WO2024014439A1 - Method for quantifying target dna in living body - Google Patents

Method for quantifying target dna in living body Download PDF

Info

Publication number
WO2024014439A1
WO2024014439A1 PCT/JP2023/025502 JP2023025502W WO2024014439A1 WO 2024014439 A1 WO2024014439 A1 WO 2024014439A1 JP 2023025502 W JP2023025502 W JP 2023025502W WO 2024014439 A1 WO2024014439 A1 WO 2024014439A1
Authority
WO
WIPO (PCT)
Prior art keywords
dna
liquid sample
biological material
quantitative method
target dna
Prior art date
Application number
PCT/JP2023/025502
Other languages
French (fr)
Japanese (ja)
Inventor
明宏 松本
陽介 山中
Original Assignee
アステラス製薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アステラス製薬株式会社 filed Critical アステラス製薬株式会社
Publication of WO2024014439A1 publication Critical patent/WO2024014439A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6851Quantitative amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]

Definitions

  • the present invention relates to the quantification of target DNA in vivo.
  • rAd recombinant adenovirus
  • rAAV recombinant adeno-associated virus
  • pDNA plasmid DNA
  • target DNA DNA
  • genomic DNA genomic DNA
  • a method has been used in which the target DNA concentration is measured by PCR and expressed as the target DNA concentration per genomic DNA, ie, copy number/ ⁇ g genomic DNA (gDNA).
  • the amount of gDNA must be measured, which requires complicated operations. Furthermore, considering that the amount of gDNA itself changes, it is not necessarily appropriate to always use it for evaluation of target DNA. For example, the number of blood cells in the blood may change significantly due to the administration of chemotherapy drugs, steroids, etc. In such cases, using the copy number of target DNA relative to the amount of gDNA may lead to misinterpretation of the evaluation of the amount of target DNA. There is a big risk of doing so.
  • Non-patent document 1 a quantitative PCR method that expresses the amount of target DNA in blood as copy number/ ⁇ L by using a spike-in calibration curve with internal or external controls.
  • this method allows the target DNA amount to be expressed in copy number/ ⁇ L, it requires DNA extraction and an additional step of creating a spike-in standard curve using a control.
  • Non-Patent Document 2 Although there is an example of directly quantifying DNA of bacterial cells using droplet digital PCR (ddPCR) (Non-Patent Document 2), there is no known example of directly quantifying a gene of interest in animal tissue or blood.
  • ddPCR droplet digital PCR
  • An object of the present invention is to provide a new quantitative method that can easily and accurately evaluate the internal dynamics of target DNA.
  • the concentration of target DNA in a biological material can be expressed in units of copy number/ ⁇ L or copy number/ ⁇ g based on the volume or weight of the biomaterial, and that DNA extraction is not necessarily required.
  • the present invention provides the following [1] to [25].
  • [1] Preparing a liquid sample from the biological material to be measured; Quantifying the copy number of the target DNA contained in the liquid sample by digital PCR (dPCR), and A method for quantifying DNA of interest, comprising the step of calculating the number of copies of DNA of interest per unit amount of the biological material using the quantified copy number of DNA of interest in the liquid sample.
  • [2] The quantitative method according to [1] above, which does not include the step of extracting DNA from the biological material.
  • [3] The quantitative method according to [1] or [2] above, wherein the biomaterial is a liquid.
  • the step of quantifying the copy number of the target DNA by dPCR the step of setting a threshold for a negative signal based on a blank sample in which the dilution ratio of the biological material in the liquid sample is equal and does not contain the target DNA, and/ or any one of the above [1] to [12], for example, the above [1] or [2], further comprising the step of setting a threshold for a positive signal based on a spiked sample obtained by adding the target DNA to the blank sample.
  • Quantification method described in. [14] The quantitative method according to any one of [1] to [13] above, for example, [1] or [2] above, further comprising a step of performing an inactivation treatment on the liquid sample.
  • the introduced DNA in the biomaterial is derived from a vector, a cell, a nucleic acid drug, an oncolytic virus, or a phage.
  • the vector is derived from plasmid DNA (pDNA), recombinant adenovirus, recombinant adeno-associated virus (rAAV), recombinant lentivirus, recombinant Sendai virus, or recombinant retrovirus. Quantification method described in.
  • the target DNA is a recombinant adenovirus, recombinant adeno-associated virus (rAAV), recombinant lentivirus, recombinant Sendai virus, recombinant retrovirus, plasmid DNA (pDNA), CAR-T in the biological material.
  • FIG. 1 shows the results of quantifying EGFP cDNA in mouse blood by qPCR.
  • the vertical axis represents the Ct value, and the horizontal axis represents the logarithm of the copy number of EGFP cDNA per unit volume added.
  • FIG. 2 shows the results of quantifying EGFP cDNA in mouse blood by ddPCR method.
  • the vertical axis represents the signal intensity, and the horizontal axis represents the number of events.
  • FIG. 3 shows the results of examining the dilution ratio of mouse blood suitable for the ddPCR method.
  • the vertical axis represents the signal intensity, and the horizontal axis represents the number of events.
  • FIG. 4 shows the results of examining the dilution ratio of mouse blood suitable for the ddPCR method.
  • FIG. 5 shows the results of quantifying rAAV genomic DNA containing the target DNA in rAAV-administered mouse tissue samples (blood, liver, or brain) using the ddPCR method.
  • the vertical axis represents the number of copies of the target DNA per unit volume or unit weight, and the horizontal axis represents the number of days after rAAV administration.
  • FIG. 6 shows the results of quantifying rAAV genomic DNA containing the target DNA in rAAV-administered mouse tissue samples by qPCR.
  • the vertical axis represents the number of copies of target DNA per genomic DNA
  • the horizontal axis represents the number of days after rAAV administration.
  • the method for quantifying target DNA includes a preparation step of preparing a liquid sample from a biological material, and a quantitative step of quantifying the number of copies of the target DNA, and further includes determining the number of copies of the target DNA per unit volume or unit weight in the biological material.
  • the method may include a calculating step of calculating. Each step will be explained below.
  • liquid sample preparation step a liquid sample is prepared from the biological material to be measured.
  • the liquid sample is a target of a PCR reaction, and in this specification, the liquid sample is sometimes referred to as a PCR target sample.
  • a liquid sample can be prepared by directly diluting the biological material and further adding a PCR reaction reagent.
  • liquid samples can be prepared by first performing appropriate solubilization treatment, for example with protease, followed by dilution and addition of PCR reaction reagents.
  • a surfactant such as sodium dodecyl sulfate may be added to the solid biological material and the mixture may be stirred.
  • Biological materials are obtained from, for example, humans or experimental animals used for drug development (e.g., mice, rats, monkeys, dogs, rabbits, etc.), and include blood, cerebrospinal fluid, urine, saliva, aqueous humor, and tears. This includes liquids such as fluid, organs such as the liver, kidneys, spleen, gallbladder, heart, lungs, brain, testicles, and ovaries, and solid tissue pieces such as muscles, skin, and eyes.
  • the method for quantifying target DNA of the present invention can be applied to both liquid and solid biological materials, and it is possible to quantify target DNA in a wide range of measurement targets without any special restrictions.
  • the objective DNA quantification method of the present invention does not require the step of extracting DNA from biological materials, and allows efficient quantification with simple operations.
  • a liquid sample from a liquid biological material such as blood it can be prepared by diluting it directly with an appropriate dilution solvent such as a buffer, and then adding a PCR reaction reagent.
  • the reagent for PCR reaction may be any reagent that is compatible with the PCR used for measurement, and includes, for example, a commercially available PCR master mix, primer, and probe reagent.
  • the dilution ratio (volume ratio: e.g., volume of diluent (mL)/volume of biomaterial (mL)) of the liquid biomaterial in the liquid sample thus prepared, that is, the sample to be subjected to PCR, depends on the type of liquid sample.
  • the dilution ratio based on the final concentration of the liquid biomaterial is, for example, 20 to 1,000,000 times, 20 to 100,000 times, 25 to 10,000 times, 25 to 5,000 times, 30 to 2 ,000 times or 30 to 1,000 times, preferably 50 to 800 times, more preferably 70 to 600 times, even more preferably 100 to 600 times, particularly preferably 200 to 500 times.
  • the dilution ratio (volume ratio) based on the final concentration of the liquid biomaterial may be 200 times, 300 times, 400 times, 500 times, etc.
  • the dilution factor may be adjusted depending on whether the biomaterial is liquid or solid. It may be 100 to 1,000,000 times, 300 to 700,000 times, 500 to 500,000 times, 1,000 to 200,000 times, etc.
  • the dilution factor based on the final concentration of blood is, for example, 170 to 10,000,000 times, and below, a preferable range is defined as 200 to 1,000,000 times, etc. Yes, preferably 500 to 5,000,000 times, 1,000 to 1,000,000 times, and 5,000 to 500,000 times.
  • the diluting solvent for diluting the liquid biological material is not particularly limited, but includes, for example, Buffer AE manufactured by QIAGEN (consisting of 10 mM Tris-Cl and 0.5 mM EDTA, pH 9.0), ultrapure water. (MILLIQ water), phosphate buffered saline (PBS), physiological saline, etc., and preferably buffer AE is used.
  • Buffer AE manufactured by QIAGEN (consisting of 10 mM Tris-Cl and 0.5 mM EDTA, pH 9.0), ultrapure water. (MILLIQ water), phosphate buffered saline (PBS), physiological saline, etc., and preferably buffer AE is used.
  • the amount of liquid biomaterial used to prepare the liquid sample depends on the dilution factor and the number of measurements, but for example, 0.02 ⁇ L or more, 0.04 ⁇ L or more, 0.1 ⁇ L or more, 0.5 ⁇ L or more, 1
  • Solid Biomaterials When preparing a liquid sample from a solid biomaterial, such as a piece of tissue from an organ, the solid biomaterial is solubilized.
  • the solubilization method is not particularly limited as long as solubilization is possible, and protease may or may not be added to the solid biological material.
  • the comminuted biomaterial is suspended in a solvent such as a buffer containing the protease, ie, a protease treatment solvent such as a protease treatment buffer. If necessary, the biomaterial may be cut or pulverized in advance and then centrifuged.
  • An appropriate protease can be selected depending on the biomaterial used. For example, proteinase K may be mentioned.
  • the solvent for protease treatment may be selected according to the biological material, but examples include Buffer ATL manufactured by QIAGEN, ultrapure water (MILLIQ water), phosphate buffered saline (PBS), and physiological saline. etc., and preferably buffer ATL is used.
  • the above-mentioned solubilization treatment is performed, for example, by incubating a suspension of the biological material in a protease treatment solvent and performing the protease treatment.
  • the incubation temperature is selected depending on the type of protease and biomaterial used, and is, for example, 30 to 70°C, preferably 40 to 65°C, more preferably 50 to 60°C.
  • the incubation time is selected depending on the type of protease and biomaterial used, and is, for example, 10 to 24 hours, preferably 11 to 20 hours, more preferably 12 to 18 hours, most preferably 13 to 17 hours, and particularly preferably will be held for 16 hours.
  • the amount of the protease treatment solvent used in the solubilization treatment is appropriately adjusted depending on the amount of solid biomaterial, etc., but for example, it is 1 to 120 ⁇ L, preferably 2 to 50 ⁇ L, and more preferably 2 to 50 ⁇ L per 1 mg of biomaterial. About 5 to 30 ⁇ L is used.
  • the concentration of protease in the protease treatment solvent is, for example, 60 mAU/mL or more.
  • the suspension may be resuspended if necessary.
  • an inactivation treatment may be performed by heating the suspension containing the above-mentioned liquid sample by boiling treatment.
  • the boiling treatment includes boiling the suspension at, for example, 80 to 100°C, preferably 90 to 98°C, more preferably 95 to 96°C, for 2 to 30 minutes, preferably 5 to 20 minutes, or 5 to 25 minutes.
  • the inactivation treatment may be carried out by heating, more preferably for 8 to 12 minutes or 10 to 22 minutes, most preferably for 20 minutes, and in some cases for 10 minutes.
  • Such inactivation treatment does not affect the quantification results of the target DNA in the quantification step described below, but it also ensures safe subsequent handling even when using biological materials that may be biohazardous samples. make it possible.
  • the steps for the solid biomaterial described above can be employed, but preferably, addition of protease to the liquid biomaterial may be avoided.
  • the liquid biomaterial is not subjected to protease treatment, it may be inactivated by heating it by boiling.
  • the solution obtained by the protease treatment and/or inactivation treatment is sufficiently suspended, stirred or shaken as necessary, diluted as necessary with the above dilution solvent such as buffer AE, and then subjected to PCR.
  • a liquid sample is obtained by adding the reagents required for the reaction.
  • the reagent for PCR reaction may be any reagent that is compatible with the PCR used for measurement, and includes, for example, a commercially available PCR master mix, primer, and probe reagent.
  • the dilution factor of the solid biomaterial in the liquid sample thus prepared, that is, the PCR target sample is a value based on the final concentration (weight of biomaterial ( ⁇ g)/volume of diluent ( ⁇ L)), for example, 3.
  • the dilution factor based on the final concentration of the solid biomaterial is, for example, 15 to 250,000 times, 20 to 200,000 times, 25 to 10,000 times, 25 to 5,000 times, 3 to 1,000 times.
  • the amount is preferably 5 to 700 times, more preferably 7 to 500 times, particularly preferably 10 to 300 times.
  • the dilution ratio of solid biomaterials is 12 times or more, 15 times or more, 20 times or more, 50 times or more, based on the final concentration (weight of biomaterial ( ⁇ g)/volume of diluent ( ⁇ L)). , 100 times or more, 150 times or more, etc.
  • the dilution factor may be adjusted depending on whether the biomaterial is solid or liquid, and the dilution factor based on the final concentration for solid biomaterials is, for example, 10 to 20,000,000 times, 10 to 10,000,000 times, 10 to 5,000,000 times, 10 to 2,000,000 times, 15 to 6,000,000 times, 15 to 3,000,000 It may be 15 times to 1,000,000 times, 20 to 10,000,000 times, 20 to 5,000,000 times, etc.
  • the dilution factor based on the final concentration of the solid biomaterial is preferably 20 to 200,000 times, 50 to 1,000,000 times, 50 to 100,000 times, 100 to 500,000 times, More preferably, it is 100 to 50,000 times, 200 to 50,000 times, 200 to 5,000 times, etc.
  • the dilution factor based on the final concentration of liver is, for example, 100 to 10,000,000 times, 100 to 1,000,000 times, 150 to 5,000,000 times, 150 to 500,000 times, etc., 200 to 1,000,000 times, 200 to 200,000 times, 500 to 100,000 times, 1,000 to 50,000 times, 2,200 to 4,600,000 times
  • the dilution factor based on the final concentration of quadriceps muscle is, for example, 5 to 10,000,000 times, 5 to 5,000,000 times, 5 to 1, 000,000 times, 10 to 1,000,000 times, 10 to 500,000 times, etc., 20 to 2,000,000 times, 20 to 200,000 times, 50 to 150,000 times, 100 to 100 ,000 times, 500 to 50,000 times, and preferably 460 to 4,600,000 times.
  • the dilution ratio when preparing a homogenate containing solid biomaterial and performing solubilization treatment is the value of the dilution ratio based on the amount of homogenate (weight of homogenate (mg) / volume of diluent ( ⁇ L)) ), and in that case, the numerical range of the dilution ratio based on the amount of homogenate is, for example, 1/50 to 1/5 of the value based on the final concentration described above.
  • the dilution rate based on the amount of homogenate is preferably within a range defined by a limit value of, for example, 1/50 times to 1/5 times the limit value (upper limit value and lower limit value) for the above-mentioned final concentration-based dilution rate. is a range defined by a limit value of 1/40 times to 1/7 times the limit value of the dilution ratio based on final concentration, and more preferably a limit value of 1/30 times to 1/10 times. This is the range in which
  • the dilution ratio of the solid biomaterial is preferably selected depending on the tissue of the living body, the type of diluent, etc., and a range different from the above-mentioned dilution ratio may be preferable.
  • the dilution ratio of a solid biomaterial is 10 to 500, based on the final concentration (weight of biomaterial ( ⁇ g)/volume of diluent ( ⁇ L)).
  • the final concentration is, for example, 3 times to 400 times, preferably 5 times. 300 times, more preferably 10 times to 250 times, most preferably 20 times to 200 times.
  • the dilution ratio is 10 times to 500 times, preferably 50 times to 400 times, more preferably 100 times to 300 times, based on the final concentration (weight of biomaterial ( ⁇ g)/volume of diluent ( ⁇ L)). , the most preferred specific example is 200 times.
  • the dilution ratio Examples are 10 times to 500 times, preferably 50 times to 400 times, more preferably 100 times to 300 times, based on the final concentration (weight of biomaterial ( ⁇ g)/volume of diluent ( ⁇ L)). The most preferred specific example is 200 times.
  • tissue pieces such as heart, lung, kidney, muscle, spleen, etc.
  • protease using the commercially available "Tissue Direct PCR Kit” and diluting the obtained solution by inactivation treatment if necessary.
  • the dilution ratio are 3 times to 200 times, preferably 5 times to 100 times, more preferably 5 times to 100 times, based on the final concentration (weight of biomaterial ( ⁇ g)/volume of diluent ( ⁇ L)).
  • the amount is 10 times to 50 times, and the most preferred example is 20 times.
  • the amount of solid biomaterial used in the method of the present invention depends on the type of biomaterial, dilution factor, number of measurements, etc., but is, for example, 1 to 100 mg, preferably 3 to 50 mg, and more preferably The amount is 5 to 20 mg, 8 to 20 mg, 5 to 10 mg, or 5 to 15 mg, and more preferably 8 to 10 mg or 8 to 12 mg.
  • PCR kits such as the Tissue Direct PCR Kit manufactured by Omega BIO-TEK, can also be used.
  • the step of preparing a liquid sample does not require the step of extracting DNA from a biological material, and the method for quantifying target DNA of the present invention allows simple and rapid quantification. Furthermore, there is no need for a spike-in calibration curve for internal or external controls during quantitation, and there is no need to add DNA that is not derived from the biological material to the liquid sample prepared in the preparation step.
  • the copy number of the target DNA contained in the liquid sample can be quantified by dPCR.
  • dPCR absolute quantification of target DNA is possible by performing PCR on a liquid sample distributed in minute wells and measuring the reaction rate in negative wells.
  • ddPCR droplet digital PCR
  • chip-based digital PCR etc.
  • ddPCR is preferably used.
  • a known ddPCR device and system can be used, such as those manufactured by Bio-Rad or BioTNS.
  • ddPCR it is also possible to add oil to the liquid sample obtained in the liquid sample preparation step to prepare a measurement sample, if necessary, and quantify the target DNA in the measurement sample.
  • the threshold for a negative signal is determined based on a blank sample that has the same concentration (dilution ratio) of biological materials such as blood in the liquid sample obtained in the liquid sample preparation step and does not contain DNA. It is preferable to set a threshold value for a positive signal based on a spiked sample obtained by adding target DNA to the blank sample. It is more preferable to set both a negative signal threshold and a positive signal threshold. Furthermore, in dPCR, it is preferable to appropriately adjust the concentrations of primers and probe reagents.
  • the liquid sample is treated with a drug (e.g., glutaraldehyde, sodium hypochlorite, formalin, methanol, or acetonitrile, etc.), autoclaved, or boiled before measuring the signal after the PCR reaction is completed.
  • a drug e.g., glutaraldehyde, sodium hypochlorite, formalin, methanol, or acetonitrile, etc.
  • Inactivation treatment may be further performed by treatment or the like.
  • the liquid sample after measuring the signal, may be subjected to the inactivation treatment described above.
  • the boiling treatment may be performed, for example, by heating under the conditions described in column 2-2 above.
  • the inactivation treatment is preferably performed by boiling the liquid sample before measuring the signal after the PCR reaction is completed.
  • the copy number of the target DNA in the liquid sample can be determined by a simple method.
  • the copy number of the target DNA in the liquid sample obtained in this way is useful data for calculating the number of DNA copies per unit amount of biological material, as will be described in detail later.
  • the number of copies of the target DNA per unit amount of the biomaterial ( copy number/ ⁇ L or copy number/ ⁇ g) can be calculated. That is, the number of copies of the DNA of interest per unit volume or weight of biomaterial is determined by dividing the number of copies of the DNA of interest in the quantified liquid sample by the amount of biomaterial used to prepare the liquid sample. can be calculated.
  • the target DNA to be quantified includes introduced DNA and endogenous DNA present in the biological material.
  • the introduced DNA is not particularly limited as long as it is foreign DNA, and includes, for example, DNA derived from regenerative/cell therapy, in vivo gene therapy, ex vivo gene therapy using cells into which genes have been introduced, and nucleic acid medicine. is included.
  • the introduced DNA includes those derived from vectors such as plasmid vectors or viral vectors, those derived from cells used for cell therapy or ex vivo gene therapy, nucleic acid medicines, oncolytic viruses, and Includes those derived from phages (bacteriophages).
  • the introduced DNA includes vector-derived DNA, such as plasmid DNA (pDNA), recombinant adenovirus (rAd), recombinant adeno-associated virus (rAAV), recombinant lentivirus, recombinant Includes those derived from recombinant Sendai virus, recombinant retrovirus, etc.
  • vector-derived DNA such as plasmid DNA (pDNA), recombinant adenovirus (rAd), recombinant adeno-associated virus (rAAV), recombinant lentivirus, recombinant Includes those derived from recombinant Sendai virus, recombinant retrovirus, etc.
  • rAAV examples include rAAV serotype 1 (rAAV1), rAAV serotype 2 (rAAV2), rAAV serotype 3 (rAAV3), rAAV serotype 4 (rAAV4), rAAV serotype 5 (rAAV5), rAAV serotype 6 (rAAV6), and rAAV serotype 7.
  • the introduced DNA includes those derived from cells, such as those derived from cell therapy products derived from CAR-T cells, CAR-NK cells, ES cells, or iPS cells.
  • the introduced DNA includes those derived from nucleic acid medicines, such as siRNA, miRNA, mRNA, antisense, aptamer, decoy, ribozyme, CpG oligo, and the like.
  • nucleic acid medicines such as siRNA, miRNA, mRNA, antisense, aptamer, decoy, ribozyme, CpG oligo, and the like.
  • Specific examples of endogenous DNA include DNA derived from blood cells contained in human or animal blood, DNA derived from specific tissues, and the like.
  • Biodistribution Test The biodistribution of a drug can be evaluated using the method for quantifying target DNA of the present invention. Using the biodistribution evaluation results further enables pharmacokinetic analysis and systems pharmacology analysis.
  • Targeted drugs include drugs containing the introduced DNA described in column 5 above, such as vectors such as plasmid vectors or viral vectors, cells used for cell therapy or ex vivo gene therapy, nucleic acid drugs, oncolytic viruses, and phage.
  • the master mix includes TaqMan Gene Expression Assays (Thermo Fisher Scientific, 4331182, Assay ID Mr04097229_Mr), TaqPath qPCR Mast er Mix, CG (Thermo Fisher Scientific, A16245) was used. 4 ⁇ L of master mix was added to a 384-well plate, 1 ⁇ L of each sample was added, and the plate was sealed to serve as a measurement plate. Measurements and analyzes were performed with QuantStudio 12K Flex (Applied Biosystems). Amplification was performed under the following conditions. 1 cycle of 50°C, 2 minutes 1 cycle of 95°C, 10 minutes 40 cycles of 95°C, 15 seconds and 60°C, 1 minute Hold at 4°C *Temperature increase/decrease rate is 1.6°C/sec
  • Target DNA containing the EGFP gene sequence (hereinafter simply referred to as target DNA) was quantified.
  • concentration of the target DNA relative to the blood volume used for measurement was expressed as copy number/ ⁇ L.
  • a more specific method for quantifying EGFP cDNA by ddPCR will be described based on Examples.
  • Example 1 Quantification of EGFP cDNA in mouse blood by ddPCR method using diluted blood EGFP cDNA was added to diluted mouse blood (dilution solvent: Buffer AE; dilution ratio: 50 to 500,000 times) or added to Buffer AE.
  • the copy number of EGFP cDNA in the obtained solution was measured by a ddPCR method, which is a type of dPCR method. The specific steps are as follows. A master mix of 9 times the amount of the measurement sample was added to prepare a ddPCR reaction solution (the measurement sample in the ddPCR reaction solution was diluted 10 times).
  • the master mix included TaqMan Gene Expression Assays (Thermo Fisher Scientific, 4331182, Assay ID Mr04097229_Mr), ddPCR Supermix for Probe (no dU TP), X2 (Bio-Rad, 1863024), RT-PCR Grade Water (Thermo Fisher Scientific, AM9935 )It was used.
  • the QX200 system Bio-Rad was used for sample measurement by ddPCR method. Droplets were created using a Droplet Generator using 20 ⁇ L of the ddPCR reaction solution according to the instruction manual, and transferred to a 96-well plate (Bio-Rad, 12001925).
  • Tables 1 and 2 show the results of (A) one cycle of 98°C for 10 minutes, and Table 3 shows the results of (B) one cycle of 98°C for 20 minutes.
  • Example 2 Quantification of EGFP cDNA in human blood by ddPCR using diluted blood A ddPCR method using human blood as a matrix was investigated. Human blood was purchased from KAC Corporation. EGFP cDNA (the amount added was under the three conditions of addition conditions 1 to 3 in the table below) was added to human blood diluted 50 times or to buffer AE. The EGFP cDNA copy number in the solution was measured by the ddPCR method in the same manner as in Example 1 ((B) 98° C., 20 minutes for one cycle).
  • Example 3 Examination of inactivation treatment (boiling) conditions Mouse blood (dilution solvent: buffer AE; dilution ratio: 50 times) in which EGFP cDNA (addition amount is the two conditions of addition conditions 1 and 2 in Table 5 below) was diluted. added to. The obtained solution was boiled (95°C, 20 minutes) or left at 4°C for 20 minutes before the amplification reaction, and then the EGFP cDNA copy number in the solution was determined using the same master mix as in Example 1. Amplification was performed under the following conditions (condition b and condition a in Table 5, respectively). The sample after amplification was detected with Droplet Reader and analyzed with QuantaSoft.
  • Example 4 Homogenate preparation of mouse organs Organs were collected from mice and crushed as follows.
  • the liver and quadriceps muscle were each placed in a 3 mL cryo-fracture tube for Multi-Bead Shocker (Yasui Kikai Co., Ltd., ST-0320PCF), and a metal cone for Multi-Shocker (Yasui Kikai Co., Ltd., MC-0316s) was placed over it. I put one in.
  • the tube was set in a multi-bead shocker (Yasui Kikai Co., Ltd., MB701PU(s)) and crushed at 2500 rpm for 20 seconds.
  • the brain, lung, spleen, and kidney were each placed in a tube, and two 5 mm Stainless steel beads (Qiagen) were placed on top of the tube.
  • the tube was set in Shake Master BMS-A20TP (Biomedical Science) and crushed by repeating 1 minute at 1100 rpm three times. The homogenate was stored at -80°C until immediately before use.
  • Example 5 Solubilization of mouse organ homogenate using Tissue Direct PCR Kit Solubilization of mouse homogenate was investigated using Tissue Direct PCR Kit (Omega BIO-TEK, TQ2310). 8 to 53 mg (see Table 6) of the liver and quadriceps muscle homogenate was weighed into a tube, and 100 ⁇ L of L1 buffer and 20 ⁇ L of L2 buffer included in the kit were added. The mixture was set in an Eppendorf Thermomixer R T3317 (Eppendorf) and incubated at 56° C. for 12 hours or more while stirring at approximately 500 rpm. It was then incubated at 95° C.
  • sample was returned to room temperature, 100 ⁇ L of the Tissue direct PCR Neutralization buffer attached to the kit was added, and the sample was sufficiently stirred with a vortex to prepare a test sample. Samples were stored frozen (below -20°C) until immediately before use.
  • Example 7 Examination of solubilization conditions for mouse organ homogenate The samples obtained in Example 5 and Example 6 were visually confirmed for solubilization and evaluated by ddPCR method.
  • the ddPCR method was performed as follows. Nine times the amount of master mix was added to the suitably diluted sample to prepare a dPCR reaction solution.
  • the master mix included TaqMan Gene Expression Assays (Thermo Fisher Scientific, 4331182, Assay ID Mr04097229_Mr), ddPCR Supermix for Probe (no dU TP), X2 (Bio-Rad, 1863024), Direct PCR buffer (10X) (Tissue Direct PCR, Omega BIO-TEK, TQ2310) and RT-PCR Grade Water (Thermo Fisher Scientific, AM9935) were used.
  • the PCR reaction by the ddPCR method and the subsequent steps were carried out in the same manner as in Example 1 ((B) conditions of 98° C. and 20 minutes for one cycle).
  • Example 8 Examination of dilution ratio of solubilized homogenate of each mouse organ. Homogenate of brain, lung, liver, kidney, quadriceps muscle, and spleen solubilized by the method of Example 5 or 6 was diluted with buffer AE at 1 to 10%. ,000 times diluted. EGFP cDNA was diluted in a dilution series using Buffer AE as a solvent at a final concentration of 5 x 10 1 to 5 x 10 4 copies/ ⁇ L. The diluted solution of the solubilized homogenate of Example 5 and each concentration of EGFP cDNA were mixed at a ratio of 1:1.
  • Example 7 the diluted solution of the solubilized homogenate of Example 6 and EGFP cDNA at a final concentration of 5 ⁇ 10 2 copies/ ⁇ L were mixed at a ratio of 1:1.
  • the EGFP cDNA copy number in the sample was evaluated by ddPCR method. Measurement of the sample by ddPCR method was carried out in the same manner as in Example 7.
  • Table 7 shows the dilution ratio at which the sample could be measured by the ddPCR method.
  • the dilution ratio (20 to 200,000 times) based on the amount of homogenate suitable for the ddPCR measurement method; 460 to 4,600,000 times)).
  • the brain, lung, and liver solubilized by the method of Example 6 only samples at a dilution rate of 200 times based on the homogenate amount (the dilution rate in terms of final concentration is 2,200 times) were measured.
  • Example 9 Biodistribution test of recombinant AAV (rAAV)
  • target DNA concentration of target DNA containing the EGFP gene sequence (hereinafter simply referred to as target DNA) in rAAV-administered mouse tissues was determined by the previously described ddPCR method.
  • target DNA concentration of target DNA containing the EGFP gene sequence
  • the applicability of the above-mentioned ddPCR method was investigated by evaluating the method by extracting DNA and quantifying it by qPCR. Details are below.
  • rAAV8 and rAAV9 to be administered contain the EGFP expression gene, as well as the CMV enhancer, CMV promoter, WPRE sequence, and bGH poly(A) signal. Contains encoding nucleic acid.
  • Each rAAV was diluted to 2.0 ⁇ 10 12 vg/mL with DPBS (Life Technologies). A single dose of 5 mL of rAAV diluted solution per kg of body weight was administered into the tail vein of mice, and blood, liver, and brain were collected and frozen at 4, 24, and 48 hours and 1, 2, and 4 weeks after administration. saved. The liver and brain were crushed using the method described in Example 4.
  • a DNeasy 96 plate was set on a new rack of Elution Microtube RS, 50 ⁇ L of Buffer AE was added, the plate was sealed with AirPore Tape Sheet, and the plate was left at room temperature for 1 minute, then centrifuged to collect DNA. DNA was extracted in the same manner from mouse livers to which rAAV had not been administered, and a liver genomic DNA solution (referred to as L-gDNA) was obtained.
  • L-gDNA liver genomic DNA solution
  • DNeasy Blood & Tissue Kit (Qiagen, 69504) was used to extract DNA from blood. 100 ⁇ L of blood was weighed out, and 100 ⁇ L of PBS and 20 ⁇ L of proteinase K were added. 4 ⁇ L of RNase (Qiagen, 19101) was added, mixed well by vortexing, and incubated at room temperature for 5 minutes. After adding 200 ⁇ L of Buffer AL and thoroughly stirring with a vortex, it was set in Eppendorf Thermomixer R T3317 (Eppendorf) and incubated at 56° C. for 10 minutes while stirring at 500 rpm.
  • the mixture was transferred to a DNeasy Mini Spin Column and centrifuged at 20,000 ⁇ g and 4° C. for 1 minute.
  • the filter was transferred to a new collection tube, 500 ⁇ L of Buffer AW1 was added, and centrifuged at 20,000 ⁇ g and 4° C. for 2 minutes.
  • 500 ⁇ L of Buffer AW2 was added, and the mixture was further centrifuged at 20,000 ⁇ g and 4° C. for 3 minutes.
  • a filter was set in a new tube, 50 ⁇ L of Buffer AE was added, and the tube was left to stand at room temperature for 1 minute, then centrifuged at 6000 ⁇ g and 4° C. for 2 minutes to collect DNA.
  • Each DNA sample was diluted with buffer AE to a concentration of 100 ng/ ⁇ L or less. 4 ⁇ L of the master mix was added to a 384-well plate, 1 ⁇ L of each sample was added, and the plate was sealed to serve as a measurement plate. Measurements and analyzes were performed with QuantStudio 12K Flex (Applied Biosystems). Amplification was performed under the following conditions. 1 cycle of 50°C, 2 minutes 1 cycle of 95°C, 10 minutes 40 cycles of 95°C, 15 seconds and 60°C, 1 minute Hold at 4°C *Temperature increase/decrease rate is 1.6°C/sec
  • the present invention it is possible to quantify the target gene in the body based on the volume or weight. As a result, new considerations regarding the quantitative relationship between pharmacological and toxicological effects will become possible, which may greatly benefit patients undergoing gene therapy, cell therapy, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

Provided is a novel quantitative method capable of accurately evaluating the dynamics, etc. of a target gene in the body without being affected by the amount of genomic DNA (gDNA). This problem was solved by the following method. A method for quantifying a target DNA that comprises: a step for preparing a liquid sample from a biological material of a measurement target; a step for quantifying the copy number of the target DNA contained in the liquid sample by digital PCR (dPCR); and a step for calculating the copy number of the target DNA per unit amount of the biological material with the use of the copy number of the target DNA in the liquid sample quantified above.

Description

生体内の目的DNA定量法In vivo target DNA quantification method
 本発明は、生体内における目的DNAの定量に関するものである。 The present invention relates to the quantification of target DNA in vivo.
 ヒトや動物の生体内における目的DNAの分布や挙動を簡便にしかも正確に測定する方法が求められている。 There is a need for a method to easily and accurately measure the distribution and behavior of target DNA in the living body of humans and animals.
 例えば、組換えアデノウイルス(rAd)、組換えアデノ随伴ウイルス(rAAV)またはプラスミドDNA(pDNA)などのベクターを用いたin vivo遺伝子治療や、患者から単離した細胞に特定の遺伝子を導入し、その細胞を体内に戻す、CAR-T療法等のex vivo遺伝子治療などの様々な遺伝子治療法があるが、これらの既存のあるいは新たな遺伝子治療法についての臨床における有効性や有害事象との因果関係の考察を行う場合には、治療に用いられて体内に導入されたDNAの体内動態を測定することが不可欠である。また、内因性DNAについても、例えば特定の治療の前後における血球由来のDNAの増減の測定や、特定の内因性DNAの組織におけるコピー数の比較などが必要な場合がある。 For example, in vivo gene therapy using vectors such as recombinant adenovirus (rAd), recombinant adeno-associated virus (rAAV) or plasmid DNA (pDNA), or introducing specific genes into cells isolated from patients, There are various gene therapy methods such as ex vivo gene therapy such as CAR-T therapy, which returns these cells to the body, but the clinical efficacy and adverse effects of these existing and new gene therapy methods are unclear. When considering the relationship, it is essential to measure the pharmacokinetics of DNA introduced into the body for therapeutic purposes. Furthermore, regarding endogenous DNA, it may be necessary to measure the increase or decrease in DNA derived from blood cells before and after a specific treatment, or to compare the copy number of specific endogenous DNA in tissues.
 ヒトや動物の生体内における目的DNAを定量する際には、これまで、ヒトや動物の血液や組織を採取し、全DNA(ゲノムDNA)を抽出して測定した上で、目的DNAの量をPCRによって測定し、ゲノムDNA当たりの目的DNA濃度、すなわちコピー数/μgゲノムDNA(gDNA)としてあらわす方法が用いられてきた。 Until now, when quantifying target DNA in a human or animal body, blood or tissue of the human or animal was collected, total DNA (genomic DNA) was extracted and measured, and then the amount of target DNA was determined. A method has been used in which the target DNA concentration is measured by PCR and expressed as the target DNA concentration per genomic DNA, ie, copy number/μg genomic DNA (gDNA).
 しかしながら、gDNA量を基準とした目的DNA濃度の算出のためには、gDNA量を測定しなくてはならず、煩雑な操作が必要である。また、gDNA量自体が変化することを考えると、必ずしも常に目的DNAの評価に用いるのに適切ではない。例えば、化学療法薬、ステロイドなどの投与により血液中の血球数が大きく変化することがあるが、そのような場合にgDNA量に対する目的DNAのコピー数を用いると目的DNA量の評価を誤って解釈するリスクが大きい。 However, in order to calculate the target DNA concentration based on the amount of gDNA, the amount of gDNA must be measured, which requires complicated operations. Furthermore, considering that the amount of gDNA itself changes, it is not necessarily appropriate to always use it for evaluation of target DNA. For example, the number of blood cells in the blood may change significantly due to the administration of chemotherapy drugs, steroids, etc. In such cases, using the copy number of target DNA relative to the amount of gDNA may lead to misinterpretation of the evaluation of the amount of target DNA. There is a big risk of doing so.
 そのようなリスクを避けるため、山本らは、内部コントロールあるいは外部コントロールのスパイクイン検量線を用いることによって、血液中の目的DNA量をコピー数/μLで表現する定量的PCR法を発表している(非特許文献1)。この方法では、目的DNA量をコピー数/μLで表現できるものの、DNA抽出が必要である上、コントロールを用いたスパイクイン検量線を作成するという追加のステップが必要になる。 To avoid such risks, Yamamoto et al. have announced a quantitative PCR method that expresses the amount of target DNA in blood as copy number/μL by using a spike-in calibration curve with internal or external controls. (Non-patent document 1). Although this method allows the target DNA amount to be expressed in copy number/μL, it requires DNA extraction and an additional step of creating a spike-in standard curve using a control.
 また、細菌細胞についてドロップレットデジタルPCR(ddPCR)を用いて直接DNAを定量した例があるが(非特許文献2)、動物組織や血液中の目的遺伝子を直接定量した例は知られていない。 Furthermore, although there is an example of directly quantifying DNA of bacterial cells using droplet digital PCR (ddPCR) (Non-Patent Document 2), there is no known example of directly quantifying a gene of interest in animal tissue or blood.
 本発明の目的は、目的DNAの体内動態等を簡単かつ正確に評価することができる、新たな定量的な方法を提供することにある。 An object of the present invention is to provide a new quantitative method that can easily and accurately evaluate the internal dynamics of target DNA.
 上記目的を達成するため、発明者らは、目的DNAの生体材料中濃度を、生体材料の体積または重量を基準としてコピー数/μLまたはコピー数/μgという単位で表記でき、必ずしもDNA抽出を必要とせずに生体材料中の目的DNAを定量できる方法を開発した。 In order to achieve the above object, the inventors discovered that the concentration of target DNA in a biological material can be expressed in units of copy number/μL or copy number/μg based on the volume or weight of the biomaterial, and that DNA extraction is not necessarily required. We have developed a method that allows the quantitative determination of target DNA in biological materials without the need for quantitation.
 すなわち、本発明は、以下の[1]~[25]を提供する。
[1]測定対象の生体材料から液体サンプルを調製するステップ、
 当該液体サンプルに含まれる目的DNAのコピー数をデジタルPCR(dPCR)により定量するステップ、及び、
 前記定量された液体サンプル中の目的DNAのコピー数を用いて、前記生体材料の単位量あたりの目的DNAのコピー数を算出するステップを含む、目的DNAの定量方法。
[2]前記生体材料からDNAを抽出するステップを含まない、上記[1]に記載の定量方法。
[3]前記生体材料が、液体である、上記[1]または[2]に記載の定量方法。
[4]前記液体サンプルにおける、液体の前記生体材料の終濃度ベースの希釈倍率が20~5,000,000倍である、上記[3]に記載の定量方法。
[5]液体の前記生体材料が血液であり、血液の終濃度ベースの希釈倍率が500~5,000,000倍である、上記[4]に記載の定量方法。
[6]前記液体サンプルにおける、液体の前記生体材料の終濃度ベースの希釈倍率が30~2000倍である、上記[3]に記載の定量方法。
[7]前記生体材料が、固体である、上記[1]または[2]に記載の定量方法。
[8]前記液体サンプルの調製が、固体の前記生体材料を可溶化することを含む、上記[7]に記載の定量方法。
[9]前記液体サンプルにおける、固体の前記生体材料の終濃度ベースの希釈倍率が20~5,000,000倍である、上記[7]又は[8]、例えば上記[7]に記載の定量方法。
[10]前記液体サンプルにおける、固体の前記生体材料の終濃度ベースの希釈倍率が3~1000倍である、上記[7]又は[8]、例えば上記[7]に記載の定量方法。
[11]固体の前記生体材料が肝臓であり、肝臓の終濃度ベースの希釈倍率が2,200~4,600,000倍である、上記[7]又は[8]、例えば上記[7]に記載の定量方法。
[12]固体の前記生体材料が大腿四頭筋であり、大腿四頭筋の終濃度ベースの希釈倍率が460~4,600,000倍である、上記[7]~[9]のいずれか一項、例えば上記[7]に記載の定量方法。
[13]目的DNAのコピー数をdPCRにより定量するステップにおいて、前記液体サンプルにおける前記生体材料の希釈倍率が等しいとともに目的DNAを含まないブランクサンプルに基づいて陰性シグナルの閾値を設定するステップ、及び/または当該ブランクサンプルに目的DNAを添加したスパイクサンプルに基づいて陽性シグナルの閾値を設定するステップをさらに含む、上記[1]~[12]のいずれか一項、例えば上記[1]または[2]に記載の定量方法。
[14]前記液体サンプルに対して不活性化処理を行うステップをさらに含む、上記[1]~[13]のいずれか一項、例えば上記[1]または[2]に記載の定量方法。
[15]PCR反応終了後、かつ、シグナルを測定する前に、前記液体サンプルに対して不活性化処理を行うステップが行われる、上記[14]に記載の定量方法。
[16]前記不活性化処理が前記液体サンプルの煮沸処理である、上記[14]又は[15]、例えば上記[15]に記載の定量方法。
[17]前記dPCRが、ドロップレットデジタルPCR(ddPCR)である、上記[1]~[16]のいずれか一項、例えば上記[1]または[2]に記載の定量方法。
[18]前記目的DNAが、前記生体材料における導入DNAまたは内因性DNAである、上記[1]~[17]のいずれか一項、例えば上記[1]または[2]に記載の定量方法。
[19]前記生体材料における導入DNAが、ベクター、細胞、核酸医薬、腫瘍溶解性ウイルス、またはファージに由来する、上記[18]に記載の定量方法。
[20]前記ベクターが、プラスミドDNA(pDNA)、組換えアデノウイルス、組換えアデノ随伴ウイルス(rAAV)、組換えレンチウイルス、組換えセンダイウイルス、または組換えレトロウイルスに由来する、上記[19]に記載の定量方法。
[21]前記細胞が、CAR-T細胞、CAR-NK細胞、またはES細胞若しくはiPS細胞由来の細胞治療製品に由来する、上記[19]に記載の定量方法。
[22]前記生体材料における内因性DNAが、血球に由来する、上記[18]~[21]のいずれか一項、例えば上記[18]に記載の定量方法。
[23]前記目的DNAが、前記生体材料における組換えアデノウイルス、組換えアデノ随伴ウイルス(rAAV)、組換えレンチウイルス、組換えセンダイウイルス、組換えレトロウイルス、プラスミドDNA(pDNA)、CAR-T細胞、CAR-NK細胞、ES細胞又はiPS細胞由来の細胞治療製品、血球、腫瘍溶解性ウイルス、ファージまたは核酸医薬に由来する、上記[1]~[22]のいずれか一項、例えば上記[1]または[2]に記載の定量方法。
[24]測定対象の生体材料から液体サンプルを調製するステップ、及び、
 当該液体サンプルに含まれる目的DNAのコピー数をデジタルPCR(dPCR)により定量するステップ含む、
 前記生体材料の単位量あたりの目的DNAのコピー数の定量方法。
[25]上記[1]~[24]のいずれか一項、例えば、上記[1]、[2]または[24]に記載の定量方法を用いた、薬物の生体内分布を評価する方法。
That is, the present invention provides the following [1] to [25].
[1] Preparing a liquid sample from the biological material to be measured;
Quantifying the copy number of the target DNA contained in the liquid sample by digital PCR (dPCR), and
A method for quantifying DNA of interest, comprising the step of calculating the number of copies of DNA of interest per unit amount of the biological material using the quantified copy number of DNA of interest in the liquid sample.
[2] The quantitative method according to [1] above, which does not include the step of extracting DNA from the biological material.
[3] The quantitative method according to [1] or [2] above, wherein the biomaterial is a liquid.
[4] The quantitative method according to [3] above, wherein the liquid sample has a dilution factor of 20 to 5,000,000 times based on the final concentration of the biological material in the liquid.
[5] The quantitative method according to [4] above, wherein the liquid biological material is blood, and the dilution factor based on the final concentration of blood is 500 to 5,000,000 times.
[6] The quantitative method according to [3] above, wherein the liquid sample has a dilution factor of 30 to 2000 times based on the final concentration of the biological material in the liquid.
[7] The quantitative method according to [1] or [2] above, wherein the biomaterial is a solid.
[8] The quantitative method according to [7] above, wherein preparing the liquid sample includes solubilizing the solid biological material.
[9] The quantitative determination according to [7] or [8] above, for example, [7] above, wherein the dilution factor based on the final concentration of the solid biomaterial in the liquid sample is 20 to 5,000,000 times. Method.
[10] The quantitative method according to [7] or [8] above, for example, [7] above, wherein the dilution factor based on the final concentration of the solid biomaterial in the liquid sample is 3 to 1000 times.
[11] The solid biomaterial is liver, and the dilution factor based on the final concentration of the liver is 2,200 to 4,600,000 times, such as in [7] or [8] above, for example in [7] above. Quantification method as described.
[12] Any one of [7] to [9] above, wherein the solid biomaterial is quadriceps femoris muscle, and the dilution factor based on the final concentration of quadriceps femoris muscle is 460 to 4,600,000 times. Item 1, for example, the quantitative method described in [7] above.
[13] In the step of quantifying the copy number of the target DNA by dPCR, the step of setting a threshold for a negative signal based on a blank sample in which the dilution ratio of the biological material in the liquid sample is equal and does not contain the target DNA, and/ or any one of the above [1] to [12], for example, the above [1] or [2], further comprising the step of setting a threshold for a positive signal based on a spiked sample obtained by adding the target DNA to the blank sample. Quantification method described in.
[14] The quantitative method according to any one of [1] to [13] above, for example, [1] or [2] above, further comprising a step of performing an inactivation treatment on the liquid sample.
[15] The quantitative method according to [14] above, wherein the step of inactivating the liquid sample is performed after the end of the PCR reaction and before measuring the signal.
[16] The quantitative method according to [14] or [15] above, for example, [15] above, wherein the inactivation treatment is a boiling treatment of the liquid sample.
[17] The quantitative method according to any one of [1] to [16] above, for example, [1] or [2] above, wherein the dPCR is droplet digital PCR (ddPCR).
[18] The quantitative method according to any one of [1] to [17] above, for example, [1] or [2] above, wherein the target DNA is introduced DNA or endogenous DNA in the biological material.
[19] The quantitative method according to [18] above, wherein the introduced DNA in the biomaterial is derived from a vector, a cell, a nucleic acid drug, an oncolytic virus, or a phage.
[20] The above-mentioned [19], wherein the vector is derived from plasmid DNA (pDNA), recombinant adenovirus, recombinant adeno-associated virus (rAAV), recombinant lentivirus, recombinant Sendai virus, or recombinant retrovirus. Quantification method described in.
[21] The quantitative method according to [19] above, wherein the cells are derived from CAR-T cells, CAR-NK cells, or a cell therapy product derived from ES cells or iPS cells.
[22] The quantitative method according to any one of [18] to [21] above, for example, [18] above, wherein the endogenous DNA in the biomaterial is derived from blood cells.
[23] The target DNA is a recombinant adenovirus, recombinant adeno-associated virus (rAAV), recombinant lentivirus, recombinant Sendai virus, recombinant retrovirus, plasmid DNA (pDNA), CAR-T in the biological material. Any one of the above [1] to [22], for example the above [ 1] or the quantitative method described in [2].
[24] Preparing a liquid sample from the biological material to be measured, and
A step of quantifying the number of copies of the target DNA contained in the liquid sample by digital PCR (dPCR),
A method for quantifying the number of copies of target DNA per unit amount of the biological material.
[25] A method for evaluating the biodistribution of a drug using any one of [1] to [24] above, for example, the quantitative method described in [1], [2], or [24] above.
 本発明を用いると、gDNA量に左右されずに、より簡便な方法で、目的DNAの体内動態を正確に評価することが可能となる。 Using the present invention, it becomes possible to accurately evaluate the pharmacokinetics of a target DNA using a simpler method, regardless of the amount of gDNA.
図1は、qPCR法によってマウス血液中のEGFP cDNAを定量した結果を示す。縦軸はCt値を表し、横軸は添加した単位体積当たりのEGFP cDNAのコピー数の対数を表す。FIG. 1 shows the results of quantifying EGFP cDNA in mouse blood by qPCR. The vertical axis represents the Ct value, and the horizontal axis represents the logarithm of the copy number of EGFP cDNA per unit volume added. 図2は、ddPCR法によってマウス血液中のEGFP cDNAを定量した結果を示す。縦軸はシグナル強度を表し、横軸はイベント数を表す。FIG. 2 shows the results of quantifying EGFP cDNA in mouse blood by ddPCR method. The vertical axis represents the signal intensity, and the horizontal axis represents the number of events. 図3は、ddPCR法に適したマウス血液の希釈倍率を検討した結果である。縦軸はシグナル強度を表し、横軸はイベント数を表す。FIG. 3 shows the results of examining the dilution ratio of mouse blood suitable for the ddPCR method. The vertical axis represents the signal intensity, and the horizontal axis represents the number of events. 図4は、ddPCR法に適したマウス血液の希釈倍率を検討した結果である。縦軸はシグナル強度を表し、横軸はイベント数を表す。FIG. 4 shows the results of examining the dilution ratio of mouse blood suitable for the ddPCR method. The vertical axis represents the signal intensity, and the horizontal axis represents the number of events. 図5は、ddPCR法によってrAAV投与マウス組織サンプル(血液、肝臓、または脳)中の目的DNAを含むrAAVゲノムDNAを定量した結果を示す。縦軸は単位体積または単位重量当たりの目的DNAのコピー数を表し、横軸はrAAV投与後の日数を表す。FIG. 5 shows the results of quantifying rAAV genomic DNA containing the target DNA in rAAV-administered mouse tissue samples (blood, liver, or brain) using the ddPCR method. The vertical axis represents the number of copies of the target DNA per unit volume or unit weight, and the horizontal axis represents the number of days after rAAV administration. 図6は、qPCR法によってrAAV投与マウス組織サンプル中の目的DNAを含むrAAVゲノムDNAを定量した結果を示す。縦軸はゲノムDNA当たりの目的DNAのコピー数を表し、横軸はrAAV投与後の日数を表す。FIG. 6 shows the results of quantifying rAAV genomic DNA containing the target DNA in rAAV-administered mouse tissue samples by qPCR. The vertical axis represents the number of copies of target DNA per genomic DNA, and the horizontal axis represents the number of days after rAAV administration.
1.目的DNAの定量方法
 本発明の目的DNAの定量方法によれば、生体材料における単位体積または単位重量あたりの目的DNAを定量できる。
 目的DNAの定量方法は、生体材料から液体サンプルを調製する調製ステップ、及び目的DNAのコピー数を定量する定量ステップを含み、さらに、生体材料における単位体積または単位重量あたりの目的DNAのコピー数を算出する算出ステップを含みうる。以下、各ステップについて説明する。
1. Method for quantifying target DNA According to the method for quantifying target DNA of the present invention, it is possible to quantify target DNA per unit volume or unit weight in a biological material.
The method for quantifying target DNA includes a preparation step of preparing a liquid sample from a biological material, and a quantitative step of quantifying the number of copies of the target DNA, and further includes determining the number of copies of the target DNA per unit volume or unit weight in the biological material. The method may include a calculating step of calculating. Each step will be explained below.
2.液体サンプルの調製ステップ
 液体サンプルの調製ステップにおいては、測定対象である生体材料から液体サンプルが調製される。液体サンプルは、PCR反応の対象となるものであり、本明細書では、液体サンプルをPCR対象サンプルとよぶこともある。
 液体サンプルは、生体材料が液体である場合には直接希釈し、さらにPCR反応用試薬を添加することにより調製できる。固体の生体材料の場合には、まず、例えばプロテアーゼによる適切な可溶化処理を行い、その後で希釈し、さらにPCR反応用試薬を添加することにより液体サンプルを調製できる。なお、可溶化処理の手法としては、固体の生体材料に例えばドデシル硫酸ナトリウム等の界面活性剤を添加して攪拌することにより、可溶化させることもできる。
 生体材料は、例えばヒトや医薬品開発等に使用される実験動物(例えば、マウス、ラット、サル、イヌ、ウサギなどの動物)から得られ、血液、脳脊髄液、尿、唾液、房水、涙液などの液体、肝臓、腎臓、脾臓、胆のう、心臓、肺、脳、精巣、卵巣などの臓器、筋肉、皮膚、眼球などの固体の組織片が含まれる。このように、本発明の目的DNAの定量方法においては、液体及び固体のいずれの生体材料も対象となり得るのであり、特別な制約なしに幅広い測定対象における目的DNAを定量することができる。
 特に、本発明の目的DNA定量法においては、生体材料からDNAを抽出するステップが不要であり、簡易な操作による効率的な定量が可能である。
2. Liquid Sample Preparation Step In the liquid sample preparation step, a liquid sample is prepared from the biological material to be measured. The liquid sample is a target of a PCR reaction, and in this specification, the liquid sample is sometimes referred to as a PCR target sample.
When the biological material is a liquid, a liquid sample can be prepared by directly diluting the biological material and further adding a PCR reaction reagent. In the case of solid biomaterials, liquid samples can be prepared by first performing appropriate solubilization treatment, for example with protease, followed by dilution and addition of PCR reaction reagents. In addition, as a method of solubilization treatment, for example, a surfactant such as sodium dodecyl sulfate may be added to the solid biological material and the mixture may be stirred.
Biological materials are obtained from, for example, humans or experimental animals used for drug development (e.g., mice, rats, monkeys, dogs, rabbits, etc.), and include blood, cerebrospinal fluid, urine, saliva, aqueous humor, and tears. This includes liquids such as fluid, organs such as the liver, kidneys, spleen, gallbladder, heart, lungs, brain, testicles, and ovaries, and solid tissue pieces such as muscles, skin, and eyes. In this manner, the method for quantifying target DNA of the present invention can be applied to both liquid and solid biological materials, and it is possible to quantify target DNA in a wide range of measurement targets without any special restrictions.
In particular, the objective DNA quantification method of the present invention does not require the step of extracting DNA from biological materials, and allows efficient quantification with simple operations.
 2-1.液体の生体材料
 血液などの液体である生体材料から液体サンプルを調製する場合、例えば緩衝液などの適切な希釈用溶媒を用いて直接希釈し、さらにPCR反応用試薬を添加することにより調製できる。
 PCR反応用試薬は、測定に用いるPCRに応じた試薬であればよく、例えば市販のPCRマスターミックス、プライマー及びプローブ試薬が挙げられる。
 そうして調製された液体サンプル、すなわちPCR対象サンプルにおける液体の生体材料の希釈倍率(体積比:例えば、希釈液の体積(mL)/生体材料の容積(mL))は、液体サンプルの種類によって選択することが好ましく、終濃度ベースの値として、例えば、10~20,000,000倍、15~10,000,000倍、20~5,000,000倍などである。また、液体の生体材料の終濃度ベースの希釈倍率は、例えば、20~1,000,000倍、20~100,000倍、25~10,000倍、25~5,000倍、30~2,000倍あるいは30~1,000倍であり、好ましくは50~800倍であり、より好ましくは70~600倍であり、さらに好ましくは100~600倍であり、特に好ましくは200~500倍である。また、液体の生体材料の終濃度ベースの希釈倍率(体積比)は200倍、300倍、400倍、500倍などであってもよい。
 また、生体材料が液体であるか固体であるかに応じて、希釈倍率を調整してもよく、液体の生体材料における終濃度ベースの希釈倍率は、例えば、20~5,000,000倍、100~1,000,000倍、300~700,000倍、500~500,000倍、1,000~200,000倍などであってもよい。
 液体の生体材料が血液である場合、血液の終濃度ベースの希釈倍率は、例えば170~10,000,000倍であり、以下、好ましい範囲を規定すると、200~1,000,000倍などであり、500~5,000,000倍、1,000~1,000,000倍、5,000~500,000倍であることが好ましい。
2-1. Liquid Biological Materials When preparing a liquid sample from a liquid biological material such as blood, it can be prepared by diluting it directly with an appropriate dilution solvent such as a buffer, and then adding a PCR reaction reagent.
The reagent for PCR reaction may be any reagent that is compatible with the PCR used for measurement, and includes, for example, a commercially available PCR master mix, primer, and probe reagent.
The dilution ratio (volume ratio: e.g., volume of diluent (mL)/volume of biomaterial (mL)) of the liquid biomaterial in the liquid sample thus prepared, that is, the sample to be subjected to PCR, depends on the type of liquid sample. It is preferable to select a value based on the final concentration, for example, 10 to 20,000,000 times, 15 to 10,000,000 times, 20 to 5,000,000 times, etc. Further, the dilution ratio based on the final concentration of the liquid biomaterial is, for example, 20 to 1,000,000 times, 20 to 100,000 times, 25 to 10,000 times, 25 to 5,000 times, 30 to 2 ,000 times or 30 to 1,000 times, preferably 50 to 800 times, more preferably 70 to 600 times, even more preferably 100 to 600 times, particularly preferably 200 to 500 times. be. Further, the dilution ratio (volume ratio) based on the final concentration of the liquid biomaterial may be 200 times, 300 times, 400 times, 500 times, etc.
Further, the dilution factor may be adjusted depending on whether the biomaterial is liquid or solid. It may be 100 to 1,000,000 times, 300 to 700,000 times, 500 to 500,000 times, 1,000 to 200,000 times, etc.
When the liquid biomaterial is blood, the dilution factor based on the final concentration of blood is, for example, 170 to 10,000,000 times, and below, a preferable range is defined as 200 to 1,000,000 times, etc. Yes, preferably 500 to 5,000,000 times, 1,000 to 1,000,000 times, and 5,000 to 500,000 times.
 液体の生体材料を希釈するための希釈用溶媒は特に限定されないが、例えばQIAGEN社製のバッファーAE(10 mMのTris-Cl及び0.5 mMのEDTAからなる。pH9.0)、超純水(MILLIQ水)、リン酸緩衝食塩水(PBS)、生理食塩水などが用いられ、好ましくは、バッファーAEが用いられる。
 また、液体サンプルの調製に用いられる液体の生体材料の量は、希釈倍率及び測定数によるが、例えば0.02μL以上、0.04μL以上、0.1μL以上、0.5μL以上、1μL以上、3μL以上、5μL以上である。このように、本発明の定量方法においては、少量の液体の生体材料を用いて十分に高い信頼性でDNAを定量可能である。
The diluting solvent for diluting the liquid biological material is not particularly limited, but includes, for example, Buffer AE manufactured by QIAGEN (consisting of 10 mM Tris-Cl and 0.5 mM EDTA, pH 9.0), ultrapure water. (MILLIQ water), phosphate buffered saline (PBS), physiological saline, etc., and preferably buffer AE is used.
The amount of liquid biomaterial used to prepare the liquid sample depends on the dilution factor and the number of measurements, but for example, 0.02 μL or more, 0.04 μL or more, 0.1 μL or more, 0.5 μL or more, 1 μL or more, 3 μL. The amount is 5 μL or more. As described above, in the quantification method of the present invention, DNA can be quantified with sufficiently high reliability using a small amount of liquid biological material.
 2-2.固体の生体材料
 臓器の組織片などの固体の生体材料から液体サンプルを調製する場合、固体の生体材料を可溶化する。可溶化する方法は、可溶化できる限り特に限定されず、固体の生体材料にプロテアーゼを添加してもよいし、添加しなくてもよい。プロテアーゼを添加する場合、細かくした生体材料を、プロテアーゼを含有する緩衝液などの溶媒、すなわちプロテアーゼ処理用緩衝液などのプロテアーゼ処理用溶媒に懸濁する。必要に応じて、事前に生体材料を切断または粉砕処理等して遠心分離してもよい。
 プロテアーゼは、用いる生体材料に合わせて適切なものを選択できる。例えば、プロテイナーゼKが挙げられる。
 プロテアーゼ処理用溶媒は、生体材料に合わせて適切なものを選択してよいが、例えば、QIAGEN社製のバッファーATL、超純水(MILLIQ水)、リン酸緩衝食塩水(PBS)、生理食塩水などが用いられ、好ましくはバッファーATLが用いられる。
2-2. Solid Biomaterials When preparing a liquid sample from a solid biomaterial, such as a piece of tissue from an organ, the solid biomaterial is solubilized. The solubilization method is not particularly limited as long as solubilization is possible, and protease may or may not be added to the solid biological material. When adding a protease, the comminuted biomaterial is suspended in a solvent such as a buffer containing the protease, ie, a protease treatment solvent such as a protease treatment buffer. If necessary, the biomaterial may be cut or pulverized in advance and then centrifuged.
An appropriate protease can be selected depending on the biomaterial used. For example, proteinase K may be mentioned.
The solvent for protease treatment may be selected according to the biological material, but examples include Buffer ATL manufactured by QIAGEN, ultrapure water (MILLIQ water), phosphate buffered saline (PBS), and physiological saline. etc., and preferably buffer ATL is used.
 上述の可溶化処理は、例えば、プロテアーゼ処理用溶媒に生体材料を懸濁したものをインキュベーションして、プロテアーゼ処理を行う。インキュベーション温度は、用いるプロテアーゼ及び生体材料の種類に応じて選択されるが、例えば30~70℃、好ましくは40~65℃、より好ましくは50~60℃である。インキュベーション時間は、用いるプロテアーゼ及び生体材料の種類に応じて選択されるが、例えば10~24時間、好ましくは11~20時間、さらに好ましくは12~18時間、最も好ましくは13~17時間、特に好ましくは16時間、行う。
 また、可溶化処理に用いるプロテアーゼ処理用溶媒の量は、固体の生体材料の量等に応じて適宜、調整されるが、例えば、生体材料1mgあたり1~120μL、好ましくは2~50μL、より好ましくは5~30μLほど用いられる。プロテアーゼ処理用溶媒におけるプロテアーゼの濃度は、例えば、60mAU/mL以上である。
The above-mentioned solubilization treatment is performed, for example, by incubating a suspension of the biological material in a protease treatment solvent and performing the protease treatment. The incubation temperature is selected depending on the type of protease and biomaterial used, and is, for example, 30 to 70°C, preferably 40 to 65°C, more preferably 50 to 60°C. The incubation time is selected depending on the type of protease and biomaterial used, and is, for example, 10 to 24 hours, preferably 11 to 20 hours, more preferably 12 to 18 hours, most preferably 13 to 17 hours, and particularly preferably will be held for 16 hours.
Further, the amount of the protease treatment solvent used in the solubilization treatment is appropriately adjusted depending on the amount of solid biomaterial, etc., but for example, it is 1 to 120 μL, preferably 2 to 50 μL, and more preferably 2 to 50 μL per 1 mg of biomaterial. About 5 to 30 μL is used. The concentration of protease in the protease treatment solvent is, for example, 60 mAU/mL or more.
 プロテアーゼ処理の後、懸濁液を必要に応じて再懸濁させてもよい。また、プロテアーゼ処理の後、上述の液体サンプルを含む懸濁液を煮沸処理で加熱することにより不活性化処理を行ってもよい。
 煮沸処理としては、懸濁液を、例えば80~100℃、好ましくは90~98℃、より好ましくは95~96℃で、例えば2~30分間、好ましくは5~20分間あるいは5~25分間、より好ましくは8~12分間あるいは10~22分間、最も好ましくは20分間、場合によっては10分間、加熱することにより、不活性化処理を行ってもよい。このような不活性化処理は、後述の定量ステップにおける目的DNAの定量の結果には影響を与えない一方、バイオハザードサンプルの可能性がある生体材料を用いる場合においてもその後の取扱いを安全に行うことを可能にする。
 なお、液体の生体材料を用いる場合においても、上述の固体の生体材料における各ステップを採用し得るものの、好ましくは、液体の生体材料に対するプロテアーゼの添加は避けても良い。また、液体の生体材料に対して、プロテアーゼ処理を行わない場合でも、煮沸処理により加熱することで不活性化処理を行ってもよい。
After protease treatment, the suspension may be resuspended if necessary. Further, after the protease treatment, an inactivation treatment may be performed by heating the suspension containing the above-mentioned liquid sample by boiling treatment.
The boiling treatment includes boiling the suspension at, for example, 80 to 100°C, preferably 90 to 98°C, more preferably 95 to 96°C, for 2 to 30 minutes, preferably 5 to 20 minutes, or 5 to 25 minutes. The inactivation treatment may be carried out by heating, more preferably for 8 to 12 minutes or 10 to 22 minutes, most preferably for 20 minutes, and in some cases for 10 minutes. Such inactivation treatment does not affect the quantification results of the target DNA in the quantification step described below, but it also ensures safe subsequent handling even when using biological materials that may be biohazardous samples. make it possible.
Note that even when using a liquid biomaterial, the steps for the solid biomaterial described above can be employed, but preferably, addition of protease to the liquid biomaterial may be avoided. Furthermore, even if the liquid biomaterial is not subjected to protease treatment, it may be inactivated by heating it by boiling.
 プロテアーゼ処理及び/または不活性化処理によって得られた液を、必要に応じて十分に懸濁、攪拌あるいは振とうし、バッファーAEなどの上記希釈用溶媒を用いて必要に応じて希釈し、PCR反応に必要な試薬を加えることにより液体サンプルを得る。
 PCR反応用試薬は、測定に用いるPCRに応じた試薬であればよく、例えば市販のPCRマスターミックス、プライマー及びプローブ試薬が挙げられる。
 そうして調製された液体サンプル、すなわちPCR対象サンプルにおける固体の生体材料の希釈倍率は、終濃度(生体材料の重量(μg)/希釈液の体積(μL))ベースの値として、例えば、3~5,000,000倍、5~1,000,000倍、10~500,000倍、15~200,000倍などであってもよい。また、固体の生体材料の終濃度ベースの希釈倍率は、例えば、15~250,000倍、20~200,000倍、25~10,000倍、25~5,000倍、3~1,000倍であり、好ましくは5~700倍であり、より好ましくは7~500倍であり、特に好ましくは、10~300倍などである。また、固体の生体材料の希釈倍率は、終濃度(生体材料の重量(μg)/希釈液の体積(μL))ベースの値として、12倍以上、15倍以上、20倍以上、50倍以上、100倍以上、150倍以上等であってもよい。
The solution obtained by the protease treatment and/or inactivation treatment is sufficiently suspended, stirred or shaken as necessary, diluted as necessary with the above dilution solvent such as buffer AE, and then subjected to PCR. A liquid sample is obtained by adding the reagents required for the reaction.
The reagent for PCR reaction may be any reagent that is compatible with the PCR used for measurement, and includes, for example, a commercially available PCR master mix, primer, and probe reagent.
The dilution factor of the solid biomaterial in the liquid sample thus prepared, that is, the PCR target sample, is a value based on the final concentration (weight of biomaterial (μg)/volume of diluent (μL)), for example, 3. It may be ~5,000,000 times, 5~1,000,000 times, 10~500,000 times, 15~200,000 times, etc. Further, the dilution factor based on the final concentration of the solid biomaterial is, for example, 15 to 250,000 times, 20 to 200,000 times, 25 to 10,000 times, 25 to 5,000 times, 3 to 1,000 times. The amount is preferably 5 to 700 times, more preferably 7 to 500 times, particularly preferably 10 to 300 times. In addition, the dilution ratio of solid biomaterials is 12 times or more, 15 times or more, 20 times or more, 50 times or more, based on the final concentration (weight of biomaterial (μg)/volume of diluent (μL)). , 100 times or more, 150 times or more, etc.
 また、上述のように、生体材料が固体であるか液体であるかに応じて、希釈倍率を調整してもよいのであり、固体の生体材料における終濃度ベースの希釈倍率は、例えば、10~20,000,000倍、10~10,000,000倍、10~5,000,000倍、10~2,000,000倍、15~6,000,000倍、15~3,000,000倍、15~1,000,000倍、20~10,000,000倍、20~5,000,000倍などであってもよい。また、固体の生体材料における終濃度ベースの希釈倍率は、20~200,000倍であることが好ましく、50~1,000,000倍、50~100,000倍、100~500,000倍、100~50,000倍、200~50,000倍、200~5,000倍などであることがより好ましい。
 固体の生体材料が肝臓である場合、肝臓の終濃度ベースの希釈倍率は、例えば100~10,000,000倍、100~1,000,000倍、150~5,000,000倍、150~500,000倍などであり、200~1,000,000倍、200~200,000倍、500~100,000倍、1,000~50,000倍、2,200~4,600,000倍であることが好ましい。
 固体の前記生体材料が大腿四頭筋である場合、大腿四頭筋の終濃度ベースの希釈倍率は、例えば5~10,000,000倍、5~5,000,000倍、5~1,000,000倍、10~1,000,000倍、10~500,000倍などであり、20~2,000,000倍、20~200,000倍、50~150,000倍、100~100,000倍、500~50,000倍、460~4,600,000倍であることが好ましい。
 なお、固体の生体材料を含むホモジネートを調製して可溶化処理を行う場合における希釈倍率とは、ホモジネート量を基準とした希釈倍率の値(ホモジネートの重量(mg)/希釈液の体積(μL))であってもよく、その場合、ホモジネート量基準の希釈倍率の数値範囲は、上述の終濃度ベースの数値の例えば1/50~1/5である。ホモジネート量基準の希釈倍率は、上述の終濃度ベースの希釈倍率についての限界値(上限値及び下限値)の例えば1/50倍~1/5倍の限界値で規定される範囲であり、好ましくは、終濃度ベースの希釈倍率の限界値の1/40倍~1/7倍の限界値で規定される範囲であり、さらに好ましくは、1/30倍~1/10倍の限界値で規定される範囲である。
Furthermore, as mentioned above, the dilution factor may be adjusted depending on whether the biomaterial is solid or liquid, and the dilution factor based on the final concentration for solid biomaterials is, for example, 10 to 20,000,000 times, 10 to 10,000,000 times, 10 to 5,000,000 times, 10 to 2,000,000 times, 15 to 6,000,000 times, 15 to 3,000,000 It may be 15 times to 1,000,000 times, 20 to 10,000,000 times, 20 to 5,000,000 times, etc. Further, the dilution factor based on the final concentration of the solid biomaterial is preferably 20 to 200,000 times, 50 to 1,000,000 times, 50 to 100,000 times, 100 to 500,000 times, More preferably, it is 100 to 50,000 times, 200 to 50,000 times, 200 to 5,000 times, etc.
When the solid biomaterial is liver, the dilution factor based on the final concentration of liver is, for example, 100 to 10,000,000 times, 100 to 1,000,000 times, 150 to 5,000,000 times, 150 to 500,000 times, etc., 200 to 1,000,000 times, 200 to 200,000 times, 500 to 100,000 times, 1,000 to 50,000 times, 2,200 to 4,600,000 times It is preferable that
When the solid biomaterial is quadriceps muscle, the dilution factor based on the final concentration of quadriceps muscle is, for example, 5 to 10,000,000 times, 5 to 5,000,000 times, 5 to 1, 000,000 times, 10 to 1,000,000 times, 10 to 500,000 times, etc., 20 to 2,000,000 times, 20 to 200,000 times, 50 to 150,000 times, 100 to 100 ,000 times, 500 to 50,000 times, and preferably 460 to 4,600,000 times.
In addition, the dilution ratio when preparing a homogenate containing solid biomaterial and performing solubilization treatment is the value of the dilution ratio based on the amount of homogenate (weight of homogenate (mg) / volume of diluent (μL)) ), and in that case, the numerical range of the dilution ratio based on the amount of homogenate is, for example, 1/50 to 1/5 of the value based on the final concentration described above. The dilution rate based on the amount of homogenate is preferably within a range defined by a limit value of, for example, 1/50 times to 1/5 times the limit value (upper limit value and lower limit value) for the above-mentioned final concentration-based dilution rate. is a range defined by a limit value of 1/40 times to 1/7 times the limit value of the dilution ratio based on final concentration, and more preferably a limit value of 1/30 times to 1/10 times. This is the range in which
 固体の生体材料の希釈倍率は、生体の組織、希釈液の種類などに応じて選択することが好ましく、上述の希釈倍率とは一部、異なる範囲が好ましい場合も考えられる。例えば、固体の生体材料の希釈倍率として、終濃度(生体材料の重量(μg)/希釈液の体積(μL))ベースの値として、肝臓、脳の組織片を用いる場合には10倍~500倍、好ましくは50倍~400倍、より好ましくは100倍~300倍、最も好ましくは200倍であり、心臓、腎臓、脾臓などの組織片を用いる場合には、例えば3倍~200倍、好ましくは5倍~100倍であり、より好ましくは10倍~50倍、最も好ましくは20倍である。また、肺、筋肉などの組織片を用いる場合には、終濃度(生体材料の重量(μg)/希釈液の体積(μL))ベースの値として、例えば3倍~400倍、好ましくは5倍~300倍であり、より好ましくは10倍~250倍、最も好ましくは20倍~200倍である。 The dilution ratio of the solid biomaterial is preferably selected depending on the tissue of the living body, the type of diluent, etc., and a range different from the above-mentioned dilution ratio may be preferable. For example, when using liver or brain tissue pieces, the dilution ratio of a solid biomaterial is 10 to 500, based on the final concentration (weight of biomaterial (μg)/volume of diluent (μL)). times, preferably 50 times to 400 times, more preferably 100 times to 300 times, most preferably 200 times, and when using tissue pieces such as heart, kidney, spleen, etc., for example, 3 times to 200 times, preferably is 5 times to 100 times, more preferably 10 times to 50 times, and most preferably 20 times. In addition, when using tissue pieces such as lungs and muscles, the final concentration (weight of biomaterial (μg)/volume of diluent (μL)) is, for example, 3 times to 400 times, preferably 5 times. 300 times, more preferably 10 times to 250 times, most preferably 20 times to 200 times.
 例えば、上述のバッファーATL及びプロテイナーゼKを用いて肝臓、脳、肺、筋肉などの組織片をプロテアーゼ処理し、必要に応じて不活化処理をして得られた液を希釈する場合において、希釈倍率の例は、終濃度(生体材料の重量(μg)/希釈液の体積(μL))ベースの値として、10倍~500倍、好ましくは50倍~400倍、より好ましくは100倍~300倍、最も好ましい具体例としては200倍である。 For example, when a tissue piece such as liver, brain, lung, muscle, etc. is treated with protease using the buffer ATL and proteinase K mentioned above, and the obtained solution is diluted by inactivation treatment as necessary, the dilution ratio is An example of this is 10 times to 500 times, preferably 50 times to 400 times, more preferably 100 times to 300 times, based on the final concentration (weight of biomaterial (μg)/volume of diluent (μL)). , the most preferred specific example is 200 times.
 例えば、後述する市販の「Tissue Direct PCR Kit」を用いて肝臓、脳などの組織片をプロテアーゼ処理し、必要に応じて不活化処理をして得られた液を希釈する場合において、希釈倍率の例は、終濃度(生体材料の重量(μg)/希釈液の体積(μL))ベースの値として、10倍~500倍、好ましくは50倍~400倍、より好ましくは100倍~300倍、最も好ましい具体例としては200倍である。 For example, when treating a piece of tissue such as liver or brain with protease using the commercially available "Tissue Direct PCR Kit" described below, and diluting the resulting solution by performing inactivation treatment if necessary, the dilution ratio Examples are 10 times to 500 times, preferably 50 times to 400 times, more preferably 100 times to 300 times, based on the final concentration (weight of biomaterial (μg)/volume of diluent (μL)). The most preferred specific example is 200 times.
 また、市販の「Tissue Direct PCR Kit」を用いて心臓、肺、腎臓、筋肉、脾臓などの組織片をプロテアーゼ処理し、必要に応じて不活化処理をして得られた液を希釈する場合において、希釈倍率の例は、終濃度(生体材料の重量(μg)/希釈液の体積(μL))ベースの値として、3倍~200倍、好ましくは5倍~100倍であり、より好ましくは10倍~50倍、最も好ましい具体例としては20倍である。 In addition, when treating tissue pieces such as heart, lung, kidney, muscle, spleen, etc. with protease using the commercially available "Tissue Direct PCR Kit" and diluting the obtained solution by inactivation treatment if necessary. Examples of the dilution ratio are 3 times to 200 times, preferably 5 times to 100 times, more preferably 5 times to 100 times, based on the final concentration (weight of biomaterial (μg)/volume of diluent (μL)). The amount is 10 times to 50 times, and the most preferred example is 20 times.
 本発明の方法に用いる固体の生体材料の量は、生体材料の種類、希釈倍率、測定数などにもよるが、例えば1~100 mgであり、好ましくは3~50 mgであり、より好ましくは5~20 mg、8~20 mg、5~10 mgあるいは5~15 mgなどであり、さらに好ましくは8~10 mgあるいは8~12 mgである。 The amount of solid biomaterial used in the method of the present invention depends on the type of biomaterial, dilution factor, number of measurements, etc., but is, for example, 1 to 100 mg, preferably 3 to 50 mg, and more preferably The amount is 5 to 20 mg, 8 to 20 mg, 5 to 10 mg, or 5 to 15 mg, and more preferably 8 to 10 mg or 8 to 12 mg.
 固体の生体材料を用いる液体サンプル調製ステップにおいて、既存のPCRキット、例えばOmega BIO-TEK社製のTissue Direct PCR Kitなどを用いることもできる。 In the liquid sample preparation step using solid biomaterials, existing PCR kits, such as the Tissue Direct PCR Kit manufactured by Omega BIO-TEK, can also be used.
 上述のように、液体サンプルの調製ステップにおいては生体材料からのDNAの抽出ステップは必要とされず、本発明の目的DNA定量法によれば簡便かつ迅速な定量が可能である。また、定量に際して内部コントロールあるいは外部コントロールのスパイクイン検量線は不要であり、調製ステップにより調製される液体サンプルには、その生体材料に由来していないDNAを添加する必要がない。 As described above, the step of preparing a liquid sample does not require the step of extracting DNA from a biological material, and the method for quantifying target DNA of the present invention allows simple and rapid quantification. Furthermore, there is no need for a spike-in calibration curve for internal or external controls during quantitation, and there is no need to add DNA that is not derived from the biological material to the liquid sample prepared in the preparation step.
3.DNAコピー数の定量ステップ
 定量ステップにおいて、液体サンプルに含まれる目的DNAのコピー数をdPCRにより定量することができる。dPCRによれば、微細なウェルに分配された状態で液体サンプルについてPCRを実施し、ネガティブウェルの反応の割合を測定して目的DNAの絶対定量が可能である。
 定量ステップにおいて用いられるdPCRの手法について特に制限はなく、例えば、ドロップレットデジタルPCR(ddPCR)、チップベースのデジタルPCRなどが用いられ、ddPCRが好適に用いられる。
3. DNA Copy Number Quantification Step In the quantification step, the copy number of the target DNA contained in the liquid sample can be quantified by dPCR. According to dPCR, absolute quantification of target DNA is possible by performing PCR on a liquid sample distributed in minute wells and measuring the reaction rate in negative wells.
There are no particular restrictions on the dPCR method used in the quantitative step, and for example, droplet digital PCR (ddPCR), chip-based digital PCR, etc. may be used, and ddPCR is preferably used.
 定量ステップにおいては、ddPCRの公知の装置及びシステムを用いることができ、例えば、Bio-Rad社製、BioTNS社製のものを用いることができる。ddPCRにおいては、液体サンプル調製ステップにより得られる液体サンプルに対して、必要に応じてオイルを添加して測定サンプルとし、測定サンプルにおける目的DNAを定量することもできる。 In the quantitative step, a known ddPCR device and system can be used, such as those manufactured by Bio-Rad or BioTNS. In ddPCR, it is also possible to add oil to the liquid sample obtained in the liquid sample preparation step to prepare a measurement sample, if necessary, and quantify the target DNA in the measurement sample.
 dPCRにおいては、通常、適切な陽性・陰性シグナルの閾値を設定することが求められる。そこで、dPCRを採用する定量ステップにおいては、液体サンプル調製ステップにより得た液体サンプルにおける血液などの生体材料の濃度(希釈倍率)が等しく、かつDNAを含まないブランクサンプルに基づいて陰性シグナルの閾値を設定すること、又は、当該ブランクサンプルに目的DNAを添加したスパイクサンプルに基づいて陽性シグナルの閾値を設定することが好ましい。陰性シグナルの閾値及び陽性シグナルの閾値をいずれも設定することがより好ましい。また、dPCRにおいては、プライマー及びプローブ試薬濃度を適切に調整することが好ましい。 In dPCR, it is usually required to set appropriate thresholds for positive and negative signals. Therefore, in the quantification step that employs dPCR, the threshold for a negative signal is determined based on a blank sample that has the same concentration (dilution ratio) of biological materials such as blood in the liquid sample obtained in the liquid sample preparation step and does not contain DNA. It is preferable to set a threshold value for a positive signal based on a spiked sample obtained by adding target DNA to the blank sample. It is more preferable to set both a negative signal threshold and a positive signal threshold. Furthermore, in dPCR, it is preferable to appropriately adjust the concentrations of primers and probe reagents.
 定量ステップにおいて、PCR反応終了後でシグナルを測定する前に、液体サンプルに、薬剤(例えば、グルタールアルデヒド、次亜塩素酸ナトリウム、ホルマリン、メタノール、若しくはアセトニトリル等)による処理、オートクレーブ処理、または煮沸処理等により不活性化処理をさらに行ってもよい。別の態様において、シグナルを測定した後に、液体サンプルに、上述の不活性化処理を行ってもよい。煮沸処理としては、例えば上記2-2欄に記載の条件で加熱することにより行ってもよい。不活性化処理は、好ましくは、PCR反応終了後でシグナルを測定する前に、液体サンプルを煮沸処理することにより行う。 In the quantitative step, the liquid sample is treated with a drug (e.g., glutaraldehyde, sodium hypochlorite, formalin, methanol, or acetonitrile, etc.), autoclaved, or boiled before measuring the signal after the PCR reaction is completed. Inactivation treatment may be further performed by treatment or the like. In another embodiment, after measuring the signal, the liquid sample may be subjected to the inactivation treatment described above. The boiling treatment may be performed, for example, by heating under the conditions described in column 2-2 above. The inactivation treatment is preferably performed by boiling the liquid sample before measuring the signal after the PCR reaction is completed.
 上述の液体サンプルの調製ステップ及びDNAコピー数の定量ステップを有する目的DNAのコピー数の定量方法によれば、簡便な手法により、液体サンプルにおける目的DNAのコピー数が求められる。こうして得られる液体サンプル中の目的DNAのコピー数は、詳細を後述するように、生体材料の単位量あたりのDNAコピー数の算出に有用なデータである。 According to the method for quantifying the copy number of the target DNA, which includes the step of preparing a liquid sample and the step of quantifying the DNA copy number described above, the copy number of the target DNA in the liquid sample can be determined by a simple method. The copy number of the target DNA in the liquid sample obtained in this way is useful data for calculating the number of DNA copies per unit amount of biological material, as will be described in detail later.
4.生体材料の単位量あたりのDNAコピー数の算出ステップ
 算出ステップにおいては、定量ステップにより得られた液体サンプル中の目的DNAのコピー数に基づいて、生体材料の単位量あたりの目的DNAのコピー数(コピー数/μLまたはコピー数/μg)を算出することができる。すなわち、定量された液体サンプル中の目的DNAのコピー数を、当該液体サンプルを調製するのに用いた生体材料の量で除すことによって、生体材料の単位体積または重量あたりの目的DNAのコピー数を算出できる。
4. Calculating the number of DNA copies per unit amount of biomaterial In the calculation step, the number of copies of the target DNA per unit amount of the biomaterial ( copy number/μL or copy number/μg) can be calculated. That is, the number of copies of the DNA of interest per unit volume or weight of biomaterial is determined by dividing the number of copies of the DNA of interest in the quantified liquid sample by the amount of biomaterial used to prepare the liquid sample. can be calculated.
5.目的DNA
 定量対象となる目的DNAには、生体材料中に存在する導入DNA及び内因性DNAが含まれる。
 導入DNAには、外来のDNAであれば特に限定されるものではなく、例えば再生・細胞医療、in vivo遺伝子治療若しくは遺伝子を導入した細胞を用いるex vivo遺伝子治療、及び核酸医薬などに由来するものが含まれる。
 本発明の一態様において、導入DNAには、プラスミドベクター又はウイルスベクター等のベクターに由来するもの、細胞治療又はex vivo遺伝子治療等に用いる細胞に由来するもの、核酸医薬、腫瘍溶解性ウイルス、及びファージ(バクテリオファージ)に由来するものが含まれる。本発明の一態様において、導入DNAには、ベクターに由来するものとして、例えば、プラスミドDNA(pDNA)、組換えアデノウイルス(rAd)、組換えアデノ随伴ウイルス(rAAV)、組換えレンチウイルス、組換えセンダイウイルス、組換えレトロウイルス等に由来するものが含まれる。rAAVとして、例えば、rAAVセロタイプ1(rAAV1)、rAAVセロタイプ2(rAAV2)、rAAVセロタイプ3(rAAV3)、rAAVセロタイプ4(rAAV4)、rAAVセロタイプ5(rAAV5)、rAAVセロタイプ6(rAAV6)、rAAVセロタイプ7(rAAV7)、rAAVセロタイプ8(rAAV8)、rAAVセロタイプ9(rAAV9)、rAAVセロタイプ10(rAAV10)、rAAVセロタイプ11(rAAV11)、又はこれらAAVに由来し人工的に改変された血清型等が含まれる。
 本発明の一態様において、導入DNAには、細胞に由来するものとして、例えば、CAR-T細胞、CAR-NK細胞、ES細胞又はiPS細胞由来の細胞治療製品等に由来するものが含まれる。
 本発明の一態様において、導入DNAには、核酸医薬に由来するものとして、例えば、siRNA、miRNA、mRNA、アンチセンス、アプタマー、デコイ、リボザイム、CpGオリゴ等に由来するものが含まれる。
 内因性のDNAの具体例としては、ヒトまたは動物の血液に含まれる血球に由来するDNAや、特定の組織に由来するDNAなどが挙げられる。
5. purpose DNA
The target DNA to be quantified includes introduced DNA and endogenous DNA present in the biological material.
The introduced DNA is not particularly limited as long as it is foreign DNA, and includes, for example, DNA derived from regenerative/cell therapy, in vivo gene therapy, ex vivo gene therapy using cells into which genes have been introduced, and nucleic acid medicine. is included.
In one aspect of the present invention, the introduced DNA includes those derived from vectors such as plasmid vectors or viral vectors, those derived from cells used for cell therapy or ex vivo gene therapy, nucleic acid medicines, oncolytic viruses, and Includes those derived from phages (bacteriophages). In one aspect of the present invention, the introduced DNA includes vector-derived DNA, such as plasmid DNA (pDNA), recombinant adenovirus (rAd), recombinant adeno-associated virus (rAAV), recombinant lentivirus, recombinant Includes those derived from recombinant Sendai virus, recombinant retrovirus, etc. Examples of rAAV include rAAV serotype 1 (rAAV1), rAAV serotype 2 (rAAV2), rAAV serotype 3 (rAAV3), rAAV serotype 4 (rAAV4), rAAV serotype 5 (rAAV5), rAAV serotype 6 (rAAV6), and rAAV serotype 7. (rAAV7), rAAV serotype 8 (rAAV8), rAAV serotype 9 (rAAV9), rAAV serotype 10 (rAAV10), rAAV serotype 11 (rAAV11), or artificially modified serotypes derived from these AAVs. .
In one aspect of the present invention, the introduced DNA includes those derived from cells, such as those derived from cell therapy products derived from CAR-T cells, CAR-NK cells, ES cells, or iPS cells.
In one aspect of the present invention, the introduced DNA includes those derived from nucleic acid medicines, such as siRNA, miRNA, mRNA, antisense, aptamer, decoy, ribozyme, CpG oligo, and the like.
Specific examples of endogenous DNA include DNA derived from blood cells contained in human or animal blood, DNA derived from specific tissues, and the like.
6.生体内分布試験
 本発明の目的DNAの定量方法を用いて、薬物の生体内分布を評価することができる。生体内分布の評価結果を用いると、さらに、薬物速度論的解析やシステム薬理学的解析が可能になる。
 対象となる薬物としては、上記5欄に記載の導入DNAを含む薬物、例えば、プラスミドベクター又はウイルスベクター等のベクター、細胞治療又はex vivo遺伝子治療等に用いる細胞、核酸医薬、腫瘍溶解性ウイルス、及びファージ等が挙げられる。
6. Biodistribution Test The biodistribution of a drug can be evaluated using the method for quantifying target DNA of the present invention. Using the biodistribution evaluation results further enables pharmacokinetic analysis and systems pharmacology analysis.
Targeted drugs include drugs containing the introduced DNA described in column 5 above, such as vectors such as plasmid vectors or viral vectors, cells used for cell therapy or ex vivo gene therapy, nucleic acid drugs, oncolytic viruses, and phage.
 以下、実施例をもって本発明をさらに詳しく説明するが、これらの実施例は本発明を制限するものではない。 Hereinafter, the present invention will be explained in more detail with reference to Examples, but these Examples are not intended to limit the present invention.
参考例1 希釈血液を用いた、qPCR法によるマウス血液中のEGFP cDNAの定量
 まず、希釈したマウス血液に、人工合成した高感度緑色蛍光タンパク質(Enhanced Green Fluorescent Protein,EGFP)遺伝子配列を含むDNA(以下、EGFP cDNAとする)を添加した。その際、マウス血液が終濃度換算で250倍希釈となるようにした。対照群としてバッファーAE(Qiagen)に同量のEGFP cDNAを添加した。得られた溶液中のEGFP cDNAコピー数をqPCR法にて測定した。
 qPCR法では、マスターミックスには、TaqMan Gene Expression Assays(Thermo Fisher Scientific、4331182、Assay ID Mr04097229_Mr)、TaqPath qPCR Master Mix, CG(Thermo Fisher Scientific、A16245)を使用した。384ウェルプレートにマスターミックス 4μLを添加し、サンプルをそれぞれ1μL添加し、プレートをシールして測定プレートとした。測定および解析は、QuantStudio 12K Flex(Applied Biosystems)で行った。増幅は下記の条件で行った。
  50℃、2分を1サイクル
  95℃、10分を1サイクル
  95℃、15秒と60℃、1分を40サイクル
  4℃、保持
  ※昇降温速度は1.6℃/秒
Reference Example 1 Quantification of EGFP cDNA in mouse blood by qPCR method using diluted blood First, DNA containing the artificially synthesized Enhanced Green Fluorescent Protein (EGFP) gene sequence was added to diluted mouse blood. Hereinafter referred to as EGFP cDNA) was added. At that time, the mouse blood was diluted 250 times in terms of final concentration. As a control group, the same amount of EGFP cDNA was added to buffer AE (Qiagen). The EGFP cDNA copy number in the obtained solution was measured by qPCR method.
In the qPCR method, the master mix includes TaqMan Gene Expression Assays (Thermo Fisher Scientific, 4331182, Assay ID Mr04097229_Mr), TaqPath qPCR Mast er Mix, CG (Thermo Fisher Scientific, A16245) was used. 4 μL of master mix was added to a 384-well plate, 1 μL of each sample was added, and the plate was sealed to serve as a measurement plate. Measurements and analyzes were performed with QuantStudio 12K Flex (Applied Biosystems). Amplification was performed under the following conditions.
1 cycle of 50℃, 2 minutes 1 cycle of 95℃, 10 minutes 40 cycles of 95℃, 15 seconds and 60℃, 1 minute Hold at 4℃ *Temperature increase/decrease rate is 1.6℃/sec
 結果を図1に示す。測定して得られたマウス血液中およびバッファーAE中のEGFP cDNAのThreshold Cycle(Ct)値を比較したところ、EGFP cDNAを添加したマウス血液におけるCt値は、対照としたバッファーAE中のCt値よりもおよそ5程度、高かった。血液成分によるマトリクス効果が認められたため、qPCR法では血液中の目的DNAを直接定量することは難しいことが示唆された。 The results are shown in Figure 1. When the Threshold Cycle (Ct) values of EGFP cDNA in mouse blood and Buffer AE were compared, the Ct value in mouse blood containing EGFP cDNA was higher than the Ct value in Buffer AE as a control. It was also high, about 5. Since a matrix effect due to blood components was observed, it was suggested that it is difficult to directly quantify the target DNA in blood using the qPCR method.
[ddPCRによるマウス血液中のEGFP cDNAの定量(実施例1)]
 次に、まずは概略を以下に示す方法で、ddPCRによるマウス血液中のEGFP cDNAの定量を試みた。
[方法]
 まず、希釈したマウス血液に人工合成した高感度緑色蛍光タンパク質(Enhanced Green Fluorescent Protein,EGFP)遺伝子配列を含むDNA(以下、EGFP cDNAとする)を添加し、得られた溶液を用いて、ddPCRの条件を検討した。
 一方、対照として、緩衝液にEGFP cDNAを添加し、同様の条件で、ddPCRで測定した。測定して得られた血液中及び緩衝液中のEGFP cDNAの量をコピー数/μLで表して比較したところ、EGFP cDNAを添加した血液において、対照とした緩衝液中の濃度と同様であった。したがって、この測定法が適格であることが分かった。
[Quantification of EGFP cDNA in mouse blood by ddPCR (Example 1)]
Next, we first attempted to quantify EGFP cDNA in mouse blood by ddPCR using the method outlined below.
[Method]
First, artificially synthesized DNA containing the Enhanced Green Fluorescent Protein (EGFP) gene sequence (hereinafter referred to as EGFP cDNA) was added to diluted mouse blood, and the resulting solution was used to perform ddPCR. We considered the conditions.
On the other hand, as a control, EGFP cDNA was added to the buffer solution and measured by ddPCR under the same conditions. When the measured amounts of EGFP cDNA in the blood and buffer solution were expressed as copy number/μL and compared, the concentration in the blood to which EGFP cDNA had been added was similar to that in the buffer solution used as a control. . Therefore, this measurement method was found to be suitable.
 次に、例えば、マウスにEGFP遺伝子を搭載したrAAVを単回静脈内投与後にマウスの血液を採取するといった手法で(後述の実施例9)、上記で最適化した条件に基づき、ddPCRを用いてEGFP遺伝子配列を含む目的DNA(以下、単に目的DNAとする)を定量した。測定に用いた血液体積に対する目的DNAの濃度を、コピー数/μLで表した。こうして得られた血液の単位体積あたりの目的DNAの濃度(コピー数/μL)の結果と、同一サンプルを従来の定量的PCR法を用いて測定してgDNA当たりの目的DNA濃度(コピー数/μg gDNA)で表した結果とを比較した。
 以下、ddPCRによるEGFP cDNAの定量のより具体的な手法について、実施例に基づき説明する。
Next, for example, by collecting the blood of the mouse after a single intravenous administration of rAAV carrying the EGFP gene to the mouse (Example 9 described later), ddPCR was used based on the conditions optimized above. Target DNA containing the EGFP gene sequence (hereinafter simply referred to as target DNA) was quantified. The concentration of the target DNA relative to the blood volume used for measurement was expressed as copy number/μL. The result of the concentration of the target DNA per unit volume of blood (copy number/μL) obtained in this way and the target DNA concentration per gDNA (copy number/μL) measured using the same sample using the conventional quantitative PCR method. gDNA).
Hereinafter, a more specific method for quantifying EGFP cDNA by ddPCR will be described based on Examples.
実施例1 希釈血液を用いた、ddPCR法によるマウス血液中のEGFP cDNAの定量
 EGFP cDNA(添加量は下記表3における添加条件1~3の3つの条件)を、希釈したマウス血液(希釈溶媒:バッファーAE; 希釈倍率:50~500,000倍)あるいは、バッファーAEに添加した。得られた溶液中のEGFP cDNAコピー数をdPCR法の一種であるddPCR法にて測定した。具体的な手順は以下の通りである。
 測定サンプルに対して9倍量のマスターミックスを添加してddPCR反応液(ddPCR反応液中の測定サンプルは10倍希釈される)とした。マスターミックスには、TaqMan Gene Expression Assays(Thermo Fisher Scientific、4331182、Assay ID Mr04097229_Mr)、ddPCR Supermix for Probe (no dUTP)、X2(Bio-Rad、1863024)、RT-PCR Grade Water(Thermo Fisher Scientific、AM9935)を使用した。ddPCR法によるサンプルの測定は、QX200システム(Bio-Rad)を使用した。ddPCR反応液20μLを用いて取扱説明書に従いDroplet Generatorでドロップレットを作製し、96ウェルプレート(Bio-Rad、12001925)に移し替えた。プレートをホイルヒートシール(Bio-Rad、1814040)とPX1 PCR plate Sealer(Bio-Rad)でシールした後、C1000 Touch Thermal Cycler(Bio-Rad)で以下の条件で増幅を行った。増幅後のサンプルはDroplet Readerで検出し、QuantaSoftで解析した。
  95℃、10分を1サイクル
  94℃、30秒と60℃、1分を40サイクル
  (A)98℃、10分を1サイクルあるいは(B)98℃、20分を1サイクル
  4℃、保持
  ※昇温速度は2℃/秒
Example 1 Quantification of EGFP cDNA in mouse blood by ddPCR method using diluted blood EGFP cDNA (addition amount is under three conditions of addition conditions 1 to 3 in Table 3 below) was added to diluted mouse blood (dilution solvent: Buffer AE; dilution ratio: 50 to 500,000 times) or added to Buffer AE. The copy number of EGFP cDNA in the obtained solution was measured by a ddPCR method, which is a type of dPCR method. The specific steps are as follows.
A master mix of 9 times the amount of the measurement sample was added to prepare a ddPCR reaction solution (the measurement sample in the ddPCR reaction solution was diluted 10 times). The master mix included TaqMan Gene Expression Assays (Thermo Fisher Scientific, 4331182, Assay ID Mr04097229_Mr), ddPCR Supermix for Probe (no dU TP), X2 (Bio-Rad, 1863024), RT-PCR Grade Water (Thermo Fisher Scientific, AM9935 )It was used. The QX200 system (Bio-Rad) was used for sample measurement by ddPCR method. Droplets were created using a Droplet Generator using 20 μL of the ddPCR reaction solution according to the instruction manual, and transferred to a 96-well plate (Bio-Rad, 12001925). After sealing the plate with a foil heat seal (Bio-Rad, 1814040) and a PX1 PCR plate sealer (Bio-Rad), amplification was performed in a C1000 Touch Thermal Cycler (Bio-Rad) under the following conditions. The sample after amplification was detected with Droplet Reader and analyzed with QuantaSoft.
1 cycle of 95℃, 10 minutes 40 cycles of 94℃, 30 seconds and 60℃, 1 minute (A) 1 cycle of 98℃, 10 minutes or (B) 1 cycle of 98℃, 20 minutes Hold at 4℃ * Heating rate is 2℃/sec
 結果を図2~4及び表1~3に示す。表1及び表2は、(A)98℃、10分を1サイクルの条件で実施した結果であり、表3は(B)98℃、20分を1サイクルの条件で実施した結果である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
The results are shown in Figures 2 to 4 and Tables 1 to 3. Tables 1 and 2 show the results of (A) one cycle of 98°C for 10 minutes, and Table 3 shows the results of (B) one cycle of 98°C for 20 minutes.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 測定して得られたマウス血液中及びバッファーAE中のEGFP cDNAの量をコピー数/μLであらわして比較したところ、終濃度換算で500倍希釈したマウス血液サンプルでは、対照としたバッファーAE中の濃度と同様であった(図2及び表1)。また終濃度換算で5,000,000倍希釈したマウス血液サンプルも対照としたバッファーAE中の濃度と同様であった(図4及び表3)。したがって、この測定法が終濃度換算で500-5,000,000倍の範囲で希釈された血液において適格であることが分かった。 A comparison of the amount of EGFP cDNA in the mouse blood and Buffer AE obtained by measurement, expressed as copy number/μL, showed that in the mouse blood sample diluted 500 times in terms of final concentration, the amount of EGFP cDNA in Buffer AE, which was used as a control, was compared. The concentrations were similar (Figure 2 and Table 1). Furthermore, the concentration of a mouse blood sample diluted 5,000,000 times in terms of final concentration was similar to that in buffer AE, which was used as a control (FIG. 4 and Table 3). Therefore, it was found that this measurement method is suitable for blood diluted in the range of 500-5,000,000 times in terms of final concentration.
 また、図3および表2の通り、希釈した血液を含むサンプルでは、対照としたバッファーAEサンプルに比べてバックグラウンドシグナル強度とポジティブドロップレットのシグナル強度が変化することが分かった。ddPCR法により得られたドロップレットのポジティブまたはネガティブの判定は、それらが発するシグナル強度に基づいた閾値によって決定される。目的DNAを正確に定量するためには、測定対象と同じマトリクス組成のポジティブコントロール・ネガティブコントロールを基準に閾値を設定することが有効であると考えられた。 Furthermore, as shown in FIG. 3 and Table 2, it was found that the background signal intensity and the signal intensity of positive droplets changed in the sample containing diluted blood compared to the buffer AE sample used as a control. Whether droplets obtained by ddPCR are positive or negative is determined by a threshold based on the signal intensity they emit. In order to accurately quantify the target DNA, it was considered effective to set a threshold value based on positive and negative controls having the same matrix composition as the measurement target.
実施例2 希釈血液を用いた、ddPCR法によるヒト血液中のEGFP cDNAの定量
 ヒト血液をマトリクスとしたddPCR法を検討した。ヒト血液は、株式会社ケー・エー・シーから購入した。EGFP cDNA(添加量は下記表中の添加条件1~3の3つの条件)を50倍に希釈したヒト血液あるいは、バッファーAEに添加した。溶液中のEGFP cDNAコピー数を、実施例1と同様の方法((B)98℃、20分を1サイクルの条件)でddPCR法にて測定した。
Example 2 Quantification of EGFP cDNA in human blood by ddPCR using diluted blood A ddPCR method using human blood as a matrix was investigated. Human blood was purchased from KAC Corporation. EGFP cDNA (the amount added was under the three conditions of addition conditions 1 to 3 in the table below) was added to human blood diluted 50 times or to buffer AE. The EGFP cDNA copy number in the solution was measured by the ddPCR method in the same manner as in Example 1 ((B) 98° C., 20 minutes for one cycle).
 結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 測定して得られたヒト血液中及びバッファーAE中のEGFP cDNAの量をコピー数/μLであらわして比較したところ、終濃度換算で500倍希釈したヒト血液サンプルでの濃度は、対照としたバッファーAE中の濃度と同様であった。したがって、実施例1の結果も踏まえてこの測定法がマウス血液だけでなくヒト血液でも適格であることが分かった。
The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000004
When the amount of EGFP cDNA in human blood and buffer AE obtained by measurement was compared expressed as copy number/μL, the concentration in human blood sample diluted 500 times in terms of final concentration was higher than that in the control buffer. The concentration was similar to that in AE. Therefore, based on the results of Example 1, it was found that this measurement method is applicable not only to mouse blood but also to human blood.
実施例3 不活化処理(煮沸)条件の検討
 EGFP cDNA(添加量は下記表5における添加条件1及び2の2つの条件)を希釈したマウス血液(希釈溶媒:バッファーAE; 希釈倍率:50倍)に添加した。得られた溶液を増幅反応前に煮沸処理(95℃,20分)あるいは4℃,20分静置処理した後に、溶液中のEGFP cDNAコピー数を実施例1と同様のマスターミックスを用いて、以下の条件で増幅を行った(それぞれ、表5の条件bと条件a)。増幅後のサンプルはDroplet Readerで検出し、QuantaSoftで解析した。
  95℃、10分を1サイクル
  94℃、30秒と60℃、1分を40サイクル
  98℃、10分を1サイクル
  4℃、保持
  ※昇温速度は2℃/秒
 次に4℃,20分静置処理したサンプルについて、実施例1と同様のマスターミックスと増幅条件((B)98℃、20分を1サイクルの条件)を用いて、EGFP cDNAコピー数をddPCR法にて測定した(条件c)。
Example 3 Examination of inactivation treatment (boiling) conditions Mouse blood (dilution solvent: buffer AE; dilution ratio: 50 times) in which EGFP cDNA (addition amount is the two conditions of addition conditions 1 and 2 in Table 5 below) was diluted. added to. The obtained solution was boiled (95°C, 20 minutes) or left at 4°C for 20 minutes before the amplification reaction, and then the EGFP cDNA copy number in the solution was determined using the same master mix as in Example 1. Amplification was performed under the following conditions (condition b and condition a in Table 5, respectively). The sample after amplification was detected with Droplet Reader and analyzed with QuantaSoft.
1 cycle of 95℃, 10 minutes 40 cycles of 94℃, 30 seconds and 60℃, 1 minute 1 cycle of 98℃, 10 minutes Hold at 4℃ *Heating rate is 2℃/second Next, 4℃, 20 minutes For the sample that had been left to stand, the EGFP cDNA copy number was measured by ddPCR using the same master mix and amplification conditions as in Example 1 ((B) 98°C, 20 minutes for 1 cycle). c).
 結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 測定して得られたマウス血液中のEGFP cDNAの量をコピー数/μLであらわして比較したところ、増幅反応前に煮沸処理したマウス血液サンプル(条件b)では、煮沸処理をしていないサンプル(条件a)中の濃度と同様ではなかった。一方、増幅反応後、かつ、シグナルの測定前に煮沸操作したマウス血液サンプル(条件c)では、煮沸処理をしていないサンプル(条件a)中の濃度と同様であった。以上より、増幅反応(ddPCR反応)の後、かつ、シグナルの測定前に煮沸操作をすることがバイオハザードの可能性があるサンプルの不活化処理として有効であると考えられた。
The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000005
When comparing the amount of EGFP cDNA in the mouse blood obtained by measurement expressed as copy number/μL, it was found that the mouse blood sample that was boiled before the amplification reaction (condition b) was compared with the sample that was not boiled (condition b). The concentrations were not similar to those in condition a). On the other hand, in the mouse blood sample that was boiled after the amplification reaction and before signal measurement (condition c), the concentration was similar to that in the sample that was not boiled (condition a). From the above, it was considered that performing a boiling operation after the amplification reaction (ddPCR reaction) and before signal measurement is effective as an inactivation treatment for a sample that may be a biohazard.
実施例4 マウス臓器のホモジネート調製
 マウスから臓器を採取し、以下の通り破砕した。肝臓と大腿四頭筋は、それぞれマルチビーズショッカー用3mL凍結破砕用チューブ(安井器械株式会社、ST-0320PCF)に入れ、その上からマルチショッカー用メタルコーン(安井器械株式会社、MC-0316s)を1個入れた。チューブをマルチビーズショッカー(安井器械株式会社、MB701PU(s))にセットし、2500 rpm、20秒で破砕した。脳、肺、脾臓および腎臓は、それぞれチューブに入れ、その上からStainless steel beads 5 mm(Qiagen)を2個入れた。チューブをShake Master BMS-A20TP(バイオメディカルサイエンス)にセットし、1100 rpm、1分を3回繰り返し、破砕した。ホモジネートは使用直前まで-80℃で保存した。
Example 4 Homogenate preparation of mouse organs Organs were collected from mice and crushed as follows. The liver and quadriceps muscle were each placed in a 3 mL cryo-fracture tube for Multi-Bead Shocker (Yasui Kikai Co., Ltd., ST-0320PCF), and a metal cone for Multi-Shocker (Yasui Kikai Co., Ltd., MC-0316s) was placed over it. I put one in. The tube was set in a multi-bead shocker (Yasui Kikai Co., Ltd., MB701PU(s)) and crushed at 2500 rpm for 20 seconds. The brain, lung, spleen, and kidney were each placed in a tube, and two 5 mm Stainless steel beads (Qiagen) were placed on top of the tube. The tube was set in Shake Master BMS-A20TP (Biomedical Science) and crushed by repeating 1 minute at 1100 rpm three times. The homogenate was stored at -80°C until immediately before use.
参考例2 マウス臓器ホモジネートのボルテックス操作による可溶化
 肝臓と大腿四頭筋のホモジネートをチューブに約25 mg測り取り、質量濃度が2%となるようにバッファーAEを添加した。ボルテックス操作を行い、ホモジネートが溶液中に均一分散するか検討した。その結果ボルテックス操作はホモジネートを溶液中に均一分散する上で有効ではなかった。均一な状態のサンプルを調製するためにホモジネートを可溶化する条件検討が必要だと分かった。したがって、実施例5~7に詳述する通り、プロテアーゼを使用した可溶化について検討した。
Reference Example 2 Solubilization of Mouse Organ Homogenate by Vortex Operation Approximately 25 mg of liver and quadriceps muscle homogenate was weighed into a tube, and buffer AE was added so that the mass concentration was 2%. A vortex operation was performed to examine whether the homogenate was uniformly dispersed in the solution. As a result, vortexing was not effective in uniformly dispersing the homogenate in the solution. It was found that it was necessary to consider the conditions for solubilizing the homogenate in order to prepare a homogeneous sample. Therefore, solubilization using protease was investigated as detailed in Examples 5-7.
[マウス臓器ホモジネートの可溶化条件の検討(実施例5~7)]
実施例5 マウス臓器ホモジネートのTissue Direct PCR Kitを用いた可溶化
 Tissue Direct PCR Kit(Omega BIO-TEK, TQ2310)を用いてマウスホモジネートの可溶化を検討した。肝臓と大腿四頭筋のホモジネートを、チューブに8~53mg(表6参照)で測り取り、キット付属のL1 buffer 100 μLとL2 buffer 20 μLを添加した。Eppendorf Thermomixer R T3317(eppendorf)にセットしておよそ500rpmで撹拌しながら56℃で12時間以上インキュベートした。その後およそ500rpmで撹拌しながら95℃で10分間インキュベートした。サンプルを室温に戻し、キット付属のTissue direct PCR Neutralization buffer 100 μLを添加してボルテックスで十分に撹拌し、供試サンプルとした。サンプルは使用直前まで冷凍(-20℃以下)保存した。
[Study of solubilization conditions for mouse organ homogenate (Examples 5 to 7)]
Example 5 Solubilization of mouse organ homogenate using Tissue Direct PCR Kit Solubilization of mouse homogenate was investigated using Tissue Direct PCR Kit (Omega BIO-TEK, TQ2310). 8 to 53 mg (see Table 6) of the liver and quadriceps muscle homogenate was weighed into a tube, and 100 μL of L1 buffer and 20 μL of L2 buffer included in the kit were added. The mixture was set in an Eppendorf Thermomixer R T3317 (Eppendorf) and incubated at 56° C. for 12 hours or more while stirring at approximately 500 rpm. It was then incubated at 95° C. for 10 minutes while stirring at approximately 500 rpm. The sample was returned to room temperature, 100 μL of the Tissue direct PCR Neutralization buffer attached to the kit was added, and the sample was sufficiently stirred with a vortex to prepare a test sample. Samples were stored frozen (below -20°C) until immediately before use.
実施例6 マウス臓器ホモジネートのプロテイナーゼKを用いた可溶化
 プロテイナーゼKを用いてマウスホモジネートの可溶化を検討した。肝臓と大腿四頭筋のホモジネートを10~52mg(表6参照)で測り取り、バッファーATL(Qiagen, 19076) 90μLとプロテイナーゼK(Qiagen, 19133) 10 μLを添加した。Eppendorf Thermomixer R T3317(eppendorf)にセットしておよそ500rpmで撹拌しながら56℃で12時間以上インキュベートした。その後およそ500rpmで撹拌しながら95℃で10分間インキュベートした。サンプルを室温に戻し、供試サンプルとした。サンプルは使用直前まで冷凍(-20℃以下)で保存した。
Example 6 Solubilization of mouse organ homogenate using proteinase K Solubilization of mouse homogenate using proteinase K was investigated. Liver and quadriceps homogenates were weighed out at 10-52 mg (see Table 6) and 90 μL of buffer ATL (Qiagen, 19076) and 10 μL of proteinase K (Qiagen, 19133) were added. The mixture was set in an Eppendorf Thermomixer R T3317 (Eppendorf) and incubated at 56° C. for 12 hours or more while stirring at approximately 500 rpm. It was then incubated at 95° C. for 10 minutes while stirring at approximately 500 rpm. The sample was returned to room temperature and used as a test sample. The samples were stored frozen (below -20°C) until immediately before use.
実施例7 マウス臓器ホモジネートの可溶化条件の検討
 実施例5および実施例6で得られたサンプルについて、目視による可溶化の確認と、ddPCR法による評価を行った。ddPCR法は次の通り行った。適宜希釈したサンプルに対して9倍量のマスターミックスを添加してdPCR反応液とした。マスターミックスには、TaqMan Gene Expression Assays(Thermo Fisher Scientific、4331182、Assay ID Mr04097229_Mr)、ddPCR Supermix for Probe (no dUTP)、X2(Bio-Rad、1863024)、Direct PCR buffer (10X)(Tissue Direct PCR, Omega BIO-TEK, TQ2310に付属)、RT-PCR Grade Water(Thermo Fisher Scientific、AM9935)を使用した。ddPCR法によるPCR反応とそれ以降のステップは実施例1と同様の方法((B)98℃、20分を1サイクルの条件)で実施した。
Example 7 Examination of solubilization conditions for mouse organ homogenate The samples obtained in Example 5 and Example 6 were visually confirmed for solubilization and evaluated by ddPCR method. The ddPCR method was performed as follows. Nine times the amount of master mix was added to the suitably diluted sample to prepare a dPCR reaction solution. The master mix included TaqMan Gene Expression Assays (Thermo Fisher Scientific, 4331182, Assay ID Mr04097229_Mr), ddPCR Supermix for Probe (no dU TP), X2 (Bio-Rad, 1863024), Direct PCR buffer (10X) (Tissue Direct PCR, Omega BIO-TEK, TQ2310) and RT-PCR Grade Water (Thermo Fisher Scientific, AM9935) were used. The PCR reaction by the ddPCR method and the subsequent steps were carried out in the same manner as in Example 1 ((B) conditions of 98° C. and 20 minutes for one cycle).
 結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 ddPCR測定に適したホモジネートの可溶化条件を見出すことができた。すなわち、実施例5および6で得られたサンプルは、いずれも10 mg程度、例えば5 mg~20 mgあるいは8 mg~15 mg程度のホモジネート臓器で処理する必要があることが分かった。
The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000006
We were able to find homogenate solubilization conditions suitable for ddPCR measurements. That is, it was found that the samples obtained in Examples 5 and 6 both needed to be treated with about 10 mg of homogenized organs, for example, about 5 mg to 20 mg or 8 mg to 15 mg.
実施例8 マウス各臓器の可溶化ホモジネートの希釈倍率の検討
 実施例5または6の方法で可溶化した脳、肺、肝臓、腎臓、大腿四頭筋および脾臓のホモジネートを、バッファーAEで1~10,000倍にそれぞれ希釈した。EGFP cDNAはバッファーAEを溶媒に使用して終濃度5×10~5×10 コピー数/μLの範囲で希釈系列を作製した。実施例5の可溶化ホモジネートの希釈液と各濃度のEGFP cDNAを1:1で混合した。また実施例6の可溶化ホモジネートの希釈液と終濃度5×10 コピー数/μLのEGFP cDNAを1:1で混合した。サンプル中のEGFP cDNAコピー数をddPCR法で評価した。ddPCR法によるサンプルの測定は実施例7と同様の方法で実施した。
Example 8 Examination of dilution ratio of solubilized homogenate of each mouse organ. Homogenate of brain, lung, liver, kidney, quadriceps muscle, and spleen solubilized by the method of Example 5 or 6 was diluted with buffer AE at 1 to 10%. ,000 times diluted. EGFP cDNA was diluted in a dilution series using Buffer AE as a solvent at a final concentration of 5 x 10 1 to 5 x 10 4 copies/μL. The diluted solution of the solubilized homogenate of Example 5 and each concentration of EGFP cDNA were mixed at a ratio of 1:1. Further, the diluted solution of the solubilized homogenate of Example 6 and EGFP cDNA at a final concentration of 5×10 2 copies/μL were mixed at a ratio of 1:1. The EGFP cDNA copy number in the sample was evaluated by ddPCR method. Measurement of the sample by ddPCR method was carried out in the same manner as in Example 7.
 各可溶化ホモジネートについて、ddPCR法によるサンプルの測定を行うことができた希釈倍率を表7に示す。
Figure JPOXMLDOC01-appb-T000007
 各可溶化ホモジネートにおいてddPCR測定法に適したホモジネート量基準での希釈倍率(20~200,000倍;終濃度換算での希釈倍率(生体材料の重量(μg)/希釈液の体積(μL)では460~4,600,000倍))を明らかにした。ただし、実施例6の方法で可溶化した脳、肺、および肝臓については、ホモジネート量基準での希釈倍率200倍(終濃度換算での希釈倍率は2,200倍)のサンプルしか測定を行わなかった。
For each solubilized homogenate, Table 7 shows the dilution ratio at which the sample could be measured by the ddPCR method.
Figure JPOXMLDOC01-appb-T000007
For each solubilized homogenate, the dilution ratio (20 to 200,000 times) based on the amount of homogenate suitable for the ddPCR measurement method; 460 to 4,600,000 times)). However, for the brain, lung, and liver solubilized by the method of Example 6, only samples at a dilution rate of 200 times based on the homogenate amount (the dilution rate in terms of final concentration is 2,200 times) were measured. Ta.
実施例9 組み換えAAV(rAAV)の生体内分布試験
 次に、rAAV投与マウス組織中のEGFP遺伝子配列を含む目的DNA(以下、単に目的DNAとする)の濃度を、既述のddPCR法にて、あるいは、比較試験として、DNAを抽出した後qPCRによって定量する方法にて評価することで、既述のddPCR法の応用可能性を検討した。詳細を以下に記す。
Example 9 Biodistribution test of recombinant AAV (rAAV) Next, the concentration of target DNA containing the EGFP gene sequence (hereinafter simply referred to as target DNA) in rAAV-administered mouse tissues was determined by the previously described ddPCR method. Alternatively, as a comparative test, the applicability of the above-mentioned ddPCR method was investigated by evaluating the method by extracting DNA and quantifying it by qPCR. Details are below.
 (a)マウスへのrAAVの投与、採材、および臓器の破砕と可溶化
 投与するrAAV8およびrAAV9はEGFPの発現遺伝子の他、CMVエンハンサー、CMVプロモーター、WPRE配列、及びbGH poly(A)シグナルをコードする核酸を持つ。各rAAVは、2.0×1012 vg/mLとなるようDPBS(Life Technologies)で希釈した。体重1kgあたり5mLのrAAV希釈溶液を、マウスの尾静脈内に単回投与し、投与後4、24及び48時間後並びに1、2及び4週間後に、血液、肝臓、及び脳を採取し、凍結保存した。実施例4に記載の方法で肝臓および脳を破砕した。
(a) Administration of rAAV to mice, sampling, and crushing and solubilization of organs The rAAV8 and rAAV9 to be administered contain the EGFP expression gene, as well as the CMV enhancer, CMV promoter, WPRE sequence, and bGH poly(A) signal. Contains encoding nucleic acid. Each rAAV was diluted to 2.0×10 12 vg/mL with DPBS (Life Technologies). A single dose of 5 mL of rAAV diluted solution per kg of body weight was administered into the tail vein of mice, and blood, liver, and brain were collected and frozen at 4, 24, and 48 hours and 1, 2, and 4 weeks after administration. saved. The liver and brain were crushed using the method described in Example 4.
(b) ddPCR法によるrAAV投与マウス組織サンプル中の目的DNAを含むrAAVゲノムDNAの定量
 実施例9(a)にて調製した各ホモジネートを一部秤量し、実施例6に記載の方法で可溶化した。その後可溶化ホモジネートおよび血液について、実施例1及び実施例7と同様の方法で各サンプル中の目的DNAを含むrAAVゲノムDNAを定量した。
(b) Quantification of rAAV genomic DNA containing target DNA in rAAV-administered mouse tissue samples by ddPCR method A portion of each homogenate prepared in Example 9(a) was weighed and solubilized by the method described in Example 6. did. Thereafter, rAAV genomic DNA containing the target DNA in each sample was quantified using the same method as in Examples 1 and 7 for the solubilized homogenate and blood.
 結果を図5に示す。 The results are shown in Figure 5.
(c) マウス臓器からのDNA抽出
 次に、qPCR法によりrAAVゲノムDNAを定量するために、実施例9(a)にて調製した各ホモジネートを一部秤量し、DNAを抽出した。DNA抽出操作にはDNeasy Blood & Tissue Kit(Qiagen, 69581)を使用した。具体的な手順は以下の通りである。上記の通り破砕した臓器を30~40mg秤量し、バッファーATL 180μLとプロテイナーゼK 20μLを添加した。Eppendorf Thermomixer R T3317(eppendorf)にセットして500rpmで撹拌しながら56℃で17時間以上インキュベートした。ホモジネートが可溶化されたら、RNase(Qiagen、19101)を4μL加え、ボルテックスでよく撹拌し、室温で5分間インキュベートした。キットに付属のバッファーALに容器に記載の量のエタノールを添加したものを410μL添加してボルテックスで十分に撹拌した後、DNeasy 96 plateの各ウェルにサンプルを移し、AirPore Tape Sheetでシールし、遠心した。キットに付属のバッファーAW1 500μLを添加し、AirPore Tape Sheetでシールし、遠心した。続いてキットに付属のバッファーAW2 500μLを添加し、AirPore Tape Sheetでシールし、遠心した。Elution Microtube RSの新しいラック上にDNeasy 96 plateをセットし、バッファーAE 50μLを添加し、AirPore Tape Sheetでシールして1分間室温静置した後、遠心し、DNAを回収した。rAAVを投与していないマウス肝臓からも、同様の方法でDNA抽出を行い、肝臓ゲノムDNA溶液(L-gDNAと称す。)を得た。
(c) DNA Extraction from Mouse Organs Next, in order to quantify rAAV genomic DNA by qPCR, a portion of each homogenate prepared in Example 9(a) was weighed and DNA was extracted. DNeasy Blood & Tissue Kit (Qiagen, 69581) was used for DNA extraction. The specific steps are as follows. 30 to 40 mg of the organ crushed as described above was weighed, and 180 μL of buffer ATL and 20 μL of proteinase K were added. The mixture was set in Eppendorf Thermomixer R T3317 (Eppendorf) and incubated at 56° C. for 17 hours or more while stirring at 500 rpm. Once the homogenate was solubilized, 4 μL of RNase (Qiagen, 19101) was added, vortexed well, and incubated for 5 minutes at room temperature. Add 410 μL of Buffer AL included with the kit and add the amount of ethanol listed on the container, stir thoroughly by vortexing, then transfer the sample to each well of the DNeasy 96 plate, seal with AirPore Tape Sheet, and centrifuge. did. 500 μL of buffer AW1 included in the kit was added, sealed with AirPore Tape Sheet, and centrifuged. Subsequently, 500 μL of buffer AW2 included in the kit was added, sealed with AirPore Tape Sheet, and centrifuged. A DNeasy 96 plate was set on a new rack of Elution Microtube RS, 50 μL of Buffer AE was added, the plate was sealed with AirPore Tape Sheet, and the plate was left at room temperature for 1 minute, then centrifuged to collect DNA. DNA was extracted in the same manner from mouse livers to which rAAV had not been administered, and a liver genomic DNA solution (referred to as L-gDNA) was obtained.
 血液からのDNA抽出にはDNeasy Blood & Tissue Kit(Qiagen, 69504)を使用した。血液を100μL量り取り、PBS 100μLとプロテイナーゼK 20μLを添加した。RNase(Qiagen、19101)を4μL加え、ボルテックスでよく撹拌し、室温で5分間インキュベートした。バッファーAL 200μLを添加してボルテックスで十分に撹拌した後、Eppendorf Thermomixer R T3317(eppendorf)にセットして500rpmで撹拌しながら56℃で10分間インキュベートした。100%エタノール 200μLを添加してボルテックスでよく撹拌した後、DNeasy Mini Spin Columnに移して20000×g、4℃で1分間遠心した。フィルターを新しいコレクションチューブに移し、バッファーAW1 500μLを添加し、20000×g、4℃で2分間遠心した。バッファーAW2 500μLを添加し、さらに20000×g、4℃で3分間遠心した。新しいチューブにフィルターをセットし、バッファーAE 50μLを添加し、1分間室温静置した後、6000×g、4℃で2分間遠心し、DNAを回収した。 DNeasy Blood & Tissue Kit (Qiagen, 69504) was used to extract DNA from blood. 100 μL of blood was weighed out, and 100 μL of PBS and 20 μL of proteinase K were added. 4 μL of RNase (Qiagen, 19101) was added, mixed well by vortexing, and incubated at room temperature for 5 minutes. After adding 200 μL of Buffer AL and thoroughly stirring with a vortex, it was set in Eppendorf Thermomixer R T3317 (Eppendorf) and incubated at 56° C. for 10 minutes while stirring at 500 rpm. After adding 200 μL of 100% ethanol and stirring well with a vortex, the mixture was transferred to a DNeasy Mini Spin Column and centrifuged at 20,000×g and 4° C. for 1 minute. The filter was transferred to a new collection tube, 500 μL of Buffer AW1 was added, and centrifuged at 20,000×g and 4° C. for 2 minutes. 500 μL of Buffer AW2 was added, and the mixture was further centrifuged at 20,000×g and 4° C. for 3 minutes. A filter was set in a new tube, 50 μL of Buffer AE was added, and the tube was left to stand at room temperature for 1 minute, then centrifuged at 6000×g and 4° C. for 2 minutes to collect DNA.
(d) qPCR法によるrAAV投与マウス組織サンプル中の目的DNAを含むrAAVゲノムDNAの定量
 13.3pg/μL EGFP cDNA(FASMAC)をL-gDNAで希釈して検量線を作製した。マスターミックスには、TaqMan Gene Expression Assays(Thermo Fisher Scientific、4331182、Assay ID Mr04097229_Mr)、TaqPath qPCR Master Mix,CG(Thermo Fisher Scientific、A16245)、TaqMan Copy Number Reference Assay,mouse,Tfrc(Thermo Fisher Scientific、4458366、超純水[MilliQ水]で20倍希釈したものを使用した)を使用した。各DNAサンプルは、100ng/μL以下になるようバッファーAEで希釈した。384ウェルプレートにマスターミックス 4μLを添加し、サンプルをそれぞれ1μLを添加し、プレートをシールして測定プレートとした。測定および解析は、QuantStudio 12K Flex(Applied Biosystems)で行った。増幅は下記の条件で行った。
  50℃、2分を1サイクル
  95℃、10分を1サイクル
  95℃、15秒と60℃、1分を40サイクル
  4℃、保持
  ※昇降温速度は1.6℃/秒
(d) Quantification of rAAV genomic DNA containing target DNA in rAAV-administered mouse tissue samples by qPCR method A standard curve was prepared by diluting 13.3 pg/μL EGFP cDNA (FASMAC) with L-gDNA. The master mix includes TaqMan Gene Expression Assays (Thermo Fisher Scientific, 4331182, Assay ID Mr04097229_Mr), TaqPath qPCR Master Mix, CG (Thermo Fisher Scientific, A16245), TaqMan Copy Number Reference Assay, mouse, Tfrc (Thermo Fisher Scientific, 4458366 , which was diluted 20 times with ultrapure water [MilliQ water]) was used. Each DNA sample was diluted with buffer AE to a concentration of 100 ng/μL or less. 4 μL of the master mix was added to a 384-well plate, 1 μL of each sample was added, and the plate was sealed to serve as a measurement plate. Measurements and analyzes were performed with QuantStudio 12K Flex (Applied Biosystems). Amplification was performed under the following conditions.
1 cycle of 50℃, 2 minutes 1 cycle of 95℃, 10 minutes 40 cycles of 95℃, 15 seconds and 60℃, 1 minute Hold at 4℃ *Temperature increase/decrease rate is 1.6℃/sec
 結果を図6に記す。実施例9(b)の結果(図5)および図6より、rAAVを単回静脈内投与した後のマウスの組織において、目的DNA濃度の経時的推移は、本法によるコピー数/μLまたはコピー数/mgで表記した目的DNA濃度と、従来のqPCR法によるコピー数/μg gDNAの単位で評価したものとで同様であった。よって、本法によりより簡便な手法でrAAVの生体内分布を定量的に評価できる。 The results are shown in Figure 6. From the results of Example 9(b) (Fig. 5) and Fig. 6, it can be seen that the time course of the target DNA concentration in mouse tissues after a single intravenous administration of rAAV is the copy number/μL or copy number by this method. The target DNA concentration expressed in number/mg was similar to that evaluated in units of copy number/μg gDNA by the conventional qPCR method. Therefore, with this method, the biodistribution of rAAV can be quantitatively evaluated using a simpler method.
 本発明により、体内にある目的遺伝子の体積または重量を基準とした定量が可能となる。その結果、薬理学的及び毒性学的作用の間の定量的関係に対する新たな考察が可能となり、遺伝子治療や細胞治療等を受ける患者に大きな恩恵をもたらす可能性がある。 According to the present invention, it is possible to quantify the target gene in the body based on the volume or weight. As a result, new considerations regarding the quantitative relationship between pharmacological and toxicological effects will become possible, which may greatly benefit patients undergoing gene therapy, cell therapy, etc.

Claims (25)

  1.  測定対象の生体材料から液体サンプルを調製するステップ、
     当該液体サンプルに含まれる目的DNAのコピー数をデジタルPCR(dPCR)により定量するステップ、及び、
     前記定量された液体サンプル中の目的DNAのコピー数を用いて、前記生体材料の単位量あたりの目的DNAのコピー数を算出するステップを含む、目的DNAの定量方法。
    preparing a liquid sample from the biological material to be measured;
    Quantifying the copy number of the target DNA contained in the liquid sample by digital PCR (dPCR), and
    A method for quantifying DNA of interest, comprising the step of calculating the number of copies of DNA of interest per unit amount of the biological material using the quantified copy number of DNA of interest in the liquid sample.
  2.  前記生体材料からDNAを抽出するステップを含まない、請求項1に記載の定量方法。 The quantitative method according to claim 1, which does not include the step of extracting DNA from the biological material.
  3.  前記生体材料が、液体である、請求項1または2に記載の定量方法。 The quantitative method according to claim 1 or 2, wherein the biological material is a liquid.
  4.  前記液体サンプルにおける、液体の前記生体材料の終濃度ベースの希釈倍率が20~5,000,000倍である、請求項3に記載の定量方法。 The quantitative method according to claim 3, wherein the liquid sample has a dilution factor of 20 to 5,000,000 times based on the final concentration of the biological material in the liquid.
  5.  液体の前記生体材料が血液であり、血液の終濃度ベースの希釈倍率が500~5,000,000倍である、請求項4に記載の定量方法。 The quantitative method according to claim 4, wherein the liquid biological material is blood, and the dilution factor based on the final concentration of blood is 500 to 5,000,000 times.
  6.  前記液体サンプルにおける、液体の前記生体材料の終濃度ベースの希釈倍率が30~2000倍である、請求項3に記載の定量方法。 The quantitative method according to claim 3, wherein the liquid sample has a dilution factor of 30 to 2000 times based on the final concentration of the biological material in the liquid.
  7.  前記生体材料が、固体である、請求項1または2に記載の定量方法。 The quantitative method according to claim 1 or 2, wherein the biomaterial is a solid.
  8.  前記液体サンプルの調製が、固体の前記生体材料を可溶化することを含む、請求項7に記載の定量方法。 The quantitative method according to claim 7, wherein preparing the liquid sample includes solubilizing the solid biological material.
  9.  前記液体サンプルにおける、固体の前記生体材料の終濃度ベースの希釈倍率が20~5,000,000倍である、請求項7に記載の定量方法。 The quantitative method according to claim 7, wherein the dilution factor based on the final concentration of the solid biomaterial in the liquid sample is 20 to 5,000,000 times.
  10.  前記液体サンプルにおける、固体の前記生体材料の終濃度ベースの希釈倍率が3~1000倍である、請求項7に記載の定量方法。 The quantitative method according to claim 7, wherein the dilution factor based on the final concentration of the solid biomaterial in the liquid sample is 3 to 1000 times.
  11.  固体の前記生体材料が肝臓であり、肝臓の終濃度ベースの希釈倍率が2,200~4,600,000倍である、請求項7に記載の定量方法。 The quantitative method according to claim 7, wherein the solid biomaterial is liver, and the dilution factor based on the final concentration of liver is 2,200 to 4,600,000 times.
  12.  固体の前記生体材料が大腿四頭筋であり、大腿四頭筋の終濃度ベースの希釈倍率が460~4,600,000倍である、請求項7に記載の定量方法。 The quantitative method according to claim 7, wherein the solid biomaterial is quadriceps femoris muscle, and the dilution factor based on the final concentration of quadriceps femoris muscle is 460 to 4,600,000 times.
  13.  目的DNAのコピー数をdPCRにより定量するステップにおいて、前記液体サンプルにおける前記生体材料の希釈倍率が等しいとともに目的DNAを含まないブランクサンプルに基づいて陰性シグナルの閾値を設定するステップ、及び/または当該ブランクサンプルに目的DNAを添加したスパイクサンプルに基づいて陽性シグナルの閾値を設定するステップをさらに含む、請求項1または2に記載の定量方法。 In the step of quantifying the copy number of the target DNA by dPCR, a step of setting a threshold for a negative signal based on a blank sample in which the biological material is diluted at an equal dilution rate in the liquid sample and does not contain the target DNA, and/or the blank 3. The quantification method according to claim 1, further comprising the step of setting a threshold for a positive signal based on a spiked sample obtained by adding target DNA to the sample.
  14.  前記液体サンプルに対して不活性化処理を行うステップをさらに含む、請求項1または2に記載の定量方法。 The quantitative method according to claim 1 or 2, further comprising the step of performing an inactivation treatment on the liquid sample.
  15.  PCR反応終了後、かつ、シグナルを測定する前に、前記液体サンプルに対して不活性化処理を行うステップが行われる、請求項14に記載の定量方法。 15. The quantitative method according to claim 14, wherein the step of inactivating the liquid sample is performed after the PCR reaction is completed and before the signal is measured.
  16.  前記不活性化処理が前記液体サンプルの煮沸処理である、請求項15に記載の定量方法。 The quantitative method according to claim 15, wherein the inactivation treatment is a boiling treatment of the liquid sample.
  17.  前記dPCRが、ドロップレットデジタルPCR(ddPCR)である、請求項1または2に記載の定量方法。 The quantitative method according to claim 1 or 2, wherein the dPCR is droplet digital PCR (ddPCR).
  18.  前記目的DNAが、前記生体材料における導入DNAまたは内因性DNAである、請求項1または2に記載の定量方法。 The quantitative method according to claim 1 or 2, wherein the target DNA is introduced DNA or endogenous DNA in the biological material.
  19.  前記生体材料における導入DNAが、ベクター、細胞、核酸医薬、腫瘍溶解性ウイルス、またはファージに由来する、請求項18に記載の定量方法。 The quantitative method according to claim 18, wherein the introduced DNA in the biological material is derived from a vector, a cell, a nucleic acid drug, an oncolytic virus, or a phage.
  20.  前記ベクターが、プラスミドDNA(pDNA)、組換えアデノウイルス、組換えアデノ随伴ウイルス(rAAV)、組換えレンチウイルス、組換えセンダイウイルス、または組換えレトロウイルスに由来する、請求項19に記載の定量方法。 20. Quantification according to claim 19, wherein the vector is derived from plasmid DNA (pDNA), recombinant adenovirus, recombinant adeno-associated virus (rAAV), recombinant lentivirus, recombinant Sendai virus, or recombinant retrovirus. Method.
  21.  前記細胞が、CAR-T細胞、CAR-NK細胞、またはES細胞若しくはiPS細胞由来の細胞治療製品に由来する、請求項19に記載の定量方法。 The quantification method according to claim 19, wherein the cells are derived from CAR-T cells, CAR-NK cells, or a cell therapy product derived from ES cells or iPS cells.
  22.  前記生体材料における内因性DNAが、血球に由来する、請求項18に記載の定量方法。 The quantitative method according to claim 18, wherein the endogenous DNA in the biomaterial is derived from blood cells.
  23.  前記目的DNAが、前記生体材料における組換えアデノウイルス、組換えアデノ随伴ウイルス(rAAV)、組換えレンチウイルス、組換えセンダイウイルス、組換えレトロウイルス、プラスミドDNA(pDNA)、CAR-T細胞、CAR-NK細胞、ES細胞又はiPS細胞由来の細胞治療製品、血球、腫瘍溶解性ウイルス、ファージまたは核酸医薬に由来する、請求項1または2に記載の定量方法。 The target DNA is a recombinant adenovirus, recombinant adeno-associated virus (rAAV), recombinant lentivirus, recombinant Sendai virus, recombinant retrovirus, plasmid DNA (pDNA), CAR-T cell, CAR in the biological material. - The quantitative method according to claim 1 or 2, which is derived from a cell therapy product derived from NK cells, ES cells, or iPS cells, blood cells, oncolytic viruses, phages, or nucleic acid medicines.
  24.  測定対象の生体材料から液体サンプルを調製するステップ、及び、
     当該液体サンプルに含まれる目的DNAのコピー数をデジタルPCR(dPCR)により定量するステップ含む、
     前記生体材料の単位量あたりの目的DNAのコピー数の定量方法。
    preparing a liquid sample from the biological material to be measured; and
    A step of quantifying the number of copies of the target DNA contained in the liquid sample by digital PCR (dPCR),
    A method for quantifying the number of copies of target DNA per unit amount of the biological material.
  25.  請求項1、2または24に記載の定量方法を用いた、薬物の生体内分布を評価する方法。 A method for evaluating the biodistribution of a drug using the quantitative method according to claim 1, 2, or 24.
PCT/JP2023/025502 2022-07-11 2023-07-10 Method for quantifying target dna in living body WO2024014439A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022111303 2022-07-11
JP2022-111303 2022-07-11
JP2022-165797 2022-10-14
JP2022165797 2022-10-14

Publications (1)

Publication Number Publication Date
WO2024014439A1 true WO2024014439A1 (en) 2024-01-18

Family

ID=89536718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025502 WO2024014439A1 (en) 2022-07-11 2023-07-10 Method for quantifying target dna in living body

Country Status (1)

Country Link
WO (1) WO2024014439A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154672A1 (en) * 2020-01-28 2021-08-05 Lonza Walkersville, Inc Methods of determining viral titer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021154672A1 (en) * 2020-01-28 2021-08-05 Lonza Walkersville, Inc Methods of determining viral titer

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ABRAM TIMOTHY J., CHERUKURY HEMANTH, OU CHEN-YIN, VU TAM, TOLEDANO MICHAEL, LI YIYAN, GRUNWALD JONATHAN T., TOOSKY MELODY N., TIFR: "Rapid bacterial detection and antibiotic susceptibility testing in whole blood using one-step, high throughput blood digital PCR", LAB ON A CHIP, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 20, no. 3, 4 February 2020 (2020-02-04), UK , pages 477 - 489, XP093129054, ISSN: 1473-0197, DOI: 10.1039/C9LC01212E *
DEIANA MICHELA, MORI ANTONIO, PIUBELLI CHIARA, SCARSO SALVATORE, FAVARATO MOSÈ, POMARI ELENA: "Assessment of the direct quantitation of SARS-CoV-2 by droplet digital PCR", SCIENTIFIC REPORTS, vol. 10, no. 1, 30 October 2020 (2020-10-30), XP093011274, DOI: 10.1038/s41598-020-75958-x *
KAIXIANG ZHANG, DONG-KU KANG, M. MONSUR ALI, LINAN LIU, LOUAI LABANIEH, MENGROU LU, HAMIDREZA RIAZIFAR, THI N. NGUYEN, JASON A. ZE: "Digital quantification of miRNA directly in plasma using integrated comprehensive droplet digital detection", LAB ON A CHIP, ROYAL SOCIETY OF CHEMISTRY, UK, vol. 15, no. 21, 1 January 2015 (2015-01-01), UK , pages 4217 - 4226, XP055646101, ISSN: 1473-0197, DOI: 10.1039/C5LC00650C *
MIKA THOMAS, MAGHNOUJ ABDELOUAHID, KLEIN-SCORY SUSANNE, LADIGAN-BADURA SWETLANA, BARANISKIN ALEXANDER, THOMSON JULIA, HASENKAMP JU: "Digital-Droplet PCR for Quantification of CD19-Directed CAR T-Cells", FRONTIERS IN MOLECULAR BIOSCIENCES, vol. 7, 15 May 2020 (2020-05-15), XP055893495, DOI: 10.3389/fmolb.2020.00084 *
PAVŠIČ JERNEJ; ŽEL JANA; MILAVEC MOJCA: "Digital PCR for direct quantification of viruses without DNA extraction", ANALYTICAL AND BIOANALYTICAL CHEMISTRY, SPRINGER BERLIN HEIDELBERG, BERLIN/HEIDELBERG, vol. 408, no. 1, 19 October 2015 (2015-10-19), Berlin/Heidelberg, pages 67 - 75, XP035597463, ISSN: 1618-2642, DOI: 10.1007/s00216-015-9109-0 *
SUCHY FABIAN P., NISHIMURA TOSHIYA, SEKI SHINSUKE, WILKINSON ADAM C., HIGUCHI MAIMI, HSU IAN, ZHANG JINYU, BHADURY JOYDEEP, NAKAUC: "Streamlined and quantitative detection of chimerism using digital PCR", SCIENTIFIC REPORTS, NATURE PUBLISHING GROUP, US, vol. 12, no. 1, 17 June 2022 (2022-06-17), US , pages 10223, XP093129051, ISSN: 2045-2322, DOI: 10.1038/s41598-022-14467-5 *
TORRES, R. ET AL.: "P421, Structural characterization of AAV5-FVIII-SQ vector DNA in human blood by Real-Time and Droplet Digital PCR", ESGCT 27TH ANNUAL CONGRESS IN COLLABORATION WITH SETGYC BARCELONA. SPAIN OCTOBER 22-25, 2019, 2019, pages A141 - A142, XP055717656 *
YANG, HUIYA ET AL.: "184. Developing a rAAV-Based Gene Replacement Therapy for GM3 Synthase Deficiency", MOLECULAR THERAPY, NATURE PUBLISHING GROUP, GB, vol. 28, no. 4, S1, 28 April 2020 (2020-04-28) - 15 May 2020 (2020-05-15), GB , pages 91, XP009551971, ISSN: 1525-0024, DOI: 10.1016/j.ymthe.2020.04.019 *

Similar Documents

Publication Publication Date Title
Hakim et al. AAV CRISPR editing rescues cardiac and muscle function for 18 months in dystrophic mice
Nishimura et al. Plasma miR‐208 as a useful biomarker for drug‐induced cardiotoxicity in rats
Ruozi et al. AAV-mediated in vivo functional selection of tissue-protective factors against ischaemia
Uchida et al. PEGylated polyplex with optimized PEG shielding enhances gene introduction in lungs by minimizing inflammatory responses
Kontopoulou et al. Evaluation of dsDNA from extracellular vesicles (EVs) in pediatric AML diagnostics
JP2022527629A (en) Improved methods and compositions for synthetic biomarkers
CN109097477A (en) It is a kind of for the circRNA marker of breast cancer diagnosis and its application
JP5863338B2 (en) Plasmid vector, method for detecting gene promoter activity, and assay kit
Quan et al. A functional role for NS 5 ATP 9 in the induction of HCV NS 5A‐mediated autophagy
Pan et al. AAV-8 is more efficient than AAV-9 in transducing neonatal dog heart
Karda et al. Perinatal systemic gene delivery using adeno-associated viral vectors
Cochin et al. The SARS-CoV-2 Alpha variant exhibits comparable fitness to the D614G strain in a Syrian hamster model
WO2024014439A1 (en) Method for quantifying target dna in living body
Hayes et al. Commentary: multiplex dPCR and SV-AUC are promising assays to robustly monitor the critical quality attribute of AAV drug product integrity
US11946885B2 (en) Noninvasive quantitation of full versus empty capsids using water proton NMR
US20160153057A1 (en) Method of obtaining epigenetic information of cell, method of determining characteristics of cell, method of determining drug sensitivity or selecting type of drug or immunotherapeutic agent, method of diagnosing disease, self-replicating vector, assay kit and analytic device
CN112779330B (en) Kit for determining gene expression level in serum exosomes and application of kit in preparation of diabetic nephropathy disease diagnosis kit
RU2726242C1 (en) Test system for detecting dna of lumpy skin disease virus (lsdv) in biological material of animals using a polymerase chain reaction in real time
Odabas et al. Exon7 Targeted CRISPR-Prime Editing Approaches for SMN2 Gene Editing in Spinal Muscular Atrophy (SMA) Disease Can Increase In Vitro SMN Expression
Bass-Stringer et al. A Step-By-Step Method to Detect Neutralizing Antibodies Against AAV using a Colorimetric Cell-Based Assay
RU2726432C1 (en) Test system for determining dna of nodular dermatitis virus (lsdv) in biological material of animals by pcr with electrophoretic detection of amplification products in agarose gel
KR20190115770A (en) Primer set based on mitochondria dna and method for evaluating biodistribution of cell therapy products
CN116970041B (en) Adeno-associated virus mutant and application thereof
RU2725210C1 (en) Test system for identification of dna tissue of common quail (coturnix coturnix) in dry fodder and semi-finished meat products
Lu¹ et al. Biomarker and Bioanalytical Readouts for the

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839611

Country of ref document: EP

Kind code of ref document: A1