WO2024014148A1 - 植物育成装置および植物育成方法 - Google Patents
植物育成装置および植物育成方法 Download PDFInfo
- Publication number
- WO2024014148A1 WO2024014148A1 PCT/JP2023/020040 JP2023020040W WO2024014148A1 WO 2024014148 A1 WO2024014148 A1 WO 2024014148A1 JP 2023020040 W JP2023020040 W JP 2023020040W WO 2024014148 A1 WO2024014148 A1 WO 2024014148A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- artificial light
- light source
- plant
- light
- lighting
- Prior art date
Links
- 238000012364 cultivation method Methods 0.000 title 1
- 230000000243 photosynthetic effect Effects 0.000 claims abstract description 63
- 238000006243 chemical reaction Methods 0.000 claims abstract description 20
- 230000004907 flux Effects 0.000 claims abstract description 19
- 238000000034 method Methods 0.000 claims description 22
- 229920006395 saturated elastomer Polymers 0.000 claims description 5
- 230000001360 synchronised effect Effects 0.000 claims description 5
- 238000010672 photosynthesis Methods 0.000 abstract description 28
- 230000029553 photosynthesis Effects 0.000 abstract description 14
- 230000005855 radiation Effects 0.000 abstract 1
- 241000196324 Embryophyta Species 0.000 description 126
- 235000015097 nutrients Nutrition 0.000 description 12
- 230000012010 growth Effects 0.000 description 10
- 235000010469 Glycine max Nutrition 0.000 description 9
- 244000068988 Glycine max Species 0.000 description 9
- 238000010586 diagram Methods 0.000 description 9
- 238000005286 illumination Methods 0.000 description 9
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 8
- 229930002875 chlorophyll Natural products 0.000 description 7
- 235000019804 chlorophyll Nutrition 0.000 description 7
- ATNHDLDRLWWWCB-AENOIHSZSA-M chlorophyll a Chemical compound C1([C@@H](C(=O)OC)C(=O)C2=C3C)=C2N2C3=CC(C(CC)=C3C)=[N+]4C3=CC3=C(C=C)C(C)=C5N3[Mg-2]42[N+]2=C1[C@@H](CCC(=O)OC\C=C(/C)CCC[C@H](C)CCC[C@H](C)CCCC(C)C)[C@H](C)C2=C5 ATNHDLDRLWWWCB-AENOIHSZSA-M 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- 230000001678 irradiating effect Effects 0.000 description 6
- 230000009467 reduction Effects 0.000 description 6
- 229910002092 carbon dioxide Inorganic materials 0.000 description 4
- 239000001569 carbon dioxide Substances 0.000 description 4
- 230000008635 plant growth Effects 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 235000013305 food Nutrition 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000009313 farming Methods 0.000 description 2
- 239000003337 fertilizer Substances 0.000 description 2
- 238000003306 harvesting Methods 0.000 description 2
- 238000003898 horticulture Methods 0.000 description 2
- 235000003642 hunger Nutrition 0.000 description 2
- 239000002699 waste material Substances 0.000 description 2
- 108010082495 Dietary Plant Proteins Proteins 0.000 description 1
- XJLXINKUBYWONI-NNYOXOHSSA-O NADP(+) Chemical compound NC(=O)C1=CC=C[N+]([C@H]2[C@@H]([C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OC[C@@H]3[C@H]([C@@H](OP(O)(O)=O)[C@@H](O3)N3C4=NC=NC(N)=C4N=C3)O)O2)O)=C1 XJLXINKUBYWONI-NNYOXOHSSA-O 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 235000021120 animal protein Nutrition 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 235000021393 food security Nutrition 0.000 description 1
- 235000013666 improved nutrition Nutrition 0.000 description 1
- 235000021374 legumes Nutrition 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 235000008935 nutritious Nutrition 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 238000006552 photochemical reaction Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G31/00—Soilless cultivation, e.g. hydroponics
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01G—HORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
- A01G7/00—Botany in general
Definitions
- the present invention relates to a plant growing device and a plant growing method for growing plants using artificial light.
- plant factories have economic issues, and so far they have not been widely used.
- the construction cost of the plant factory itself, the running cost of artificial light source equipment equipped with LEDs, etc., and air conditioning to adjust the environmental conditions are approximately several hundred million yen, and are approximately 10 times more expensive than greenhouse horticulture farming that uses greenhouses, etc. costs will be incurred. Therefore, in a plant factory, it is desired to introduce a plant growing device (system) that can grow plants more efficiently.
- the reduction time of chlorophyll (P680), the reaction center of photosystem 2 that constitutes the light reaction (photochemical reaction) of photosynthesis in plants is 200 ⁇ s, and during this time, plants do not require light irradiation.
- the intermittent illumination method is a method in which light is not irradiated during the above reduction time when light irradiation is not required, and light is irradiated during the preceding period.
- Non-Patent Document 1 when the light amount (average photon flux density) was kept constant and the duty ratio of intermittent light (pulsed light) was varied with a period of 400 ⁇ s, saladana was irradiated.
- the duty ratio was 50%, continuous light It is disclosed that both the growth rate and the photosynthesis rate increased by 23% compared to the case of irradiation, and that when the duty ratio was set to 33%, the growth rate increased by 25% compared to the case of continuous light irradiation.
- the above-mentioned conventional intermittent illumination method cannot be said to be an efficient method from the viewpoint of light use efficiency (photosynthetic efficiency) by plants. If you use the intermittent lighting method and irradiate plants with the same amount of light (average photon flux density) as in continuous light irradiation, the smaller the duty ratio, the stronger the peak intensity of light during the lighting period. , photosynthetic efficiency does not increase much. As described in Non-Patent Document 1 above, even if the duty ratio is changed from 50% to 33% and the peak intensity of light is increased from 2 to 3 times that of continuous light irradiation, the growth rate is only 2%. It doesn't rise. In other words, a considerable amount of the input light energy is wasted, which is undesirable from the viewpoint of photosynthetic efficiency.
- an object of the present invention is to provide a plant growing device and a plant growing method that can irradiate light more efficiently from the viewpoint of photosynthetic efficiency.
- one aspect of the plant growing device is a plant growing device that grows plants using artificial light, which includes: an artificial light source that irradiates the plant with the artificial light; a power supply device that supplies power to the power supply device; and a control unit that controls the power supply device so that the artificial light source performs intermittent lighting that alternately repeats a lighting operation and a non-lighting operation, the control unit obtains the input current value to the artificial light source when the plant is continuously irradiated with the artificial light at a predetermined photosynthetically effective photon flux density required for the photosynthetic reaction of the plant, and the obtained
- the intermittent lighting of the artificial light source is controlled by setting an input current value to a peak input current value of the lighting operation of the artificial light source.
- the input current value to the artificial light source when continuously irradiating artificial light at a predetermined photosynthetically effective photon flux density (PPFD) required for the photosynthetic reaction of plants can be calculated from the peak current value during lighting operation.
- the predetermined photosynthetically effective photon flux density may be a value below a light saturation point, which is the photosynthetically effective photon flux density at which the photosynthetic rate of the plant becomes saturated. In this case, waste of power input to the artificial light source can be suppressed.
- the predetermined photosynthetically effective photon flux density may be 400 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 or more.
- the photosynthetic efficiency of soybeans can be maximized, and productivity can be further improved.
- the predetermined photosynthetically effective photon flux density may be 1000 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 or less.
- the production rate (growth rate) of plants can be increased while suppressing the decrease in photosynthetic efficiency to an acceptable range.
- the predetermined photosynthetically effective photon flux density may be 2000 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 or less.
- the PPFD during lighting operation can be made equal to or lower than the PPFD of sunlight during clear weather, and adverse effects on plants can be appropriately avoided.
- the period of the non-lighting operation of the intermittent light may be 200 ⁇ s or more.
- the period of non-lighting operation can be matched with the reduction time of chlorophyll (P680), the reaction center of photosystem 2, which is the time when plants do not require light irradiation, and unnecessary light irradiation can be avoided. can.
- the above plant growing device may include a plurality of the artificial light sources, and the control unit may control the lighting operation and non-lighting operation of the plurality of artificial light sources to be synchronized.
- intermittent irradiation of artificial light can be performed appropriately in accordance with the photosynthetic cycle of the plant.
- one aspect of the plant growing method is a plant growing method for growing plants with artificial light irradiated from an artificial light source, the method comprising: a predetermined photosynthetically effective photon flux required for the photosynthetic reaction of the plant; acquiring an input current value to the artificial light source when continuously lighting at a high density; setting the acquired input current value to an input current value at the peak of the lighting operation of the artificial light source; controlling a power supply device that supplies power to the artificial light source so that the artificial light source performs intermittent lighting in which a lighting operation and a non-lighting operation are alternately repeated.
- the input current value to the artificial light source is set to the input current value at the peak during lighting operation.
- the intermittent lighting that is, the peak intensity of light during the lighting operation in intermittent irradiation is set to be the same as the peak intensity of light during continuous irradiation. This makes it possible to reduce energy costs while ensuring photosynthetic efficiency that is approximately the same as in the case of continuous irradiation described above.
- FIG. 1 is a schematic diagram showing an example of a schematic configuration of a plant growing device according to the present embodiment. It is a figure explaining light irradiation control in a plant growth device of this embodiment.
- FIG. 2 is a diagram showing the light-photosynthesis curve of soybean.
- FIG. 3 is a diagram illustrating light irradiation control in a conventional plant growing device. It is a figure showing the relationship between peak intensity of light and photosynthetic efficiency.
- a plant growing device that grows plants using artificial light
- the plant growing device in this embodiment may be placed in an environment where sunlight is not irradiated, such as in a plant factory.
- the above-mentioned plants can be, for example, agricultural crops such as legumes (immature/seeds), leaves, fruits, and the like.
- FIG. 1 is a schematic diagram showing an example of a schematic configuration of a plant growing apparatus 100 of this embodiment.
- Plant growing device 100 may be placed within a plant factory.
- the temperature, humidity, and carbon dioxide (CO 2 ) concentration of the space inside the plant factory are adjusted to predetermined conditions suitable for growing the plants 200. Therefore, the plant growing device 100 may include an air conditioning system 20 that adjusts the environment in the area where the plants 200 are grown to a temperature, humidity, and carbon dioxide (CO 2 ) concentration suitable for growing the plants 200.
- CO 2 carbon dioxide
- the plants 200 are supported by a plant support section 50.
- a nutrient solution supply section 31 is provided below the plant support section 50 .
- the nutrient solution supply unit 31 is a container into which a nutrient solution (liquid fertilizer) 32 to be supplied to the roots 221 of the plants 200 is supplied and discharged.
- the nutrient solution 32 is supplied to and discharged from the nutrient solution supply section 31 by a nutrient solution supply/discharge system 30 connected to the nutrient solution supply section 31 .
- the upper side of the plant support section 50 is a space for the stem 212 of the plant 200 to extend and the leaves 211 from the stem 212 to spread out, and most of the leaves 211 and stems 212 of the plant 200 are exposed.
- the lower side of the plant support section 50 is an underground space 220 in which the nutrient solution supply section 31, the lower part of the stem 212, and roots (primary roots, lateral roots, etc.) 221 are arranged, and the nutrient solution 32 is supplied to the roots 221. .
- the plant growing device 100 includes an artificial light source (hereinafter simply referred to as a "light source") 10 that emits light L used for photosynthesis of the plants 200 and the like.
- the plant growing device 100 can include a plurality of light sources 10.
- the light source 10 is arranged, for example, above the plants 200 in a space inside a plant factory where the plants 200 are grown, and irradiates the plants 200 with light L from above.
- this embodiment demonstrates the case where the light L is irradiated from above the plant 200, the irradiation direction of the light L is not limited to the above.
- the number of light sources 10 is not limited to the number shown in FIG. 1; for example, one light source 10 may be used.
- Power supply device 40 supplies power to light source 10 .
- the control unit 45 controls the power supply device 40 and controls the input current value supplied to the light source 10.
- the control unit 45 controls the power supply device 40 so that the light source 10 performs intermittent lighting that alternately repeats a lighting operation and a non-lighting operation. Details of the intermittent lighting control in the control unit 45 will be described later.
- the light source 10 is not particularly limited as long as it is a light source that can perform intermittent lighting control.
- the light source 10 can be composed of, for example, an LED or an LD.
- the light source 10 may have a configuration in which a plurality of LEDs are supported by a support made of a film, a plate-like body, or the like.
- the plurality of LEDs may emit light with different wavelengths. In this case, light of an appropriate wavelength can be irradiated depending on the growth stage of the plant 200.
- FIG. 4(a) is a diagram schematically showing the photosynthetic cycle of plants.
- One period T of the photosynthetic cycle is 200 ⁇ s to 400 ⁇ s.
- the vertical axis represents the amount of light that can be used for photosynthesis.
- FIGS. 4(b) to 4(d) show lighting patterns when irradiating light onto plants in a conventional plant growing device, and the vertical axis indicates the intensity of light.
- FIG. 4(b) shows a lighting pattern when a plant is continuously irradiated with light. In this continuous irradiation, light is continuously irradiated with constant intensity. The peak intensity of light at this time is assumed to be 100. Furthermore, the photosynthetic photon flux density (PPFD) [ ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 ] of the light irradiated to the plants in this continuous irradiation is also assumed to be 100.
- PPFD photosynthetic photon flux density
- plants have periods when they do not require light irradiation, so even if the plants are continuously irradiated with light, all of the input energy cannot be used for growing the plants. That is, as shown in FIG. 4(b), the light irradiated onto the plants is divided into light A that can be used for growing the plants and wasted light B that cannot be used for growing the plants.
- FIGS. 4(c) and 4(d) show lighting patterns of a conventional intermittent illumination method (pulsed illumination method) in which plants are irradiated with light intermittently (pulsed irradiation).
- the duty ratio of intermittent irradiation is set to 50%
- the duty ratio of intermittent irradiation is set to 33%.
- the duty ratio is the ratio of the lighting time to the sum of the lighting time Ta and the lights-off (rest) time Tb, and is a value expressed as Ta/(Ta+Tb).
- the lighting time Ta is 200 ⁇ s and the light-off time Tb is 200 ⁇ s.
- the reason why the light-off time Tb is set to 200 ⁇ s is to match the reduction time of chlorophyll (P680), the reaction center of photosystem 2, which does not require light irradiation.
- the average PPFD is set to 100, which is the same as the PPFD in the continuous irradiation shown in FIG. 4(b). That is, the PPFD (hereinafter referred to as "peak PPFD") of the light irradiated during the lighting period (bright period) is 200, and the peak intensity of the light is set to 200.
- the lighting time Ta is 133 ⁇ s and the light-off time Tb is 267 ⁇ s.
- the average PPFD is set to 100, which is the same as the PPFD during the continuous irradiation shown in FIG. 4(b). That is, the peak PPFD is set to 300, and the peak intensity of light is set to 300.
- FIG. 5 is a graph showing the correlation between peak PPFD and photosynthetic efficiency.
- the photosynthetic efficiency when continuous irradiation shown in FIG. 4(b) is performed on saladana is 100
- the intermittent irradiation shown in FIG. 4(c) The photosynthetic efficiency of saladana is 123.
- the photosynthetic efficiency of saladana in the case of intermittent irradiation shown in FIG. 4(d) is 125. That is, as shown in FIG.
- the photosynthetic efficiency tends to be saturated as the peak PPFD increases; for example, even if the peak PPFD increases from 200 to 300, the photosynthetic efficiency increases by only 2 points.
- FIG. 2(a) is a diagram schematically showing the photosynthetic cycle of plants. This FIG. 2(a) is the same diagram as FIG. 4(a). Moreover, FIG. 2(b) shows a lighting pattern when a plant is continuously irradiated with light. This FIG. 2(b) is the same diagram as FIG. 4(b).
- FIGS. 2(c) and 2(d) are lighting patterns of the intermittent lighting method according to the present invention.
- the duty ratio of intermittent irradiation is set to 50%
- the duty ratio of intermittent irradiation is set to 33%.
- the lighting time Ta is 200 ⁇ s and the light-off time Tb is 200 ⁇ s.
- the reason why the light-off time Tb is set to 200 ⁇ s is to match the reduction time of chlorophyll (P680), the reaction center of photosystem 2, which does not require light irradiation.
- the lighting time Ta is 133 ⁇ s and the light-off time Tb is 267 ⁇ s.
- the average PPFD is shown in FIG. It is not the same as the continuous irradiation PPFD shown in .
- the peak intensity of the light irradiated during the lighting period shall be adjusted. Specifically, in the intermittent irradiation shown in FIGS. 2(c) and 2(d), the peak intensity of light irradiated during the lighting period is compared with the peak intensity of light during continuous irradiation shown in FIG. 2(b). Make it the same.
- the peak intensity of light during continuous irradiation is set to 100, as shown in Figure 2(b), then as shown in Figures 2(c) and 2(d), the light is irradiated during the lighting period of intermittent irradiation.
- the peak intensity of the light is also assumed to be 100.
- the average PPFD in the intermittent irradiation shown in FIG. 2(c) is 50
- the average PPFD in the intermittent irradiation shown in FIG. 2(d) is 33. Therefore, if the energy cost for continuous irradiation shown in Fig. 2(b) is 100, the energy cost for intermittent irradiation shown in Fig. 2(c) is 50, and the energy cost for intermittent irradiation shown in Fig. 2(d) is 100. The energy cost will be 33.
- the intermittent lighting control of the light source 10 is performed by acquiring the input current value and controlling the power supply device 40 by setting the acquired input current value as the input current value at the peak of intermittent irradiation.
- the duty ratio of intermittent irradiation can be set to any value.
- the length of the light-off period Tb in one cycle of intermittent irradiation is preferably 200 ⁇ s or more than 200 ⁇ s, which is the reduction time of chlorophyll (P680), the reaction center of photosystem 2, which does not require light irradiation.
- the control unit 45 may directly acquire the input current value to the light source 10 when continuously irradiating the artificial light L with the predetermined PPFD, or acquire the predetermined PPFD and calculate the current value based on the acquired PPFD.
- the input current value may be obtained by calculating or deriving the input current value to the light source 10 when the artificial light L is continuously irradiated with the PPFD.
- the predetermined PPFD and the input current value acquired by the control unit 45 may be stored in the plant growing device 100 in advance, or can be specified to the plant growing device 100 from a user (for example, a worker) or an external device. It may be a configuration.
- the control unit 45 controls the lighting operations and non-lighting operations of the plurality of light sources 10 to be synchronized.
- the plant 200 starts photosynthesis from the moment it is irradiated with light for photosynthesis. That is, the photosynthetic cycle of the plant 200 is started using light irradiation for photosynthesis as a trigger. Therefore, the lighting operations and non-lighting operations of the plurality of light sources 10 need to be synchronized.
- the plant growing device 100 includes a plurality of light sources 10, in the case of a configuration in which one plant 200 is irradiated with only the artificial light L emitted from one light source 10, multiple light sources 10 may be used. Synchronous control of the light sources 10 is not necessary.
- FIG. 3 is a diagram showing the light-photosynthesis curve of soybean.
- the curve ⁇ shows the light-photosynthesis curve of the soybean variety "Tachinagaha”
- the curve ⁇ shows the light-photosynthesis curve of the soybean variety "UA4805".
- the predetermined PPFD required for the photosynthetic reaction of the plant 200 described above can be a PPFD that is equal to or lower than the light saturation point in the light-photosynthesis curve of the plant 200.
- the light saturation point is the PPFD at which the photosynthesis rate becomes saturated.
- the predetermined PPFD may be 400 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 , which is the maximum value of PPFD in a range where the light-photosynthesis curve is approximately linear.
- the predetermined PPFD may be set to 1000 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 . In this case, photosynthetic efficiency of about 60% or more can be ensured.
- the PPFD of sunlight on clear skies is 2000 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 , and if the PPFD of sunlight is exceeded, the formation of active oxygen becomes significant and damage to plant leaves may occur.
- the upper limit of the predetermined PPFD is preferably 2000 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 .
- the plant growing device 100 in this embodiment includes the light source 10 that irradiates the plants 200 with artificial light, the power supply device 40 that supplies power to the light source 10, and the control unit 45 that controls the power supply device 40. , is provided.
- the control unit 45 controls the power supply device 40 so that the light source 10 performs intermittent lighting in which the light source 10 alternately repeats a lighting operation and a non-lighting operation.
- the control unit 45 obtains the input current value to the light source 10 when the plant 200 is continuously irradiated with artificial light at a predetermined PPFD required for the photosynthetic reaction of the plant 200, and
- the intermittent lighting of the light source 10 is controlled by setting the input current value to the input current value at the peak of the lighting operation of the light source 10.
- an intermittent illumination method (pulsed illumination method) is adopted in which the plants 200 are irradiated with intermittent light, and the peak intensity of the light during the lighting operation in the intermittent irradiation is adjusted to the level required for the photosynthetic reaction of the plants 200.
- the peak intensity of the light is set to be the same as the peak intensity of light when continuously irradiating artificial light with a predetermined PPFD. This makes it possible to reduce energy costs while ensuring photosynthetic efficiency that is approximately the same as in the case of continuous irradiation described above.
- the predetermined PPFD required for the photosynthetic reaction of the plant 200 can be set below the light saturation point of the light-photosynthesis curve of the plant 200. Thereby, waste of power input to the light source 10 can be suppressed.
- the predetermined PPFD is set to the maximum value of PPFD in the range where the light-photosynthesis curve is approximately linear, the light use efficiency (photosynthetic efficiency) by plants can be 100%, and the light source 10 It is possible to almost eliminate wasted power.
- the predetermined PPFD is set between the maximum value of PPFD and the light saturation point in the range where the light-photosynthesis curve is approximately linear, plant production can be achieved while suppressing the decline in photosynthetic efficiency within an acceptable range.
- the speed (growth rate) can be increased.
- the above predetermined PPFD to 2000 ⁇ mol ⁇ m ⁇ 2 ⁇ s ⁇ 1 or less, it is possible to irradiate light that is less than the PPFD of sunlight on a clear day, appropriately avoiding adverse effects on plants. can do.
- the plant growing device 100 in this embodiment can perform intermittent irradiation more efficiently from the viewpoint of photosynthetic efficiency.
- the plant growing device 100 in this embodiment can reduce lighting power costs, which account for most of the running costs in a plant factory, while ensuring photosynthetic efficiency.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Environmental Sciences (AREA)
- Biodiversity & Conservation Biology (AREA)
- Botany (AREA)
- Ecology (AREA)
- Forests & Forestry (AREA)
- Cultivation Of Plants (AREA)
Abstract
光合成効率の観点からみて、より効率的に光を照射することができる。 植物育成装置100は、植物に人工光を照射する人工光源10と、人工光源10に電力を供給する給電装置40と、給電装置40を制御して、人工光源10が点灯動作と非点灯動作とを交互に繰り返す間欠点灯を行うように制御する制御部45と、を備える。制御部45は、植物の光合成反応に必要とされる所定の光合成有効光量子束密度で植物に対して人工光を連続照射する場合の人工光源10への入力電流値を取得し、取得された入力電流値を、人工光源10の点灯動作のピーク時の入力電流値に設定して、人工光源10の間欠点灯を制御する。
Description
本発明は、人工光により植物を育成する植物育成装置および植物育成方法に関する。
近年、世界的に人口増の傾向にあり、2050年までに世界人口は90億人に達すると予測されている。そのため、将来は食料不足の問題の懸念がある。
このような食料不足への対応の一つとして、農作物を増産し、一年中安定に収穫できるようにすることが期待されている。特に、動物性たんぱく質の代替としての植物性たんぱく質の確保は重要な課題である。
このような食料不足への対応の一つとして、農作物を増産し、一年中安定に収穫できるようにすることが期待されている。特に、動物性たんぱく質の代替としての植物性たんぱく質の確保は重要な課題である。
農作物の増産および安定収穫を実現するための方策として、施設園芸農業や植物工場が検討されてきている。更に植物工場においては、従来の農業のように広大な土地が確保できなくても比較的狭い空間で農作物を安定量生産することが可能な、垂直農業の採用も検討されている。
植物工場においては、光合成のために人工光源から農作物に照射される光の強度や、植物生育空間における温度、湿度、二酸化炭素(CO2)濃度、風速といった環境条件、植物成長のための肥料成分といった各パラメータを制御することが可能である。そのため、農作物の周年生産を行うことができ、農作物の生産性を飛躍的に高めることが可能である。
植物工場においては、光合成のために人工光源から農作物に照射される光の強度や、植物生育空間における温度、湿度、二酸化炭素(CO2)濃度、風速といった環境条件、植物成長のための肥料成分といった各パラメータを制御することが可能である。そのため、農作物の周年生産を行うことができ、農作物の生産性を飛躍的に高めることが可能である。
一方で植物工場には経済性の課題があり、現状、大規模な普及には至っていない。植物工場自体の建設コスト、LEDなどを備える人工光源装置や環境条件を調整するための空調等のランニングコストは数億円程度かかり、ビニールハウス等を用いる施設園芸農業と比較しても10倍前後の費用が発生する。よって、植物工場においては、より効率的に植物を育成することが可能な植物育成装置(システム)を導入することが望まれる。
上記のランニングコストの大部分は、植物(農作物)に光を照射するための照明電力コストである。このような照明電力コストを削減するための方策として、間欠照明法(パルス照明法)が提案されている。
植物の光合成の明反応(光化学反応)を構成する光化学系2の反応中心クロロフィル(P680)の還元時間は200μsであり、この間は、植物は光照射を必要としない。間欠照明法は、上記の光照射を必要としない還元時間の間は光照射せず、その前の期間に光照射をする方法である。
例えば非特許文献1は、光量(平均光量子束密度)を一定にして、周期400μsの間欠光(パルス光)のデューティ比を変化させてサラダナに照射したところ、デューティ比50%の場合、連続光照射の場合と比較すると成長率、光合成速度とも23%増加したこと、デューティ比を33%に設定すると、連続光照射の場合と比較して成長率が25%増加したことを開示する。
植物の光合成の明反応(光化学反応)を構成する光化学系2の反応中心クロロフィル(P680)の還元時間は200μsであり、この間は、植物は光照射を必要としない。間欠照明法は、上記の光照射を必要としない還元時間の間は光照射せず、その前の期間に光照射をする方法である。
例えば非特許文献1は、光量(平均光量子束密度)を一定にして、周期400μsの間欠光(パルス光)のデューティ比を変化させてサラダナに照射したところ、デューティ比50%の場合、連続光照射の場合と比較すると成長率、光合成速度とも23%増加したこと、デューティ比を33%に設定すると、連続光照射の場合と比較して成長率が25%増加したことを開示する。
森康裕、外2名、「白色LEDパルス光がサラダナ生育に及ぼす影響」、植物工場学会誌、2002年、14巻、3号、p.136-140
しかしながら、上記従来の間欠照明法は、植物による光の利用効率(光合成効率)の観点からみて効率的な方法とはいえない。
間欠照明法を採用し、連続光照射のときと同じ光量(平均光量子束密度)で植物に光照射すると、デューティ比を小さくするほど点灯期間における光のピーク強度を強くすることが可能となるが、光合成効率はあまり上昇しない。上記非特許文献1に記載のように、デューティ比を50%から33%に変化させ、光のピーク強度を連続光照射の場合の2倍から3倍に強めても、成長率は2%しか上昇しない。すなわち、投入した光エネルギーは少なからず無駄になっており、光合成効率の観点からみて好ましくないといえる。
間欠照明法を採用し、連続光照射のときと同じ光量(平均光量子束密度)で植物に光照射すると、デューティ比を小さくするほど点灯期間における光のピーク強度を強くすることが可能となるが、光合成効率はあまり上昇しない。上記非特許文献1に記載のように、デューティ比を50%から33%に変化させ、光のピーク強度を連続光照射の場合の2倍から3倍に強めても、成長率は2%しか上昇しない。すなわち、投入した光エネルギーは少なからず無駄になっており、光合成効率の観点からみて好ましくないといえる。
そこで、本発明は、光合成効率の観点からみて、より効率的に光を照射することができる植物育成装置および植物育成方法を提供することを課題としている。
上記課題を解決するために、本発明に係る植物育成装置の一態様は、人工光により植物を育成する植物育成装置であって、前記植物に前記人工光を照射する人工光源と、前記人工光源に電力を供給する給電装置と、前記給電装置を制御して、前記人工光源が点灯動作と非点灯動作とを交互に繰り返す間欠点灯を行うように制御する制御部と、を備え、前記制御部は、前記植物の光合成反応に必要とされる所定の光合成有効光量子束密度で前記植物に対して前記人工光を連続照射する場合の前記人工光源への入力電流値を取得し、取得された前記入力電流値を、前記人工光源の前記点灯動作のピーク時の入力電流値に設定して、前記人工光源の前記間欠点灯を制御する。
このように、植物の光合成反応に必要とされる所定の光合成有効光量子束密度(PPFDともいう)で人工光を連続照射する場合の人工光源への入力電流値を、点灯動作時のピーク時の入力電流値に設定して人工光源を間欠点灯制御する。つまり、間欠照射における点灯動作時の光のピーク強度を、連続照射のときの光のピーク強度と同じに設定する。これにより、上記の連続照射の場合とほぼ同等の光合成効率を確保しつつ、エネルギーコストを下げることができる。
さらに、上記の植物育成装置において、前記所定の光合成有効光量子束密度は、前記植物の光合成速度が飽和になる光合成有効光量子束密度である光飽和点以下の値であってよい。
この場合、人工光源に投入する電力の無駄を抑えることができる。
この場合、人工光源に投入する電力の無駄を抑えることができる。
また、上記の植物育成装置において、前記所定の光合成有効光量子束密度は、400μmol・m-2・s-1以上であってよい。
この場合、例えば大豆の光合成効率を最大にすることができ、生産性をより向上させることができる。
この場合、例えば大豆の光合成効率を最大にすることができ、生産性をより向上させることができる。
さらに、上記の植物育成装置において、前記所定の光合成有効光量子束密度は、1000μmol・m-2・s-1以下であってよい。
この場合、光合成効率の低下を許容できる範囲に抑えつつ、植物の生産速度(成長速度)を速めることができる。
この場合、光合成効率の低下を許容できる範囲に抑えつつ、植物の生産速度(成長速度)を速めることができる。
また、上記の植物育成装置において、前記所定の光合成有効光量子束密度は、2000μmol・m-2・s-1以下であってよい。
この場合、点灯動作時のPPFDを快晴時の太陽光のPPFD以下とすることができ、植物への悪影響を適切に回避することができる。
この場合、点灯動作時のPPFDを快晴時の太陽光のPPFD以下とすることができ、植物への悪影響を適切に回避することができる。
さらにまた、上記の植物育成装置において、前記間欠点灯の前記非点灯動作の期間は、200μs以上であってよい。
この場合、非点灯動作の期間を、植物が光照射を必要としない時間である光化学系2の反応中心クロロフィル(P680)の還元時間と合致させることができ、無駄な光照射を回避することができる。
この場合、非点灯動作の期間を、植物が光照射を必要としない時間である光化学系2の反応中心クロロフィル(P680)の還元時間と合致させることができ、無駄な光照射を回避することができる。
また、上記の植物育成装置は、前記人工光源を複数備え、前記制御部は、複数の前記人工光源の前記点灯動作および前記非点灯動作が同期するように制御してもよい。
この場合、植物の光合成サイクルに合わせて適切に人工光の間欠照射を行うことができる。
この場合、植物の光合成サイクルに合わせて適切に人工光の間欠照射を行うことができる。
また、本発明に係る植物育成方法の一態様は、人工光源から照射される人工光により植物を育成する植物育成方法であって、前記植物の光合成反応に必要とされる所定の光合成有効光量子束密度で連続点灯するときの前記人工光源への入力電流値を取得するステップと、取得された前記入力電流値を、前記人工光源の点灯動作のピーク時の入力電流値に設定し、前記人工光源に電力を供給する給電装置を制御して、前記人工光源が点灯動作と非点灯動作とを交互に繰り返す間欠点灯を行うように制御するステップと、を含む。
このように、植物の光合成反応に必要とされる所定のPPFDで人工光を連続照射する場合の人工光源への入力電流値を、点灯動作時のピーク時の入力電流値に設定して人工光源を間欠点灯制御する。つまり、間欠照射における点灯動作時の光のピーク強度を、連続照射のときの光のピーク強度と同じに設定する。これにより、上記の連続照射の場合とほぼ同等の光合成効率を確保しつつ、エネルギーコストを下げることができる。
本発明では、光合成効率の観点からみて、より効率的に光を照射することができる。
以下、本発明の実施形態を図面に基づいて説明する。
本実施形態では、人工光により植物を育成する植物育成装置について説明する。本実施形態における植物育成装置は、例えば植物工場内など、太陽光が照射されない環境下に配置され得る。
ここで、上記植物は、例えば豆類(未成熟/種実)、葉物、果物などの農作物とすることができる。
本実施形態では、人工光により植物を育成する植物育成装置について説明する。本実施形態における植物育成装置は、例えば植物工場内など、太陽光が照射されない環境下に配置され得る。
ここで、上記植物は、例えば豆類(未成熟/種実)、葉物、果物などの農作物とすることができる。
図1は、本実施形態の植物育成装置100の概略構成例を示す模式図である。
植物育成装置100は、植物工場内に配置され得る。植物工場内空間は、温度、湿度、二酸化炭素(CO2)濃度が、植物200の育成に適した所定の状態に調整されていることが好ましい。
よって、植物育成装置100は、植物200が育成される領域の環境を、植物200の育成に適した温度、湿度、二酸化炭素(CO2)濃度に調整する空調システム20を備えてよい。
植物育成装置100は、植物工場内に配置され得る。植物工場内空間は、温度、湿度、二酸化炭素(CO2)濃度が、植物200の育成に適した所定の状態に調整されていることが好ましい。
よって、植物育成装置100は、植物200が育成される領域の環境を、植物200の育成に適した温度、湿度、二酸化炭素(CO2)濃度に調整する空調システム20を備えてよい。
植物工場内空間において、植物200は、植物支持部50により支持されている。
植物支持部50の下側には、養液供給部31が設けられる。養液供給部31は、植物200の根221に供給される養液(液肥)32が供給・排出される容器である。養液供給部31への養液32の供給・排出は、養液供給部31と接続される養液供給・排出システム30により行われる。
植物支持部50の上側は、植物200の茎212が伸び、更に茎212からの葉211が広がるように伸長するための空間であって、植物200の葉211や茎212の大部分が露出する地上部空間210である。一方、植物支持部50の下側は、養液供給部31、茎212の下部および根(主根、側根など)221が配置され、根221に養液32が供給される地下部空間220である。
植物支持部50の下側には、養液供給部31が設けられる。養液供給部31は、植物200の根221に供給される養液(液肥)32が供給・排出される容器である。養液供給部31への養液32の供給・排出は、養液供給部31と接続される養液供給・排出システム30により行われる。
植物支持部50の上側は、植物200の茎212が伸び、更に茎212からの葉211が広がるように伸長するための空間であって、植物200の葉211や茎212の大部分が露出する地上部空間210である。一方、植物支持部50の下側は、養液供給部31、茎212の下部および根(主根、側根など)221が配置され、根221に養液32が供給される地下部空間220である。
植物育成装置100は、植物200の光合成等に利用される光Lを放出する人工光源(以下、単に「光源」という。)10を備える。植物育成装置100は、複数の光源10を備えることができる。
光源10は、例えば、植物200が育成される植物工場内空間における植物200の上方に配置され、植物200の上方から光Lを照射する。
なお、本実施形態では、植物200の上方から光Lを照射する場合について説明するが、光Lの照射方向は上記に限定されない。例えば、植物200の成長方向(図1の上下方向)に対して側方(例えば両側方)から光Lを照射する構成であってもよい。また、光源10の数は図1に示す数に限定されるものではなく、例えば光源10は1つでもよい。
光源10は、例えば、植物200が育成される植物工場内空間における植物200の上方に配置され、植物200の上方から光Lを照射する。
なお、本実施形態では、植物200の上方から光Lを照射する場合について説明するが、光Lの照射方向は上記に限定されない。例えば、植物200の成長方向(図1の上下方向)に対して側方(例えば両側方)から光Lを照射する構成であってもよい。また、光源10の数は図1に示す数に限定されるものではなく、例えば光源10は1つでもよい。
給電装置40は、光源10に電力を供給する。
制御部45は、給電装置40を制御し、光源10に供給される入力電流値を制御する。
本実施形態では、制御部45は、光源10が点灯動作と非点灯動作とを交互に繰り返す間欠点灯を行うように給電装置40を制御する。制御部45における間欠点灯制御の詳細については後述する。
制御部45は、給電装置40を制御し、光源10に供給される入力電流値を制御する。
本実施形態では、制御部45は、光源10が点灯動作と非点灯動作とを交互に繰り返す間欠点灯を行うように給電装置40を制御する。制御部45における間欠点灯制御の詳細については後述する。
光源10は、間欠点灯制御が可能な光源であれば特に限定されない。光源10は、例えばLEDやLDなどにより構成することができる。
例えば、光源10は、フィルムや板状体等からなる支持体によって複数のLEDを支持した構成であってよい。複数のLEDは、互いに波長が異なる光を放出するものであってもよい。この場合、植物200の育成段階に応じて、適宜適切な波長の光を照射することができる。
例えば、光源10は、フィルムや板状体等からなる支持体によって複数のLEDを支持した構成であってよい。複数のLEDは、互いに波長が異なる光を放出するものであってもよい。この場合、植物200の育成段階に応じて、適宜適切な波長の光を照射することができる。
なお、図1において、植物200が配置される棚、養液供給・排出システム30により供給および排出される養液を貯蔵する貯蔵部といった具体的な構成物は、図示を省略している。
まず、従来の植物育成装置における光照射制御について説明する。
植物は光合成によって育成するが、光合成の反応経路を子細に見ると、その中には光を当てる必要のない部分があることがわかっている。よく知られているのは明反応と暗反応の区別であり、炭水化物を生成する暗反応には光を必要としない。
植物は光合成によって育成するが、光合成の反応経路を子細に見ると、その中には光を当てる必要のない部分があることがわかっている。よく知られているのは明反応と暗反応の区別であり、炭水化物を生成する暗反応には光を必要としない。
暗反応によって炭水化物をつくるためには、二酸化炭素を還元するNADP・H2分子と、エネルギー源として使うATPとが必要である。これらを作るのが明反応の役目である。明反応のプロセスは、光によるクロロフィル分子の活性化とその後の電子の流れと考えることができる。そして、この明反応を構成する光化学系2の反応中心クロロフィル(P680)の還元時間には200μsかかり、この間は光照射が必要ないことがわかっている。
図4(a)は、植物の光合成サイクルを模式的に示す図である。光合成サイクルの1周期Tは200μs~400μsである。この図4(a)において、縦軸は、光合成に使用されうる光量を表している。
図4(b)~図4(d)は、従来の植物育成装置において植物に対して光を照射する場合の点灯パターンであり、縦軸は光の強度を示している。
図4(b)は、植物に対して光を連続照射する場合の点灯パターンである。この連続照射では、常に一定の強度で光が連続的に照射される。このときの光のピーク強度を仮に100とする。また、この連続照射において植物に照射される光の光合成有効光量子束密度(Photosynthetic Photon Flux density:PPFD)[μmol・m-2・s-1]も、仮に100とする。
図4(b)は、植物に対して光を連続照射する場合の点灯パターンである。この連続照射では、常に一定の強度で光が連続的に照射される。このときの光のピーク強度を仮に100とする。また、この連続照射において植物に照射される光の光合成有効光量子束密度(Photosynthetic Photon Flux density:PPFD)[μmol・m-2・s-1]も、仮に100とする。
上述したように、植物には光照射が必要ない期間が存在するため、植物に対して光を連続照射しても、投入エネルギーをすべて植物の育成に利用することはできない。つまり、図4(b)に示すように、植物に照射された光は、植物の育成に利用できる光Aと、植物の育成に利用できない無駄な光Bとに分けられる。
図4(c)および図4(d)は、植物に対して光を間欠照射(パルス照射)する従来の間欠照明法(パルス照明法)の点灯パターンである。
図4(c)に示す例では間欠照射のデューティ比を50%、図4(d)に示す例では間欠照射のデューティ比を33%に設定している。ここで、デューティ比とは、点灯時間Taと消灯(休止)時間Tbとの総和に対する点灯時間の割合であり、Ta/(Ta+Tb)で表される値である。
図4(c)に示す例では間欠照射のデューティ比を50%、図4(d)に示す例では間欠照射のデューティ比を33%に設定している。ここで、デューティ比とは、点灯時間Taと消灯(休止)時間Tbとの総和に対する点灯時間の割合であり、Ta/(Ta+Tb)で表される値である。
図4(c)に示す例では、点灯時間Taを200μs、消灯時間Tbを200μsとしている。消灯時間Tbを200μsとしているのは、光照射を必要としない、光化学系2の反応中心クロロフィル(P680)の還元時間と合致させるためである。
そして、この図4(c)に示す間欠照射では、平均のPPFDが、図4(b)に示す連続照射時のPPFDと同じ100となるように設定している。つまり、点灯期間(明期)に照射される光のPPFD(以下、「ピークPPFD」という。)が200であり、光のピーク強度が200となるように設定している。
そして、この図4(c)に示す間欠照射では、平均のPPFDが、図4(b)に示す連続照射時のPPFDと同じ100となるように設定している。つまり、点灯期間(明期)に照射される光のPPFD(以下、「ピークPPFD」という。)が200であり、光のピーク強度が200となるように設定している。
図4(d)に示す例では、点灯時間Taを133μs、消灯時間Tbを267μsとしている。
そして、この図4(d)に示す間欠照射でも、平均のPPFDが、図4(b)に示す連続照射時のPPFDと同じ100となるように設定している。つまり、ピークPPFDが300であり、光のピーク強度が300となるように設定している。
そして、この図4(d)に示す間欠照射でも、平均のPPFDが、図4(b)に示す連続照射時のPPFDと同じ100となるように設定している。つまり、ピークPPFDが300であり、光のピーク強度が300となるように設定している。
図5は、ピークPPFDと光合成効率との相関性を示すグラフである。
非特許文献2の開示例と適合させると、図4(b)に示す連続照射をサラダナに対して行った場合の光合成効率を100としたとき、図4(c)に示す間欠照射の場合のサラダナの光合成効率は123となる。また、図4(d)に示す間欠照射の場合のサラダナの光合成効率は125となる。
つまり、図5に示すように、ピークPPFD=100のときの光合成効率は100、ピークPPFD=200のときの光合成効率は123、ピークPPFD=300のときの光合成効率は125となる。この図5からも明らかなように、ピークPPFDの増加とともに光合成効率は飽和する傾向にあり、例えばピークPPFDが200から300に増えても光合成効率は2ポイントしか増加しない。
非特許文献2の開示例と適合させると、図4(b)に示す連続照射をサラダナに対して行った場合の光合成効率を100としたとき、図4(c)に示す間欠照射の場合のサラダナの光合成効率は123となる。また、図4(d)に示す間欠照射の場合のサラダナの光合成効率は125となる。
つまり、図5に示すように、ピークPPFD=100のときの光合成効率は100、ピークPPFD=200のときの光合成効率は123、ピークPPFD=300のときの光合成効率は125となる。この図5からも明らかなように、ピークPPFDの増加とともに光合成効率は飽和する傾向にあり、例えばピークPPFDが200から300に増えても光合成効率は2ポイントしか増加しない。
このように、連続照射のときと同じ光量で植物(農作物)に対して光を間欠照射した場合、デューティ比に応じて点灯期間におけるピークPPFDを増加させることが可能とはなるものの、光合成効率はあまり上昇しない。
図4(c)および図4(d)に示すように、連続照射のときと同じエネルギーコストで間欠照射すると、光のピーク強度を2倍、3倍にすることができるが、光合成効率は2倍、3倍にはならず、23%、25%といった微量しか上がらない。
つまり、光合成効率の観点からみれば、投入した光エネルギーが少なからず無駄になっているということである。
図4(c)および図4(d)に示すように、連続照射のときと同じエネルギーコストで間欠照射すると、光のピーク強度を2倍、3倍にすることができるが、光合成効率は2倍、3倍にはならず、23%、25%といった微量しか上がらない。
つまり、光合成効率の観点からみれば、投入した光エネルギーが少なからず無駄になっているということである。
以下、本発明の概要(考え方)について説明する。
図2(a)は、植物の光合成サイクルを模式的に示す図である。この図2(a)は、図4(a)と同じ図である。
また、図2(b)は、植物に対して光を連続照射する場合の点灯パターンである。この図2(b)は、図4(b)と同じ図である。
図2(a)は、植物の光合成サイクルを模式的に示す図である。この図2(a)は、図4(a)と同じ図である。
また、図2(b)は、植物に対して光を連続照射する場合の点灯パターンである。この図2(b)は、図4(b)と同じ図である。
図2(c)および図2(d)は、本発明に係る間欠照明法の点灯パターンである。
図2(c)に示す例では間欠照射のデューティ比を50%、図2(d)に示す例では間欠照射のデューティ比を33%に設定している。
図2(c)に示す例では、点灯時間Taを200μs、消灯時間Tbを200μsとしている。消灯時間Tbを200μsとしているのは、光照射を必要としない、光化学系2の反応中心クロロフィル(P680)の還元時間と合致させるためである。
図2(d)に示す例では、点灯時間Taを133μs、消灯時間Tbを267μsとしている。
図2(c)に示す例では間欠照射のデューティ比を50%、図2(d)に示す例では間欠照射のデューティ比を33%に設定している。
図2(c)に示す例では、点灯時間Taを200μs、消灯時間Tbを200μsとしている。消灯時間Tbを200μsとしているのは、光照射を必要としない、光化学系2の反応中心クロロフィル(P680)の還元時間と合致させるためである。
図2(d)に示す例では、点灯時間Taを133μs、消灯時間Tbを267μsとしている。
そして、この図2(c)および図2(d)に示す間欠照射では、図4(c)および図4(d)に示す従来の間欠照射とは異なり、平均のPPFDを図2(b)に示す連続照射のPPFDと同じにはしない。できるだけ高い光合成効率を得るために、点灯期間に照射される光のピーク強度を調整するものとする。
具体的には、図2(c)および図2(d)に示す間欠照射では、点灯期間に照射される光のピーク強度を、図2(b)に示す連続照射時の光のピーク強度と同じにする。
つまり、図2(b)に示すように、連続照射時の光のピーク強度を100とした場合、図2(c)および図2(d)に示すように、間欠照射の点灯期間に照射される光のピーク強度も100とする。これにより、図2(c)に示す間欠照射における平均のPPFDは50となり、図2(d)に示す間欠照射における平均のPPFDは33となる。したがって、図2(b)に示す連続照射のときのエネルギーコストを100とすると、図2(c)に示す間欠照射のときのエネルギーコストは50、図2(d)に示す間欠照射のときのエネルギーコストは33となる。
具体的には、図2(c)および図2(d)に示す間欠照射では、点灯期間に照射される光のピーク強度を、図2(b)に示す連続照射時の光のピーク強度と同じにする。
つまり、図2(b)に示すように、連続照射時の光のピーク強度を100とした場合、図2(c)および図2(d)に示すように、間欠照射の点灯期間に照射される光のピーク強度も100とする。これにより、図2(c)に示す間欠照射における平均のPPFDは50となり、図2(d)に示す間欠照射における平均のPPFDは33となる。したがって、図2(b)に示す連続照射のときのエネルギーコストを100とすると、図2(c)に示す間欠照射のときのエネルギーコストは50、図2(d)に示す間欠照射のときのエネルギーコストは33となる。
このように、植物(農作物)への光照射として間欠照明法を採用する際に、光のピーク強度を、連続照射のときの光のピーク強度と同じに設定すると、連続照射の場合とほぼ同等の光合成効率を得ることができる。連続照射と間欠照射とでは、光合成サイクルの後半部分の光が利用されていない時間に若干の相違はあるものの、軽微な差であり無視することができる。
つまり、エネルギーコストを下げても、ほぼ同じ光合成効率を得ることが可能となる。
つまり、エネルギーコストを下げても、ほぼ同じ光合成効率を得ることが可能となる。
そこで、図1に示す本実施形態における植物育成装置100では、制御部45において、植物200の光合成反応に必要とされる所定のPPFDで人工光Lを連続照射する場合の光源10への入力電流値を取得し、取得した入力電流値を間欠照射のピーク時の入力電流値に設定して給電装置40を制御することで、光源10を間欠点灯制御する。
このとき、間欠照射のデューティ比は、任意の値とすることができる。ただし、間欠照射の1周期における消灯期間Tbの長さは、光照射を必要としない、光化学系2の反応中心クロロフィル(P680)の還元時間である200μs、もしくは200μs以上にすることが好ましい。
このとき、間欠照射のデューティ比は、任意の値とすることができる。ただし、間欠照射の1周期における消灯期間Tbの長さは、光照射を必要としない、光化学系2の反応中心クロロフィル(P680)の還元時間である200μs、もしくは200μs以上にすることが好ましい。
制御部45は、上記所定のPPFDで人工光Lを連続照射する場合の光源10への入力電流値を直接取得してもよいし、上記所定のPPFDを取得し、取得したPPFDをもとに当該PPFDで人工光Lを連続照射する場合の光源10への入力電流値を算出または導出することで当該入力電流値を取得してもよい。
なお、制御部45が取得する上記所定のPPFDや上記入力電流値は、植物育成装置100に予め記憶されていてもよいし、ユーザ(例えば作業者)や外部装置から植物育成装置100に指定可能な構成であってもよい。
なお、制御部45が取得する上記所定のPPFDや上記入力電流値は、植物育成装置100に予め記憶されていてもよいし、ユーザ(例えば作業者)や外部装置から植物育成装置100に指定可能な構成であってもよい。
また、制御部45は、図1に示すように植物育成装置100が複数の光源10を備える場合、複数の光源10の点灯動作および非点灯動作が同期するように制御する。
植物200は、光合成のための光が照射された時点から光合成を開始する。つまり、植物200の光合成サイクルは、光合成のための光照射をトリガとして開始される。そのため、複数の光源10の点灯動作および非点灯動作は同期している必要がある。
ただし、植物育成装置100が複数の光源10を備える場合であっても、一株の植物200に対して1つの光源10から放出された人工光Lのみが照射される構成の場合には、複数の光源10の同期制御は不要である。
植物200は、光合成のための光が照射された時点から光合成を開始する。つまり、植物200の光合成サイクルは、光合成のための光照射をトリガとして開始される。そのため、複数の光源10の点灯動作および非点灯動作は同期している必要がある。
ただし、植物育成装置100が複数の光源10を備える場合であっても、一株の植物200に対して1つの光源10から放出された人工光Lのみが照射される構成の場合には、複数の光源10の同期制御は不要である。
上記の植物200の光合成反応に必要とされる所定のPPFDは、例えば植物200の光-光合成曲線をもとに設定することができる。
図3は、大豆の光-光合成曲線を示す図である。この図3において、曲線αはダイズ品種「タチナガハ」の光-光合成曲線、曲線βはダイズ品種「UA4805」の光-光合成曲線を示している。
この図3に示す光-光合成曲線は、品種ごとにPPFD=0,50,100,200,400,600,800,1200,2000μmol・m-2・s-1のときの光合成速度を測定した結果である。
図3は、大豆の光-光合成曲線を示す図である。この図3において、曲線αはダイズ品種「タチナガハ」の光-光合成曲線、曲線βはダイズ品種「UA4805」の光-光合成曲線を示している。
この図3に示す光-光合成曲線は、品種ごとにPPFD=0,50,100,200,400,600,800,1200,2000μmol・m-2・s-1のときの光合成速度を測定した結果である。
この図3に示すように、大豆の場合、PPFD=400μmol・m-2・s-1以下では光-光合成曲線が略線形となる。つまり、大豆の場合は、最大の効率でかつ最大量(最速成長)の光合成が行えるPPFDが400μmol・m-2・s-1である。そこで、PPFD=400μmol・m-2・s-1に対する光合成速度=約15μmol・m-2・s-1を光合成効率100%として定義する。
光-光合成曲線が線形であれば、PPFD=800μmol・m-2・s-1に対する光合成速度は約30μmol・m-2・s-1となるはずである。しかしながら、実際は、光-光合成曲線は飽和傾向にあり、曲線αの場合、PPFD=800μmol・m-2・s-1での光合成速度は約22.2μmol・m-2・s-1となっている。つまり、PPFD=800μmol・m-2・s-1での光合成効率は約74%となる(光の利用率、即ち、本来光が100%使われれば光合成速度は30μmol・m-2・s-1となるはずが22.2μmol・m-2・s-1しか得られないため、22.2÷30×100=74%が実質的に利用された光となる。)。同様に、PPFD=1000μmol・m-2・s-1での光合成効率は約64%となる。
なお、図3に示す特性は、大豆のみならず、他の農作物にも当てはまる傾向にある。
光-光合成曲線が線形であれば、PPFD=800μmol・m-2・s-1に対する光合成速度は約30μmol・m-2・s-1となるはずである。しかしながら、実際は、光-光合成曲線は飽和傾向にあり、曲線αの場合、PPFD=800μmol・m-2・s-1での光合成速度は約22.2μmol・m-2・s-1となっている。つまり、PPFD=800μmol・m-2・s-1での光合成効率は約74%となる(光の利用率、即ち、本来光が100%使われれば光合成速度は30μmol・m-2・s-1となるはずが22.2μmol・m-2・s-1しか得られないため、22.2÷30×100=74%が実質的に利用された光となる。)。同様に、PPFD=1000μmol・m-2・s-1での光合成効率は約64%となる。
なお、図3に示す特性は、大豆のみならず、他の農作物にも当てはまる傾向にある。
そこで、上記の植物200の光合成反応に必要とされる所定のPPFDは、植物200の光-光合成曲線における光飽和点以下のPPFDとすることができる。ここで、光飽和点とは、光合成速度が飽和になるPPFDである。
また、植物200が大豆である場合、上記所定のPPFDは、光-光合成曲線が略線形となる範囲におけるPPFDの最大値である400μmol・m-2・s-1としてもよい。また、光合成効率を許容できる範囲で若干犠牲にしたとしても生産速度(成長速度)を優先させる場合は、上記所定のPPFDは、1000μmol・m-2・s-1としてもよい。この場合、光合成効率を約60%以上確保することができる。
なお、一般に、快晴時の太陽光のPPFDは2000μmol・m-2・s-1であり、太陽光によるPPFDを越えると、活性酸素の形成が顕著となって植物の葉にダメージが生じることが知られている。したがって、上記所定のPPFDの上限値は、2000μmol・m-2・s-1とすることが好ましい。
また、植物200が大豆である場合、上記所定のPPFDは、光-光合成曲線が略線形となる範囲におけるPPFDの最大値である400μmol・m-2・s-1としてもよい。また、光合成効率を許容できる範囲で若干犠牲にしたとしても生産速度(成長速度)を優先させる場合は、上記所定のPPFDは、1000μmol・m-2・s-1としてもよい。この場合、光合成効率を約60%以上確保することができる。
なお、一般に、快晴時の太陽光のPPFDは2000μmol・m-2・s-1であり、太陽光によるPPFDを越えると、活性酸素の形成が顕著となって植物の葉にダメージが生じることが知られている。したがって、上記所定のPPFDの上限値は、2000μmol・m-2・s-1とすることが好ましい。
以上説明したように、本実施形態における植物育成装置100は、植物200に人工光を照射する光源10と、光源10に電力を供給する給電装置40と、給電装置40を制御する制御部45と、を備える。制御部45は、光源10が点灯動作と非点灯動作とを交互に繰り返す間欠点灯を行うように給電装置40を制御する。
具体的には、制御部45は、植物200の光合成反応に必要とされる所定のPPFDで植物200に対して人工光を連続照射する場合の光源10への入力電流値を取得し、取得された入力電流値を、光源10の点灯動作のピーク時の入力電流値に設定して、光源10の間欠点灯を制御する。
具体的には、制御部45は、植物200の光合成反応に必要とされる所定のPPFDで植物200に対して人工光を連続照射する場合の光源10への入力電流値を取得し、取得された入力電流値を、光源10の点灯動作のピーク時の入力電流値に設定して、光源10の間欠点灯を制御する。
このように、本実施形態では、植物200に間欠光を照射する間欠照明法(パルス照明法)を採用し、間欠照射における点灯動作時の光のピーク強度を、植物200の光合成反応に必要とされる所定のPPFDで人工光を連続照射するときの光のピーク強度と同じに設定する。これにより、上記の連続照射の場合とほぼ同等の光合成効率を確保しつつ、エネルギーコストを下げることができる。
例えば、図2(c)に示すように間欠照射のデューティ比を50%とすれば、エネルギーコストを半分にして、図2(b)に示す連続照射の場合とほぼ同様の光合成効率が得られる。さらに、図2(d)に示すように間欠照射のデューティ比を33%とすれば、エネルギーコストを3分の1にして、図2(b)に示す連続照射の場合とほぼ同様の光合成効率が得られる。
例えば、図2(c)に示すように間欠照射のデューティ比を50%とすれば、エネルギーコストを半分にして、図2(b)に示す連続照射の場合とほぼ同様の光合成効率が得られる。さらに、図2(d)に示すように間欠照射のデューティ比を33%とすれば、エネルギーコストを3分の1にして、図2(b)に示す連続照射の場合とほぼ同様の光合成効率が得られる。
ここで、植物200の光合成反応に必要とされる所定のPPFDは、植物200の光-光合成曲線の光飽和点以下とすることができる。これにより、光源10に投入する電力の無駄を抑えることができる。
例えば、上記所定のPPFDを光-光合成曲線が略線形となる範囲におけるPPFDの最大値に設定すれば、植物による光の利用効率(光合成効率)を100%とすることができ、光源10に投入する電力の無駄をほぼ無くすことができる。
例えば、上記所定のPPFDを光-光合成曲線が略線形となる範囲におけるPPFDの最大値に設定すれば、植物による光の利用効率(光合成効率)を100%とすることができ、光源10に投入する電力の無駄をほぼ無くすことができる。
また、上記所定のPPFDを、光-光合成曲線が略線形となる範囲におけるPPFDの最大値と光飽和点との間に設定すれば、光合成効率の低下を許容できる範囲に抑えつつ、植物の生産速度(成長速度)を速めることができる。
さらに、上記所定のPPFDを2000μmol・m-2・s-1以下とすることで、快晴時の太陽光のPPFD以下の光を照射するようにすることができ、植物への悪影響を適切に回避することができる。
さらに、上記所定のPPFDを2000μmol・m-2・s-1以下とすることで、快晴時の太陽光のPPFD以下の光を照射するようにすることができ、植物への悪影響を適切に回避することができる。
このように、本実施形態における植物育成装置100では、光合成効率の観点からみて、より効率的な間欠照射を行うことができる。特に、本実施形態における植物育成装置100は、光合成効率を確保しつつ、植物工場におけるラニングコストの大部分を占める照明電力コストを削減することができる。
本発明に係る植物育成装置によれば、農作物の増産および安定収穫を実現することができる。このことは、国連が主導する持続可能な開発目標(SDGs)の目標2「飢餓を終わらせ、食料安全保障及び栄養の改善を実現し、持続可能な農業を促進する」に対応し、また、ターゲット2.1「2030年までに、飢餓を撲滅し、全ての人々、特に貧困層及び幼児を含む脆弱な立場にある人々が一年中安全かつ栄養のある食料を十分得られるようにする」に大きく貢献するものである。
10…人工光源、20…空調システム、30…養液供給・排出システム、40…給電装置、45…制御部、100…植物育成装置、200…植物、210…地上部空間、211…葉、212…茎、220…地下部空間、221…根
Claims (8)
- 人工光により植物を育成する植物育成装置であって、
前記植物に前記人工光を照射する人工光源と、
前記人工光源に電力を供給する給電装置と、
前記給電装置を制御して、前記人工光源が点灯動作と非点灯動作とを交互に繰り返す間欠点灯を行うように制御する制御部と、を備え、
前記制御部は、
前記植物の光合成反応に必要とされる所定の光合成有効光量子束密度で前記植物に対して前記人工光を連続照射する場合の前記人工光源への入力電流値を取得し、
取得された前記入力電流値を、前記人工光源の前記点灯動作のピーク時の入力電流値に設定して、前記人工光源の前記間欠点灯を制御する
ことを特徴とする植物育成装置。 - 前記所定の光合成有効光量子束密度は、前記植物の光合成速度が飽和になる光合成有効光量子束密度である光飽和点以下の値であることを特徴とする請求項1に記載の植物育成装置。
- 前記所定の光合成有効光量子束密度は、400μmol・m-2・s-1以上であることを特徴とする請求項1に記載の植物育成装置。
- 前記所定の光合成有効光量子束密度は、1000μmol・m-2・s-1以下であることを特徴とする請求項1に記載の植物育成装置。
- 前記所定の光合成有効光量子束密度は、2000μmol・m-2・s-1以下であることを特徴とする請求項1に記載の植物育成装置。
- 前記間欠点灯の前記非点灯動作の期間は、200μs以上であることを特徴とする請求項1に記載の植物育成装置。
- 前記人工光源を複数備え、
前記制御部は、複数の前記人工光源の前記点灯動作および前記非点灯動作が同期するように制御する
ことを特徴とする請求項1に記載の植物育成装置。 - 人工光源から照射される人工光により植物を育成する植物育成方法であって、
前記植物の光合成反応に必要とされる所定の光合成有効光量子束密度で連続点灯するときの前記人工光源への入力電流値を取得するステップと、
取得された前記入力電流値を、前記人工光源の点灯動作のピーク時の入力電流値に設定し、前記人工光源に電力を供給する給電装置を制御して、前記人工光源が点灯動作と非点灯動作とを交互に繰り返す間欠点灯を行うように制御するステップと、
を含むことを特徴とする植物育成方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-111103 | 2022-07-11 | ||
JP2022111103A JP2024009517A (ja) | 2022-07-11 | 2022-07-11 | 植物育成装置および植物育成方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2024014148A1 true WO2024014148A1 (ja) | 2024-01-18 |
Family
ID=89536582
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/020040 WO2024014148A1 (ja) | 2022-07-11 | 2023-05-30 | 植物育成装置および植物育成方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2024009517A (ja) |
WO (1) | WO2024014148A1 (ja) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021140940A1 (ja) * | 2020-01-10 | 2021-07-15 | 株式会社大林組 | 農産物栽培支援装置、農産物栽培システム、および農産物栽培支援方法 |
-
2022
- 2022-07-11 JP JP2022111103A patent/JP2024009517A/ja active Pending
-
2023
- 2023-05-30 WO PCT/JP2023/020040 patent/WO2024014148A1/ja unknown
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021140940A1 (ja) * | 2020-01-10 | 2021-07-15 | 株式会社大林組 | 農産物栽培支援装置、農産物栽培システム、および農産物栽培支援方法 |
Non-Patent Citations (3)
Title |
---|
MORI YASUHIRO, MASAMOTO TAKATSUJT, TAKASHI YASUOKA: "Effects of Pulsed White LED Light on the Growth of Lettuce", JOURNAL OF SOCIETY OF HIGH TECHNOLOGY IN AGRICULTURE, vol. 14, no. 3, 1 September 2002 (2002-09-01), pages 136 - 140, XP093127681 * |
NOZU HATSUMI,, SHIMADA, AOI, TANIGUCHI, YOSHIO, NOZUE, MASAYUKI.: "Improving the Productivity of Plants using an LED Light Equipped with a Control Module", PLANT ENVIRONMENTAL ENGINEERING, vol. 22, no. 2, 1 January 2010 (2010-01-01), pages 81 - 87, XP093127673 * |
OLVERA-GONZALEZ ERNESTO, ESCALANTE-GARCIA NIVIA, MYERS DELAND, AMPIM PETER, OBENG ERIC, ALANIZ-LUMBRERAS DANIEL, CASTAÑO VICTOR: "Pulsed LED-Lighting as an Alternative Energy Savings Technique for Vertical Farms and Plant Factories", ENERGIES, M D P I AG, CH, vol. 14, no. 6, 13 March 2021 (2021-03-13), CH , pages 1603, XP093127676, ISSN: 1996-1073, DOI: 10.3390/en14061603 * |
Also Published As
Publication number | Publication date |
---|---|
JP2024009517A (ja) | 2024-01-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7051259B2 (ja) | 植物成長のための覚醒光の最適化 | |
KR100944359B1 (ko) | 식물 재배용 다광원 조명장치 및 이를 이용한 식물 재배 방법 | |
US9326454B2 (en) | Method for cultivating plant | |
US9363951B2 (en) | Method for cultivating plant | |
KR101027205B1 (ko) | 식물재배용 led 조명장치 | |
US20160007543A1 (en) | Method for raising leaf-and-stem vegetables and light source device for raising leaf-and-stem vegetables | |
JPH08242694A (ja) | 植物の栽培方法 | |
KR20210033754A (ko) | 식물 재배용 광원을 이용한 식물 재배 장치 및 식물 재배 방법 | |
JP2012161313A (ja) | 葉菜類の生産方法 | |
JP2007075073A (ja) | スプラウトの栽培方法 | |
JP2018121590A (ja) | 人工光による育苗方法 | |
JP2019041694A (ja) | 植物栽培装置および植物栽培方法 | |
JPH0937648A (ja) | 光半導体を光源とした植物栽培方法 | |
US9445549B2 (en) | Method for cultivating plant | |
WO2024014148A1 (ja) | 植物育成装置および植物育成方法 | |
JP2001258389A (ja) | 植物栽培方法 | |
JP2012065601A (ja) | トマト果実の重量が大きくなるほどトマト果実の糖度を高める方法 | |
WO2023248792A1 (ja) | 植物育成装置および植物育成方法 | |
WO2024195221A1 (ja) | 植物育成装置および植物育成方法 | |
JP2014171465A (ja) | 植物の栽培方法及びそれに用いる植物の栽培用照射装置 | |
JP2014008033A (ja) | 植物の栽培方法及び栽培装置 | |
JP7157489B1 (ja) | 植物栽培方法、及び植物栽培装置 | |
JP2013215123A (ja) | 植物育成用人工照明装置とその照射方法 | |
JP2005065559A (ja) | 植物貯蔵装置、植物貯蔵用照明装置及び植物貯蔵照明方法 | |
Stamford et al. | Sinusoidal LED light recipes can improve rocket edible biomass and reduce electricity costs in indoor growth environments |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23839325 Country of ref document: EP Kind code of ref document: A1 |