WO2024016243A1 - 媒体接入控制mac重置定时器的处理方法及装置 - Google Patents

媒体接入控制mac重置定时器的处理方法及装置 Download PDF

Info

Publication number
WO2024016243A1
WO2024016243A1 PCT/CN2022/106897 CN2022106897W WO2024016243A1 WO 2024016243 A1 WO2024016243 A1 WO 2024016243A1 CN 2022106897 W CN2022106897 W CN 2022106897W WO 2024016243 A1 WO2024016243 A1 WO 2024016243A1
Authority
WO
WIPO (PCT)
Prior art keywords
timer
mbs
terminal
harq
access control
Prior art date
Application number
PCT/CN2022/106897
Other languages
English (en)
French (fr)
Inventor
刘晓菲
吴昱民
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/106897 priority Critical patent/WO2024016243A1/zh
Priority to CN202280002317.1A priority patent/CN117751684A/zh
Publication of WO2024016243A1 publication Critical patent/WO2024016243A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols

Definitions

  • the present disclosure relates to the field of mobile communication technology, and in particular to a processing method and device for a media access control MAC reset timer.
  • the Hybrid Automatic Repeat Request (HARQ) protocol is the most important retransmission method in the New Radio (NR).
  • NR New Radio
  • HARQ Hybrid Automatic Repeat Request
  • a packet is decoded incorrectly, a retransmission request is sent. Although the packet cannot be parsed, the received packet still contains useful information, so if the wrong packet is discarded, useful information will be lost.
  • the existing mechanism stores the received error data packet in the HARQ buffer, and then merges it with the retransmitted data packet to obtain a merged data packet, and performs error correction and decoding on the merged data packet.
  • the terminal Since initial transmission and retransmission are generally scheduled in the same way, the terminal needs to know whether this transmission is a new transmission or a retransmission, because new transmissions need to clear the cache, and retransmissions need to be merged, so the scheduling information sent downlink contains An explicit new data indicator (NDI) used to mark the scheduled transport block (Transport Block, TB).
  • NDI is essentially a 1-bit sequence number, which will be flipped when a new transmission block is received.
  • the terminal When receiving a downlink scheduling allocation, the terminal will check the NDI to determine whether the current transmission should be merged with the data packets in the HARQ buffer or the HARQ buffer should be cleared. .
  • the present disclosure provides a processing method and device for a media access control MAC reset timer, which can support inactive multicast service reception and reduce the loss of multicast service data.
  • a first aspect embodiment of the present disclosure provides a method for processing a media access control MAC reset timer.
  • the method is applied to a terminal.
  • the method includes:
  • the terminal performs at least one of the following operations on the timer according to the protocol:
  • restarting the MBS-related timer includes performing any one of the following operations:
  • the MBS-related timer at least includes a discontinuous reception DRX configuration-related timer
  • the DRX configuration-related timer includes at least one of the following:
  • the method further includes:
  • the TA timer includes at least one of the following:
  • the method further includes performing at least one of the following operations:
  • the MBS-related semi-persistent scheduling SPS configuration is retained.
  • retaining the specified HARQ buffer includes performing any one of the following operations:
  • the designated HARQ buffer includes at least one of the following:
  • the MBS-related HARQ buffer
  • the MBS-related HARQ buffer for which the transport block TB has not been successfully decoded is not been successfully decoded.
  • retaining the MBS-related semi-persistent scheduling SPS configuration includes performing any one of the following operations:
  • the method further includes:
  • a second aspect embodiment of the present disclosure provides a method for processing a media access control MAC reset timer.
  • the method is applied to the network side.
  • the method includes:
  • the method further includes:
  • a third embodiment of the present disclosure provides a device for processing a media access control MAC reset timer.
  • the device is applied to a terminal, and the device includes:
  • Execution module used for inactive multicast service MBS, during the media access control MAC reset process, the terminal performs at least one of the following operations on the timer according to the agreement:
  • a fourth embodiment of the present disclosure provides a device for processing a media access control MAC reset timer.
  • the device is applied to the network side.
  • the device includes:
  • a sending module configured to send network configuration to the terminal, where the network configuration is used to determine a designated time to restart the MBS-related timer of the inactive multicast service.
  • a fifth aspect embodiment of the present disclosure provides a communication device.
  • the communication device includes: a transceiver; a memory; and a processor, respectively connected to the transceiver and the memory, and configured to control the transceiver by executing computer-executable instructions on the memory.
  • wireless signal transceiver and can implement the method as in the embodiment of the first aspect or the embodiment of the second aspect of the present disclosure.
  • a sixth embodiment of the present disclosure provides a computer storage medium, wherein the computer storage medium stores computer-executable instructions; after the computer-executable instructions are executed by a processor, the computer-executable instructions can implement the first embodiment or the third aspect of the present disclosure.
  • Embodiments of the present disclosure provide a method and device for processing a media access control MAC reset timer.
  • the terminal When the terminal is in an inactive state and continues to receive multicast service data, during the media access control MAC reset process , perform at least one of the following operations on the timer according to the protocol: do not stop the MBS-related timer; stop the MBS-related timer, and then restart the MBS-related timer; treat the time synchronization TA timer as expired.
  • the timer related to the inactive multicast service will not be stopped, thereby ensuring that the terminal can receive the inactive multicast service and effectively preventing data loss.
  • Figure 1 is a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of a method for processing a media access control MAC reset timer according to an embodiment of the present disclosure
  • Figure 3 is a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure
  • Figure 4 is a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure
  • Figure 5 is a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure
  • Figure 6 is a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure
  • Figure 7 is a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure
  • Figure 8 is a sequence diagram of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure
  • Figure 9 is a schematic structural diagram of a media access control MAC reset timer processing device according to an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of a media access control MAC reset timer processing device according to an embodiment of the present disclosure
  • Figure 11 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • Figure 12 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • the Hybrid Automatic Repeat Request (HARQ) protocol is the most important retransmission method in the New Radio (NR).
  • NR New Radio
  • HARQ Hybrid Automatic Repeat Request
  • a packet is decoded incorrectly, a retransmission request is sent. Although the packet cannot be parsed, the received packet still contains useful information, so if the wrong packet is discarded, useful information will be lost.
  • the existing mechanism stores the received error data packet in the HARQ buffer, and then merges it with the retransmitted data packet to obtain a merged data packet, and performs error correction and decoding on the merged data packet.
  • MAC Media Access Control
  • the present disclosure proposes a media access control MAC reset timer processing method and device, which can support inactive multicast service reception and reduce data loss.
  • Figure 1 shows a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure. As shown in Figure 1, the method is applied to the terminal and may include the following steps.
  • Step 101 For the inactive multicast service MBS, during the media access control MAC resetting process, the terminal performs control operations on the MBS-related timers according to the protocol.
  • the inactive multicast service (Multicast Broadcast Service, MBS) is a multicast service in which inactive terminals can still receive service data.
  • MBS Multicast Broadcast Service
  • the Media Access Control (Medium Access Control, MAC) reset process needs to be performed.
  • MAC Medium Access Control
  • all timers will be stopped.
  • the terminal performs operations on the timer without stopping the MBS-related timer according to the protocol, which can ensure that the inactive state is supported. Terminals that receive multicast services can normally receive inactive multicast services.
  • performing control operations on the MBS-related timer may include two possible implementation methods:
  • the terminal can perform the operation of not stopping the MBS related timer according to the agreement. In this operation, the terminal may continue to run the MBS-related timer; or, the terminal may stop all timers except the MBS-related timer.
  • the terminal can stop the MBS-related timer according to the protocol and then restart the MBS-related timer. In this restart operation, including but not limited to any of the following situations:
  • the terminal immediately restarts the MBS related timer
  • the terminal restarts the MBS-related timer when the conditions for starting the MBS-related timer are met;
  • the terminal restarts the MBS-related timer at a designated time, where the designated time is determined according to the protocol agreement or network configuration.
  • the MBS-related timers at least include discontinuous reception (Discontinuous Reception, DRX) configuration-related timers
  • DRX configuration-related timers include but are not limited to at least one of the following:
  • DRX activation timer (drx-onDurationTimerPTM) for point-to-multipoint transmission PTM;
  • DRX inactivity timer (drx-InactivityTimerPTM) used for point-to-multipoint transmission PTM;
  • DRX downlink retransmission timer (drx-RetransmissionTimerDL-PTM) used for point-to-multipoint transmission PTM;
  • DRX downlink hybrid automatic repeat request HARQ round trip delay RTT timer (drx-HARQ-RTT-TimerDL-PTM) used for point-to-multipoint transmission PTM.
  • DRX downlink retransmission timer (drx-RetransmissionTimerDL-PTM) used for point-to-multipoint transmission PTM;
  • DRX downlink hybrid automatic repeat request HARQ round trip delay RTT timer (drx-HARQ-RTT-TimerDL-PTM) used for point-to-multipoint transmission PTM.
  • the MBS related timing can be controlled during the MAC reset process.
  • the server will not be stopped, thereby enabling the terminal to receive inactive multicast service data normally and ensuring the normal execution of inactive multicast services.
  • Figure 2 shows a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure. As shown in Figure 2, the method is applied to the terminal and may include the following steps.
  • Step 201 For the inactive multicast service MBS, during the media access control MAC resetting process, the terminal performs control operations on the time synchronization TA timer according to the protocol.
  • the network side When the network side releases the terminal to the inactive state through RRCRelease containing the pending configuration, it needs to perform the Media Access Control (MAC) reset process. During the MAC reset process, all times are synchronized (Time Alignment, TA) timer will be considered to have expired. Under this initialization operation, subsequent operations of clearing the HARQ buffer and configuring the downlink HARQ link will continue. For inactive multicast services, the HARQ buffer cannot be cleared. Once the HARQ buffer is cleared, when a packet decoding error occurs during the data transmission of the inactive multicast service, the decoding cannot be retrieved in the HARQ buffer. Wrong data packets can easily lead to the loss of useful information or directly cause decoding failure.
  • MAC Media Access Control
  • the terminal performs the deemed expiration operation on the time synchronization TA timer according to the protocol, it further performs the operation of retaining the MBS-related HARQ buffer and/or retaining the MBS-related semi-persistent scheduling SPS configuration.
  • the TA timer includes but is not limited to at least one of the following:
  • Time synchronization timer timeAlignmentTimers
  • CG-SDT-TimeAlignmentTimer Used to configure the time synchronization timer (CG-SDT-TimeAlignmentTimer) that authorizes CG-small data transmission SDT.
  • Step 202a Reserve the specified HARQ buffer.
  • the specified HARQ buffer can be at least one of the following:
  • timeAlignmentTimers can be associated with the primary timing advance group (Primary Timing Advance Group, PTAG) or the auxiliary timing advance group (Secondary Timing Advance Group, STAG).
  • time synchronization timer timeAlignmentTimers is associated with a PTAG, when the timer expires, the terminal does not clear all HARQ buffers for all serving cells;
  • the terminal will not clear all HARQ buffers for all serving cells belonging to the TAG.
  • timeAlignmentTimers can be associated with PTAG or STAG.
  • the terminal does not clear all HARQ buffers that have not successfully decoded the transmission block TB;
  • the terminal does not clear all HARQ buffers that have not been successfully decoded by the transmission block TB. .
  • timeAlignmentTimers can be associated with PTAG or STAG.
  • the terminal does not clear all MBS-related HARQ buffers for all serving cells;
  • the terminal does not clear all MBS-related HARQ buffers for all serving cells belonging to the TAG.
  • timeAlignmentTimers or the time synchronization timer cg-SDT-TimeAlignmentTimer used to configure authorized CG-small data transmission SDT is considered to have expired, the terminal does not clear all MBS related The HARQ buffer of which the transport block TB has not been successfully decoded.
  • timeAlignmentTimers can be associated with PTAG or STAG.
  • time synchronization timer timeAlignmentTimers is associated with a PTAG, when the timer expires, for all serving cells, the terminal does not clear all MBS-related HARQ and the transport block TB has not been successfully decoded. buffer;
  • time synchronization timer timeAlignmentTimers is associated with a STAG, when the timer expires, for all serving cells belonging to the TAG, the terminal does not clear all MBS-related and the transmission block TB is not successfully translated The HARQ buffer of the code.
  • timeAlignmentTimers can be associated with the Primary Timing Advance Group (PTAG) or the Secondary Timing Advance Group (STAG).
  • timeAlignmentTimers timeAlignmentTimers
  • the terminal continues to use all HARQ buffers for all serving cells belonging to the TAG.
  • timeAlignmentTimers can be associated with PTAG or STAG.
  • time synchronization timer timeAlignmentTimers is associated with a PTAG, when the timer expires, for all serving cells, the terminal continues to use the HARQ buffer of all transmission blocks TB that have not been successfully decoded;
  • the terminal continues to use the HARQ buffer of all transmission blocks TB that have not been successfully decoded. .
  • timeAlignmentTimers can be associated with PTAG or STAG.
  • time synchronization timer timeAlignmentTimers is associated with a PTAG, when the timer expires, the terminal continues to use all MBS-related HARQ buffers for all serving cells;
  • the terminal continues to use all MBS-related HARQ buffers for all serving cells belonging to the TAG.
  • timeAlignmentTimers or the time synchronization timer cg-SDT-TimeAlignmentTimer used to configure authorized CG-small data transmission SDT is considered to have expired, the terminal continues to use all MBS-related The HARQ buffer of which the transport block TB has not been successfully decoded.
  • timeAlignmentTimers can be associated with PTAG or STAG.
  • time synchronization timer timeAlignmentTimers is associated with a PTAG, when the timer expires, for all serving cells, the terminal continues to use HARQ related to all MBSs and the transport block TB has not been successfully decoded. buffer;
  • time synchronization timer timeAlignmentTimers is associated with a STAG, when the timer expires, for all serving cells belonging to the TAG, the terminal continues to use all MBS-related and transmission block TB is not successfully translated The HARQ buffer of the code.
  • timeAlignmentTimers when the time synchronization timer timeAlignmentTimers or the time synchronization timer cg-SDT-TimeAlignmentTimer used to configure authorized CG-small data transmission SDT is considered to have expired, the terminal clears all HARQ buffers except The HARQ buffer is outside the HARQ buffer, that is, the HARQ buffer is not cleared.
  • timeAlignmentTimers can be associated with the Primary Timing Advance Group (PTAG) or the Secondary Timing Advance Group (STAG).
  • timeAlignmentTimers timeAlignmentTimers
  • the terminal does not clear the HARQ buffer for all serving cells belonging to the TAG.
  • the terminal clears all transmission blocks except TB All HARQ buffers except the HARQ buffer that have not been successfully decoded.
  • timeAlignmentTimers can be associated with PTAG or STAG.
  • time synchronization timer timeAlignmentTimers is associated with a PTAG, when the timer expires, for all serving cells, the terminal clears all HARQ buffers except for all transmission blocks TB that have not been successfully decoded. All HARQ buffers;
  • the terminal clears the HARQ buffer except for all transmission blocks TB that have not been successfully decoded. All HARQ buffers except
  • timeAlignmentTimers or the time synchronization timer cg-SDT-TimeAlignmentTimer used to configure authorized CG-small data transmission SDT is considered to have expired, the terminal clears all MBS-related All HARQ buffers except the HARQ buffer.
  • timeAlignmentTimers can be associated with PTAG or STAG.
  • the terminal clears all HARQ buffers except all MBS-related HARQ buffers;
  • the terminal clears all HARQ buffers except all MBS-related HARQ buffers. .
  • timeAlignmentTimers or the time synchronization timer cg-SDT-TimeAlignmentTimer used to configure authorized CG-small data transmission SDT is considered to have expired, the terminal clears all MBS-related All HARQ buffers except the HARQ buffer in which the transmission block TB has not been successfully decoded.
  • timeAlignmentTimers can be associated with PTAG or STAG.
  • time synchronization timer timeAlignmentTimers is associated with a PTAG, when the timer expires, for all serving cells, the terminal clears all MBS-related HARQs and the transport block TB has not been successfully decoded. All HARQ buffers except buffer;
  • time synchronization timer timeAlignmentTimers is associated with a STAG
  • the terminal clears all MBS-related ones and the transport block TB is not successfully translated. All HARQ buffers except the HARQ buffer of the code.
  • Step 202b Retain the MBS-related semi-persistent scheduling SPS configuration.
  • retaining the MBS-related semi-persistent scheduling SPS configuration includes performing any of the following operations:
  • time synchronization timer timeAlignmentTimers when the time synchronization timer timeAlignmentTimers expires, the terminal does not clear the MBS-related SPS configuration. Furthermore, the time synchronization timer timeAlignmentTimers can be associated with PTAG or STAG.
  • the terminal does not clear the MBS-related SPS configuration
  • the terminal does not clear the MBS-related SPS configuration.
  • the terminal reconfigures the MBS-related SPS configuration according to the network instructions.
  • the time synchronization timer timeAlignmentTimers can be associated with PTAG or STAG.
  • the terminal reconfigures the MBS-related SPS configuration according to network instructions
  • timeAlignmentTimers is associated with a STAG, then for all serving cells belonging to the TAG, the terminal reconfigures the MBS-related SPS configuration according to network instructions.
  • Step 202c Retain the specified HARQ buffer and retain the MBS-related semi-persistent scheduling SPS configuration.
  • the operation of retaining the specified HARQ buffer and retaining the MBS-related semi-persistent scheduling SPS configuration can be further performed to avoid the HARQ buffer and The MBS-related semi-persistent scheduling SPS configuration is cleared to prevent the loss of multicast service data.
  • the implementation process when performing the operation of retaining the HARQ buffer, the implementation process is the same as step 202a in the embodiment, and will not be described again here.
  • the implementation process is the same as step 202b in the embodiment, and will not be described again here.
  • the processing method of the media access control MAC reset timer provided by the embodiment of the present disclosure, it is possible to avoid the complete initialization of the HARQ process during the MAC reset process and ensure that terminals that support inactive multicast service reception are , when it is in the inactive state and continues to receive multicast service data, the relevant HARQ buffer and MBS-related semi-persistent scheduling SPS configuration will not be cleared, and the retransmission operation of decoded error packets can be performed normally, thus ensuring inactivation
  • the MAC of a dynamic terminal is reset, the integrity of multicast service data transmission and the accuracy of decoding are improved to prevent the loss of useful information.
  • FIG 3 shows a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure. As shown in Figure 3, this method is applied to the terminal, based on the embodiments shown in Figures 1 and 2, as shown in Figure 3, and may include the following steps.
  • the terminal performs control operations on the MBS-related timers and the time synchronization TA timer according to the protocol.
  • the Media Access Control (Medium Access Control, MAC) reset process needs to be performed.
  • all timers will be stopped.
  • All time synchronization (Time Alignment, TA) timers will be considered expired.
  • the timer is stopped, the downlink configuration service of the inactive multicast service will not be able to receive the service data of the multicast service, causing the multicast service to fail to execute normally.
  • the time synchronization timer is deemed to have expired, subsequent operations of clearing the HARQ buffer and configuring the downlink HARQ link will continue. For inactive multicast services, the HARQ buffer cannot be cleared.
  • the media access control MAC reset During the setting process, the terminal can perform control operations on the MBS-related timers and the time synchronization TA timer according to the agreement.
  • the terminal After performing the deemed expiration operation on the time synchronization TA timer, the terminal can further perform the reservation of the specified HARQ buffer and/or reservation of the MBS. Operations related to semi-persistent scheduling SPS configuration. Through the above operations, it can be ensured that terminals that support inactive multicast service reception can normally receive inactive multicast services while reducing the loss of multicast service data.
  • the implementation process when the terminal performs the control operation on the MBS-related timer according to the protocol, the implementation process is the same as step 101 of the embodiment, and will not be described again here.
  • the implementation process is the same as step 201 in the embodiment, and will not be described again here.
  • the terminal After the terminal performs the control operation on the time synchronization TA timer according to the protocol agreement, the terminal further performs any one of the embodiment steps 302a, 302b, and 302c.
  • the implementation process is the same as step 202a of the embodiment, and will not be described again here.
  • the implementation process is the same as step 202b of the embodiment, and will not be described again here.
  • the implementation process is the same as step 202c of the embodiment, and will not be described again here.
  • the MBS related timing can be controlled during the MAC reset process.
  • the server will not be stopped, thereby enabling the terminal to receive inactive multicast service data normally and ensuring the normal execution of inactive multicast services.
  • the HARQ process can avoid the complete initialization of the HARQ process during the MAC reset process, ensuring that terminals that support inactive multicast service reception, when in the inactive state and continue to receive multicast service data, the relevant HARQ buffer and MBS
  • the related semi-persistent scheduling SPS configuration will not be cleared, and the retransmission operation of decoded error packets can be performed normally, thereby ensuring the integrity of multicast service data transmission when the inactive terminal resets the MAC and improving the decoding efficiency. accuracy to prevent the loss of useful information.
  • Figure 4 shows a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure. The method is applied to the terminal, is based on the embodiment shown in Figure 1, is shown in Figure 4, and may include the following steps.
  • the network side may include at least one of a base station and a core network; the terminal may be an inactive terminal; the inactive multicast service (Multicast Broadcast Service, MBS) is a group in which the inactive terminal can still receive service data broadcast business.
  • MBS Multicast Broadcast Service
  • the network side can send the inactive multicast service MBS to the inactive terminal, so that after receiving the MBS, the inactive terminal can process the timer in response to executing the MBS to prevent the MAC from being reset. Stop all MBS-related timers or treat all TA timers as expired. This further enables the inactive terminal to support the reception of inactive multicast services and reduce the loss of multicast service data during the execution of MBS.
  • the Media Access Control (Medium Access Control, MAC) reset process needs to be performed. During the MAC reset process, all The timer will be stopped. Under this kind of initialization operation, for the downlink configuration service of the inactive multicast service, the service data of the multicast service will not be received, causing the multicast service to fail to execute normally.
  • MAC Medium Access Control
  • the terminal in order to ensure the normal execution of the inactive multicast service MBS by the terminal, during the media access control MAC reset process, the terminal performs the first control operation on the MBS-related timer according to the agreement.
  • the first control operation may include two possible implementation methods:
  • the first control operation may be not to stop the MBS related timer.
  • the terminal may continue to run the MBS-related timer; or, the terminal may stop all timers except the MBS-related timer.
  • the first control operation may be to stop the MBS-related timer and then restart the MBS-related timer. This operation includes but is not limited to any of the following situations:
  • the terminal immediately restarts the MBS related timer
  • the terminal restarts the MBS-related timer when the conditions for starting the MBS-related timer are met;
  • the terminal restarts the MBS-related timer at a designated time, where the designated time is determined according to the protocol agreement or network configuration.
  • the MBS-related timers at least include Discontinuous Reception (DRX) configuration-related timers
  • DRX configuration-related timers include but are not limited to at least one of the following: DRX activation state timing for point-to-multipoint transmission PTM (drx-onDurationTimerPTM); DRX inactivity timer (drx-InactivityTimerPTM) used for point-to-multipoint transmission PTM; DRX downlink retransmission timer (drx-RetransmissionTimerDL-PTM) used for point-to-multipoint transmission PTM ; DRX downlink hybrid automatic repeat request HARQ round trip delay RTT timer (drx-HARQ-RTT-TimerDL-PTM) for point-to-multipoint transmission PTM.
  • DRX activation state timing for point-to-multipoint transmission PTM drx-onDurationTimerPTM
  • DRX inactivity timer DRX inactivity timer (drx-InactivityTimer
  • DRX downlink retransmission timer (drx-RetransmissionTimerDL-PTM) used for point-to-multipoint transmission PTM
  • DRX downlink hybrid automatic repeat request HARQ round trip delay RTT timer (drx-HARQ-RTT-TimerDL-PTM) for point-to-multipoint transmission PTM.
  • the MBS related timing can be controlled during the MAC reset process.
  • the server will not be stopped, thereby enabling the terminal to receive inactive multicast service data normally and ensuring the normal execution of inactive multicast services.
  • Figure 5 shows a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure. The method is applied to the terminal, is based on the embodiment shown in Figure 2, is shown in Figure 5, and may include the following steps.
  • the second control operation may be to regard the execution of the time synchronization TA timer as expiration.
  • the Media Access Control (Medium Access Control, MAC) reset process needs to be performed.
  • All The time synchronization (Time Alignment, TA) timer will be considered expired.
  • TA Time Alignment
  • subsequent operations of clearing the HARQ buffer and configuring the downlink HARQ link will continue.
  • the HARQ buffer cannot be cleared. Once the HARQ buffer is cleared, when a packet decoding error occurs during the data transmission of the inactive multicast service, the decoding cannot be retrieved in the HARQ buffer. Wrong data packets can easily lead to the loss of useful information or directly cause decoding failure.
  • the media access control MAC reset is During the setup process, the terminal executes the MBS-related timer according to the protocol and treats the time synchronization TA timer execution as expired, and then further performs the operation of retaining the specified HARQ buffer and/or retaining the MBS-related semi-persistent scheduling SPS configuration to ensure support Terminals that receive inactive multicast services can normally receive inactive multicast services and reduce the loss of multicast service data.
  • the terminal retains the specified HARQ buffer.
  • the specified HARQ buffer includes at least one of the following: all HARQ buffers; all HARQ buffers in which the transmission block TB has not been successfully decoded; MBS-related HARQ buffers; MBS-related HARQ buffers in which the transmission block TB has not been successfully decoded.
  • retaining the specified HARQ buffer can be achieved by any of the following operations: do not clear the specified HARQ buffer; continue to use the specified HARQ buffer; clear all HARQ buffers except the specified HARQ buffer.
  • the implementation process is the same as step 202a of the embodiment, and will not be described again here.
  • the terminal retains the MBS-related semi-persistent scheduling SPS configuration.
  • the MBS-related semi-persistent scheduling SPS configuration is retained, which can be achieved by any of the following operations: not clearing the MBS-related SPS configuration; reconfiguring the MBS-related SPS configuration according to the network instructions, where the network instructions are sent by the network side .
  • the implementation process is the same as step 202b of the embodiment, and will not be described again here.
  • the terminal retains the specified HARQ buffer and retains the MBS-related semi-persistent scheduling SPS configuration. This further prevents the HARQ buffer and MBS-related semi-persistent scheduling SPS configuration from being cleared, preventing the loss of multicast service data.
  • the implementation process is the same as step 202c of the embodiment, and will not be described again here.
  • the MBS related timing can be controlled during the MAC reset process.
  • the server will not be stopped, thereby enabling the terminal to receive inactive multicast service data normally and ensuring the normal execution of inactive multicast services.
  • the HARQ process can avoid the complete initialization of the HARQ process during the MAC reset process, ensuring that terminals that support inactive multicast service reception, when in the inactive state and continue to receive multicast service data, the relevant HARQ buffer and MBS
  • the related semi-persistent scheduling SPS configuration will not be cleared, and the retransmission operation of decoded error packets can be performed normally, thereby ensuring the integrity of multicast service data transmission when the inactive terminal resets the MAC and improving the decoding efficiency. accuracy to prevent the loss of useful information.
  • Figure 6 shows a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure. The method is applied to the terminal, is based on the embodiment shown in Figure 2, is shown in Figure 6, and may include the following steps.
  • the first control operation may be not to stop the MBS-related timer.
  • the terminal may continue to run the MBS-related timer; or the terminal may stop all timers except the MBS-related timer.
  • the first control operation may also be to stop the MBS-related timer and then restart the MBS-related timer. In this operation, it includes but is not limited to any of the following situations: the terminal restarts the MBS-related timer immediately; the terminal restarts the MBS-related timer when the MBS-related timer opening conditions are met; the terminal restarts the MBS-related timer at a specified time, where , the specified time is determined based on the protocol agreement or network configuration.
  • the second control operation may be to regard the execution of the time synchronization TA timer as expiration.
  • the terminal retains the specified HARQ buffer and/or retains the MBS-related semi-persistent scheduling SPS configuration.
  • the implementation process is the same as step 503 in the embodiment, and will not be described again here.
  • the MBS related timing can be controlled during the MAC reset process.
  • the server will not be stopped, thereby enabling the terminal to receive inactive multicast service data normally and ensuring the normal execution of inactive multicast services.
  • the time synchronization TA timer is considered to have expired, the MBS-related HARQ buffer and MBS-related semi-persistent scheduling SPS configuration can be further retained.
  • FIG. 7 shows a schematic flowchart of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure. As shown in Figure 7, this method is applied to the network side and may include the following steps.
  • the network configuration is used by the terminal to determine the designated time to restart the MBS-related timer of the inactive multicast service.
  • the network side may include at least one of a base station and a core network.
  • the network side may first send the inactive multicast service MBS to the terminal.
  • the network side may send the MBS to the terminal for the terminal to determine to restart the inactive multicast service.
  • the network configuration at the specified time of the relevant timer can determine the specified time according to the network configuration when controlling to stop the MBS-related timer and then restart the MBS-related timer, and restart the MBS-related timer at the specified time. .
  • the network instruction is used by the terminal to reconfigure the MBS-related SPS configuration.
  • the network side may also send a network instruction to the terminal to reconfigure the MBS-related SPS configuration. It further enables terminals that support inactive multicast service reception to regard the time synchronization TA timer as expired, and can reconfigure the MBS-related SPS according to the received network instructions while further retaining the MBS-related semi-persistent scheduling SPS configuration. configuration.
  • the terminal can perform the MAC reset process according to the network configuration and network instructions.
  • Timer control and reconfiguration of SPS configuration information It can prevent the default stop action of all timers during the MAC reset process, which will affect the reception of inactive multicast services and data transmission.
  • clearing the MBS-related semi-persistent scheduling SPS configuration which will affect the reception of inactive multicast services or cause data loss.
  • FIG. 8 is a sequence diagram of a processing method for a media access control MAC reset timer according to an embodiment of the present disclosure. This method is applied to a media access control MAC reset timer processing system.
  • the system includes: a terminal UE and a network side.
  • the network side sends network configuration and network instructions to the terminal UE; for inactive multicast service MBS,
  • the terminal performs at least one of the following operations on the timer according to the protocol: do not stop the MBS-related timer; stop the MBS-related timer, and then restart the MBS-related timer; synchronize the time
  • the TA timer is considered to have expired.
  • the method includes the following steps.
  • the network side sends the inactive multicast service to the terminal.
  • the network sends network configuration to the terminal.
  • the network sends a network instruction to the terminal.
  • the terminal may execute any one of 804 to 805 during the media access control MAC reset process:
  • the terminal performs control operations on the MBS-related timer.
  • performing control operations on MBS-related timers can include two possible implementation methods:
  • the terminal can perform the operation of not stopping the MBS related timer according to the agreement. In this operation, the terminal may continue to run the MBS-related timer; or, the terminal may stop all timers except the MBS-related timer.
  • the terminal can stop the MBS-related timer according to the protocol and then restart the MBS-related timer. In this restart operation, including but not limited to any of the following situations:
  • the terminal immediately restarts the MBS related timer
  • the terminal restarts the MBS-related timer when the conditions for starting the MBS-related timer are met;
  • the terminal restarts the MBS-related timer at a designated time, where the designated time is determined according to the protocol agreement or network configuration.
  • the terminal performs control operations on the time synchronization TA timer.
  • control operation performed on the MBS-related timer may specifically include treating the time synchronization TA timer as expired. Further, after the time synchronization TA timer is considered to have expired, the operation in 806 is continued.
  • the terminal retains the specified HARQ buffer and/or retains the MBS-related semi-persistent scheduling SPS configuration.
  • the specified HARQ buffer can be at least one of the following:
  • Retain the specified HARQ buffer including performing at least one of the following operations:
  • Retain the MBS-related semi-persistent scheduling SPS configuration including performing any of the following operations:
  • the control MBS-related timer when the terminal is in an inactive state and performs multicast service data reception, during the MAC reset process, the control MBS-related timer will not is stopped, thereby enabling the terminal to receive inactive multicast service data normally and ensuring the normal execution of inactive multicast services.
  • the HARQ process can avoid the complete initialization of the HARQ process during the MAC reset process, ensuring that terminals that support inactive multicast service reception, when in the inactive state and continue to receive multicast service data, the relevant HARQ buffer and MBS
  • the related semi-persistent scheduling SPS configuration will not be cleared, and the retransmission operation of decoded error packets can be performed normally, thereby ensuring the integrity of multicast service data transmission when the inactive terminal resets the MAC and improving the decoding efficiency. accuracy to prevent the loss of useful information.
  • the methods provided by the embodiments of the present application are introduced from the perspectives of the terminal and the network side respectively.
  • the terminal and the network side may include hardware structures and software modules to implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions can be executed by a hardware structure, a software module, or a hardware structure plus a software module.
  • the present disclosure also provides a processing device for the media access control MAC reset timer. Since the media access control MAC reset timer provided by the embodiments of the present disclosure is The processing device of the access control MAC reset timer corresponds to the processing method of the media access control MAC reset timer provided in the above embodiments. Therefore, the implementation of the processing method of the media access control MAC reset timer is It is also applicable to the processing device of the media access control MAC reset timer provided in this embodiment, and will not be described in detail in this embodiment.
  • FIG. 9 is a schematic structural diagram of a media access control MAC reset timer processing device 900 provided according to an embodiment of the present disclosure.
  • the media access control MAC reset timer processing device 900 can be used in a terminal.
  • the device 900 may include:
  • the execution module 910 may be used for inactive multicast service MBS.
  • the terminal performs at least one of the following operations on the timer according to the protocol:
  • the execution module 910 when restarting the MBS-related timer, includes performing any one of the following operations:
  • the MBS-related timer at least includes a discontinuous reception DRX configuration-related timer
  • the DRX configuration-related timer includes at least one of the following:
  • the device 900 further includes: a stop module 920;
  • the stopping module 920 may be configured to stop at least one of the following MBS-related timers in response to the MBS not supporting HARQ feedback:
  • the TA timer includes at least one of the following:
  • the device 900 further includes: a retention module 930;
  • the retention module 930 can be used to retain the specified HARQ buffer
  • the retention module 930 can also be used to retain the MBS-related semi-persistent scheduling SPS configuration.
  • the reservation module 930 reserves the specified HARQ buffer, including performing any of the following operations:
  • specifying the HARQ buffer includes at least one of the following:
  • the retaining module 930 retains the MBS-related semi-persistent scheduling SPS configuration, including performing any one of the following operations:
  • the device 900 further includes: a receiving module 940;
  • the receiving module 940 may be used to receive network instructions sent by the network side.
  • FIG. 10 is a schematic structural diagram of a media access control MAC reset timer processing device 1000 provided by an embodiment of the present disclosure.
  • the media access control MAC reset timer processing device 1000 can be used on the network side.
  • the device 1000 may include:
  • the sending module 1010 may be used to send network configuration to the terminal.
  • the network configuration is used by the terminal to determine the designated time to restart the MBS-related timer of the inactive multicast service.
  • the sending module 1010 can also be used to send network instructions to the terminal.
  • the network instructions are used by the terminal to reconfigure the MBS-related SPS configuration.
  • FIG 11 is a schematic structural diagram of a communication device 1100 provided by an embodiment of the present application.
  • the communication device 1100 may be a network device, a user equipment, a chip, a chip system, or a processor that supports network equipment to implement the above method, or a chip, a chip system, or a processor that supports user equipment to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1100 may include one or more processors 1101.
  • the processor 1101 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1100 may also include one or more memories 1102, on which a computer program 1104 may be stored.
  • the processor 1101 executes the computer program 1104, so that the communication device 1100 executes the method described in the above method embodiment.
  • the memory 1102 may also store data.
  • the communication device 1100 and the memory 1102 can be provided separately or integrated together.
  • the communication device 1100 may also include a transceiver 1105 and an antenna 1106.
  • the transceiver 1105 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1105 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1100 may also include one or more interface circuits 1107.
  • the interface circuit 1107 is used to receive code instructions and transmit them to the processor 1101 .
  • the processor 1101 executes code instructions to cause the communication device 1100 to perform the method described in the above method embodiment.
  • the processor 1101 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1101 may store a computer program 1103, and the computer program 1103 runs on the processor 1101, causing the communication device 1100 to perform the method described in the above method embodiment.
  • the computer program 1103 may be solidified in the processor 1101, in which case the processor 1101 may be implemented by hardware.
  • the communication device 1100 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be network equipment or user equipment, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 11 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device can be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 12 refer to the schematic structural diagram of the chip shown in FIG. 12 .
  • the chip shown in Figure 12 includes a processor 1201 and an interface 1202.
  • the number of processors 1201 may be one or more, and the number of interfaces 1202 may be multiple.
  • the chip also includes a memory 1203, which is used to store necessary computer programs and data.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • a computer program product includes one or more computer programs.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program may be transmitted from a website, computer, server or data center via a wireline (e.g.
  • Coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website, computer, server or data center.
  • Computer-readable storage media can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or other integrated media that contains one or more available media. Available media may be magnetic media (e.g., floppy disks, hard disks, tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks (SSD)) )wait.
  • magnetic media e.g., floppy disks, hard disks, tapes
  • optical media e.g., high-density digital video discs (DVD)
  • semiconductor media e.g., solid state disks (SSD)
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • machine-readable medium and “computer-readable medium” refer to any computer program product, apparatus, and/or means for providing machine instructions and/or data to a programmable processor (for example, magnetic disks, optical disks, memories, programmable logic devices (PLD)), including machine-readable media that receive machine instructions as machine-readable signals.
  • machine-readable signal refers to any signal used to provide machine instructions and/or data to a programmable processor.
  • the systems and techniques described herein may be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., A user's computer having a graphical user interface or web browser through which the user can interact with implementations of the systems and technologies described herein), or including such backend components, middleware components, or any combination of front-end components in a computing system.
  • the components of the system may be interconnected by any form or medium of digital data communication (eg, a communications network). Examples of communication networks include: local area network (LAN), wide area network (WAN), and the Internet.
  • Computer systems may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact over a communications network.
  • the relationship of client and server is created by computer programs running on corresponding computers and having a client-server relationship with each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出了一种媒体接入控制MAC重置定时器的处理方法及装置,涉及移动通信技术领域,根据本公开实施例提供了的媒体接入控制MAC重置定时器的处理方法,其中对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端根据协议约定对定时器执行以下至少一项操作:不停止所述MBS相关定时器;停止所述MBS相关定时器,并之后重新启动所述MBS相关定时器;将时间同步TA定时器视为到期。本公开可支持非激活态组播业务接收并减少组播业务数据的丢失。

Description

媒体接入控制MAC重置定时器的处理方法及装置 技术领域
本公开涉及移动通信技术领域,特别涉及一种媒体接入控制MAC重置定时器的处理方法及装置。
背景技术
混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)协议是新空口(New Radio,NR)中最主要的重传方式。当数据包译码错误时,会发送重传请求。尽管无法解析数据包,但接收到的数据包中仍包含有用信息,因此,如果丢弃错误的数据包,会导致有用信息丢失。现有机制将接收到的错误数据包存储在HARQ buffer中,随后与重传的数据包进行合并,得到一个合并的数据包,并对合并的数据包进行纠错解码。由于初传和重传一般采用相同的方式进行调度,终端需要知道这次传输是新传还是重传,因为新传需要清空缓存,而重传需要进行合并,因此下行发送的调度信息中包含了一个显式的新数据指示(New data indicator,NDI),用于标记该调度的传输块(Transport Block,TB)。NDI本质上是一个1bit的序列号,在新传输块时会翻转,当接收到一个下行调度分配时,终端会检查NDI,判断当前传输是应该与HARQ buffer中的数据包进行合并还是清空HARQ buffer。
在第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)R18标准中研究支持非激活态组播业务接收,当终端从非激活态时,也能够继续执行组播业务数据接收。在现有机制中,当网络侧通过包含挂起配置的RRCRelease将终端释放到非激活态时,需要执行媒体接入控制(Medium Access Control,MAC)重置流程。在MAC重置流程中,所有定时器会被停止或被视为到期,同时会清空HARQ buffer以及每个下行HARQ链路的配置。从而使支持非激活态组播业务接收的终端,无法继续接收非激活态组播业务(Multicast Broadcast Service,MBS)的业务数据,或产生数据丢失。
发明内容
本公开提供了一种媒体接入控制MAC重置定时器的处理方法及装置,可支持非激活态组播业务接收并减少组播业务数据的丢失。
本公开的第一方面实施例提供了一种媒体接入控制MAC重置定时器的处理方法,方法应用于终端,所述方法包括:
对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端根据协议约定对定时器执行以下至少一项操作:
不停止所述MBS相关定时器;
停止所述MBS相关定时器,并之后重新启动所述MBS相关定时器;
将时间同步TA定时器视为到期。
在本公开的一些实施例中,所述重新启动所述MBS相关定时器,包括执行以下任意一项操作:
立刻重启所述MBS相关定时器;
在满足所述MBS相关定时器开启条件时重启所述MBS相关定时器;
在指定时刻重启所述MBS相关定时器,其中,指定时刻为根据协议约定或网络配置确定的。
在本公开的一些实施例中,所述MBS相关定时器至少包括非连续性接收DRX配置相关定时器,所述DRX配置相关定时器包括以下至少一项:
用于点对多点传输PTM的DRX激活态定时器;
用于点对多点传输PTM的DRX非激活态定时器;
用于点对多点传输PTM的DRX下行重传定时器;
用于点对多点传输PTM的DRX下行混合自动重传请求HARQ往返时延RTT定时器。
在本公开的一些实施例中,所述方法还包括:
响应于所述MBS不支持HARQ反馈,停止以下至少一个MBS相关定时器:
用于点对多点传输PTM的DRX下行重传定时器;
用于点对多点传输PTM的DRX下行混合自动重传请求HARQ往返时延RTT定时器。
在本公开的一些实施例中,所述TA定时器包括以下至少一项:
时间同步定时器;
用于配置授权CG-小数据传输SDT的时间同步定时器。
在本公开的一些实施例中,在所述将时间同步TA定时器视为到期之后,所述方法还包括执行以下至少一项操作:
保留指定HARQ buffer;
保留所述MBS相关半持续调度SPS配置。
在本公开的一些实施例中,所述保留指定HARQ buffer,包括执行以下任意一项操作:
不清空所述指定HARQ buffer;
继续使用所述指定HARQ buffer;
清空除了所述指定HARQ buffer之外的所有HARQ buffer。
在本公开的一些实施例中,所述指定HARQ buffer包括以下至少一项:
所有HARQ buffer;
所有传输块TB没有被成功译码的HARQ buffer;
所述MBS相关的HARQ buffer;
所述MBS相关的且传输块TB没有被成功译码的HARQ buffer。
在本公开的一些实施例中,所述保留所述MBS相关半持续调度SPS配置,包括执行以下任意一项操作:
不清除所述MBS相关SPS配置;
根据网络指示重配置所述MBS相关SPS配置。
在本公开的一些实施例中,所述方法还包括:
接收网络侧发送的网络指示。
本公开的第二方面实施例提供了一种媒体接入控制MAC重置定时器的处理方法,所述方法应用于网络侧,所述方法包括:
向终端发送网络配置,所述网络配置用于所述终端确定重启非激活态组播业务MBS相关定时器的指定时刻。
在本公开的一些实施例中,所述方法还包括:
向终端发送网络指示,所述网络指示用于所述终端重配置所述MBS相关SPS配置。
本公开的第三方面实施例提供了一种媒体接入控制MAC重置定时器的处理装置,所述装置应用于终端,所述装置包括:
执行模块,用于对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端根据协议约定对定时器执行以下至少一项操作:
不停止所述MBS相关定时器;
停止所述MBS相关定时器,并之后重新启动所述MBS相关定时器;
将时间同步TA定时器视为到期。
本公开的第四方面实施例提供了一种媒体接入控制MAC重置定时器的处理装置,所述装置应用于网络侧,所述装置包括:
发送模块,用于向终端发送网络配置,所述网络配置用于确定重启非激活态组播业务MBS相关定时器的指定时刻。
本公开的第五方面实施例提供了一种通信设备,该通信设备包括:收发器;存储器;处理器,分别与收发器及存储器连接,配置为通过执行存储器上的计算机可执行指令,控制收发器的无线信号收发,并能够实现如本公开第一方面实施例或第二方面实施例的方法。
本公开的第六方面实施例提供了一种计算机存储介质,其中,计算机存储介质存储有计算机可执行指令;计算机可执行指令被处理器执行后,能够实现如本公开第一方面实施例或第二方面实施例的方法。
本公开实施例提供了一种媒体接入控制MAC重置定时器的处理方法及装置,终端可在处于非激活态并继续执行组播业务数据接收时,在媒体接入控制MAC重置过程中,根据协议约定对定时器执行以下至少一项操作:不停止MBS相关定时器;停止MBS相关定时器,并之后重新启动MBS相关定时器;将时间同步TA定时器视为到期。通过上述操作,可防止MAC重置过程中默认的对全部定时器执行停止或视为到期动作,会对非激活态组播业务接收以及数据传输造成影响。通过对MAC重置定时器的控制,可使非激活态组播业务相关定时器不会被停止,进而保证终端对于非激活态组播业务的接收并有效防止数据丢失。
本公开附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图;
图2为根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图;
图3为根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图;
图4为根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图;
图5为根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图;
图6为根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图;
图7为根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图;
图8为根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的时序图;
图9为根据本公开实施例提供的一种媒体接入控制MAC重置定时器的处理装置的结构示意图;
图10为根据本公开实施例提供的一种媒体接入控制MAC重置定时器的处理装置的结构示意图;
图11为根据本公开实施例的一种通信装置的结构示意图;
图12为本公开实施例提供的一种芯片的结构示意图。
具体实施方式
下面详细描述本公开的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)协议是新空口(New Radio,NR)中最主要的重传方式。当数据包译码错误时,会发送重传请求。尽管无法解析数据包,但接收到的数据包中仍包含有用信息,因此,如果丢弃错误的数据包,会导致有用信息丢失。现有机制将接收到的错误数据包存储在HARQ buffer中,随后与重传的数据包进行合并,得到一个合并的数据包,并对合并的数据包进行纠错解码。
然而对于释放到非激活态的终端,需要执行媒体接入控制(Medium Access Control,MAC)重置流程,在MAC重置流程中,所有定时器会被停止或被视为到期。在此种初始化操作下,组播业务无法正常接收,且会继续执行后续清空HARQ buffer以及下行HARQ链路配置的操作。而对于非激活态组播业务来说,不能清空HARQ buffer,一旦清空HARQ buffer,则在非激活态组播业务数据传输过程中发生数据包译码错误时,不能在HARQ buffer中查取译码错误的数据包,进而容易导致有用信息丢失或直接导 致译码失败。
为此,本公开提出了一种媒体接入控制MAC重置定时器的处理方法及装置,可支持非激活态组播业务接收并降低数据丢失。
下面结合附图对本申请所提供的切换方法及装置进行详细地介绍。
图1示出了根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图。如图1所示,该方法应用于终端,且可以包括以下步骤。
步骤101、对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端根据协议约定对MBS相关定时器执行控制操作。
其中,非激活态组播业务(Multicast Broadcast Service,MBS)为非激活态终端仍能执行业务数据接收的组播业务。
当网络侧通过包含挂起配置的RRCRelease将终端释放到非激活态时,需要执行媒体接入控制(Medium Access Control,MAC)重置流程,在MAC重置流程中,所有定时器会被停止。在此种初始化操作下,对于非激活态组播业务这一下行配置业务来说,将会无法接收组播业务的业务数据,导致组播业务无法正常执行。故为了保证终端针对非激活态组播业务MBS的正常执行,在媒体接入控制MAC重置过程中,终端根据协议约定对定时器执行不停止MBS相关定时器的操作,可保证支持非激活态组播业务接收的终端,能够正常接收到非激活态组播业务。
在本公开的实施例中,对MBS相关定时器执行控制操作,可包括两种可能实现的方式:
作为一种可能实现方式:对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端可根据协议约定执行不停止MBS相关定时器的操作。在该操作中,终端可以继续运行MBS相关定时器;或者,终端可以停止除了MBS相关定时器之外的所有定时器。
作为一种可能实现方式:对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端可根据协议约定执行停止MBS相关定时器,并之后重新启动MBS相关定时器的操作。在该重新启动操作中,包括但不限于以下任意一种情况:
终端立刻重启MBS相关定时器;
终端在满足MBS相关定时器开启条件时重启MBS相关定时器;
终端在指定时刻重启MBS相关定时器,其中,指定时刻为根据协议约定或网络配置确定的。
在本公开的实施例步骤中,MBS相关定时器至少包括非连续性接收(Discontinuous Reception,DRX)配置相关定时器,DRX配置相关定时器包括但不限于以下至少一项:
用于点对多点传输PTM的DRX激活态定时器(drx-onDurationTimerPTM);
用于点对多点传输PTM的DRX非激活态定时器(drx-InactivityTimerPTM);
用于点对多点传输PTM的DRX下行重传定时器(drx-RetransmissionTimerDL-PTM);
用于点对多点传输PTM的DRX下行混合自动重传请求HARQ往返时延RTT定时器(drx-HARQ-RTT-TimerDL-PTM)。
需要说明的是,对于非激活态组播业务,如果不支持HARQ反馈,则可以停止以下至少一个定时器:
用于点对多点传输PTM的DRX下行重传定时器(drx-RetransmissionTimerDL-PTM);
用于点对多点传输PTM的DRX下行混合自动重传请求HARQ往返时延RTT定时器(drx-HARQ-RTT-TimerDL-PTM)。
综上,根据本公开实施例提供的媒体接入控制MAC重置定时器的处理方法,可在终端处于非激活态并执行组播业务数据接收时,在MAC重置过程中,控制MBS相关定时器不会被停止,进而使终端能够正常接收到非激活态组播业务数据,保证非激活态组播业务的正常执行。
图2示出了根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图。如图2所示,该方法应用于终端,且可以包括以下步骤。
步骤201、对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端根据协议约定对时间同步TA定时器执行控制操作。
当网络侧通过包含挂起配置的RRCRelease将终端释放到非激活态时,需要执行媒体接入控制(Medium Access Control,MAC)重置流程,在MAC重置流程中,所有时间同步(Time Alignment,TA)定时器会被视为到期。在此种初始化操作下,会继续执行后续清空HARQ buffer以及下行HARQ链路配置的操作。而对于非激活态组播业务来说,不能清空HARQ buffer,一旦清空HARQ buffer,则在非激活态组播业务数据传输过程中发生数据包译码错误时,不能在HARQ buffer中查取译码错误的数据包,进而容易导致有用信息丢失或直接导致译码失败。故为了保证非激活态终端在MAC重置时,组播业务数据传输的完整性以及提高译码的准确率,防止丢失有用信息,在本公开实施例中,在媒体接入控制MAC重置过程中,终端根据协议约定对时间同步TA定时器执行视为到期操作后,进一步执行保留MBS相关HARQ buffer和/或保留MBS相关半持续调度SPS配置的操作。通过上述操作,可保证支持非激活态组播业务接收的终端,能够正常执行非激活态组播业务接收并减少组播业务数据的丢失。
在本公开的实施例步骤中,TA定时器包括但不限于以下至少一项:
时间同步定时器(timeAlignmentTimers);
用于配置授权CG-小数据传输SDT的时间同步定时器(CG-SDT-TimeAlignmentTimer)。
步骤202a、保留指定HARQ buffer。
其中,指定HARQ buffer可以是以下至少一项:
所有HARQ buffer;
所有传输块(Transport Block,TB)没有被成功译码的HARQ buffer;
MBS相关的HARQ buffer;
MBS相关的且传输块TB没有被成功译码的HARQ buffer。
相应的,保留指定HARQ buffer,包括执行以下任意一项操作:
不清空指定HARQ buffer;
继续使用指定HARQ buffer;
清空除了指定HARQ buffer之外的所有HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端不清空所有HARQ  buffer。进一步的,timeAlignmentTimers可以关联主定时提前量组(Primary Timing Advance Group,PTAG)或者辅定时提前量组(Secondary Timing Advance Group,STAG)。
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,当定时器到期,则对于所有服务小区,终端不清空所有HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端不清空所有HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端不清空所有传输块TB没有被成功译码的HARQ buffer。进一步的,timeAlignmentTimers可以关联PTAG或者STAG。
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,当定时器到期,则对于所有服务小区,终端不清空所有传输块TB没有被成功译码的HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端不清空所有传输块TB没有被成功译码的HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端不清空所有MBS相关的HARQ buffer。进一步的,timeAlignmentTimers可以关联PTAG或者STAG。
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,当定时器到期,则对于所有服务小区,终端不清空所有MBS相关的HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端不清空所有MBS相关的HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端不清空所有MBS相关的且传输块TB没有被成功译码的HARQ buffer。进一步的,timeAlignmentTimers可以关联PTAG或者STAG。
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,当定时器到期,则对于所有服务小区,终端不清空所有MBS相关的且传输块TB没有被成功译码的HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端不清空所有MBS相关的且传输块TB没有被成功译码的HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端继续使用所有HARQ buffer。进一步的,timeAlignmentTimers可以关联主定时提前量组(Primary Timing Advance  Group,PTAG)或者辅定时提前量组(Secondary Timing Advance Group,STAG)。
作为另一种可能的实现方式:如果时间同步定时器(timeAlignmentTimers)关联于一个PTAG,当定时器到期,则对于所有服务小区,终端继续使用所有HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端继续使用所有HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端继续使用所有传输块TB没有被成功译码的HARQ buffer。进一步的,timeAlignmentTimers可以关联PTAG或者STAG。
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,当定时器到期,则对于所有服务小区,终端继续使用所有传输块TB没有被成功译码的HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端继续使用所有传输块TB没有被成功译码的HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端继续使用所有MBS相关的HARQ buffer。进一步的,timeAlignmentTimers可以关联PTAG或者STAG。
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,当定时器到期,则对于所有服务小区,终端继续使用所有MBS相关的HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端继续使用所有MBS相关的HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端继续使用所有MBS相关的且传输块TB没有被成功译码的HARQ buffer。进一步的,timeAlignmentTimers可以关联PTAG或者STAG。
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,当定时器到期,则对于所有服务小区,终端继续使用所有MBS相关的且传输块TB没有被成功译码的HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端继续使用所有MBS相关的且传输块TB没有被成功译码的HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端清空除了所有HARQ buffer之外的HARQ buffer,即不清空HARQ buffer。进一步的,timeAlignmentTimers可以关联主定 时提前量组(Primary Timing Advance Group,PTAG)或者辅定时提前量组(Secondary Timing Advance Group,STAG)。
作为另一种可能的实现方式:如果时间同步定时器(timeAlignmentTimers)关联于一个PTAG,当定时器到期,则对于所有服务小区,终端不清空HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端不清空HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端清空除了所有传输块TB没有被成功译码的HARQ buffer之外的所有HARQ buffer。
进一步的,timeAlignmentTimers可以关联PTAG或者STAG。
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,当定时器到期,则对于所有服务小区,终端清空除了所有传输块TB没有被成功译码的HARQ buffer之外的所有HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端清空除了所有传输块TB没有被成功译码的HARQ buffer之外的所有HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端清空除了所有MBS相关的HARQ buffer之外的所有HARQ buffer。进一步的,timeAlignmentTimers可以关联PTAG或者STAG。
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,当定时器到期,则对于所有服务小区,终端清空除了所有MBS相关的HARQ buffer之外的所有HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端清空除了所有MBS相关的HARQ buffer之外的所有HARQ buffer。
相应的,作为一种可能的实现方式,当时间同步定时器timeAlignmentTimers或用于配置授权CG-小数据传输SDT的时间同步定时器cg-SDT-TimeAlignmentTimer被视为到期,终端清空除了所有MBS相关的且传输块TB没有被成功译码的HARQ buffer之外的所有HARQ buffer。进一步的,timeAlignmentTimers可以关联PTAG或者STAG。
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,当定时器到期,则对于所有服务小区,终端清空除了所有MBS相关的且传输块TB没有被成功译码的HARQ buffer之外的所有HARQ buffer;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,当定时器到期,则对于属于TAG的所有服务小区,终端清空除了所有MBS相关的且传输块TB没有被成功译 码的HARQ buffer之外的所有HARQ buffer。
步骤202b、保留MBS相关半持续调度SPS配置。
对于本公开实施例,保留MBS相关半持续调度SPS配置,包括执行以下任意一项操作:
不清除MBS相关SPS配置;
根据网络指示重配置MBS相关SPS配置。
相应的,当时间同步定时器timeAlignmentTimers到期,终端不清除MBS相关SPS配置。进一步的,时间同步定时器timeAlignmentTimers可以关联PTAG或者STAG。
作为一种可能实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,则对于所有服务小区,终端不清除MBS相关SPS配置;
作为另一种可能的实现方式:如果时间同步定时器timeAlignmentTimers关联于一个STAG,则对于属于TAG的所有服务小区,终端不清除MBS相关SPS配置。
相应的,当时间同步定时器timeAlignmentTimers到期,终端根据网络指示重配置MBS相关SPS配置。进一步的,时间同步定时器timeAlignmentTimers可以关联PTAG或者STAG。
作为一种可能实现方式:如果时间同步定时器timeAlignmentTimers关联于一个PTAG,则对于所有服务小区,终端根据网络指示重配置MBS相关SPS配置;
作为另一种可能的实现方式:如果timeAlignmentTimers关联于一个STAG,则对于属于TAG的所有服务小区,终端根据网络指示重配置MBS相关SPS配置。
步骤202c、保留指定HARQ buffer以及保留MBS相关半持续调度SPS配置。
对于本公开实施例,作为一种优选方式,可在根据协议约定对时间同步TA定时器执行控制操作后,进一步执行保留指定HARQ buffer以及保留MBS相关半持续调度SPS配置的操作,避免HARQ buffer以及MBS相关半持续调度SPS配置被清空,防止产生组播业务数据的丢失。其中,在执行保留HARQ buffer的操作时,其实现过程与实施例步骤202a相同,在此不再赘述。在执行保留MBS相关半持续调度SPS配置的操作时,其实现过程与实施例步骤202b相同,在此不再赘述。
综上,根据本公开实施例提供的媒体接入控制MAC重置定时器的处理方法,可避免MAC重置过程中,对HARQ进程进行完全的初始化,保证支持非激活态组播业务接收的终端,在处于非激活态并继续执行组播业务数据接收时,相关HARQ buffer以及MBS相关半持续调度SPS配置不会被清空,能够正常执行译码错误数据包的重传操作,从而能够保证非激活态终端在MAC重置时,组播业务数据传输的完整性以及提高译码的准确率,防止丢失有用信息。
图3示出了根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图。如图3所示,该方法应用于终端,基于图1、图2所示实施例,如图3所示,且可以包括以下步骤。
301、对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端根据协议约定对MBS相关定时器以及时间同步TA定时器执行控制操作。
当网络侧通过包含挂起配置的RRCRelease将终端释放到非激活态时,需要执行媒体接入控制(Medium Access Control,MAC)重置流程,在MAC重置流程中,所有定时器会被停止,所有时间同步(Time Alignment,TA)定时器会被视为到期。在定时器被停止时,对于非激活态组播业务这一下行配 置业务来说,将会无法接收组播业务的业务数据,导致组播业务无法正常执行。在时间同步定时器被视为到期时,会继续执行后续清空HARQ buffer以及下行HARQ链路配置的操作。而对于非激活态组播业务来说,不能清空HARQ buffer,一旦清空HARQ buffer,则在非激活态组播业务数据传输过程中发生数据包译码错误时,不能在HARQ buffer中查取译码错误的数据包,进而容易导致有用信息丢失或直接导致译码失败。故为了保证终端针对非激活态组播业务MBS的正常执行以及保证非激活态终端在MAC重置时,组播业务数据传输的完整性以及提高译码的准确率,在媒体接入控制MAC重置过程中,终端可根据协议约定对MBS相关定时器以及时间同步TA定时器执行控制操作,在对时间同步TA定时器执行视为到期操作后,进一步执行保留指定HARQ buffer和/或保留MBS相关半持续调度SPS配置的操作。通过上述操作,可保证支持非激活态组播业务接收的终端,能够正常接收到非激活态组播业务,同时减少组播业务数据的丢失。
对于本公开实施例,终端根据协议约定对MBS相关定时器执行控制操作时,其实现过程与实施例步骤101相同,在此不再赘述。终端根据协议约定对时间同步TA定时器执行控制操作时,其实现过程与实施例步骤201相同,在此不再赘述。
终端在根据协议约定对时间同步TA定时器执行控制操作后,进一步执行302a、302b、302c中的任意一项实施例步骤。
302a、保留指定HARQ buffer。
对于本公开实施例,终端执行保留MBS相关HARQ buffer的操作时,其实现过程与实施例步骤202a相同,在此不再赘述。
302b、保留MBS相关半持续调度SPS配置。
对于本公开实施例,终端执行保留MBS相关半持续调度SPS配置的操作时,其实现过程与实施例步骤202b相同,在此不再赘述。
302c、保留指定HARQ buffer以及保留MBS相关半持续调度SPS配置。
对于本公开实施例,终端执行保留MBS相关HARQ buffer以及保留MBS相关半持续调度SPS配置的操作时,其实现过程与实施例步骤202c相同,在此不再赘述。
综上,根据本公开实施例提供的媒体接入控制MAC重置定时器的处理方法,可在终端处于非激活态并执行组播业务数据接收时,在MAC重置过程中,控制MBS相关定时器不会被停止,进而使终端能够正常接收到非激活态组播业务数据,保证非激活态组播业务的正常执行。同时,可避免MAC重置过程中,对HARQ进程进行完全的初始化,保证支持非激活态组播业务接收的终端,在处于非激活态并继续执行组播业务数据接收时,相关HARQ buffer以及MBS相关半持续调度SPS配置不会被清空,能够正常执行译码错误数据包的重传操作,从而能够保证非激活态终端在MAC重置时,组播业务数据传输的完整性以及提高译码的准确率,防止丢失有用信息。
图4示出了根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图。该方法应用于终端,基于图1所示实施例,如图4所示,且可以包括以下步骤。
401、接收网络侧发送的非激活态组播业务MBS。
其中,网络侧可包括基站、核心网中的至少一种;终端可为非激活态终端;非激活态组播业务(Multicast Broadcast Service,MBS)为非激活态终端仍能执行业务数据接收的组播业务。网络侧可通过向非激活态终端发送非激活态组播业务MBS,以便非激活态终端在接收到MBS后,在响应执行MBS 过程中,执行对定时器的处理,防止MAC重置过程中会停止所有MBS相关定时器或将所有TA定时器视为到期。进一步使非激活态终端在执行MBS过程中,支持非激活态组播业务接收,并减少组播业务数据的丢失。
402、响应于执行非激活态组播业务MBS,在媒体接入控制MAC重置过程中,针对MBS相关定时器执行第一控制操作。
在现有机制中,当网络侧通过包含挂起配置的RRCRelease将终端释放到非激活态时,需要执行媒体接入控制(Medium Access Control,MAC)重置流程,在MAC重置流程中,所有定时器会被停止。在此种初始化操作下,对于非激活态组播业务这一下行配置业务来说,将会无法接收组播业务的业务数据,导致组播业务无法正常执行。
基于此,在本公开实施例中,为了保证终端针对非激活态组播业务MBS的正常执行,在媒体接入控制MAC重置过程中,终端根据协议约定对MBS相关定时器执行第一控制操作,以避免MBS相关定时器被停止,而无法接收组播业务的业务数据。其中,第一控制操作可包括两种可能实现的方式:
作为一种可能实现方式,第一控制操作可为不停止MBS相关定时器。在该操作中,终端可以继续运行MBS相关定时器;或者,终端可以停止除了MBS相关定时器之外的所有定时器。
作为一种可能实现方式,第一控制操作可为停止MBS相关定时器,并之后重新启动MBS相关定时器。在该操作中,包括但不限于以下任意一种情况:
终端立刻重启MBS相关定时器;
终端在满足MBS相关定时器开启条件时重启MBS相关定时器;
终端在指定时刻重启MBS相关定时器,其中,指定时刻为根据协议约定或网络配置确定的。
其中,MBS相关定时器至少包括非连续性接收(Discontinuous Reception,DRX)配置相关定时器,DRX配置相关定时器包括但不限于以下至少一项:用于点对多点传输PTM的DRX激活态定时器(drx-onDurationTimerPTM);用于点对多点传输PTM的DRX非激活态定时器(drx-InactivityTimerPTM);用于点对多点传输PTM的DRX下行重传定时器(drx-RetransmissionTimerDL-PTM);用于点对多点传输PTM的DRX下行混合自动重传请求HARQ往返时延RTT定时器(drx-HARQ-RTT-TimerDL-PTM)。额外的,对于非激活态组播业务,如果不支持HARQ反馈,则可以停止以下至少一个定时器:用于点对多点传输PTM的DRX下行重传定时器(drx-RetransmissionTimerDL-PTM);用于点对多点传输PTM的DRX下行混合自动重传请求HARQ往返时延RTT定时器(drx-HARQ-RTT-TimerDL-PTM)。
综上,根据本公开实施例提供的媒体接入控制MAC重置定时器的处理方法,可在终端处于非激活态并执行组播业务数据接收时,在MAC重置过程中,控制MBS相关定时器不会被停止,进而使终端能够正常接收到非激活态组播业务数据,保证非激活态组播业务的正常执行。
图5示出了根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图。该方法应用于终端,基于图2所示实施例,如图5所示,且可以包括以下步骤。
501、接收网络侧发送的非激活态组播业务MBS。
502、响应于执行非激活态组播业务MBS,在媒体接入控制MAC重置过程中,针对时间同步TA定时器执行第二控制操作。
其中,第二控制操作可为将时间同步TA定时器执行视为到期。
503、保留指定HARQ buffer和/或保留MBS相关半持续调度SPS配置。
在现有机制中,当网络侧通过包含挂起配置的RRCRelease将终端释放到非激活态时,需要执行媒体接入控制(Medium Access Control,MAC)重置流程,在MAC重置流程中,所有时间同步(Time Alignment,TA)定时器会被视为到期。在此种初始化操作下,会继续执行后续清空HARQ buffer以及下行HARQ链路配置的操作。而对于非激活态组播业务来说,不能清空HARQ buffer,一旦清空HARQ buffer,则在非激活态组播业务数据传输过程中发生数据包译码错误时,不能在HARQ buffer中查取译码错误的数据包,进而容易导致有用信息丢失或直接导致译码失败。
基于此,在本公开实施例中,为了保证非激活态终端在MAC重置时,组播业务数据传输的完整性以及提高译码的准确率,防止丢失有用信息,在媒体接入控制MAC重置过程中,终端根据协议约定对MBS相关定时器执行将时间同步TA定时器执行视为到期后,进一步执行保留指定HARQ buffer和/或保留MBS相关半持续调度SPS配置的操作,以保证支持非激活态组播业务接收的终端,能够正常执行非激活态组播业务接收并减少组播业务数据的丢失。
针对本公开实施例,具体可分为三种可能实现方式:
作为一种可能实现方式:终端保留指定HARQ buffer。其中指定HARQ buffer包括以下至少一项:所有HARQ buffer;所有传输块TB没有被成功译码的HARQ buffer;MBS相关的HARQ buffer;MBS相关的且传输块TB没有被成功译码的HARQ buffer。相应的,保留指定HARQ buffer,具体可通过下述任意一项操作来实现:不清空指定HARQ buffer;继续使用指定HARQ buffer;清空除了指定HARQ buffer之外的所有HARQ buffer。对于本公开实施例,终端执行保留指定HARQ buffer的操作时,其实现过程与实施例步骤202a相同,在此不再赘述。
作为一种可能实现方式:终端保留MBS相关半持续调度SPS配置。其中,保留MBS相关半持续调度SPS配置,具体可通过下述任意一项操作来实现:不清除MBS相关SPS配置;根据网络指示重配置MBS相关SPS配置,其中,网络指示是由网络侧发送的。对于本公开实施例,终端执行保留MBS相关半持续调度SPS配置的操作时,其实现过程与实施例步骤202b相同,在此不再赘述。
作为一种可能实现方式:终端保留指定HARQ buffer以及保留MBS相关半持续调度SPS配置。进一步避免HARQ buffer以及MBS相关半持续调度SPS配置被清空,防止产生组播业务数据的丢失。其中,对于本公开实施例,在保留指定HARQ buffer以及保留MBS相关半持续调度SPS配置时,其实现过程与实施例步骤202c相同,在此不再赘述。
综上,根据本公开实施例提供的媒体接入控制MAC重置定时器的处理方法,可在终端处于非激活态并执行组播业务数据接收时,在MAC重置过程中,控制MBS相关定时器不会被停止,进而使终端能够正常接收到非激活态组播业务数据,保证非激活态组播业务的正常执行。同时,可避免MAC重置过程中,对HARQ进程进行完全的初始化,保证支持非激活态组播业务接收的终端,在处于非激活态并继续执行组播业务数据接收时,相关HARQ buffer以及MBS相关半持续调度SPS配置不会被清空,能够正常执行译码错误数据包的重传操作,从而能够保证非激活态终端在MAC重置时,组播业务数据传输的完整性以及提高译码的准确率,防止丢失有用信息。
图6示出了根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图。该方法应用于终端,基于图2所示实施例,如图6所示,且可以包括以下步骤。
601、接收网络侧发送的非激活态组播业务MBS。
602、响应于执行非激活态组播业务MBS,在媒体接入控制MAC重置过程中,针对MBS相关定时器 执行第一控制操作以及针对时间同步TA定时器执行第二控制操作。
其中,第一控制操作可为不停止MBS相关定时器,在该操作中,终端可以继续运行MBS相关定时器;或者,终端可以停止除了MBS相关定时器之外的所有定时器。此外,第一控制操作还可为停止MBS相关定时器,并之后重新启动MBS相关定时器。在该操作中,包括但不限于以下任意一种情况:终端立刻重启MBS相关定时器;终端在满足MBS相关定时器开启条件时重启MBS相关定时器;终端在指定时刻重启MBS相关定时器,其中,指定时刻为根据协议约定或网络配置确定的。第二控制操作可为将时间同步TA定时器执行视为到期。
603、响应于针对时间同步TA定时器执行第二控制操作,保留指定HARQ buffer和/或保留MBS相关半持续调度SPS配置。
对于本公开实施例,可保证非激活态终端在MAC重置时,组播业务数据传输的完整性以及提高译码的准确率,防止丢失有用信息。其中,终端保留指定HARQ buffer和/或保留MBS相关半持续调度SPS配置,其实现过程与实施例步骤503相同,在此不再赘述。
综上,根据本公开实施例提供的媒体接入控制MAC重置定时器的处理方法,可在终端处于非激活态并执行组播业务数据接收时,在MAC重置过程中,控制MBS相关定时器不会被停止,进而使终端能够正常接收到非激活态组播业务数据,保证非激活态组播业务的正常执行。同时,还可在将时间同步TA定时器视为到期后,进一步保留MBS相关HARQ buffer以及MBS相关半持续调度SPS配置。可避免MAC重置过程中,对HARQ进程进行完全的初始化,保证支持非激活态组播业务接收的终端,在处于非激活态并继续执行组播业务数据接收时,相关HARQ buffer以及MBS相关半持续调度SPS配置不会被清空,能够正常执行译码错误数据包的重传操作,从而能够保证非激活态终端在MAC重置时,组播业务数据传输的完整性以及提高译码的准确率,防止丢失有用信息。
图7示出了根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的流程示意图。如图7所示,该方法应用于网络侧,且可以包括以下步骤。
701、向终端发送网络配置,网络配置用于终端确定重启非激活态组播业务MBS相关定时器的指定时刻。
其中,网络侧可包括基站、核心网中的至少一种。对于本公开实施例,网络侧可先向终端发送非激活态组播业务MBS,在终端响应于执行非激活态组播业务MBS时,向终端发送用于终端确定重启非激活态组播业务MBS相关定时器的指定时刻的网络配置。进一步使支持非激活态组播业务接收的终端,能够在控制停止MBS相关定时器,并在之后重新启动MBS相关定时器时,能够根据网络配置确定指定时刻,并在指定时刻重启MBS相关定时器。
702、向终端发送网络指示,网络指示用于终端重配置MBS相关SPS配置。
对于本公开实施例,网络侧还可向终端发送重配置MBS相关SPS配置的网络指示。进一步使支持非激活态组播业务接收的终端,将时间同步TA定时器视为到期之后,能够在进一步保留MBS相关半持续调度SPS配置时,根据所接收到的网络指示重配置MBS相关SPS配置。
综上,根据本公开实施例提供的媒体接入控制MAC重置定时器的处理方法,通过向终端发送网络配置以及网络指示,可使终端根据网络配置以及网络指示在MAC重置过程中执行对定时器的控制,以及对SPS配置信息的重新配置。可防止MAC重置过程中默认的对全部定时器执行停止动作,会对非激活态组播业务接收以及数据传输造成影响。以及防止清空MBS相关半持续调度SPS配置,会影响非激活态组播业务的接收或造成数据丢失。
图8为根据本公开实施例的一种媒体接入控制MAC重置定时器的处理方法的时序图。该方法应用于一种媒体接入控制MAC重置定时器的处理系统,该系统包括:终端UE、网络侧,网络侧向终端UE发送网络配置以及网络指示;对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端根据协议约定对定时器执行以下至少一项操作:不停止MBS相关定时器;停止MBS相关定时器,并之后重新启动MBS相关定时器;将时间同步TA定时器视为到期。
参见图8,该方法包括如下步骤。
801、网络侧向终端发送终端发送非激活态组播业务。
802、网络侧向终端发送网络配置。
803、网络侧向终端发送网络指示。
终端响应于执行非激活态组播业务,在媒体接入控制MAC重置过程中,可执行804至805中的任意一项:
804、终端对MBS相关定时器执行控制操作。
其中,对MBS相关定时器执行控制操作,可包括两种可能实现的方式:
作为一种可能实现方式:对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端可根据协议约定执行不停止MBS相关定时器的操作。在该操作中,终端可以继续运行MBS相关定时器;或者,终端可以停止除了MBS相关定时器之外的所有定时器。
作为一种可能实现方式:对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端可根据协议约定执行停止MBS相关定时器,并之后重新启动MBS相关定时器的操作。在该重新启动操作中,包括但不限于以下任意一种情况:
终端立刻重启MBS相关定时器;
终端在满足MBS相关定时器开启条件时重启MBS相关定时器;
终端在指定时刻重启MBS相关定时器,其中,指定时刻为根据协议约定或网络配置确定的。
805、终端对时间同步TA定时器执行控制操作。
对于本公开实施例,可作为与实施例步骤804并列的实施例步骤,也可作为与实施例步骤804相结合的实施例步骤。其中,对MBS相关定时器执行的控制操作,具体可为将时间同步TA定时器视为到期。进一步的,在将时间同步TA定时器视为到期之后继续执行806中的操作。
806、终端保留指定HARQ buffer和/或保留MBS相关半持续调度SPS配置。
其中,指定HARQ buffer可以是以下至少一项:
所有HARQ buffer;
所有传输块TB没有被成功译码的HARQ buffer;
MBS相关的HARQ buffer;
MBS相关的且传输块TB没有被成功译码的HARQ buffer。
保留指定HARQ buffer,包括执行以下至少一项操作:
不清空指定HARQ buffer;
继续使用指定HARQ buffer;
清空除了指定HARQ buffer之外的所有HARQ buffer。
保留MBS相关半持续调度SPS配置,包括执行以下任意一项操作:
不清除MBS相关SPS配置;
根据网络指示重配置MBS相关SPS配置。
通过应用本实施例提供的媒体接入控制MAC重置定时器的处理方法,可在终端处于非激活态并执行组播业务数据接收时,在MAC重置过程中,控制MBS相关定时器不会被停止,进而使终端能够正常接收到非激活态组播业务数据,保证非激活态组播业务的正常执行。同时,可避免MAC重置过程中,对HARQ进程进行完全的初始化,保证支持非激活态组播业务接收的终端,在处于非激活态并继续执行组播业务数据接收时,相关HARQ buffer以及MBS相关半持续调度SPS配置不会被清空,能够正常执行译码错误数据包的重传操作,从而能够保证非激活态终端在MAC重置时,组播业务数据传输的完整性以及提高译码的准确率,防止丢失有用信息。
上述本申请提供的实施例中,分别从终端、网络侧的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,终端、网络侧可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
与上述几种实施例提供的媒体接入控制MAC重置定时器的处理方法相对应,本公开还提供一种媒体接入控制MAC重置定时器的处理装置,由于本公开实施例提供的媒体接入控制MAC重置定时器的处理装置与上述几种实施例提供的媒体接入控制MAC重置定时器的处理方法相对应,因此媒体接入控制MAC重置定时器的处理方法的实施方式也适用于本实施例提供的媒体接入控制MAC重置定时器的处理装置,在本实施例中不再详细描述。
图9为根据本公开实施例提供的一种媒体接入控制MAC重置定时器的处理装置900的结构示意图,该媒体接入控制MAC重置定时器的处理装置900可用于终端。
如图9所示,该装置900可包括:
执行模块910,可以用于对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端根据协议约定对定时器执行以下至少一项操作:
不停止MBS相关定时器;
停止MBS相关定时器,并之后重新启动MBS相关定时器;
将时间同步TA定时器视为到期。
在本公开的一些实施例中,执行模块910在重新启动MBS相关定时器时,包括执行以下任意一项操作:
立刻重启MBS相关定时器;
在满足MBS相关定时器开启条件时重启MBS相关定时器;
在指定时刻重启MBS相关定时器,其中,指定时刻为根据协议约定或网络配置确定的。
在本公开的一些实施例中,MBS相关定时器至少包括非连续性接收DRX配置相关定时器,DRX配置相关定时器包括以下至少一项:
用于点对多点传输PTM的DRX激活态定时器;
用于点对多点传输PTM的DRX非激活态定时器;
用于点对多点传输PTM的DRX下行重传定时器;
用于点对多点传输PTM的DRX下行混合自动重传请求HARQ往返时延RTT定时器。
在本公开的一些实施例中,如图9所示,该装置900还包括:停止模块920;
停止模块920,可以用于响应于MBS不支持HARQ反馈,停止以下至少一个MBS相关定时器:
用于点对多点传输PTM的DRX下行重传定时器;
用于点对多点传输PTM的DRX下行混合自动重传请求HARQ往返时延RTT定时器。
在本公开的一些实施例中,TA定时器包括以下至少一项:
时间同步定时器;
用于配置授权CG-小数据传输SDT的时间同步定时器。
在本公开的一些实施例中,如图9所示,该装置900还包括:保留模块930;
保留模块930,可以用于保留指定HARQ buffer;
保留模块930,还可以用于保留MBS相关半持续调度SPS配置。
在本公开的一些实施例中,保留模块930保留指定HARQ buffer,包括执行以下任意一项操作:
不清空指定HARQ buffer;
继续使用指定HARQ buffer;
清空除了指定HARQ buffer之外的所有HARQ buffer。
在本公开的一些实施例中,指定HARQ buffer包括以下至少一项:
所有HARQ buffer;
所有传输块TB没有被成功译码的HARQ buffer;
MBS相关的HARQ buffer;
所有MBS相关的且传输块TB没有被成功译码的HARQ buffer。
在本公开的一些实施例中,保留模块930保留MBS相关半持续调度SPS配置,包括执行以下任意一项操作:
不清除MBS相关SPS配置;
根据网络指示重配置MBS相关SPS配置。
在本公开的一些实施例中,如图9所示,该装置900还包括:接收模块940;
接收模块940,可以用于接收网络侧发送的网络指示。
图10为本公开实施例提供的一种媒体接入控制MAC重置定时器的处理装置1000的结构示意图。该媒体接入控制MAC重置定时器的处理装置1000可用于网络侧。
如图10所示,该装置1000可包括:
发送模块1010,可以用于向终端发送网络配置,网络配置用于终端确定重启非激活态组播业务MBS相关定时器的指定时刻。
发送模块1010,还可以用于向终端发送网络指示,网络指示用于终端重配置MBS相关SPS配置。
请参见图11,图11是本申请实施例提供的一种通信装置1100的结构示意图。通信装置1100可以是网络设备,也可以是用户设备,也可以是支持网络设备实现上述方法的芯片、芯片系统、或处理器等,还可以是支持用户设备实现上述方法的芯片、芯片系统、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1100可以包括一个或多个处理器1101。处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1100中还可以包括一个或多个存储器1102,其上可以存有计算机程序1104,处理器1101执行计算机程序1104,以使得通信装置1100执行上述方法实施例中描述的方法。可选的,存储器1102中还可以存储有数据。通信装置1100和存储器1102可以单独设置,也可以集成在一起。
可选的,通信装置1100还可以包括收发器1105、天线1106。收发器1105可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1105可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1100中还可以包括一个或多个接口电路1107。接口电路1107用于接收代码指令并传输至处理器1101。处理器1101运行代码指令以使通信装置1100执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1101中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1101可以存有计算机程序1103,计算机程序1103在处理器1101上运行,可使得通信装置1100执行上述方法实施例中描述的方法。计算机程序1103可能固化在处理器1101中,该种情况下,处理器1101可能由硬件实现。
在一种实现方式中,通信装置1100可以包括电路,该电路可以实现前述方法实施例中发送或接收 或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者用户设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如该通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片系统或子系统;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片系统的情况,可参见图12所示的芯片的结构示意图。图12所示的芯片包括处理器1201和接口1202。其中,处理器1201的数量可以是一个或多个,接口1202的数量可以是多个。
可选的,芯片还包括存储器1203,存储器1203用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个系统的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital  subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
如本文使用的,术语“机器可读介质”和“计算机可读介质”指的是用于将机器指令和/或数据提供给可编程处理器的任何计算机程序产品、设备、和/或装置(例如,磁盘、光盘、存储器、可编程逻辑装置(PLD)),包括,接收作为机器可读信号的机器指令的机器可读介质。术语“机器可读信号”指的是用于将机器指令和/或数据提供给可编程处理器的任何信号。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
此外,应该理解,本申请的各种实施例可以单独实施,也可以在方案允许的情况下与其他实施例组合实施。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (16)

  1. 一种媒体接入控制MAC重置定时器的处理方法,其特征在于,所述方法应用于终端,所述方法包括:
    对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端根据协议约定对定时器执行以下至少一项操作:
    不停止所述MBS相关定时器;
    停止所述MBS相关定时器,并之后重新启动所述MBS相关定时器;
    将时间同步TA定时器视为到期。
  2. 根据权利要求1所述的方法,其特征在于,所述重新启动所述MBS相关定时器,包括执行以下任意一项操作:
    立刻重启所述MBS相关定时器;
    在满足所述MBS相关定时器开启条件时重启所述MBS相关定时器;
    在指定时刻重启所述MBS相关定时器,其中,指定时刻为根据协议约定或网络配置确定的。
  3. 根据权利要求1所述的方法,其特征在于,所述MBS相关定时器至少包括非连续性接收DRX配置相关定时器,所述DRX配置相关定时器包括以下至少一项:
    用于点对多点传输PTM的DRX激活态定时器;
    用于点对多点传输PTM的DRX非激活态定时器;
    用于点对多点传输PTM的DRX下行重传定时器;
    用于点对多点传输PTM的DRX下行混合自动重传请求HARQ往返时延RTT定时器。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    响应于所述MBS不支持HARQ反馈,停止以下至少一个MBS相关定时器:
    用于点对多点传输PTM的DRX下行重传定时器;
    用于点对多点传输PTM的DRX下行混合自动重传请求HARQ往返时延RTT定时器。
  5. 根据权利要求1所述的方法,其特征在于,所述TA定时器包括以下至少一项:
    时间同步定时器;
    用于配置授权CG-小数据传输SDT的时间同步定时器。
  6. 根据权利要求1所述的方法,其特征在于,在所述将时间同步TA定时器视为到期之后,所述方法还包括执行以下至少一项操作:
    保留指定HARQ buffer;
    保留所述MBS相关半持续调度SPS配置。
  7. 根据权利要求6所述的方法,其特征在于,所述保留所述指定HARQ buffer,包括执行以下任意一项操作:
    不清空所述指定HARQ buffer;
    继续使用所述指定HARQ buffer;
    清空除了所述指定HARQ buffer之外的所有HARQ buffer。
  8. 根据权利要求6或7中任一项所述的方法,其特征在于,所述指定HARQ buffer包括以下至少一项:
    所有HARQ buffer;
    所有传输块TB没有被成功译码的HARQ buffer;
    所述MBS相关的HARQ buffer;
    所述MBS相关的且传输块TB没有被成功译码的HARQ buffer。
  9. 根据权利要求6所述的方法,其特征在于,所述保留所述MBS相关半持续调度SPS配置,包括执行以下任意一项操作:
    不清除所述MBS相关SPS配置;
    根据网络指示重配置所述MBS相关SPS配置。
  10. 根据权利要求8所述的方法,其特征在于,所述方法还包括:
    接收网络侧发送的网络指示。
  11. 一种媒体接入控制MAC重置定时器的处理方法,其特征在于,所述方法应用于网络侧,所述方法包括:
    向终端发送网络配置,所述网络配置用于所述终端确定重启非激活态组播业务MBS相关定时器的指定时刻。
  12. 根据权利要求11所述的方法,其特征在于,所述方法还包括:
    向终端发送网络指示,所述网络指示用于所述终端重配置所述MBS相关SPS配置。
  13. 一种媒体接入控制MAC重置定时器的处理装置,其特征在于,所述装置应用于终端,所述装置包括:
    执行模块,用于对于非激活态组播业务MBS,在媒体接入控制MAC重置过程中,终端根据协议约定对定时器执行以下至少一项操作:
    不停止所述MBS相关定时器;
    停止所述MBS相关定时器,并之后重新启动所述MBS相关定时器;
    将时间同步TA定时器视为到期。
  14. 一种媒体接入控制MAC重置定时器的处理装置,其特征在于,所述装置应用于网络侧,所述装置包括:
    发送模块,用于向终端发送网络配置,所述网络配置用于确定重启非激活态组播业务MBS相关定时器的指定时刻。
  15. 一种通信设备,其中,包括:收发器;存储器;处理器,分别与所述收发器及所述存储器连接,配置为通过执行所述存储器上的计算机可执行指令,控制所述收发器的无线信号收发,并能够实现权利要求1-12中任一项所述的方法。
  16. 一种计算机存储介质,其中,所述计算机存储介质存储有计算机可执行指令;所述计算机可执行指令被处理器执行后,能够实现权利要求1-12中任一项所述的方法。
PCT/CN2022/106897 2022-07-20 2022-07-20 媒体接入控制mac重置定时器的处理方法及装置 WO2024016243A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/106897 WO2024016243A1 (zh) 2022-07-20 2022-07-20 媒体接入控制mac重置定时器的处理方法及装置
CN202280002317.1A CN117751684A (zh) 2022-07-20 2022-07-20 媒体接入控制mac重置定时器的处理方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106897 WO2024016243A1 (zh) 2022-07-20 2022-07-20 媒体接入控制mac重置定时器的处理方法及装置

Publications (1)

Publication Number Publication Date
WO2024016243A1 true WO2024016243A1 (zh) 2024-01-25

Family

ID=89616648

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106897 WO2024016243A1 (zh) 2022-07-20 2022-07-20 媒体接入控制mac重置定时器的处理方法及装置

Country Status (2)

Country Link
CN (1) CN117751684A (zh)
WO (1) WO2024016243A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025692A (zh) * 2009-09-16 2011-04-20 中兴通讯股份有限公司 用户终端的媒体接入控制协议层复位方法及系统
WO2020056740A1 (zh) * 2018-09-21 2020-03-26 北京小米移动软件有限公司 接入控制限制方法及装置
CN111886904A (zh) * 2019-02-12 2020-11-03 Oppo广东移动通信有限公司 无线通信的方法和设备
CN114126092A (zh) * 2020-08-29 2022-03-01 华为技术有限公司 一种非连续接收drx方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102025692A (zh) * 2009-09-16 2011-04-20 中兴通讯股份有限公司 用户终端的媒体接入控制协议层复位方法及系统
WO2020056740A1 (zh) * 2018-09-21 2020-03-26 北京小米移动软件有限公司 接入控制限制方法及装置
CN111886904A (zh) * 2019-02-12 2020-11-03 Oppo广东移动通信有限公司 无线通信的方法和设备
CN114126092A (zh) * 2020-08-29 2022-03-01 华为技术有限公司 一种非连续接收drx方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ETRI: "DL monitoring for MBS DRX", 3GPP DRAFT; R2-2110924, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online meeting; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052067363 *

Also Published As

Publication number Publication date
CN117751684A (zh) 2024-03-22

Similar Documents

Publication Publication Date Title
RU2413362C2 (ru) Способ и устройство для приема системной информации от базовой станции в системе мобильной связи
TWI399053B (zh) 改善不連續接收功能的方法及其相關通訊裝置
TWI830716B (zh) 資訊處理方法、裝置及設備
JP5351329B2 (ja) 無線通信システムにおいて1対多サービスを受信する方法及び端末
US8971242B2 (en) System and method for component carrier reallocation
JP2007089174A (ja) 無線通信システムにおける信号の伝送速度を改善する方法及び装置
US20220271865A1 (en) Communication Method, Network Device, and Terminal
WO2021160101A1 (zh) 一种数据传输方法、装置和系统
WO2021052210A1 (zh) 混合自动重传请求的指示方法、装置及存储介质
WO2024016243A1 (zh) 媒体接入控制mac重置定时器的处理方法及装置
US8233909B2 (en) Reception cycle control method, radio base station, and mobile station
JP5864746B2 (ja) 共通e−dch伝送についてのmac−isリセットのあいまいさを低減するための方法およびシステム
WO2018126410A1 (zh) 数据传输方法及终端与网络设备
WO2024016242A1 (zh) 混合自动重传请求harq进程处理方法及装置
WO2024016244A1 (zh) 支持非激活态组播业务接收的配置方法及装置
WO2023122988A1 (zh) 一种定时器同步方法及其装置
WO2024092532A1 (zh) 一种侧行链路harq rtt定时器的启动或重启方法及装置
WO2018058596A1 (zh) 数据传输方法及设备
WO2024092576A1 (zh) 一种定时器的启动方法及装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置
WO2024050783A1 (zh) Pdcch与prach之间时序关系的确定方法及装置
WO2023098464A1 (zh) 数据传输的方法和装置
WO2024011633A1 (zh) 异步通信方法、装置、通信设备及存储介质
WO2024020902A1 (zh) 一种随机接入控制方法及装置
CN118285152A (zh) 一种侧行链路harq rtt定时器的启动或重启方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 202280002317.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22951520

Country of ref document: EP

Kind code of ref document: A1