构设于于机架之下,清淤机具设置于机架前端;
迁移机构实现设备从一处移动到另一处;
清淤机具实现淤积土和、或原状土的破碎、聚拢以及从当前区域 清除;
控制系统对迁移机构和清淤机构发送控制指令、并控制其作业;
清淤机器人的机架底部离地高度与清淤机器人高度的比值为0.06~0.12。清淤机器人既有足够的越障高度,又提升机器人在淤积土或原状土的环境下的防淤陷性能。
进一步,机架的左右两侧分别设有迁移机构安装部,机架的前端为清淤机具安装部;清淤机具安装部上设有可动支臂和固定支臂,可动支臂在固定支臂之上;
可动支臂包括第一支臂和第一支臂座,第一支臂座与清淤机具安装部固定,第一支臂一端与第一支臂座相连、第一支臂相对第一支臂座具有转动自由度,第一支臂的另一端与清淤机具相连,第一支臂相对清淤机具具有转动自由度,第一支臂具有第一臂和第二臂,第一臂与第二臂能相对运动完成第一支臂的伸缩;
固定支臂包括第二支臂和销轴,销轴与清淤机具相连,清淤机具相对销轴具有转动自由度;
以机架在高度方向的中心面为第二基准面,可动支臂位于第二基准面之上,迁移机构安装部位于第二基准面之下。
如此,能够保持清淤机器人在作业时的平衡,并实现清淤机具的俯仰调节。
进一步,清淤机具采用本发明第一方面提供的方案,可动支臂有一对,固定支臂有一对;以机架在宽度方向的中心面为第三基准面,可动支臂关于第三基准面对称设置,固定支臂关于第三基准面对称设 置;对角的第一支臂座的第二支臂座之间有条状的连接件。如此,保持清淤机器人作业时的稳定性和可靠性。
进一步,清淤机具的输泥管接口上连接输泥管,清淤机具安装部中、对角的连接件之下有允许输泥管通过的空间,输泥管的另一端连接清淤泵,清淤泵提供负压、使清淤机具内的泥-水混合物通过输泥管向远离清淤机具的方向运动。
进一步,清淤泵安装于机架上,以前后方向为长度方向,以长度方向的中心面为第四基准面,清淤机具和清淤泵分别位于第四基准面的两侧。
进一步,以机架最后端所在的平面作为第五基准面,第五基准面与第四基准面平行,清淤泵的输出口到第四基准面的距离跟清淤泵的输出口到第五基准面的距离之比为1:3至2:7。如此,使机器人在清淤作业时保持清淤作业流畅,并提高清淤效率。
进一步,机架包括载物框架和底板,底板是固定在载物框架底部的板,底板包括位于最低处的平板部和位于前后两端、分别向斜上方延伸的前斜板以及后斜板。清淤作业时,特别是在松软淤积土或原状土的环境下,利用底板增大对机器人的支撑力,提升机身的防淤陷和防侧翻等性能。
进一步,底板上设有多个孔。在底板具有足够的刚性的基础上,孔的设置实现机器的轻量化,有利于提升机器人在水中的作业性能。
进一步,载物框架包括由条状型材焊接形成的主框架和设置于主框架左右两侧的左翼架和右翼架,左翼架下方设有左侧迁移机构安装 部,右翼架下方设有右侧迁移机构安装部,清淤机具安装部在主框架上或者是主框架的一部分;主框架的顶部和左翼架的最左侧有条状的连接件,主框架的顶部和右翼架的最右侧有一根长条的连接件。
如此,载物框架可以承载清淤机器人的各种必要部件,且配重合理,牢固性好。
本发明的有益效果是:
1、在松软的淤积土和原状土的条件下能够悬停在水下、稳定进行清淤作业。
2、能够潜入水底进行清淤作业,并且,能够灵巧的进入诸如码头群桩等狭窄空间。
3、在松软的淤积土和原状土的条件下能够悬停在水下、稳定进行清淤作业。
4、用于港口码头后方和下方进行淤积土、原状土清淤,能够潜入水下作业,清淤量达到150立方米/小时以上的,动力稳定、控制稳定。
附图说明
图1是本发明一个角度的立体图。
图2是本发明另一个角度的立体图。
图3是本发明的侧视图。
图4是清淤机具的结构示意图。
图5是清淤机器人第一种浮力机构的结构示意图。
图6是清淤机器人第一种浮力机构箱体的内部结构示意图。
图7是装配第二种浮力机构的清淤机器人的结构示意图。
图8a是第二种浮力机构气囊充盈状态示意图。
图8b是第二种浮力机构气囊失压状态示意图。
图9是清淤机器人控制系统一个角度的立体图。
图10是清淤机器人控制系统另一个角度的立体图。
图11是清淤机器人控制系统的内部结构示意图。
图12是清淤机器人阀块一个角度的立体图。
图13是清淤机器人阀块另一个角度的立体图。
图14是清淤机器人阀块的液压系统配管图。
图15是清淤机器人刹车阀的液压系统配管图。
图16是清淤机器人多路阀B的液压系统配管图。
图17是清淤机器人多路阀A的液压系统配管图。
[根据细则91更正 14.03.2023]
附图标记说明:
图1-7中:1、机架;101、清淤机具安装部;2、清淤机具;201、清淤铰刀;202、刀罩;203、输泥管接口;205、碎土汇集部;206、支臂;3、可动支臂;4、迁移机构;41、主动轮;42、负重轮;43、诱导轮;44、托带轮;45、柔性履带;5、浮力机构;501、箱体;502、可密闭的腔;503、隔板;504、;连接部;505、充气口;506、充放水口;507、浮板组;508、浮力单元;509、笼子;6、控制系统;601、筒体;602、第一端盖;603、第二端盖;604、悬臂;605、多路阀A;606、多路阀B;607、液压锁;608、多路阀控制器;609、阀块;609-1、 主供油口;609-1A、供油口A;609-1B、供油口B;609-1C、供油口C;609-2、主回油口;609-2A、回油口A;609-2B、回油口B;609-2C、回油口C;609-2D、回油口D;609-3、主卸油口;609-3A、卸油口A;609-3B、卸油口B;609-3C、卸油口C;609-4、工艺孔;609-5、安装螺纹孔;610、过板接头;611、声呐支架;612、单波束声呐;613、压力传感器;614、IMU;615、控制组件;616、密封槽;7、接输泥管;8、清淤泵。
图9-12中:(1)过渡接头;(2)刹车出油管;(3)过板接头;(4)刹车回路回油管;(5)刹车卸油回路油管;(6)刹车压力油油管;(7)PVG32控制回油管路;(8)PVG32压力油管路;(9)PVG32回油管路;(10)过渡接头;(11)过渡接头;(12)过板接头;(13)控制箱内行走马达供油管路;(14)控制箱外行走马达供油管路;(15)过渡接头;(16)过渡接头;(17)行走马达回油管;(18)过渡接头;(19)过渡接头;(20)行走马达刹车控制分油路;(21)行走马达排量控制分油路;(22)过渡接头;(23)控制箱内姿态调整液压缸工作油路A;(24)过板接头;(25)控制箱内姿态调整液压缸工作油路B;(26)控制箱外姿态调整液压缸工作油路;(27)排气测压接头;(28)无;(29)LS阀块连接管路;(30)PVG100阀块控制油回油管路;(31)重载SAE11/4对开法兰;(32)重载法兰接头;(33)PVG100压力油管路;(34)过渡接头;(35)PVG100回油管路1;(36)PVG100回油管路2;(37)三通过渡接头;(38)过渡接头;(39)过渡接头;(40)过渡接头;(41)螺旋铰刀压力油路;(42)过板接头;(43)三通接 头;(44)螺旋铰刀A压力油路;(45)螺旋铰刀B压力油路;(46)三通接头;(47)B阀块泄油管路2;(48)过渡接头;(49)B阀块泄油管路3;(50)B阀块泄油管路1;(51)过渡接头;(52)过渡接头;(53)B阀块泄油管路4;(54)B阀块泄油管路5;(55)过渡接头;(56)无;(57)过渡接头;(58)过渡接头;(59)过渡接头;(60)过渡接头;(61)过渡接头;(62)行走马达泄油管路;(63)过渡接头;(64)过渡接头;(65)刹车压力管路;(66)过渡接头;(67)行走马达排量控制油管路;(68)过渡接头;(69)清淤泵马达压力管路控制室内段;(70)过板接头;(71)清淤泵马达压力管路控制室外段;(72)无;(73)三通过渡接头。
具体实施方式
下面将结合附图对本发明专利的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的描述中,需要说明的是,如出现术语“中心”、“上”、“下”、“左”、“右”、“竖直”、“水平”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,如出现术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,如出现术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
清淤机器人
本发明中的清淤机器人是指能潜入海洋水下或者湖泊、河道水下进行淤积土、原状土的破碎与抽离原位的清淤作业的作业机器人。
一种清淤机器人,包括:机架1,机架1上设有迁移机构4、清淤机具2和控制系统6;迁移机构4设于于机架1之下,清淤机具2设置于机架1前端;
迁移机构4实现设备从一处移动到另一处;
清淤机具2实现淤积土和、或原状土的破碎、聚拢以及从当前区域清除;清淤机具的清淤铰刀与原状土和、或淤积土进行剪切作用;
控制系统6对迁移机构4和清淤机构2发送控制指令、并控制其作业。
在一些实施例中,控制系统6包括防护壳,防护壳内部设置液压控制组件615和电控组件,防护壳包括筒体601、第一端盖602和第二端盖603,两个端盖分别与筒体601密封连接,第一端盖602用于安装液压控制组件,第二端盖603用于安装电控组件;
液压控制组件包括阀块609、多路阀、多路阀控制器608和液压 锁607,阀块609装在第一端盖602上,第一端盖602上设有悬梁组件,悬梁组件包括多根悬臂604,悬臂604的第一端与第一端盖602固定,悬臂604的第二端悬空,悬空指的是不与筒体601和、或第二端盖603接触;多路阀、多路阀控制器608和液压锁607通过各自安装支架固定在悬臂组件上,多路阀、多路阀控制器608和液压锁607位于筒体601内;阀块609的露在防护壳之外的外端面具有主供油口609-1和主回油口609-2,驱动用液体介质从主供油口609-1进入,驱动用液体介质从主回油口609-2输出,以机器人在宽度方向的中心面为基准面,主供油口609-1和主回油口609-2分别在基准面的两侧。当主供油口609-1和、或主回油口609-2都与基准面不相交时,主供油口609-1和主回油口609-2分别在基准面的两侧。当主供油口609-1和、或主回油口609-2跟基准面相交时,主供油口609-1的中心和主回油口609-2的中心分别在基准面的两侧。采用液压驱动的清淤机器人,动力稳定、控制稳定,能够为清淤机器人提供清淤量达到150立方米/小时以上的持续稳定的动力。
在一些实施例中,阀块609的位于防护壳内的内端面设有多个子回油口和多个子供油口,所有子回油口分别通过各自的回油通道与主回油口609-2相连,所有的子供油口分别通过给自的通道与主供油口609-1相连;子回油口位于同一侧,子供油口位于同一侧,子回油口和子供油口位于基准面的两侧。
在一些实施例中,阀块609上设有主卸油口609-3和子卸油口,主卸油口609-3位于阀块609的外端面,阀块609的内端面和外端面 之间有侧连接面,连接面和内端面上分别设有子卸油口;每个子卸油口通过卸油通道与主卸油口609-3相连。
如图8~9所示,在一些实施例中,控制系统6包括防护壳,防护壳内部设置液压控制组件615和电控组件,防护壳包括筒体601、第一端盖602和第二端盖603,两个端盖分别与筒体601密封连接;第一端盖602的顶部设有声呐支架611,声呐支架611上设有单波束声呐612;筒体601的底部设有IMU614,筒体601的顶部靠近声呐支架611的位置设有压力传感器613;
如图11~16所示,阀块609内设有供油通道、回油通道和卸油通道,供油通道由供油口A609-1A、供油口B609-1B、供油口C609-1C和主供油口609-1联通而成,其中,供油口A609-1A连接多路阀A060,多路阀A606连接清淤泵马达、螺旋铰刀马达A、螺旋铰刀马达B以提供清淤泵、螺旋铰刀A和螺旋铰刀B所需动力;供油口B连接多路阀B,多路阀B605连接左侧行走马达、右侧行走马达、左侧姿态调整液压缸、右侧姿态调整液压缸以提供行走及姿态调整所需动力;供油口C连接刹车阀,提供刹车阀所需动力;主供油口连接外部液压动力系统,为整个装置提供动力;回油通道由回油口A、回油口B、回油口C、回油口D和主回油口联通而成;回油口A和回油口B为多路阀A的回油通道,回油口C为多路阀B的回油通道,主回油口为整个系统的回油通道,液压油通过主回油口回到液压动力系统的油箱内。
在一些实施例中,多路阀A606包括两个并联的工作模块A,将两个工作模块A分别称为第一工作模块A和第二工作模块A;
第一工作模块A的A口与清淤机具的清淤泵马达的进油口连接,第一工作模块B的B口与清淤机具的清淤泵马达的出油口连接,清淤泵马达的泄油口与卸油口A连接;
第二工作模块A的A口通过管路A与清淤机具的螺旋铰刀马达A的进油口连接,第二工作模块A的B口通过管路B与螺旋铰刀马达A的出油口连接,螺旋铰刀马达A的泄油口与卸油口B连接;
管路A上设有三通接头A,三通接头A的第三端与清淤机具的螺旋铰刀马达B的出油口连接;管路B上设有三通接头B,三通接头B的第三端与清淤机具的螺旋铰刀马达B的进油口连接;清淤机具的螺旋铰刀马达B的泄油口与卸油口B连接;螺旋铰刀马达A与螺旋铰刀马达B的旋向相反,实现清淤机具的碎土和清淤;
多路阀A的Ls口与多路阀B的Lx口连接,多路阀A的T0口与多路阀A的阀块控制油回油管路连接,多路阀A的T1口与阀块的回油口A连接,多路阀A的T2口与阀块的回油口B连接,多路阀A的P口与阀块的供油口A连接。
在一些实施例中,多路阀B包括四个并联的工作模块B,将四个工作模块B分别称为第一工作模块B、第二工作模块B、第三工作模块B和第四工作模块B;第一工作模块B的A口与迁移机构的左侧行走马达的A口连接,第一工作模块B的B口与迁移机构的左侧行走马达的B口连接;
第二工作模块B的A口与迁移机构的右侧行走马达的A口连接,第二工作模块B的B口与迁移机构的右侧行走马达的B口连接;右侧 行走马达的T口与左侧行走马达的T口连接后与卸油口A连接;右侧行走马达的Pb口与左侧行走马达的Pb口连接后与刹车阀的Pb口连接,右侧行走马达的Ps口与左侧行走马达的Ps连接后与行走马达刹车排量控制分油路连接;
第三工作模块B的A口与双向液压锁A的V1口连接,第三工作模块B的B口与双向液压锁B的V2口连接;双向液压锁A的C1口与左侧姿态调整液压缸的无杆腔连接,双向液压锁A的C2口与左侧姿态调整液压缸的有杆腔连接;左侧姿态调整液压缸连接在清淤机具与机架之间,左侧姿态调整液压缸实现清淤机具的俯仰调节;
第四工作模块B的A口双向液压锁B的V1口连接,第四工作模块B的B口与双向液压锁B的V2口连接;双向液压锁B的C1口与右侧姿态调整液压缸的无杆腔连接,双向液压锁B的C2口与右侧姿态调整液压缸的有杆腔连接;右侧姿态调整液压缸连接在清淤机具与机架之间,右侧姿态调整液压缸实现清淤机具的俯仰调节;
多路阀B的Ls口堵死,多路阀B的P口与供油口B连接,多路阀B的T口与回油口C连接。
刹车阀的L口与阀块的卸油口C连接,刹车阀的P口与阀块的供油口C连接,刹车阀的Pb口与右侧行走马达的Pb口、左侧行走马达的Pb口连接,刹车阀的T口与回油口D连接。
在一些实施例中,一种清淤机具,包括清淤铰刀201、刀罩202、输泥管接口203和驱动马达204;清淤铰刀201具有主轴和与主轴同心设置的导泥板,导泥板沿主轴外端面螺旋设置;刀罩202具有两个 端板和连接两个端板的刀罩壳,清淤铰刀201的主轴的两端分别由刀罩202的端板支撑,驱动马达204安装在端板上,输泥管接口203设置在刀罩壳上;导泥板的节距与导泥板外边缘到刀罩壳内壁的最小距离的比值为50:1~60:1。这种清淤机具能够对指定区域的水下淤积土和或原状土进行定量的自动化清理施工、清淤质量可控,能够为清淤机器人提供清淤量达到150立方米/小时以上的淤积土、原状土的破碎能力。
水下清淤作业时,驱动马达204带动主轴旋转,沿主轴外螺旋设置的导泥板通过旋切运动将淤积土和、或原状土剪碎并聚拢在刀罩壳区域内,方便将剪碎的土或泥清除。导泥板和刀罩壳配合,既能快速剪碎淤积土和、或原状土,又避免出现导泥板、主轴卡死,同时保证主轴、导泥板和刀罩之间能够通过文丘里效应实现碎土(淤泥)的聚集,提高碎土和清淤效率。主轴转速可控,导泥板的节距和螺牙高度可控,清淤效率可控,清淤区域可控,清淤深度(清淤量)可控,清淤质量可控。
在一些实施例中,导泥板有两段,第一段导泥板和第二段导泥板,两段导泥板的螺旋方向相反,第一段导泥板和第二段导泥板之间有间距,该间距形成碎土汇集部205,碎土汇集部205在输泥管接口203的覆盖区域内。
清淤时,两段导泥板旋转,一边剪碎土一边将碎土从外向内送,碎土先聚集到碎土汇集部,再从输泥管接口清出。
在一些实施例中,碎土汇集部205的最小宽度与导泥板外边缘到 刀罩壳内壁的最小距离的比值为55:1至70:1。清淤铰刀201在水下作业,导泥板一边旋切淤积土和、或原状土,碎土在水中形成泥-水混合物,清淤铰刀的主轴在驱动马达的带动下旋转,碎土汇集部205和导泥板、刀罩壳共同作用,泥-水混合物的粒度合适,基本不会出现清淤铰刀卡死的情况,泥-水混合物在文丘里效应下汇集到碎土汇集部并从输泥管接口203排出。
在一些实施例中,碎土汇集部205与主轴对中,两段导泥板关于主轴的中心面对称设置,主轴的中心面指的是主轴在长度方向的中心面,该中心面与主轴垂直。
在一些实施例中,以主轴的轴线为基准,两段导泥板最接近的部位和刀罩壳分别在主轴轴线的两侧,刀罩壳在轴线之上,两段导泥板最接近的部位在轴线之下。碎土汇集在输泥管接口203下方,并具有向输泥管接口203方向的流动的趋势。
在一些实施例中,刀罩202的两个端板之间的区域包括刀罩壳和开放部,刀罩壳和开放部形成的区域将清淤铰刀201围在其内,刀罩壳覆盖的圆心角和开放部覆盖的圆心角的比值为0.9:1至1.1:1。清淤时,刀罩壳覆盖清淤铰刀201的作业区域。在静止的刀罩壳和旋转的清淤铰刀201的配合下,泥-水混合物在清淤铰刀201的带动下形成流场,向碎土汇集部和输泥泵接口汇流。
在一些实施例中,刀罩壳的横截面呈扇形,刀罩壳上设有与输泥管接口203相连的腔,这个腔在横截面上与刀罩壳相割,这个腔具有一对与刀罩壳垂直的前侧板、后侧板,一对左侧板和右侧板,和连接 前侧板、后侧板、左侧板和右侧板的顶板,顶板上有通孔,通孔与输泥管接口203相连。这个腔缓存泥-水混合物。
在一些实施例中,左侧板和右侧板分别具有直板段和斜板段,直板段与刀罩壳相连,直板段的底部有圆弧形的槽,槽壁与导泥板外缘的最小距离和刀罩壳内端面与导泥板外缘的最小距离相等。
在一些实施例中,腔与刀罩壳对中,输泥管接口与腔对中;腔的四个侧板的外端面分别设有肋板,肋板的第一条边与侧板向量,肋板的第二条边与刀罩壳。
在一些实施例中,刀罩壳的两端分别与端板相连,刀罩壳的两条侧边分别设有向外延伸的延伸板,上侧边的延伸板向斜上方延伸,下侧边的延伸板向斜下方延伸。
在一些实施例中,刀罩壳上设有一对支臂206,两个支臂206设置于输泥管接口203的两侧,每个支臂206具有两个连接孔,第一连接孔到刀罩壳外端面的距离大于第二连接孔到刀罩壳外端面的距离,第一连接孔中心、第二连接孔中心和刀罩壳的圆心三点连线形成三角形。如此,当连接孔与驱动清淤机具的机构相连时,利用三角形稳定性,清淤机具支撑牢固。并且,由于第一连接孔和第二连接孔的位置设置,能够实现清淤机具的俯仰调节。
本清淤机具可以是装配在清淤船上,也可以是装配在能够潜入水底进行水下作业的清淤机器人上。
在一些实施例中,刀罩202的每个端板上设置一个驱动马达204,即螺旋铰刀马达A和螺旋铰刀马达B,两个驱动马达的输出扭矩相同、 旋转方向相反。如此,既实现清淤机具本身的平衡,又增大清淤铰刀的作业扭矩。
在一些实施例中,清淤机器人,包括:机架1,机架1上设有迁移机构4、清淤机具2和控制系统6;迁移机构6设于机架之下,清淤机具2设置于机架前端;
迁移机构4实现设备从一处移动到另一处;
清淤机具2实现淤积土和、或原状土的破碎、聚拢以及从当前区域清除;
控制系统6对迁移机构4和清淤机具2发送控制指令、并控制其作业;
清淤机器人的机架1底部离地高度与清淤机器人高度的比值为0.06~0.12。清淤机器人既有足够的越障高度,又提升机器人在淤积土或原状土的环境下的防淤陷性能。清淤机器人能够潜入水底进行清淤作业,并且,能够灵巧的进入诸如码头群桩等狭窄空间进行作业。
在一些实施例中,机架1的左右两侧分别设有迁移机构安装部,机架的前端为清淤机具安装部101;清淤机具安装部101上设有可动支臂3和固定支臂,可动支臂在固定支臂之上;
可动支臂包括第一支臂和第一支臂座,第一支臂座与清淤机具安装部101固定,第一支臂一端与第一支臂座相连、第一支臂相对第一支臂座具有转动自由度,第一支臂的另一端与清淤机具相连,第一支臂相对清淤机具具有转动自由度,第一支臂具有第一臂和第二臂,第一臂与第二臂能相对运动完成第一支臂的伸缩;
固定支臂包括第二支臂和销轴,销轴与清淤机具相连,清淤机具相对销轴具有转动自由度;
以机架1在高度方向的中心面为第二基准面,可动支臂位于第二基准面之上,迁移机构安装部位于第二基准面之下。
如此,能够保持清淤机器人在作业时的平衡,并实现清淤机具的俯仰调节。
在一些实施例中,清淤机具采用本发明第一方面提供的方案,可动支臂3有一对,固定支臂有一对;以机架1在宽度方向的中心面为第三基准面,可动支臂3关于第三基准面对称设置,固定支臂关于第三基准面对称设置;对角的第一支臂座的第二支臂座之间有条状的连接件。如此,保持清淤机器人作业时的稳定性和可靠性。
在一些实施例中,清淤机具的输泥管接口203上连接输泥管7,清淤机具安装部101中、对角的连接件之下有允许输泥管7通过的空间,输泥管7的另一端连接清淤泵8,清淤泵8提供负压、使清淤机具2内的泥-水混合物通过输泥管7向远离清淤机具2的方向运动。
在一些实施例中,清淤泵8安装于机架1上,以前后方向为长度方向,以长度方向的中心面为第四基准面,清淤机具和清淤泵分别位于第四基准面的两侧。
在一些实施例中,以机架1最后端所在的平面作为第五基准面,第五基准面与第四基准面平行,清淤泵8的输出口到第四基准面的距离跟清淤泵8的输出口到第五基准面的距离之比为1:3至2:7。如此,使机器人在清淤作业时保持清淤作业流畅,并提高清淤效率。
在一些实施例中,机架1包括载物框架和底板,底板是固定在载物框架底部的板,底板包括位于最低处的平板部和位于前后两端、分别向斜上方延伸的前斜板以及后斜板。清淤作业时,特别是在松软淤积土或原状土的环境下,利用底板增大对机器人的支撑力,提升机身的防淤陷和防侧翻等性能。
在一些实施例中,底板上设有多个孔。在底板具有足够的刚性的基础上,孔的设置实现机器的轻量化,有利于提升机器人在水中的作业性能。
在一些实施例中,载物框架包括由条状型材焊接形成的主框架和设置于主框架左右两侧的左翼架和右翼架,左翼架下方设有左侧迁移机构安装部,右翼架下方设有右侧迁移机构安装部,清淤机具安装部101在主框架上或者是主框架的一部分;主框架的顶部和左翼架的最左侧有条状的连接件,主框架的顶部和右翼架的最右侧有一根长条的连接件。
如此,载物框架可以承载清淤机器人的各种必要部件,且配重合理,牢固性好。
在一些实施例中,清淤机器人,包括:机架1,机架1上设有迁移机构4、清淤机具2和控制系统6;迁移机构6设于机架1之下,清淤机具2设置于机架1前端;
迁移机构4实现设备从一处移动到另一处;
清淤机具2实现淤积土和、或原状土的破碎、聚拢以及从当前区域清除;清淤机具2的清淤铰刀与原状土和、或淤积土进行剪切作用;
控制系统6对迁移机构和清淤机构发送控制指令、并控制其作业;
机架1包括载物框架,载物框架包括由条状型材焊接形成的主框架和设置于主框架左右两侧的左翼架和右翼架,左翼架下方设有左侧迁移机构安装部,右翼架下方设有右侧迁移机构安装部,清淤机具安装部101在主框架上或者是主框架的一部分;主框架的顶部和左翼架的最左侧有条状的连接件,主框架的顶部和右翼架的最右侧有一根长条的连接件;
左翼架和右翼架上分别设有浮力机构5,浮力机构5包括外框架和可密闭的腔,腔的体积和清淤铰刀的扫掠体积之比为0.027~0.0507。如此,将整个机器人在水下的最小接地比压控制在合理的范围内,使机器人在进行清淤作业时能悬停在制定区域内,提高防淤陷性能。清淤机器人能够在松软的淤积土和原状土的条件下能够悬停在水下、稳定进行清淤作业。
在一些实施例中,腔的体积和清淤铰刀201的扫掠体积之比为0.039~0.041。此时,将整个机器人在水下的最小接地比压控制在3KPA左右,使机器人在进行清淤作业时能悬停在制定区域内,提高防淤陷性能。
一种浮力机构的具体结构为:外框架为箱体501,可密闭的腔502包括柔性囊的腔和箱体的内腔,柔性囊在箱体内,柔性囊以外的箱体内腔称为辅助腔,箱体内设置隔板503,隔板503和箱体底板或顶板共同作用、对柔性囊进行限位;外框架上设有与机架相连的连接部504。
柔性囊里可以定量的充水或充气,辅助腔内充满空气,以提供机器人在水下作业的浮力。柔性囊有充放水口,充放水可以共用一个口,也可以是两个口505、506,从而实现柔性囊的充放水,来调节装备在水下的浮力,间接调节机器人与海底(水底)泥面的接地比压。隔板503和箱体501对柔性囊起到固定和防护作用,延长柔性囊的使用寿命。囊内可充放水和充放气,使囊内水和气共存,可以通过调节水量来改变机器人的自重,进而改变机器人的浮力。
在一些实施例中,隔板503上设置通孔,通孔有多个。通孔的存在,允许箱体内的空气循环,便于柔性囊充放水。
在一些实施例中,柔性囊设置于隔板503之下,隔板503的上表面或下表面设置肋条,肋条沿外框架的宽度方向设置。外框架的长度方向与机器人的长度方向一致,外框架的宽度方向与机器人的宽度方向一致。
在一些实施例中,外框架是由条状的连接件相连而成的骨架,外框架上设有浮板组507,浮板组507将外框架包在其内。浮板组507具有多块浮板,浮板507是由密度低于水的耐腐蚀柔性材料(如泡沫板)制成的板状物。浮板组507除了提供浮力以外,还起到保护浮力机构,避免刚性碰撞。
另一种浮力机构的具体结构为:浮力机构包括多个浮力单元508,每个浮力单元508具有各自的外框架和柔性囊,外框架是镂空的笼子509,柔性囊装在外框架内;左侧的浮力机构和右侧的浮力机构具有的浮力单元数量相同,布局相同;最底下的浮力单元的外框架具有与 机架相连的连接部,同侧的浮力机构的相邻浮力单元的外框架相互连接。如此,在利用柔性囊进行浮力调节的同时,还实现机器人的减重,有利于降低机器人的接地比压。
在一些实施例中,柔性囊是气囊,气囊上有充放气口,充放气口共用一个接口,或者充气口是一个接口,放气口是另一个接口;外框架上充放气管道安装部,充放气口与管道相连,管道通过该安装部延伸到外框架以外,安装部对管道限位。气囊的充放气口通过管道与水面的空压机相连实现充气、放气,实现机器人的浮力调节。充放气口与外框架的相互限制,使得浮力机构在机器人整机上的布局合理,有利于机器人在水下清淤作业时的稳定运行。在这里,我们将气囊上的开口称为充放气口,将与气囊上的开口相连的用于输送气体的通道统称为管道。
在一些实施例中,外框架包括圆柱形的笼身和设置于笼身两端的前端盖和后端盖,充放气口的安装部设置于后端盖。管道从机器人的后端向外延伸,使管道连接稳定,不干扰水下清淤作业。
在一些实施例中,笼身为镂空的金属件,前端盖为镂空的金属件,后端盖为镂空的金属件;相邻浮力单位之间的连接件为镂空的金属件。保证机器人的刚性和连接可靠性的基础上,实现减重。
一种迁移机构的具体结构:迁移机构4包括主动轮41,负重轮42,诱导轮43和托带轮44,以及围绕着主动轮、负重轮、从动轮和托带轮的柔性履带45,柔性履带的外端面具有接地齿,柔性履带的内端面具有驱动齿,驱动齿分别与主动轮、负重轮、诱导轮和托带轮 啮合传动;迁移机构4的接地面积大,有利于在软泥上行走。
在一些实施例中,以主动轮轮心和从动轮轮心的连线为基准线,托带轮在基准线之上,负重轮在基准线之下,托带轮至少两个,托带轮轮心的连线与基准线平行;负重轮有多个,负重轮轮心的连线与基准线平行。
在一些实施例中,相邻的托带轮的距离与相邻的负重轮的距离之比为:5:2~2:1。
本发明的第四方面,目的在于提供一种用于港口码头后方和下方进行淤积土、原状土清淤,能够潜入水下作业,清淤量达到150立方米/小时以上的,动力稳定、控制稳定的清淤机器人。
一种清淤机器人,一种防淤陷清淤机器人,包括:机架1,机架1上设有迁移机构4、清淤机具2和控制系统6;迁移机构4设于机架之下,清淤机具设置于机架前端;
迁移机构4实现设备从一处移动到另一处;
清淤机具2实现淤积土和、或原状土的破碎、聚拢以及从当前区域清除;清淤机具的清淤铰刀与原状土和、或淤积土进行剪切作用;
控制系统6对迁移机构4和清淤机构2发送控制指令、并控制其作业;控制系统6包括防护壳,防护壳内部设置液压控制组件和电控组件615,防护壳包括筒体、第一端盖和第二端盖,两个端盖分别与筒体密封连接,第一端盖用于安装液压控制组件,第二端盖用于安装电控组件;
液压控制组件包括阀块609、多路阀、多路阀控制器和液压锁, 阀块装在第一端盖上,第一端盖上设有悬梁组件,悬梁组件包括多根悬臂,悬臂的第一端与第一端盖固定,悬臂的第二端悬空,悬空指的是不与筒体和、或第二端盖接触;多路阀、多路阀控制器和液压锁通过各自安装支架固定在悬臂组件上,多路阀、多路阀控制器和液压锁位于筒体内;阀块的露在防护壳之外的外端面具有主供油口609-1和主回油口609-2,驱动用液体介质从主供油口609-1进入,驱动用液体介质从主回油口输出,以机器人在宽度方向的中心面为基准面,主供油口和主回油口分别在基准面的两侧。当主供油口和、或主回油口都与基准面不相交时,主供油口609-1和主回油口609-2分别在基准面的两侧。当主供油口和、或主回油口跟基准面相交时,主供油口609-1的中心和主回油口609-2的中心分别在基准面的两侧。
在一些实施例中,阀块609的位于防护壳内的内端面设有多个子回油口和多个子供油口,所有子回油口分别通过各自的回油通道与主回油口609-2相连,所有的子供油口分别通过给自的通道与主供油口609-1相连;子回油口位于同一侧,子供油口位于同一侧,子回油口和子供油口位于基准面的两侧。
在一些实施例中,阀块609上设有主卸油口和子卸油口,主卸油口609-3位于阀块的外端面,阀块609的内端面和外端面之间有侧连接面,连接面和内端面上分别设有子卸油口;每个子卸油口通过卸油通道与主卸油口相连。
本发明的各个实施例既能作为独立的技术方案,也能相互组合,形成组合技术方案。
本说明书实施例所述的内容仅仅是对发明构思的实现形式的列举,本发明的保护范围不应当被视为仅限于实施例所陈述的具体形式,本发明的保护范围也及于本领域技术人员根据本发明构思所能够想到的等同技术手段。

Claims (9)

  1. 一种清淤机器人,其特征在于:包括机架,机架上设有迁移机构、清淤机具和控制系统;迁移机构设于于机架之下,清淤机具设置于机架前端;
    迁移机构实现设备从一处移动到另一处;
    清淤机具实现淤积土和、或原状土的破碎、聚拢以及从当前区域清除;
    控制系统对迁移机构和清淤机构发送控制指令、并控制其作业;
    清淤机器人的机架底部离地高度与清淤机器人高度的比值为0.06~0.12。
  2. 如权利要求1所述的一种清淤机器人,其特征在于:机架的左右两侧分别设有迁移机构安装部,机架的前端为清淤机具安装部;清淤机具安装部上设有可动支臂和固定支臂,可动支臂在固定支臂之上;
    可动支臂包括第一支臂和第一支臂座,第一支臂座与清淤机具安装部固定,第一支臂一端与第一支臂座相连、第一支臂相对第一支臂座具有转动自由度,第一支臂的另一端与清淤机具相连,第一支臂相对清淤机具具有转动自由度,第一支臂具有第一臂和第二臂,第一臂与第二臂能相对运动完成第一支臂的伸缩;
    固定支臂包括第二支臂和销轴,销轴与清淤机具相连,清淤机具相对销轴具有转动自由度;
    以机架在高度方向的中心面为第二基准面,可动支臂位于第二基准面之上,迁移机构安装部位于第二基准面之下。
  3. 如权利要求2所述的一种清淤机器人,其特征在于:清淤机具包括清淤铰刀、刀罩、输泥管接口和驱动马达;清淤铰刀具有主轴和与主轴同心设置的导泥板,导泥板沿主轴外端面螺旋设置;刀罩具 有两个端板和连接两个端板的刀罩壳,清淤铰刀的主轴的两端分别由刀罩的端板支撑,驱动马达安装在端板上,输泥管接口设置在刀罩壳上;导泥板的节距与导泥板外边缘到刀罩壳内壁的最小距离的比值为50:1~60:1;可动支臂有一对,固定支臂有一对;以机架在宽度方向的中心面为第三基准面,可动支臂关于第三基准面对称设置,固定支臂关于第三基准面对称设置;对角的第一支臂座的第二支臂座之间有条状的连接件。
  4. 如权利要求3所述的一种清淤机器人,其特征在于:清淤机具的输泥管接口上连接输泥管,清淤机具安装部中、对角的连接件之下有允许输泥管通过的空间,输泥管的另一端连接清淤泵,清淤泵提供负压、使清淤机具内的泥-水混合物通过输泥管向远离清淤机具的方向运动。
  5. 如权利要求4所述的一种清淤机器人,其特征在于:清淤泵安装于机架上,以前后方向为长度方向,以长度方向的中心面为第四基准面,清淤机具和清淤泵分别位于第四基准面的两侧。
  6. 如权利要求5所述的一种清淤机器人,其特征在于:以机架最后端所在的平面作为第五基准面,第五基准面与第四基准面平行,清淤泵的输出口到第四基准面的距离跟清淤泵的输出口到第五基准面的距离之比为1:3至2:7。
  7. 如权利要求6所述的一种清淤机器人,其特征在于:机架包括载物框架和底板,底板是固定在载物框架底部的板,底板包括位于最低处的平板部和位于前后两端、分别向斜上方延伸的前斜板以及后斜板。清淤作业时,特别是在松软淤积土或原状土的环境下,利用底板增大对机器人的支撑力,提升机身的防淤陷和防侧翻等性能。
  8. 如权利要求7所述的一种清淤机器人,其特征在于:底板上设有多个孔。
  9. 如权利要求8所述的一种清淤机器人,其特征在于:载物框架包括由条状型材焊接形成的主框架和设置于主框架左右两侧的左翼架和右翼架,左翼架下方设有左侧迁移机构安装部,右翼架下方设有右侧迁移机构安装部,清淤机具安装部在主框架上或者是主框架的一部分;主框架的顶部和左翼架的最左侧有条状的连接件,主框架的顶部和右翼架的最右侧有一根长条的连接件。
PCT/CN2022/143870 2022-07-22 2022-12-30 一种清淤机器人 WO2024016607A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210871780.1A CN115710946A (zh) 2022-07-22 2022-07-22 一种清淤机器人
CN202210871780.1 2022-07-22

Publications (1)

Publication Number Publication Date
WO2024016607A1 true WO2024016607A1 (zh) 2024-01-25

Family

ID=85230523

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/143870 WO2024016607A1 (zh) 2022-07-22 2022-12-30 一种清淤机器人

Country Status (2)

Country Link
CN (1) CN115710946A (zh)
WO (1) WO2024016607A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005009A (zh) * 2019-05-06 2019-07-12 浙江君泰生态环保科技有限公司 一种潜水式清淤机器人及其清淤方法
CN110512683A (zh) * 2019-09-16 2019-11-29 山东未来机器人有限公司 水下抓斗式栅格绞龙清淤机器人
CN111749297A (zh) * 2020-07-29 2020-10-09 中交天津航道局有限公司 一种可横向摆动作业的环保清淤机
CN115653038A (zh) * 2022-07-22 2023-01-31 浙江大学 一种液压驱动的清淤机器人
CN115748860A (zh) * 2022-07-22 2023-03-07 浙江大学 一种清淤机具
CN115748859A (zh) * 2022-07-22 2023-03-07 浙江大学 一种防淤陷清淤机器人

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109577401B (zh) * 2018-11-30 2020-12-25 中船重工中南装备有限责任公司 具备自纠偏功能的螺旋桨驱动左右摆动绞吸式清淤机器人
CN109577402B (zh) * 2018-11-30 2021-04-23 中船重工中南装备有限责任公司 履带底盘前端左右摆动绞吸式清淤机器人
CN212224178U (zh) * 2019-12-18 2020-12-25 天津大力金刚科技有限公司 一种管道清淤机器人
CN114289424A (zh) * 2022-02-23 2022-04-08 西安帕兰提尔环境技术有限公司 水下管道清淤机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110005009A (zh) * 2019-05-06 2019-07-12 浙江君泰生态环保科技有限公司 一种潜水式清淤机器人及其清淤方法
CN110512683A (zh) * 2019-09-16 2019-11-29 山东未来机器人有限公司 水下抓斗式栅格绞龙清淤机器人
CN111749297A (zh) * 2020-07-29 2020-10-09 中交天津航道局有限公司 一种可横向摆动作业的环保清淤机
CN115653038A (zh) * 2022-07-22 2023-01-31 浙江大学 一种液压驱动的清淤机器人
CN115748860A (zh) * 2022-07-22 2023-03-07 浙江大学 一种清淤机具
CN115748859A (zh) * 2022-07-22 2023-03-07 浙江大学 一种防淤陷清淤机器人

Also Published As

Publication number Publication date
CN115710946A (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
CN110512682B (zh) 一种水利工程用的高效清淤装置
CN201291991Y (zh) 一种用于海洋潮汐带的淤泥挖掘泵送船
CN105484307A (zh) 一种链斗式挖泥机船
CN106088200A (zh) 一种模块化环保疏浚船
CN110629823A (zh) 一种深水清淤作业系统
CN102776910A (zh) 一种河道疏理工程机械
CN205276352U (zh) 一种链斗式挖泥机船
CN113062388A (zh) 一种无人驾驶的绞吸束射式水陆两栖行走清淤装备
WO2018178088A1 (en) Autonomus dredging underwater device
CN113175016A (zh) 一种复合型水下动力清淤拖耙
CN111038652A (zh) 一种多功能工程船
CN111576517A (zh) 一体化高压防堵吸入冲挖清淤设备
CN201183968Y (zh) 双破碎式全自动遥控水下清淤车
CN115653038A (zh) 一种液压驱动的清淤机器人
CN115748859A (zh) 一种防淤陷清淤机器人
CN202899194U (zh) 一种河道疏理工程机械的主浮箱
CN115748860A (zh) 一种清淤机具
WO2024016607A1 (zh) 一种清淤机器人
CN210975930U (zh) 一种深水清淤作业系统
CN213143168U (zh) 软硬垃圾隔离处理降阻免堵清淤挖吸一体化装置
CN106812171B (zh) 中小型水库便携式三浮体淤沙提取系统
CN201704717U (zh) 水下清淤机
CN103469839B (zh) 一种自行筏式河道清淤装置
CN210134470U (zh) 码头下方疏浚作业系统
CN202706091U (zh) 一种河道疏理工程机械水上定位和稳定机构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951862

Country of ref document: EP

Kind code of ref document: A1