WO2024014346A1 - Substrate processing device, substrate processing method, and substrate processing program - Google Patents

Substrate processing device, substrate processing method, and substrate processing program Download PDF

Info

Publication number
WO2024014346A1
WO2024014346A1 PCT/JP2023/024685 JP2023024685W WO2024014346A1 WO 2024014346 A1 WO2024014346 A1 WO 2024014346A1 JP 2023024685 W JP2023024685 W JP 2023024685W WO 2024014346 A1 WO2024014346 A1 WO 2024014346A1
Authority
WO
WIPO (PCT)
Prior art keywords
nozzle
gas
substrate
rinse
liquid
Prior art date
Application number
PCT/JP2023/024685
Other languages
French (fr)
Japanese (ja)
Inventor
涼 末政
和久 大村
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2024014346A1 publication Critical patent/WO2024014346A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/16Coating processes; Apparatus therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/26Processing photosensitive materials; Apparatus therefor
    • G03F7/30Imagewise removal using liquid means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present disclosure relates to a substrate processing apparatus, a substrate processing method, and a substrate processing program.
  • Patent Document 1 when cleaning the surface of a substrate while discharging cleaning liquid and nitrogen gas, the distance from the discharge position of the cleaning liquid nozzle to the center of the substrate and the distance from the discharge position of the gas nozzle to the center of the substrate are determined. A configuration is shown in which the nozzle is moved so that the difference with the distance becomes smaller.
  • the present disclosure provides a technique that can reduce residue on the surface of a substrate after cleaning the substrate.
  • a substrate processing apparatus is a substrate processing apparatus that processes a substrate, and includes a holding and rotating section that holds and rotates the substrate, and a holding and rotating section that holds and rotates the substrate, and a substrate processing apparatus that processes a substrate.
  • a supply unit including at least one gas nozzle that supplies an active gas; and at least one rinsing nozzle that supplies a rinsing liquid to the substrate at a discharge position provided on an outer peripheral side of a gas supply position by the gas nozzle; , a control unit, the control unit moving the discharge position of the rinse liquid from the rinse nozzle from the center of the substrate toward the outer circumference while continuing discharge of the inert gas from the gas nozzle.
  • the gas-liquid interface formed by the inert gas and the rinsing liquid By moving the gas-liquid interface formed by the inert gas and the rinsing liquid from the center to the outer circumferential direction, when the rinse nozzle moves in the outer circumferential direction, the gas-liquid interface formed by the inert gas and the rinsing liquid is The direction of the rinsing liquid is switched from a direction along the rotational direction of the substrate to a direction along the radial direction of the substrate when going from the center side to the outer peripheral side of the substrate.
  • a technique is provided that can reduce residue on the surface of a substrate after cleaning the substrate.
  • FIG. 1 is a schematic diagram showing an example of a substrate processing system.
  • FIG. 2 is a schematic diagram showing an example of a coating and developing device.
  • FIG. 3 is a schematic diagram showing an example of a developing unit.
  • FIGS. 4(a) to 4(c) are schematic diagrams showing an example of the arrangement of the gas nozzle and rinse nozzle of the developing unit.
  • FIG. 5 is a block diagram showing an example of the hardware configuration of the control device.
  • FIG. 6 is a flow diagram showing an example of a substrate processing procedure.
  • FIG. 7 is a flow diagram illustrating an example of a rinsing liquid removal procedure.
  • FIGS. 8(a) to 8(d) are schematic diagrams showing an example of a procedure for removing the rinse liquid.
  • FIGS. 10(a) to 10(d) are schematic diagrams showing an example of a rinse liquid removal procedure.
  • FIG. 11 is a flow diagram illustrating an example of a rinsing liquid removal procedure.
  • FIGS. 12(a) to 12(d) are schematic diagrams showing an example of a rinse liquid removal procedure.
  • a substrate processing apparatus is a substrate processing apparatus that processes a substrate, and includes a holding and rotating section that holds and rotates the substrate, and a holding and rotating section that holds and rotates the substrate, and a substrate processing apparatus that processes a substrate.
  • a supply unit including at least one gas nozzle that supplies an active gas; and at least one rinsing nozzle that supplies a rinsing liquid to the substrate at a discharge position provided on an outer peripheral side of a gas supply position by the gas nozzle; , a control unit, the control unit moving the discharge position of the rinse liquid from the rinse nozzle from the center of the substrate toward the outer circumference while continuing discharge of the inert gas from the gas nozzle.
  • the rinsing liquid is discharged from the rinse nozzle from the center of the substrate toward the outer circumference while continuing to discharge inert gas from the gas nozzle to the substrate after the developer has been supplied.
  • the gas-liquid interface formed by the inert gas and the rinsing liquid is moved from the center toward the outer periphery.
  • the direction of the rinse liquid discharged from the rinse nozzle changes from the direction along the rotation direction of the substrate to the direction along the radial direction of the substrate. Can be switched.
  • the discharge direction of the rinsing liquid from the rinsing nozzle is along the rotational direction of the substrate, thereby suppressing the generation of residue after the rinsing liquid is removed.
  • the discharge direction of the rinsing liquid from the rinsing nozzle is along the radial direction of the substrate, thereby suppressing the generation of residue after the rinsing liquid is removed. Therefore, by switching to the discharge direction of the rinsing liquid as described above when moving the gas-liquid interface toward the outer circumference, it is possible to reduce the amount of residue on the substrate surface after cleaning the substrate.
  • the supply unit includes a first arm provided with a first rinse nozzle and a first gas nozzle, and a second arm provided with a second rinse nozzle and a second gas nozzle, and discharges from the first rinse nozzle.
  • the direction of the rinsing liquid discharged from the second rinsing nozzle is along the rotational direction of the substrate, and the direction of the rinsing liquid discharged from the second rinsing nozzle is along the radial direction of the substrate.
  • the method is from a first state in which the gas-liquid interface is formed by supplying the inert gas and the rinsing liquid while moving the first arm closer to the center of the substrate than a predetermined switching position;
  • the method may be switched to a second state in which the gas-liquid interface is formed by supplying the inert gas and the rinsing liquid while moving the second arm closer to the outer periphery of the substrate than the switching position.
  • the inert gas and the rinsing liquid are supplied from the first arm whose discharge direction of the rinsing liquid from the first rinsing nozzle is along the rotational direction of the substrate.
  • a gas-liquid interface By forming a gas-liquid interface, the generation of residue after the rinsing liquid is removed is suppressed.
  • an air-liquid interface is formed by supplying inert gas and rinsing liquid from the second arm, in which the direction of discharge of the rinsing liquid from the second rinsing nozzle is along the radial direction of the substrate.
  • the control unit causes the second rinse nozzle to also discharge the rinse liquid in the first state, and stops discharge of the rinse liquid from the first rinse nozzle in the second state, and
  • the aspect may be such that the amount of the rinsing liquid discharged from the second rinsing nozzle is increased compared to the first state.
  • the rinsing liquid in the first state, is also discharged from the second rinsing nozzle, thereby promoting the movement of the rinsing liquid from near the center of the substrate toward the outer circumference.
  • the discharge of the rinse liquid from the first rinse nozzle is stopped, so by increasing the discharge amount of the rinse liquid from the second rinse nozzle, the movement of the rinse liquid in the outer circumferential direction is prevented. It can be promoted.
  • the control unit may be configured to stop discharging the gas from the first gas nozzle in the second state.
  • the distance between the discharge position of the rinse liquid from the first rinse nozzle in the first arm and the discharge position of the gas from the first gas nozzle is the distance between the discharge position of the rinse liquid from the second rinse nozzle in the second arm.
  • the distance between the discharge position of the gas and the discharge position of the gas from the second gas nozzle may be smaller than the distance between the gas discharge position and the discharge position of the gas from the second gas nozzle.
  • residue can be suppressed by having the rinsing liquid discharge position closer to the gas discharge position on the center side of the substrate, and closer to the rinsing liquid discharge position on the outer periphery of the substrate. Residue can be suppressed if the gas discharge position is separated from the gas discharge position. As mentioned above, the residue after cleaning can be further reduced by arranging the nozzles so that the discharge positions are close to each other in the first arm, and by arranging the nozzles so that the discharge positions are far from each other in the second arm. I can do it.
  • a gas nozzle, a first rinse nozzle, and a second rinse nozzle are provided on an arm that is movable independently of each other, and the direction of the rinse liquid discharged from the first rinse nozzle is The direction is along the rotational direction of the substrate, the direction of the rinsing liquid discharged from the second rinsing nozzle is the direction along the radial direction of the substrate, and the control section From the first state in which the air-liquid interface is formed by supplying the rinsing liquid from the first rinsing nozzle on the center side of the substrate, the second rinsing liquid is applied on the outer peripheral side of the substrate from the switching position.
  • the rinsing liquid is supplied from the first rinsing nozzle whose discharge direction is along the rotational direction of the substrate to form a gas-liquid interface.
  • the generation of residue after the rinse solution is removed is suppressed.
  • the residue after the rinsing liquid is removed is removed. The occurrence of is suppressed. Therefore, with the above configuration, it is possible to reduce the amount of residue on the surface of the substrate after cleaning the substrate.
  • the control unit causes the second rinse nozzle to also discharge the rinse liquid in the first state, and stops discharge of the rinse liquid from the first rinse nozzle in the second state, and
  • the aspect may be such that the amount of the rinsing liquid discharged from the second rinsing nozzle is increased compared to the first state.
  • the rinsing liquid in the first state, is also discharged from the second rinsing nozzle, thereby promoting the movement of the rinsing liquid from near the center of the substrate toward the outer circumference.
  • the discharge of the rinse liquid from the first rinse nozzle is stopped, so by increasing the discharge amount of the rinse liquid from the second rinse nozzle, the movement of the rinse liquid in the outer circumferential direction is prevented. It can be promoted.
  • the distance between the discharge position of the rinsing liquid from the first rinse nozzle on the substrate in the first state and the discharge position of the gas from the gas nozzle on the substrate in the second state is The distance may be smaller than the distance between the discharge position of the rinse liquid from the second rinse nozzle and the discharge position of the gas from the gas nozzle.
  • residue can be suppressed by having the rinsing liquid discharge position closer to the gas discharge position on the center side of the substrate, and closer to the rinsing liquid discharge position on the outer periphery of the substrate. Residue can be suppressed if the gas discharge position is separated from the gas discharge position.
  • the nozzle in the first state, the nozzle is arranged so that the gas liquid and rinsing liquid discharge positions are close to each other, and in the second state, the nozzle is arranged so that these discharge positions are far apart. By doing so, it is possible to further reduce the residue after washing.
  • the supply unit includes a first gas nozzle whose discharge position is fixed at the center of the substrate, a first arm provided with a first rinse nozzle, and a second arm provided with a second rinse nozzle and a second gas nozzle.
  • the direction of the rinse liquid discharged from the first rinse nozzle is along the rotation direction of the substrate
  • the direction of the rinse liquid discharged from the second rinse nozzle is along the rotation direction of the substrate.
  • the direction is along the radial direction
  • the control unit moves the first arm while supplying inert gas from the first gas nozzle closer to the center of the substrate than a predetermined switching position.
  • the second arm is moved to the outer peripheral side of the substrate from the switching position, and the inert gas is The state may be changed to a second state in which the gas-liquid interface is formed by supplying the rinsing liquid.
  • the rinsing liquid is supplied from the first rinsing nozzle whose discharge direction is along the rotational direction of the substrate, and the discharge position is fixed at the center of the substrate.
  • the generation of residue after the rinse liquid is removed is suppressed.
  • an air-liquid interface is formed by supplying inert gas and rinsing liquid from the second arm, in which the direction of discharge of the rinsing liquid from the second rinsing nozzle is along the radial direction of the substrate.
  • the control unit causes the second rinse nozzle to also discharge the rinse liquid in the first state, and stops discharge of the rinse liquid from the first rinse nozzle in the second state, and
  • the aspect may be such that the amount of the rinsing liquid discharged from the second rinsing nozzle is increased compared to the first state.
  • the rinsing liquid in the first state, is also discharged from the second rinsing nozzle, thereby promoting the movement of the rinsing liquid from near the center of the substrate toward the outer circumference.
  • the discharge of the rinse liquid from the first rinse nozzle is stopped, so by increasing the discharge amount of the rinse liquid from the second rinse nozzle, the movement of the rinse liquid in the outer circumferential direction is prevented. It can be promoted.
  • the distance between the discharge position of the rinsing liquid from the first rinse nozzle on the substrate in the first state and the discharge position of the gas from the gas nozzle on the substrate in the second state is The distance may be smaller than the distance between the discharge position of the rinse liquid from the second rinse nozzle and the discharge position of the gas from the second gas nozzle.
  • residue can be suppressed by having the rinsing liquid discharge position closer to the gas discharge position on the center side of the substrate, and closer to the rinsing liquid discharge position on the outer periphery of the substrate. Residue can be suppressed if the gas discharge position is separated from the gas discharge position.
  • the nozzle in the first state, the nozzle is arranged so that the gas liquid and rinsing liquid discharge positions are close to each other, and in the second state, the nozzle is arranged so that these discharge positions are far apart. By doing so, it is possible to further reduce the residue after washing.
  • the supply unit includes a first gas nozzle whose discharge position is fixed at the center of the substrate, and a first arm provided with a first rinse nozzle that can change the direction of the rinse liquid to be discharged.
  • the control unit may change the direction of the rinsing liquid discharged from the first rinsing nozzle from a direction along the rotation direction of the substrate to a direction along the rotation direction of the substrate when the first rinsing nozzle moves in the outer circumferential direction. It may also be an aspect in which the temperature is gradually changed in a direction along the radial direction.
  • the rinsing liquid is supplied with the rinsing liquid ejected from the rinsing nozzle in the direction along the rotational direction of the substrate to form a gas-liquid interface. Generation of residue after removal is suppressed.
  • the rinsing liquid is supplied from the rinsing nozzle with the discharge direction along the radial direction of the substrate to form a gas-liquid interface, thereby preventing the generation of residue after the rinsing liquid is removed. is suppressed. Therefore, with the above configuration, it is possible to reduce the amount of residue on the surface of the substrate after cleaning the substrate.
  • a substrate processing method is a substrate processing method for processing a substrate, which includes holding and rotating the substrate in a holding rotation unit, and treating the substrate after a developer is supplied.
  • the direction of the rinsing liquid discharged from the rinsing nozzle is changed from a direction along the rotational direction of the substrate to a radial direction of the substrate. Switch in the direction along.
  • the rinsing nozzle when the rinsing nozzle is moved from the center side of the substrate to the outer periphery side, the direction of the rinsing liquid discharged from the rinsing nozzle is changed from the direction along the rotational direction of the substrate to the radial direction of the substrate. You can switch in the same direction.
  • the discharge direction of the rinsing liquid from the rinsing nozzle is along the rotational direction of the substrate, thereby suppressing the generation of residue after the rinsing liquid is removed. .
  • the discharge direction of the rinsing liquid from the rinsing nozzle is along the radial direction of the substrate, thereby suppressing the generation of residue after the rinsing liquid is removed. Therefore, by switching to the discharge direction of the rinsing liquid as described above when moving the gas-liquid interface toward the outer circumference, it is possible to reduce the amount of residue on the substrate surface after cleaning the substrate.
  • a substrate processing program is a substrate processing program that causes a computer to perform substrate processing, and includes holding and rotating the substrate in a holding/rotating unit, and holding and rotating the substrate after a developer is supplied.
  • a rinsing liquid from a rinsing nozzle that supplies the rinsing liquid to the substrate at a discharge position provided on the outer peripheral side from a gas supply position by the gas nozzle while continuing to discharge inert gas from the gas nozzle to the substrate.
  • the direction of the rinse liquid discharged from the rinse nozzle is set along the rotation direction of the substrate. direction to a direction along the radial direction of the substrate.
  • a substrate processing system 1 (substrate processing apparatus) shown in FIG. 1 is a system that forms a photosensitive film on a work W, exposes the photosensitive film, and develops the photosensitive film.
  • the work W to be processed is, for example, a substrate, or a substrate on which a film, a circuit, or the like is formed by performing a predetermined process.
  • the substrate is, for example, a silicon wafer.
  • the work W (substrate) may be circular.
  • the workpiece W may be a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like.
  • the photosensitive film is, for example, a resist film.
  • the substrate processing system 1 includes a coating and developing device 2, an exposure device 3, and a control device 100.
  • the exposure device 3 is a device that exposes a resist film (photosensitive film) formed on a workpiece W (substrate). Specifically, the exposure device 3 irradiates the portion of the resist film to be exposed with energy rays using a method such as immersion exposure.
  • Energy rays are, for example, ionizing radiation or non-ionizing radiation. Ionizing radiation is radiation that has sufficient energy to ionize atoms or molecules.
  • the ionizing radiation may be extreme ultraviolet (EUV), electron beam, ion beam, X-ray, alpha ray, beta ray, gamma ray, heavy particle beam, proton beam, or the like.
  • EUV extreme ultraviolet
  • Non-ionizing radiation is radiation that does not have sufficient energy to ionize atoms or molecules.
  • the non-ionizing radiation may be g-line, i-line, KrF excimer laser, ArF excimer laser, F2 excimer laser, or the like.
  • the coating and developing device 2 performs a process of coating a resist (chemical solution) on the surface of the workpiece W to form a resist film before the exposure process by the exposure device 3. Further, the coating and developing device 2 develops the resist film formed on the workpiece W after the exposure process.
  • the coating and developing device 2 includes a carrier block 4, a processing block 5, and an interface block 6.
  • the carrier block 4 introduces the workpiece W into the coating and developing device 2 and extracts the workpiece W from the coating and developing device 2 .
  • the carrier block 4 can support, for example, a plurality of carriers C for workpieces W, and has a built-in transport device A1 including a delivery arm.
  • the carrier C accommodates a plurality of circular workpieces W, for example.
  • the transport device A1 takes out the workpiece W from the carrier C, passes it to the processing block 5, receives the workpiece W from the processing block 5, and returns it into the carrier C.
  • the processing block 5 has processing modules 11, 12, 13, and 14.
  • the processing module 11 includes a liquid processing unit U1, a heat processing unit U2, and a transport device A3 that transports the workpiece W to these units.
  • the processing module 11 forms a lower layer film on the surface of the workpiece W using the liquid processing unit U1 and the heat processing unit U2.
  • the liquid processing unit U1 applies a processing liquid for forming a lower layer film onto the workpiece W.
  • the heat treatment unit U2 performs various heat treatments associated with the formation of the lower layer film.
  • the processing module 12 includes a liquid processing unit U1, a heat processing unit U2, and a transport device A3 that transports the workpiece W to these units.
  • the processing module 12 forms a resist film on the lower layer film using a liquid processing unit U1 and a heat processing unit U2.
  • the liquid processing unit U1 applies a processing liquid for resist film formation onto the lower layer film.
  • the liquid processing unit U1 applies, as a processing liquid for forming a resist film, a chemical liquid capable of forming a pattern by exposure to energy rays (for example, i-rays) onto the lower layer film.
  • the heat treatment unit U2 performs various heat treatments associated with the formation of a resist film.
  • the processing module 13 includes a liquid processing unit U1, a heat processing unit U2, and a transport device A3 that transports the workpiece W to these units.
  • the processing module 13 forms an upper layer film on the resist film using the liquid processing unit U1 and the heat processing unit U2.
  • the liquid processing unit U1 applies a processing liquid for forming an upper layer film onto the resist film.
  • the heat treatment unit U2 performs various heat treatments associated with the formation of the upper layer film.
  • the processing module 14 includes a developing unit U3, a heat treatment unit U4, a measuring unit U5, and a transport device A3 that transports the workpiece W to these units.
  • the processing module 14 uses a developing unit U3 and a heat processing unit U4 to develop the resist film that has been subjected to the exposure process and performs heat treatment accompanying the development.
  • the developing unit U3 is a unit that performs liquid processing on the workpiece W using a developer.
  • the developing unit U3 forms a liquid film (paddle) of the developer on the surface of the workpiece W by supplying the developer onto the surface of the exposed workpiece W.
  • the developing unit U3 develops the resist film by maintaining a liquid film of the developer on the surface of the work W (for example, statically developing). Furthermore, after performing development with the developer, the developing unit U3 washes away the developer on the surface of the workpiece W with a rinsing liquid, and removes the rinsing liquid remaining on the surface of the workpiece W.
  • the heat treatment unit U4 performs various heat treatments associated with development. Specific examples of heat treatment include heat treatment before development (PEB: Post Exposure Bake), post-development heat treatment (PB: Post Bake), and the like.
  • a shelf unit U10 is provided on the carrier block 4 side within the processing block 5.
  • the shelf unit U10 is divided into a plurality of cells arranged in the vertical direction.
  • a transport device A7 including a lifting arm is provided near the shelf unit U10. The transport device A7 moves the work W up and down between the cells of the shelf unit U10.
  • a shelf unit U11 is provided within the processing block 5 on the interface block 6 side. The shelf unit U11 is divided into a plurality of cells arranged in the vertical direction.
  • the interface block 6 transfers the workpiece W to and from the exposure apparatus 3.
  • the interface block 6 includes, for example, a transport device A8 including a delivery arm, and is connected to the exposure device 3.
  • the transport device A8 transfers the work W placed on the shelf unit U11 to the exposure device 3.
  • the transport device A8 receives the workpiece W from the exposure device 3 and returns it to the shelf unit U11.
  • the control device 100 (control unit) is configured to partially and entirely control the coating and developing device 2.
  • the control device 100 controls the coating and developing device 2 to perform coating and developing processing, for example, in the following steps. First, the control device 100 controls the transport device A1 to transport the work W in the carrier C to the shelf unit U10, and controls the transport device A7 to place the work W in the cell for the processing module 11.
  • control device 100 controls the transport device A3 to transport the work W on the shelf unit U10 to the liquid processing unit U1 and the heat processing unit U2 in the processing module 11. Further, the control device 100 controls the liquid processing unit U1 and the heat processing unit U2 so as to form a lower layer film on the surface of the workpiece W. Thereafter, the control device 100 controls the transport device A3 to return the work W on which the lower layer film has been formed to the shelf unit U10, and controls the transport device A7 to place the work W in the cell for the processing module 12. .
  • control device 100 controls the transport device A3 to transport the work W on the shelf unit U10 to the liquid processing unit U1 and heat processing unit U2 in the processing module 12. Further, the control device 100 controls the liquid processing unit U1 and the heat processing unit U2 so as to form a resist film on the surface of the workpiece W. Thereafter, the control device 100 controls the transport device A3 to return the work W to the shelf unit U10, and controls the transport device A7 to place the work W in the cell for the processing module 13.
  • control device 100 controls the transport device A3 to transport the work W on the shelf unit U10 to each unit in the processing module 13. Further, the control device 100 controls the liquid processing unit U1 and the heat processing unit U2 so as to form an upper layer film on the resist film of the workpiece W. After that, the control device 100 controls the transport device A3 to transport the workpiece W to the shelf unit U11.
  • control device 100 controls the transport device A8 to send the work W on the shelf unit U11 to the exposure device 3. Thereafter, the control device 100 receives the workpiece W subjected to exposure processing using energy rays (for example, i-ray) from the exposure device 3, and controls the transporting device to place it in the cell for the processing module 14 in the shelf unit U11. Control A8.
  • energy rays for example, i-ray
  • control device 100 controls the transport device A3 to transport the workpiece W in the shelf unit U11 to each unit in the processing module 14, and controls the developing unit U3 and the heat processing unit to develop the resist film on the workpiece W. Controls unit U4. By developing the resist film, a resist pattern is formed on the surface of the workpiece W.
  • control device 100 controls the transport device A3 to return the work W to the shelf unit U10, and controls the transport device A7 and the transport device A1 to return the work W to the carrier C. With the above steps, the coating and developing process for one workpiece W is completed.
  • the control device 100 causes the coating and developing device 2 to perform the coating and developing process on each of the subsequent plurality of works W in the same manner as described above.
  • An input/output device may be connected to the control device 100.
  • the input/output device is a device for inputting input information indicating instructions from a user such as an operator into the control device 100, and outputting information from the control device 100 to the user.
  • the input/output device may include a keyboard, an operation panel, or a mouse as an input device, and may include a monitor (for example, a liquid crystal display) as an output device.
  • the specific configuration of the substrate processing apparatus is not limited to the configuration of the substrate processing system 1 illustrated above.
  • the substrate processing apparatus may be of any type as long as it includes a developing unit that performs development on a substrate on which a resist film is formed, and a control device that can control the developing unit.
  • the developing unit U3 of the processing module 14 will be described in detail with reference to FIGS. 3 and 4.
  • the developing unit U3 includes a housing H, a holding rotation section 20, a developer supply section 30, a rinse liquid supply section 40 (supply section), and a gas supply section 50 (supply section). ), a cover member 70, and a blower B.
  • the housing H accommodates the holding rotation unit 20, the developer supply unit 30, the rinsing liquid supply unit 40, the gas supply unit 50, the cover member 70, and the blower B.
  • the holding/rotating unit 20 holds and rotates the workpiece W.
  • the holding/rotating unit 20 is capable of holding the workpiece W without rotating it, or holding the workpiece W while rotating it.
  • the holding rotation section 20 includes, for example, a rotation drive section 22, a shaft 24, and a holding section 26.
  • the rotation drive unit 22 operates based on an operation instruction from the control device 100 and rotates the shaft 24.
  • the rotation drive unit 22 includes a power source such as an electric motor, for example.
  • the holding part 26 is provided at the tip of the shaft 24.
  • a workpiece W is placed on the holding portion 26 .
  • the holding portion 26 holds the workpiece W substantially horizontally, for example, by suction or the like.
  • the holding/rotating unit 20 rotates the work W around an axis (rotation axis) perpendicular to the surface Wa of the work W while the work W is in a substantially horizontal posture.
  • the holding part 26 may hold the workpiece W so that the rotation axis substantially coincides with the center CP of the workpiece W (see FIG. 4(a)).
  • the developer supply unit 30 supplies the developer L1 to the surface Wa of the workpiece W held by the holding and rotating unit 20 (holding unit 26).
  • the developer L1 is a chemical solution for developing a resist film (hereinafter referred to as "resist film R") formed on the surface Wa of the workpiece W.
  • supplying a fluid such as a liquid or a gas (e.g., developer L1) to the surface Wa of the workpiece W means that it is applied to a film such as a resist film R or a liquid film formed on the surface Wa. This corresponds to bringing the fluid into contact with each other.
  • the developer supply section 30 includes, for example, a liquid feeding section 32, a driving section 34, and a developing nozzle 36.
  • the liquid feeding unit 32 sends the developer L1 stored in a container (not shown) to the developing nozzle 36 using a pump or the like (not shown).
  • the drive unit 34 moves the developing nozzle 36 at least in the direction along the surface Wa of the workpiece W (horizontal direction) based on an operation instruction from the control device 100.
  • the developing nozzle 36 is supported by an arm or the like (not shown).
  • the drive unit 34 moves the developing nozzle 36 by moving the arm.
  • the developing nozzle 36 discharges the developing solution L1 supplied from the liquid feeding section 32 toward the surface Wa of the workpiece W.
  • the developer L1 when the developer L1 is discharged from the developing nozzle 36 toward the center of the workpiece W while the workpiece W is rotating, the developer L1 spreads over the surface Wa of the workpiece W using centrifugal force, and the developer L1 spreads over the surface Wa of the workpiece W.
  • the developer L1 is supplied so as to cover the entire surface Wa.
  • the developing nozzle 36 may be configured to discharge the developing solution L1 while moving from the center of the workpiece W toward the outer periphery, for example.
  • the rinsing liquid supply section 40 supplies the rinsing liquid L2 to the peripheral area of the surface Wa of the workpiece W held by the holding and rotating section 20 (holding section 26). Water (for example, pure water) is used as the rinse liquid L2.
  • the rinsing liquid supply section 40 includes a first rinsing liquid supply section 40A and a second rinsing liquid supply section 40B.
  • the first rinsing liquid supply section 40A includes, for example, a liquid feeding section 42A, a driving section 44A, and a rinsing nozzle 46A.
  • the liquid sending unit 42A sends out the rinsing liquid L2 stored in a container (not shown) to the rinsing nozzle 46A using a pump or the like (not shown).
  • the drive unit 44A moves the rinse nozzle 46A based on an operation instruction from the control device 100.
  • the rinse nozzle 46A is supported by, for example, an arm 47A shown in FIG. 4.
  • the drive unit 44A may move the rinse nozzle 46A by moving the arm 47A.
  • the rinse nozzle 46A is arranged above the surface Wa of the workpiece W. As shown in FIG. 4(a), the rinse nozzle 46A of the first rinse liquid supply section 40A extends in a direction along the rotational direction A of the work W in a plan view. Further, as shown in FIG. 4(c), the rinse nozzle 46A (extending direction of the rinse nozzle 46A) is inclined with respect to the surface Wa of the workpiece W in a side view.
  • the angle of inclination of the rinse nozzle 46A with respect to the surface Wa is, for example, about 30° to 60°, and as an example, the angle of inclination is 45°. As a result, the rinse liquid L2 is discharged diagonally downward from the rinse nozzle 46A.
  • the rinse nozzle 46A is arranged so that the discharged rinse liquid L2 is directed along the rotational direction A on the surface Wa of the workpiece W. That is, at the discharge position P1 where the rinse liquid L2 discharged from the rinse nozzle 46A contacts the surface Wa of the workpiece W, the discharge direction of the rinse liquid L2 is relative to the straight line connecting the discharge position P1 and the center CP of the workpiece W. The position of the rinse nozzle 46A is adjusted so that it is orthogonal to the rinsing nozzle 46A.
  • the drive unit 44A may move the rinse nozzle 46A along the direction in which a straight line connecting the discharge position P1 and the center CP of the workpiece W extends. At this time, the drive unit 44A may move the rinse nozzle 46A so that the discharge position P1 moves on one straight line extending from the center CP of the workpiece W.
  • the second rinsing liquid supply section 40B includes, for example, a liquid feeding section 42B, a driving section 44B, and a rinsing nozzle 46B.
  • the liquid sending unit 42B sends out the rinsing liquid L2 stored in a container (not shown) to the rinsing nozzle 46B using a pump or the like (not shown).
  • the drive unit 44B moves the rinse nozzle 46B based on an operation instruction from the control device 100. Rinse nozzle 46B is supported by arm 47B shown in FIG. The drive unit 44B may move the rinse nozzle 46B by moving the arm 47B.
  • the rinse nozzle 46B is arranged above the surface Wa of the workpiece W. As shown in FIG. 4(a), the rinse nozzle 46B of the second rinse liquid supply section 40B extends in the radial direction of the workpiece W in plan view, and has a discharge port facing outward from the workpiece W. I'm on my way. Further, as shown in FIG. 4(b), the rinse nozzle 46B (extending direction of the rinse nozzle 46B) is inclined with respect to the surface Wa of the work W in a side view.
  • the angle of inclination of the rinse nozzle 46B with respect to the surface Wa is, for example, about 30° to 60°, and as an example, the angle of inclination is 45°.
  • the rinse liquid L2 is discharged diagonally downward from the rinse nozzle 46B.
  • the rinse nozzle 46B is arranged so that the discharged rinse liquid L2 is on the surface Wa of the workpiece W in the radial direction of the workpiece W. That is, at the discharge position P2 where the rinse liquid L2 discharged from the rinse nozzle 46B contacts the surface Wa of the workpiece W, the discharge direction of the rinse liquid L2 is along the straight line connecting the discharge position P2 and the center CP of the workpiece W.
  • the position of the rinse nozzle 46B is adjusted so that it extends toward the outside of the workpiece W.
  • the drive unit 44B may move the rinse nozzle 46B along the direction in which a straight line connecting the discharge position P2 and the center CP of the workpiece W extends, that is, along the radial direction. At this time, the drive unit 44B moves the discharge position P2 on a straight line extending from the center CP of the workpiece W, and the rinse nozzle 46B itself moves on a straight line connecting the discharge position P2 and the center CP of the workpiece W. The rinse nozzle 46B may be moved so as to move the rinsing nozzle 46B.
  • the gas supply unit 50 supplies a predetermined gas to the surface Wa of the workpiece W.
  • the gas supplied by the gas supply unit 50 (hereinafter referred to as "gas G") may be an inert gas, and is nitrogen gas in one example.
  • Gas G is used to remove the rinsing liquid L2 from the surface Wa of the workpiece W. After the developer L1 present on the workpiece W is washed away with the rinsing liquid L2, the gas G is supplied to the center CP of the workpiece W, so that the surface Wa of the workpiece W is exposed at the center of the surface Wa of the workpiece W. A region is formed. A circumferential gas-liquid interface is formed around the area where the surface Wa is exposed.
  • the gas-liquid interface corresponds to the boundary between the region where the rinse liquid L2 remains and the region where the surface Wa is exposed.
  • the gas supply section 50 includes, for example, a gas delivery section 52 and a gas nozzle 56.
  • the gas delivery unit 52 sends gas G stored in a container (not shown) to a gas nozzle 56 using a pump or the like (not shown).
  • the gas nozzle 56 may be arranged above the workpiece W, and may inject gas so as to spread in various directions (radially) as the distance from the gas nozzle 56 increases.
  • the gas nozzle 56 may be formed with a plurality of ejection ports extending at different angles relative to the surface Wa of the workpiece W, for example.
  • Gas nozzle 56 may be supported by arm 57 shown in FIG. At this time, the drive unit 54 may move the gas nozzle 56 by moving the arm 57.
  • the gas nozzle 56 may be movable radially outward from the center CP of the workpiece W, for example.
  • the gas nozzle 56 may be connected (fixed) to the rinse nozzle 46A or the rinse nozzle 46B.
  • the drive unit 44A or 44B moves not only the rinse nozzle but also the gas nozzle 56 along the surface Wa.
  • the cover member 70 is provided around the holding and rotating section 20.
  • the cover member 70 includes, for example, a cup body 72, a drain port 74, and an exhaust port 76.
  • the cup body 72 functions as a liquid collection container that receives the developer L1 and the rinse liquid L2 supplied to the workpiece W for liquid processing.
  • the liquid drain port 74 is provided at the bottom of the cup body 72, and discharges the liquid collected by the cup body 72 to the outside of the developing unit U3.
  • the exhaust port 76 is provided at the bottom of the cup body 72.
  • the developing unit U3 has exhaust portions V1 and V2.
  • the exhaust section V1 is provided at the lower part of the casing H, and discharges the gas inside the casing H by operating based on an operation instruction from the control device 100.
  • the exhaust portion V1 may be, for example, a damper whose exhaust amount can be adjusted according to the degree of opening.
  • the temperature, pressure, humidity, etc. within the housing H can be controlled by adjusting the amount of exhaust air from the housing H using the exhaust portion V1.
  • the exhaust section V1 may be controlled to constantly exhaust the inside of the casing H during the liquid treatment on the workpiece W.
  • the exhaust part V2 is provided at the exhaust port 76, and discharges the gas in the cup body 72 by operating based on an operation instruction from the control device 100.
  • the downflow flowing around the workpiece W is discharged to the outside of the housing H of the developing unit U3 through the exhaust port 76 and the exhaust portion V2.
  • the exhaust portion V2 may be, for example, a damper whose exhaust amount can be adjusted according to the degree of opening.
  • the blower B is arranged above the holding rotation section 20 and the cover member 70 in the housing H of the developing unit U3. Blower B forms a downward flow toward cover member 70 based on an operation instruction from control device 100 .
  • the blower B may be controlled to constantly form a downward flow during the liquid treatment on the workpiece W.
  • the control device 100 has a storage unit 102 and a control unit 104 as functional configurations.
  • the storage unit 102 stores a program for operating each part of the coating and developing device 2 including the developing unit U3.
  • the storage unit 102 also stores various data (for example, information related to signals for operating the developing unit U3) and information from sensors provided in each part.
  • the storage unit 102 is, for example, a semiconductor memory, an optical recording disk, a magnetic recording disk, or a magneto-optical recording disk.
  • the program may also be included in an external storage device separate from the storage unit 102 or an intangible medium such as a propagation signal.
  • the program may be installed in the storage unit 102 from these other media, and the program may be stored in the storage unit 102.
  • the control unit 104 controls the operation of each part of the coating and developing device 2 based on the program read from the storage unit 102.
  • the control unit 104 at least holds and rotates the work W in the holding/rotating unit 20 and continues discharging inert gas from the gas nozzle to the work W after the developer has been supplied.
  • the control device 100 is composed of one or more control computers.
  • the control device 100 includes a circuit 150 shown in FIG. Circuit 150 includes one or more processors 152, memory 154, storage 156, input/output ports 158, and timer 162.
  • Storage 156 includes a computer-readable storage medium, such as a hard disk.
  • the storage medium stores a program for causing the control device 100 to execute a substrate processing method to be described later.
  • the storage medium may be a removable medium such as a nonvolatile semiconductor memory, a magnetic disk, or an optical disk.
  • the memory 154 temporarily stores programs loaded from the storage medium of the storage 156 and the results of calculations by the processor 152.
  • the processor 152 cooperates with the memory 154 to execute the above program.
  • the input/output port 158 is connected to the holding rotation section 20, the developer supply section 30, the rinsing solution supply section 40 (the first rinsing solution supply section 40A and the second rinsing solution supply section 40B), and the exhaust section according to instructions from the processor 152. Electric signals are input/output between V1, V2, blower B, etc.
  • the timer 162 measures elapsed time, for example, by counting reference pulses of a constant period.
  • the hardware configuration of the control device 100 may include a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) that integrates the dedicated logic circuit.
  • FIG. 6 is a flow diagram illustrating an overview of the liquid treatment performed on the workpiece W.
  • control device 100 controls each part of the coating and developing device 2 to process the workpiece W in the processing modules 11 to 13, thereby forming a resist film R on the surface Wa of the workpiece W (step S01).
  • control device 100 controls each part of the coating and developing device 2 to transport the work W from the processing module 13 to the exposure device 3 using the transport device A7 or the like.
  • a control device different from the control device 100 controls the exposure device 3 to cause the exposure device 3 to expose the resist film R formed on the surface Wa of the workpiece W in a predetermined pattern (step S02 ).
  • control device 100 controls each part of the coating and developing device 2 to transport the workpiece W from the exposure device 3 to the developing unit U3 of the processing module 14. Thereby, the workpiece W is held by the holding/rotating section 20 with the front surface Wa facing upward.
  • control device 100 controls the developer supply section 30 of the development unit U3 to supply the developer L1 to the surface Wa of the workpiece W, that is, the upper surface of the resist film R (step S03).
  • step S03 the control device 100 controls the developer supply unit 30 to move the developer nozzle 36 horizontally above the non-rotating workpiece W, and supplies the developer L1 from the developer nozzle 36 to the surface of the workpiece W. It may also be supplied towards Wa.
  • the control device 100 may control the holding/rotating unit 20 and the developer supplying unit 30 to rotate the workpiece W by the holding/rotating unit 20 and move the developing nozzle 36 horizontally above the workpiece W while performing development.
  • the developer L1 may be supplied from the nozzle 36 toward the surface Wa of the workpiece W. In this case, the developer L1 is supplied spirally from the center to the periphery of the workpiece W, or from the periphery to the center of the workpiece W.
  • control device 100 controls the holding rotation unit 20 and the rinsing liquid supply unit 40 (the first rinsing liquid supply unit 40A and the second rinsing liquid supply unit 40B) to The rinsing liquid supply section 40 supplies the rinsing liquid L2 onto the upper surface of the liquid L1 (step S04).
  • the control device 100 may move the rinse nozzle 46A so that the discharge position P1 of the rinse liquid L2 by the rinse nozzle 46A of the first rinse liquid supply section 40A substantially coincides with the center CP of the workpiece W. .
  • the rinsing liquid L2 is supplied from the rinsing nozzle 46A while rotating the workpiece W, thereby spreading the rinsing liquid L2 over the entire surface Wa of the workpiece W.
  • the control device 100 directs the rinsing liquid L2 from the rinsing nozzle 46A toward the surface Wa of the work W while rotating the work W by the holding/rotating unit 20 and moving the rinsing nozzle 46A horizontally above the work W. It may be supplied.
  • the control device 100 may supply the rinse liquid L2 from both the rinse nozzle 46A of the first rinse liquid supply section 40A and the rinse nozzle 46B of the second rinse liquid supply section 40B.
  • the control device 100 causes the gas supply section 50 to supply gas G from the gas nozzle 56 to the surface Wa of the rotating workpiece W, that is, to the upper surface of the rinsing liquid L2 remaining on the surface Wa, thereby removing the rinsing liquid L2. (Step S05).
  • the control device 100 may move the gas nozzle 56 using the drive unit 54 so that the arrival position of the gas G2 substantially coincides with the center CP of the workpiece W at the time when the discharge of the gas G is started in step S05.
  • step S05 the gas G is supplied from the gas nozzle 56, and the rinsing liquid L2 is continuously supplied from step S04. That is, the rinsing liquid L2 is removed from the surface Wa of the work W while simultaneously supplying the gas G and the rinsing liquid L2.
  • the control device 100 starts (ON) the supply of gas G (nitrogen gas) from the gas nozzle 56 of the gas supply section 50.
  • the control device 100 supplies the rinsing liquid L2 from the rinsing nozzle 46A of the first rinsing liquid supply section 40A along the rotational direction of the workpiece W, and supplies the rinsing liquid L2 from the rinsing nozzle 46B of the second rinsing liquid supply section 40B to the workpiece W.
  • the supply of the rinsing liquid L2 along the direction toward the outer periphery is started (ON) (step S11).
  • the gas nozzle 56 is arranged to discharge the gas G at the center CP of the workpiece W, as shown in FIG. 8(a).
  • the rinse nozzle 46A that extends along the rotational direction and discharges the rinse liquid L2 in the rotational direction is arranged such that the discharge position P1 is located at a position spaced apart from the center CP by a distance r1 along the radial direction of the workpiece W. be done.
  • the rinse nozzle 46B which extends along the radial direction of the workpiece W and discharges the rinse liquid L2 in the outer peripheral direction along the radial direction, discharges the rinse liquid L2 at a position spaced apart from the center CP by a distance r2 along the radial direction of the workpiece W.
  • FIG. 8A schematically shows a state in which the distance r1 is set to 15 mm and the distance r2 is set to 30 mm.
  • the control device 100 controls the amount of rinsing liquid L2 discharged from the rinse nozzle 46B (the amount of discharge per unit time) with respect to the amount of rinsing liquid L2 discharged from the rinse nozzle 46A (the amount of discharge per unit time). ) is adjusted to reduce the discharge amount.
  • the discharge amount of the rinse liquid L2 from the rinse nozzle 46A is adjusted to 350 ml/min
  • the discharge amount of the rinse liquid L2 from the rinse nozzle 46B is adjusted to 100 ml/min.
  • FIG. 8B shows a state in which the gas nozzle 56 and the rinse nozzle 46A have been moved 15 mm toward the outer circumference of the workpiece W.
  • the area to which the rinse liquid L2 is supplied moves in the outer circumferential direction.
  • the region to which the gas G is supplied also moves toward the outer circumference.
  • the gas-liquid interface D0 which is the boundary between the rinsing liquid L2 formed at the center of the workpiece W and the dry core region D, gradually moves toward the outer circumference. That is, as shown in FIG. 8(b), the dry core region D gradually expands from the center CP toward the outer periphery.
  • the rinse nozzle 46B does not move at this stage, so in the state shown in FIG. 8(b), both the rinse nozzle 46A, which has moved 15 mm toward the outer circumferential direction, and the rinse nozzle 46B are at a position 30 mm away from the center CP. There will be. That is, the rinse nozzle 46A has moved to the same outer peripheral position as the rinse nozzle 46B.
  • FIG. 8C schematically shows a state where the discharge of the rinse liquid L2 from the rinse nozzle 46A is stopped.
  • the control device 100 may increase the discharge amount of the rinse liquid L2 from the rinse nozzle 46B to the same extent as the discharge amount from the rinse nozzle 46A (for example, 350 ml/min).
  • the control device 100 may increase the discharge amount of the rinse liquid L2 from the rinse nozzle 46B to the same extent as the discharge amount from the rinse nozzle 46A (for example, 350 ml/min).
  • the control device 100 moves the rinse nozzle 46B toward the outer circumference while continuing to discharge the gas G and the rinse liquid L2 (step S14).
  • the gas nozzle 56 has moved 15 mm from the center CP of the workpiece W in the outer circumferential direction.
  • the discharge position P2 of the rinse nozzle 46B is 30 mm (distance r2) away from the center CP of the workpiece W in the outer circumferential direction.
  • the control device 100 performs rinsing until the difference between the distance between the discharge position of the gas G and the center CP of the workpiece W and the distance between the discharge position P2 of the rinsing liquid L2 and the center CP of the workpiece W becomes 30 mm. Only the nozzle 46B is moved. Here, by moving only the rinse nozzle 46B by 15 mm in the outer circumferential direction, the distance between the discharge position P2 of the rinse nozzle 46B and the discharge position of the gas G becomes 30 mm.
  • the difference in distance from the center CP of the discharge position P2 of the rinse nozzle 46B and the discharge position of the gas G on the outer peripheral side of the workpiece W is the same as that of the discharge position P1 of the rinse nozzle 46A on the center side of the workpiece W. This is larger than the relationship with the gas G discharge position.
  • FIG. 8(d) shows a state in which the gas nozzle 56 and the rinse nozzle 46B are moved toward the outer circumference of the workpiece W compared to the state shown in FIG. 8(c). From the state of step S14, the gas nozzle 56 and the rinse nozzle 46B are moved toward the outer circumference of the work W while maintaining the distances from the center CP of the discharge position P2 of the rinse nozzle 46B and the discharge position of the gas G on the work W. .
  • the rinse nozzle 46B in the outer circumferential direction, the area to which the rinse liquid L2 is supplied moves in the outer circumferential direction. Furthermore, by moving the gas nozzle 56, the region to which the gas G is supplied also moves toward the outer circumference. As a result, the gas-liquid interface D0 of the workpiece W further moves toward the outer circumference. That is, as shown in FIG. 8(d), the dry core region D further expands toward the outer periphery, and the only region where the rinsing liquid L2 remains is the outer periphery.
  • the gas nozzle 56 and the rinse nozzle 46A may be configured to be integrally movable.
  • the control device 100 may also move the rinse nozzle 46A, to which the supply of the rinse liquid L2 has been stopped, together with the gas nozzle 56 in the outer circumferential direction.
  • step S14 This process calculates the difference in distance from the center CP of the discharge position P2 of the rinse nozzle 46B on the outer peripheral side of the workpiece W and the discharge position of the gas G by the gas nozzle 56 from the rinse nozzle 46A on the center side of the workpiece W. This is a process to make it larger than the relationship with the gas nozzle 56.
  • the discharge position P2 of the rinsing liquid L2 along the radial direction of the workpiece W and the discharge position of the gas G are separated by a certain distance (the distance between the discharge position of the gas G and the center CP of the workpiece W and the rinsing liquid L2 It is better to increase the difference between the distance between the discharge position P2 and the center CP of the work W, so that the rinsing liquid L2 is splashed by the gas G discharged from the gas nozzle 56 and scattered onto the dry core region D (splash). The possibility of this occurring can be reduced.
  • step S14 the distance between the discharge position P2 of the rinsing liquid L2 and the discharge position of the gas G along the radial direction of the workpiece W is made larger on the outer peripheral side than on the center side of the workpiece W. This can prevent residues after processing from remaining on the surface Wa of the workpiece W.
  • the rinse nozzle 46A is used to discharge the rinse liquid L2 in a direction along the rotational direction of the workpiece W, and further, the discharge position P1 of the rinse liquid L2 along the radial direction of the workpiece W and the gas
  • the distance from the discharge position of G it is possible to move the gas-liquid interface D0 toward the outer circumference while suppressing interference fringes and splashing of the rinse liquid L2, which prevents residue from remaining after processing. is prevented.
  • the gas nozzle 56, the rinse nozzle 46A, and the rinse nozzle 46B move independently. Therefore, as shown in FIG. 4 etc., the three nozzles are supported by mutually different arms and are movable independently.
  • the gas nozzle 56 and the rinse nozzle 46A may be configured to be integrally movable. In this case, when moving the gas nozzle 56 in the outer circumferential direction in step S14, the control device 100 may also move the rinse nozzle 46A, to which the supply of the rinse liquid L2 has been stopped, together with the gas nozzle 56 in the outer circumferential direction.
  • the supply section of the developing unit U3 has gas nozzles 56A and 56B (two gas nozzles).
  • the gas nozzles 56A and 56B may each be connected to a gas delivery section, and gas G stored in the container may be supplied by a pump or the like.
  • the gas nozzle 56A and the rinse nozzle 46A are supported by the first arm 61, and the gas nozzle 56B and the rinse nozzle 46B are supported by the second arm 62. At this time, the gas nozzles 56A and 56B are both arranged so as to be able to discharge the gas G to the center CP of the workpiece W.
  • FIG. 10A shows an example in which the discharge ports of the gas nozzles 56A and 56B overlap in plan view, the arrangement of the two nozzles can be changed as appropriate.
  • the rinse nozzle 46A provided on the first arm 61 is arranged such that the discharge position P1 is located at a position spaced apart from the center CP by a distance r1 along the radial direction of the workpiece W. That is, in the first arm 61, the discharge position of the gas nozzle 56A and the discharge position P1 of the rinse nozzle 46A are arranged at a distance r1 along the radial direction of the workpiece W.
  • the rinse nozzle 46B provided on the second arm 62 is arranged such that the discharge position P2 is located at a distance r2 from the center CP along the radial direction of the workpiece W.
  • the control device 100 executes the following procedure.
  • the control device 100 starts (ON) the supply of gas G (nitrogen gas) from the gas nozzle 56A of the first arm 61 and the gas nozzle 56B of the second arm 62.
  • the control device 100 supplies the rinsing liquid L2 from the rinsing nozzle 46A of the first arm 61 along the rotational direction of the workpiece W, and from the rinsing nozzle 46B of the second arm 62 in the direction toward the outer periphery of the workpiece W.
  • the supply of the rinsing liquid L2 is started (ON) (step S21). As shown in FIG.
  • the gas nozzles 56A and 56B are arranged so as to discharge the gas G at the center CP of the workpiece W.
  • the rinse nozzle 46A that extends along the rotational direction and discharges the rinse liquid L2 in the rotational direction is arranged such that the discharge position P1 is located at a position spaced apart from the center CP by a distance r1 along the radial direction of the workpiece W. be done.
  • the rinse nozzle 46B which extends along the radial direction of the workpiece W and discharges the rinse liquid L2 in the outer peripheral direction along the radial direction, discharges the rinse liquid L2 at a position spaced apart from the center CP by a distance r2 along the radial direction of the workpiece W. It is arranged so that position P2 is located.
  • a dry core region D is formed as shown in FIG.
  • An interface D0 is formed.
  • the amount of rinsing liquid L2 discharged from the rinse nozzle 46B (the amount of discharge per unit time) is smaller than the amount of rinsing liquid L2 discharged from the rinse nozzle 46A (the amount of discharge per unit time). Adjust the discharge amount so that As an example, the discharge amount of the rinse liquid L2 from the rinse nozzle 46A is adjusted to 350 ml/min, and the discharge amount of the rinse liquid L2 from the rinse nozzle 46B is adjusted to 100 ml/min.
  • FIG. 10(b) shows a state in which the first arm 61 has been moved 15 mm toward the outer circumference of the workpiece W.
  • the area to which the rinse liquid L2 is supplied moves in the outer circumferential direction.
  • the region to which the gas G is supplied also moves toward the outer circumference.
  • the gas-liquid interface D0 which is the boundary between the rinsing liquid L2 formed at the center of the workpiece W and the dry core region D, gradually moves toward the outer circumference. That is, as shown in FIG. 10(b), the dry core region D gradually expands from the center CP toward the outer periphery. Note that the gas nozzle 56B and rinse nozzle 46B of the second arm 62 do not move at this stage.
  • the control device 100 stops (turns off) the discharge of the rinse liquid L2 from the rinse nozzle 46A (step S23).
  • the discharge of gas G from the gas nozzle 56A may also be stopped.
  • FIG. 10C schematically shows a state in which the discharge of the rinse liquid L2 from the rinse nozzle 46A and the discharge of the gas G from the gas nozzle 56A are stopped.
  • the discharge amount of the rinse liquid L2 from the rinse nozzle 46B is increased (UP) to the same extent as the discharge amount from the rinse nozzle 46A (for example, 350 ml/min).
  • FIG. 10(d) shows a state in which the second arm 62 (gas nozzle 56B and rinse nozzle 46B) is moved toward the outer circumference of the workpiece W, compared to the state shown in FIG. 10(c).
  • the region to which the rinse liquid L2 is supplied and the region to which the gas G is supplied moves in the outer circumferential direction.
  • the gas-liquid interface D0 of the workpiece W moves toward the outer circumference. That is, as shown in FIG.
  • the dry core region D further expands toward the outer periphery, and the only region in which the rinsing liquid L2 remains is the outer periphery.
  • the gas G removes all of the rinse liquid L2 from the surface Wa of the workpiece W together with the resist dissolved by the reaction with the developer L1. .
  • the entire surface Wa of the workpiece W becomes a dry core region D, and a resist pattern formed by development appears.
  • the gas nozzles 56A and 56B move following the movement of the rinse nozzles 46A and 46B, respectively, so that the distance between the rinse nozzle and the gas nozzle is reduced. Distance is maintained. That is, the rinse nozzle can be moved in the outer circumferential direction while the discharge position of the rinse liquid L2 and the discharge position of the gas G are maintained in each of the first arm 61 and the second arm 62.
  • the control device 100 may perform control to gradually change the discharge amount of the gas nozzles 56A, 56B.
  • Example of changing the procedure for removing rinse liquid L2-2 A second modification of the procedure for removing the rinse liquid L2 in step S05 will be described with reference to FIGS. 11 and 12.
  • This modified example differs from the example described in FIGS. 7 and 8 in that the gas nozzle 56 does not move. Specifically, the gas nozzle 56 is fixed to the center CP of the workpiece W.
  • the control device 100 starts (ON) the supply of gas G (nitrogen gas) from the gas nozzle 56 of the gas supply section 50.
  • the control device 100 supplies the rinsing liquid L2 from the rinsing nozzle 46A of the first rinsing liquid supply section 40A along the rotational direction of the workpiece W, and supplies the rinsing liquid L2 from the rinsing nozzle 46B of the second rinsing liquid supply section 40B to the workpiece W.
  • the supply of the rinsing liquid L2 along the direction toward the outer periphery is started (ON) (step S31).
  • the gas nozzle 56 is arranged so as to discharge the gas G at the center CP of the workpiece W, as shown in FIG. 12(a). Further, the rinse nozzle 46A that extends along the rotational direction and discharges the rinse liquid L2 in the rotational direction is arranged such that the discharge position P1 is located at a position spaced apart from the center CP by a distance r1 along the radial direction of the workpiece W. be done.
  • the rinse nozzle 46B which extends along the radial direction of the workpiece W and discharges the rinse liquid L2 in the outer peripheral direction along the radial direction, discharges the rinse liquid L2 at a position spaced apart from the center CP by a distance r2 along the radial direction of the workpiece W. It is arranged so that position P2 is located.
  • the rinsing liquid L2 is gradually removed from the center to form a dry core region D in which the surface Wa of the workpiece W is exposed, as shown in FIG. 12(a). Ru.
  • a gas-liquid interface D0 is formed at the boundary between the region where the rinsing liquid L2 remains and the dry core region D.
  • the rinse nozzle 46A is arranged inside the rinse nozzle 46B. That is, the relationship r1 ⁇ r2 holds.
  • the distance r1 may be set, for example, to 10 to 25 mm, and the distance r2 may be set to 20 mm to 50 mm.
  • FIG. 12A schematically shows a state in which the distance r1 is set to 15 mm and the distance r2 is set to 30 mm.
  • the control device 100 controls the amount of rinsing liquid L2 discharged from the rinse nozzle 46B (the amount of discharge per unit time) with respect to the amount of rinsing liquid L2 discharged from the rinse nozzle 46A (the amount of discharge per unit time). ) is adjusted to reduce the discharge amount.
  • the discharge amount of the rinse liquid L2 from the rinse nozzle 46A is adjusted to 350 ml/min
  • the discharge amount of the rinse liquid L2 from the rinse nozzle 46B is adjusted to 100 ml/min.
  • FIG. 12(b) shows a state in which the rinse nozzle 46A has been moved 15 mm toward the outer circumference of the workpiece W.
  • the area to which the rinse liquid L2 is supplied moves in the outer circumferential direction.
  • the gas-liquid interface D0 which is the boundary between the rinsing liquid L2 formed at the center of the workpiece W and the dry core region D, gradually moves toward the outer periphery. That is, as shown in FIG. 12(b), the dry core region D gradually expands from the center CP to the outer peripheral side. Even if the gas nozzle 56 does not move, by moving the discharge position of the rinse liquid L2 from the rinse nozzle 46A toward the outer circumference, the gas-liquid interface D0 also moves toward the outer circumference.
  • FIG. 12C schematically shows a state where the discharge of the rinse liquid L2 from the rinse nozzle 46A is stopped.
  • the control device 100 may increase the discharge amount of the rinse liquid L2 from the rinse nozzle 46B to the same extent as the discharge amount from the rinse nozzle 46A (for example, 350 ml/min).
  • the control device 100 may increase the discharge amount of the rinse liquid L2 from the rinse nozzle 46B to the same extent as the discharge amount from the rinse nozzle 46A (for example, 350 ml/min).
  • FIG. 12(d) shows a state in which the rinse nozzle 46B is moved toward the outer circumference of the workpiece W compared to the state shown in FIG. 12(c).
  • the area to which the rinse liquid L2 is supplied moves in the outer circumferential direction.
  • the gas-liquid interface D0 of the workpiece W further moves toward the outer circumference. That is, as shown in FIG. 12(d), the dry core region D further expands toward the outer periphery, and the only region where the rinsing liquid L2 remains is the outer periphery.
  • the gas G removes all of the rinse liquid L2 from the surface Wa of the workpiece W together with the resist dissolved by the reaction with the developer L1. As a result, the entire surface Wa of the workpiece W becomes a dry core region D, and a resist pattern formed by development appears.
  • the gas nozzle 56, the rinse nozzle 46A, and the rinse nozzle 46B basically operate independently. Therefore, fine control may be possible by operating these nozzles individually.
  • the control device 100 may increase the amount of gas G discharged from the gas nozzle 56 as the distance between the gas nozzle 56 and the rinse nozzle 46 increases. Further, similarly to the first modification example shown in FIGS.
  • the supply section of the developing unit U3 is provided with a second gas nozzle that is movable integrally with the rinse nozzle 46B, and these are integrated into one arm. It may also have a configuration in which it operates in With such a configuration, the distance between the discharge position P2 of the rinse liquid L2 and the discharge position of the gas G can be reduced on the outer peripheral side of the workpiece W, that is, at the stage of forming the gas-liquid interface D0 by the rinse nozzle 46B and the gas nozzle. can be kept constant, and the rinsing liquid L2 can be effectively removed.
  • the rinsing liquid is supplied from the rinsing nozzles 46A and 46B while continuing to discharge inert gas from the gas nozzle 56 to the workpiece W after the developer has been supplied.
  • the discharge position of the workpiece W is moved from the center of the workpiece W toward the outer circumference.
  • the gas-liquid interface D0 formed by the inert gas and the rinsing liquid L2 can be moved from the center toward the outer periphery.
  • the discharge direction of the rinse liquid L2 is switched from the direction along the rotational direction of the workpiece W to the direction along the radial direction. .
  • the discharge direction of the rinse liquid from the rinse nozzle is along the rotational direction of the work W, thereby suppressing the generation of residue after the rinse liquid is removed. be done.
  • the discharge direction of the rinse liquid from the rinse nozzle is along the radial direction of the workpiece W, so that the generation of residue after the rinse liquid is removed is suppressed. Therefore, by switching to the discharge direction of the rinsing liquid as described above when moving the gas-liquid interface D0 toward the outer circumference, it is possible to reduce the residue on the surface of the work W after cleaning the work W. .
  • the first arm 61 provided with the first rinse nozzle 46A and the first gas nozzle 56A, and the second rinse nozzle 46B. and a second arm 62 provided with a second gas nozzle 56B.
  • the inert gas and rinse liquid are discharged from the first arm 61 whose discharge direction of the rinse liquid from the first rinse nozzle 46A is along the rotational direction of the workpiece W.
  • an inert gas and a rinsing liquid are supplied from the second arm 62 whose discharge direction of the rinsing liquid from the second rinsing nozzle 46B is along the radial direction of the substrate.
  • the gas nozzle 56, the first rinse nozzle 46A, and the second rinse nozzle may be provided on an arm that is movable independently of each other.
  • the direction of the rinsing liquid discharged from the first rinsing nozzle 46A is along the rotation of the workpiece W
  • the direction of the rinsing liquid discharged from the nozzle of the second rinsing nozzle 46B is the direction along the rotation of the workpiece W.
  • the direction may be along the radial direction of W.
  • the control device 100 sets a first state in which a gas-liquid interface D0 is formed by supplying the rinsing liquid from the first rinsing nozzle 46A closer to the center of the workpiece W than the predetermined switching position, and switches.
  • the state is switched to a second state in which a gas-liquid interface D0 is formed.
  • the gas nozzle 56 may be moved in the outer circumferential direction in response to the movement of the rinse nozzles 46A, 46B in the outer circumferential direction in the first state and the second state.
  • the air-liquid interface D0 is formed by supplying the rinsing liquid from the first rinsing nozzle 46A whose discharge direction is along the rotational direction of the substrate. Ru.
  • a gas-liquid interface D0 is formed by supplying the rinsing liquid from the second rinsing nozzle 46B whose discharge direction is along the radial direction of the substrate. Therefore, with the above configuration, it is possible to reduce the residue on the surface of the work W after cleaning the work W.
  • a gas nozzle 56A as a first gas nozzle whose discharge position is fixed at the center of the workpiece W, a first arm provided with a first rinse nozzle 46A, a second rinse nozzle 46B and a second gas nozzle are provided. and a second arm provided with a gas nozzle 56B.
  • the direction of the rinsing liquid discharged from the first rinsing nozzle 46A is along the rotation of the workpiece W
  • the direction of the rinsing liquid discharged from the nozzle of the second rinsing nozzle 46B is the direction along the rotation of the workpiece W.
  • the direction may be along the radial direction of W.
  • the control device 100 supplies the rinsing liquid from the first rinsing nozzle 46A while supplying the inert gas from the first gas nozzle 56A closer to the center of the workpiece W than the predetermined switching position.
  • the first state may be in which the gas-liquid interface D0 is formed.
  • the inert gas and the rinsing liquid may be supplied while moving the second arm to switch to the second state in which the gas-liquid interface D0 is formed.
  • the air-liquid interface D0 is formed by supplying the rinsing liquid from the first rinsing nozzle 46A whose discharge direction is along the rotational direction of the substrate. Ru.
  • a gas-liquid interface D0 is formed by supplying the rinsing liquid from the second rinsing nozzle 46B whose discharge direction is along the radial direction of the substrate. Therefore, with the above configuration, it is possible to reduce the residue on the surface of the work W after cleaning the work W.
  • the supply unit includes a first gas nozzle whose discharge position is fixed at the center of the workpiece W, and a first arm provided with a first rinse nozzle that can change the direction of the rinse liquid to be discharged. It may also be a configuration.
  • the control device 100 changes the direction of the rinse liquid discharged from the first rinse nozzle from the direction along the rotational direction of the workpiece W to the direction of the substrate. It may also be changed gradually along the radial direction.
  • the air-liquid interface D0 is formed by supplying the rinsing liquid from the first rinsing nozzle 46A whose discharge direction is along the rotational direction of the substrate. Ru.
  • a gas-liquid interface D0 is formed by supplying the rinsing liquid from the second rinsing nozzle 46B whose discharge direction is along the radial direction of the substrate. Therefore, with the above configuration, it is possible to reduce the residue on the surface of the work W after cleaning the work W.
  • the rinsing liquid in the coating and developing device 2 as a substrate processing device, in the first state, the rinsing liquid may also be discharged from the second rinsing nozzle 46B. Furthermore, in the second state, the discharge of the rinse liquid from the first rinse nozzle 46A may be stopped, and the amount of rinse liquid discharged from the second rinse nozzle 46B may be increased compared to the first state. With the above configuration, in the first state, the rinsing liquid is also discharged from the second rinsing nozzle, thereby promoting movement of the rinsing liquid from near the center of the substrate toward the outer circumference. On the other hand, in the second state, the discharge of the rinse liquid from the first rinse nozzle is stopped, so by increasing the discharge amount of the rinse liquid from the second rinse nozzle, the movement of the rinse liquid in the outer circumferential direction is prevented. It can be promoted.
  • control device 100 may be configured to stop the discharge of gas from the first gas nozzle 56A in the second state.
  • the distance between the discharge position of the rinse liquid from the first rinse nozzle on the work W in the first state and the discharge position of gas from the gas nozzle on the work W in the second state is The distance may be smaller than the distance between the discharge position of the rinsing liquid from the second gas nozzle and the discharge position of the gas from the second gas nozzle.
  • the distance between the discharge position of the rinsing liquid from the first rinse nozzle 46A on the first arm 61 and the discharge position of the gas from the first gas nozzle 56A on the second arm 62 is The distance may be smaller than the distance between the discharge position of the rinse liquid from the second rinse nozzle 46B and the discharge position of the gas from the second gas nozzle 56B.
  • the discharge amount of the rinse liquid L2 and the discharge amount of the gas G may be changed stepwise or continuously.
  • the discharge amount of the rinse liquid L2 and the discharge amount of the gas G may be adjusted as appropriate. Further, the rotation speed of the workpiece W, etc. may be adjusted as appropriate.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

A substrate processing device that processes a substrate, comprising: a retaining/rotating part that retains and rotates the substrate; a supply unit including at least one gas nozzle that supplies an inert gas to the substrate after a developing solution is supplied thereto, and at least one rinse nozzle that supplies a rinse solution to the substrate at a discharge position that is provided closer to the outer peripheral side than the position where gas is supplied by the gas nozzle; and a control unit, the control unit causing the discharge position of the rinse solution from the rinse nozzle to move from the center of the substrate toward the outer periphery of the substrate while maintaining the discharging of the inert gas from the gas nozzle, thereby causing a gas/liquid interface formed by the inert gas and the rinse solution to move from the center toward the outer periphery, and switching the direction of the rinse solution discharged from the rinse nozzle from a direction that follows the rotation direction of the substrate to a direction that follows the radial direction of the substrate when moving the rinse nozzle from the center of the substrate toward the outer periphery thereof.

Description

基板処理装置、基板処理方法、及び基板処理プログラムSubstrate processing equipment, substrate processing method, and substrate processing program
 本開示は、基板処理装置、基板処理方法、及び基板処理プログラムに関する。 The present disclosure relates to a substrate processing apparatus, a substrate processing method, and a substrate processing program.
 特許文献1では、基板の表面に対して洗浄液及び窒素ガスを吐出しながら洗浄を行う際に、洗浄液ノズルの吐出位置から基板の中心部までの距離とガスノズルの吐出位置から基板の中心部までの距離との差が小さくなるようにノズルを移動させる構成が示されている。 In Patent Document 1, when cleaning the surface of a substrate while discharging cleaning liquid and nitrogen gas, the distance from the discharge position of the cleaning liquid nozzle to the center of the substrate and the distance from the discharge position of the gas nozzle to the center of the substrate are determined. A configuration is shown in which the nozzle is moved so that the difference with the distance becomes smaller.
特開2015-008273号公報Japanese Patent Application Publication No. 2015-008273
 本開示は、基板を洗浄した後の基板表面の残渣を低減させることが可能な技術を提供する。 The present disclosure provides a technique that can reduce residue on the surface of a substrate after cleaning the substrate.
 本開示の一形態に係る基板処理装置は、基板を処理する基板処理装置であって、前記基板を保持して回転させる保持回転部と、現像液が供給された後の前記基板に対して不活性ガスを供給する少なくとも1つのガスノズルと、前記ガスノズルによるガス供給位置よりも外周側に設けられた吐出位置において前記基板に対してリンス液を供給する少なくとも1つのリンスノズルと、を含む供給部と、制御部と、を備え、前記制御部は、前記ガスノズルからの前記不活性ガスの吐出を継続しながら、前記リンスノズルからの前記リンス液の吐出位置を前記基板の中心から外周方向へと移動させることにより、前記不活性ガスと前記リンス液により形成される気液界面を前記中心から外周方向へと移動させ、前記外周方向への前記リンスノズルの移動の際に、前記リンスノズルから吐出される前記リンス液の方向を、前記基板の中心側から外周側へ向かう際に、前記基板の回転方向に沿った方向から前記基板の径方向に沿った方向へ切り替える。 A substrate processing apparatus according to an embodiment of the present disclosure is a substrate processing apparatus that processes a substrate, and includes a holding and rotating section that holds and rotates the substrate, and a holding and rotating section that holds and rotates the substrate, and a substrate processing apparatus that processes a substrate. a supply unit including at least one gas nozzle that supplies an active gas; and at least one rinsing nozzle that supplies a rinsing liquid to the substrate at a discharge position provided on an outer peripheral side of a gas supply position by the gas nozzle; , a control unit, the control unit moving the discharge position of the rinse liquid from the rinse nozzle from the center of the substrate toward the outer circumference while continuing discharge of the inert gas from the gas nozzle. By moving the gas-liquid interface formed by the inert gas and the rinsing liquid from the center to the outer circumferential direction, when the rinse nozzle moves in the outer circumferential direction, the gas-liquid interface formed by the inert gas and the rinsing liquid is The direction of the rinsing liquid is switched from a direction along the rotational direction of the substrate to a direction along the radial direction of the substrate when going from the center side to the outer peripheral side of the substrate.
 本開示によれば、基板を洗浄した後の基板表面の残渣を低減させることが可能な技術が提供される。 According to the present disclosure, a technique is provided that can reduce residue on the surface of a substrate after cleaning the substrate.
図1は、基板処理システムの一例を示す模式図である。FIG. 1 is a schematic diagram showing an example of a substrate processing system. 図2は、塗布現像装置の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a coating and developing device. 図3は、現像ユニットの一例を示す模式図である。FIG. 3 is a schematic diagram showing an example of a developing unit. 図4(a)~図4(c)は、現像ユニットのガスノズル及びリンスノズルの配置の一例を示す模式図である。FIGS. 4(a) to 4(c) are schematic diagrams showing an example of the arrangement of the gas nozzle and rinse nozzle of the developing unit. 図5は、制御装置のハードウェア構成の一例を示すブロック図である。FIG. 5 is a block diagram showing an example of the hardware configuration of the control device. 図6は、基板処理手順の一例を示すフロー図である。FIG. 6 is a flow diagram showing an example of a substrate processing procedure. 図7は、リンス液の除去手順の一例を示すフロー図である。FIG. 7 is a flow diagram illustrating an example of a rinsing liquid removal procedure. 図8(a)~図8(d)は、リンス液の除去手順の一例を示す模式図である。FIGS. 8(a) to 8(d) are schematic diagrams showing an example of a procedure for removing the rinse liquid. 図9は、リンス液の除去手順の一例を示すフロー図である。FIG. 9 is a flow diagram illustrating an example of a rinsing liquid removal procedure. 図10(a)~図10(d)は、リンス液の除去手順の一例を示す模式図である。FIGS. 10(a) to 10(d) are schematic diagrams showing an example of a rinse liquid removal procedure. 図11は、リンス液の除去手順の一例を示すフロー図である。FIG. 11 is a flow diagram illustrating an example of a rinsing liquid removal procedure. 図12(a)~図12(d)は、リンス液の除去手順の一例を示す模式図である。FIGS. 12(a) to 12(d) are schematic diagrams showing an example of a rinse liquid removal procedure.
 以下、種々の例示的実施形態について説明する。 Various exemplary embodiments will be described below.
 本開示の一形態に係る基板処理装置は、基板を処理する基板処理装置であって、前記基板を保持して回転させる保持回転部と、現像液が供給された後の前記基板に対して不活性ガスを供給する少なくとも1つのガスノズルと、前記ガスノズルによるガス供給位置よりも外周側に設けられた吐出位置において前記基板に対してリンス液を供給する少なくとも1つのリンスノズルと、を含む供給部と、制御部と、を備え、前記制御部は、前記ガスノズルからの前記不活性ガスの吐出を継続しながら、前記リンスノズルからの前記リンス液の吐出位置を前記基板の中心から外周方向へと移動させることにより、前記不活性ガスと前記リンス液により形成される気液界面を前記中心から外周方向へと移動させ、前記基板の中心側から外周側への前記リンスノズルの移動の際に、前記リンスノズルから吐出される前記リンス液の方向を、前記基板の回転方向に沿った方向から前記基板の径方向に沿った方向へ切り替える。 A substrate processing apparatus according to an embodiment of the present disclosure is a substrate processing apparatus that processes a substrate, and includes a holding and rotating section that holds and rotates the substrate, and a holding and rotating section that holds and rotates the substrate, and a substrate processing apparatus that processes a substrate. a supply unit including at least one gas nozzle that supplies an active gas; and at least one rinsing nozzle that supplies a rinsing liquid to the substrate at a discharge position provided on an outer peripheral side of a gas supply position by the gas nozzle; , a control unit, the control unit moving the discharge position of the rinse liquid from the rinse nozzle from the center of the substrate toward the outer circumference while continuing discharge of the inert gas from the gas nozzle. By moving the gas-liquid interface formed by the inert gas and the rinsing liquid from the center toward the outer periphery, when moving the rinsing nozzle from the center side to the outer periphery side of the substrate, The direction of the rinsing liquid discharged from the rinsing nozzle is switched from a direction along the rotational direction of the substrate to a direction along the radial direction of the substrate.
 上記の基板処理装置では、現像液が供給された後の基板に対して、ガスノズルからの不活性ガスの吐出を継続しながら、リンスノズルからのリンス液の吐出位置を基板の中心から外周方向へと移動させることにより、不活性ガスと前記リンス液により形成される気液界面を前記中心から外周方向へと移動させる。このとき、基板の中心側から外周側へのリンスノズルの移動の際に、リンスノズルから吐出されるリンス液の方向が基板の回転方向に沿った方向から前記基板の径方向に沿った方向へ切り替えられる。基板の中心側では、気液界面を形成する際に、リンスノズルからのリンス液の吐出方向が基板の回転方向に沿った方向であることによって、リンス液除去後の残渣の発生が抑制される。一方、基板の外周側では、リンスノズルからのリンス液の吐出方向が基板の径方向に沿った方向であることによって、リンス液除去後の残渣の発生が抑制される。したがって、気液界面を外周方向へ移動させる際に、上記のようにリンス液の吐出方向へ切り替える構成とすることで、基板を洗浄した後の基板表面の残渣を低減することができる。 In the above-mentioned substrate processing apparatus, the rinsing liquid is discharged from the rinse nozzle from the center of the substrate toward the outer circumference while continuing to discharge inert gas from the gas nozzle to the substrate after the developer has been supplied. By moving this, the gas-liquid interface formed by the inert gas and the rinsing liquid is moved from the center toward the outer periphery. At this time, when the rinse nozzle moves from the center side of the substrate to the outer circumference side, the direction of the rinse liquid discharged from the rinse nozzle changes from the direction along the rotation direction of the substrate to the direction along the radial direction of the substrate. Can be switched. On the center side of the substrate, when forming a gas-liquid interface, the discharge direction of the rinsing liquid from the rinsing nozzle is along the rotational direction of the substrate, thereby suppressing the generation of residue after the rinsing liquid is removed. . On the other hand, on the outer peripheral side of the substrate, the discharge direction of the rinsing liquid from the rinsing nozzle is along the radial direction of the substrate, thereby suppressing the generation of residue after the rinsing liquid is removed. Therefore, by switching to the discharge direction of the rinsing liquid as described above when moving the gas-liquid interface toward the outer circumference, it is possible to reduce the amount of residue on the substrate surface after cleaning the substrate.
 前記供給部は、第1リンスノズル及び第1ガスノズルが設けられた第1アームと、第2リンスノズル及び第2ガスノズルが設けられた第2アームと、を有し、前記第1リンスノズルから吐出されるリンス液の方向は、前記基板の回転方向に沿った方向であり、前記第2リンスノズルから吐出されるリンス液の方向は、前記基板の径方向に沿った方向であり、前記制御部は、所定の切り替わり位置よりも前記基板の中心側において前記第1アームを移動させながら前記不活性ガス及び前記リンス液の供給を行うことで前記気液界面を形成する第1の状態から、前記切り替わり位置よりも前記基板の外周側において前記第2アームを移動させながら前記不活性ガス及び前記リンス液の供給を行うことで前記気液界面を形成する第2の状態へ切り替える態様であってもよい。 The supply unit includes a first arm provided with a first rinse nozzle and a first gas nozzle, and a second arm provided with a second rinse nozzle and a second gas nozzle, and discharges from the first rinse nozzle. The direction of the rinsing liquid discharged from the second rinsing nozzle is along the rotational direction of the substrate, and the direction of the rinsing liquid discharged from the second rinsing nozzle is along the radial direction of the substrate. is from a first state in which the gas-liquid interface is formed by supplying the inert gas and the rinsing liquid while moving the first arm closer to the center of the substrate than a predetermined switching position; The method may be switched to a second state in which the gas-liquid interface is formed by supplying the inert gas and the rinsing liquid while moving the second arm closer to the outer periphery of the substrate than the switching position. good.
 上記の構成とすることで、基板の中心側では、第1リンスノズルからのリンス液の吐出方向が基板の回転方向に沿った方向である第1アームから不活性ガスとリンス液とを供給して気液界面を形成することで、リンス液除去後の残渣の発生が抑制される。一方、基板の外周側では、第2リンスノズルからのリンス液の吐出方向が基板の径方向に沿った方向である第2アームから不活性ガスとリンス液とを供給して気液界面を形成することで、リンス液除去後の残渣の発生が抑制される。したがって、上記の構成とすることによって基板を洗浄した後の基板表面の残渣を低減することができる。 With the above configuration, on the center side of the substrate, the inert gas and the rinsing liquid are supplied from the first arm whose discharge direction of the rinsing liquid from the first rinsing nozzle is along the rotational direction of the substrate. By forming a gas-liquid interface, the generation of residue after the rinsing liquid is removed is suppressed. On the other hand, on the outer peripheral side of the substrate, an air-liquid interface is formed by supplying inert gas and rinsing liquid from the second arm, in which the direction of discharge of the rinsing liquid from the second rinsing nozzle is along the radial direction of the substrate. By doing so, the generation of residue after the rinsing liquid is removed is suppressed. Therefore, with the above configuration, it is possible to reduce the amount of residue on the surface of the substrate after cleaning the substrate.
 前記制御部は、前記第1の状態において、前記第2リンスノズルからも前記リンス液を吐出させ、前記第2の状態において、前記第1リンスノズルからの前記リンス液の吐出を停止させると共に、前記第2リンスノズルからの前記リンス液の吐出量を前記第1の状態と比べて増加させる態様であってもよい。 The control unit causes the second rinse nozzle to also discharge the rinse liquid in the first state, and stops discharge of the rinse liquid from the first rinse nozzle in the second state, and The aspect may be such that the amount of the rinsing liquid discharged from the second rinsing nozzle is increased compared to the first state.
 上記の構成とすることで、第1の状態では、第2リンスノズルからもリンス液を吐出することで、基板の中心付近から外周方向へのリンス液の移動が促進される。一方、第2の状態では、第1リンスノズルからのリンス液の吐出が停止されるため、第2リンスノズルからのリンス液の吐出量を増加させることによって、外周方向へのリンス液の移動を促進させることができる。 With the above configuration, in the first state, the rinsing liquid is also discharged from the second rinsing nozzle, thereby promoting the movement of the rinsing liquid from near the center of the substrate toward the outer circumference. On the other hand, in the second state, the discharge of the rinse liquid from the first rinse nozzle is stopped, so by increasing the discharge amount of the rinse liquid from the second rinse nozzle, the movement of the rinse liquid in the outer circumferential direction is prevented. It can be promoted.
 前記制御部は、前記第2の状態において、前記第1ガスノズルからの前記ガスの吐出を停止させる態様であってもよい。 The control unit may be configured to stop discharging the gas from the first gas nozzle in the second state.
 上記の構成とすることで、第2の状態における基板表面におけるガスの流れが安定し、気液界面の乱れを防止することができる。 With the above configuration, the flow of gas on the substrate surface in the second state is stabilized, and disturbances at the gas-liquid interface can be prevented.
 前記第1アームにおける前記第1リンスノズルからの前記リンス液の吐出位置と前記第1ガスノズルからの前記ガスの吐出位置との距離は、前記第2アームにおける前記第2リンスノズルからの前記リンス液の吐出位置と前記第2ガスノズルからの前記ガスの吐出位置との距離よりも小さい態様であってもよい。 The distance between the discharge position of the rinse liquid from the first rinse nozzle in the first arm and the discharge position of the gas from the first gas nozzle is the distance between the discharge position of the rinse liquid from the second rinse nozzle in the second arm. The distance between the discharge position of the gas and the discharge position of the gas from the second gas nozzle may be smaller than the distance between the gas discharge position and the discharge position of the gas from the second gas nozzle.
 基板上で気液界面を形成する場合、基板の中心側ではリンス液の吐出位置とガスの吐出位置とが近い方が残渣を抑制することができ、基板の外周側ではリンス液の吐出位置とガスの吐出位置とが離れていた方が残渣を抑制することができる。上記のように、第1アームでは吐出位置同士が近くなるようにノズルを配置し、第2アームでは吐出位置同士が遠くなるようにノズルを配置することで、洗浄後の残渣をさらに低減させることができる。 When forming a gas-liquid interface on a substrate, residue can be suppressed by having the rinsing liquid discharge position closer to the gas discharge position on the center side of the substrate, and closer to the rinsing liquid discharge position on the outer periphery of the substrate. Residue can be suppressed if the gas discharge position is separated from the gas discharge position. As mentioned above, the residue after cleaning can be further reduced by arranging the nozzles so that the discharge positions are close to each other in the first arm, and by arranging the nozzles so that the discharge positions are far from each other in the second arm. I can do it.
 前記供給部は、ガスノズルと、第1リンスノズルと、第2リンスノズルと、が互いに独立して移動可能なアームに設けられていて、前記第1リンスノズルから吐出されるリンス液の方向は、前記基板の回転方向に沿った方向であり、前記第2リンスノズルから吐出されるリンス液の方向は、前記基板の径方向に沿った方向であり、前記制御部は、所定の切り替わり位置よりも前記基板の中心側において前記第1リンスノズルからの前記リンス液の供給を行うことで前記気液界面を形成する第1の状態から、前記切り替わり位置よりも前記基板の外周側において前記第2リンスノズルからの前記リンス液の供給を行うことで前記気液界面を形成する第2の状態へ切り替えると共に、前記第1の状態及び前記第2の状態において前記外周方向への前記リンスノズルの移動に対応させて前記ガスノズルを前記外周方向へ移動させる態様であってもよい。 In the supply unit, a gas nozzle, a first rinse nozzle, and a second rinse nozzle are provided on an arm that is movable independently of each other, and the direction of the rinse liquid discharged from the first rinse nozzle is The direction is along the rotational direction of the substrate, the direction of the rinsing liquid discharged from the second rinsing nozzle is the direction along the radial direction of the substrate, and the control section From the first state in which the air-liquid interface is formed by supplying the rinsing liquid from the first rinsing nozzle on the center side of the substrate, the second rinsing liquid is applied on the outer peripheral side of the substrate from the switching position. Switching to a second state in which the gas-liquid interface is formed by supplying the rinsing liquid from the nozzle, and also causing the rinsing nozzle to move in the outer circumferential direction in the first state and the second state. The gas nozzle may be moved in the outer circumferential direction accordingly.
 上記の構成とすることで、基板の中心側では、リンス液の吐出方向が基板の回転方向に沿った方向である第1リンスノズルからリンス液を供給して気液界面を形成することで、リンス液除去後の残渣の発生が抑制される。一方、基板の外周側では、リンス液の吐出方向が基板の径方向に沿った方向である第2リンスノズルからリンス液を供給して気液界面を形成することで、リンス液除去後の残渣の発生が抑制される。したがって、上記の構成とすることによって基板を洗浄した後の基板表面の残渣を低減することができる。 With the above configuration, on the center side of the substrate, the rinsing liquid is supplied from the first rinsing nozzle whose discharge direction is along the rotational direction of the substrate to form a gas-liquid interface. The generation of residue after the rinse solution is removed is suppressed. On the other hand, on the outer peripheral side of the substrate, by supplying the rinsing liquid from the second rinsing nozzle whose discharge direction is along the radial direction of the substrate and forming a gas-liquid interface, the residue after the rinsing liquid is removed is removed. The occurrence of is suppressed. Therefore, with the above configuration, it is possible to reduce the amount of residue on the surface of the substrate after cleaning the substrate.
 前記制御部は、前記第1の状態において、前記第2リンスノズルからも前記リンス液を吐出させ、前記第2の状態において、前記第1リンスノズルからの前記リンス液の吐出を停止させると共に、前記第2リンスノズルからの前記リンス液の吐出量を前記第1の状態と比べて増加させる態様であってもよい。 The control unit causes the second rinse nozzle to also discharge the rinse liquid in the first state, and stops discharge of the rinse liquid from the first rinse nozzle in the second state, and The aspect may be such that the amount of the rinsing liquid discharged from the second rinsing nozzle is increased compared to the first state.
 上記の構成とすることで、第1の状態では、第2リンスノズルからもリンス液を吐出することで、基板の中心付近から外周方向へのリンス液の移動が促進される。一方、第2の状態では、第1リンスノズルからのリンス液の吐出が停止されるため、第2リンスノズルからのリンス液の吐出量を増加させることによって、外周方向へのリンス液の移動を促進させることができる。 With the above configuration, in the first state, the rinsing liquid is also discharged from the second rinsing nozzle, thereby promoting the movement of the rinsing liquid from near the center of the substrate toward the outer circumference. On the other hand, in the second state, the discharge of the rinse liquid from the first rinse nozzle is stopped, so by increasing the discharge amount of the rinse liquid from the second rinse nozzle, the movement of the rinse liquid in the outer circumferential direction is prevented. It can be promoted.
 前記第1の状態における、前記基板上での前記第1リンスノズルからの前記リンス液の吐出位置と前記ガスノズルからの前記ガスの吐出位置との距離は、前記第2の状態における、前記基板上での前記第2リンスノズルからの前記リンス液の吐出位置と前記ガスノズルからの前記ガスの吐出位置との距離よりも小さい態様であってもよい。 The distance between the discharge position of the rinsing liquid from the first rinse nozzle on the substrate in the first state and the discharge position of the gas from the gas nozzle on the substrate in the second state is The distance may be smaller than the distance between the discharge position of the rinse liquid from the second rinse nozzle and the discharge position of the gas from the gas nozzle.
 基板上で気液界面を形成する場合、基板の中心側ではリンス液の吐出位置とガスの吐出位置とが近い方が残渣を抑制することができ、基板の外周側ではリンス液の吐出位置とガスの吐出位置とが離れていた方が残渣を抑制することができる。上記のように、第1の状態では、ガス液とリンス液との吐出位置同士が近くなるようにノズルを配置し、第2の状態ではこれらの吐出位置同士が遠くなるようにノズルを配置することで、洗浄後の残渣をさらに低減させることができる。 When forming a gas-liquid interface on a substrate, residue can be suppressed by having the rinsing liquid discharge position closer to the gas discharge position on the center side of the substrate, and closer to the rinsing liquid discharge position on the outer periphery of the substrate. Residue can be suppressed if the gas discharge position is separated from the gas discharge position. As described above, in the first state, the nozzle is arranged so that the gas liquid and rinsing liquid discharge positions are close to each other, and in the second state, the nozzle is arranged so that these discharge positions are far apart. By doing so, it is possible to further reduce the residue after washing.
 前記供給部は、前記基板の中央に吐出位置が固定された第1ガスノズルと、第1リンスノズルが設けられた第1アームと、第2リンスノズル及び第2ガスノズルが設けられた第2アームと、を有し、前記第1リンスノズルから吐出されるリンス液の方向は、前記基板の回転方向に沿った方向であり、前記第2リンスノズルから吐出されるリンス液の方向は、前記基板の径方向に沿った方向であり、前記制御部は、所定の切り替わり位置よりも前記基板の中心側において前記第1ガスノズルから不活性ガスの供給をしながら前記第1アームを移動させながら前記第1リンスノズルからの前記リンス液の供給を行うことで前記気液界面を形成する第1の状態から、前記切り替わり位置よりも前記基板の外周側において、前記第2アームを移動させながら前記不活性ガス及び前記リンス液の供給を行うことで前記気液界面を形成する第2の状態へ切り替える態様であってもよい。 The supply unit includes a first gas nozzle whose discharge position is fixed at the center of the substrate, a first arm provided with a first rinse nozzle, and a second arm provided with a second rinse nozzle and a second gas nozzle. , the direction of the rinse liquid discharged from the first rinse nozzle is along the rotation direction of the substrate, and the direction of the rinse liquid discharged from the second rinse nozzle is along the rotation direction of the substrate. The direction is along the radial direction, and the control unit moves the first arm while supplying inert gas from the first gas nozzle closer to the center of the substrate than a predetermined switching position. From the first state in which the gas-liquid interface is formed by supplying the rinsing liquid from the rinsing nozzle, the second arm is moved to the outer peripheral side of the substrate from the switching position, and the inert gas is The state may be changed to a second state in which the gas-liquid interface is formed by supplying the rinsing liquid.
 上記の構成とすることで、基板の中心側では、リンス液の吐出方向が基板の回転方向に沿った方向である第1リンスノズルからリンス液を供給し、基板の中央に吐出位置が固定された第1ガスノズルとで気液界面を形成することで、リンス液除去後の残渣の発生が抑制される。一方、基板の外周側では、第2リンスノズルからのリンス液の吐出方向が基板の径方向に沿った方向である第2アームから不活性ガスとリンス液とを供給して気液界面を形成することで、リンス液除去後の残渣の発生が抑制される。したがって、上記の構成とすることによって基板を洗浄した後の基板表面の残渣を低減することができる。 With the above configuration, on the center side of the substrate, the rinsing liquid is supplied from the first rinsing nozzle whose discharge direction is along the rotational direction of the substrate, and the discharge position is fixed at the center of the substrate. By forming a gas-liquid interface with the first gas nozzle, the generation of residue after the rinse liquid is removed is suppressed. On the other hand, on the outer peripheral side of the substrate, an air-liquid interface is formed by supplying inert gas and rinsing liquid from the second arm, in which the direction of discharge of the rinsing liquid from the second rinsing nozzle is along the radial direction of the substrate. By doing so, the generation of residue after the rinsing liquid is removed is suppressed. Therefore, with the above configuration, it is possible to reduce the amount of residue on the surface of the substrate after cleaning the substrate.
 前記制御部は、前記第1の状態において、前記第2リンスノズルからも前記リンス液を吐出させ、前記第2の状態において、前記第1リンスノズルからの前記リンス液の吐出を停止させると共に、前記第2リンスノズルからの前記リンス液の吐出量を前記第1の状態と比べて増加させる態様であってもよい。 The control unit causes the second rinse nozzle to also discharge the rinse liquid in the first state, and stops discharge of the rinse liquid from the first rinse nozzle in the second state, and The aspect may be such that the amount of the rinsing liquid discharged from the second rinsing nozzle is increased compared to the first state.
 上記の構成とすることで、第1の状態では、第2リンスノズルからもリンス液を吐出することで、基板の中心付近から外周方向へのリンス液の移動が促進される。一方、第2の状態では、第1リンスノズルからのリンス液の吐出が停止されるため、第2リンスノズルからのリンス液の吐出量を増加させることによって、外周方向へのリンス液の移動を促進させることができる。 With the above configuration, in the first state, the rinsing liquid is also discharged from the second rinsing nozzle, thereby promoting the movement of the rinsing liquid from near the center of the substrate toward the outer circumference. On the other hand, in the second state, the discharge of the rinse liquid from the first rinse nozzle is stopped, so by increasing the discharge amount of the rinse liquid from the second rinse nozzle, the movement of the rinse liquid in the outer circumferential direction is prevented. It can be promoted.
 前記第1の状態における、前記基板上での前記第1リンスノズルからの前記リンス液の吐出位置と前記ガスノズルからの前記ガスの吐出位置との距離は、前記第2の状態における、前記基板上での前記第2リンスノズルからの前記リンス液の吐出位置と前記第2ガスノズルからの前記ガスの吐出位置との距離よりも小さい態様であってもよい。 The distance between the discharge position of the rinsing liquid from the first rinse nozzle on the substrate in the first state and the discharge position of the gas from the gas nozzle on the substrate in the second state is The distance may be smaller than the distance between the discharge position of the rinse liquid from the second rinse nozzle and the discharge position of the gas from the second gas nozzle.
 基板上で気液界面を形成する場合、基板の中心側ではリンス液の吐出位置とガスの吐出位置とが近い方が残渣を抑制することができ、基板の外周側ではリンス液の吐出位置とガスの吐出位置とが離れていた方が残渣を抑制することができる。上記のように、第1の状態では、ガス液とリンス液との吐出位置同士が近くなるようにノズルを配置し、第2の状態ではこれらの吐出位置同士が遠くなるようにノズルを配置することで、洗浄後の残渣をさらに低減させることができる。 When forming a gas-liquid interface on a substrate, residue can be suppressed by having the rinsing liquid discharge position closer to the gas discharge position on the center side of the substrate, and closer to the rinsing liquid discharge position on the outer periphery of the substrate. Residue can be suppressed if the gas discharge position is separated from the gas discharge position. As described above, in the first state, the nozzle is arranged so that the gas liquid and rinsing liquid discharge positions are close to each other, and in the second state, the nozzle is arranged so that these discharge positions are far apart. By doing so, it is possible to further reduce the residue after washing.
 前記供給部は、前記基板の中央に吐出位置が固定された第1ガスノズルと、吐出するリンス液の方向を変化させることが可能な第1リンスノズルが設けられた第1アームと、を有し、前記制御部は、前記外周方向への前記第1リンスノズルの移動の際に、前記第1リンスノズルから吐出される前記リンス液の方向を、前記基板の回転方向に沿った方向から前記基板の径方向に沿った方向へ徐々に変化させる態様であってもよい。 The supply unit includes a first gas nozzle whose discharge position is fixed at the center of the substrate, and a first arm provided with a first rinse nozzle that can change the direction of the rinse liquid to be discharged. , the control unit may change the direction of the rinsing liquid discharged from the first rinsing nozzle from a direction along the rotation direction of the substrate to a direction along the rotation direction of the substrate when the first rinsing nozzle moves in the outer circumferential direction. It may also be an aspect in which the temperature is gradually changed in a direction along the radial direction.
 上記の構成とすることで、基板の中心側では、リンスノズルからのリンス液の吐出方向を基板の回転方向に沿った方向としてリンス液を供給して気液界面を形成することで、リンス液除去後の残渣の発生が抑制される。一方、基板の外周側では、リンスノズルからのリンス液の吐出方向を基板の径方向に沿った方向としてリンス液を供給して気液界面を形成することで、リンス液除去後の残渣の発生が抑制される。したがって、上記の構成とすることによって基板を洗浄した後の基板表面の残渣を低減することができる。 With the above configuration, on the center side of the substrate, the rinsing liquid is supplied with the rinsing liquid ejected from the rinsing nozzle in the direction along the rotational direction of the substrate to form a gas-liquid interface. Generation of residue after removal is suppressed. On the other hand, on the outer circumferential side of the substrate, the rinsing liquid is supplied from the rinsing nozzle with the discharge direction along the radial direction of the substrate to form a gas-liquid interface, thereby preventing the generation of residue after the rinsing liquid is removed. is suppressed. Therefore, with the above configuration, it is possible to reduce the amount of residue on the surface of the substrate after cleaning the substrate.
 本開示の一形態に係る基板処理方法は、基板を処理する基板処理方法であって、保持回転部において前記基板を保持して回転させることと、現像液が供給された後の前記基板に対してガスノズルからの不活性ガスの吐出を継続しながら、前記ガスノズルによるガス供給位置よりも外周側に設けられた吐出位置において前記基板に対してリンス液を供給するリンスノズルからのリンス液の吐出位置を前記基板の中心から外周方向へと移動させることにより、前記不活性ガスと前記リンス液により形成される気液界面を前記中心から外周方向へと移動させることと、を含み、前記移動させることにおいて、前記基板の中心側から外周側への前記リンスノズルの移動の際に、前記リンスノズルから吐出される前記リンス液の方向を、前記基板の回転方向に沿った方向から前記基板の径方向に沿った方向へ切り替える。 A substrate processing method according to an embodiment of the present disclosure is a substrate processing method for processing a substrate, which includes holding and rotating the substrate in a holding rotation unit, and treating the substrate after a developer is supplied. a rinsing liquid discharge position from a rinsing nozzle that supplies the rinsing liquid to the substrate at a discharge position provided on the outer peripheral side of the gas supply position by the gas nozzle while continuing to discharge inert gas from the gas nozzle; moving a gas-liquid interface formed by the inert gas and the rinsing liquid from the center to the outer circumference of the substrate by moving the gas-liquid interface from the center to the outer circumference. When the rinsing nozzle is moved from the center side of the substrate to the outer circumferential side of the substrate, the direction of the rinsing liquid discharged from the rinsing nozzle is changed from a direction along the rotational direction of the substrate to a radial direction of the substrate. Switch in the direction along.
 上記の基板処理方法では、基板の中心側から外周側へのリンスノズルの移動の際に、リンスノズルから吐出されるリンス液の方向が基板の回転方向に沿った方向から前記基板の径方向に沿った方向へ切り替えられる。基板の中心側では、気液界面を形成する際に、リンスノズルからのリンス液の吐出方向が基板の回転方向に沿った方向であることによって、リンス液除去後の残渣の発生が抑制される。一方、基板の外周側では、リンスノズルからのリンス液の吐出方向が基板の径方向に沿った方向であることによって、リンス液除去後の残渣の発生が抑制される。したがって、気液界面を外周方向へ移動させる際に、上記のようにリンス液の吐出方向へ切り替える構成とすることで、基板を洗浄した後の基板表面の残渣を低減することができる。 In the above substrate processing method, when the rinsing nozzle is moved from the center side of the substrate to the outer periphery side, the direction of the rinsing liquid discharged from the rinsing nozzle is changed from the direction along the rotational direction of the substrate to the radial direction of the substrate. You can switch in the same direction. On the center side of the substrate, when forming a gas-liquid interface, the discharge direction of the rinsing liquid from the rinsing nozzle is along the rotational direction of the substrate, thereby suppressing the generation of residue after the rinsing liquid is removed. . On the other hand, on the outer peripheral side of the substrate, the discharge direction of the rinsing liquid from the rinsing nozzle is along the radial direction of the substrate, thereby suppressing the generation of residue after the rinsing liquid is removed. Therefore, by switching to the discharge direction of the rinsing liquid as described above when moving the gas-liquid interface toward the outer circumference, it is possible to reduce the amount of residue on the substrate surface after cleaning the substrate.
 本開示の一形態に係る基板処理プログラムは、基板処理をコンピュータに実行させる基板処理プログラムであって、保持回転部において前記基板を保持して回転させることと、現像液が供給された後の前記基板に対してガスノズルからの不活性ガスの吐出を継続しながら、前記ガスノズルによるガス供給位置よりも外周側に設けられた吐出位置において前記基板に対してリンス液を供給するリンスノズルからのリンス液の吐出位置を前記基板の中心から外周方向へと移動させることにより、前記不活性ガスと前記リンス液により形成される気液界面を前記中心から外周方向へと移動させることと、を前記コンピュータに実行させ、前記移動させることにおいて、前記基板の中心側から外周側への前記リンスノズルの移動の際に、前記リンスノズルから吐出される前記リンス液の方向を、前記基板の回転方向に沿った方向から前記基板の径方向に沿った方向へ切り替える。 A substrate processing program according to an embodiment of the present disclosure is a substrate processing program that causes a computer to perform substrate processing, and includes holding and rotating the substrate in a holding/rotating unit, and holding and rotating the substrate after a developer is supplied. A rinsing liquid from a rinsing nozzle that supplies the rinsing liquid to the substrate at a discharge position provided on the outer peripheral side from a gas supply position by the gas nozzle while continuing to discharge inert gas from the gas nozzle to the substrate. moving a gas-liquid interface formed by the inert gas and the rinsing liquid from the center to the outer circumference by moving the discharge position of the substrate from the center to the outer circumference; In the movement, when the rinse nozzle is moved from the center side to the outer peripheral side of the substrate, the direction of the rinse liquid discharged from the rinse nozzle is set along the rotation direction of the substrate. direction to a direction along the radial direction of the substrate.
 上記の基板処理プログラムによれば、基板処理方法と同様に、基板を洗浄した後の基板表面の残渣を低減することができる。 According to the above substrate processing program, as with the substrate processing method, it is possible to reduce the residue on the substrate surface after cleaning the substrate.
[例示的実施形態]
 以下、図面を参照して種々の例示的実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を附すこととする。
[Exemplary Embodiment]
Various exemplary embodiments will be described in detail below with reference to the drawings. In addition, the same reference numerals are given to the same or corresponding parts in each drawing.
[基板処理システム]
 図1に示される基板処理システム1(基板処理装置)は、ワークWに対し、感光性被膜の形成、当該感光性被膜の露光、及び当該感光性被膜の現像を施すシステムである。処理対象のワークWは、例えば基板、あるいは所定の処理が施されることで膜又は回路等が形成された状態の基板である。当該基板は、一例として、シリコンウェハである。ワークW(基板)は、円形であってもよい。ワークWは、ガラス基板、マスク基板、又はFPD(Flat Panel Display)などであってもよい。感光性被膜は、例えばレジスト膜である。
[Substrate processing system]
A substrate processing system 1 (substrate processing apparatus) shown in FIG. 1 is a system that forms a photosensitive film on a work W, exposes the photosensitive film, and develops the photosensitive film. The work W to be processed is, for example, a substrate, or a substrate on which a film, a circuit, or the like is formed by performing a predetermined process. The substrate is, for example, a silicon wafer. The work W (substrate) may be circular. The workpiece W may be a glass substrate, a mask substrate, an FPD (Flat Panel Display), or the like. The photosensitive film is, for example, a resist film.
 図1及び図2に示されるように、基板処理システム1は、塗布現像装置2と、露光装置3と、制御装置100とを備える。露光装置3は、ワークW(基板)に形成されたレジスト膜(感光性被膜)を露光する装置である。具体的には、露光装置3は、液浸露光等の方法によりレジスト膜の露光対象部分にエネルギー線を照射する。エネルギー線は、例えば、電離放射線又は非電離放射線である。電離放射線は、原子又は分子を電離させるのに十分なエネルギーを有する放射線である。電離放射線は、極端紫外線(EUV:Extreme Ultraviolet)、電子線、イオンビーム、X線、α線、β線、γ線、重粒子線、又は陽子線などであってもよい。非電離放射線は、原子又は分子を電離させるのに十分なエネルギーを有しない放射線である。非電離放射線は、g線、i線、KrFエキシマレーザー、ArFエキシマレーザー、又はF2エキシマレーザーなどであってもよい。 As shown in FIGS. 1 and 2, the substrate processing system 1 includes a coating and developing device 2, an exposure device 3, and a control device 100. The exposure device 3 is a device that exposes a resist film (photosensitive film) formed on a workpiece W (substrate). Specifically, the exposure device 3 irradiates the portion of the resist film to be exposed with energy rays using a method such as immersion exposure. Energy rays are, for example, ionizing radiation or non-ionizing radiation. Ionizing radiation is radiation that has sufficient energy to ionize atoms or molecules. The ionizing radiation may be extreme ultraviolet (EUV), electron beam, ion beam, X-ray, alpha ray, beta ray, gamma ray, heavy particle beam, proton beam, or the like. Non-ionizing radiation is radiation that does not have sufficient energy to ionize atoms or molecules. The non-ionizing radiation may be g-line, i-line, KrF excimer laser, ArF excimer laser, F2 excimer laser, or the like.
 塗布現像装置2は、露光装置3による露光処理前に、ワークWの表面にレジスト(薬液)を塗布してレジスト膜を形成する処理を行う。また、塗布現像装置2は、露光処理後にワークWに形成されたレジスト膜の現像を行う。 The coating and developing device 2 performs a process of coating a resist (chemical solution) on the surface of the workpiece W to form a resist film before the exposure process by the exposure device 3. Further, the coating and developing device 2 develops the resist film formed on the workpiece W after the exposure process.
 塗布現像装置2は、キャリアブロック4と、処理ブロック5と、インタフェースブロック6とを備える。 The coating and developing device 2 includes a carrier block 4, a processing block 5, and an interface block 6.
 キャリアブロック4は、塗布現像装置2内へのワークWの導入及び塗布現像装置2内からのワークWの導出を行う。キャリアブロック4は、例えば、ワークW用の複数のキャリアCを支持可能であり、受け渡しアームを含む搬送装置A1を内蔵している。キャリアCは、例えば円形の複数枚のワークWを収容する。搬送装置A1は、キャリアCからワークWを取り出して処理ブロック5に渡し、処理ブロック5からワークWを受け取ってキャリアC内に戻す。処理ブロック5は、処理モジュール11,12,13,14を有する。 The carrier block 4 introduces the workpiece W into the coating and developing device 2 and extracts the workpiece W from the coating and developing device 2 . The carrier block 4 can support, for example, a plurality of carriers C for workpieces W, and has a built-in transport device A1 including a delivery arm. The carrier C accommodates a plurality of circular workpieces W, for example. The transport device A1 takes out the workpiece W from the carrier C, passes it to the processing block 5, receives the workpiece W from the processing block 5, and returns it into the carrier C. The processing block 5 has processing modules 11, 12, 13, and 14.
 処理モジュール11は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール11は、液処理ユニットU1及び熱処理ユニットU2によりワークWの表面上に下層膜を形成する。液処理ユニットU1は、下層膜形成用の処理液をワークW上に塗布する。熱処理ユニットU2は、下層膜の形成に伴う各種熱処理を行う。 The processing module 11 includes a liquid processing unit U1, a heat processing unit U2, and a transport device A3 that transports the workpiece W to these units. The processing module 11 forms a lower layer film on the surface of the workpiece W using the liquid processing unit U1 and the heat processing unit U2. The liquid processing unit U1 applies a processing liquid for forming a lower layer film onto the workpiece W. The heat treatment unit U2 performs various heat treatments associated with the formation of the lower layer film.
 処理モジュール12は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール12は、液処理ユニットU1及び熱処理ユニットU2により下層膜上にレジスト膜を形成する。液処理ユニットU1は、レジスト膜形成用の処理液を下層膜上に塗布する。液処理ユニットU1は、レジスト膜形成用の処理液として、エネルギー線(例えば、i線)の露光によりパターンの形成が可能な薬液を下層膜上に塗布する。熱処理ユニットU2は、レジスト膜の形成に伴う各種熱処理を行う。 The processing module 12 includes a liquid processing unit U1, a heat processing unit U2, and a transport device A3 that transports the workpiece W to these units. The processing module 12 forms a resist film on the lower layer film using a liquid processing unit U1 and a heat processing unit U2. The liquid processing unit U1 applies a processing liquid for resist film formation onto the lower layer film. The liquid processing unit U1 applies, as a processing liquid for forming a resist film, a chemical liquid capable of forming a pattern by exposure to energy rays (for example, i-rays) onto the lower layer film. The heat treatment unit U2 performs various heat treatments associated with the formation of a resist film.
 処理モジュール13は、液処理ユニットU1と、熱処理ユニットU2と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール13は、液処理ユニットU1及び熱処理ユニットU2によりレジスト膜上に上層膜を形成する。液処理ユニットU1は、上層膜形成用の処理液をレジスト膜上に塗布する。熱処理ユニットU2は、上層膜の形成に伴う各種熱処理を行う。 The processing module 13 includes a liquid processing unit U1, a heat processing unit U2, and a transport device A3 that transports the workpiece W to these units. The processing module 13 forms an upper layer film on the resist film using the liquid processing unit U1 and the heat processing unit U2. The liquid processing unit U1 applies a processing liquid for forming an upper layer film onto the resist film. The heat treatment unit U2 performs various heat treatments associated with the formation of the upper layer film.
 処理モジュール14は、現像ユニットU3と、熱処理ユニットU4と、計測ユニットU5と、これらのユニットにワークWを搬送する搬送装置A3とを内蔵している。処理モジュール14は、現像ユニットU3及び熱処理ユニットU4により、露光処理が施されたレジスト膜の現像及び現像に伴う熱処理を行う。現像ユニットU3は、現像液を用いた液処理をワークWに対して施すユニットである。現像ユニットU3は、露光済みのワークWの表面上に現像液を供給することで、ワークWの表面上に現像液の液膜(パドル)を形成する。現像ユニットU3は、ワークWの表面上に現像液の液膜を維持すること(例えば静止現像すること)で、レジスト膜の現像を行う。さらに、現像ユニットU3は、現像液による現像を行った後、ワークWの表面上の現像液をリンス液により洗い流し、ワークWの表面に残存するリンス液を除去する。 The processing module 14 includes a developing unit U3, a heat treatment unit U4, a measuring unit U5, and a transport device A3 that transports the workpiece W to these units. The processing module 14 uses a developing unit U3 and a heat processing unit U4 to develop the resist film that has been subjected to the exposure process and performs heat treatment accompanying the development. The developing unit U3 is a unit that performs liquid processing on the workpiece W using a developer. The developing unit U3 forms a liquid film (paddle) of the developer on the surface of the workpiece W by supplying the developer onto the surface of the exposed workpiece W. The developing unit U3 develops the resist film by maintaining a liquid film of the developer on the surface of the work W (for example, statically developing). Furthermore, after performing development with the developer, the developing unit U3 washes away the developer on the surface of the workpiece W with a rinsing liquid, and removes the rinsing liquid remaining on the surface of the workpiece W.
 熱処理ユニットU4は、現像に伴う各種熱処理を行う。熱処理の具体例としては、現像前の加熱処理(PEB:Post Exposure Bake)、及び現像後の加熱処理(PB:Post Bake)等が挙げられる。 The heat treatment unit U4 performs various heat treatments associated with development. Specific examples of heat treatment include heat treatment before development (PEB: Post Exposure Bake), post-development heat treatment (PB: Post Bake), and the like.
 処理ブロック5内におけるキャリアブロック4側には棚ユニットU10が設けられている。棚ユニットU10は、上下方向に並ぶ複数のセルに区画されている。棚ユニットU10の近傍には昇降アームを含む搬送装置A7が設けられている。搬送装置A7は、棚ユニットU10のセル同士の間でワークWを昇降させる。処理ブロック5内におけるインタフェースブロック6側には棚ユニットU11が設けられている。棚ユニットU11は、上下方向に並ぶ複数のセルに区画されている。 A shelf unit U10 is provided on the carrier block 4 side within the processing block 5. The shelf unit U10 is divided into a plurality of cells arranged in the vertical direction. A transport device A7 including a lifting arm is provided near the shelf unit U10. The transport device A7 moves the work W up and down between the cells of the shelf unit U10. A shelf unit U11 is provided within the processing block 5 on the interface block 6 side. The shelf unit U11 is divided into a plurality of cells arranged in the vertical direction.
 インタフェースブロック6は、露光装置3との間でワークWの受け渡しを行う。インタフェースブロック6は、例えば、受け渡しアームを含む搬送装置A8を内蔵しており、露光装置3に接続される。搬送装置A8は、棚ユニットU11に配置されたワークWを露光装置3に渡す。搬送装置A8は、露光装置3からワークWを受け取って棚ユニットU11に戻す。 The interface block 6 transfers the workpiece W to and from the exposure apparatus 3. The interface block 6 includes, for example, a transport device A8 including a delivery arm, and is connected to the exposure device 3. The transport device A8 transfers the work W placed on the shelf unit U11 to the exposure device 3. The transport device A8 receives the workpiece W from the exposure device 3 and returns it to the shelf unit U11.
 制御装置100(制御部)は、塗布現像装置2を部分的及び全体的に制御するように構成されている。制御装置100は、例えば以下の手順で塗布現像処理を実行するように塗布現像装置2を制御する。まず制御装置100は、キャリアC内のワークWを棚ユニットU10に搬送するように搬送装置A1を制御し、このワークWを処理モジュール11用のセルに配置するように搬送装置A7を制御する。 The control device 100 (control unit) is configured to partially and entirely control the coating and developing device 2. The control device 100 controls the coating and developing device 2 to perform coating and developing processing, for example, in the following steps. First, the control device 100 controls the transport device A1 to transport the work W in the carrier C to the shelf unit U10, and controls the transport device A7 to place the work W in the cell for the processing module 11.
 次に制御装置100は、棚ユニットU10のワークWを処理モジュール11内の液処理ユニットU1及び熱処理ユニットU2に搬送するように搬送装置A3を制御する。また、制御装置100は、このワークWの表面上に下層膜を形成するように、液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置100は、下層膜が形成されたワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWを処理モジュール12用のセルに配置するように搬送装置A7を制御する。 Next, the control device 100 controls the transport device A3 to transport the work W on the shelf unit U10 to the liquid processing unit U1 and the heat processing unit U2 in the processing module 11. Further, the control device 100 controls the liquid processing unit U1 and the heat processing unit U2 so as to form a lower layer film on the surface of the workpiece W. Thereafter, the control device 100 controls the transport device A3 to return the work W on which the lower layer film has been formed to the shelf unit U10, and controls the transport device A7 to place the work W in the cell for the processing module 12. .
 次に制御装置100は、棚ユニットU10のワークWを処理モジュール12内の液処理ユニットU1及び熱処理ユニットU2に搬送するように搬送装置A3を制御する。また、制御装置100は、このワークWの表面に対してレジスト膜を形成するように液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置100は、ワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWを処理モジュール13用のセルに配置するように搬送装置A7を制御する。 Next, the control device 100 controls the transport device A3 to transport the work W on the shelf unit U10 to the liquid processing unit U1 and heat processing unit U2 in the processing module 12. Further, the control device 100 controls the liquid processing unit U1 and the heat processing unit U2 so as to form a resist film on the surface of the workpiece W. Thereafter, the control device 100 controls the transport device A3 to return the work W to the shelf unit U10, and controls the transport device A7 to place the work W in the cell for the processing module 13.
 次に制御装置100は、棚ユニットU10のワークWを処理モジュール13内の各ユニットに搬送するように搬送装置A3を制御する。また、制御装置100は、このワークWのレジスト膜上に上層膜を形成するように液処理ユニットU1及び熱処理ユニットU2を制御する。その後制御装置100は、ワークWを棚ユニットU11に搬送するように搬送装置A3を制御する。 Next, the control device 100 controls the transport device A3 to transport the work W on the shelf unit U10 to each unit in the processing module 13. Further, the control device 100 controls the liquid processing unit U1 and the heat processing unit U2 so as to form an upper layer film on the resist film of the workpiece W. After that, the control device 100 controls the transport device A3 to transport the workpiece W to the shelf unit U11.
 次に制御装置100は、棚ユニットU11のワークWを露光装置3に送り出すように搬送装置A8を制御する。その後制御装置100は、エネルギー線(例えば、i線)を用いた露光処理が施されたワークWを露光装置3から受け入れて、棚ユニットU11における処理モジュール14用のセルに配置するように搬送装置A8を制御する。 Next, the control device 100 controls the transport device A8 to send the work W on the shelf unit U11 to the exposure device 3. Thereafter, the control device 100 receives the workpiece W subjected to exposure processing using energy rays (for example, i-ray) from the exposure device 3, and controls the transporting device to place it in the cell for the processing module 14 in the shelf unit U11. Control A8.
 次に制御装置100は、棚ユニットU11のワークWを処理モジュール14内の各ユニットに搬送するように搬送装置A3を制御し、このワークWのレジスト膜の現像を行うように現像ユニットU3及び熱処理ユニットU4を制御する。レジスト膜の現像が行われることで、ワークWの表面には、レジストパターンが形成される。 Next, the control device 100 controls the transport device A3 to transport the workpiece W in the shelf unit U11 to each unit in the processing module 14, and controls the developing unit U3 and the heat processing unit to develop the resist film on the workpiece W. Controls unit U4. By developing the resist film, a resist pattern is formed on the surface of the workpiece W.
 その後制御装置100は、ワークWを棚ユニットU10に戻すように搬送装置A3を制御し、このワークWをキャリアC内に戻すように搬送装置A7及び搬送装置A1を制御する。以上により1枚のワークWについての塗布現像処理が完了する。制御装置100は、後続の複数のワークWのそれぞれについても、上述と同様に塗布現像処理を塗布現像装置2に実行させる。 After that, the control device 100 controls the transport device A3 to return the work W to the shelf unit U10, and controls the transport device A7 and the transport device A1 to return the work W to the carrier C. With the above steps, the coating and developing process for one workpiece W is completed. The control device 100 causes the coating and developing device 2 to perform the coating and developing process on each of the subsequent plurality of works W in the same manner as described above.
 制御装置100には、入出力デバイスが接続されていてもよい。入出力デバイスは、オペレータ等のユーザからの指示を示す入力情報を制御装置100に入力すると共に、制御装置100からの情報をユーザに出力するための装置である。入出力デバイスは、入力デバイスとして、キーボード、操作パネル、又はマウスを含んでいてもよく、出力デバイスとして、モニタ(例えば液晶ディスプレイ)を含んでいてもよい。 An input/output device may be connected to the control device 100. The input/output device is a device for inputting input information indicating instructions from a user such as an operator into the control device 100, and outputting information from the control device 100 to the user. The input/output device may include a keyboard, an operation panel, or a mouse as an input device, and may include a monitor (for example, a liquid crystal display) as an output device.
 基板処理装置の具体的な構成は、以上に例示した基板処理システム1の構成に限られない。基板処理装置は、レジスト膜が形成された状態の基板に対して現像を施す現像ユニット、及びこれを制御可能な制御装置を備えていればどのようなものであってもよい。 The specific configuration of the substrate processing apparatus is not limited to the configuration of the substrate processing system 1 illustrated above. The substrate processing apparatus may be of any type as long as it includes a developing unit that performs development on a substrate on which a resist film is formed, and a control device that can control the developing unit.
(現像ユニット)
 図3及び図4を参照して、処理モジュール14の現像ユニットU3について詳細に説明する。現像ユニットU3は、例えば、図3に示されるように、筐体Hと、保持回転部20と、現像液供給部30と、リンス液供給部40(供給部)と、ガス供給部50(供給部)と、カバー部材70と、ブロアBとを有する。筐体Hは、保持回転部20、現像液供給部30、リンス液供給部40、ガス供給部50、カバー部材70、及びブロアBを収容する。
(Developing unit)
The developing unit U3 of the processing module 14 will be described in detail with reference to FIGS. 3 and 4. For example, as shown in FIG. 3, the developing unit U3 includes a housing H, a holding rotation section 20, a developer supply section 30, a rinse liquid supply section 40 (supply section), and a gas supply section 50 (supply section). ), a cover member 70, and a blower B. The housing H accommodates the holding rotation unit 20, the developer supply unit 30, the rinsing liquid supply unit 40, the gas supply unit 50, the cover member 70, and the blower B.
 保持回転部20(保持部)は、ワークWを保持して回転させる。保持回転部20は、ワークWを回転させない状態で保持することと、ワークWを回転させながら保持することとが可能である。保持回転部20は、例えば、回転駆動部22と、シャフト24と、保持部26とを含む。回転駆動部22は、制御装置100からの動作指示に基づいて動作し、シャフト24を回転させる。回転駆動部22は、例えば電動モータ等の動力源を含む。 The holding/rotating unit 20 (holding unit) holds and rotates the workpiece W. The holding/rotating unit 20 is capable of holding the workpiece W without rotating it, or holding the workpiece W while rotating it. The holding rotation section 20 includes, for example, a rotation drive section 22, a shaft 24, and a holding section 26. The rotation drive unit 22 operates based on an operation instruction from the control device 100 and rotates the shaft 24. The rotation drive unit 22 includes a power source such as an electric motor, for example.
 保持部26は、シャフト24の先端部に設けられている。保持部26上にはワークWが配置される。保持部26は、例えば吸着等によりワークWを略水平に保持する。保持回転部20は、ワークWの姿勢が略水平の状態で、ワークWの表面Waに対して垂直な軸(回転軸)まわりにワークWを回転させる。保持部26は、回転軸がワークWの中央CP(図4(a)参照)に略一致するように、ワークWを保持してもよい。 The holding part 26 is provided at the tip of the shaft 24. A workpiece W is placed on the holding portion 26 . The holding portion 26 holds the workpiece W substantially horizontally, for example, by suction or the like. The holding/rotating unit 20 rotates the work W around an axis (rotation axis) perpendicular to the surface Wa of the work W while the work W is in a substantially horizontal posture. The holding part 26 may hold the workpiece W so that the rotation axis substantially coincides with the center CP of the workpiece W (see FIG. 4(a)).
 現像液供給部30は、保持回転部20(保持部26)に保持されたワークWの表面Waに対して現像液L1を供給する。現像液L1は、ワークWの表面Waに形成されているレジスト膜(以下、「レジスト膜R」という。)に対して現像を施すための薬液である。本開示において、液体又は気体等の流体(例えば、現像液L1)をワークWの表面Waに対して供給することは、その表面Waに形成されているレジスト膜R又は液膜等の膜に対して当該流体を接触させることに相当する。 The developer supply unit 30 supplies the developer L1 to the surface Wa of the workpiece W held by the holding and rotating unit 20 (holding unit 26). The developer L1 is a chemical solution for developing a resist film (hereinafter referred to as "resist film R") formed on the surface Wa of the workpiece W. In the present disclosure, supplying a fluid such as a liquid or a gas (e.g., developer L1) to the surface Wa of the workpiece W means that it is applied to a film such as a resist film R or a liquid film formed on the surface Wa. This corresponds to bringing the fluid into contact with each other.
 現像液供給部30は、例えば、送液部32と、駆動部34と、現像ノズル36とを含む。送液部32は、制御装置100からの動作指示に基づいて、容器(図示せず)に貯留されている現像液L1を、ポンプ等(図示せず)によって現像ノズル36に送り出す。駆動部34は、制御装置100からの動作指示に基づいて、少なくともワークWの表面Waに沿った方向(水平方向)において現像ノズル36を移動させる。現像ノズル36は図示しないアーム等によって支持されている。駆動部34は、アームを移動させることによって現像ノズル36を移動させる。 The developer supply section 30 includes, for example, a liquid feeding section 32, a driving section 34, and a developing nozzle 36. Based on an operation instruction from the control device 100, the liquid feeding unit 32 sends the developer L1 stored in a container (not shown) to the developing nozzle 36 using a pump or the like (not shown). The drive unit 34 moves the developing nozzle 36 at least in the direction along the surface Wa of the workpiece W (horizontal direction) based on an operation instruction from the control device 100. The developing nozzle 36 is supported by an arm or the like (not shown). The drive unit 34 moves the developing nozzle 36 by moving the arm.
 現像ノズル36は、送液部32から供給される現像液L1を、ワークWの表面Waに向けて吐出する。ワークWが回転している状態で、例えばワークWの中心に対して現像ノズル36から現像液L1を吐出すると、遠心力を利用してワークWの表面Waに現像液L1が広がり、ワークWの表面Wa全体を覆うように現像液L1が供給される。なお、現像ノズル36は、例えばワークWの中心から外周へ向かって移動しながら、現像液L1を吐出するように構成されてもよい。 The developing nozzle 36 discharges the developing solution L1 supplied from the liquid feeding section 32 toward the surface Wa of the workpiece W. For example, when the developer L1 is discharged from the developing nozzle 36 toward the center of the workpiece W while the workpiece W is rotating, the developer L1 spreads over the surface Wa of the workpiece W using centrifugal force, and the developer L1 spreads over the surface Wa of the workpiece W. The developer L1 is supplied so as to cover the entire surface Wa. Note that the developing nozzle 36 may be configured to discharge the developing solution L1 while moving from the center of the workpiece W toward the outer periphery, for example.
 リンス液供給部40は、保持回転部20(保持部26)に保持されたワークWの表面Waの周縁領域に対してリンス液L2を供給する。リンス液L2としては、水(例えば、純水)が用いられる。リンス液供給部40は、第1リンス液供給部40Aと、第2リンス液供給部40Bと、を含む。 The rinsing liquid supply section 40 supplies the rinsing liquid L2 to the peripheral area of the surface Wa of the workpiece W held by the holding and rotating section 20 (holding section 26). Water (for example, pure water) is used as the rinse liquid L2. The rinsing liquid supply section 40 includes a first rinsing liquid supply section 40A and a second rinsing liquid supply section 40B.
 第1リンス液供給部40Aは、例えば、送液部42Aと、駆動部44Aと、リンスノズル46Aとを有する。送液部42Aは、制御装置100からの動作指示に基づいて、容器(図示せず)に貯留されているリンス液L2を、ポンプ等(図示せず)によって、リンスノズル46Aに送り出す。駆動部44Aは、制御装置100からの動作指示に基づいて、リンスノズル46Aを移動させる。リンスノズル46Aは、例えば、図4に示されるアーム47A等によって支持されている。駆動部44Aは、アーム47Aを移動させることによってリンスノズル46Aを移動させてもよい。 The first rinsing liquid supply section 40A includes, for example, a liquid feeding section 42A, a driving section 44A, and a rinsing nozzle 46A. Based on an operation instruction from the control device 100, the liquid sending unit 42A sends out the rinsing liquid L2 stored in a container (not shown) to the rinsing nozzle 46A using a pump or the like (not shown). The drive unit 44A moves the rinse nozzle 46A based on an operation instruction from the control device 100. The rinse nozzle 46A is supported by, for example, an arm 47A shown in FIG. 4. The drive unit 44A may move the rinse nozzle 46A by moving the arm 47A.
 リンスノズル46Aは、ワークWの表面Waの上方に配置される。図4(a)に示されるように、第1リンス液供給部40Aのリンスノズル46Aは、平面視においてワークWの回転方向Aに沿った方向に延びている。また、図4(c)に示されるように、リンスノズル46A(リンスノズル46Aの延在方向)は、側面視においてワークWの表面Waに対して傾斜している。表面Waに対するリンスノズル46Aの傾斜角は、例えば、30°~60°程度であり、一例として上記傾斜角は45°である。この結果、リンスノズル46Aから、斜め下方に向けてリンス液L2が吐出される。リンスノズル46Aは、吐出されたリンス液L2がワークWの表面Waにおいて回転方向Aに沿った方向となるように配置される。つまり、リンスノズル46Aから吐出されたリンス液L2のワークWの表面Waとの接点となる吐出位置P1において、リンス液L2の吐出方向が吐出位置P1とワークWの中央CPとを結ぶ直線に対して直交するようにリンスノズル46Aの位置が調整される。 The rinse nozzle 46A is arranged above the surface Wa of the workpiece W. As shown in FIG. 4(a), the rinse nozzle 46A of the first rinse liquid supply section 40A extends in a direction along the rotational direction A of the work W in a plan view. Further, as shown in FIG. 4(c), the rinse nozzle 46A (extending direction of the rinse nozzle 46A) is inclined with respect to the surface Wa of the workpiece W in a side view. The angle of inclination of the rinse nozzle 46A with respect to the surface Wa is, for example, about 30° to 60°, and as an example, the angle of inclination is 45°. As a result, the rinse liquid L2 is discharged diagonally downward from the rinse nozzle 46A. The rinse nozzle 46A is arranged so that the discharged rinse liquid L2 is directed along the rotational direction A on the surface Wa of the workpiece W. That is, at the discharge position P1 where the rinse liquid L2 discharged from the rinse nozzle 46A contacts the surface Wa of the workpiece W, the discharge direction of the rinse liquid L2 is relative to the straight line connecting the discharge position P1 and the center CP of the workpiece W. The position of the rinse nozzle 46A is adjusted so that it is orthogonal to the rinsing nozzle 46A.
 駆動部44Aは、吐出位置P1とワークWの中央CPとを結ぶ直線の延びる方向に沿ってリンスノズル46Aを移動させてもよい。このとき、駆動部44Aは、吐出位置P1がワークWの中央CPから延びる1つの直線上を移動するように、リンスノズル46Aを移動させてもよい。 The drive unit 44A may move the rinse nozzle 46A along the direction in which a straight line connecting the discharge position P1 and the center CP of the workpiece W extends. At this time, the drive unit 44A may move the rinse nozzle 46A so that the discharge position P1 moves on one straight line extending from the center CP of the workpiece W.
 第2リンス液供給部40Bは、例えば、送液部42Bと、駆動部44Bと、リンスノズル46Bとを有する。送液部42Bは、制御装置100からの動作指示に基づいて、容器(図示せず)に貯留されているリンス液L2を、ポンプ等(図示せず)によって、リンスノズル46Bに送り出す。駆動部44Bは、制御装置100からの動作指示に基づいて、リンスノズル46Bを移動させる。リンスノズル46Bは図4に示されるアーム47Bによって支持されている。駆動部44Bは、アーム47Bを移動させることによってリンスノズル46Bを移動させてもよい。 The second rinsing liquid supply section 40B includes, for example, a liquid feeding section 42B, a driving section 44B, and a rinsing nozzle 46B. Based on an operation instruction from the control device 100, the liquid sending unit 42B sends out the rinsing liquid L2 stored in a container (not shown) to the rinsing nozzle 46B using a pump or the like (not shown). The drive unit 44B moves the rinse nozzle 46B based on an operation instruction from the control device 100. Rinse nozzle 46B is supported by arm 47B shown in FIG. The drive unit 44B may move the rinse nozzle 46B by moving the arm 47B.
 リンスノズル46Bは、ワークWの表面Waの上方に配置される。図4(a)に示されるように、第2リンス液供給部40Bのリンスノズル46Bは、平面視においてワークWの径方向に沿った方向に延び、且つ、吐出口がワークWの外方に向かっている。また、図4(b)に示されるように、リンスノズル46B(リンスノズル46Bの延在方向)は、側面視においてワークWの表面Waに対して傾斜している。表面Waに対するリンスノズル46Bの傾斜角は、例えば、30°~60°程度であり、一例として上記傾斜角は45°である。この結果、リンスノズル46Bから、斜め下方に向けてリンス液L2が吐出される。リンスノズル46Bは、吐出されたリンス液L2がワークWの表面WaにおいてワークWの径方向となるように配置される。つまり、リンスノズル46Bから吐出されたリンス液L2のワークWの表面Waとの接点となる吐出位置P2において、リンス液L2の吐出方向が吐出位置P2とワークWの中央CPとを結ぶ直線に沿って延び、且つ、ワークWの外方に向かうようにリンスノズル46Bの位置が調整される。 The rinse nozzle 46B is arranged above the surface Wa of the workpiece W. As shown in FIG. 4(a), the rinse nozzle 46B of the second rinse liquid supply section 40B extends in the radial direction of the workpiece W in plan view, and has a discharge port facing outward from the workpiece W. I'm on my way. Further, as shown in FIG. 4(b), the rinse nozzle 46B (extending direction of the rinse nozzle 46B) is inclined with respect to the surface Wa of the work W in a side view. The angle of inclination of the rinse nozzle 46B with respect to the surface Wa is, for example, about 30° to 60°, and as an example, the angle of inclination is 45°. As a result, the rinse liquid L2 is discharged diagonally downward from the rinse nozzle 46B. The rinse nozzle 46B is arranged so that the discharged rinse liquid L2 is on the surface Wa of the workpiece W in the radial direction of the workpiece W. That is, at the discharge position P2 where the rinse liquid L2 discharged from the rinse nozzle 46B contacts the surface Wa of the workpiece W, the discharge direction of the rinse liquid L2 is along the straight line connecting the discharge position P2 and the center CP of the workpiece W. The position of the rinse nozzle 46B is adjusted so that it extends toward the outside of the workpiece W.
 駆動部44Bは、吐出位置P2とワークWの中央CPとを結ぶ直線の延びる方向に沿って、すなわち径方向に沿ってリンスノズル46Bを移動させてもよい。このとき、駆動部44Bは、吐出位置P2がワークWの中央CPから延びる1つの直線上を移動するように、且つ、リンスノズル46B自体が吐出位置P2とワークWの中央CPとを結ぶ直線上を移動するように、リンスノズル46Bを移動させてもよい。 The drive unit 44B may move the rinse nozzle 46B along the direction in which a straight line connecting the discharge position P2 and the center CP of the workpiece W extends, that is, along the radial direction. At this time, the drive unit 44B moves the discharge position P2 on a straight line extending from the center CP of the workpiece W, and the rinse nozzle 46B itself moves on a straight line connecting the discharge position P2 and the center CP of the workpiece W. The rinse nozzle 46B may be moved so as to move the rinsing nozzle 46B.
 ガス供給部50は、ワークWの表面Waに対して、所定のガスを供給する。ガス供給部50により供給されるガス(以下、「ガスG」という。)は、不活性ガスであってもよく、一例では窒素ガスである。ガスGは、リンス液L2をワークWの表面Waから除去するために用いられる。リンス液L2によってワークW上に存在する現像液L1を洗い流した後に、ガスGをワークWの中央CPに対して供給することで、ワークWの表面Waの中心にワークWの表面Waが露出した領域が形成される。表面Waが露出した領域の周囲には、円周状の気液界面が形成される。気液界面はリンス液L2が残存する領域と表面Waが露出した領域との境界に対応する。ワークWを回転しながらガスGの供給を継続することで、気液界面が外周側へ移動する、すなわち、表面Waが露出した領域が大きくなる。表面Waが露出した領域を大きくすることで、最終的に表面Waからリンス液L2が除去される。このように、ガスGは、ワークWの表面Waからのリンス液L2の除去に使用される。 The gas supply unit 50 supplies a predetermined gas to the surface Wa of the workpiece W. The gas supplied by the gas supply unit 50 (hereinafter referred to as "gas G") may be an inert gas, and is nitrogen gas in one example. Gas G is used to remove the rinsing liquid L2 from the surface Wa of the workpiece W. After the developer L1 present on the workpiece W is washed away with the rinsing liquid L2, the gas G is supplied to the center CP of the workpiece W, so that the surface Wa of the workpiece W is exposed at the center of the surface Wa of the workpiece W. A region is formed. A circumferential gas-liquid interface is formed around the area where the surface Wa is exposed. The gas-liquid interface corresponds to the boundary between the region where the rinse liquid L2 remains and the region where the surface Wa is exposed. By continuing to supply the gas G while rotating the workpiece W, the gas-liquid interface moves toward the outer periphery, that is, the area where the surface Wa is exposed becomes larger. By enlarging the exposed area of the surface Wa, the rinse liquid L2 is finally removed from the surface Wa. In this way, the gas G is used to remove the rinsing liquid L2 from the surface Wa of the workpiece W.
 ガス供給部50は、例えば、ガス送出部52と、ガスノズル56とを有する。ガス送出部52は、容器(図示せず)に貯留されているガスGを、ポンプ等(図示せず)によって、ガスノズル56に送り出す。ガスノズル56は、ワークWの上方に配置され、ガスノズル56から離れるにつれて、種々の方向に(放射状に)広がるようにガスを噴射してもよい。ガスノズル56には、例えば、ワークWの表面Waに対してそれぞれ異なる角度で延びる複数の噴出口が形成されていてもよい。ガスノズル56は図4に示されるアーム57によって支持されていてもよい。このとき、駆動部54は、アーム57を移動させることによってガスノズル56を移動させてもよい。ガスノズル56は、例えば、ワークWの中央CPから径方向に沿って外方へ向けて移動可能であってもよい。 The gas supply section 50 includes, for example, a gas delivery section 52 and a gas nozzle 56. The gas delivery unit 52 sends gas G stored in a container (not shown) to a gas nozzle 56 using a pump or the like (not shown). The gas nozzle 56 may be arranged above the workpiece W, and may inject gas so as to spread in various directions (radially) as the distance from the gas nozzle 56 increases. The gas nozzle 56 may be formed with a plurality of ejection ports extending at different angles relative to the surface Wa of the workpiece W, for example. Gas nozzle 56 may be supported by arm 57 shown in FIG. At this time, the drive unit 54 may move the gas nozzle 56 by moving the arm 57. The gas nozzle 56 may be movable radially outward from the center CP of the workpiece W, for example.
 なお、ガスノズル56は、リンスノズル46Aまたはリンスノズル46Bに対して接続(固定)されていてもよい。この場合、駆動部44Aまたは駆動部44Bが、リンスノズルだけでなくガスノズル56を共に表面Waに沿って移動させる。 Note that the gas nozzle 56 may be connected (fixed) to the rinse nozzle 46A or the rinse nozzle 46B. In this case, the drive unit 44A or 44B moves not only the rinse nozzle but also the gas nozzle 56 along the surface Wa.
 カバー部材70は、保持回転部20の周囲に設けられている。カバー部材70は、例えば、カップ本体72と、排液口74と、排気口76とを含む。カップ本体72は、ワークWに対する液処理のためにワークWに供給された現像液L1及びリンス液L2を受け止める集液容器として機能する。排液口74は、カップ本体72の底部に設けられており、カップ本体72によって集められた排液を現像ユニットU3の外部に排出する。排気口76は、カップ本体72の底部に設けられている。 The cover member 70 is provided around the holding and rotating section 20. The cover member 70 includes, for example, a cup body 72, a drain port 74, and an exhaust port 76. The cup body 72 functions as a liquid collection container that receives the developer L1 and the rinse liquid L2 supplied to the workpiece W for liquid processing. The liquid drain port 74 is provided at the bottom of the cup body 72, and discharges the liquid collected by the cup body 72 to the outside of the developing unit U3. The exhaust port 76 is provided at the bottom of the cup body 72.
 現像ユニットU3は、排気部V1,V2を有する。排気部V1は、筐体Hの下部に設けられ、制御装置100からの動作指示に基づいて動作することにより、筐体H内の気体を排出する。排気部V1は、例えば、開度に応じて排気量が調節可能なダンパであってもよい。排気部V1によって筐体Hからの排気量を調節することにより、筐体H内の温度、圧力、及び湿度等を制御することができる。排気部V1は、ワークWに対する液処理の間、筐体H内を常時排気するように制御されてもよい。 The developing unit U3 has exhaust portions V1 and V2. The exhaust section V1 is provided at the lower part of the casing H, and discharges the gas inside the casing H by operating based on an operation instruction from the control device 100. The exhaust portion V1 may be, for example, a damper whose exhaust amount can be adjusted according to the degree of opening. The temperature, pressure, humidity, etc. within the housing H can be controlled by adjusting the amount of exhaust air from the housing H using the exhaust portion V1. The exhaust section V1 may be controlled to constantly exhaust the inside of the casing H during the liquid treatment on the workpiece W.
 排気部V2は、排気口76に設けられており、制御装置100からの動作指示に基づいて動作することにより、カップ本体72内の気体を排出する。ワークWの周囲を流れた下降流(ダウンフロー)は、排気口76及び排気部V2を通じて、現像ユニットU3の筐体Hの外部に排出される。排気部V2は、例えば、開度に応じて排気量が調節可能なダンパであってもよい。排気部V2によってカップ本体72からの排気量を調節することにより、カップ本体72内の温度、圧力、及び湿度等を制御することができる。 The exhaust part V2 is provided at the exhaust port 76, and discharges the gas in the cup body 72 by operating based on an operation instruction from the control device 100. The downflow flowing around the workpiece W is discharged to the outside of the housing H of the developing unit U3 through the exhaust port 76 and the exhaust portion V2. The exhaust portion V2 may be, for example, a damper whose exhaust amount can be adjusted according to the degree of opening. By adjusting the amount of exhaust air from the cup body 72 using the exhaust portion V2, the temperature, pressure, humidity, etc. inside the cup body 72 can be controlled.
 ブロアBは、現像ユニットU3の筐体H内において、保持回転部20及びカバー部材70の上方に配置されている。ブロアBは、制御装置100からの動作指示に基づいて、カバー部材70に向かう下降流を形成する。ブロアBは、ワークWに対する液処理の間、下降流を常時形成するように制御されてもよい。 The blower B is arranged above the holding rotation section 20 and the cover member 70 in the housing H of the developing unit U3. Blower B forms a downward flow toward cover member 70 based on an operation instruction from control device 100 . The blower B may be controlled to constantly form a downward flow during the liquid treatment on the workpiece W.
(制御装置)
 図2に示されるように、制御装置100は、機能上の構成として、記憶部102と制御部104とを有する。記憶部102は、現像ユニットU3を含む塗布現像装置2の各部を動作させるためのプログラムを記憶している。記憶部102は、各種のデータ(例えば、現像ユニットU3を動作させるための信号に係る情報)、及び各部に設けられたセンサ等からの情報も記憶している。記憶部102は、例えば半導体メモリ、光記録ディスク、磁気記録ディスク、又は光磁気記録ディスクである。当該プログラムは、記憶部102とは別体の外部記憶装置、又は伝播信号などの無形の媒体にも含まれ得る。これらの他の媒体から記憶部102に当該プログラムをインストールして、記憶部102に当該プログラムを記憶させてもよい。
(Control device)
As shown in FIG. 2, the control device 100 has a storage unit 102 and a control unit 104 as functional configurations. The storage unit 102 stores a program for operating each part of the coating and developing device 2 including the developing unit U3. The storage unit 102 also stores various data (for example, information related to signals for operating the developing unit U3) and information from sensors provided in each part. The storage unit 102 is, for example, a semiconductor memory, an optical recording disk, a magnetic recording disk, or a magneto-optical recording disk. The program may also be included in an external storage device separate from the storage unit 102 or an intangible medium such as a propagation signal. The program may be installed in the storage unit 102 from these other media, and the program may be stored in the storage unit 102.
 制御部104は、記憶部102から読み出したプログラムに基づいて、塗布現像装置2の各部の動作を制御する。制御部104は、少なくとも、保持回転部20においてワークWを保持して回転させることと、現像液が供給された後のワークWに対してガスノズルからの不活性ガスの吐出を継続しながら、ガスノズルによるガス供給位置よりも外周側に設けられた吐出位置においてワークWに対してリンス液を供給するリンスノズルからのリンス液の吐出位置をワークWの中心から外周方向へと移動させることにより、不活性ガスとリンス液により形成される気液界面を中心から外周方向へと移動させることと、を実行するように構成されている。 The control unit 104 controls the operation of each part of the coating and developing device 2 based on the program read from the storage unit 102. The control unit 104 at least holds and rotates the work W in the holding/rotating unit 20 and continues discharging inert gas from the gas nozzle to the work W after the developer has been supplied. By moving the discharge position of the rinse liquid from the rinse nozzle that supplies the rinse liquid to the workpiece W from the center of the workpiece W to the outer circumferential direction at a discharge position provided on the outer circumferential side than the gas supply position by It is configured to move the gas-liquid interface formed by the active gas and the rinsing liquid from the center toward the outer periphery.
 制御装置100は、一つ又は複数の制御用コンピュータにより構成される。例えば制御装置100は、図5に示される回路150を有する。回路150は、一つ又は複数のプロセッサ152と、メモリ154と、ストレージ156と、入出力ポート158と、タイマ162とを有する。ストレージ156は、例えばハードディスク等、コンピュータによって読み取り可能な記憶媒体を有する。記憶媒体は、後述する基板処理方法を制御装置100に実行させるためのプログラムを記憶している。記憶媒体は、不揮発性の半導体メモリ、磁気ディスク及び光ディスク等の取り出し可能な媒体であってもよい。メモリ154は、ストレージ156の記憶媒体からロードしたプログラム及びプロセッサ152による演算結果を一時的に記憶する。 The control device 100 is composed of one or more control computers. For example, the control device 100 includes a circuit 150 shown in FIG. Circuit 150 includes one or more processors 152, memory 154, storage 156, input/output ports 158, and timer 162. Storage 156 includes a computer-readable storage medium, such as a hard disk. The storage medium stores a program for causing the control device 100 to execute a substrate processing method to be described later. The storage medium may be a removable medium such as a nonvolatile semiconductor memory, a magnetic disk, or an optical disk. The memory 154 temporarily stores programs loaded from the storage medium of the storage 156 and the results of calculations by the processor 152.
 プロセッサ152は、メモリ154と協働して上記プログラムを実行する。入出力ポート158は、プロセッサ152からの指令に従って、保持回転部20、現像液供給部30、リンス液供給部40(第1リンス液供給部40A、及び第2リンス液供給部40B)、排気部V1,V2、及びブロアB等との間で電気信号の入出力を行う。タイマ162は、例えば一定周期の基準パルスをカウントすることで経過時間を計測する。なお、制御装置100のハードウェア構成は、専用の論理回路又はこれを集積したASIC(Application Specific Integrated Circuit)により構成されていてもよい。 The processor 152 cooperates with the memory 154 to execute the above program. The input/output port 158 is connected to the holding rotation section 20, the developer supply section 30, the rinsing solution supply section 40 (the first rinsing solution supply section 40A and the second rinsing solution supply section 40B), and the exhaust section according to instructions from the processor 152. Electric signals are input/output between V1, V2, blower B, etc. The timer 162 measures elapsed time, for example, by counting reference pulses of a constant period. Note that the hardware configuration of the control device 100 may include a dedicated logic circuit or an ASIC (Application Specific Integrated Circuit) that integrates the dedicated logic circuit.
[基板処理方法]
 続いて、図6~図8を参照しながら、基板処理方法の一例として、制御装置100が実行する一連の処理について説明する。図6は、ワークWに対して行われる液処理の概要を説明するフロー図である。
[Substrate processing method]
Next, a series of processes executed by the control device 100 will be described as an example of a substrate processing method with reference to FIGS. 6 to 8. FIG. 6 is a flow diagram illustrating an overview of the liquid treatment performed on the workpiece W.
 まず、制御装置100は、塗布現像装置2の各部を制御して、処理モジュール11~13においてワークWを処理することにより、ワークWの表面Waにレジスト膜Rを形成させる(ステップS01)。次に、制御装置100は、塗布現像装置2の各部を制御して、ワークWを処理モジュール13から露光装置3に搬送装置A7等により搬送させる。次に、制御装置100とは異なる別の制御装置が、露光装置3を制御して、ワークWの表面Waに形成されているレジスト膜Rを所定のパターンで露光装置3により露光させる(ステップS02)。 First, the control device 100 controls each part of the coating and developing device 2 to process the workpiece W in the processing modules 11 to 13, thereby forming a resist film R on the surface Wa of the workpiece W (step S01). Next, the control device 100 controls each part of the coating and developing device 2 to transport the work W from the processing module 13 to the exposure device 3 using the transport device A7 or the like. Next, a control device different from the control device 100 controls the exposure device 3 to cause the exposure device 3 to expose the resist film R formed on the surface Wa of the workpiece W in a predetermined pattern (step S02 ).
 次に、制御装置100は、塗布現像装置2の各部を制御して、ワークWを露光装置3から処理モジュール14の現像ユニットU3に搬送させる。これにより、ワークWは表面Waが上方を向いた状態で保持回転部20に保持される。次に、制御装置100は、現像ユニットU3の現像液供給部30を制御して、ワークWの表面Wa、すなわちレジスト膜Rの上面に、現像液L1を供給させる(ステップS03)。 Next, the control device 100 controls each part of the coating and developing device 2 to transport the workpiece W from the exposure device 3 to the developing unit U3 of the processing module 14. Thereby, the workpiece W is held by the holding/rotating section 20 with the front surface Wa facing upward. Next, the control device 100 controls the developer supply section 30 of the development unit U3 to supply the developer L1 to the surface Wa of the workpiece W, that is, the upper surface of the resist film R (step S03).
 ステップS03において、制御装置100は、現像液供給部30を制御して、回転していないワークWの上方において現像ノズル36を水平に移動させながら、現像ノズル36から現像液L1をワークWの表面Waに向けて供給させてもよい。あるいは、制御装置100は、保持回転部20及び現像液供給部30を制御して、ワークWを保持回転部20により回転させつつ、ワークWの上方において現像ノズル36を水平に移動させながら、現像ノズル36から現像液L1をワークWの表面Waに向けて供給させてもよい。この場合、現像液L1は、ワークWの中心から周縁にかけて、あるいは、ワークWの周縁から中心にかけて、螺旋状に供給される。ステップS03により、ワークWの表面Waのレジスト膜Rの上面全体を覆うように、現像液L1が滞留する状態が形成される。 In step S03, the control device 100 controls the developer supply unit 30 to move the developer nozzle 36 horizontally above the non-rotating workpiece W, and supplies the developer L1 from the developer nozzle 36 to the surface of the workpiece W. It may also be supplied towards Wa. Alternatively, the control device 100 may control the holding/rotating unit 20 and the developer supplying unit 30 to rotate the workpiece W by the holding/rotating unit 20 and move the developing nozzle 36 horizontally above the workpiece W while performing development. The developer L1 may be supplied from the nozzle 36 toward the surface Wa of the workpiece W. In this case, the developer L1 is supplied spirally from the center to the periphery of the workpiece W, or from the periphery to the center of the workpiece W. By step S03, a state is created in which the developer L1 stays so as to cover the entire upper surface of the resist film R on the front surface Wa of the workpiece W.
 次に、制御装置100は、保持回転部20及びリンス液供給部40(第1リンス液供給部40A及び第2リンス液供給部40B)を制御して、回転中のワークWの表面Waすなわち現像液L1の上面に、リンス液供給部40によってリンス液L2を供給させる(ステップS04)。ステップS04では、制御装置100は、第1リンス液供給部40Aのリンスノズル46Aによるリンス液L2の吐出位置P1がワークWの中央CPと略一致するように、リンスノズル46Aを移動させてもよい。この状態で、ワークWを回転させながらリンスノズル46Aからリンス液L2の供給が行われることで、リンス液L2がワークWの表面Wa全体に広げられる。なお、制御装置100は、ワークWを保持回転部20により回転させつつ、ワークWの上方においてリンスノズル46Aを水平に移動させながら、リンスノズル46Aからリンス液L2をワークWの表面Waに向けて供給させてもよい。また、ステップS04において、制御装置100は、第1リンス液供給部40Aのリンスノズル46A及び第2リンス液供給部40Bのリンスノズル46Bの両方からリンス液L2を供給させてもよい。 Next, the control device 100 controls the holding rotation unit 20 and the rinsing liquid supply unit 40 (the first rinsing liquid supply unit 40A and the second rinsing liquid supply unit 40B) to The rinsing liquid supply section 40 supplies the rinsing liquid L2 onto the upper surface of the liquid L1 (step S04). In step S04, the control device 100 may move the rinse nozzle 46A so that the discharge position P1 of the rinse liquid L2 by the rinse nozzle 46A of the first rinse liquid supply section 40A substantially coincides with the center CP of the workpiece W. . In this state, the rinsing liquid L2 is supplied from the rinsing nozzle 46A while rotating the workpiece W, thereby spreading the rinsing liquid L2 over the entire surface Wa of the workpiece W. Note that the control device 100 directs the rinsing liquid L2 from the rinsing nozzle 46A toward the surface Wa of the work W while rotating the work W by the holding/rotating unit 20 and moving the rinsing nozzle 46A horizontally above the work W. It may be supplied. Moreover, in step S04, the control device 100 may supply the rinse liquid L2 from both the rinse nozzle 46A of the first rinse liquid supply section 40A and the rinse nozzle 46B of the second rinse liquid supply section 40B.
 次に、制御装置100は、回転中のワークWの表面Wa、すなわち表面Waに残るリンス液L2の上面に、ガス供給部50により、ガスGをガスノズル56から供給させて、リンス液L2を除去する(ステップS05)。ステップS05におけるガスGの吐出開始時点において、ガスG2の到達位置がワークWの中央CPに略一致するように、制御装置100は、駆動部54によりガスノズル56を移動させてもよい。 Next, the control device 100 causes the gas supply section 50 to supply gas G from the gas nozzle 56 to the surface Wa of the rotating workpiece W, that is, to the upper surface of the rinsing liquid L2 remaining on the surface Wa, thereby removing the rinsing liquid L2. (Step S05). The control device 100 may move the gas nozzle 56 using the drive unit 54 so that the arrival position of the gas G2 substantially coincides with the center CP of the workpiece W at the time when the discharge of the gas G is started in step S05.
 ステップS05では、ガスノズル56からガスGを供給すると共に、ステップS04から連続してリンス液L2の供給を継続する。つまり、ガスGの供給とリンス液L2の供給とを同時に行いながら、ワークWの表面Waからのリンス液L2の除去を実行する。 In step S05, the gas G is supplied from the gas nozzle 56, and the rinsing liquid L2 is continuously supplied from step S04. That is, the rinsing liquid L2 is removed from the surface Wa of the work W while simultaneously supplying the gas G and the rinsing liquid L2.
(リンス液L2の除去の手順)
 ステップS05におけるリンス液L2の除去の手順について、図7及び図8を参照しながら説明する。
(Procedure for removing rinse liquid L2)
The procedure for removing the rinse liquid L2 in step S05 will be described with reference to FIGS. 7 and 8.
 まず、図7に示すように、制御装置100は、ガス供給部50のガスノズル56からのガスG(窒素ガス)の供給を開始(ON)する。同時に、制御装置100は、第1リンス液供給部40Aのリンスノズル46AからのワークWの回転方向に沿ったリンス液L2の供給と、第2リンス液供給部40Bのリンスノズル46BからのワークWの外周へ向かう方向に沿ったリンス液L2の供給とを開始(ON)する(ステップS11)。このとき、図8(a)に示されるように、ガスノズル56は、ワークWの中央CPにおいてガスGを吐出するように配置される。また、回転方向に沿って延びて回転方向へリンス液L2を吐出するリンスノズル46Aは、ワークWの径方向に沿って中央CPから距離r1だけ離間した位置に吐出位置P1が位置するように配置される。そして、ワークWの径方向に沿って延びて径方向に沿った外周方向へリンス液L2を吐出するリンスノズル46Bは、ワークWの径方向に沿って中央CPから距離r2だけ離間した位置に吐出位置P2が位置するように配置される。この状態でガスGの吐出を開始することで、図8(a)に示されるように、中央から徐々にリンス液L2が除去されてワークWの表面Waが露出した乾燥コア領域Dが形成される。また、リンス液L2が残存する領域と乾燥コア領域Dとの境界には気液界面D0が形成される。なお、リンスノズル46Aはリンスノズル46Bよりも内側に配置される。すなわち、r1<r2の関係とされる。ワークWの直径が200mmの場合、距離r1は例えば10~25mmと設定され、距離r2は20mm~50mmと設定され得る。図8(a)では、距離r1を15mmと設定し、距離r2を30mmと設定した状態が模式的に示されいる。 First, as shown in FIG. 7, the control device 100 starts (ON) the supply of gas G (nitrogen gas) from the gas nozzle 56 of the gas supply section 50. At the same time, the control device 100 supplies the rinsing liquid L2 from the rinsing nozzle 46A of the first rinsing liquid supply section 40A along the rotational direction of the workpiece W, and supplies the rinsing liquid L2 from the rinsing nozzle 46B of the second rinsing liquid supply section 40B to the workpiece W. The supply of the rinsing liquid L2 along the direction toward the outer periphery is started (ON) (step S11). At this time, the gas nozzle 56 is arranged to discharge the gas G at the center CP of the workpiece W, as shown in FIG. 8(a). Further, the rinse nozzle 46A that extends along the rotational direction and discharges the rinse liquid L2 in the rotational direction is arranged such that the discharge position P1 is located at a position spaced apart from the center CP by a distance r1 along the radial direction of the workpiece W. be done. The rinse nozzle 46B, which extends along the radial direction of the workpiece W and discharges the rinse liquid L2 in the outer peripheral direction along the radial direction, discharges the rinse liquid L2 at a position spaced apart from the center CP by a distance r2 along the radial direction of the workpiece W. It is arranged so that position P2 is located. By starting to discharge the gas G in this state, the rinsing liquid L2 is gradually removed from the center to form a dry core region D in which the surface Wa of the workpiece W is exposed, as shown in FIG. 8(a). Ru. Furthermore, a gas-liquid interface D0 is formed at the boundary between the region where the rinsing liquid L2 remains and the dry core region D. Note that the rinse nozzle 46A is arranged inside the rinse nozzle 46B. That is, the relationship r1<r2 holds. When the diameter of the workpiece W is 200 mm, the distance r1 may be set, for example, to 10 to 25 mm, and the distance r2 may be set to 20 mm to 50 mm. FIG. 8A schematically shows a state in which the distance r1 is set to 15 mm and the distance r2 is set to 30 mm.
 この状態で、制御装置100は、リンスノズル46Aからのリンス液L2の吐出量(単位時間あたりの吐出量)に対して、リンスノズル46Bからのリンス液L2の吐出量(単位時間あたりの吐出量)が小さくなるように吐出量を調整する。一例として、リンスノズル46Aからのリンス液L2の吐出量が350ml/分に調整され、リンスノズル46Bからのリンス液L2の吐出量が100ml/分に調整される。このような吐出量の関係とすることで、ワークWの中央CPから距離r1~r2の領域では、回転方向に吐出されるリンスノズル46Aからのリンス液L2による螺旋方向のリンス液L2の流れが主流となる。また、距離r2よりも外周側の領域では、外周方向に吐出されるリンスノズル46Bからのリンス液L2が加わることで、より外方へ向かうリンス液L2の流れが形成される。 In this state, the control device 100 controls the amount of rinsing liquid L2 discharged from the rinse nozzle 46B (the amount of discharge per unit time) with respect to the amount of rinsing liquid L2 discharged from the rinse nozzle 46A (the amount of discharge per unit time). ) is adjusted to reduce the discharge amount. As an example, the discharge amount of the rinse liquid L2 from the rinse nozzle 46A is adjusted to 350 ml/min, and the discharge amount of the rinse liquid L2 from the rinse nozzle 46B is adjusted to 100 ml/min. With such a discharge amount relationship, in the region of distance r1 to r2 from the center CP of the work W, the flow of the rinse liquid L2 in the spiral direction by the rinse liquid L2 from the rinse nozzle 46A discharged in the rotation direction is Become mainstream. Further, in a region on the outer circumferential side of the distance r2, the rinsing liquid L2 discharged in the outer circumferential direction from the rinsing nozzle 46B is added, thereby forming a flow of the rinsing liquid L2 further outward.
 次に、制御装置100は、ガスG及びリンス液L2の吐出を継続しながら、ガスノズル56及びリンスノズル46Aを外周方向へ移動させる(ステップS12)。図8(b)では、ガスノズル56及びリンスノズル46AをワークWの外周方向へ15mm移動させた状態が示されている。リンスノズル46Aを外周方向へ移動させることで、リンス液L2が供給される領域が外周方向へ移動する。さらに、ガスノズル56を移動させることによってガスGが供給される領域も外周方向へ移動する。この結果、ワークWの中央側に形成されるリンス液L2と乾燥コア領域Dとの境界である気液界面D0が徐々に外周側へ移動する。すなわち、図8(b)に示されるように、乾燥コア領域Dが徐々に中央CPから外周側へ広がる。なお、リンスノズル46Bはこの段階では移動しないため、図8(b)に示す状態では、外周方向へ15mm移動したリンスノズル46Aと、リンスノズル46Bと、の両方が中央CPから30mm離れた位置にいることになる。すなわち、リンスノズル46Aがリンスノズル46Bと同じ外周位置まで移動した状態である。 Next, the control device 100 moves the gas nozzle 56 and the rinse nozzle 46A toward the outer circumference while continuing to discharge the gas G and the rinse liquid L2 (step S12). FIG. 8B shows a state in which the gas nozzle 56 and the rinse nozzle 46A have been moved 15 mm toward the outer circumference of the workpiece W. By moving the rinse nozzle 46A in the outer circumferential direction, the area to which the rinse liquid L2 is supplied moves in the outer circumferential direction. Furthermore, by moving the gas nozzle 56, the region to which the gas G is supplied also moves toward the outer circumference. As a result, the gas-liquid interface D0, which is the boundary between the rinsing liquid L2 formed at the center of the workpiece W and the dry core region D, gradually moves toward the outer circumference. That is, as shown in FIG. 8(b), the dry core region D gradually expands from the center CP toward the outer periphery. Note that the rinse nozzle 46B does not move at this stage, so in the state shown in FIG. 8(b), both the rinse nozzle 46A, which has moved 15 mm toward the outer circumferential direction, and the rinse nozzle 46B are at a position 30 mm away from the center CP. There will be. That is, the rinse nozzle 46A has moved to the same outer peripheral position as the rinse nozzle 46B.
 次に、制御装置100は、リンスノズル46Aからのリンス液L2の吐出を停止(OFF)させる(ステップS13)。図8(c)では、リンスノズル46Aからのリンス液L2の吐出を停止した状態が模式的に示されている。この段階で、制御装置100は、リンスノズル46Bからのリンス液L2の吐出量を、リンスノズル46Aからの吐出量と同じ程度(例えば、350ml/分)まで増やしてもよい。これにより、中央CPから距離r2よりも外周側の領域において、外周方向に吐出されるリンスノズル46Bからのリンス液L2によって、外周へ向かうリンス液L2の流れが形成される。 Next, the control device 100 stops (turns off) the discharge of the rinse liquid L2 from the rinse nozzle 46A (step S13). FIG. 8C schematically shows a state where the discharge of the rinse liquid L2 from the rinse nozzle 46A is stopped. At this stage, the control device 100 may increase the discharge amount of the rinse liquid L2 from the rinse nozzle 46B to the same extent as the discharge amount from the rinse nozzle 46A (for example, 350 ml/min). As a result, in a region on the outer circumferential side of the distance r2 from the center CP, a flow of the rinse liquid L2 toward the outer circumference is formed by the rinse liquid L2 discharged from the rinse nozzle 46B in the outer circumferential direction.
 次に、制御装置100は、ガスG及びリンス液L2の吐出を継続しながら、リンスノズル46Bを外周方向へ移動させる(ステップS14)。図8(c)に示す状態では、ガスノズル56がワークWの中央CPから外周方向へ15mm移動した状態である。一方、リンスノズル46Bの吐出位置P2はワークWの中央CPから外周方向へ30mm(距離r2)離れた状態である。そこで、制御装置100は、ガスGの吐出位置とワークWの中央CPとの距離と、リンス液L2の吐出位置P2とワークWの中央CPとの距離と、の差分が30mmとなるまで、リンスノズル46Bのみを移動させる。ここでは、リンスノズル46Bのみを外周方向へ15mm移動させることで、リンスノズル46Bの吐出位置P2とガスGの吐出位置との距離が30mmとなる。これにより、ワークWの外周側におけるリンスノズル46Bの吐出位置P2及びガスGの吐出位置のそれぞれについての中央CPからの距離の差分が、ワークWの中心側でのリンスノズル46Aの吐出位置P1及びガスGの吐出位置との関係と比べて大きくなる。 Next, the control device 100 moves the rinse nozzle 46B toward the outer circumference while continuing to discharge the gas G and the rinse liquid L2 (step S14). In the state shown in FIG. 8(c), the gas nozzle 56 has moved 15 mm from the center CP of the workpiece W in the outer circumferential direction. On the other hand, the discharge position P2 of the rinse nozzle 46B is 30 mm (distance r2) away from the center CP of the workpiece W in the outer circumferential direction. Therefore, the control device 100 performs rinsing until the difference between the distance between the discharge position of the gas G and the center CP of the workpiece W and the distance between the discharge position P2 of the rinsing liquid L2 and the center CP of the workpiece W becomes 30 mm. Only the nozzle 46B is moved. Here, by moving only the rinse nozzle 46B by 15 mm in the outer circumferential direction, the distance between the discharge position P2 of the rinse nozzle 46B and the discharge position of the gas G becomes 30 mm. As a result, the difference in distance from the center CP of the discharge position P2 of the rinse nozzle 46B and the discharge position of the gas G on the outer peripheral side of the workpiece W is the same as that of the discharge position P1 of the rinse nozzle 46A on the center side of the workpiece W. This is larger than the relationship with the gas G discharge position.
 次に、制御装置100は、ガスG及びリンス液L2の吐出を継続しながら、ガスノズル56及びリンスノズル46Bを外周方向へ移動させる(ステップS15)。図8(d)では、図8(c)に示す状態と比べてガスノズル56及びリンスノズル46BをワークWの外周方向へ移動させた状態が示されている。ステップS14の状態から、ワークWにおけるリンスノズル46Bの吐出位置P2及びガスGの吐出位置それぞれの中央CPからの距離を維持した状態で、ガスノズル56及びリンスノズル46BをワークWの外周方向へ移動させる。このとき、リンスノズル46Bを外周方向へ移動させることで、リンス液L2が供給される領域が外周方向へ移動する。さらに、ガスノズル56を移動させることによってガスGが供給される領域も外周方向へ移動する。この結果、ワークWの気液界面D0はさらに外周側へ移動する。すなわち、図8(d)に示されるように、乾燥コア領域Dがさらに外周側へ広がり、リンス液L2が残存する領域が外周縁のみとなる。この状態から、制御装置100が、さらにガスノズル56及びリンスノズル46Bを外周方向へ移動させると、ガスGによって、現像液L1との反応で溶解したレジストの溶解物と共にリンス液L2の全てがワークWの表面Waから除去される。この結果、ワークWの表面Waの全体が乾燥コア領域Dとなり、現像によって形成されたレジストパターンが現れることになる。 Next, the control device 100 moves the gas nozzle 56 and the rinse nozzle 46B toward the outer circumference while continuing to discharge the gas G and the rinse liquid L2 (step S15). FIG. 8(d) shows a state in which the gas nozzle 56 and the rinse nozzle 46B are moved toward the outer circumference of the workpiece W compared to the state shown in FIG. 8(c). From the state of step S14, the gas nozzle 56 and the rinse nozzle 46B are moved toward the outer circumference of the work W while maintaining the distances from the center CP of the discharge position P2 of the rinse nozzle 46B and the discharge position of the gas G on the work W. . At this time, by moving the rinse nozzle 46B in the outer circumferential direction, the area to which the rinse liquid L2 is supplied moves in the outer circumferential direction. Furthermore, by moving the gas nozzle 56, the region to which the gas G is supplied also moves toward the outer circumference. As a result, the gas-liquid interface D0 of the workpiece W further moves toward the outer circumference. That is, as shown in FIG. 8(d), the dry core region D further expands toward the outer periphery, and the only region where the rinsing liquid L2 remains is the outer periphery. From this state, when the control device 100 further moves the gas nozzle 56 and the rinse nozzle 46B in the outer circumferential direction, the gas G causes all of the rinse liquid L2 to be removed from the workpiece W along with the resist dissolved by the reaction with the developer L1. is removed from the surface Wa. As a result, the entire surface Wa of the workpiece W becomes a dry core region D, and a resist pattern formed by development appears.
 なお、上記の手順では、図8(b)及びステップS12に示すように、ガスノズル56とリンスノズル46Aとが同時に移動する状態が存在する。したがって、ガスノズル56とリンスノズル46Aとが一体的に移動可能なように構成されていてもよい。この場合、ステップS14において、ガスノズル56を外周方向へ移動させる場合にも、制御装置100は、リンス液L2の供給が停止されたリンスノズル46Aをガスノズル56と共に外周方向へ移動させてもよい。 Note that in the above procedure, there is a state in which the gas nozzle 56 and the rinse nozzle 46A move simultaneously, as shown in FIG. 8(b) and step S12. Therefore, the gas nozzle 56 and the rinse nozzle 46A may be configured to be integrally movable. In this case, when moving the gas nozzle 56 in the outer circumferential direction in step S14, the control device 100 may also move the rinse nozzle 46A, to which the supply of the rinse liquid L2 has been stopped, together with the gas nozzle 56 in the outer circumferential direction.
 また、上記の手順では、ステップS14において、リンスノズル46Bのみを移動させている。この処理は、ワークWの外周側でのリンスノズル46Bの吐出位置P2及びガスノズル56によるガスGの吐出位置のそれぞれについての中央CPからの距離の差分を、ワークWの中心側のリンスノズル46Aとガスノズル56との関係よりも大きくする処理である。外周側では、ワークWの径方向に沿ったリンス液L2の吐出位置P2と、ガスGの吐出位置とをある程度遠ざける(ガスGの吐出位置とワークWの中央CPとの距離と、リンス液L2の吐出位置P2とワークWの中央CPとの距離と、の差分を大きくする)ほうが、ガスノズル56から吐出されるガスGによってリンス液L2が跳ねて、乾燥コア領域Dに飛散すること(スプラッシュ)が発生する可能性を小さくすることができる。そのため、上記のステップS14のように、ワークWの中心側と比べて、外周側ではワークWの径方向に沿ったリンス液L2の吐出位置P2と、ガスGの吐出位置との距離を大きくすることで、処理後の残渣がワークWの表面Waに滞留することを防ぐことができる。 Furthermore, in the above procedure, only the rinse nozzle 46B is moved in step S14. This process calculates the difference in distance from the center CP of the discharge position P2 of the rinse nozzle 46B on the outer peripheral side of the workpiece W and the discharge position of the gas G by the gas nozzle 56 from the rinse nozzle 46A on the center side of the workpiece W. This is a process to make it larger than the relationship with the gas nozzle 56. On the outer circumferential side, the discharge position P2 of the rinsing liquid L2 along the radial direction of the workpiece W and the discharge position of the gas G are separated by a certain distance (the distance between the discharge position of the gas G and the center CP of the workpiece W and the rinsing liquid L2 It is better to increase the difference between the distance between the discharge position P2 and the center CP of the work W, so that the rinsing liquid L2 is splashed by the gas G discharged from the gas nozzle 56 and scattered onto the dry core region D (splash). The possibility of this occurring can be reduced. Therefore, as in step S14 above, the distance between the discharge position P2 of the rinsing liquid L2 and the discharge position of the gas G along the radial direction of the workpiece W is made larger on the outer peripheral side than on the center side of the workpiece W. This can prevent residues after processing from remaining on the surface Wa of the workpiece W.
 一方、ワークWの中心側では、ワークWの径方向に沿ったリンス液L2の吐出位置とガスGの吐出位置との距離を大きくすると、ワークWの表面Waにリンス液L2及び残渣に由来する干渉縞が発生し得る。また、リンスノズル46Bのように、外周方向にリンス液L2を吐出する構成とすると、ワークWの中央付近ではガスGによるリンス液L2の液跳ね(スプラッシュ)が発生しやすいことが確認された。そこで、上記のリンスノズル46Aを用いてワークWの回転方向に沿った方向にリンス液L2を吐出する構成を採用し、さらに、ワークWの径方向に沿ったリンス液L2の吐出位置P1とガスGの吐出位置との距離をある程度小さくすることで、干渉縞及びリンス液L2の液跳ねを抑制しながら、気液界面D0を外周方向へ移動させることができるため、処理後に残渣が滞留することが防がれる。 On the other hand, on the center side of the workpiece W, if the distance between the discharge position of the rinsing liquid L2 and the discharge position of the gas G along the radial direction of the workpiece W is increased, the surface Wa of the workpiece W is exposed to the rinsing liquid L2 and the residue. Interference fringes may occur. Furthermore, it has been confirmed that when the rinse nozzle 46B is configured to discharge the rinse liquid L2 in the outer circumferential direction, splashing of the rinse liquid L2 due to the gas G is likely to occur near the center of the workpiece W. Therefore, a configuration is adopted in which the rinse nozzle 46A is used to discharge the rinse liquid L2 in a direction along the rotational direction of the workpiece W, and further, the discharge position P1 of the rinse liquid L2 along the radial direction of the workpiece W and the gas By reducing the distance from the discharge position of G to a certain extent, it is possible to move the gas-liquid interface D0 toward the outer circumference while suppressing interference fringes and splashing of the rinse liquid L2, which prevents residue from remaining after processing. is prevented.
 なお、上記の手順では、ガスノズル56、リンスノズル46A及びリンスノズル46Bが独立して移動する。したがって、図4等に示すように、3つのノズルは、互いに異なるアームによって支持されていて、独立して移動可能とされている。ただし、図8(b)及びステップS12に示すように、ガスノズル56とリンスノズル46Aとが同時に移動するタイミングが存在する。したがって、ガスノズル56とリンスノズル46Aとが一体的に移動可能なように構成されていてもよい。この場合、ステップS14において、ガスノズル56を外周方向へ移動させる場合にも、制御装置100は、リンス液L2の供給が停止されたリンスノズル46Aをガスノズル56と共に外周方向へ移動させてもよい。 Note that in the above procedure, the gas nozzle 56, the rinse nozzle 46A, and the rinse nozzle 46B move independently. Therefore, as shown in FIG. 4 etc., the three nozzles are supported by mutually different arms and are movable independently. However, as shown in FIG. 8B and step S12, there is a timing when the gas nozzle 56 and the rinse nozzle 46A move simultaneously. Therefore, the gas nozzle 56 and the rinse nozzle 46A may be configured to be integrally movable. In this case, when moving the gas nozzle 56 in the outer circumferential direction in step S14, the control device 100 may also move the rinse nozzle 46A, to which the supply of the rinse liquid L2 has been stopped, together with the gas nozzle 56 in the outer circumferential direction.
(リンス液L2の除去の手順の変更例-1)
 上記の手順では、3つのノズル(ガスノズル56、リンスノズル46A及びリンスノズル46B)が互いに異なるアームによって支持されている場合について説明した。したがって、ステップS13においてリンスノズル46Aからのリンス液L2の吐出を停止した後、ステップS14においてリンスノズル46Bのみを外周方向へ移動させるステップが存在する。すなわち、ステップS14においてワークWの径方向に沿ったリンス液L2の吐出位置P2とガスGの吐出位置との距離が大きくなるように調整されている。これに対して、2つのガスノズルを準備し、1つのガスノズルと1つのリンスノズルとを1つのアームに対して取り付ける構成とすることで、当初からリンス液L2の吐出位置とガスGの吐出位置との位置関係を固定する。このような2つのアームを含む構成で、図7,図8に示す手順と同様の手順を実行しようとすると、ステップS14に示すようにリンスノズル46Bのみを移動させるステップを省略することができる。以下、図9及び図10を参照しながらその具体的な手順について第1の変更例として説明する。
(Example of changing the procedure for removing rinse liquid L2-1)
In the above procedure, a case has been described in which three nozzles (gas nozzle 56, rinse nozzle 46A, and rinse nozzle 46B) are supported by mutually different arms. Therefore, after stopping the discharge of the rinse liquid L2 from the rinse nozzle 46A in step S13, there is a step in which only the rinse nozzle 46B is moved toward the outer circumference in step S14. That is, in step S14, the distance between the discharge position P2 of the rinse liquid L2 and the discharge position of the gas G along the radial direction of the workpiece W is adjusted to be large. In contrast, by preparing two gas nozzles and configuring one gas nozzle and one rinse nozzle to be attached to one arm, the discharge position of the rinse liquid L2 and the discharge position of the gas G can be adjusted from the beginning. Fix the positional relationship. When attempting to execute a procedure similar to the procedure shown in FIGS. 7 and 8 with such a configuration including two arms, it is possible to omit the step of moving only the rinse nozzle 46B as shown in step S14. Hereinafter, the specific procedure will be described as a first modification example with reference to FIGS. 9 and 10.
 まず、前提として、現像ユニットU3の供給部が、ガスノズル56A,56B(2つのガスノズル)を有するとする。ガスノズル56A,56Bは、それぞれガス送出部に接続されて、ポンプ等によって容器に貯留されているガスGが供給される構成としてもよい。 First, it is assumed that the supply section of the developing unit U3 has gas nozzles 56A and 56B (two gas nozzles). The gas nozzles 56A and 56B may each be connected to a gas delivery section, and gas G stored in the container may be supplied by a pump or the like.
 図10(a)に示されるように、ガスノズル56A及びリンスノズル46Aは第1アーム61によって支持され、ガスノズル56B及びリンスノズル46Bは第2アーム62によって支持されている。このとき、ガスノズル56A,56Bは、いずれもワークWの中央CPに対してガスGを吐出可能となるように配置されている。図10(a)では、ガスノズル56A,56Bの吐出口が平面視において重なる例が示されているが、2つのノズルの配置は適宜変更することができる。また、第1アーム61に設けられるリンスノズル46Aは、ワークWの径方向に沿って中央CPから距離r1だけ離間した位置に吐出位置P1が位置するように配置される。すなわち、第1アーム61では、ガスノズル56Aの吐出位置とリンスノズル46Aの吐出位置P1とが、ワークWの径方向に沿って距離r1となるように配置される。一方、第2アーム62に設けられるリンスノズル46Bは、ワークWの径方向に沿って中央CPから距離r2だけ離間した位置に吐出位置P2が位置するように配置される。すなわち、第2アーム62では、ガスノズル56Bの吐出位置とリンスノズル46Bの吐出位置P2とが、ワークWの径方向に沿って距離r2となるように配置される。このようなノズルの配置を前提として、制御装置100は以下の手順を実行する。 As shown in FIG. 10(a), the gas nozzle 56A and the rinse nozzle 46A are supported by the first arm 61, and the gas nozzle 56B and the rinse nozzle 46B are supported by the second arm 62. At this time, the gas nozzles 56A and 56B are both arranged so as to be able to discharge the gas G to the center CP of the workpiece W. Although FIG. 10A shows an example in which the discharge ports of the gas nozzles 56A and 56B overlap in plan view, the arrangement of the two nozzles can be changed as appropriate. Further, the rinse nozzle 46A provided on the first arm 61 is arranged such that the discharge position P1 is located at a position spaced apart from the center CP by a distance r1 along the radial direction of the workpiece W. That is, in the first arm 61, the discharge position of the gas nozzle 56A and the discharge position P1 of the rinse nozzle 46A are arranged at a distance r1 along the radial direction of the workpiece W. On the other hand, the rinse nozzle 46B provided on the second arm 62 is arranged such that the discharge position P2 is located at a distance r2 from the center CP along the radial direction of the workpiece W. That is, in the second arm 62, the discharge position of the gas nozzle 56B and the discharge position P2 of the rinse nozzle 46B are arranged at a distance r2 along the radial direction of the workpiece W. On the premise of such a nozzle arrangement, the control device 100 executes the following procedure.
 まず、図9に示すように、制御装置100は、第1アーム61のガスノズル56A及び第2アーム62のガスノズル56BからのガスG(窒素ガス)の供給を開始(ON)する。同時に、制御装置100は、第1アーム61のリンスノズル46AからのワークWの回転方向に沿ったリンス液L2の供給と、第2アーム62のリンスノズル46BからのワークWの外周へ向かう方向に沿ったリンス液L2の供給とを開始(ON)する(ステップS21)。図10(a)に示されるように、ガスノズル56A,56Bは、ワークWの中央CPにおいてガスGを吐出するように配置される。また、回転方向に沿って延びて回転方向へリンス液L2を吐出するリンスノズル46Aは、ワークWの径方向に沿って中央CPから距離r1だけ離間した位置に吐出位置P1が位置するように配置される。そして、ワークWの径方向に沿って延びて径方向に沿った外周方向へリンス液L2を吐出するリンスノズル46Bは、ワークWの径方向に沿って中央CPから距離r2だけ離間した位置に吐出位置P2が位置するように配置される。この状態でガスGの吐出を開始することで、図10(a)に示されるように乾燥コア領域Dが形成され、リンス液L2が残存する領域と乾燥コア領域Dとの境界には気液界面D0が形成される。 First, as shown in FIG. 9, the control device 100 starts (ON) the supply of gas G (nitrogen gas) from the gas nozzle 56A of the first arm 61 and the gas nozzle 56B of the second arm 62. At the same time, the control device 100 supplies the rinsing liquid L2 from the rinsing nozzle 46A of the first arm 61 along the rotational direction of the workpiece W, and from the rinsing nozzle 46B of the second arm 62 in the direction toward the outer periphery of the workpiece W. The supply of the rinsing liquid L2 is started (ON) (step S21). As shown in FIG. 10(a), the gas nozzles 56A and 56B are arranged so as to discharge the gas G at the center CP of the workpiece W. As shown in FIG. Further, the rinse nozzle 46A that extends along the rotational direction and discharges the rinse liquid L2 in the rotational direction is arranged such that the discharge position P1 is located at a position spaced apart from the center CP by a distance r1 along the radial direction of the workpiece W. be done. The rinse nozzle 46B, which extends along the radial direction of the workpiece W and discharges the rinse liquid L2 in the outer peripheral direction along the radial direction, discharges the rinse liquid L2 at a position spaced apart from the center CP by a distance r2 along the radial direction of the workpiece W. It is arranged so that position P2 is located. By starting to discharge the gas G in this state, a dry core region D is formed as shown in FIG. An interface D0 is formed.
 なお、この状態では、リンスノズル46Aからのリンス液L2の吐出量(単位時間あたりの吐出量)に対して、リンスノズル46Bからのリンス液L2の吐出量(単位時間あたりの吐出量)が小さくなるように吐出量を調整する。一例として、リンスノズル46Aからのリンス液L2の吐出量が350ml/分に調整され、リンスノズル46Bからのリンス液L2の吐出量が100ml/分に調整される。このような吐出量の関係とすることで、ワークWの中央CPから距離r1~r2の領域では、回転方向に吐出されるリンスノズル46Aからのリンス液L2による螺旋方向のリンス液L2の流れが主流となる。また、距離r2よりも外周側の領域では、外周方向に吐出されるリンスノズル46Bからのリンス液L2が加わることで、より外方へ向かうリンス液L2の流れが形成される。 In this state, the amount of rinsing liquid L2 discharged from the rinse nozzle 46B (the amount of discharge per unit time) is smaller than the amount of rinsing liquid L2 discharged from the rinse nozzle 46A (the amount of discharge per unit time). Adjust the discharge amount so that As an example, the discharge amount of the rinse liquid L2 from the rinse nozzle 46A is adjusted to 350 ml/min, and the discharge amount of the rinse liquid L2 from the rinse nozzle 46B is adjusted to 100 ml/min. With such a discharge amount relationship, in the region of distance r1 to r2 from the center CP of the work W, the flow of the rinse liquid L2 in the spiral direction by the rinse liquid L2 from the rinse nozzle 46A discharged in the rotation direction is Become mainstream. Further, in a region on the outer circumferential side of the distance r2, the rinsing liquid L2 discharged in the outer circumferential direction from the rinsing nozzle 46B is added, thereby forming a flow of the rinsing liquid L2 further outward.
 次に、制御装置100は、ガスG及びリンス液L2の吐出を継続しながら、第1アーム61を外周方向へ移動させる(ステップS22)。図10(b)では、第1アーム61をワークWの外周方向へ15mm移動させた状態が示されている。第1アーム61を移動させることによってリンスノズル46Aを外周方向へ移動させることで、リンス液L2が供給される領域が外周方向へ移動する。さらに、ガスノズル56Aを移動させることによってガスGが供給される領域も外周方向へ移動する。この結果、ワークWの中央側に形成されるリンス液L2と乾燥コア領域Dとの境界である気液界面D0が徐々に外周側へ移動する。すなわち、図10(b)に示されるように、乾燥コア領域Dが徐々に中央CPから外周側へ広がる。なお、第2アーム62のガスノズル56B及びリンスノズル46Bはこの段階では移動しない。 Next, the control device 100 moves the first arm 61 in the outer circumferential direction while continuing to discharge the gas G and the rinsing liquid L2 (step S22). FIG. 10(b) shows a state in which the first arm 61 has been moved 15 mm toward the outer circumference of the workpiece W. By moving the first arm 61 to move the rinse nozzle 46A in the outer circumferential direction, the area to which the rinse liquid L2 is supplied moves in the outer circumferential direction. Furthermore, by moving the gas nozzle 56A, the region to which the gas G is supplied also moves toward the outer circumference. As a result, the gas-liquid interface D0, which is the boundary between the rinsing liquid L2 formed at the center of the workpiece W and the dry core region D, gradually moves toward the outer circumference. That is, as shown in FIG. 10(b), the dry core region D gradually expands from the center CP toward the outer periphery. Note that the gas nozzle 56B and rinse nozzle 46B of the second arm 62 do not move at this stage.
 次に、制御装置100は、リンスノズル46Aからのリンス液L2の吐出を停止(OFF)させる(ステップS23)。このとき、ガスノズル56AからのガスGの吐出も停止してもよい。図10(c)では、リンスノズル46Aからのリンス液L2の吐出と、ガスノズル56AからのガスGの吐出を停止した状態が模式的に示されている。この段階で、リンスノズル46Bからのリンス液L2の吐出量を、リンスノズル46Aからの吐出量と同じ程度(例えば、350ml/分)まで増加(UP)させる。これにより、中央CPから距離r2よりも外周側の領域において、外周方向に吐出されるリンスノズル46Bからのリンス液L2によって、外周へ向かうリンス液L2の流れが形成される。 Next, the control device 100 stops (turns off) the discharge of the rinse liquid L2 from the rinse nozzle 46A (step S23). At this time, the discharge of gas G from the gas nozzle 56A may also be stopped. FIG. 10C schematically shows a state in which the discharge of the rinse liquid L2 from the rinse nozzle 46A and the discharge of the gas G from the gas nozzle 56A are stopped. At this stage, the discharge amount of the rinse liquid L2 from the rinse nozzle 46B is increased (UP) to the same extent as the discharge amount from the rinse nozzle 46A (for example, 350 ml/min). As a result, in a region on the outer circumferential side of the distance r2 from the center CP, a flow of the rinse liquid L2 toward the outer circumference is formed by the rinse liquid L2 discharged from the rinse nozzle 46B in the outer circumferential direction.
 次に、制御装置100は、第2アーム62を外周方向へ移動させる(ステップS24)。図10(d)では、図10(c)に示す状態と比べて、第2アーム62(ガスノズル56B及びリンスノズル46B)をワークWの外周方向へ移動させた状態が示されている。このとき、リンスノズル46B及びガスノズル56Bを外周方向へ移動させることで、リンス液L2が供給される領域及びガスGが供給される領域が外周方向へ移動する。この結果、ワークWの気液界面D0が外周側へ移動する。すなわち、図10(d)に示されるように、乾燥コア領域Dがさらに外周側へ広がり、リンス液L2が残存する領域が外周縁のみとなる。この状態から、さらに第2アーム62を外周方向へ移動させると、ガスGによって、現像液L1との反応で溶解したレジストの溶解物と共にリンス液L2の全てがワークWの表面Waから除去される。この結果、ワークWの表面Waの全体が乾燥コア領域Dとなり、現像によって形成されたレジストパターンが現れることになる。 Next, the control device 100 moves the second arm 62 in the outer circumferential direction (step S24). FIG. 10(d) shows a state in which the second arm 62 (gas nozzle 56B and rinse nozzle 46B) is moved toward the outer circumference of the workpiece W, compared to the state shown in FIG. 10(c). At this time, by moving the rinse nozzle 46B and the gas nozzle 56B in the outer circumferential direction, the region to which the rinse liquid L2 is supplied and the region to which the gas G is supplied moves in the outer circumferential direction. As a result, the gas-liquid interface D0 of the workpiece W moves toward the outer circumference. That is, as shown in FIG. 10(d), the dry core region D further expands toward the outer periphery, and the only region in which the rinsing liquid L2 remains is the outer periphery. When the second arm 62 is further moved in the outer circumferential direction from this state, the gas G removes all of the rinse liquid L2 from the surface Wa of the workpiece W together with the resist dissolved by the reaction with the developer L1. . As a result, the entire surface Wa of the workpiece W becomes a dry core region D, and a resist pattern formed by development appears.
 このように、第1アーム61及び第2アーム62を用いた手順では、リンスノズル46A,46Bの移動に対してそれぞれガスノズル56A,56Bが追随して移動するため、リンスノズルとガスノズルとの間の距離が維持される。つまり、第1アーム61及び第2アーム62のそれぞれにおいてリンス液L2の吐出位置とガスGの吐出位置が維持された状態で、リンスノズルを外周方向へ移動させることができる。 In this manner, in the procedure using the first arm 61 and the second arm 62, the gas nozzles 56A and 56B move following the movement of the rinse nozzles 46A and 46B, respectively, so that the distance between the rinse nozzle and the gas nozzle is reduced. Distance is maintained. That is, the rinse nozzle can be moved in the outer circumferential direction while the discharge position of the rinse liquid L2 and the discharge position of the gas G are maintained in each of the first arm 61 and the second arm 62.
 なお、図9に示す手順では、ステップS23において気液界面D0の形成に関与するガスノズル及びリンスノズルが、ガスノズル56A及びリンスノズル46Aからガスノズル56B及びリンスノズル46Bへ入れ替わる。このとき、ガスノズルからのガスGの吐出量を短期間で大きく変化させると、リンス液L2との干渉によって液跳ね等が生じる場合がある。したがって、制御装置100は、ガスノズル56A,56Bの吐出量を緩やかに変化する制御等を加えてもよい。 Note that in the procedure shown in FIG. 9, the gas nozzle and rinse nozzle involved in forming the gas-liquid interface D0 are replaced from the gas nozzle 56A and rinse nozzle 46A to the gas nozzle 56B and rinse nozzle 46B in step S23. At this time, if the amount of gas G discharged from the gas nozzle is greatly changed in a short period of time, liquid splashing may occur due to interference with the rinsing liquid L2. Therefore, the control device 100 may perform control to gradually change the discharge amount of the gas nozzles 56A, 56B.
(リンス液L2の除去の手順の変更例-2)
 ステップS05におけるリンス液L2の除去の手順の第2の変更例について、図11及び図12を参照しながら説明する。この変更例では、図7及び図8で説明した例と比較して、ガスノズル56が移動しない点が相違する。具体的には、ガスノズル56はワークWの中央CPに固定された状態となっている。
(Example of changing the procedure for removing rinse liquid L2-2)
A second modification of the procedure for removing the rinse liquid L2 in step S05 will be described with reference to FIGS. 11 and 12. This modified example differs from the example described in FIGS. 7 and 8 in that the gas nozzle 56 does not move. Specifically, the gas nozzle 56 is fixed to the center CP of the workpiece W.
 まず、図11に示すように、制御装置100は、ガス供給部50のガスノズル56からのガスG(窒素ガス)の供給を開始(ON)する。同時に、制御装置100は、第1リンス液供給部40Aのリンスノズル46AからのワークWの回転方向に沿ったリンス液L2の供給と、第2リンス液供給部40Bのリンスノズル46BからのワークWの外周へ向かう方向に沿ったリンス液L2の供給とを開始(ON)する(ステップS31)。このとき、図12(a)に示されるように、ガスノズル56は、ワークWの中央CPにおいてガスGを吐出するように配置される。また、回転方向に沿って延びて回転方向へリンス液L2を吐出するリンスノズル46Aは、ワークWの径方向に沿って中央CPから距離r1だけ離間した位置に吐出位置P1が位置するように配置される。そして、ワークWの径方向に沿って延びて径方向に沿った外周方向へリンス液L2を吐出するリンスノズル46Bは、ワークWの径方向に沿って中央CPから距離r2だけ離間した位置に吐出位置P2が位置するように配置される。この状態でガスGの吐出を開始することで、図12(a)に示されるように、中央から徐々にリンス液L2が除去されてワークWの表面Waが露出した乾燥コア領域Dが形成される。また、リンス液L2が残存する領域と乾燥コア領域Dとの境界には気液界面D0が形成される。なお、リンスノズル46Aはリンスノズル46Bよりも内側に配置される。すなわち、r1<r2の関係とされる。ワークWの直径が200mmの場合、距離r1は例えば10~25mmと設定され、距離r2は20mm~50mmと設定され得る。図12(a)では、距離r1を15mmと設定し、距離r2を30mmと設定した状態が模式的に示されている。 First, as shown in FIG. 11, the control device 100 starts (ON) the supply of gas G (nitrogen gas) from the gas nozzle 56 of the gas supply section 50. At the same time, the control device 100 supplies the rinsing liquid L2 from the rinsing nozzle 46A of the first rinsing liquid supply section 40A along the rotational direction of the workpiece W, and supplies the rinsing liquid L2 from the rinsing nozzle 46B of the second rinsing liquid supply section 40B to the workpiece W. The supply of the rinsing liquid L2 along the direction toward the outer periphery is started (ON) (step S31). At this time, the gas nozzle 56 is arranged so as to discharge the gas G at the center CP of the workpiece W, as shown in FIG. 12(a). Further, the rinse nozzle 46A that extends along the rotational direction and discharges the rinse liquid L2 in the rotational direction is arranged such that the discharge position P1 is located at a position spaced apart from the center CP by a distance r1 along the radial direction of the workpiece W. be done. The rinse nozzle 46B, which extends along the radial direction of the workpiece W and discharges the rinse liquid L2 in the outer peripheral direction along the radial direction, discharges the rinse liquid L2 at a position spaced apart from the center CP by a distance r2 along the radial direction of the workpiece W. It is arranged so that position P2 is located. By starting to discharge the gas G in this state, the rinsing liquid L2 is gradually removed from the center to form a dry core region D in which the surface Wa of the workpiece W is exposed, as shown in FIG. 12(a). Ru. Furthermore, a gas-liquid interface D0 is formed at the boundary between the region where the rinsing liquid L2 remains and the dry core region D. Note that the rinse nozzle 46A is arranged inside the rinse nozzle 46B. That is, the relationship r1<r2 holds. When the diameter of the workpiece W is 200 mm, the distance r1 may be set, for example, to 10 to 25 mm, and the distance r2 may be set to 20 mm to 50 mm. FIG. 12A schematically shows a state in which the distance r1 is set to 15 mm and the distance r2 is set to 30 mm.
 この状態で、制御装置100は、リンスノズル46Aからのリンス液L2の吐出量(単位時間あたりの吐出量)に対して、リンスノズル46Bからのリンス液L2の吐出量(単位時間あたりの吐出量)が小さくなるように吐出量を調整する。一例として、リンスノズル46Aからのリンス液L2の吐出量が350ml/分に調整され、リンスノズル46Bからのリンス液L2の吐出量が100ml/分に調整される。このような吐出量の関係とすることで、ワークWの中央CPから距離r1~r2の領域では、回転方向に吐出されるリンスノズル46Aからのリンス液L2による螺旋方向のリンス液L2の流れが主流となる。また、距離r2よりも外周側の領域では、外周方向に吐出されるリンスノズル46Bからのリンス液L2が加わることで、より外方へ向かうリンス液L2の流れが形成される。 In this state, the control device 100 controls the amount of rinsing liquid L2 discharged from the rinse nozzle 46B (the amount of discharge per unit time) with respect to the amount of rinsing liquid L2 discharged from the rinse nozzle 46A (the amount of discharge per unit time). ) is adjusted to reduce the discharge amount. As an example, the discharge amount of the rinse liquid L2 from the rinse nozzle 46A is adjusted to 350 ml/min, and the discharge amount of the rinse liquid L2 from the rinse nozzle 46B is adjusted to 100 ml/min. With such a discharge amount relationship, in the region of distance r1 to r2 from the center CP of the work W, the flow of the rinse liquid L2 in the spiral direction by the rinse liquid L2 from the rinse nozzle 46A discharged in the rotation direction is Become mainstream. Further, in a region on the outer circumferential side of the distance r2, the rinsing liquid L2 discharged in the outer circumferential direction from the rinsing nozzle 46B is added, thereby forming a flow of the rinsing liquid L2 further outward.
 次に、制御装置100は、ガスG及びリンス液L2の吐出を継続しながら、リンスノズル46Aを外周方向へ移動させる(ステップS32)。図12(b)では、リンスノズル46AをワークWの外周方向へ15mm移動させた状態が示されている。リンスノズル46Aを外周方向へ移動させることで、リンス液L2が供給される領域が外周方向へ移動する。これにより、ワークWの中央側に形成されるリンス液L2と乾燥コア領域Dとの境界である気液界面D0が徐々に外周側へ移動する。すなわち、図12(b)に示されるように、乾燥コア領域Dが徐々に中央CPから外周側へ広がる。ガスノズル56が移動しない場合であっても、リンスノズル46Aからのリンス液L2の吐出位置を外周方向へ移動させることで、気液界面D0も外周側へ移動する。 Next, the control device 100 moves the rinse nozzle 46A toward the outer circumference while continuing to discharge the gas G and the rinse liquid L2 (step S32). FIG. 12(b) shows a state in which the rinse nozzle 46A has been moved 15 mm toward the outer circumference of the workpiece W. By moving the rinse nozzle 46A in the outer circumferential direction, the area to which the rinse liquid L2 is supplied moves in the outer circumferential direction. As a result, the gas-liquid interface D0, which is the boundary between the rinsing liquid L2 formed at the center of the workpiece W and the dry core region D, gradually moves toward the outer periphery. That is, as shown in FIG. 12(b), the dry core region D gradually expands from the center CP to the outer peripheral side. Even if the gas nozzle 56 does not move, by moving the discharge position of the rinse liquid L2 from the rinse nozzle 46A toward the outer circumference, the gas-liquid interface D0 also moves toward the outer circumference.
 次に、制御装置100は、リンスノズル46Aからのリンス液L2の吐出を停止(OFF)させる(ステップS33)。図12(c)では、リンスノズル46Aからのリンス液L2の吐出を停止した状態が模式的に示されている。この段階で、制御装置100は、リンスノズル46Bからのリンス液L2の吐出量を、リンスノズル46Aからの吐出量と同じ程度(例えば、350ml/分)まで増やしてもよい。これにより、中央CPから距離r2よりも外周側の領域において、外周方向に吐出されるリンスノズル46Bからのリンス液L2によって、外周へ向かうリンス液L2の流れが形成される。 Next, the control device 100 stops (turns off) the discharge of the rinse liquid L2 from the rinse nozzle 46A (step S33). FIG. 12C schematically shows a state where the discharge of the rinse liquid L2 from the rinse nozzle 46A is stopped. At this stage, the control device 100 may increase the discharge amount of the rinse liquid L2 from the rinse nozzle 46B to the same extent as the discharge amount from the rinse nozzle 46A (for example, 350 ml/min). As a result, in a region on the outer circumferential side of the distance r2 from the center CP, a flow of the rinse liquid L2 toward the outer circumference is formed by the rinse liquid L2 discharged from the rinse nozzle 46B in the outer circumferential direction.
 次に、制御装置100は、ガスG及びリンス液L2の吐出を継続しながら、リンスノズル46Bを外周方向へ移動させる(ステップS34)。図12(d)では、図12(c)に示す状態と比べてリンスノズル46BをワークWの外周方向へ移動させた状態が示されている。リンスノズル46Bを外周方向へ移動させることで、リンス液L2が供給される領域が外周方向へ移動する。この結果、ワークWの気液界面D0はさらに外周側へ移動する。すなわち、図12(d)に示されるように、乾燥コア領域Dがさらに外周側へ広がり、リンス液L2が残存する領域が外周縁のみとなる。この状態から、さらにリンスノズル46Bを外周方向へ移動させると、ガスGによって、現像液L1との反応で溶解したレジストの溶解物と共にリンス液L2の全てがワークWの表面Waから除去される。この結果、ワークWの表面Waの全体が乾燥コア領域Dとなり、現像によって形成されたレジストパターンが現れることになる。 Next, the control device 100 moves the rinse nozzle 46B toward the outer circumference while continuing to discharge the gas G and the rinse liquid L2 (step S34). FIG. 12(d) shows a state in which the rinse nozzle 46B is moved toward the outer circumference of the workpiece W compared to the state shown in FIG. 12(c). By moving the rinse nozzle 46B in the outer circumferential direction, the area to which the rinse liquid L2 is supplied moves in the outer circumferential direction. As a result, the gas-liquid interface D0 of the workpiece W further moves toward the outer circumference. That is, as shown in FIG. 12(d), the dry core region D further expands toward the outer periphery, and the only region where the rinsing liquid L2 remains is the outer periphery. When the rinse nozzle 46B is further moved in the outer circumferential direction from this state, the gas G removes all of the rinse liquid L2 from the surface Wa of the workpiece W together with the resist dissolved by the reaction with the developer L1. As a result, the entire surface Wa of the workpiece W becomes a dry core region D, and a resist pattern formed by development appears.
 なお、図11及び図12に示す第2の変更例に係る手順では、基本的にガスノズル56、リンスノズル46A、及びリンスノズル46Bは独立して動作する。したがって、これらのノズルを個別に動作させることによって細かい制御が可能となり得る。 Note that in the procedure according to the second modified example shown in FIGS. 11 and 12, the gas nozzle 56, the rinse nozzle 46A, and the rinse nozzle 46B basically operate independently. Therefore, fine control may be possible by operating these nozzles individually.
 また、上記の手順では、ステップS34においてリンスノズル46Bのみからリンス液L2を吐出しながらリンスノズル46Bが外方へ移動する際に、中央に固定されたガスノズル56との距離が徐々に大きくなる。ガスノズル56との距離が大きくなると、ガスノズル56から吐出されるガスGにより乾燥コア領域Dを広げることが徐々に難しくなり、気液界面D0の乱れも発生し得る。そのため、制御装置100は、ガスノズル56とリンスノズル46との距離が大きくなるに応じてガスノズル56からのガスGの吐出量を大きくしてもよい。また、図9及び図10で示した第1の変更例と同様に、現像ユニットU3の供給部は、リンスノズル46Bと一体的に移動可能な第2のガスノズルを設けて、これらを1つのアームで動作させる構成を有してもよい。このような構成を有することで、ワークWの外周側、すなわち、リンスノズル46Bとガスノズルとによって気液界面D0を形成する段階において、リンス液L2の吐出位置P2とガスGの吐出位置との距離を一定に保つことが可能となり、リンス液L2の除去を効果的に行うことができる。 Furthermore, in the above procedure, when the rinse nozzle 46B moves outward while discharging the rinse liquid L2 only from the rinse nozzle 46B in step S34, the distance from the gas nozzle 56 fixed at the center gradually increases. As the distance from the gas nozzle 56 increases, it becomes gradually difficult to expand the dry core region D by the gas G discharged from the gas nozzle 56, and the gas-liquid interface D0 may be disturbed. Therefore, the control device 100 may increase the amount of gas G discharged from the gas nozzle 56 as the distance between the gas nozzle 56 and the rinse nozzle 46 increases. Further, similarly to the first modification example shown in FIGS. 9 and 10, the supply section of the developing unit U3 is provided with a second gas nozzle that is movable integrally with the rinse nozzle 46B, and these are integrated into one arm. It may also have a configuration in which it operates in With such a configuration, the distance between the discharge position P2 of the rinse liquid L2 and the discharge position of the gas G can be reduced on the outer peripheral side of the workpiece W, that is, at the stage of forming the gas-liquid interface D0 by the rinse nozzle 46B and the gas nozzle. can be kept constant, and the rinsing liquid L2 can be effectively removed.
[作用]
 上記の基板処理装置としての塗布現像装置2では、現像液が供給された後のワークWに対して、ガスノズル56からの不活性ガスの吐出を継続しながら、リンスノズル46A,46Bからのリンス液の吐出位置をワークWの中心から外周方向へと移動させる。これにより、不活性ガスとリンス液L2により形成される気液界面D0を中心から外周方向へと移動させることができる。このとき、ワークWの中心側から外周側へのリンスノズル46A,46Bの移動の際に、リンス液L2の吐出方向がワークWの回転方向に沿った方向から径方向に沿った方向へ切り替えられる。ワークWの中心側では、気液界面を形成する際に、リンスノズルからのリンス液の吐出方向がワークWの回転方向に沿った方向であることによって、リンス液除去後の残渣の発生が抑制される。一方、ワークWの外周側では、リンスノズルからのリンス液の吐出方向がワークWの径方向に沿った方向であることによって、リンス液除去後の残渣の発生が抑制される。したがって、気液界面D0を外周方向へ移動させる際に、上記のようにリンス液の吐出方向へ切り替える構成とすることで、ワークWを洗浄した後のワークW表面の残渣を低減することができる。
[Effect]
In the coating and developing apparatus 2 as the substrate processing apparatus described above, the rinsing liquid is supplied from the rinsing nozzles 46A and 46B while continuing to discharge inert gas from the gas nozzle 56 to the workpiece W after the developer has been supplied. The discharge position of the workpiece W is moved from the center of the workpiece W toward the outer circumference. Thereby, the gas-liquid interface D0 formed by the inert gas and the rinsing liquid L2 can be moved from the center toward the outer periphery. At this time, when the rinse nozzles 46A and 46B move from the center side to the outer peripheral side of the workpiece W, the discharge direction of the rinse liquid L2 is switched from the direction along the rotational direction of the workpiece W to the direction along the radial direction. . On the center side of the work W, when forming a gas-liquid interface, the discharge direction of the rinse liquid from the rinse nozzle is along the rotational direction of the work W, thereby suppressing the generation of residue after the rinse liquid is removed. be done. On the other hand, on the outer peripheral side of the workpiece W, the discharge direction of the rinse liquid from the rinse nozzle is along the radial direction of the workpiece W, so that the generation of residue after the rinse liquid is removed is suppressed. Therefore, by switching to the discharge direction of the rinsing liquid as described above when moving the gas-liquid interface D0 toward the outer circumference, it is possible to reduce the residue on the surface of the work W after cleaning the work W. .
 上記の構成を実現するための具体的な方法として、第1の変更例で示したように、第1リンスノズル46A及び第1ガスノズル56Aが設けられた第1アーム61と、第2リンスノズル46B及び第2ガスノズル56Bが設けられた第2アーム62と、を有する構成としてもよい。このような構成とすることで、ワークWの中心側では、第1リンスノズル46Aからのリンス液の吐出方向がワークWの回転方向に沿った方向である第1アーム61から不活性ガスとリンス液とを供給して気液界面D0を形成することで、リンス液除去後の残渣の発生が抑制される。一方、ワークWの外周側では、第2リンスノズル46Bからのリンス液の吐出方向が基板の径方向に沿った方向である第2アーム62から不活性ガスとリンス液とを供給して気液界面D0を形成することで、リンス液除去後の残渣の発生が抑制される。したがって、上記の構成とすることによってワークWを洗浄した後のワークW表面の残渣を低減することができる。 As a specific method for realizing the above configuration, as shown in the first modification example, the first arm 61 provided with the first rinse nozzle 46A and the first gas nozzle 56A, and the second rinse nozzle 46B. and a second arm 62 provided with a second gas nozzle 56B. With such a configuration, on the center side of the workpiece W, the inert gas and rinse liquid are discharged from the first arm 61 whose discharge direction of the rinse liquid from the first rinse nozzle 46A is along the rotational direction of the workpiece W. By supplying the rinsing liquid and forming the gas-liquid interface D0, the generation of residue after removal of the rinsing liquid is suppressed. On the other hand, on the outer peripheral side of the workpiece W, an inert gas and a rinsing liquid are supplied from the second arm 62 whose discharge direction of the rinsing liquid from the second rinsing nozzle 46B is along the radial direction of the substrate. By forming the interface D0, the generation of residue after the rinsing liquid is removed is suppressed. Therefore, with the above configuration, it is possible to reduce the residue on the surface of the work W after cleaning the work W.
 また、上記実施形態で説明したように、ガスノズル56と、第1リンスノズル46Aと、第2リンスノズルと、が互いに独立して移動可能なアームに設けられていてもよい。このとき、第1リンスノズル46Aは、ノズルから吐出されるリンス液の方向がワークWの回転に沿った方向であって、第2リンスノズル46Bは、ノズルから吐出されるリンス液の方向がワークWの径方向に沿った方向であってもよい。このとき、制御装置100は、所定の切り替わり位置よりもワークWの中心側では、第1リンスノズル46Aからのリンス液の供給を行うことで気液界面D0を形成する第1の状態とし、切り替わり位置よりもワークWの外周側において第2リンスノズル46Bからのリンス液の供給を行うことで気液界面D0を形成する第2の状態へ切り替える。このとき、第1の状態及び第2の状態において外周方向へのリンスノズル46A,46Bの移動に対応させてガスノズル56を外周方向へ移動させる態様であってもよい。 Further, as described in the above embodiment, the gas nozzle 56, the first rinse nozzle 46A, and the second rinse nozzle may be provided on an arm that is movable independently of each other. At this time, the direction of the rinsing liquid discharged from the first rinsing nozzle 46A is along the rotation of the workpiece W, and the direction of the rinsing liquid discharged from the nozzle of the second rinsing nozzle 46B is the direction along the rotation of the workpiece W. The direction may be along the radial direction of W. At this time, the control device 100 sets a first state in which a gas-liquid interface D0 is formed by supplying the rinsing liquid from the first rinsing nozzle 46A closer to the center of the workpiece W than the predetermined switching position, and switches. By supplying the rinsing liquid from the second rinsing nozzle 46B at a position closer to the outer circumference of the workpiece W, the state is switched to a second state in which a gas-liquid interface D0 is formed. At this time, the gas nozzle 56 may be moved in the outer circumferential direction in response to the movement of the rinse nozzles 46A, 46B in the outer circumferential direction in the first state and the second state.
 上記の構成とした場合でも、ワークWの中心側では、リンス液の吐出方向が基板の回転方向に沿った方向である第1リンスノズル46Aからリンス液を供給して気液界面D0が形成される。一方、ワークWの外周側では、リンス液の吐出方向が基板の径方向に沿った方向である第2リンスノズル46Bからリンス液を供給して気液界面D0が形成される。したがって、上記の構成とすることによってワークWを洗浄した後のワークW表面の残渣を低減することができる。 Even in the case of the above configuration, on the center side of the workpiece W, the air-liquid interface D0 is formed by supplying the rinsing liquid from the first rinsing nozzle 46A whose discharge direction is along the rotational direction of the substrate. Ru. On the other hand, on the outer peripheral side of the workpiece W, a gas-liquid interface D0 is formed by supplying the rinsing liquid from the second rinsing nozzle 46B whose discharge direction is along the radial direction of the substrate. Therefore, with the above configuration, it is possible to reduce the residue on the surface of the work W after cleaning the work W.
 また、別の態様として、ワークWの中央に吐出位置が固定された第1ガスノズルとしてのガスノズル56Aと、第1リンスノズル46Aが設けられた第1アームと、第2リンスノズル46B及び第2ガスノズルとしてのガスノズル56Bが設けられた第2アームと、を有していてもよい。このとき、第1リンスノズル46Aは、ノズルから吐出されるリンス液の方向がワークWの回転に沿った方向であって、第2リンスノズル46Bは、ノズルから吐出されるリンス液の方向がワークWの径方向に沿った方向であってもよい。このとき、制御装置100は、所定の切り替わり位置よりもワークWの中心側では、第1ガスノズル56Aから不活性ガスの供給をしながら、第1リンスノズル46Aからの前記リンス液の供給を行うことで気液界面D0を形成する第1の状態としてもよい。また、切り替わり位置よりもワークWの外周側では、第2アームを移動させながら不活性ガス及びリンス液の供給を行うことで気液界面D0を形成する第2の状態へ切り替えてもよい。 In addition, as another aspect, a gas nozzle 56A as a first gas nozzle whose discharge position is fixed at the center of the workpiece W, a first arm provided with a first rinse nozzle 46A, a second rinse nozzle 46B and a second gas nozzle are provided. and a second arm provided with a gas nozzle 56B. At this time, the direction of the rinsing liquid discharged from the first rinsing nozzle 46A is along the rotation of the workpiece W, and the direction of the rinsing liquid discharged from the nozzle of the second rinsing nozzle 46B is the direction along the rotation of the workpiece W. The direction may be along the radial direction of W. At this time, the control device 100 supplies the rinsing liquid from the first rinsing nozzle 46A while supplying the inert gas from the first gas nozzle 56A closer to the center of the workpiece W than the predetermined switching position. The first state may be in which the gas-liquid interface D0 is formed. Further, on the outer circumferential side of the work W from the switching position, the inert gas and the rinsing liquid may be supplied while moving the second arm to switch to the second state in which the gas-liquid interface D0 is formed.
 上記の構成とした場合でも、ワークWの中心側では、リンス液の吐出方向が基板の回転方向に沿った方向である第1リンスノズル46Aからリンス液を供給して気液界面D0が形成される。一方、ワークWの外周側では、リンス液の吐出方向が基板の径方向に沿った方向である第2リンスノズル46Bからリンス液を供給して気液界面D0が形成される。したがって、上記の構成とすることによってワークWを洗浄した後のワークW表面の残渣を低減することができる。 Even in the case of the above configuration, on the center side of the workpiece W, the air-liquid interface D0 is formed by supplying the rinsing liquid from the first rinsing nozzle 46A whose discharge direction is along the rotational direction of the substrate. Ru. On the other hand, on the outer peripheral side of the workpiece W, a gas-liquid interface D0 is formed by supplying the rinsing liquid from the second rinsing nozzle 46B whose discharge direction is along the radial direction of the substrate. Therefore, with the above configuration, it is possible to reduce the residue on the surface of the work W after cleaning the work W.
 さらに、供給部は、ワークWの中央に吐出位置が固定された第1ガスノズルと、吐出するリンス液の方向を変化させることが可能な第1リンスノズルが設けられた第1アームと、を有する構成としてもよい。このとき、制御装置100は、外周方向への第1リンスノズルの移動の際に、第1リンスノズルから吐出される前記リンス液の方向を、ワークWの回転方向に沿った方向から前記基板の径方向に沿った方向へ徐々に変化させてもよい。 Further, the supply unit includes a first gas nozzle whose discharge position is fixed at the center of the workpiece W, and a first arm provided with a first rinse nozzle that can change the direction of the rinse liquid to be discharged. It may also be a configuration. At this time, when the first rinse nozzle is moved in the outer circumferential direction, the control device 100 changes the direction of the rinse liquid discharged from the first rinse nozzle from the direction along the rotational direction of the workpiece W to the direction of the substrate. It may also be changed gradually along the radial direction.
 上記の構成とした場合でも、ワークWの中心側では、リンス液の吐出方向が基板の回転方向に沿った方向である第1リンスノズル46Aからリンス液を供給して気液界面D0が形成される。一方、ワークWの外周側では、リンス液の吐出方向が基板の径方向に沿った方向である第2リンスノズル46Bからリンス液を供給して気液界面D0が形成される。したがって、上記の構成とすることによってワークWを洗浄した後のワークW表面の残渣を低減することができる。 Even in the case of the above configuration, on the center side of the workpiece W, the air-liquid interface D0 is formed by supplying the rinsing liquid from the first rinsing nozzle 46A whose discharge direction is along the rotational direction of the substrate. Ru. On the other hand, on the outer peripheral side of the workpiece W, a gas-liquid interface D0 is formed by supplying the rinsing liquid from the second rinsing nozzle 46B whose discharge direction is along the radial direction of the substrate. Therefore, with the above configuration, it is possible to reduce the residue on the surface of the work W after cleaning the work W.
 基板処理装置としての塗布現像装置2では、第1の状態では、第2リンスノズル46Bからもリンス液を吐出させてもよい。また、第2の状態では、第1リンスノズル46Aからのリンス液の吐出を停止させると共に、第2リンスノズル46Bからのリンス液の吐出量を第1の状態と比べて増加させてもよい。上記の構成とすることで、第1の状態では、第2リンスノズルからもリンス液を吐出することで、基板の中心付近から外周方向へのリンス液の移動が促進される。一方、第2の状態では、第1リンスノズルからのリンス液の吐出が停止されるため、第2リンスノズルからのリンス液の吐出量を増加させることによって、外周方向へのリンス液の移動を促進させることができる。 In the coating and developing device 2 as a substrate processing device, in the first state, the rinsing liquid may also be discharged from the second rinsing nozzle 46B. Furthermore, in the second state, the discharge of the rinse liquid from the first rinse nozzle 46A may be stopped, and the amount of rinse liquid discharged from the second rinse nozzle 46B may be increased compared to the first state. With the above configuration, in the first state, the rinsing liquid is also discharged from the second rinsing nozzle, thereby promoting movement of the rinsing liquid from near the center of the substrate toward the outer circumference. On the other hand, in the second state, the discharge of the rinse liquid from the first rinse nozzle is stopped, so by increasing the discharge amount of the rinse liquid from the second rinse nozzle, the movement of the rinse liquid in the outer circumferential direction is prevented. It can be promoted.
 また、制御装置100は、第2の状態では、第1ガスノズル56Aからのガスの吐出を停止させる態様であってもよい。上記の構成とすることで、第2の状態においてワークW表面におけるガスの流れが安定し、気液界面D0の乱れを防止することができる。 Furthermore, the control device 100 may be configured to stop the discharge of gas from the first gas nozzle 56A in the second state. With the above configuration, the flow of gas on the surface of the workpiece W is stabilized in the second state, and disturbance of the gas-liquid interface D0 can be prevented.
 第1の状態における、ワークW上での第1リンスノズルからのリンス液の吐出位置とガスノズルからのガスの吐出位置との距離は、第2の状態における、ワークW上での第2リンスノズルからのリンス液の吐出位置と第2ガスノズルからのガスの吐出位置との距離よりも小さくてもよい。 The distance between the discharge position of the rinse liquid from the first rinse nozzle on the work W in the first state and the discharge position of gas from the gas nozzle on the work W in the second state is The distance may be smaller than the distance between the discharge position of the rinsing liquid from the second gas nozzle and the discharge position of the gas from the second gas nozzle.
 上記の構成を実現するために、例えば、第1アーム61における第1リンスノズル46Aからのリンス液の吐出位置と第1ガスノズル56Aからの前記ガスの吐出位置との距離は、第2アーム62における第2リンスノズル46Bからのリンス液の吐出位置と第2ガスノズル56Bからの前記ガスの吐出位置との距離よりも小さくてもよい。 In order to realize the above configuration, for example, the distance between the discharge position of the rinsing liquid from the first rinse nozzle 46A on the first arm 61 and the discharge position of the gas from the first gas nozzle 56A on the second arm 62 is The distance may be smaller than the distance between the discharge position of the rinse liquid from the second rinse nozzle 46B and the discharge position of the gas from the second gas nozzle 56B.
 ワークW上で気液界面D0を形成する場合、ワークWの中心側ではリンス液の吐出位置とガスの吐出位置とが近い方が残渣を抑制することができ、ワークWの外周側ではリンス液の吐出位置とガスの吐出位置とが離れていた方が残渣を抑制することができる。上記のように、第1リンスノズルはガスノズルとの間で吐出位置同士が近くなるようにノズルを配置し、第2リンスノズルはガスノズルとの間で吐出位置同士が遠くなるようにノズルを配置することで、洗浄後の残渣をさらに低減させることができる。 When forming the gas-liquid interface D0 on the workpiece W, residues can be suppressed if the discharge position of the rinsing liquid is closer to the discharge position of the gas on the center side of the workpiece W, and on the outer circumferential side of the workpiece W. Residue can be suppressed by separating the discharge position of the gas from the discharge position of the gas. As mentioned above, the nozzle of the first rinse nozzle is arranged so that the discharge position is close to the gas nozzle, and the nozzle of the second rinse nozzle is arranged so that the discharge position is far from the gas nozzle. By doing so, it is possible to further reduce the residue after washing.
 以上、種々の例示的実施形態について説明してきたが、上述した例示的実施形態に限定されることなく、様々な省略、置換、及び変更がなされてもよい。また、異なる実施形態における要素を組み合わせて他の実施形態を形成することが可能である。 Although various exemplary embodiments have been described above, various omissions, substitutions, and changes may be made without being limited to the exemplary embodiments described above. Also, elements from different embodiments may be combined to form other embodiments.
 例えば、上記実施形態では、現像液を供給した後のワークWに対してリンス液を供給してリンス液を除去する場合について説明した。しかしながら、上記実施形態で説明した処理は、他の薬液を用いた処理にも適用することができる。 For example, in the above embodiment, a case has been described in which the rinsing liquid is removed by supplying the rinsing liquid to the workpiece W after the developer has been supplied. However, the process described in the above embodiment can also be applied to processes using other chemical solutions.
 また、上記実施形態では、リンス液L2の吐出量及びガスGの吐出量を間欠的に切り替える場合について説明した。しかしながら、リンス液L2の吐出量及びガスGの吐出量は段階的に変更してもよいし、連続的に変更してもよい。上述したように、気液界面D0を穏やかに形成し、且つワークWの外周側へ徐々に移動させることによって、残渣の発生を抑制することができる。したがって、このような状態を形成するために、リンス液L2の吐出量及びガスGの吐出量は適宜調整してもよい。また、ワークWの回転数等についても適宜調整してもよい。 Furthermore, in the above embodiment, a case has been described in which the discharge amount of the rinse liquid L2 and the discharge amount of the gas G are intermittently switched. However, the discharge amount of the rinse liquid L2 and the discharge amount of the gas G may be changed stepwise or continuously. As described above, by gently forming the gas-liquid interface D0 and gradually moving it toward the outer circumference of the workpiece W, it is possible to suppress the generation of residue. Therefore, in order to form such a state, the discharge amount of the rinse liquid L2 and the discharge amount of the gas G may be adjusted as appropriate. Further, the rotation speed of the workpiece W, etc. may be adjusted as appropriate.
 以上の説明から、本開示の種々の実施形態は、説明の目的で本明細書で説明されており、本開示の範囲及び主旨から逸脱することなく種々の変更をなし得ることが、理解されるであろう。したがって、本明細書に開示した種々の実施形態は限定することを意図しておらず、真の範囲と主旨は、添付の特許請求の範囲によって示される。 From the foregoing description, it will be understood that various embodiments of the disclosure are described herein for purposes of illustration and that various changes may be made without departing from the scope and spirit of the disclosure. Will. Therefore, the various embodiments disclosed herein are not intended to be limiting, with the true scope and spirit being indicated by the following claims.
 1…基板処理システム、2…塗布現像装置、3…露光装置、20…保持回転部、36…現像ノズル、40…リンス液供給部、40A…第1リンス液供給部、40B…第2リンス液供給部、46…リンスノズル、46A…リンスノズル(第1リンスノズル)、46B…リンスノズル(第2リンスノズル)、47A,47B…アーム、50…ガス供給部、56…ガスノズル、56A…ガスノズル(第1ガスノズル)、56B…ガスノズル(第2ガスノズル)、57…アーム、61…第1アーム、62…第2アーム、100…制御装置。

 
DESCRIPTION OF SYMBOLS 1... Substrate processing system, 2... Coating and developing device, 3... Exposure device, 20... Holding and rotating section, 36... Developing nozzle, 40... Rinse liquid supply section, 40A... First rinse liquid supply section, 40B... Second rinse liquid Supply section, 46... Rinse nozzle, 46A... Rinse nozzle (first rinse nozzle), 46B... Rinse nozzle (second rinse nozzle), 47A, 47B... Arm, 50... Gas supply section, 56... Gas nozzle, 56A... Gas nozzle ( 1st gas nozzle), 56B... gas nozzle (second gas nozzle), 57... arm, 61... first arm, 62... second arm, 100... control device.

Claims (14)

  1.  基板を処理する基板処理装置であって、
     前記基板を保持して回転させる保持回転部と、
     現像液が供給された後の前記基板に対して不活性ガスを供給する少なくとも1つのガスノズルと、前記ガスノズルによるガス供給位置よりも外周側に設けられた吐出位置において前記基板に対してリンス液を供給する少なくとも1つのリンスノズルと、を含む供給部と、
     制御部と、
     を備え、
     前記制御部は、
      前記ガスノズルからの前記不活性ガスの吐出を継続しながら、前記リンスノズルからの前記リンス液の吐出位置を前記基板の中心から外周方向へと移動させることにより、前記不活性ガスと前記リンス液により形成される気液界面を前記中心から外周方向へと移動させ、
      前記基板の中心側から外周側への前記リンスノズルの移動の際に、前記リンスノズルから吐出される前記リンス液の方向を、前記基板の回転方向に沿った方向から前記基板の径方向に沿った方向へ切り替える、基板処理装置。
    A substrate processing apparatus that processes a substrate,
    a holding and rotating section that holds and rotates the substrate;
    at least one gas nozzle for supplying an inert gas to the substrate after the developer has been supplied; and a rinsing liquid to the substrate at a discharge position provided on the outer peripheral side of the gas supply position by the gas nozzle. a supply unit comprising at least one rinse nozzle for supplying;
    a control unit;
    Equipped with
    The control unit includes:
    While continuing to discharge the inert gas from the gas nozzle, by moving the discharge position of the rinsing liquid from the rinsing nozzle from the center of the substrate toward the outer circumference, the inert gas and the rinsing liquid are moving the formed gas-liquid interface from the center toward the outer circumference,
    When the rinse nozzle is moved from the center side of the substrate to the outer circumference side, the direction of the rinse liquid discharged from the rinse nozzle is changed from a direction along the rotation direction of the substrate to a direction along the radial direction of the substrate. Substrate processing equipment that switches in the opposite direction.
  2.  前記供給部は、第1リンスノズル及び第1ガスノズルが設けられた第1アームと、第2リンスノズル及び第2ガスノズルが設けられた第2アームと、を有し、
     前記第1リンスノズルから吐出されるリンス液の方向は、前記基板の回転方向に沿った方向であり、
     前記第2リンスノズルから吐出されるリンス液の方向は、前記基板の径方向に沿った方向であり、
     前記制御部は、所定の切り替わり位置よりも前記基板の中心側において前記第1アームを移動させながら前記不活性ガス及び前記リンス液の供給を行うことで前記気液界面を形成する第1の状態から、前記切り替わり位置よりも前記基板の外周側において前記第2アームを移動させながら前記不活性ガス及び前記リンス液の供給を行うことで前記気液界面を形成する第2の状態へ切り替える、請求項1に記載の基板処理装置。
    The supply unit includes a first arm provided with a first rinse nozzle and a first gas nozzle, and a second arm provided with a second rinse nozzle and a second gas nozzle,
    The direction of the rinsing liquid discharged from the first rinsing nozzle is along the rotation direction of the substrate,
    The direction of the rinsing liquid discharged from the second rinsing nozzle is along the radial direction of the substrate,
    a first state in which the control unit forms the gas-liquid interface by supplying the inert gas and the rinsing liquid while moving the first arm closer to the center of the substrate than a predetermined switching position; The method further comprises switching to a second state in which the gas-liquid interface is formed by supplying the inert gas and the rinsing liquid while moving the second arm closer to the outer periphery of the substrate than the switching position. Item 1. The substrate processing apparatus according to item 1.
  3.  前記制御部は、
      前記第1の状態において、前記第2リンスノズルからも前記リンス液を吐出させ、
      前記第2の状態において、前記第1リンスノズルからの前記リンス液の吐出を停止させると共に、前記第2リンスノズルからの前記リンス液の吐出量を前記第1の状態と比べて増加させる、請求項2に記載の基板処理装置。
    The control unit includes:
    In the first state, the rinsing liquid is also discharged from the second rinsing nozzle,
    In the second state, discharging of the rinsing liquid from the first rinsing nozzle is stopped, and an amount of the rinsing liquid discharging from the second rinsing nozzle is increased compared to the first state. Substrate processing apparatus according to item 2.
  4.  前記制御部は、前記第2の状態において、前記第1ガスノズルからの前記ガスの吐出を停止させる、請求項3に記載の基板処理装置。 The substrate processing apparatus according to claim 3, wherein the control unit stops discharging the gas from the first gas nozzle in the second state.
  5.  前記第1アームにおける前記第1リンスノズルからの前記リンス液の吐出位置と前記第1ガスノズルからの前記ガスの吐出位置との距離は、前記第2アームにおける前記第2リンスノズルからの前記リンス液の吐出位置と前記第2ガスノズルからの前記ガスの吐出位置との距離よりも小さい、請求項2~4のいずれか一項に記載の基板処理装置。 The distance between the discharge position of the rinse liquid from the first rinse nozzle in the first arm and the discharge position of the gas from the first gas nozzle is the distance between the discharge position of the rinse liquid from the second rinse nozzle in the second arm. 5. The substrate processing apparatus according to claim 2, wherein the distance between the discharge position of the gas and the discharge position of the gas from the second gas nozzle is smaller than the distance between the discharge position of the gas and the discharge position of the gas from the second gas nozzle.
  6.  前記供給部は、ガスノズルと、第1リンスノズルと、第2リンスノズルと、が互いに独立して移動可能なアームに設けられていて、
     前記第1リンスノズルから吐出されるリンス液の方向は、前記基板の回転方向に沿った方向であり、
     前記第2リンスノズルから吐出されるリンス液の方向は、前記基板の径方向に沿った方向であり、
     前記制御部は、所定の切り替わり位置よりも前記基板の中心側において前記第1リンスノズルからの前記リンス液の供給を行うことで前記気液界面を形成する第1の状態から、前記切り替わり位置よりも前記基板の外周側において前記第2リンスノズルからの前記リンス液の供給を行うことで前記気液界面を形成する第2の状態へ切り替えると共に、前記第1の状態及び前記第2の状態において前記外周方向への前記リンスノズルの移動に対応させて前記ガスノズルを前記外周方向へ移動させる、請求項1に記載の基板処理装置。
    In the supply unit, a gas nozzle, a first rinse nozzle, and a second rinse nozzle are provided on an arm that is movable independently of each other,
    The direction of the rinsing liquid discharged from the first rinsing nozzle is along the rotation direction of the substrate,
    The direction of the rinsing liquid discharged from the second rinsing nozzle is along the radial direction of the substrate,
    The control unit is configured to change the state from a first state in which the gas-liquid interface is formed by supplying the rinsing liquid from the first rinsing nozzle closer to the center of the substrate than the predetermined switching position to a state closer to the center of the substrate than the predetermined switching position. Also, by supplying the rinsing liquid from the second rinsing nozzle on the outer peripheral side of the substrate, switching to the second state in which the gas-liquid interface is formed, and in the first state and the second state. The substrate processing apparatus according to claim 1, wherein the gas nozzle is moved in the outer circumferential direction in response to the movement of the rinse nozzle in the outer circumferential direction.
  7.  前記制御部は、
      前記第1の状態において、前記第2リンスノズルからも前記リンス液を吐出させ、
      前記第2の状態において、前記第1リンスノズルからの前記リンス液の吐出を停止させると共に、前記第2リンスノズルからの前記リンス液の吐出量を前記第1の状態と比べて増加させる、請求項6に記載の基板処理装置。
    The control unit includes:
    In the first state, the rinsing liquid is also discharged from the second rinsing nozzle,
    In the second state, discharging of the rinsing liquid from the first rinsing nozzle is stopped, and an amount of the rinsing liquid discharging from the second rinsing nozzle is increased compared to the first state. Substrate processing apparatus according to item 6.
  8.  前記第1の状態における、前記基板上での前記第1リンスノズルからの前記リンス液の吐出位置と前記ガスノズルからの前記ガスの吐出位置との距離は、前記第2の状態における、前記基板上での前記第2リンスノズルからの前記リンス液の吐出位置と前記ガスノズルからの前記ガスの吐出位置との距離よりも小さい、請求項6または7に記載の基板処理装置。 The distance between the discharge position of the rinsing liquid from the first rinse nozzle on the substrate in the first state and the discharge position of the gas from the gas nozzle on the substrate in the second state is The substrate processing apparatus according to claim 6 , wherein the distance between the discharge position of the rinse liquid from the second rinse nozzle and the discharge position of the gas from the gas nozzle is smaller than the distance between the discharge position of the rinse liquid from the second rinse nozzle and the discharge position of the gas from the gas nozzle.
  9.  前記供給部は、前記基板の中央に吐出位置が固定された第1ガスノズルと、第1リンスノズルが設けられた第1アームと、第2リンスノズル及び第2ガスノズルが設けられた第2アームと、を有し、
     前記第1リンスノズルから吐出されるリンス液の方向は、前記基板の回転方向に沿った方向であり、
     前記第2リンスノズルから吐出されるリンス液の方向は、前記基板の径方向に沿った方向であり、
     前記制御部は、所定の切り替わり位置よりも前記基板の中心側において前記第1ガスノズルから不活性ガスの供給をしながら前記第1アームを移動させながら前記第1リンスノズルからの前記リンス液の供給を行うことで前記気液界面を形成する第1の状態から、前記切り替わり位置よりも前記基板の外周側において、前記第2アームを移動させながら前記不活性ガス及び前記リンス液の供給を行うことで前記気液界面を形成する第2の状態へ切り替える、請求項1に記載の基板処理装置。
    The supply unit includes a first gas nozzle whose discharge position is fixed at the center of the substrate, a first arm provided with a first rinse nozzle, and a second arm provided with a second rinse nozzle and a second gas nozzle. , has
    The direction of the rinsing liquid discharged from the first rinsing nozzle is along the rotation direction of the substrate,
    The direction of the rinsing liquid discharged from the second rinsing nozzle is along the radial direction of the substrate,
    The control unit supplies the rinsing liquid from the first rinsing nozzle while moving the first arm while supplying inert gas from the first gas nozzle closer to the center of the substrate than a predetermined switching position. supplying the inert gas and the rinsing liquid while moving the second arm from the first state in which the gas-liquid interface is formed to a position closer to the outer periphery of the substrate than the switching position; The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is switched to a second state in which the gas-liquid interface is formed.
  10.  前記制御部は、
      前記第1の状態において、前記第2リンスノズルからも前記リンス液を吐出させ、
      前記第2の状態において、前記第1リンスノズルからの前記リンス液の吐出を停止させると共に、前記第2リンスノズルからの前記リンス液の吐出量を前記第1の状態と比べて増加させる、請求項9に記載の基板処理装置。
    The control unit includes:
    In the first state, the rinsing liquid is also discharged from the second rinsing nozzle,
    In the second state, discharging of the rinsing liquid from the first rinsing nozzle is stopped, and an amount of the rinsing liquid discharging from the second rinsing nozzle is increased compared to the first state. 10. The substrate processing apparatus according to item 9.
  11.  前記第1の状態における、前記基板上での前記第1リンスノズルからの前記リンス液の吐出位置と前記ガスノズルからの前記ガスの吐出位置との距離は、前記第2の状態における、前記基板上での前記第2リンスノズルからの前記リンス液の吐出位置と前記第2ガスノズルからの前記ガスの吐出位置との距離よりも小さい、請求項9または10に記載の基板処理装置。 The distance between the discharge position of the rinsing liquid from the first rinse nozzle on the substrate in the first state and the discharge position of the gas from the gas nozzle on the substrate in the second state is The substrate processing apparatus according to claim 9 or 10, wherein the distance is smaller than the distance between the discharge position of the rinse liquid from the second rinse nozzle and the discharge position of the gas from the second gas nozzle.
  12.  前記供給部は、前記基板の中央に吐出位置が固定された第1ガスノズルと、吐出するリンス液の方向を変化させることが可能な第1リンスノズルが設けられた第1アームと、を有し、
     前記制御部は、前記外周方向への前記第1リンスノズルの移動の際に、前記第1リンスノズルから吐出される前記リンス液の方向を、前記基板の回転方向に沿った方向から前記基板の径方向に沿った方向へ徐々に変化させる、請求項1に記載の基板処理装置。
    The supply unit includes a first gas nozzle whose discharge position is fixed at the center of the substrate, and a first arm provided with a first rinse nozzle that can change the direction of the rinse liquid to be discharged. ,
    The control unit may change the direction of the rinsing liquid discharged from the first rinsing nozzle from a direction along the rotation direction of the substrate to a direction along the rotation direction of the substrate when the first rinsing nozzle moves in the outer circumferential direction. The substrate processing apparatus according to claim 1, wherein the temperature is gradually changed in a radial direction.
  13.  基板を処理する基板処理方法であって、
     保持回転部において前記基板を保持して回転させることと、
     現像液が供給された後の前記基板に対してガスノズルからの不活性ガスの吐出を継続しながら、前記ガスノズルによるガス供給位置よりも外周側に設けられた吐出位置において前記基板に対してリンス液を供給するリンスノズルからのリンス液の吐出位置を前記基板の中心から外周方向へと移動させることにより、前記不活性ガスと前記リンス液により形成される気液界面を前記中心から外周方向へと移動させることと、
     を含み、
     前記移動させることにおいて、前記基板の中心側から外周側への前記リンスノズルの移動の際に、前記リンスノズルから吐出される前記リンス液の方向を、前記基板の回転方向に沿った方向から前記基板の径方向に沿った方向へ切り替える、基板処理方法。
    A substrate processing method for processing a substrate, the method comprising:
    holding and rotating the substrate in a holding and rotating section;
    While continuing to discharge the inert gas from the gas nozzle to the substrate after the developer has been supplied, the rinsing liquid is applied to the substrate at a discharge position provided on the outer circumferential side of the gas supply position by the gas nozzle. By moving the discharge position of the rinsing liquid from the rinsing nozzle that supplies the substrate from the center of the substrate toward the outer periphery, the gas-liquid interface formed by the inert gas and the rinsing liquid is moved from the center toward the outer periphery. to move and
    including;
    In the movement, when the rinse nozzle is moved from the center side to the outer circumferential side of the substrate, the direction of the rinse liquid discharged from the rinse nozzle is changed from the direction along the rotation direction of the substrate to the direction along the rotation direction of the substrate. A substrate processing method that switches the direction along the radial direction of the substrate.
  14.  基板処理をコンピュータに実行させる基板処理プログラムであって、
     保持回転部において前記基板を保持して回転させることと、
     現像液が供給された後の前記基板に対してガスノズルからの不活性ガスの吐出を継続しながら、前記ガスノズルによるガス供給位置よりも外周側に設けられた吐出位置において前記基板に対してリンス液を供給するリンスノズルからのリンス液の吐出位置を前記基板の中心から外周方向へと移動させることにより、前記不活性ガスと前記リンス液により形成される気液界面を前記中心から外周方向へと移動させることと、
     を前記コンピュータに実行させ、
     前記移動させることにおいて、前記基板の中心側から外周側への前記リンスノズルの移動の際に、前記リンスノズルから吐出される前記リンス液の方向を、前記基板の回転方向に沿った方向から前記基板の径方向に沿った方向へ切り替える、基板処理プログラム。

     
    A substrate processing program that causes a computer to execute substrate processing,
    holding and rotating the substrate in a holding and rotating section;
    While continuing to discharge the inert gas from the gas nozzle to the substrate after the developer has been supplied, the rinsing liquid is applied to the substrate at a discharge position provided on the outer circumferential side of the gas supply position by the gas nozzle. By moving the discharge position of the rinsing liquid from the rinsing nozzle that supplies the substrate from the center of the substrate toward the outer periphery, the gas-liquid interface formed by the inert gas and the rinsing liquid is moved from the center toward the outer periphery. to move and
    cause the computer to execute
    In the movement, when the rinse nozzle is moved from the center side to the outer circumferential side of the substrate, the direction of the rinse liquid discharged from the rinse nozzle is changed from the direction along the rotation direction of the substrate to the direction along the rotation direction of the substrate. A substrate processing program that switches the direction along the radial direction of the substrate.

PCT/JP2023/024685 2022-07-14 2023-07-03 Substrate processing device, substrate processing method, and substrate processing program WO2024014346A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-113014 2022-07-14
JP2022113014 2022-07-14

Publications (1)

Publication Number Publication Date
WO2024014346A1 true WO2024014346A1 (en) 2024-01-18

Family

ID=89536606

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024685 WO2024014346A1 (en) 2022-07-14 2023-07-03 Substrate processing device, substrate processing method, and substrate processing program

Country Status (1)

Country Link
WO (1) WO2024014346A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008267A (en) * 2013-05-28 2015-01-15 東京エレクトロン株式会社 Substrate cleaning device, substrate cleaning method, and storage medium
JP2015041672A (en) * 2013-08-21 2015-03-02 東京エレクトロン株式会社 Substrate cleaning device, substrate cleaning method, and computer-readable storage medium
JP2019062018A (en) * 2017-09-25 2019-04-18 東京エレクトロン株式会社 Substrate processing method, substrate processing apparatus and storage medium

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015008267A (en) * 2013-05-28 2015-01-15 東京エレクトロン株式会社 Substrate cleaning device, substrate cleaning method, and storage medium
JP2015041672A (en) * 2013-08-21 2015-03-02 東京エレクトロン株式会社 Substrate cleaning device, substrate cleaning method, and computer-readable storage medium
JP2019062018A (en) * 2017-09-25 2019-04-18 東京エレクトロン株式会社 Substrate processing method, substrate processing apparatus and storage medium

Similar Documents

Publication Publication Date Title
CN1737692B (en) Developing apparatus and method
TWI607294B (en) Developing method, developing apparatus, and recording medium
KR20070080562A (en) Developing apparatus and developing method
KR20180088588A (en) Substrate treating apparatus, dummy dispensing method and computer readable storage medium
JP7137986B2 (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
JPH10106918A (en) Treatment liquid jetting nozzle and substrate treatment equipment
WO2024014346A1 (en) Substrate processing device, substrate processing method, and substrate processing program
JP2007173732A (en) Substrate processing apparatus
TW201820404A (en) Substrate processing apparatus and substrate processing method enabling the recovery of processing liquid from the substrate according to the liquid type even if the substrate is rotated at a low speed with the first or second processing liquid being supplied to the rotatably supported substrate
JP2023174664A (en) Liquid processing apparatus, liquid processing method and computer-readable recording medium
GB2360599A (en) Method of, and apparatus for, developing exposed photoresist
JP2008016781A (en) Substrate processing method and substrate processing apparatus
TWI635554B (en) Substrate treating method
JPWO2020129757A1 (en) Board processing equipment
JP7494378B2 (en) SUBSTRATE PROCESSING METHOD, STORAGE MEDIUM, AND SUBSTRATE PROCESSING APPARATUS
JP7479235B2 (en) SUBSTRATE PROCESSING METHOD, STORAGE MEDIUM, AND SUBSTRATE PROCESSING APPARATUS
CN218872725U (en) Nozzle unit and liquid processing apparatus
JP6920524B2 (en) Substrate processing equipment and substrate processing method
US11823918B2 (en) Substrate processing method and substrate processing apparatus
JP2022125736A (en) Substrate processing apparatus
JP7008546B2 (en) Substrate processing equipment, substrate liquid treatment method and nozzle
JP2001307986A (en) Semiconductor substrate fixing/holding device
JP2002367899A (en) Development method
JP6902404B2 (en) Development processing equipment, development processing method and storage medium
JP2022096081A (en) Development method and substrate processing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839518

Country of ref document: EP

Kind code of ref document: A1