WO2024014066A1 - Thermal printhead - Google Patents

Thermal printhead Download PDF

Info

Publication number
WO2024014066A1
WO2024014066A1 PCT/JP2023/012247 JP2023012247W WO2024014066A1 WO 2024014066 A1 WO2024014066 A1 WO 2024014066A1 JP 2023012247 W JP2023012247 W JP 2023012247W WO 2024014066 A1 WO2024014066 A1 WO 2024014066A1
Authority
WO
WIPO (PCT)
Prior art keywords
print head
thermal print
layer
main surface
protrusion
Prior art date
Application number
PCT/JP2023/012247
Other languages
French (fr)
Japanese (ja)
Inventor
吾郎 仲谷
宏治 西
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024014066A1 publication Critical patent/WO2024014066A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/335Structure of thermal heads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/315Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material
    • B41J2/32Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads
    • B41J2/345Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by selective application of heat to a heat sensitive printing or impression-transfer material using thermal heads characterised by the arrangement of resistors or conductors

Definitions

  • the present disclosure relates to a thermal print head.
  • Patent Document 1 JP-A-2011-240641 discloses a thermal print head that includes a substrate, a heating resistor, a common electrode, and a plurality of individual electrodes.
  • An object of the present disclosure is to provide a thermal print head that can prevent a sealing member that seals a drive circuit from coming into contact with a printing medium and can be miniaturized.
  • the thermal print head of the present disclosure includes a substrate having a main surface, a wiring layer disposed on the main surface, a resistor layer, a drive circuit, a sealing member, and a first resin flow stopper.
  • the resistor layer is arranged on the wiring layer and includes a plurality of heat generating parts.
  • the wiring layer is electrically connected to the plurality of heat generating parts and is in contact with the resistor layer.
  • the drive circuit is mounted on the main surface and electrically connected to the wiring layer.
  • the sealing member is formed by curing a sealing resin material and seals the drive circuit.
  • the first resin flow stopper stops the flow of the sealing resin material.
  • the first resin flow stopper is disposed between the drive circuit and the resistor layer in a plan view of the main surface, and is in contact with the sealing member.
  • the sealing member that seals the drive circuit can be prevented from contacting the print medium, and the thermal print head can be downsized.
  • FIG. 1 is a schematic cross-sectional view of a thermal print head according to a first embodiment.
  • FIG. 2 is a schematic plan view of the thermal print head according to the first embodiment.
  • FIG. 3 is a schematic partially enlarged plan view of the thermal print head according to the first embodiment.
  • FIG. 4 is a schematic partially enlarged cross-sectional view of the thermal print head according to the first embodiment.
  • FIG. 5 is a schematic partial enlarged cross-sectional view of the thermal print head according to the first embodiment.
  • FIG. 6 is a schematic partial enlarged sectional view showing one step of the method for manufacturing the thermal print head according to the first embodiment.
  • FIG. 7 is a schematic partially enlarged cross-sectional view showing one step of the method for manufacturing the thermal print head according to the first embodiment.
  • FIG. 1 is a schematic cross-sectional view of a thermal print head according to a first embodiment.
  • FIG. 2 is a schematic plan view of the thermal print head according to the first embodiment.
  • FIG. 3 is a schematic
  • FIG. 8 is a schematic partially enlarged cross-sectional view showing the next step after the steps shown in FIGS. 6 and 7 in the method for manufacturing the thermal print head according to the first embodiment.
  • FIG. 9 is a schematic partially enlarged cross-sectional view showing the next step after the steps shown in FIGS. 6 and 7 in the method for manufacturing a thermal print head according to the first embodiment.
  • FIG. 10 is a schematic partially enlarged sectional view showing the next step after the steps shown in FIGS. 8 and 9 in the method for manufacturing the thermal print head of the first embodiment.
  • FIG. 11 is a schematic partially enlarged cross-sectional view showing a step subsequent to the steps shown in FIGS. 8 and 9 in the method for manufacturing a thermal print head according to the first embodiment.
  • FIG. 12 is a schematic partial enlarged cross-sectional view showing a step subsequent to the step shown in FIGS. 10 and 11 in the method for manufacturing a thermal print head according to the first embodiment.
  • FIG. 13 is a schematic partial enlarged cross-sectional view showing a step subsequent to the step shown in FIGS. 10 and 11 in the method for manufacturing a thermal print head according to the first embodiment.
  • FIG. 14 is a schematic partial enlarged cross-sectional view of the thermal print head according to the second embodiment.
  • FIG. 15 is a schematic partial enlarged cross-sectional view of the thermal print head according to the second embodiment.
  • FIG. 16 is a schematic partial enlarged sectional view showing one step of the method for manufacturing a thermal print head according to the second embodiment.
  • FIG. 17 is a schematic partially enlarged sectional view showing one step of the method for manufacturing a thermal print head according to the second embodiment.
  • FIG. 18 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 16 and 17 in the method for manufacturing a thermal print head according to the second embodiment.
  • FIG. 19 is a schematic partially enlarged sectional view showing the next step after the steps shown in FIGS. 16 and 17 in the method for manufacturing a thermal print head according to the second embodiment.
  • FIG. 20 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 18 and 19 in the method for manufacturing a thermal print head according to the second embodiment.
  • FIG. 21 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS.
  • FIG. 22 is a schematic partial enlarged cross-sectional view showing the next step after the steps shown in FIGS. 20 and 21 in the method for manufacturing a thermal print head according to the second embodiment.
  • FIG. 23 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 20 and 21 in the method for manufacturing a thermal print head according to the second embodiment.
  • FIG. 24 is a schematic partially enlarged cross-sectional view of the thermal print head according to the third embodiment.
  • FIG. 25 is a schematic partially enlarged cross-sectional view of the thermal print head according to the third embodiment.
  • FIG. 26 is a schematic partially enlarged cross-sectional view showing one step of the method for manufacturing a thermal print head according to the third embodiment.
  • FIG. 27 is a schematic partial enlarged cross-sectional view showing one step of the method for manufacturing a thermal print head according to the third embodiment.
  • FIG. 28 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 26 and 27 in the method for manufacturing a thermal print head according to the third embodiment.
  • FIG. 29 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 26 and 27 in the method for manufacturing a thermal print head according to the third embodiment.
  • FIG. 30 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS.
  • FIG. 31 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 28 and 29 in the method for manufacturing a thermal print head according to the third embodiment.
  • FIG. 32 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 30 and 31 in the method for manufacturing a thermal print head according to the third embodiment.
  • FIG. 33 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 30 and 31 in the method for manufacturing a thermal print head according to the third embodiment.
  • FIG. 34 is a schematic partially enlarged cross-sectional view of the thermal print head according to the fourth embodiment.
  • FIG. 35 is a schematic partially enlarged cross-sectional view of the thermal print head according to the fourth embodiment.
  • FIG. 36 is a schematic partial enlarged sectional view showing one step of the method for manufacturing a thermal print head according to the fourth embodiment.
  • FIG. 37 is a schematic partial enlarged sectional view showing one step of the method for manufacturing a thermal print head according to the fourth embodiment.
  • FIG. 38 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 36 and 37 in the method for manufacturing a thermal print head according to the fourth embodiment.
  • FIG. 39 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 36 and 37 in the method for manufacturing a thermal print head according to the fourth embodiment.
  • FIG. 36 is a schematic partial enlarged sectional view showing one step of the method for manufacturing a thermal print head according to the fourth embodiment.
  • FIG. 38 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 36 and 37 in the method for
  • FIG. 40 is a schematic partially enlarged sectional view showing the next step after the steps shown in FIGS. 38 and 39 in the method for manufacturing a thermal print head according to the fourth embodiment.
  • FIG. 41 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 38 and 39 in the method for manufacturing a thermal print head according to the fourth embodiment.
  • FIG. 42 is a schematic partially enlarged sectional view showing the next step after the steps shown in FIGS. 40 and 41 in the method for manufacturing a thermal print head according to the fourth embodiment.
  • FIG. 43 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 40 and 41 in the method for manufacturing a thermal print head according to the fourth embodiment.
  • the thermal print head 1 is an electronic device that prints on a print medium 47 such as thermal paper by selectively generating heat in a plurality of heat generating units 31 (see FIG. 3).
  • the thermal print head 1 includes a substrate 10, a glaze layer 15, a wiring layer 20, a resistor layer 30, a protective layer 33, a drive circuit 35, conductive wires 36 and 37, a connector 40, and a sealing member. 43, a heat sink 49, a first resin flow stopper 50, and a second resin flow stopper 55.
  • the first resin flow stopper 50 includes a protrusion 51
  • the second resin flow stopper 55 includes a protrusion 56.
  • the substrate 10 has a main surface 11 and a back surface 12 opposite to the main surface 11.
  • the main surface 11 and the back surface 12 each extend in the x direction and the y direction perpendicular to the x direction.
  • the x direction is the longitudinal direction of the substrate 10 and the main scanning direction of the thermal print head 1.
  • the y direction is the lateral direction of the substrate 10 and the sub-scanning direction of the thermal print head 1.
  • the z direction is the thickness direction of the substrate 10.
  • the normal direction of the main surface 11 is the z direction perpendicular to the x direction and the y direction.
  • the main surface 11 faces the +z direction.
  • the back surface 12 faces the main surface 11 in the z direction.
  • the back surface 12 faces the -z direction.
  • the substrate 10 is, for example, a ceramic substrate such as alumina, or a glass substrate such as a soda lime glass substrate, a borosilicate glass substrate, or a quartz glass substrate.
  • the substrate 10 has electrical insulation properties.
  • the protrusion 51 is arranged on the main surface 11.
  • protrusion 51 is arranged between resistor layer 30 and drive circuit 35 .
  • the protrusion 51 is arranged between the resistor layer 30 and the terminal portions 28 of the plurality of individual wirings 25 .
  • the longitudinal direction of the protrusion 51 is the x direction
  • the transverse direction of the protrusion 51 is the y direction.
  • the protrusion 56 is arranged on the main surface 11.
  • the protrusion 56 is arranged between the drive circuit 35 and the connector 40.
  • the longitudinal direction of the protrusion 56 is the x direction
  • the transverse direction of the protrusion 56 is the y direction.
  • the protrusions 51 and 56 are made of, for example, low-temperature co-fired ceramic (LTCC ceramic), high melting point metal, or glass mixed with silicon (Si) powder.
  • LTCC ceramic is a ceramic material obtained by firing an LTCC slurry containing ceramic powder such as alumina and glass powder.
  • the high melting point metal is, for example, tungsten (W), tantalum (Ta), molybdenum (Mo) or niobium (Nb).
  • glaze layer 15 is disposed on at least a portion of main surface 11 and protrusions 51, 56, and covers at least a portion of main surface 11 and protrusions 51, 56. There is. Glaze layer 15 is arranged between substrate 10 and resistor layer 30 in the normal direction of main surface 11 . Glaze layer 15 may cover the entire main surface 11 .
  • the glaze layer 15 is made of, for example, a material containing amorphous glass such as SiO 2 -BaO-Al 2 O 3 -SnO-ZnO glass.
  • wiring layer 20 is arranged on main surface 11. Specifically, the wiring layer 20 is arranged on the glaze layer 15.
  • the wiring layer 20 constitutes a conductive path for supplying electricity to the plurality of heat generating parts 31 of the resistor layer 30.
  • the wiring layer 20 is electrically connected to the plurality of heat generating parts 31 and is in contact with the resistor layer 30 .
  • the wiring layer 20 is made of a conductive material such as gold (Au) paste, for example.
  • the thickness of the wiring layer 20 is, for example, 0.6 ⁇ m or more and 1.2 ⁇ m or less.
  • the wiring layer 20 includes a common wiring 21, a plurality of individual wirings 25, and a plurality of lead wirings 29.
  • the plurality of individual wirings 25 are separated from the common wiring 21 and the plurality of lead wirings 29.
  • the common wiring 21 is electrically connected to the plurality of heat generating parts 31.
  • the common wiring 21 includes a base 22 and a plurality of extensions 23.
  • the base portion 22 is disposed on one side (+y side) in the y direction with respect to the resistor layer 30.
  • the longitudinal direction of the base 22 is the x direction
  • the lateral direction of the base 22 is the y direction.
  • the base 22 is spaced apart from the resistor layer 30 in the y direction.
  • the plurality of extending portions 23 extend from the base portion 22 toward the resistor layer 30 in the ⁇ y direction.
  • the plurality of extension parts 23 are arranged at equal intervals along the x direction.
  • Each of the plurality of individual wirings 25 is electrically connected to a corresponding one of the plurality of heat generating parts 31. Specifically, as shown in FIGS. 3 and 4, the plurality of individual wirings 25 are arranged along the x direction. Each of the plurality of individual wirings 25 includes a terminal portion 28 and an extension portion 26.
  • the terminal portion 28 is arranged on the other side ( ⁇ y side) of the resistor layer 30 in the y direction.
  • the terminal portion 28 is arranged on the side opposite to the base portion 22 of the common wiring 21 with respect to the resistor layer 30 in the y direction.
  • the conductive wire 36 is bonded to the terminal portion 28 and the drive circuit 35.
  • the terminal portion 28 is electrically connected to the drive circuit 35 through a conductive wire 36.
  • the extending portion 26 is connected to the terminal portion 28.
  • An end portion 27 of the extending portion 26 on the opposite side from the terminal portion 28 is in contact with the resistor layer 30 .
  • the end portion 27 of the extension portion 26 overlaps with the resistor layer 30 .
  • the plurality of lead wires 29 are arranged on the other side ( ⁇ y side) of the drive circuit 35 in the y direction.
  • the plurality of lead wires 29 are arranged on the opposite side of the drive circuit 35 from the resistor layer 30 and the plurality of individual wires 25 .
  • the conductive wire 37 is bonded to the drive circuit 35 and the plurality of lead wires 29.
  • the plurality of lead wires 29 are electrically connected to the drive circuit 35 through conductive wires 37.
  • the plurality of lead wires 29 are connected to the connector 40.
  • the resistor layer 30 is arranged on the glaze layer 15 and the wiring layer 20.
  • resistor layer 30 In the normal direction (z direction) of main surface 11 , resistor layer 30 is disposed on the opposite side of substrate 10 with respect to glaze layer 15 .
  • the resistor layer 30 is in contact with the glaze layer 15.
  • the longitudinal direction of the resistor layer 30 is the x direction
  • the transversal direction of the resistor layer 30 is the y direction.
  • the resistor layer 30 intersects the plurality of extensions 23 of the common wiring 21 and the ends 27 of the extensions 26 of the plurality of individual wirings 25 .
  • the resistor layer 30 covers a part of each of the plurality of extensions 23 of the common wiring 21 and a part of the end 27 of each of the extensions 26 of the plurality of individual wirings 25.
  • the resistor layer 30 straddles the plurality of extensions 23 of the common wiring 21 and the ends 27 of the extensions 26 of the plurality of individual wirings 25.
  • the resistor layer 30 is made of a material having higher electrical resistivity than the wiring layer 20.
  • the material of the resistor layer 30 is, for example, a conductive paste containing ruthenium oxide (RuO 2 ) particles and glass frit.
  • the thickness of the resistor layer 30 is, for example, 6 ⁇ m or more and 10 ⁇ m or less.
  • the resistor layer 30 includes a plurality of heat generating parts 31.
  • the region sandwiched between is one of the plurality of heat generating parts 31.
  • the plurality of heat generating parts 31 are in contact with the glaze layer 15.
  • the plurality of heat generating parts 31 are arranged along the x direction.
  • the protective layer 33 covers the glaze layer 15, the wiring layer 20, and the plurality of heat generating parts 31.
  • the protective layer 33 is in contact with the glaze layer 15, the wiring layer 20, and the plurality of heat generating parts 31. Portions of the wiring layer 20 to which the conductive wires 36 and 37 are bonded (for example, the terminal portion 28 and the like) are exposed from the protective layer 33.
  • the protective layer 33 is made of, for example, a material containing amorphous glass, similar to the glaze layer 15.
  • the drive circuit 35 is mounted on the main surface 11.
  • the drive circuit 35 is fixed to the glaze layer 15 using a bonding member (not shown) such as an adhesive.
  • the drive circuit 35 may be mounted on a wiring board (not shown) separated from the board 10.
  • the wiring board is, for example, a printed circuit board (PCB).
  • the drive circuit 35 is electrically connected to the wiring layer 20 (specifically, the plurality of individual wirings 25 and the plurality of lead wirings 29).
  • the drive circuit 35 individually applies current to the plurality of heat generating parts 31 through the plurality of individual wirings 25 .
  • the heat generating part 31 to which the current is applied selectively generates heat.
  • the connector 40 is arranged on the opposite side of the resistor layer 30 with respect to the drive circuit 35 in the y direction.
  • the connector 40 is attached to the end of the substrate 10 in the y direction, for example.
  • the connector 40 is electrically connected to the drive circuit 35 through the wiring layer 20 (specifically, the plurality of lead wires 29).
  • connector 40 includes multiple pins (not shown). Some of the plurality of pins are electrically connected to the plurality of lead wires 29. Another part of the plurality of pins is electrically connected to a wiring (not shown) that is electrically connected to the base 22 of the common wiring 21 .
  • Connector 40 is connected to a thermal printer. A constant voltage is applied from the thermal printer to the common wiring 21 through the connector 40.
  • the sealing member 43 covers the drive circuit 35 and seals the drive circuit 35.
  • the sealing member 43 further covers the conductive wires 36 and 37, and further seals the conductive wires 36 and 37.
  • the sealing member 43 further covers portions of the plurality of individual wirings 25 that are exposed from the protective layer 33 (for example, the terminal portions 28, etc.).
  • the sealing member 43 has electrical insulation.
  • the viscosity of the sealing resin material is, for example, 65 Pa ⁇ s or less.
  • the viscosity of the sealing resin material may be 60 Pa ⁇ s or less, or may be 55 Pa ⁇ s or less. Therefore, the height h1 of the sealing member 43 can be reduced.
  • the viscosity of the sealing resin material is measured using a B-type rotational viscometer (Brookfield, spindle 5) at a temperature of 25.0° C. and a rotation speed of 20 rpm.
  • the height h1 of the sealing member 43 is, for example, 300 ⁇ m or less. In this specification, the height h 1 of the sealing member 43 is the maximum height of the sealing member 43 from the main surface 11 .
  • the sealing member 43 is made of an insulating resin material such as epoxy resin, for example.
  • an insulating resin material such as epoxy resin manufactured by Henkel (model number COB011-3A) can be used.
  • the heat sink 49 is arranged on the opposite side of the substrate 10 from the glaze layer 15 and the resistor layer 30 in the z direction.
  • the heat sink 49 is attached to the back surface 12 of the substrate 10 by fasteners or bonding members (not shown) such as screws.
  • Heat sink 49 supports substrate 10.
  • the heat sink 49 is made of a highly thermally conductive material such as aluminum (Al), for example.
  • Al aluminum
  • a portion of the heat generated from the plurality of heat generating parts 31 of the resistor layer 30 is transmitted to the heat sink 49 through the substrate 10.
  • the heat transmitted to the heat sink 49 is radiated to the outside of the thermal print head 1.
  • the heat sink 49 can prevent excessive temperature rise of the substrate 10.
  • the heat sink 49 supports the board 10 and the wiring board.
  • the thermal print head 1 includes a protrusion 45 formed on the main surface 11.
  • the protrusion 45 includes a glaze layer 15 , a wiring layer 20 , a plurality of heat generating parts 31 , and a protective layer 33 .
  • the glaze layer 15, the wiring layer 20, the plurality of heat generating parts 31, and the protective layer 33 are laminated on the main surface 11 in this order in the normal direction (z direction) of the main surface 11.
  • the first resin flow stopper 50 stops the flow of the sealing resin material.
  • the first resin flow stopper 50 is in contact with the sealing member 43.
  • the first resin flow stopper 50 is arranged between the drive circuit 35 and the resistor layer 30 .
  • the first resin flow stopper 50 is arranged between the drive circuit 35 and the protrusion 45 . Therefore, the first resin flow stopper 50 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 .
  • the sealing member 43 is separated from the resistor layer 30 and the protrusion 45 by the first resin flow stopper 50 .
  • the longitudinal direction of the first resin flow stopper 50 is the x direction
  • the width direction of the first resin flow stopper 50 is the y direction.
  • the first resin flow stopper 50 is, for example, a convex portion 50a formed on the main surface 11.
  • the first resin flow stopper 50 (convex portion 50a) includes a protrusion 51, a glaze layer 15, a wiring layer 20 (specifically, a plurality of individual wirings 25), and a protective layer 33.
  • the height h 2 of the first resin flow stopper 50 is lower than the height h 1 of the sealing member 43 .
  • the height h2 of the first resin flow stopper 50 is, for example, 250 ⁇ m or less. In this specification, the height h2 of the first resin stop 50 is the maximum height of the first resin stop 50 from the main surface 11.
  • the second resin flow stopper 55 stops the flow of the sealing resin material.
  • the second resin flow stopper 55 is in contact with the sealing member 43 .
  • the second resin flow stopper 55 is arranged between the drive circuit 35 and the connector 40 . Therefore, the second resin flow stopper 55 prevents the sealing resin material from coming into contact with the connector 40 .
  • the sealing member 43 is separated from the connector 40 by the second resin flow stopper 55 .
  • the longitudinal direction of the second resin stopper 55 is the x direction
  • the lateral direction of the second resin stopper 55 is the y direction.
  • the second resin flow stopper 55 is, for example, a convex portion 55a formed on the main surface 11.
  • the second resin flow stopper 55 (convex portion 55a) includes a protrusion 56, a glaze layer 15, a wiring layer 20 (specifically, a plurality of lead wires 29), and a protective layer 33.
  • the height h 3 of the second resin flow stopper 55 is lower than the height h 1 of the sealing member 43 .
  • the height h3 of the second resin flow stopper 55 is, for example, 250 ⁇ m or less. In this specification, the height h3 of the second resin stop 55 is the maximum height of the second resin stop 55 from the main surface 11.
  • thermal print head 1 of this embodiment A method of manufacturing the thermal print head 1 of this embodiment will be described with reference mainly to FIGS. 6 to 13.
  • the method for manufacturing thermal print head 1 includes a step of forming protrusions 51 and 56 on main surface 11 of substrate 10.
  • the protrusions 51 and 56 are made of, for example, LTCC ceramic, high melting point metal, or glass mixed with Si powder.
  • the protrusions 51 and 56 are made of LTCC ceramic
  • the protrusions 51 and 56 are formed, for example, by the following method.
  • LTCC slurry is applied onto a portion of the main surface 11.
  • the LTCC slurry includes LTCC semilac powder, glass, binder, and solvent.
  • the LTCC slurry is fired. In this way, protrusions 51 and 56 are formed.
  • the firing temperature of the LTCC slurry is, for example, 870°C or higher and 900°C or lower.
  • the substrate 10 is a ceramic substrate
  • the firing temperature of the LTCC slurry is lower than the firing temperature of the ceramic substrate.
  • the substrate 10 is a glass substrate
  • the firing temperature of the LTCC slurry is lower than the glass transition temperature of the glass substrate.
  • the protrusions 51 and 56 are made of a high melting point metal
  • the protrusions 51 and 56 are formed, for example, by one of the following three methods.
  • a high melting point metal layer is deposited on the main surface 11. Etching the refractory metal layer.
  • a mask with openings is formed on the main surface 11.
  • a high melting point metal layer is deposited on the main surface 11 of the substrate 10 and the mask. Lift off the mask.
  • a high melting point metal layer is evaporated onto a portion of the major surface 11 through a metal mask located between the evaporation source and the substrate 10 and provided with an opening.
  • the protrusions 51 and 56 are formed of glass mixed with Si powder
  • the protrusions 51 and 56 are formed, for example, by the following method.
  • a paste containing glass mixed with Si powder is applied onto a portion of the main surface 11 by, for example, screen printing.
  • the paste is fired. In this way, protrusions 51 and 56 are formed.
  • the method for manufacturing thermal print head 1 includes a step of forming glaze layer 15 covering at least a portion of main surface 11 and protrusions 51 and 56. Specifically, a paste containing amorphous glass is applied onto the main surface 11 and the projections 51 and 56 by, for example, screen printing. The paste is fired. In this way, glaze layer 15 is formed.
  • the method for manufacturing thermal print head 1 includes a step of forming wiring layer 20 on glaze layer 15. Specifically, a resinate paste containing gold as a main component is applied onto the glaze layer 15 by, for example, screen printing. The resinate paste is fired. The fired resinate paste is patterned by etching or the like. In this way, the wiring layer 20 is formed.
  • the wiring layer 20 includes a common wiring 21, a plurality of individual wirings 25, and a plurality of lead wirings 29.
  • the method for manufacturing thermal print head 1 of this embodiment includes a step of forming resistor layer 30 on glaze layer 15 and wiring layer 20. Specifically, a conductive paste is applied onto the glaze layer 15 and the wiring layer 20 by, for example, screen printing. The conductive paste is fired. In this way, the resistor layer 30 is formed.
  • the resistor layer 30 includes a plurality of heat generating parts 31.
  • the wiring layer 20 is electrically connected to the plurality of heat generating parts 31 and is in contact with the resistor layer 30 .
  • the method for manufacturing the thermal print head 1 includes a step of forming a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20. Specifically, a paste containing amorphous glass is applied onto the glaze layer 15, the plurality of heat generating parts 31, and a portion of the wiring layer 20 by, for example, screen printing. The paste is fired. In this way, the protective layer 33 is formed. Portions of the wiring layer 20 to which the conductive wires 36 and 37 are bonded (for example, the terminal portion 28 and the like) are exposed from the protective layer 33.
  • the method for manufacturing thermal print head 1 of this embodiment includes a step of mounting drive circuit 35 on main surface 11.
  • the drive circuit 35 is fixed to the glaze layer 15 using a bonding member (not shown) such as an adhesive.
  • the method for manufacturing thermal print head 1 according to the present embodiment includes a step of bonding conductive wires 36 and 37.
  • the conductive wire 36 is bonded to the drive circuit 35 and the terminal portions 28 of the plurality of individual wirings 25 using a wire bonder (not shown).
  • the conductive wire 37 is bonded to the drive circuit 35 and the plurality of lead wires 29 using a wire bonder (not shown).
  • the method for manufacturing the thermal print head 1 includes a step of sealing the drive circuit 35 with a sealing member 43.
  • a sealing resin material is potted onto the drive circuit 35.
  • the sealing resin material spreads.
  • the first resin flow stopper 50 and the second resin flow stopper 55 stop the flow of the sealing resin material. Therefore, the sealing resin material remains in the area between the first resin stopper 50 and the second resin stopper 55.
  • the first resin flow stopper 50 prevents the sealing resin material from contacting the resistor layer 30 and the projections 45 .
  • the second resin flow stopper 55 prevents the sealing resin material from contacting the connector 40 .
  • the sealing resin material is cured. In this way, the sealing member 43 is formed.
  • the sealing member 43 is separated from the resistor layer 30 and the protrusion 45 by the first resin flow stopper 50 .
  • the sealing member 43 is separated from the connector 40 by the second resin flow stopper 55 .
  • the method for manufacturing the thermal print head 1 of this embodiment includes the step of attaching the connector 40 to the substrate 10.
  • Connector 40 includes multiple pins (not shown). Some of the plurality of pins are electrically connected to the plurality of lead wires 29. Another part of the plurality of pins is electrically connected to a wiring (not shown) that is electrically connected to the base 22 of the common wiring 21 .
  • the method of manufacturing the thermal print head 1 according to this embodiment includes the step of attaching a heat sink 49 to the substrate 10. Specifically, the heat sink 49 is attached to the back surface 12 of the substrate 10 by a fastening member or bonding member (not shown) such as a screw. In this way, the thermal print head 1 shown in FIGS. 1 to 5 is obtained.
  • the protrusion 45 faces a platen roller 46 included in the thermal printer.
  • the platen roller 46 sends out the print medium 47 toward the thermal print head 1 .
  • the print medium 47 is sent out in the +y direction.
  • a print medium 47 is sandwiched between the protrusion 45 and the platen roller 46.
  • the drive circuit 35 individually applies current to the plurality of heat generating parts 31 through the plurality of individual wirings 25.
  • the heat generating part 31 to which the current is applied selectively generates heat.
  • Heat generated by the plurality of heat generating parts 31 is transmitted to the print medium 47. In this way, printing is performed on the print medium 47 using the thermal print head 1.
  • a portion of the heat generated by the plurality of heat generating parts 31 is transmitted to the glaze layer 15. This heat is stored in the glaze layer 15. Glaze layer 15 functions as a heat storage layer. The remainder of the heat generated by the plurality of heat generating parts 31 is released to the outside of the thermal print head 1 through the substrate 10 and the heat sink 49.
  • the thermal print head 1 of this embodiment includes a substrate 10 having a main surface 11, a wiring layer 20 disposed on the main surface 11, a resistor layer 30, a drive circuit 35, and a sealing member 43. , and a first resin flow stopper 50.
  • the resistor layer 30 is arranged on the wiring layer 20 and includes a plurality of heat generating parts 31.
  • the wiring layer 20 is electrically connected to the plurality of heat generating parts 31 and is in contact with the resistor layer 30 .
  • the drive circuit 35 is mounted on the main surface 11 and electrically connected to the wiring layer 20.
  • the sealing member 43 is formed by curing a sealing resin material, and seals the drive circuit 35.
  • the first resin flow stopper 50 stops the flow of the sealing resin material.
  • the first resin flow stopper 50 is disposed between the drive circuit 35 and the resistor layer 30 in a plan view of the main surface 11, and is in contact with the sealing member 43.
  • the first resin flow stopper 50 prevents the sealing resin material from contacting the resistor layer 30. .
  • the height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47.
  • the size of the thermal print head 1 in the y direction can be reduced. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the height h2 of the first resin flow stopper 50 is lower than the height h1 of the sealing member 43.
  • the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the height h2 of the first resin flow stopper 50 is 250 ⁇ m or less.
  • the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the height h1 of the sealing member 43 is 300 ⁇ m or less.
  • the sealing member 43 can be prevented from contacting the print medium 47.
  • the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the viscosity of the sealing resin material is 65 Pa ⁇ s or less.
  • the height h1 of the sealing member 43 is reduced. Placing the drive circuit 35 closer to the resistor layer 30 may also prevent the sealing member 43 from contacting the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the first resin flow stopper 50 is a convex portion 50a formed on the main surface 11.
  • the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30.
  • the height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47.
  • the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the convex portion 50a includes a protrusion 51 formed on the main surface 11. Even if the viscosity of the sealing resin material is lowered to reduce the height h1 of the sealing member 43, the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30. The height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the protrusion 51 is made of low-temperature co-fired ceramic, high melting point metal, or glass mixed with Si powder.
  • the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30.
  • the height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47.
  • the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the thermal print head 1 of this embodiment further includes a connector 40 attached to the substrate 10 and a second resin flow stopper 55 that stops the flow of the sealing resin material.
  • the connector 40 is disposed on the side opposite to the resistor layer 30 with respect to the drive circuit 35 in a plan view of the main surface 11, and is electrically connected to the drive circuit 35 through the wiring layer 20.
  • the second resin flow stopper 55 is disposed between the drive circuit 35 and the connector 40 in a plan view of the main surface 11, and is in contact with the sealing member 43.
  • the second resin flow stopper 55 prevents the sealing resin material from contacting the connector 40.
  • the height h1 of the sealing member 43 can be reduced, the electrical connection function of the connector 40 can be secured, and even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be printed. Contacting the medium 47 may be prevented.
  • the size of the thermal print head 1 in the y direction can be reduced. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the wiring layer 20 includes a common wiring 21 and a plurality of individual wirings 25.
  • the common wiring 21 is electrically connected to the plurality of heat generating parts 31.
  • Each of the plurality of individual wirings 25 is electrically connected to a corresponding one of the plurality of heat generating parts 31.
  • the first resin flow stopper 50 prevents the sealing resin material from contacting the resistor layer 30. .
  • the height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47.
  • the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the thermal print head 1 of this embodiment further includes a glaze layer 15 that covers at least a portion of the main surface 11. Glaze layer 15 is arranged between substrate 10 and resistor layer 30 in the normal direction of main surface 11 .
  • the glaze layer 15 stores heat emitted from the plurality of heat generating parts 31 of the resistor layer 30.
  • the glaze layer 15 suppresses excessive transfer of heat emitted from the plurality of heat generating parts 31 of the resistor layer 30 to the substrate 10. Therefore, the print quality of the thermal print head 1 can be improved.
  • the thermal print head 1 according to the present embodiment has the same configuration as the thermal print head 1 according to the first embodiment, but differs from the thermal print head 1 according to the first embodiment mainly in the convex portions 50a and 55a.
  • the first resin flow stopper 50 is a convex portion 50a formed on the main surface 11.
  • Protective layer 33 includes protrusions 52 .
  • the protrusion 50a includes a protrusion 52 instead of the protrusion 51 of the first embodiment.
  • the convex portion 50a includes a glaze layer 15, a wiring layer 20 (specifically, a plurality of individual wirings 25), and a protective layer 33 including a protrusion 52.
  • the protrusion 52 stops the flow of the sealing resin material.
  • the protrusion 52 is in contact with the sealing member 43.
  • protrusion 52 is arranged between drive circuit 35 and resistor layer 30 .
  • the protrusion 52 is arranged between the drive circuit 35 and the protrusion 45 . Therefore, the protrusion 52 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 .
  • the protrusion 52 separates the sealing member 43 from the resistor layer 30 and the protrusion 45 .
  • the longitudinal direction of the protrusion 52 is the x direction
  • the transverse direction of the protrusion 52 is the y direction.
  • the second resin flow stopper 55 is a convex portion 55a formed on the main surface 11.
  • Protective layer 33 includes protrusions 57 .
  • the convex portion 55a includes a protrusion 57 instead of the protrusion 56 of the first embodiment.
  • the convex portion 55 a includes a glaze layer 15 , a wiring layer 20 (specifically, a plurality of lead wires 29 ), and a protective layer 33 including a protrusion 57 .
  • the protrusion 57 stops the flow of the sealing resin material.
  • the protrusion 57 is in contact with the sealing member 43.
  • the protrusion 57 is arranged between the drive circuit 35 and the connector 40. Therefore, the protrusion 57 prevents the sealing resin material from coming into contact with the connector 40.
  • the protrusion 57 separates the sealing member 43 from the connector 40 .
  • the longitudinal direction of the protrusion 57 is the x direction
  • the transverse direction of the protrusion 57 is the y direction.
  • a method for manufacturing the thermal print head 1 of this embodiment will be described with reference mainly to FIGS. 16 to 23.
  • the method for manufacturing the thermal print head 1 according to the present embodiment includes the same steps as the method for manufacturing the thermal print head 1 according to the first embodiment, but mainly in the method for forming the convex portions 55a, 55a.
  • the manufacturing method of the thermal print head 1 of the first embodiment is different from that of the first embodiment.
  • the method for manufacturing thermal print head 1 includes the steps of forming a glaze layer 15 covering at least a portion of main surface 11, and forming a wiring layer 20 on glaze layer 15. and forming a resistor layer 30 on the glaze layer 15 and the wiring layer 20.
  • the method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in this embodiment is the same as the method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in the first embodiment.
  • the method for manufacturing the thermal print head 1 includes a step of forming a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20.
  • a paste containing amorphous glass is applied onto the glaze layer 15, the plurality of heat generating parts 31, and a portion of the wiring layer 20 by, for example, screen printing.
  • the paste is fired.
  • the base layer 33a is formed as shown in FIGS. 16 and 17.
  • a portion of the wiring layer 20 to which the conductive wires 36 and 37 are bonded (for example, the terminal portion 28, etc.) is exposed from the base layer 33a.
  • a paste containing amorphous glass is applied onto a portion of the base layer 33a, for example, by screen printing. Then, the paste is fired.
  • protrusions 52 and 57 are formed on a portion of the base layer 33a.
  • the protrusions 52 and 57 are made of, for example, the same material as the base layer 33a. In this way, the protective layer 33 composed of the base layer 33a and the protrusions 52 and 57 is formed.
  • the method for manufacturing thermal print head 1 according to the present embodiment includes mounting drive circuit 35 on main surface 11, similar to the method for manufacturing thermal print head 1 according to Embodiment 1. and bonding the conductive wires 36 and 37.
  • the method for manufacturing thermal print head 1 includes a step of sealing drive circuit 35 with sealing member 43.
  • a sealing resin material is potted onto the drive circuit 35.
  • the protrusions 52 and 57 stop the flow of the sealing resin material. Therefore, the protrusion 52 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 .
  • the protrusion 57 prevents the sealing resin material from contacting the connector 40.
  • the sealing resin material remains in the area between the protrusions 52 and 57. Then, the sealing resin material is cured. In this way, the sealing member 43 is formed.
  • the protrusion 52 separates the sealing member 43 from the resistor layer 30 and the protrusion 45 .
  • the protrusion 57 separates the sealing member 43 from the connector 40 .
  • the method for manufacturing the thermal print head 1 according to the present embodiment includes the steps of attaching the connector 40 to the substrate 10 and attaching the heat sink 49 to the substrate 10. Be prepared. In this way, the thermal print head 1 of this embodiment shown in FIGS. 14 and 15 is obtained.
  • the thermal print head 1 of this embodiment has the following effects similar to the effects of the thermal print head 1 of the first embodiment.
  • the thermal print head 1 of this embodiment further includes a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20 and includes protrusions 52.
  • the convex portion 50a includes a protrusion 52.
  • the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30.
  • the height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47.
  • the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the thermal print head 1 according to the third embodiment will be described with reference to FIGS. 24 and 25.
  • the thermal print head 1 according to the present embodiment has the same configuration as the thermal print head 1 according to the second embodiment, but differs from the thermal print head 1 according to the second embodiment mainly in the convex portions 50a and 55a.
  • the first resin flow stopper 50 is a convex portion 50a formed on the main surface 11.
  • the thermal print head 1 further includes a protrusion 53 provided on the protective layer 33.
  • the protrusion 50a includes a protrusion 53 instead of the protrusion 52 of the second embodiment.
  • the convex portion 50a includes a glaze layer 15, a wiring layer 20 (specifically, a plurality of individual wirings 25), a protective layer 33, and a protrusion 53.
  • the protrusion 53 is made of a different material from the protective layer 33.
  • the protrusion 53 is made of, for example, LTCC ceramic, a high melting point metal, or glass mixed with Si powder.
  • the protrusion 53 stops the flow of the sealing resin material.
  • the protrusion 53 is in contact with the sealing member 43.
  • protrusion 53 is arranged between drive circuit 35 and resistor layer 30 .
  • the protrusion 53 is arranged between the drive circuit 35 and the protrusion 45 . Therefore, the protrusion 53 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 .
  • the protrusion 53 separates the sealing member 43 from the resistor layer 30 and the protrusion 45 .
  • the longitudinal direction of the protrusion 53 is the x direction
  • the transverse direction of the protrusion 53 is the y direction.
  • the second resin flow stopper 55 is a convex portion 55a formed on the main surface 11.
  • the thermal print head 1 further includes a protrusion 58 provided on the protective layer 33.
  • the convex portion 55a includes a protrusion 58 instead of the protrusion 57 of the second embodiment.
  • the convex portion 55a includes a glaze layer 15, a wiring layer 20 (specifically, a plurality of lead wires 29), a protective layer 33, and a protrusion 58.
  • the protrusion 58 is made of a different material from the protective layer 33.
  • the protrusion 58 is made of, for example, LTCC ceramic, high melting point metal, or glass mixed with Si powder.
  • the protrusion 58 stops the flow of the sealing resin material.
  • the protrusion 58 is in contact with the sealing member 43.
  • the protrusion 58 is arranged between the drive circuit 35 and the connector 40. Therefore, the protrusion 58 prevents the sealing resin material from contacting the connector 40.
  • Protrusion 58 separates sealing member 43 from connector 40 .
  • the longitudinal direction of the protrusion 58 is the x direction
  • the transverse direction of the protrusion 58 is the y direction.
  • a method for manufacturing the thermal print head 1 of this embodiment will be described with reference mainly to FIGS. 26 to 33.
  • the method for manufacturing the thermal print head 1 according to the present embodiment includes the same steps as the method for manufacturing the thermal print head 1 according to the second embodiment, but mainly in the method for forming the convex portions 50a and 55a.
  • the manufacturing method of the thermal print head 1 in No. 2 is different from that in No. 2.
  • the method for manufacturing thermal print head 1 includes the steps of forming a glaze layer 15 covering at least a portion of main surface 11, and forming a wiring layer 20 on glaze layer 15. and forming a resistor layer 30 on the glaze layer 15 and the wiring layer 20.
  • the method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in this embodiment is the same as the method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in the second embodiment.
  • the method for manufacturing the thermal print head 1 includes a step of forming a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20.
  • the method for forming the protective layer 33 in this embodiment is the same as the method for forming the protective layer 33 in the first embodiment.
  • the method for manufacturing thermal print head 1 includes a step of forming protrusions 53 and 58 on a portion of protective layer 33.
  • the protrusions 53 and 58 are made of, for example, LTCC ceramic, high melting point metal, or glass mixed with Si powder.
  • the protrusions 53 and 58 are made of LTCC ceramic
  • the protrusions 53 and 58 are formed by the same method as in the case where the protrusions 51 and 56 are made of LTCC ceramic in the first embodiment.
  • the protrusions 53 and 58 are made of a high melting point metal
  • the protrusions 53 and 58 are formed by the same method as in the case where the protrusions 51 and 56 are made of a high melting point metal in the first embodiment.
  • the protrusions 53 and 58 are formed of glass mixed with Si powder
  • the protrusions 53 and 58 are different from those in which the protrusions 51 and 56 are formed of glass mixed with Si powder in the first embodiment. It is formed by the same method as in the case of
  • the method for manufacturing the thermal print head 1 of the present embodiment includes mounting a drive circuit 35 on the main surface 11, similar to the method for manufacturing the thermal print head 1 of the second embodiment. and bonding the conductive wires 36 and 37.
  • the method for manufacturing thermal print head 1 includes a step of sealing drive circuit 35 with sealing member 43.
  • a sealing resin material is potted onto the drive circuit 35.
  • the protrusions 53 and 58 stop the flow of the sealing resin material.
  • the protrusion 53 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 .
  • the protrusion 58 prevents the sealing resin material from contacting the connector 40.
  • the sealing resin material remains in the area between the protrusions 53 and 58. Then, the sealing resin material is cured. In this way, the sealing member 43 is formed.
  • the protrusion 53 separates the sealing member 43 from the resistor layer 30 and the protrusion 45 .
  • Protrusion 58 separates sealing member 43 from connector 40 .
  • the method for manufacturing the thermal print head 1 according to the present embodiment includes the steps of attaching the connector 40 to the substrate 10 and attaching the heat sink 49 to the substrate 10. Be prepared. In this way, the thermal print head 1 of this embodiment shown in FIGS. 24 and 25 is obtained.
  • the thermal print head 1 of this embodiment has the following effects similar to the effects of the thermal print head 1 of the second embodiment.
  • the thermal print head 1 of the present embodiment further includes a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20, and a protrusion 53 provided on the protective layer 33.
  • the convex portion 50a includes a protrusion 53.
  • the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30.
  • the height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47.
  • the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the protrusion 53 is made of low-temperature co-fired ceramic, high melting point metal, or glass mixed with Si powder.
  • the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30.
  • the height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47.
  • the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • the thermal print head 1 according to the fourth embodiment will be described with reference to FIGS. 34 and 35.
  • the thermal print head 1 according to the present embodiment has the same configuration as the thermal print head 1 according to the second embodiment, but mainly the first resin flow stopper 50 and the second resin flow stopper 55 have the same structure as the thermal print head 1 according to the second embodiment. It is different from print head 1.
  • a recess 54 is formed in the protective layer 33 in place of the protrusion 52 of the second embodiment.
  • the first resin flow stopper 50 is a recess 54 .
  • a portion of the sealing member 43 is within the recess 54 .
  • the recess 54 stops the flow of the sealing resin material. Specifically, when the sealing resin material spreads over the protective layer 33 and flows into the recess 54, the spread of the sealing resin material stops at the recess 54 due to the surface tension of the sealing resin material.
  • the recess 54 is arranged between the drive circuit 35 and the resistor layer 30 .
  • the recess 54 is arranged between the drive circuit 35 and the protrusion 45 . Therefore, the recess 54 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 .
  • the sealing member 43 is separated from the resistor layer 30 and the protrusion 45 by the recess 54 .
  • the longitudinal direction of the recess 54 is the x direction
  • the lateral direction of the recess 54 is the y direction.
  • a recess 59 is formed in the protective layer 33 in place of the protrusion 57 of the second embodiment.
  • the second resin flow stopper 55 is a recess 59 .
  • a portion of the sealing member 43 is within the recess 59 .
  • the recess 59 stops the flow of the sealing resin material. Specifically, when the sealing resin material spreads over the protective layer 33 and flows into the recess 59, the spread of the sealing resin material stops at the recess 59 due to the surface tension of the sealing resin material.
  • recess 59 is arranged between drive circuit 35 and connector 40 . Therefore, the recess 59 prevents the sealing resin material from coming into contact with the connector 40.
  • the recess 59 separates the sealing member 43 from the connector 40 .
  • the longitudinal direction of the recess 59 is the x direction
  • the lateral direction of the recess 59 is the y direction.
  • a method of manufacturing the thermal print head 1 of this embodiment will be described with reference mainly to FIGS. 36 to 43.
  • the method for manufacturing the thermal print head 1 according to the present embodiment includes the same steps as the method for manufacturing the thermal print head 1 according to the second embodiment, but mainly includes the first resin flow stopper 50 and the second resin flow stopper.
  • the method of forming 55 is different from the method of manufacturing the thermal print head 1 of the second embodiment.
  • the method for manufacturing thermal print head 1 includes the steps of forming a glaze layer 15 covering at least a portion of main surface 11, and forming a wiring layer 20 on glaze layer 15. and forming a resistor layer 30 on the glaze layer 15 and the wiring layer 20.
  • the method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in this embodiment is the same as the method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in the second embodiment.
  • the method for manufacturing the thermal print head 1 includes a step of forming a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20.
  • a paste containing amorphous glass is applied onto the glaze layer 15, the plurality of heat generating parts 31, and a portion of the wiring layer 20 by, for example, screen printing.
  • the paste is fired.
  • a base layer 33a is formed.
  • a portion of the wiring layer 20 to which the conductive wires 36 and 37 are bonded (for example, the terminal portion 28, etc.) is exposed from the base layer 33a.
  • a paste containing amorphous glass is applied onto a portion of the base layer 33a, for example by screen printing.
  • the paste is fired.
  • recesses 54 and 59 are formed in the remaining portions of the base layer 33a to which the paste is not applied. In this way, the protective layer 33 provided with the recesses 54 and 59 is formed.
  • the method for manufacturing thermal print head 1 according to the present embodiment includes mounting drive circuit 35 on main surface 11, similar to the method for manufacturing thermal print head 1 according to Embodiment 2. and bonding the conductive wires 36 and 37.
  • the method for manufacturing thermal print head 1 includes a step of sealing drive circuit 35 with sealing member 43.
  • a sealing resin material is potted onto the drive circuit 35.
  • the recesses 54 and 59 stop the flow of the sealing resin material.
  • the recess 54 prevents the sealing resin material from contacting the resistor layer 30 and the protrusion 45 .
  • the recess 59 prevents the sealing resin material from contacting the connector 40.
  • the sealing resin material remains in the area between recess 54 and recess 59.
  • the sealing resin material is cured. In this way, the sealing member 43 is formed.
  • the sealing member 43 is separated from the resistor layer 30 and the protrusion 45 by the recess 54 .
  • the recess 59 separates the sealing member 43 from the connector 40 .
  • the method for manufacturing the thermal print head 1 according to the present embodiment includes the steps of attaching the connector 40 to the substrate 10 and attaching the heat sink 49 to the substrate 10. Be prepared. In this way, the thermal print head 1 of this embodiment shown in FIGS. 34 and 35 is obtained.
  • the thermal print head 1 of this embodiment has the following effects similar to the effects of the thermal print head 1 of the second embodiment.
  • the thermal print head 1 of this embodiment further includes a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20.
  • the first resin flow stopper 50 is a recess 54 formed in the protective layer 33.
  • the recess 54 prevents the sealing resin material from contacting the resistor layer 30.
  • the height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47.
  • the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
  • a substrate having a main surface; a wiring layer disposed on the main surface; a resistor layer; a drive circuit mounted on the main surface and electrically connected to the wiring layer; a sealing member formed by curing a sealing resin material and sealing the drive circuit; a first resin flow stopper that stops the flow of the sealing resin material;
  • the resistor layer is arranged on the wiring layer and includes a plurality of heat generating parts, The wiring layer is electrically connected to the plurality of heat generating parts and is in contact with the resistor layer,
  • the first resin flow stopper is disposed between the drive circuit and the resistor layer in a plan view of the main surface, and is in contact with the sealing member.
  • thermo print head according to any one of appendices 1 to 3, wherein the height of the sealing member is 300 ⁇ m or less.
  • Appendix 11 further comprising a protective layer covering the plurality of heat generating parts and the wiring layer,
  • the thermal print head according to any one of appendices 1 to 5, wherein the first resin flow stopper is a recess formed in the protective layer.
  • (Appendix 12) a connector attached to the board; further comprising a second resin flow stopper that stops the flow of the sealing resin material,
  • the connector is disposed on a side opposite to the resistor layer with respect to the drive circuit in the plan view of the main surface, and is electrically connected to the drive circuit through the wiring layer.
  • the second resin flow stopper is located between the drive circuit and the connector in the plan view of the main surface, and is in contact with the sealing member, any one of appendices 1 to 11. Thermal print head described in Crab.
  • the wiring layer includes a common wiring and a plurality of individual wirings, The common wiring is electrically connected to the plurality of heat generating parts, The thermal print head according to any one of appendices 1 to 12, wherein each of the plurality of individual wirings is electrically connected to a corresponding one of the plurality of heat generating parts.
  • Appendix 14 further comprising a glaze layer covering at least a portion of the main surface,
  • the thermal print head according to any one of appendices 1 to 13, wherein the glaze layer is disposed between the substrate and the resistor layer in the normal direction of the main surface.
  • Embodiment 1 to Embodiment 4 disclosed this time should be considered to be illustrative in all respects and not restrictive.
  • the scope of the present disclosure is indicated by the claims rather than the above description, and is intended to include meanings equivalent to the claims and all changes within the range.

Abstract

A thermal printhead (1) comprises a substrate (10), a resistor layer (30), a drive circuit (35), a sealing member (43), and a first resin flow stopper (50). The resistor layer (30) includes a plurality of heat generation units (31). The sealing member (43) is formed by curing a sealing resin material and seals the drive circuit (35). The first resin flow stopper (50) stops the flow of the sealing resin material. The first resin flow stopper (50) is disposed between the drive circuit (35) and the resistor layer (30) and is in contact with the sealing member (43).

Description

サーマルプリントヘッドthermal print head
 本開示は、サーマルプリントヘッドに関する。 The present disclosure relates to a thermal print head.
 特開2011-240641号公報(特許文献1)は、基板と、発熱抵抗体と、共通電極と、複数の個別電極とを備えるサーマルプリントヘッドを開示している。 JP-A-2011-240641 (Patent Document 1) discloses a thermal print head that includes a substrate, a heating resistor, a common electrode, and a plurality of individual electrodes.
特開2011-240641号公報Japanese Patent Application Publication No. 2011-240641
 本開示の目的は、駆動回路を封止する封止部材が印刷媒体に接触することを防止し得るとともに、小型化され得るサーマルプリントヘッドを提供することである。 An object of the present disclosure is to provide a thermal print head that can prevent a sealing member that seals a drive circuit from coming into contact with a printing medium and can be miniaturized.
 本開示のサーマルプリントヘッドは、主面を有する基板と、主面上に配置されている配線層と、抵抗体層と、駆動回路と、封止部材と、第1樹脂流れ止めとを備える。抵抗体層は、配線層上に配置されており、かつ、複数の発熱部を含む。配線層は、複数の発熱部に導通し、かつ、抵抗体層に接触している。駆動回路は、主面上に実装されており、かつ、配線層に電気的に接続されている。封止部材は、封止樹脂材料を硬化することによって形成され、かつ、駆動回路を封止する。第1樹脂流れ止めは、封止樹脂材料の流れを止める。第1樹脂流れ止めは、主面の平面視において駆動回路と抵抗体層との間に配置されており、かつ、封止部材に接触している。 The thermal print head of the present disclosure includes a substrate having a main surface, a wiring layer disposed on the main surface, a resistor layer, a drive circuit, a sealing member, and a first resin flow stopper. The resistor layer is arranged on the wiring layer and includes a plurality of heat generating parts. The wiring layer is electrically connected to the plurality of heat generating parts and is in contact with the resistor layer. The drive circuit is mounted on the main surface and electrically connected to the wiring layer. The sealing member is formed by curing a sealing resin material and seals the drive circuit. The first resin flow stopper stops the flow of the sealing resin material. The first resin flow stopper is disposed between the drive circuit and the resistor layer in a plan view of the main surface, and is in contact with the sealing member.
 本開示のサーマルプリントヘッドによれば、駆動回路を封止する封止部材が印刷媒体に接触することを防止し得るとともに、サーマルプリントヘッドが小型化され得る。 According to the thermal print head of the present disclosure, the sealing member that seals the drive circuit can be prevented from contacting the print medium, and the thermal print head can be downsized.
図1は、実施の形態1のサーマルプリントヘッドの概略断面図である。FIG. 1 is a schematic cross-sectional view of a thermal print head according to a first embodiment. 図2は、実施の形態1のサーマルプリントヘッドの概略平面図である。FIG. 2 is a schematic plan view of the thermal print head according to the first embodiment. 図3は、実施の形態1のサーマルプリントヘッドの概略部分拡大平面図である。FIG. 3 is a schematic partially enlarged plan view of the thermal print head according to the first embodiment. 図4は、実施の形態1のサーマルプリントヘッドの概略部分拡大断面図である。FIG. 4 is a schematic partially enlarged cross-sectional view of the thermal print head according to the first embodiment. 図5は、実施の形態1のサーマルプリントヘッドの概略部分拡大断面図である。FIG. 5 is a schematic partial enlarged cross-sectional view of the thermal print head according to the first embodiment. 図6は、実施の形態1のサーマルプリントヘッドの製造方法の一工程を示す概略部分拡大断面図である。FIG. 6 is a schematic partial enlarged sectional view showing one step of the method for manufacturing the thermal print head according to the first embodiment. 図7は、実施の形態1のサーマルプリントヘッドの製造方法の一工程を示す概略部分拡大断面図である。FIG. 7 is a schematic partially enlarged cross-sectional view showing one step of the method for manufacturing the thermal print head according to the first embodiment. 図8は、実施の形態1のサーマルプリントヘッドの製造方法における、図6及び図7に示される工程の次工程を示す概略部分拡大断面図である。FIG. 8 is a schematic partially enlarged cross-sectional view showing the next step after the steps shown in FIGS. 6 and 7 in the method for manufacturing the thermal print head according to the first embodiment. 図9は、実施の形態1のサーマルプリントヘッドの製造方法における、図6及び図7に示される工程の次工程を示す概略部分拡大断面図である。FIG. 9 is a schematic partially enlarged cross-sectional view showing the next step after the steps shown in FIGS. 6 and 7 in the method for manufacturing a thermal print head according to the first embodiment. 図10は、実施の形態1のサーマルプリントヘッドの製造方法における、図8及び図9に示される工程の次工程を示す概略部分拡大断面図である。FIG. 10 is a schematic partially enlarged sectional view showing the next step after the steps shown in FIGS. 8 and 9 in the method for manufacturing the thermal print head of the first embodiment. 図11は、実施の形態1のサーマルプリントヘッドの製造方法における、図8及び図9に示される工程の次工程を示す概略部分拡大断面図である。FIG. 11 is a schematic partially enlarged cross-sectional view showing a step subsequent to the steps shown in FIGS. 8 and 9 in the method for manufacturing a thermal print head according to the first embodiment. 図12は、実施の形態1のサーマルプリントヘッドの製造方法における、図10及び図11に示される工程の次工程を示す概略部分拡大断面図である。FIG. 12 is a schematic partial enlarged cross-sectional view showing a step subsequent to the step shown in FIGS. 10 and 11 in the method for manufacturing a thermal print head according to the first embodiment. 図13は、実施の形態1のサーマルプリントヘッドの製造方法における、図10及び図11に示される工程の次工程を示す概略部分拡大断面図である。FIG. 13 is a schematic partial enlarged cross-sectional view showing a step subsequent to the step shown in FIGS. 10 and 11 in the method for manufacturing a thermal print head according to the first embodiment. 図14は、実施の形態2のサーマルプリントヘッドの概略部分拡大断面図である。FIG. 14 is a schematic partial enlarged cross-sectional view of the thermal print head according to the second embodiment. 図15は、実施の形態2のサーマルプリントヘッドの概略部分拡大断面図である。FIG. 15 is a schematic partial enlarged cross-sectional view of the thermal print head according to the second embodiment. 図16は、実施の形態2のサーマルプリントヘッドの製造方法の一工程を示す概略部分拡大断面図である。FIG. 16 is a schematic partial enlarged sectional view showing one step of the method for manufacturing a thermal print head according to the second embodiment. 図17は、実施の形態2のサーマルプリントヘッドの製造方法の一工程を示す概略部分拡大断面図である。FIG. 17 is a schematic partially enlarged sectional view showing one step of the method for manufacturing a thermal print head according to the second embodiment. 図18は、実施の形態2のサーマルプリントヘッドの製造方法における、図16及び図17に示される工程の次工程を示す概略部分拡大断面図である。FIG. 18 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 16 and 17 in the method for manufacturing a thermal print head according to the second embodiment. 図19は、実施の形態2のサーマルプリントヘッドの製造方法における、図16及び図17に示される工程の次工程を示す概略部分拡大断面図である。FIG. 19 is a schematic partially enlarged sectional view showing the next step after the steps shown in FIGS. 16 and 17 in the method for manufacturing a thermal print head according to the second embodiment. 図20は、実施の形態2のサーマルプリントヘッドの製造方法における、図18及び図19に示される工程の次工程を示す概略部分拡大断面図である。FIG. 20 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 18 and 19 in the method for manufacturing a thermal print head according to the second embodiment. 図21は、実施の形態2のサーマルプリントヘッドの製造方法における、図18及び図19に示される工程の次工程を示す概略部分拡大断面図である。FIG. 21 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 18 and 19 in the method for manufacturing a thermal print head according to the second embodiment. 図22は、実施の形態2のサーマルプリントヘッドの製造方法における、図20及び図21に示される工程の次工程を示す概略部分拡大断面図である。FIG. 22 is a schematic partial enlarged cross-sectional view showing the next step after the steps shown in FIGS. 20 and 21 in the method for manufacturing a thermal print head according to the second embodiment. 図23は、実施の形態2のサーマルプリントヘッドの製造方法における、図20及び図21に示される工程の次工程を示す概略部分拡大断面図である。FIG. 23 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 20 and 21 in the method for manufacturing a thermal print head according to the second embodiment. 図24は、実施の形態3のサーマルプリントヘッドの概略部分拡大断面図である。FIG. 24 is a schematic partially enlarged cross-sectional view of the thermal print head according to the third embodiment. 図25は、実施の形態3のサーマルプリントヘッドの概略部分拡大断面図である。FIG. 25 is a schematic partially enlarged cross-sectional view of the thermal print head according to the third embodiment. 図26は、実施の形態3のサーマルプリントヘッドの製造方法の一工程を示す概略部分拡大断面図である。FIG. 26 is a schematic partially enlarged cross-sectional view showing one step of the method for manufacturing a thermal print head according to the third embodiment. 図27は、実施の形態3のサーマルプリントヘッドの製造方法の一工程を示す概略部分拡大断面図である。FIG. 27 is a schematic partial enlarged cross-sectional view showing one step of the method for manufacturing a thermal print head according to the third embodiment. 図28は、実施の形態3のサーマルプリントヘッドの製造方法における、図26及び図27に示される工程の次工程を示す概略部分拡大断面図である。FIG. 28 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 26 and 27 in the method for manufacturing a thermal print head according to the third embodiment. 図29は、実施の形態3のサーマルプリントヘッドの製造方法における、図26及び図27に示される工程の次工程を示す概略部分拡大断面図である。FIG. 29 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 26 and 27 in the method for manufacturing a thermal print head according to the third embodiment. 図30は、実施の形態3のサーマルプリントヘッドの製造方法における、図28及び図29に示される工程の次工程を示す概略部分拡大断面図である。FIG. 30 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 28 and 29 in the method for manufacturing a thermal print head according to the third embodiment. 図31は、実施の形態3のサーマルプリントヘッドの製造方法における、図28及び図29に示される工程の次工程を示す概略部分拡大断面図である。FIG. 31 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 28 and 29 in the method for manufacturing a thermal print head according to the third embodiment. 図32は、実施の形態3のサーマルプリントヘッドの製造方法における、図30及び図31に示される工程の次工程を示す概略部分拡大断面図である。FIG. 32 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 30 and 31 in the method for manufacturing a thermal print head according to the third embodiment. 図33は、実施の形態3のサーマルプリントヘッドの製造方法における、図30及び図31に示される工程の次工程を示す概略部分拡大断面図である。FIG. 33 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 30 and 31 in the method for manufacturing a thermal print head according to the third embodiment. 図34は、実施の形態4のサーマルプリントヘッドの概略部分拡大断面図である。FIG. 34 is a schematic partially enlarged cross-sectional view of the thermal print head according to the fourth embodiment. 図35は、実施の形態4のサーマルプリントヘッドの概略部分拡大断面図である。FIG. 35 is a schematic partially enlarged cross-sectional view of the thermal print head according to the fourth embodiment. 図36は、実施の形態4のサーマルプリントヘッドの製造方法の一工程を示す概略部分拡大断面図である。FIG. 36 is a schematic partial enlarged sectional view showing one step of the method for manufacturing a thermal print head according to the fourth embodiment. 図37は、実施の形態4のサーマルプリントヘッドの製造方法の一工程を示す概略部分拡大断面図である。FIG. 37 is a schematic partial enlarged sectional view showing one step of the method for manufacturing a thermal print head according to the fourth embodiment. 図38は、実施の形態4のサーマルプリントヘッドの製造方法における、図36及び図37に示される工程の次工程を示す概略部分拡大断面図である。FIG. 38 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 36 and 37 in the method for manufacturing a thermal print head according to the fourth embodiment. 図39は、実施の形態4のサーマルプリントヘッドの製造方法における、図36及び図37に示される工程の次工程を示す概略部分拡大断面図である。FIG. 39 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 36 and 37 in the method for manufacturing a thermal print head according to the fourth embodiment. 図40は、実施の形態4のサーマルプリントヘッドの製造方法における、図38及び図39に示される工程の次工程を示す概略部分拡大断面図である。FIG. 40 is a schematic partially enlarged sectional view showing the next step after the steps shown in FIGS. 38 and 39 in the method for manufacturing a thermal print head according to the fourth embodiment. 図41は、実施の形態4のサーマルプリントヘッドの製造方法における、図38及び図39に示される工程の次工程を示す概略部分拡大断面図である。FIG. 41 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 38 and 39 in the method for manufacturing a thermal print head according to the fourth embodiment. 図42は、実施の形態4のサーマルプリントヘッドの製造方法における、図40及び図41に示される工程の次工程を示す概略部分拡大断面図である。FIG. 42 is a schematic partially enlarged sectional view showing the next step after the steps shown in FIGS. 40 and 41 in the method for manufacturing a thermal print head according to the fourth embodiment. 図43は、実施の形態4のサーマルプリントヘッドの製造方法における、図40及び図41に示される工程の次工程を示す概略部分拡大断面図である。FIG. 43 is a schematic partial enlarged sectional view showing the next step after the steps shown in FIGS. 40 and 41 in the method for manufacturing a thermal print head according to the fourth embodiment.
 図面に基づいて本開示の実施の形態の詳細について説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。以下に記載する実施の形態の少なくとも一部の構成を任意に組み合わせてもよい。 Details of embodiments of the present disclosure will be described based on the drawings. In the following drawings, the same or corresponding parts are given the same reference numerals, and the description thereof will not be repeated. At least some of the configurations of the embodiments described below may be combined arbitrarily.
 (実施の形態1)
 図1から図5を参照して、実施の形態1のサーマルプリントヘッド1を説明する。サーマルプリントヘッド1は、複数の発熱部31(図3を参照)を選択的に発熱させることによって、感熱紙などの印刷媒体47に印字を施す電子デバイスである。サーマルプリントヘッド1は、基板10と、グレーズ層15と、配線層20と、抵抗体層30と、保護層33と、駆動回路35と、導電ワイヤ36,37と、コネクタ40と、封止部材43と、ヒートシンク49と、第1樹脂流れ止め50と、第2樹脂流れ止め55とを主に備える。本実施の形態では、第1樹脂流れ止め50は突起51を含み、第2樹脂流れ止め55は突起56を含む。
(Embodiment 1)
A thermal print head 1 according to a first embodiment will be described with reference to FIGS. 1 to 5. The thermal print head 1 is an electronic device that prints on a print medium 47 such as thermal paper by selectively generating heat in a plurality of heat generating units 31 (see FIG. 3). The thermal print head 1 includes a substrate 10, a glaze layer 15, a wiring layer 20, a resistor layer 30, a protective layer 33, a drive circuit 35, conductive wires 36 and 37, a connector 40, and a sealing member. 43, a heat sink 49, a first resin flow stopper 50, and a second resin flow stopper 55. In this embodiment, the first resin flow stopper 50 includes a protrusion 51 and the second resin flow stopper 55 includes a protrusion 56.
 図1から図5を参照して、基板10は、主面11と、主面11とは反対側の裏面12とを有する。主面11と裏面12とは、各々、x方向と、x方向に垂直なy方向とに延在している。x方向は、基板10の長手方向であり、サーマルプリントヘッド1の主走査方向である。y方向は、基板10の短手方向であり、サーマルプリントヘッド1の副走査方向である。z方向は、基板10の厚さ方向である。主面11の法線方向は、x方向及びy方向に垂直なz方向である。主面11は、+z方向を向いている。裏面12は、z方向において、主面11に対向している。裏面12は、-z方向を向いている。 Referring to FIGS. 1 to 5, the substrate 10 has a main surface 11 and a back surface 12 opposite to the main surface 11. The main surface 11 and the back surface 12 each extend in the x direction and the y direction perpendicular to the x direction. The x direction is the longitudinal direction of the substrate 10 and the main scanning direction of the thermal print head 1. The y direction is the lateral direction of the substrate 10 and the sub-scanning direction of the thermal print head 1. The z direction is the thickness direction of the substrate 10. The normal direction of the main surface 11 is the z direction perpendicular to the x direction and the y direction. The main surface 11 faces the +z direction. The back surface 12 faces the main surface 11 in the z direction. The back surface 12 faces the -z direction.
 基板10は、例えば、アルミナのようなセラミック基板、または、ソーダ石灰ガラス基板、ホウケイ酸ガラス基板もしくは石英ガラス基板のようなガラス基板である。基板10は、電気絶縁性を有している。 The substrate 10 is, for example, a ceramic substrate such as alumina, or a glass substrate such as a soda lime glass substrate, a borosilicate glass substrate, or a quartz glass substrate. The substrate 10 has electrical insulation properties.
 図2から図4を参照して、突起51は、主面11上に配置されている。主面11の平面視において、突起51は、抵抗体層30と駆動回路35との間に配置されている。主面11の平面視において、突起51は、抵抗体層30と複数の個別配線25の端子部28との間に配置されている。主面11の平面視において、突起51の長手方向はx方向であり、突起51の短手方向はy方向である。 Referring to FIGS. 2 to 4, the protrusion 51 is arranged on the main surface 11. In plan view of main surface 11 , protrusion 51 is arranged between resistor layer 30 and drive circuit 35 . In a plan view of the main surface 11 , the protrusion 51 is arranged between the resistor layer 30 and the terminal portions 28 of the plurality of individual wirings 25 . In a plan view of the main surface 11, the longitudinal direction of the protrusion 51 is the x direction, and the transverse direction of the protrusion 51 is the y direction.
 図2及び図5を参照して、突起56は、主面11上に配置されている。主面11の平面視において、突起56は、駆動回路35とコネクタ40との間に配置されている。主面11の平面視において、突起56の長手方向はx方向であり、突起56の短手方向はy方向である。 Referring to FIGS. 2 and 5, the protrusion 56 is arranged on the main surface 11. In plan view of the main surface 11, the protrusion 56 is arranged between the drive circuit 35 and the connector 40. In a plan view of the main surface 11, the longitudinal direction of the protrusion 56 is the x direction, and the transverse direction of the protrusion 56 is the y direction.
 突起51,56は、例えば、低温同時焼成セラミック(LTCCセラミック)、高融点金属またはシリコン(Si)粉体が混合されたガラスで形成されている。LTCCセラミックは、アルミナのようなセラミック粉末とガラス粉末とを含むLTCCスラリーを焼成することによって得られるセラミック材料である。高融点金属は、例えば、タングステン(W)、タンタル(Ta)、モリブデン(Mo)またはニオブ(Nb)である。 The protrusions 51 and 56 are made of, for example, low-temperature co-fired ceramic (LTCC ceramic), high melting point metal, or glass mixed with silicon (Si) powder. LTCC ceramic is a ceramic material obtained by firing an LTCC slurry containing ceramic powder such as alumina and glass powder. The high melting point metal is, for example, tungsten (W), tantalum (Ta), molybdenum (Mo) or niobium (Nb).
 図3から図5を参照して、グレーズ層15は、主面11の少なくとも一部及び突起51,56上に配置されており、主面11の少なくとも一部と突起51,56とを覆っている。主面11の法線方向において、グレーズ層15は、基板10と抵抗体層30との間に配置されている。グレーズ層15は、主面11の全体を覆ってもよい。グレーズ層15は、例えば、SiO-BaO-Al-SnO-ZnO系ガラスのような非晶質ガラスを含む材料で形成されている。 Referring to FIGS. 3 to 5, glaze layer 15 is disposed on at least a portion of main surface 11 and protrusions 51, 56, and covers at least a portion of main surface 11 and protrusions 51, 56. There is. Glaze layer 15 is arranged between substrate 10 and resistor layer 30 in the normal direction of main surface 11 . Glaze layer 15 may cover the entire main surface 11 . The glaze layer 15 is made of, for example, a material containing amorphous glass such as SiO 2 -BaO-Al 2 O 3 -SnO-ZnO glass.
 図2から図5を参照して、配線層20は、主面11上に配置されている。具体的には、配線層20は、グレーズ層15上に配置されている。配線層20は、抵抗体層30の複数の発熱部31に通電するための導電経路を構成している。配線層20は、複数の発熱部31に導通し、かつ、抵抗体層30に接触している。配線層20は、例えば、金(Au)ペーストのような導電材料で形成されている。配線層20の厚さは、例えば、0.6μm以上1.2μm以下である。 Referring to FIGS. 2 to 5, wiring layer 20 is arranged on main surface 11. Specifically, the wiring layer 20 is arranged on the glaze layer 15. The wiring layer 20 constitutes a conductive path for supplying electricity to the plurality of heat generating parts 31 of the resistor layer 30. The wiring layer 20 is electrically connected to the plurality of heat generating parts 31 and is in contact with the resistor layer 30 . The wiring layer 20 is made of a conductive material such as gold (Au) paste, for example. The thickness of the wiring layer 20 is, for example, 0.6 μm or more and 1.2 μm or less.
 配線層20は、共通配線21と、複数の個別配線25と、複数の引出配線29とを含む。複数の個別配線25は、共通配線21と複数の引出配線29とから離れている。複数の発熱部31を選択的に発熱させるために、共通配線21から複数の発熱部31を経由して複数の個別配線25に向けて電流が流れる。 The wiring layer 20 includes a common wiring 21, a plurality of individual wirings 25, and a plurality of lead wirings 29. The plurality of individual wirings 25 are separated from the common wiring 21 and the plurality of lead wirings 29. In order to selectively cause the plurality of heat generating parts 31 to generate heat, current flows from the common wiring 21 to the plurality of individual wirings 25 via the plurality of heat generating parts 31.
 共通配線21は、複数の発熱部31に導通している。具体的には、図3及び図4に示されるように、共通配線21は、基部22と、複数の延出部23とを含む。主面11の平面視において、基部22は、抵抗体層30に対して、y方向の一方側(+y側)に配置されている。基部22の長手方向はx方向であり、基部22の短手方向はy方向である。基部22は、y方向において、抵抗体層30から離れている。複数の延出部23は、基部22から抵抗体層30に向けて-y方向に延びている。複数の延出部23は、x方向に沿って等間隔に配列されている。 The common wiring 21 is electrically connected to the plurality of heat generating parts 31. Specifically, as shown in FIGS. 3 and 4, the common wiring 21 includes a base 22 and a plurality of extensions 23. In a plan view of the main surface 11, the base portion 22 is disposed on one side (+y side) in the y direction with respect to the resistor layer 30. The longitudinal direction of the base 22 is the x direction, and the lateral direction of the base 22 is the y direction. The base 22 is spaced apart from the resistor layer 30 in the y direction. The plurality of extending portions 23 extend from the base portion 22 toward the resistor layer 30 in the −y direction. The plurality of extension parts 23 are arranged at equal intervals along the x direction.
 複数の個別配線25の各々は、複数の発熱部31のうち対応するものに導通している。具体的には、図3及び図4に示されるように、複数の個別配線25は、x方向に沿って配列されている。複数の個別配線25の各々は、端子部28と、延出部26とを含む。 Each of the plurality of individual wirings 25 is electrically connected to a corresponding one of the plurality of heat generating parts 31. Specifically, as shown in FIGS. 3 and 4, the plurality of individual wirings 25 are arranged along the x direction. Each of the plurality of individual wirings 25 includes a terminal portion 28 and an extension portion 26.
 主面11の平面視において、端子部28は、抵抗体層30に対して、y方向の他方側(-y側)に配置されている。端子部28は、y方向において、抵抗体層30に対して、共通配線21の基部22とは反対側に配置されている。図1及び図3に示されるように、導電ワイヤ36は、端子部28と駆動回路35とにボンディングされている。端子部28は、導電ワイヤ36を通して、駆動回路35に電気的に接続されている。 In a plan view of the main surface 11, the terminal portion 28 is arranged on the other side (−y side) of the resistor layer 30 in the y direction. The terminal portion 28 is arranged on the side opposite to the base portion 22 of the common wiring 21 with respect to the resistor layer 30 in the y direction. As shown in FIGS. 1 and 3, the conductive wire 36 is bonded to the terminal portion 28 and the drive circuit 35. The terminal portion 28 is electrically connected to the drive circuit 35 through a conductive wire 36.
 延出部26は、端子部28に接続されている。延出部26のうち端子部28とは反対側の端部27は、抵抗体層30に接触している。主面11の平面視において、延出部26の端部27は、抵抗体層30と重なっている。 The extending portion 26 is connected to the terminal portion 28. An end portion 27 of the extending portion 26 on the opposite side from the terminal portion 28 is in contact with the resistor layer 30 . In a plan view of the main surface 11 , the end portion 27 of the extension portion 26 overlaps with the resistor layer 30 .
 図2及び図5に示されるように、主面11の平面視において、複数の引出配線29は、駆動回路35に対して、y方向の他方側(-y側)に配置されている。主面11の平面視において、複数の引出配線29は、駆動回路35に対して、抵抗体層30及び複数の個別配線25とは反対側に配置されている。導電ワイヤ37は、駆動回路35と複数の引出配線29とにボンディングされている。複数の引出配線29は、導電ワイヤ37を通して、駆動回路35に電気的に接続されている。複数の引出配線29は、コネクタ40に接続されている。 As shown in FIGS. 2 and 5, in a plan view of the main surface 11, the plurality of lead wires 29 are arranged on the other side (−y side) of the drive circuit 35 in the y direction. In a plan view of the main surface 11 , the plurality of lead wires 29 are arranged on the opposite side of the drive circuit 35 from the resistor layer 30 and the plurality of individual wires 25 . The conductive wire 37 is bonded to the drive circuit 35 and the plurality of lead wires 29. The plurality of lead wires 29 are electrically connected to the drive circuit 35 through conductive wires 37. The plurality of lead wires 29 are connected to the connector 40.
 図2から図4に示されるように、抵抗体層30は、グレーズ層15及び配線層20上に配置されている。主面11の法線方向(z方向)において、抵抗体層30は、グレーズ層15に対して、基板10とは反対側に配置されている。抵抗体層30は、グレーズ層15に接触している。主面11の平面視において、抵抗体層30の長手方向はx方向であり、抵抗体層30の短手方向はy方向である。主面11の平面視において、抵抗体層30は、共通配線21の複数の延出部23と、複数の個別配線25の延出部26の端部27とに交差している。抵抗体層30は、共通配線21の複数の延出部23の各々の一部と、複数の個別配線25の各々の延出部26の端部27の一部とを覆っている。抵抗体層30は、共通配線21の複数の延出部23と、複数の個別配線25の延出部26の端部27とを跨いでいる。 As shown in FIGS. 2 to 4, the resistor layer 30 is arranged on the glaze layer 15 and the wiring layer 20. In the normal direction (z direction) of main surface 11 , resistor layer 30 is disposed on the opposite side of substrate 10 with respect to glaze layer 15 . The resistor layer 30 is in contact with the glaze layer 15. In a plan view of the main surface 11, the longitudinal direction of the resistor layer 30 is the x direction, and the transversal direction of the resistor layer 30 is the y direction. In a plan view of the main surface 11 , the resistor layer 30 intersects the plurality of extensions 23 of the common wiring 21 and the ends 27 of the extensions 26 of the plurality of individual wirings 25 . The resistor layer 30 covers a part of each of the plurality of extensions 23 of the common wiring 21 and a part of the end 27 of each of the extensions 26 of the plurality of individual wirings 25. The resistor layer 30 straddles the plurality of extensions 23 of the common wiring 21 and the ends 27 of the extensions 26 of the plurality of individual wirings 25.
 抵抗体層30は、配線層20よりも高い電気抵抗率を有する材料で形成されている。抵抗体層30の材料は、例えば、酸化ルテニウム(RuO)粒子とガラスフリットとを含む導電性ペーストである。抵抗体層30の厚さは、例えば、6μm以上10μm以下である。 The resistor layer 30 is made of a material having higher electrical resistivity than the wiring layer 20. The material of the resistor layer 30 is, for example, a conductive paste containing ruthenium oxide (RuO 2 ) particles and glass frit. The thickness of the resistor layer 30 is, for example, 6 μm or more and 10 μm or less.
 抵抗体層30は、複数の発熱部31を含む。抵抗体層30のうち、共通配線21の複数の延出部26のいずれかを覆う部分と、x方向において当該部分の隣に位置する複数の個別配線25の端部27のいずれかを覆う部分とにより挟まれた領域が、複数の発熱部31のいずれかである。複数の発熱部31は、グレーズ層15に接触している。複数の発熱部31は、x方向に沿って配列されている。 The resistor layer 30 includes a plurality of heat generating parts 31. A portion of the resistor layer 30 that covers any one of the plurality of extensions 26 of the common wiring 21 and a portion that covers any one of the ends 27 of the plurality of individual wirings 25 located next to the portion in the x direction. The region sandwiched between is one of the plurality of heat generating parts 31. The plurality of heat generating parts 31 are in contact with the glaze layer 15. The plurality of heat generating parts 31 are arranged along the x direction.
 図4及び図5に示されるように、保護層33は、グレーズ層15と、配線層20、複数の発熱部31とを覆っている。保護層33は、グレーズ層15と、配線層20、複数の発熱部31とに接触している。配線層20のうち導電ワイヤ36,37がボンディングされる部分(例えば、端子部28など)は、保護層33から露出している。保護層33は、例えば、グレーズ層15と同様に、非晶質ガラスを含む材料で形成されている。 As shown in FIGS. 4 and 5, the protective layer 33 covers the glaze layer 15, the wiring layer 20, and the plurality of heat generating parts 31. The protective layer 33 is in contact with the glaze layer 15, the wiring layer 20, and the plurality of heat generating parts 31. Portions of the wiring layer 20 to which the conductive wires 36 and 37 are bonded (for example, the terminal portion 28 and the like) are exposed from the protective layer 33. The protective layer 33 is made of, for example, a material containing amorphous glass, similar to the glaze layer 15.
 駆動回路35は、主面11上に実装されている。例えば、駆動回路35は、接着剤などの接合部材(図示せず)を用いて、グレーズ層15に固定されている。駆動回路35は、基板10から分離された配線基板(図示せず)に搭載されてもよい。配線基板は、例えば、プリント回路基板(PCB)である。駆動回路35は、配線層20(具体的には、複数の個別配線25及び複数の引出配線29)に電気的に接続されている。駆動回路35は、複数の個別配線25を通して、複数の発熱部31に個別に電流を印加する。複数の発熱部31のうち電流が印加された発熱部31が、選択的に発熱する。 The drive circuit 35 is mounted on the main surface 11. For example, the drive circuit 35 is fixed to the glaze layer 15 using a bonding member (not shown) such as an adhesive. The drive circuit 35 may be mounted on a wiring board (not shown) separated from the board 10. The wiring board is, for example, a printed circuit board (PCB). The drive circuit 35 is electrically connected to the wiring layer 20 (specifically, the plurality of individual wirings 25 and the plurality of lead wirings 29). The drive circuit 35 individually applies current to the plurality of heat generating parts 31 through the plurality of individual wirings 25 . Among the plurality of heat generating parts 31, the heat generating part 31 to which the current is applied selectively generates heat.
 図1及び図2に示されるように、コネクタ40は、y方向において、駆動回路35に対して抵抗体層30とは反対側に配置されている。コネクタ40は、例えば、y方向における基板10の端部に取り付けられている。コネクタ40は、配線層20(具体的には、複数の引出配線29)を通して駆動回路35に電気的に接続されている。例えば、コネクタ40は、複数のピン(図示せず)を含む。複数のピンの一部は、複数の引出配線29に導通している。複数のピンの別の一部は、共通配線21の基部22に導通する配線(図示せず)に導通している。コネクタ40は、サーマルプリンタに接続される。サーマルプリンタからコネクタ40を通して共通配線21に定電圧が印加される。 As shown in FIGS. 1 and 2, the connector 40 is arranged on the opposite side of the resistor layer 30 with respect to the drive circuit 35 in the y direction. The connector 40 is attached to the end of the substrate 10 in the y direction, for example. The connector 40 is electrically connected to the drive circuit 35 through the wiring layer 20 (specifically, the plurality of lead wires 29). For example, connector 40 includes multiple pins (not shown). Some of the plurality of pins are electrically connected to the plurality of lead wires 29. Another part of the plurality of pins is electrically connected to a wiring (not shown) that is electrically connected to the base 22 of the common wiring 21 . Connector 40 is connected to a thermal printer. A constant voltage is applied from the thermal printer to the common wiring 21 through the connector 40.
 図1、図4及び図5に示されるように、封止部材43は、駆動回路35を覆っており、駆動回路35を封止している。封止部材43は、導電ワイヤ36,37をさらに覆っており、導電ワイヤ36,37をさらに封止している。封止部材43は、複数の個別配線25のうち保護層33から露出している部分(例えば、端子部28など)をさらに覆っている。封止部材43は、電気的絶縁性を有している。 As shown in FIGS. 1, 4, and 5, the sealing member 43 covers the drive circuit 35 and seals the drive circuit 35. The sealing member 43 further covers the conductive wires 36 and 37, and further seals the conductive wires 36 and 37. The sealing member 43 further covers portions of the plurality of individual wirings 25 that are exposed from the protective layer 33 (for example, the terminal portions 28, etc.). The sealing member 43 has electrical insulation.
 封止樹脂材料の粘度は、例えば、65Pa・s以下である。封止樹脂材料の粘度は、60Pa・s以下であってもよく、55Pa・s以下であってもよい。そのため、封止部材43の高さhを減少させることができる。本明細書において、封止樹脂材料の粘度は、25.0℃の温度及び20rpmの回転速度においてB型回転粘度計(ブルックフィールド社、スピンドル 5)を用いて測定される。封止部材43の高さhは、例えば、300μm以下である。本明細書において、封止部材43の高さhは、主面11からの封止部材43の最大高さである。封止部材43は、例えば、エポキシ樹脂のような絶縁樹脂材料で形成されている。封止樹脂材料として、例えば、ヘンケル社製のエポキシ樹脂(型番COB011-3A)のような絶縁樹脂材料が用いられ得る。 The viscosity of the sealing resin material is, for example, 65 Pa·s or less. The viscosity of the sealing resin material may be 60 Pa·s or less, or may be 55 Pa·s or less. Therefore, the height h1 of the sealing member 43 can be reduced. In this specification, the viscosity of the sealing resin material is measured using a B-type rotational viscometer (Brookfield, spindle 5) at a temperature of 25.0° C. and a rotation speed of 20 rpm. The height h1 of the sealing member 43 is, for example, 300 μm or less. In this specification, the height h 1 of the sealing member 43 is the maximum height of the sealing member 43 from the main surface 11 . The sealing member 43 is made of an insulating resin material such as epoxy resin, for example. As the sealing resin material, for example, an insulating resin material such as epoxy resin manufactured by Henkel (model number COB011-3A) can be used.
 図1に示されるように、ヒートシンク49は、z方向において、基板10に対してグレーズ層15及び抵抗体層30とは反対側に配置されている。ヒートシンク49は、ねじのような締結部材または接合部材(図示せず)によって、基板10の裏面12に取り付けられている。ヒートシンク49は、基板10を支持している。ヒートシンク49は、例えば、アルミニウム(Al)のような高熱伝導材料で形成されている。抵抗体層30の複数の発熱部31から発生した熱の一部は、基板10を通してヒートシンク49に伝わる。ヒートシンク49に伝わった熱は、サーマルプリントヘッド1の外部へと放熱される。ヒートシンク49は、基板10の過度な温度上昇を防止することができる。駆動回路35が基板10とは別の配線基板上に搭載されている場合、ヒートシンク49は、基板10と配線基板とを支持する。 As shown in FIG. 1, the heat sink 49 is arranged on the opposite side of the substrate 10 from the glaze layer 15 and the resistor layer 30 in the z direction. The heat sink 49 is attached to the back surface 12 of the substrate 10 by fasteners or bonding members (not shown) such as screws. Heat sink 49 supports substrate 10. The heat sink 49 is made of a highly thermally conductive material such as aluminum (Al), for example. A portion of the heat generated from the plurality of heat generating parts 31 of the resistor layer 30 is transmitted to the heat sink 49 through the substrate 10. The heat transmitted to the heat sink 49 is radiated to the outside of the thermal print head 1. The heat sink 49 can prevent excessive temperature rise of the substrate 10. When the drive circuit 35 is mounted on a wiring board different from the board 10, the heat sink 49 supports the board 10 and the wiring board.
 図1及び図4に示されるように、サーマルプリントヘッド1は、主面11上に形成されている突起45を含む。突起45は、グレーズ層15と、配線層20と、複数の発熱部31と、保護層33とを含む。突起45では、グレーズ層15、配線層20、複数の発熱部31及び保護層33が、主面11の法線方向(z方向)においてこの順に主面11上に積層されている。 As shown in FIGS. 1 and 4, the thermal print head 1 includes a protrusion 45 formed on the main surface 11. The protrusion 45 includes a glaze layer 15 , a wiring layer 20 , a plurality of heat generating parts 31 , and a protective layer 33 . In the protrusion 45, the glaze layer 15, the wiring layer 20, the plurality of heat generating parts 31, and the protective layer 33 are laminated on the main surface 11 in this order in the normal direction (z direction) of the main surface 11.
 図2から図4に示されるように、第1樹脂流れ止め50は、封止樹脂材料の流れを止める。第1樹脂流れ止め50は、封止部材43に接触している。主面11の平面視において、第1樹脂流れ止め50は、駆動回路35と抵抗体層30との間に配置されている。主面11の平面視において、第1樹脂流れ止め50は、駆動回路35と突起45との間に配置されている。そのため、第1樹脂流れ止め50は、封止樹脂材料が抵抗体層30及び突起45に接触することを防止する。第1樹脂流れ止め50によって、封止部材43は、抵抗体層30及び突起45から分離される。主面11の平面視において、第1樹脂流れ止め50の長手方向はx方向であり、第1樹脂流れ止め50の短手方向はy方向である。 As shown in FIGS. 2 to 4, the first resin flow stopper 50 stops the flow of the sealing resin material. The first resin flow stopper 50 is in contact with the sealing member 43. In a plan view of the main surface 11 , the first resin flow stopper 50 is arranged between the drive circuit 35 and the resistor layer 30 . In a plan view of the main surface 11 , the first resin flow stopper 50 is arranged between the drive circuit 35 and the protrusion 45 . Therefore, the first resin flow stopper 50 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 . The sealing member 43 is separated from the resistor layer 30 and the protrusion 45 by the first resin flow stopper 50 . In plan view of the main surface 11, the longitudinal direction of the first resin flow stopper 50 is the x direction, and the width direction of the first resin flow stopper 50 is the y direction.
 第1樹脂流れ止め50は、例えば、主面11上に形成されている凸部50aである。第1樹脂流れ止め50(凸部50a)は、突起51と、グレーズ層15と、配線層20(具体的には、複数の個別配線25)と、保護層33とを含む。第1樹脂流れ止め50の高さhは、封止部材43の高さhよりも低い。第1樹脂流れ止め50の高さhは、例えば、250μm以下である。本明細書において、第1樹脂流れ止め50の高さhは、主面11からの第1樹脂流れ止め50の最大高さである。 The first resin flow stopper 50 is, for example, a convex portion 50a formed on the main surface 11. The first resin flow stopper 50 (convex portion 50a) includes a protrusion 51, a glaze layer 15, a wiring layer 20 (specifically, a plurality of individual wirings 25), and a protective layer 33. The height h 2 of the first resin flow stopper 50 is lower than the height h 1 of the sealing member 43 . The height h2 of the first resin flow stopper 50 is, for example, 250 μm or less. In this specification, the height h2 of the first resin stop 50 is the maximum height of the first resin stop 50 from the main surface 11.
 図2及び図5に示されるように、第2樹脂流れ止め55は、封止樹脂材料の流れを止める。第2樹脂流れ止め55は、封止部材43に接触している。主面11の平面視において、第2樹脂流れ止め55は、駆動回路35とコネクタ40との間に配置されている。そのため、第2樹脂流れ止め55は、封止樹脂材料がコネクタ40に接触することを防止する。第2樹脂流れ止め55によって、封止部材43は、コネクタ40から分離される。主面11の平面視において、第2樹脂流れ止め55の長手方向はx方向であり、第2樹脂流れ止め55の短手方向はy方向である。 As shown in FIGS. 2 and 5, the second resin flow stopper 55 stops the flow of the sealing resin material. The second resin flow stopper 55 is in contact with the sealing member 43 . In a plan view of the main surface 11 , the second resin flow stopper 55 is arranged between the drive circuit 35 and the connector 40 . Therefore, the second resin flow stopper 55 prevents the sealing resin material from coming into contact with the connector 40 . The sealing member 43 is separated from the connector 40 by the second resin flow stopper 55 . In a plan view of the main surface 11, the longitudinal direction of the second resin stopper 55 is the x direction, and the lateral direction of the second resin stopper 55 is the y direction.
 第2樹脂流れ止め55は、例えば、主面11上に形成されている凸部55aである。第2樹脂流れ止め55(凸部55a)は、突起56と、グレーズ層15と、配線層20(具体的には、複数の引出配線29)と、保護層33とを含む。第2樹脂流れ止め55の高さhは、封止部材43の高さhよりも低い。第2樹脂流れ止め55の高さhは、例えば、250μm以下である。本明細書において、第2樹脂流れ止め55の高さhは、主面11からの第2樹脂流れ止め55の最大高さである。 The second resin flow stopper 55 is, for example, a convex portion 55a formed on the main surface 11. The second resin flow stopper 55 (convex portion 55a) includes a protrusion 56, a glaze layer 15, a wiring layer 20 (specifically, a plurality of lead wires 29), and a protective layer 33. The height h 3 of the second resin flow stopper 55 is lower than the height h 1 of the sealing member 43 . The height h3 of the second resin flow stopper 55 is, for example, 250 μm or less. In this specification, the height h3 of the second resin stop 55 is the maximum height of the second resin stop 55 from the main surface 11.
 図6から図13を主に参照して、本実施の形態のサーマルプリントヘッド1の製造方法を説明する。 A method of manufacturing the thermal print head 1 of this embodiment will be described with reference mainly to FIGS. 6 to 13.
 図6及び図7を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、基板10の主面11上に、突起51,56を形成するステップを備える。突起51,56は、例えば、LTCCセラミック、高融点金属またはSi粉体が混合されたガラスで形成されている。 Referring to FIGS. 6 and 7, the method for manufacturing thermal print head 1 according to the present embodiment includes a step of forming protrusions 51 and 56 on main surface 11 of substrate 10. The protrusions 51 and 56 are made of, for example, LTCC ceramic, high melting point metal, or glass mixed with Si powder.
 突起51,56がLTCCセラミックで形成されている場合には、突起51,56は、例えば以下の方法によって形成される。LTCCスラリーを主面11の一部上に塗布する。LTCCスラリーは、LTCCセミラック粉末と、ガラスと、バインダーと、溶剤とを含む。それから、LTCCスラリーを焼成する。こうして、突起51,56が形成される。LTCCスラリーの焼成温度は、例えば、870℃以上900℃以下である。基板10がセラミック基板である場合、LTCCスラリーの焼成温度は、セラミック基板の焼成温度よりも低い。基板10がガラス基板である場合、LTCCスラリーの焼成温度は、ガラス基板のガラス転移温度よりも低い。 When the protrusions 51 and 56 are made of LTCC ceramic, the protrusions 51 and 56 are formed, for example, by the following method. LTCC slurry is applied onto a portion of the main surface 11. The LTCC slurry includes LTCC semilac powder, glass, binder, and solvent. Then, the LTCC slurry is fired. In this way, protrusions 51 and 56 are formed. The firing temperature of the LTCC slurry is, for example, 870°C or higher and 900°C or lower. When the substrate 10 is a ceramic substrate, the firing temperature of the LTCC slurry is lower than the firing temperature of the ceramic substrate. When the substrate 10 is a glass substrate, the firing temperature of the LTCC slurry is lower than the glass transition temperature of the glass substrate.
 突起51,56が高融点金属で形成されている場合には、突起51,56は、例えば以下の三つの方法のいずれかによって形成される。第一の方法では、主面11上に高融点金属層を蒸着する。高融点金属層をエッチングする。第二の方法では、主面11上に、開口が設けられたマスクを形成する。基板10の主面11及びマスク上に高融点金属層を蒸着する。マスクをリフトオフする。第三の方法では、蒸着源と基板10との間に配置されておりかつ開口が設けれている金属マスクを通して、主面11の一部上に高融点金属層を蒸着する。 When the protrusions 51 and 56 are made of a high melting point metal, the protrusions 51 and 56 are formed, for example, by one of the following three methods. In the first method, a high melting point metal layer is deposited on the main surface 11. Etching the refractory metal layer. In the second method, a mask with openings is formed on the main surface 11. A high melting point metal layer is deposited on the main surface 11 of the substrate 10 and the mask. Lift off the mask. In a third method, a high melting point metal layer is evaporated onto a portion of the major surface 11 through a metal mask located between the evaporation source and the substrate 10 and provided with an opening.
 突起51,56がSi粉体が混合されたガラスで形成されている場合には、突起51,56は、例えば以下の方法によって形成される。Si粉体が混合されたガラスを含むペーストを、例えばスクリーン印刷によって、主面11の一部上に塗布する。当該ペーストを焼成する。こうして、突起51,56が形成される。 When the protrusions 51 and 56 are formed of glass mixed with Si powder, the protrusions 51 and 56 are formed, for example, by the following method. A paste containing glass mixed with Si powder is applied onto a portion of the main surface 11 by, for example, screen printing. The paste is fired. In this way, protrusions 51 and 56 are formed.
 図8及び図9を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、主面11の少なくとも一部と突起51,56とを覆うグレーズ層15を形成するステップを備える。具体的には、主面11及び突起51,56上に、例えばスクリーン印刷によって、非晶質ガラスを含むペーストを塗布する。当該ペーストを焼成する。こうして、グレーズ層15が形成される。 Referring to FIGS. 8 and 9, the method for manufacturing thermal print head 1 according to the present embodiment includes a step of forming glaze layer 15 covering at least a portion of main surface 11 and protrusions 51 and 56. Specifically, a paste containing amorphous glass is applied onto the main surface 11 and the projections 51 and 56 by, for example, screen printing. The paste is fired. In this way, glaze layer 15 is formed.
 図8及び図9を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、グレーズ層15上に配線層20を形成するステップを備える。具体的には、グレーズ層15上に、例えばスクリーン印刷によって、金を主成分とするレジネートペーストを塗布する。当該レジネートペーストを焼成する。焼成されたレジネートペーストを、エッチングなどによってパターニングする。こうして、配線層20が形成される。配線層20は、共通配線21と、複数の個別配線25と、複数の引出配線29とを含む。 Referring to FIGS. 8 and 9, the method for manufacturing thermal print head 1 according to the present embodiment includes a step of forming wiring layer 20 on glaze layer 15. Specifically, a resinate paste containing gold as a main component is applied onto the glaze layer 15 by, for example, screen printing. The resinate paste is fired. The fired resinate paste is patterned by etching or the like. In this way, the wiring layer 20 is formed. The wiring layer 20 includes a common wiring 21, a plurality of individual wirings 25, and a plurality of lead wirings 29.
 図8及び図9を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、グレーズ層15及び配線層20上に抵抗体層30を形成するステップを備える。具体的には、グレーズ層15及び配線層20上に、例えばスクリーン印刷によって、導電性ペーストを塗布する。当該導電性ペーストを焼成する。こうして、抵抗体層30が形成される。抵抗体層30は、複数の発熱部31を含む。配線層20は、複数の発熱部31に導通し、かつ、抵抗体層30に接触している。 Referring to FIGS. 8 and 9, the method for manufacturing thermal print head 1 of this embodiment includes a step of forming resistor layer 30 on glaze layer 15 and wiring layer 20. Specifically, a conductive paste is applied onto the glaze layer 15 and the wiring layer 20 by, for example, screen printing. The conductive paste is fired. In this way, the resistor layer 30 is formed. The resistor layer 30 includes a plurality of heat generating parts 31. The wiring layer 20 is electrically connected to the plurality of heat generating parts 31 and is in contact with the resistor layer 30 .
 図8及び図9を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、複数の発熱部31と配線層20とを覆う保護層33を形成するステップを備える。具体的には、グレーズ層15上と、複数の発熱部31上と、配線層20の一部上とに、例えばスクリーン印刷によって、非晶質ガラスを含むペーストを塗布する。当該ペーストを焼成する。こうして、保護層33が形成される。配線層20のうち導電ワイヤ36,37がボンディングされる部分(例えば、端子部28など)は、保護層33から露出している。 Referring to FIGS. 8 and 9, the method for manufacturing the thermal print head 1 according to the present embodiment includes a step of forming a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20. Specifically, a paste containing amorphous glass is applied onto the glaze layer 15, the plurality of heat generating parts 31, and a portion of the wiring layer 20 by, for example, screen printing. The paste is fired. In this way, the protective layer 33 is formed. Portions of the wiring layer 20 to which the conductive wires 36 and 37 are bonded (for example, the terminal portion 28 and the like) are exposed from the protective layer 33.
 図10及び図11を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、主面11上に駆動回路35を実装するステップを備える。例えば、駆動回路35は、接着剤などの接合部材(図示せず)を用いて、グレーズ層15に固定される。図10及び図11を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、導電ワイヤ36,37をボンディングするステップを備える。例えば、導電ワイヤ36は、ワイヤボンダー(図示せず)を用いて、駆動回路35と複数の個別配線25の端子部28とにボンディングされる。導電ワイヤ37は、ワイヤボンダー(図示せず)を用いて、駆動回路35と複数の引出配線29とにボンディングされる。 Referring to FIGS. 10 and 11, the method for manufacturing thermal print head 1 of this embodiment includes a step of mounting drive circuit 35 on main surface 11. For example, the drive circuit 35 is fixed to the glaze layer 15 using a bonding member (not shown) such as an adhesive. Referring to FIGS. 10 and 11, the method for manufacturing thermal print head 1 according to the present embodiment includes a step of bonding conductive wires 36 and 37. For example, the conductive wire 36 is bonded to the drive circuit 35 and the terminal portions 28 of the plurality of individual wirings 25 using a wire bonder (not shown). The conductive wire 37 is bonded to the drive circuit 35 and the plurality of lead wires 29 using a wire bonder (not shown).
 図12及び図13を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、駆動回路35を封止部材43で封止するステップを備える。具体的には、駆動回路35上に封止樹脂材料をポッティングする。封止樹脂材料は、広がる。しかし、第1樹脂流れ止め50及び第2樹脂流れ止め55は、封止樹脂材料の流れを止める。そのため、封止樹脂材料は、第1樹脂流れ止め50と第2樹脂流れ止め55との間の領域にとどまる。第1樹脂流れ止め50は、封止樹脂材料が抵抗体層30及び突起45に接触することを防止する。第2樹脂流れ止め55は、封止樹脂材料がコネクタ40に接触することを防止する。それから、封止樹脂材料を硬化させる。こうして、封止部材43が形成される。第1樹脂流れ止め50によって、封止部材43は、抵抗体層30及び突起45から分離される。第2樹脂流れ止め55によって、封止部材43は、コネクタ40から分離される。 Referring to FIGS. 12 and 13, the method for manufacturing the thermal print head 1 according to the present embodiment includes a step of sealing the drive circuit 35 with a sealing member 43. Specifically, a sealing resin material is potted onto the drive circuit 35. The sealing resin material spreads. However, the first resin flow stopper 50 and the second resin flow stopper 55 stop the flow of the sealing resin material. Therefore, the sealing resin material remains in the area between the first resin stopper 50 and the second resin stopper 55. The first resin flow stopper 50 prevents the sealing resin material from contacting the resistor layer 30 and the projections 45 . The second resin flow stopper 55 prevents the sealing resin material from contacting the connector 40 . Then, the sealing resin material is cured. In this way, the sealing member 43 is formed. The sealing member 43 is separated from the resistor layer 30 and the protrusion 45 by the first resin flow stopper 50 . The sealing member 43 is separated from the connector 40 by the second resin flow stopper 55 .
 本実施の形態のサーマルプリントヘッド1の製造方法は、基板10にコネクタ40を取り付けるステップを備える。コネクタ40は、複数のピン(図示せず)を含む。複数のピンの一部は、複数の引出配線29に導通している。複数のピンの別の一部は、共通配線21の基部22に導通する配線(図示せず)に導通している。本実施の形態のサーマルプリントヘッド1の製造方法は、基板10にヒートシンク49を取り付けるステップを備える。具体的には、ヒートシンク49は、ねじのような締結部材または接合部材(図示せず)によって、基板10の裏面12に取り付けられる。こうして、図1から図5に示されるサーマルプリントヘッド1が得られる。 The method for manufacturing the thermal print head 1 of this embodiment includes the step of attaching the connector 40 to the substrate 10. Connector 40 includes multiple pins (not shown). Some of the plurality of pins are electrically connected to the plurality of lead wires 29. Another part of the plurality of pins is electrically connected to a wiring (not shown) that is electrically connected to the base 22 of the common wiring 21 . The method of manufacturing the thermal print head 1 according to this embodiment includes the step of attaching a heat sink 49 to the substrate 10. Specifically, the heat sink 49 is attached to the back surface 12 of the substrate 10 by a fastening member or bonding member (not shown) such as a screw. In this way, the thermal print head 1 shown in FIGS. 1 to 5 is obtained.
 本実施の形態のサーマルプリントヘッド1の動作を説明する。
 図1に示されるように、突起45は、サーマルプリンタに含まれるプラテンローラ46に対向している。プラテンローラ46は、印刷媒体47をサーマルプリントヘッド1に向けて送り出す。プラテンローラ46が回転することにより、印刷媒体47が+y方向に送り出される。突起45とプラテンローラ46との間に、印刷媒体47が挟み込まれる。
The operation of the thermal print head 1 of this embodiment will be explained.
As shown in FIG. 1, the protrusion 45 faces a platen roller 46 included in the thermal printer. The platen roller 46 sends out the print medium 47 toward the thermal print head 1 . As the platen roller 46 rotates, the print medium 47 is sent out in the +y direction. A print medium 47 is sandwiched between the protrusion 45 and the platen roller 46.
 駆動回路35は、複数の個別配線25を通して、複数の発熱部31に個別に電流を印加する。複数の発熱部31のうち電流が印加された発熱部31が、選択的に発熱する。複数の発熱部31で発生した熱は、印刷媒体47に伝わる。こうして、サーマルプリントヘッド1を用いて、印刷媒体47に印字が施される。複数の発熱部31で発生した熱の一部は、グレーズ層15に伝わる。グレーズ層15にこの熱が蓄えられる。グレーズ層15は、蓄熱層として機能する。複数の発熱部31で発生した熱の残りは、基板10及びヒートシンク49を通して、サーマルプリントヘッド1の外部に放出される。 The drive circuit 35 individually applies current to the plurality of heat generating parts 31 through the plurality of individual wirings 25. Among the plurality of heat generating parts 31, the heat generating part 31 to which the current is applied selectively generates heat. Heat generated by the plurality of heat generating parts 31 is transmitted to the print medium 47. In this way, printing is performed on the print medium 47 using the thermal print head 1. A portion of the heat generated by the plurality of heat generating parts 31 is transmitted to the glaze layer 15. This heat is stored in the glaze layer 15. Glaze layer 15 functions as a heat storage layer. The remainder of the heat generated by the plurality of heat generating parts 31 is released to the outside of the thermal print head 1 through the substrate 10 and the heat sink 49.
 本実施の形態のサーマルプリントヘッド1の効果を説明する。
 本実施の形態のサーマルプリントヘッド1は、主面11を有する基板10と、主面11上に配置されている配線層20と、抵抗体層30と、駆動回路35と、封止部材43と、第1樹脂流れ止め50とを備える。抵抗体層30は、配線層20上に配置されており、かつ、複数の発熱部31を含む。配線層20は、複数の発熱部31に導通し、かつ、抵抗体層30に接触している。駆動回路35は、主面11上に実装されており、かつ、配線層20に電気的に接続されている。封止部材43は、封止樹脂材料を硬化することによって形成され、かつ、駆動回路35を封止する。第1樹脂流れ止め50は、封止樹脂材料の流れを止める。第1樹脂流れ止め50は、主面11の平面視において駆動回路35と抵抗体層30との間に配置されており、かつ、封止部材43に接触している。
The effects of the thermal print head 1 of this embodiment will be explained.
The thermal print head 1 of this embodiment includes a substrate 10 having a main surface 11, a wiring layer 20 disposed on the main surface 11, a resistor layer 30, a drive circuit 35, and a sealing member 43. , and a first resin flow stopper 50. The resistor layer 30 is arranged on the wiring layer 20 and includes a plurality of heat generating parts 31. The wiring layer 20 is electrically connected to the plurality of heat generating parts 31 and is in contact with the resistor layer 30 . The drive circuit 35 is mounted on the main surface 11 and electrically connected to the wiring layer 20. The sealing member 43 is formed by curing a sealing resin material, and seals the drive circuit 35. The first resin flow stopper 50 stops the flow of the sealing resin material. The first resin flow stopper 50 is disposed between the drive circuit 35 and the resistor layer 30 in a plan view of the main surface 11, and is in contact with the sealing member 43.
 封止部材43の高さhを減少させるために封止樹脂材料の粘度が低くしても、第1樹脂流れ止め50は、封止樹脂材料が抵抗体層30に接触することを防止する。封止部材43の高さhを減少させることができるとともに、封止部材43が抵抗体層30から分離されることが担保され得る。そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43が印刷媒体47に接触することが防止され得る。y方向におけるサーマルプリントヘッド1のサイズを小さくすることができる。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Even if the viscosity of the sealing resin material is lowered to reduce the height h1 of the sealing member 43, the first resin flow stopper 50 prevents the sealing resin material from contacting the resistor layer 30. . The height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47. The size of the thermal print head 1 in the y direction can be reduced. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 本実施の形態のサーマルプリントヘッド1では、第1樹脂流れ止め50の高さhは、封止部材43の高さhよりも低い。 In the thermal print head 1 of this embodiment, the height h2 of the first resin flow stopper 50 is lower than the height h1 of the sealing member 43.
 そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43及び第1樹脂流れ止め50が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 and the first resin flow stopper 50 can be prevented from coming into contact with the printing medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 本実施の形態のサーマルプリントヘッド1では、第1樹脂流れ止め50の高さhは、250μm以下である。 In the thermal print head 1 of this embodiment, the height h2 of the first resin flow stopper 50 is 250 μm or less.
 そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43及び第1樹脂流れ止め50が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 and the first resin flow stopper 50 can be prevented from coming into contact with the printing medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 本実施の形態のサーマルプリントヘッド1では、封止部材43の高さhは、300μm以下である。 In the thermal print head 1 of this embodiment, the height h1 of the sealing member 43 is 300 μm or less.
 そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from contacting the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 本実施の形態のサーマルプリントヘッド1では、封止樹脂材料の粘度は、65Pa・s以下である。 In the thermal print head 1 of this embodiment, the viscosity of the sealing resin material is 65 Pa·s or less.
 そのため、封止部材43の高さhが減少する。駆動回路35を抵抗体層30のより近くに配置しても、封止部材43が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Therefore, the height h1 of the sealing member 43 is reduced. Placing the drive circuit 35 closer to the resistor layer 30 may also prevent the sealing member 43 from contacting the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 本実施の形態のサーマルプリントヘッド1では、第1樹脂流れ止め50は、主面11上に形成されている凸部50aである。 In the thermal print head 1 of this embodiment, the first resin flow stopper 50 is a convex portion 50a formed on the main surface 11.
 封止部材43の高さhを減少させるために封止樹脂材料の粘度が低くしても、凸部50aは、封止樹脂材料が抵抗体層30に接触することを防止する。封止部材43の高さhを減少させることができるとともに、封止部材43が抵抗体層30から分離されることが担保され得る。そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Even if the viscosity of the sealing resin material is lowered to reduce the height h1 of the sealing member 43, the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30. The height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 凸部50aは、主面11上に形成されている突起51を含む。
 封止部材43の高さhを減少させるために封止樹脂材料の粘度が低くしても、凸部50aは、封止樹脂材料が抵抗体層30に接触することを防止する。封止部材43の高さhを減少させることができるとともに、封止部材43が抵抗体層30から分離されることが担保され得る。そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。
The convex portion 50a includes a protrusion 51 formed on the main surface 11.
Even if the viscosity of the sealing resin material is lowered to reduce the height h1 of the sealing member 43, the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30. The height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 本実施の形態のサーマルプリントヘッド1では、突起51は、低温同時焼成セラミック、高融点金属またはSi粉体が混合されたガラスで形成されている。 In the thermal print head 1 of this embodiment, the protrusion 51 is made of low-temperature co-fired ceramic, high melting point metal, or glass mixed with Si powder.
 封止部材43の高さhを減少させるために封止樹脂材料の粘度が低くしても、凸部50aは、封止樹脂材料が抵抗体層30に接触することを防止する。封止部材43の高さhを減少させることができるとともに、封止部材43が抵抗体層30から分離されることが担保され得る。そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Even if the viscosity of the sealing resin material is lowered to reduce the height h1 of the sealing member 43, the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30. The height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 本実施の形態のサーマルプリントヘッド1は、基板10に取り付けられているコネクタ40と、封止樹脂材料の流れを止める第2樹脂流れ止め55とをさらに備える。コネクタ40は、主面11の平面視において、駆動回路35に対して抵抗体層30とは反対側に配置されており、かつ、配線層20を通して駆動回路35に電気的に接続されている。第2樹脂流れ止め55は、主面11の平面視において駆動回路35とコネクタ40との間に配置されており、かつ、封止部材43に接触している。 The thermal print head 1 of this embodiment further includes a connector 40 attached to the substrate 10 and a second resin flow stopper 55 that stops the flow of the sealing resin material. The connector 40 is disposed on the side opposite to the resistor layer 30 with respect to the drive circuit 35 in a plan view of the main surface 11, and is electrically connected to the drive circuit 35 through the wiring layer 20. The second resin flow stopper 55 is disposed between the drive circuit 35 and the connector 40 in a plan view of the main surface 11, and is in contact with the sealing member 43.
 封止部材43の高さhを減少させるために封止樹脂材料の粘度が低くしても、第2樹脂流れ止め55は、封止樹脂材料がコネクタ40に接触することを防止する。封止部材43の高さhを減少させることができ、コネクタ40の電気接続機能が担保され、かつ、駆動回路35を抵抗体層30のより近くに配置しても封止部材43が印刷媒体47に接触することが防止され得る。y方向におけるサーマルプリントヘッド1のサイズを小さくすることができる。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Even if the viscosity of the sealing resin material is lowered to reduce the height h1 of the sealing member 43, the second resin flow stopper 55 prevents the sealing resin material from contacting the connector 40. The height h1 of the sealing member 43 can be reduced, the electrical connection function of the connector 40 can be secured, and even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be printed. Contacting the medium 47 may be prevented. The size of the thermal print head 1 in the y direction can be reduced. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 本実施の形態のサーマルプリントヘッド1では、配線層20は、共通配線21と、複数の個別配線25とを含む。共通配線21は、複数の発熱部31に導通している。複数の個別配線25の各々は、複数の発熱部31のうち対応するものに導通している。 In the thermal print head 1 of this embodiment, the wiring layer 20 includes a common wiring 21 and a plurality of individual wirings 25. The common wiring 21 is electrically connected to the plurality of heat generating parts 31. Each of the plurality of individual wirings 25 is electrically connected to a corresponding one of the plurality of heat generating parts 31.
 封止部材43の高さhを減少させるために封止樹脂材料の粘度が低くしても、第1樹脂流れ止め50は、封止樹脂材料が抵抗体層30に接触することを防止する。封止部材43の高さhを減少させることができるとともに、封止部材43が抵抗体層30から分離されることが担保され得る。そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Even if the viscosity of the sealing resin material is lowered to reduce the height h1 of the sealing member 43, the first resin flow stopper 50 prevents the sealing resin material from contacting the resistor layer 30. . The height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 本実施の形態のサーマルプリントヘッド1は、主面11の少なくとも一部を覆うグレーズ層15をさらに備える。主面11の法線方向において、グレーズ層15は、基板10と抵抗体層30との間に配置されている。 The thermal print head 1 of this embodiment further includes a glaze layer 15 that covers at least a portion of the main surface 11. Glaze layer 15 is arranged between substrate 10 and resistor layer 30 in the normal direction of main surface 11 .
 グレーズ層15は、抵抗体層30の複数の発熱部31から発せられた熱を蓄える。グレーズ層15は、抵抗体層30の複数の発熱部31から発せられた熱が、基板10へ過度に伝達されることを抑制する。そのため、サーマルプリントヘッド1の印字品質が向上し得る。 The glaze layer 15 stores heat emitted from the plurality of heat generating parts 31 of the resistor layer 30. The glaze layer 15 suppresses excessive transfer of heat emitted from the plurality of heat generating parts 31 of the resistor layer 30 to the substrate 10. Therefore, the print quality of the thermal print head 1 can be improved.
 (実施の形態2)
 図14及び図15を参照して、実施の形態2のサーマルプリントヘッド1を説明する。本実施の形態のサーマルプリントヘッド1は、実施の形態1のサーマルプリントヘッド1と同様の構成を備えるが、主に凸部50a,55aにおいて実施の形態1のサーマルプリントヘッド1と異なっている。
(Embodiment 2)
A thermal print head 1 according to a second embodiment will be described with reference to FIGS. 14 and 15. The thermal print head 1 according to the present embodiment has the same configuration as the thermal print head 1 according to the first embodiment, but differs from the thermal print head 1 according to the first embodiment mainly in the convex portions 50a and 55a.
 図14に示されるように、第1樹脂流れ止め50は、主面11上に形成されている凸部50aである。保護層33は、突起52を含む。凸部50aは、実施の形態1の突起51に代えて、突起52を含む。具体的には、凸部50aは、グレーズ層15と、配線層20(具体的には、複数の個別配線25)と、突起52を含む保護層33とを含む。 As shown in FIG. 14, the first resin flow stopper 50 is a convex portion 50a formed on the main surface 11. Protective layer 33 includes protrusions 52 . The protrusion 50a includes a protrusion 52 instead of the protrusion 51 of the first embodiment. Specifically, the convex portion 50a includes a glaze layer 15, a wiring layer 20 (specifically, a plurality of individual wirings 25), and a protective layer 33 including a protrusion 52.
 突起52は、封止樹脂材料の流れを止める。突起52は、封止部材43に接触している。主面11の平面視において、突起52は、駆動回路35と抵抗体層30との間に配置されている。主面11の平面視において、突起52は、駆動回路35と突起45との間に配置されている。そのため、突起52は、封止樹脂材料が抵抗体層30及び突起45に接触することを防止する。突起52によって、封止部材43は、抵抗体層30及び突起45から分離される。主面11の平面視において、突起52の長手方向はx方向であり、突起52の短手方向はy方向である。 The protrusion 52 stops the flow of the sealing resin material. The protrusion 52 is in contact with the sealing member 43. In a plan view of main surface 11 , protrusion 52 is arranged between drive circuit 35 and resistor layer 30 . In a plan view of the main surface 11 , the protrusion 52 is arranged between the drive circuit 35 and the protrusion 45 . Therefore, the protrusion 52 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 . The protrusion 52 separates the sealing member 43 from the resistor layer 30 and the protrusion 45 . In a plan view of the main surface 11, the longitudinal direction of the protrusion 52 is the x direction, and the transverse direction of the protrusion 52 is the y direction.
 図15に示されるように、第2樹脂流れ止め55は、主面11上に形成されている凸部55aである。保護層33は、突起57を含む。凸部55aは、実施の形態1の突起56に代えて、突起57を含む。具体的には、凸部55aは、グレーズ層15と、配線層20(具体的には、複数の引出配線29)と、突起57を含む保護層33とを含む。 As shown in FIG. 15, the second resin flow stopper 55 is a convex portion 55a formed on the main surface 11. Protective layer 33 includes protrusions 57 . The convex portion 55a includes a protrusion 57 instead of the protrusion 56 of the first embodiment. Specifically, the convex portion 55 a includes a glaze layer 15 , a wiring layer 20 (specifically, a plurality of lead wires 29 ), and a protective layer 33 including a protrusion 57 .
 突起57は、封止樹脂材料の流れを止める。突起57は、封止部材43に接触している。主面11の平面視において、突起57は、駆動回路35とコネクタ40との間に配置されている。そのため、突起57は、封止樹脂材料がコネクタ40に接触することを防止する。突起57によって、封止部材43は、コネクタ40から分離される。主面11の平面視において、突起57の長手方向はx方向であり、突起57の短手方向はy方向である。 The protrusion 57 stops the flow of the sealing resin material. The protrusion 57 is in contact with the sealing member 43. In plan view of the main surface 11, the protrusion 57 is arranged between the drive circuit 35 and the connector 40. Therefore, the protrusion 57 prevents the sealing resin material from coming into contact with the connector 40. The protrusion 57 separates the sealing member 43 from the connector 40 . In a plan view of the main surface 11, the longitudinal direction of the protrusion 57 is the x direction, and the transverse direction of the protrusion 57 is the y direction.
 図16から図23を主に参照して、本実施の形態のサーマルプリントヘッド1の製造方法を説明する。本実施の形態のサーマルプリントヘッド1の製造方法は、実施の形態1のサーマルプリントヘッド1の製造方法と同様の工程を備えているが、主に凸部55a,55aの形成方法において、実施の形態1のサーマルプリントヘッド1の製造方法と異なっている。 A method for manufacturing the thermal print head 1 of this embodiment will be described with reference mainly to FIGS. 16 to 23. The method for manufacturing the thermal print head 1 according to the present embodiment includes the same steps as the method for manufacturing the thermal print head 1 according to the first embodiment, but mainly in the method for forming the convex portions 55a, 55a. The manufacturing method of the thermal print head 1 of the first embodiment is different from that of the first embodiment.
 図16及び図17を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、主面11の少なくとも一部を覆うグレーズ層15を形成するステップと、グレーズ層15上に配線層20を形成するステップと、グレーズ層15及び配線層20上に抵抗体層30を形成するステップとを備える。本実施の形態のグレーズ層15、配線層20及び抵抗体層30の形成方法は、実施の形態1のグレーズ層15、配線層20及び抵抗体層30の形成方法と同様である。 16 and 17, the method for manufacturing thermal print head 1 according to the present embodiment includes the steps of forming a glaze layer 15 covering at least a portion of main surface 11, and forming a wiring layer 20 on glaze layer 15. and forming a resistor layer 30 on the glaze layer 15 and the wiring layer 20. The method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in this embodiment is the same as the method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in the first embodiment.
 図16から図19を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、複数の発熱部31と配線層20とを覆う保護層33を形成するステップを備える。 Referring to FIGS. 16 to 19, the method for manufacturing the thermal print head 1 according to the present embodiment includes a step of forming a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20.
 具体的には、グレーズ層15上と、複数の発熱部31上と、配線層20の一部上とに、例えばスクリーン印刷によって、非晶質ガラスを含むペーストを塗布する。当該ペーストを焼成する。こうして、図16及び図17に示されるように、ベース層33aが形成される。配線層20のうち導電ワイヤ36,37がボンディングされる部分(例えば、端子部28など)は、ベース層33aから露出している。ベース層33aの一部上に、例えばスクリーン印刷によって、非晶質ガラスを含むペーストを塗布する。それから、当該ペーストを焼成する。図18及び図19に示されるように、ベース層33aの一部上に、突起52,57が形成される。突起52,57は、例えば、ベース層33aと同じ材料で形成されている。こうして、ベース層33aと突起52,57とによって構成される保護層33が形成される。 Specifically, a paste containing amorphous glass is applied onto the glaze layer 15, the plurality of heat generating parts 31, and a portion of the wiring layer 20 by, for example, screen printing. The paste is fired. In this way, the base layer 33a is formed as shown in FIGS. 16 and 17. A portion of the wiring layer 20 to which the conductive wires 36 and 37 are bonded (for example, the terminal portion 28, etc.) is exposed from the base layer 33a. A paste containing amorphous glass is applied onto a portion of the base layer 33a, for example, by screen printing. Then, the paste is fired. As shown in FIGS. 18 and 19, protrusions 52 and 57 are formed on a portion of the base layer 33a. The protrusions 52 and 57 are made of, for example, the same material as the base layer 33a. In this way, the protective layer 33 composed of the base layer 33a and the protrusions 52 and 57 is formed.
 図20及び図21を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、実施の形態1のサーマルプリントヘッド1の製造方法と同様に、主面11上に駆動回路35を実装するステップと、導電ワイヤ36,37をボンディングするステップとを備える。 Referring to FIGS. 20 and 21, the method for manufacturing thermal print head 1 according to the present embodiment includes mounting drive circuit 35 on main surface 11, similar to the method for manufacturing thermal print head 1 according to Embodiment 1. and bonding the conductive wires 36 and 37.
 図22及び図23を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、駆動回路35を封止部材43で封止するステップを備える。具体的には、駆動回路35上に封止樹脂材料をポッティングする。突起52,57は、封止樹脂材料の流れを止める。そのため、突起52は、封止樹脂材料が抵抗体層30及び突起45に接触することを防止する。突起57は、封止樹脂材料がコネクタ40に接触することを防止する。封止樹脂材料は、突起52と突起57との間の領域にとどまる。それから、封止樹脂材料を硬化させる。こうして、封止部材43が形成される。突起52によって、封止部材43は、抵抗体層30及び突起45から分離される。突起57によって、封止部材43は、コネクタ40から分離される。 Referring to FIGS. 22 and 23, the method for manufacturing thermal print head 1 according to the present embodiment includes a step of sealing drive circuit 35 with sealing member 43. Specifically, a sealing resin material is potted onto the drive circuit 35. The protrusions 52 and 57 stop the flow of the sealing resin material. Therefore, the protrusion 52 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 . The protrusion 57 prevents the sealing resin material from contacting the connector 40. The sealing resin material remains in the area between the protrusions 52 and 57. Then, the sealing resin material is cured. In this way, the sealing member 43 is formed. The protrusion 52 separates the sealing member 43 from the resistor layer 30 and the protrusion 45 . The protrusion 57 separates the sealing member 43 from the connector 40 .
 本実施の形態のサーマルプリントヘッド1の製造方法は、実施の形態1のサーマルプリントヘッド1の製造方法と同様に、基板10にコネクタ40を取り付けるステップと、基板10にヒートシンク49を取り付けるステップとを備える。こうして、図14及び図15に示される本実施の形態のサーマルプリントヘッド1が得られる。 Similar to the method for manufacturing the thermal print head 1 according to Embodiment 1, the method for manufacturing the thermal print head 1 according to the present embodiment includes the steps of attaching the connector 40 to the substrate 10 and attaching the heat sink 49 to the substrate 10. Be prepared. In this way, the thermal print head 1 of this embodiment shown in FIGS. 14 and 15 is obtained.
 本実施の形態のサーマルプリントヘッド1の効果は、実施の形態1のサーマルプリントヘッド1の効果と同様の以下の効果を奏する。 The thermal print head 1 of this embodiment has the following effects similar to the effects of the thermal print head 1 of the first embodiment.
 本実施の形態のサーマルプリントヘッド1は、複数の発熱部31及び配線層20を覆い、かつ、突起52を含む保護層33をさらに備える。凸部50aは、突起52を含む。 The thermal print head 1 of this embodiment further includes a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20 and includes protrusions 52. The convex portion 50a includes a protrusion 52.
 封止部材43の高さhを減少させるために封止樹脂材料の粘度が低くしても、凸部50aは、封止樹脂材料が抵抗体層30に接触することを防止する。封止部材43の高さhを減少させることができるとともに、封止部材43が抵抗体層30から分離されることが担保され得る。そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Even if the viscosity of the sealing resin material is lowered to reduce the height h1 of the sealing member 43, the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30. The height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 (実施の形態3)
 図24及び図25を参照して、実施の形態3のサーマルプリントヘッド1を説明する。本実施の形態のサーマルプリントヘッド1は、実施の形態2のサーマルプリントヘッド1と同様の構成を備えるが、主に凸部50a,55aにおいて実施の形態2のサーマルプリントヘッド1と異なっている。
(Embodiment 3)
The thermal print head 1 according to the third embodiment will be described with reference to FIGS. 24 and 25. The thermal print head 1 according to the present embodiment has the same configuration as the thermal print head 1 according to the second embodiment, but differs from the thermal print head 1 according to the second embodiment mainly in the convex portions 50a and 55a.
 図24に示されるように、第1樹脂流れ止め50は、主面11上に形成されている凸部50aである。サーマルプリントヘッド1は、保護層33上に設けられている突起53をさらに備える。凸部50aは、実施の形態2の突起52に代えて、突起53を含む。具体的には、凸部50aは、グレーズ層15と、配線層20(具体的には、複数の個別配線25)と、保護層33と、突起53とを含む。突起53は、保護層33とは異なる材料で形成されている。突起53は、例えば、LTCCセラミック、高融点金属またはSi粉体が混合されたガラスで形成されている。 As shown in FIG. 24, the first resin flow stopper 50 is a convex portion 50a formed on the main surface 11. The thermal print head 1 further includes a protrusion 53 provided on the protective layer 33. The protrusion 50a includes a protrusion 53 instead of the protrusion 52 of the second embodiment. Specifically, the convex portion 50a includes a glaze layer 15, a wiring layer 20 (specifically, a plurality of individual wirings 25), a protective layer 33, and a protrusion 53. The protrusion 53 is made of a different material from the protective layer 33. The protrusion 53 is made of, for example, LTCC ceramic, a high melting point metal, or glass mixed with Si powder.
 突起53は、封止樹脂材料の流れを止める。突起53は、封止部材43に接触している。主面11の平面視において、突起53は、駆動回路35と抵抗体層30との間に配置されている。主面11の平面視において、突起53は、駆動回路35と突起45との間に配置されている。そのため、突起53は、封止樹脂材料が抵抗体層30及び突起45に接触することを防止する。突起53によって、封止部材43は、抵抗体層30及び突起45から分離される。主面11の平面視において、突起53の長手方向はx方向であり、突起53の短手方向はy方向である。 The protrusion 53 stops the flow of the sealing resin material. The protrusion 53 is in contact with the sealing member 43. In a plan view of main surface 11 , protrusion 53 is arranged between drive circuit 35 and resistor layer 30 . In a plan view of the main surface 11 , the protrusion 53 is arranged between the drive circuit 35 and the protrusion 45 . Therefore, the protrusion 53 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 . The protrusion 53 separates the sealing member 43 from the resistor layer 30 and the protrusion 45 . In a plan view of the main surface 11, the longitudinal direction of the protrusion 53 is the x direction, and the transverse direction of the protrusion 53 is the y direction.
 図25に示されるように、第2樹脂流れ止め55は、主面11上に形成されている凸部55aである。サーマルプリントヘッド1は、保護層33上に設けられている突起58をさらに備える。凸部55aは、実施の形態2の突起57に代えて、突起58を含む。具体的には、凸部55aは、グレーズ層15と、配線層20(具体的には、複数の引出配線29)と、保護層33と、突起58とを含む。突起58は、保護層33とは異なる材料で形成されている。突起58は、例えば、LTCCセラミック、高融点金属またはSi粉体が混合されたガラスで形成されている。 As shown in FIG. 25, the second resin flow stopper 55 is a convex portion 55a formed on the main surface 11. The thermal print head 1 further includes a protrusion 58 provided on the protective layer 33. The convex portion 55a includes a protrusion 58 instead of the protrusion 57 of the second embodiment. Specifically, the convex portion 55a includes a glaze layer 15, a wiring layer 20 (specifically, a plurality of lead wires 29), a protective layer 33, and a protrusion 58. The protrusion 58 is made of a different material from the protective layer 33. The protrusion 58 is made of, for example, LTCC ceramic, high melting point metal, or glass mixed with Si powder.
 突起58は、封止樹脂材料の流れを止める。突起58は、封止部材43に接触している。主面11の平面視において、突起58は、駆動回路35とコネクタ40との間に配置されている。そのため、突起58は、封止樹脂材料がコネクタ40に接触することを防止する。突起58によって、封止部材43は、コネクタ40から分離される。主面11の平面視において、突起58の長手方向はx方向であり、突起58の短手方向はy方向である。 The protrusion 58 stops the flow of the sealing resin material. The protrusion 58 is in contact with the sealing member 43. In plan view of the main surface 11, the protrusion 58 is arranged between the drive circuit 35 and the connector 40. Therefore, the protrusion 58 prevents the sealing resin material from contacting the connector 40. Protrusion 58 separates sealing member 43 from connector 40 . In a plan view of the main surface 11, the longitudinal direction of the protrusion 58 is the x direction, and the transverse direction of the protrusion 58 is the y direction.
 図26から図33を主に参照して、本実施の形態のサーマルプリントヘッド1の製造方法を説明する。本実施の形態のサーマルプリントヘッド1の製造方法は、実施の形態2のサーマルプリントヘッド1の製造方法と同様の工程を備えているが、主に凸部50a,55aの形成方法において実施の形態2のサーマルプリントヘッド1の製造方法と異なっている。 A method for manufacturing the thermal print head 1 of this embodiment will be described with reference mainly to FIGS. 26 to 33. The method for manufacturing the thermal print head 1 according to the present embodiment includes the same steps as the method for manufacturing the thermal print head 1 according to the second embodiment, but mainly in the method for forming the convex portions 50a and 55a. The manufacturing method of the thermal print head 1 in No. 2 is different from that in No. 2.
 図26及び図27を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、主面11の少なくとも一部を覆うグレーズ層15を形成するステップと、グレーズ層15上に配線層20を形成するステップと、グレーズ層15及び配線層20上に抵抗体層30を形成するステップとを備える。本実施の形態のグレーズ層15、配線層20及び抵抗体層30の形成方法は、実施の形態2のグレーズ層15、配線層20及び抵抗体層30の形成方法と同様である。 26 and 27, the method for manufacturing thermal print head 1 according to the present embodiment includes the steps of forming a glaze layer 15 covering at least a portion of main surface 11, and forming a wiring layer 20 on glaze layer 15. and forming a resistor layer 30 on the glaze layer 15 and the wiring layer 20. The method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in this embodiment is the same as the method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in the second embodiment.
 図26及び図27を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、複数の発熱部31と配線層20とを覆う保護層33を形成するステップを備える。本実施の形態の保護層33の形成方法は、実施の形態1の保護層33の形成方法と同様である。 Referring to FIGS. 26 and 27, the method for manufacturing the thermal print head 1 according to the present embodiment includes a step of forming a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20. The method for forming the protective layer 33 in this embodiment is the same as the method for forming the protective layer 33 in the first embodiment.
 図28及び図29を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、保護層33の一部上に突起53,58を形成するステップを備える。突起53,58は、例えば、LTCCセラミック、高融点金属またはSi粉体が混合されたガラスで形成されている。突起53,58がLTCCセラミックで形成されている場合には、突起53,58は、実施の形態1において突起51,56がLTCCセラミックで形成されている場合と同様の方法によって形成される。突起53,58が高融点金属で形成されている場合には、突起53,58は、実施の形態1において突起51,56が高融点金属で形成されている場合と同様の方法によって形成される。突起53,58がSi粉体が混合されたガラスで形成されている場合には、突起53,58は、実施の形態1において突起51,56がSi粉体が混合されたガラスで形成されている場合と同様の方法によって形成される。 Referring to FIGS. 28 and 29, the method for manufacturing thermal print head 1 according to the present embodiment includes a step of forming protrusions 53 and 58 on a portion of protective layer 33. The protrusions 53 and 58 are made of, for example, LTCC ceramic, high melting point metal, or glass mixed with Si powder. When the protrusions 53 and 58 are made of LTCC ceramic, the protrusions 53 and 58 are formed by the same method as in the case where the protrusions 51 and 56 are made of LTCC ceramic in the first embodiment. When the protrusions 53 and 58 are made of a high melting point metal, the protrusions 53 and 58 are formed by the same method as in the case where the protrusions 51 and 56 are made of a high melting point metal in the first embodiment. . When the protrusions 53 and 58 are formed of glass mixed with Si powder, the protrusions 53 and 58 are different from those in which the protrusions 51 and 56 are formed of glass mixed with Si powder in the first embodiment. It is formed by the same method as in the case of
 図30及び図31を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、実施の形態2のサーマルプリントヘッド1の製造方法と同様に、主面11上に駆動回路35を実装するステップと、導電ワイヤ36,37をボンディングするステップとを備える。 Referring to FIGS. 30 and 31, the method for manufacturing the thermal print head 1 of the present embodiment includes mounting a drive circuit 35 on the main surface 11, similar to the method for manufacturing the thermal print head 1 of the second embodiment. and bonding the conductive wires 36 and 37.
 図32及び図33を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、駆動回路35を封止部材43で封止するステップを備える。具体的には、駆動回路35上に封止樹脂材料をポッティングする。突起53,58は、封止樹脂材料の流れを止める。突起53は、封止樹脂材料が抵抗体層30及び突起45に接触することを防止する。突起58は、封止樹脂材料がコネクタ40に接触することを防止する。封止樹脂材料は、突起53と突起58との間の領域にとどまる。それから、封止樹脂材料を硬化させる。こうして、封止部材43が形成される。突起53によって、封止部材43は、抵抗体層30及び突起45から分離される。突起58によって、封止部材43は、コネクタ40から分離される。 Referring to FIGS. 32 and 33, the method for manufacturing thermal print head 1 according to the present embodiment includes a step of sealing drive circuit 35 with sealing member 43. Specifically, a sealing resin material is potted onto the drive circuit 35. The protrusions 53 and 58 stop the flow of the sealing resin material. The protrusion 53 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 . The protrusion 58 prevents the sealing resin material from contacting the connector 40. The sealing resin material remains in the area between the protrusions 53 and 58. Then, the sealing resin material is cured. In this way, the sealing member 43 is formed. The protrusion 53 separates the sealing member 43 from the resistor layer 30 and the protrusion 45 . Protrusion 58 separates sealing member 43 from connector 40 .
 本実施の形態のサーマルプリントヘッド1の製造方法は、実施の形態2のサーマルプリントヘッド1の製造方法と同様に、基板10にコネクタ40を取り付けるステップと、基板10にヒートシンク49を取り付けるステップとを備える。こうして、図24及び図25に示される本実施の形態のサーマルプリントヘッド1が得られる。 Similar to the method for manufacturing the thermal print head 1 according to the second embodiment, the method for manufacturing the thermal print head 1 according to the present embodiment includes the steps of attaching the connector 40 to the substrate 10 and attaching the heat sink 49 to the substrate 10. Be prepared. In this way, the thermal print head 1 of this embodiment shown in FIGS. 24 and 25 is obtained.
 本実施の形態のサーマルプリントヘッド1の効果は、実施の形態2のサーマルプリントヘッド1の効果と同様の以下の効果を奏する。 The thermal print head 1 of this embodiment has the following effects similar to the effects of the thermal print head 1 of the second embodiment.
 本実施の形態のサーマルプリントヘッド1は、複数の発熱部31及び配線層20を覆う保護層33と、保護層33上に設けられている突起53とをさらに備える。凸部50aは、突起53を含む。 The thermal print head 1 of the present embodiment further includes a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20, and a protrusion 53 provided on the protective layer 33. The convex portion 50a includes a protrusion 53.
 封止部材43の高さhを減少させるために封止樹脂材料の粘度が低くしても、凸部50aは、封止樹脂材料が抵抗体層30に接触することを防止する。封止部材43の高さhを減少させることができるとともに、封止部材43が抵抗体層30から分離されることが担保され得る。そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Even if the viscosity of the sealing resin material is lowered to reduce the height h1 of the sealing member 43, the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30. The height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 本実施の形態のサーマルプリントヘッド1では、突起53は、低温同時焼成セラミック、高融点金属またはSi粉体が混合されたガラスで形成されている。 In the thermal print head 1 of this embodiment, the protrusion 53 is made of low-temperature co-fired ceramic, high melting point metal, or glass mixed with Si powder.
 封止部材43の高さhを減少させるために封止樹脂材料の粘度が低くしても、凸部50aは、封止樹脂材料が抵抗体層30に接触することを防止する。封止部材43の高さhを減少させることができるとともに、封止部材43が抵抗体層30から分離されることが担保され得る。そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Even if the viscosity of the sealing resin material is lowered to reduce the height h1 of the sealing member 43, the convex portion 50a prevents the sealing resin material from contacting the resistor layer 30. The height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 (実施の形態4)
 図34及び図35を参照して、実施の形態4のサーマルプリントヘッド1を説明する。本実施の形態のサーマルプリントヘッド1は、実施の形態2のサーマルプリントヘッド1と同様の構成を備えるが、主に第1樹脂流れ止め50及び第2樹脂流れ止め55において実施の形態2のサーマルプリントヘッド1と異なっている。
(Embodiment 4)
The thermal print head 1 according to the fourth embodiment will be described with reference to FIGS. 34 and 35. The thermal print head 1 according to the present embodiment has the same configuration as the thermal print head 1 according to the second embodiment, but mainly the first resin flow stopper 50 and the second resin flow stopper 55 have the same structure as the thermal print head 1 according to the second embodiment. It is different from print head 1.
 図34に示されるように、実施の形態2の突起52に代えて、保護層33に凹部54が形成されている。第1樹脂流れ止め50は、凹部54である。封止部材43の一部は、凹部54内にある。凹部54は、封止樹脂材料の流れを止める。具体的には、封止樹脂材料が保護層33上を広がって凹部54に流れ込むと、封止樹脂材料の表面張力によって、封止樹脂材料の広がりは凹部54で止まる。主面11の平面視において、凹部54は、駆動回路35と抵抗体層30との間に配置されている。主面11の平面視において、凹部54は、駆動回路35と突起45との間に配置されている。そのため、凹部54は、封止樹脂材料が抵抗体層30及び突起45に接触することを防止する。凹部54によって、封止部材43は、抵抗体層30及び突起45から分離される。主面11の平面視において、凹部54の長手方向はx方向であり、凹部54の短手方向はy方向である。 As shown in FIG. 34, a recess 54 is formed in the protective layer 33 in place of the protrusion 52 of the second embodiment. The first resin flow stopper 50 is a recess 54 . A portion of the sealing member 43 is within the recess 54 . The recess 54 stops the flow of the sealing resin material. Specifically, when the sealing resin material spreads over the protective layer 33 and flows into the recess 54, the spread of the sealing resin material stops at the recess 54 due to the surface tension of the sealing resin material. In a plan view of the main surface 11 , the recess 54 is arranged between the drive circuit 35 and the resistor layer 30 . In a plan view of the main surface 11 , the recess 54 is arranged between the drive circuit 35 and the protrusion 45 . Therefore, the recess 54 prevents the sealing resin material from coming into contact with the resistor layer 30 and the protrusion 45 . The sealing member 43 is separated from the resistor layer 30 and the protrusion 45 by the recess 54 . In a plan view of the main surface 11, the longitudinal direction of the recess 54 is the x direction, and the lateral direction of the recess 54 is the y direction.
 図35に示されるように、実施の形態2の突起57に代えて、保護層33に凹部59が形成されている。第2樹脂流れ止め55は、凹部59である。封止部材43の一部は、凹部59内にある。凹部59は、封止樹脂材料の流れを止める。具体的には、封止樹脂材料が保護層33上を広がって凹部59に流れ込むと、封止樹脂材料の表面張力によって、封止樹脂材料の広がりは凹部59で止まる。主面11の平面視において、凹部59は、駆動回路35とコネクタ40との間に配置されている。そのため、凹部59は、封止樹脂材料がコネクタ40に接触することを防止する。凹部59によって、封止部材43は、コネクタ40から分離される。主面11の平面視において、凹部59の長手方向はx方向であり、凹部59の短手方向はy方向である。 As shown in FIG. 35, a recess 59 is formed in the protective layer 33 in place of the protrusion 57 of the second embodiment. The second resin flow stopper 55 is a recess 59 . A portion of the sealing member 43 is within the recess 59 . The recess 59 stops the flow of the sealing resin material. Specifically, when the sealing resin material spreads over the protective layer 33 and flows into the recess 59, the spread of the sealing resin material stops at the recess 59 due to the surface tension of the sealing resin material. In a plan view of main surface 11 , recess 59 is arranged between drive circuit 35 and connector 40 . Therefore, the recess 59 prevents the sealing resin material from coming into contact with the connector 40. The recess 59 separates the sealing member 43 from the connector 40 . In a plan view of the main surface 11, the longitudinal direction of the recess 59 is the x direction, and the lateral direction of the recess 59 is the y direction.
 図36から図43を主に参照して、本実施の形態のサーマルプリントヘッド1の製造方法を説明する。本実施の形態のサーマルプリントヘッド1の製造方法は、実施の形態2のサーマルプリントヘッド1の製造方法と同様の工程を備えているが、主に第1樹脂流れ止め50及び第2樹脂流れ止め55の形成方法において実施の形態2のサーマルプリントヘッド1の製造方法と異なっている。 A method of manufacturing the thermal print head 1 of this embodiment will be described with reference mainly to FIGS. 36 to 43. The method for manufacturing the thermal print head 1 according to the present embodiment includes the same steps as the method for manufacturing the thermal print head 1 according to the second embodiment, but mainly includes the first resin flow stopper 50 and the second resin flow stopper. The method of forming 55 is different from the method of manufacturing the thermal print head 1 of the second embodiment.
 図36及び図37を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、主面11の少なくとも一部を覆うグレーズ層15を形成するステップと、グレーズ層15上に配線層20を形成するステップと、グレーズ層15及び配線層20上に抵抗体層30を形成するステップとを備える。本実施の形態のグレーズ層15、配線層20及び抵抗体層30の形成方法は、実施の形態2のグレーズ層15、配線層20及び抵抗体層30の形成方法と同様である。 36 and 37, the method for manufacturing thermal print head 1 according to the present embodiment includes the steps of forming a glaze layer 15 covering at least a portion of main surface 11, and forming a wiring layer 20 on glaze layer 15. and forming a resistor layer 30 on the glaze layer 15 and the wiring layer 20. The method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in this embodiment is the same as the method for forming the glaze layer 15, the wiring layer 20, and the resistor layer 30 in the second embodiment.
 図36から図39を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、複数の発熱部31と配線層20とを覆う保護層33を形成するステップを備える。 Referring to FIGS. 36 to 39, the method for manufacturing the thermal print head 1 according to the present embodiment includes a step of forming a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20.
 具体的には、グレーズ層15上と、複数の発熱部31上と、配線層20の一部上とに、例えばスクリーン印刷によって、非晶質ガラスを含むペーストを塗布する。当該ペーストを焼成する。図36及び図37に示されるように、ベース層33aが形成される。配線層20のうち導電ワイヤ36,37がボンディングされる部分(例えば、端子部28など)は、ベース層33aから露出している。それから、ベース層33aの一部上に、例えばスクリーン印刷によって、非晶質ガラスを含むペーストを塗布する。当該ペーストを焼成する。図38及び図39に示されるように、当該ペーストが塗布されなかったベース層33aの残部に、凹部54,59が形成される。こうして、凹部54,59が設けられた保護層33が形成される。 Specifically, a paste containing amorphous glass is applied onto the glaze layer 15, the plurality of heat generating parts 31, and a portion of the wiring layer 20 by, for example, screen printing. The paste is fired. As shown in FIGS. 36 and 37, a base layer 33a is formed. A portion of the wiring layer 20 to which the conductive wires 36 and 37 are bonded (for example, the terminal portion 28, etc.) is exposed from the base layer 33a. Then, a paste containing amorphous glass is applied onto a portion of the base layer 33a, for example by screen printing. The paste is fired. As shown in FIGS. 38 and 39, recesses 54 and 59 are formed in the remaining portions of the base layer 33a to which the paste is not applied. In this way, the protective layer 33 provided with the recesses 54 and 59 is formed.
 図40及び図41を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、実施の形態2のサーマルプリントヘッド1の製造方法と同様に、主面11上に駆動回路35を実装するステップと、導電ワイヤ36,37をボンディングするステップとを備える。 Referring to FIGS. 40 and 41, the method for manufacturing thermal print head 1 according to the present embodiment includes mounting drive circuit 35 on main surface 11, similar to the method for manufacturing thermal print head 1 according to Embodiment 2. and bonding the conductive wires 36 and 37.
 図42及び図43を参照して、本実施の形態のサーマルプリントヘッド1の製造方法は、駆動回路35を封止部材43で封止するステップを備える。具体的には、駆動回路35上に封止樹脂材料をポッティングする。凹部54,59は、封止樹脂材料の流れを止める。凹部54は、封止樹脂材料が抵抗体層30及び突起45に接触することを防止する。凹部59は、封止樹脂材料がコネクタ40に接触することを防止する。封止樹脂材料は、凹部54と凹部59との間の領域にとどまる。それから、封止樹脂材料を硬化させる。こうして、封止部材43が形成される。凹部54によって、封止部材43は、抵抗体層30及び突起45から分離される。凹部59によって、封止部材43は、コネクタ40から分離される。 Referring to FIGS. 42 and 43, the method for manufacturing thermal print head 1 according to the present embodiment includes a step of sealing drive circuit 35 with sealing member 43. Specifically, a sealing resin material is potted onto the drive circuit 35. The recesses 54 and 59 stop the flow of the sealing resin material. The recess 54 prevents the sealing resin material from contacting the resistor layer 30 and the protrusion 45 . The recess 59 prevents the sealing resin material from contacting the connector 40. The sealing resin material remains in the area between recess 54 and recess 59. Then, the sealing resin material is cured. In this way, the sealing member 43 is formed. The sealing member 43 is separated from the resistor layer 30 and the protrusion 45 by the recess 54 . The recess 59 separates the sealing member 43 from the connector 40 .
 本実施の形態のサーマルプリントヘッド1の製造方法は、実施の形態2のサーマルプリントヘッド1の製造方法と同様に、基板10にコネクタ40を取り付けるステップと、基板10にヒートシンク49を取り付けるステップとを備える。こうして、図34及び図35に示される本実施の形態のサーマルプリントヘッド1が得られる。 Similar to the method for manufacturing the thermal print head 1 according to the second embodiment, the method for manufacturing the thermal print head 1 according to the present embodiment includes the steps of attaching the connector 40 to the substrate 10 and attaching the heat sink 49 to the substrate 10. Be prepared. In this way, the thermal print head 1 of this embodiment shown in FIGS. 34 and 35 is obtained.
 本実施の形態のサーマルプリントヘッド1の効果は、実施の形態2のサーマルプリントヘッド1の効果と同様の以下の効果を奏する。 The thermal print head 1 of this embodiment has the following effects similar to the effects of the thermal print head 1 of the second embodiment.
 本実施の形態のサーマルプリントヘッド1は、複数の発熱部31及び配線層20を覆う保護層33をさらに備える。第1樹脂流れ止め50は、保護層33に形成されている凹部54である。 The thermal print head 1 of this embodiment further includes a protective layer 33 that covers the plurality of heat generating parts 31 and the wiring layer 20. The first resin flow stopper 50 is a recess 54 formed in the protective layer 33.
 封止部材43の高さhを減少させるために封止樹脂材料の粘度が低くしても、凹部54は、封止樹脂材料が抵抗体層30に接触することを防止する。封止部材43の高さhを減少させることができるとともに、封止部材43が抵抗体層30から分離されることが担保され得る。そのため、駆動回路35を抵抗体層30のより近くに配置しても、封止部材43が印刷媒体47に接触することが防止され得る。本実施の形態のサーマルプリントヘッド1によれば、駆動回路35を封止する封止部材43が印刷媒体47に接触することを防止し得るとともに、サーマルプリントヘッド1が小型化され得る。 Even if the viscosity of the sealing resin material is lowered to reduce the height h1 of the sealing member 43, the recess 54 prevents the sealing resin material from contacting the resistor layer 30. The height h1 of the sealing member 43 can be reduced, and it can be ensured that the sealing member 43 is separated from the resistor layer 30. Therefore, even if the drive circuit 35 is placed closer to the resistor layer 30, the sealing member 43 can be prevented from coming into contact with the print medium 47. According to the thermal print head 1 of this embodiment, the sealing member 43 that seals the drive circuit 35 can be prevented from coming into contact with the print medium 47, and the thermal print head 1 can be downsized.
 以下、本開示の諸態様を付記としてまとめて記載する。
 (付記1)
 主面を有する基板と、
 前記主面上に配置されている配線層と、
 抵抗体層と、
 前記主面上に実装されており、かつ、前記配線層に電気的に接続されている駆動回路と、
 封止樹脂材料を硬化することによって形成され、かつ、前記駆動回路を封止する封止部材と、
 前記封止樹脂材料の流れを止める第1樹脂流れ止めとを備え、
 前記抵抗体層は、前記配線層上に配置されており、かつ、複数の発熱部を含み、
 前記配線層は、前記複数の発熱部に導通し、かつ、前記抵抗体層に接触しており、
 前記第1樹脂流れ止めは、前記主面の平面視において前記駆動回路と前記抵抗体層との間に配置されており、かつ、前記封止部材に接触している、サーマルプリントヘッド。
Hereinafter, various aspects of the present disclosure will be collectively described as supplementary notes.
(Additional note 1)
a substrate having a main surface;
a wiring layer disposed on the main surface;
a resistor layer;
a drive circuit mounted on the main surface and electrically connected to the wiring layer;
a sealing member formed by curing a sealing resin material and sealing the drive circuit;
a first resin flow stopper that stops the flow of the sealing resin material;
The resistor layer is arranged on the wiring layer and includes a plurality of heat generating parts,
The wiring layer is electrically connected to the plurality of heat generating parts and is in contact with the resistor layer,
In the thermal print head, the first resin flow stopper is disposed between the drive circuit and the resistor layer in a plan view of the main surface, and is in contact with the sealing member.
 (付記2)
 前記第1樹脂流れ止めの高さは、前記封止部材の高さよりも低い、付記1に記載のサーマルプリントヘッド。
(Additional note 2)
The thermal print head according to supplementary note 1, wherein the height of the first resin flow stopper is lower than the height of the sealing member.
 (付記3)
 前記第1樹脂流れ止めの高さは、250μm以下である、付記1に記載のサーマルプリントヘッド。
(Additional note 3)
The thermal print head according to appendix 1, wherein the first resin stopper has a height of 250 μm or less.
 (付記4)
 前記封止部材の高さは、300μm以下である、付記1から付記3のいずれかに記載のサーマルプリントヘッド。
(Additional note 4)
The thermal print head according to any one of appendices 1 to 3, wherein the height of the sealing member is 300 μm or less.
 (付記5)
 前記封止樹脂材料の粘度は、65Pa・s以下である、付記1から付記4のいずれかに記載のサーマルプリントヘッド。
(Appendix 5)
The thermal print head according to any one of Supplementary Notes 1 to 4, wherein the viscosity of the sealing resin material is 65 Pa·s or less.
 (付記6)
 前記第1樹脂流れ止めは、前記主面上に形成されている凸部である、付記1から付記5のいずれかに記載のサーマルプリントヘッド。
(Appendix 6)
The thermal print head according to any one of appendices 1 to 5, wherein the first resin flow stopper is a convex portion formed on the main surface.
 (付記7)
 前記凸部は、前記主面上に形成されている突起を含む、付記6に記載のサーマルプリントヘッド。
(Appendix 7)
The thermal print head according to appendix 6, wherein the convex portion includes a protrusion formed on the main surface.
 (付記8)
 前記複数の発熱部及び前記配線層を覆う保護層と、
 前記保護層上に設けられている突起とをさらに備え、
 前記凸部は、前記突起を含む、付記6に記載のサーマルプリントヘッド。
(Appendix 8)
a protective layer covering the plurality of heat generating parts and the wiring layer;
further comprising a protrusion provided on the protective layer,
The thermal print head according to appendix 6, wherein the convex portion includes the protrusion.
 (付記9)
 前記突起は、低温同時焼成セラミック、高融点金属またはSi粉体が混合されたガラスで形成されている、付記7または付記8に記載のサーマルプリントヘッド。
(Appendix 9)
The thermal print head according to appendix 7 or 8, wherein the protrusion is formed of a low-temperature co-fired ceramic, a high-melting point metal, or a glass mixed with Si powder.
 (付記10)
 前記複数の発熱部及び前記配線層を覆い、かつ、突起を含む保護層をさらに備え、
 前記凸部は前記突起を含む、付記6に記載のサーマルプリントヘッド。
(Appendix 10)
further comprising a protective layer that covers the plurality of heat generating parts and the wiring layer and includes a protrusion,
The thermal print head according to appendix 6, wherein the convex portion includes the protrusion.
 (付記11)
 前記複数の発熱部及び前記配線層を覆う保護層をさらに備え、
 前記第1樹脂流れ止めは、前記保護層に形成されている凹部である、付記1から付記5のいずれかに記載のサーマルプリントヘッド。
(Appendix 11)
further comprising a protective layer covering the plurality of heat generating parts and the wiring layer,
The thermal print head according to any one of appendices 1 to 5, wherein the first resin flow stopper is a recess formed in the protective layer.
 (付記12)
 前記基板に取り付けられているコネクタと、
 前記封止樹脂材料の流れを止める第2樹脂流れ止めとをさらに備え、
 前記コネクタは、前記主面の前記平面視において、前記駆動回路に対して前記抵抗体層とは反対側に配置されており、かつ、前記配線層を通して前記駆動回路に電気的に接続されており、
 前記第2樹脂流れ止めは、前記主面の前記平面視において前記駆動回路と前記コネクタとの間に配置されており、かつ、前記封止部材に接触している、付記1から付記11のいずれかに記載のサーマルプリントヘッド。
(Appendix 12)
a connector attached to the board;
further comprising a second resin flow stopper that stops the flow of the sealing resin material,
The connector is disposed on a side opposite to the resistor layer with respect to the drive circuit in the plan view of the main surface, and is electrically connected to the drive circuit through the wiring layer. ,
The second resin flow stopper is located between the drive circuit and the connector in the plan view of the main surface, and is in contact with the sealing member, any one of appendices 1 to 11. Thermal print head described in Crab.
 (付記13)
 前記配線層は、共通配線と、複数の個別配線とを含み、
 前記共通配線は、前記複数の発熱部に導通しており、
 前記複数の個別配線の各々は、前記複数の発熱部のうち対応するものに導通している、付記1から付記12のいずれかに記載のサーマルプリントヘッド。
(Appendix 13)
The wiring layer includes a common wiring and a plurality of individual wirings,
The common wiring is electrically connected to the plurality of heat generating parts,
The thermal print head according to any one of appendices 1 to 12, wherein each of the plurality of individual wirings is electrically connected to a corresponding one of the plurality of heat generating parts.
 (付記14)
 前記主面の少なくとも一部を覆うグレーズ層をさらに備え、
 前記主面の法線方向において、前記グレーズ層は、前記基板と前記抵抗体層との間に配置されている、付記1から付記13のいずれかに記載のサーマルプリントヘッド。
(Appendix 14)
further comprising a glaze layer covering at least a portion of the main surface,
The thermal print head according to any one of appendices 1 to 13, wherein the glaze layer is disposed between the substrate and the resistor layer in the normal direction of the main surface.
 今回開示された実施の形態1から実施の形態4はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した説明ではなく請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることを意図される。 Embodiment 1 to Embodiment 4 disclosed this time should be considered to be illustrative in all respects and not restrictive. The scope of the present disclosure is indicated by the claims rather than the above description, and is intended to include meanings equivalent to the claims and all changes within the range.
 1 サーマルプリントヘッド、10 基板、11 主面、12 裏面、15 グレーズ層、20 配線層、21 共通配線、22 基部、23 延出部、25 個別配線、26 延出部、27 端部、28 端子部、29 引出配線、30 抵抗体層、31 発熱部、33 保護層、33a ベース層、35 駆動回路、36,37 導電ワイヤ、40 コネクタ、43 封止部材、45 突起、46 プラテンローラ、47 印刷媒体、49 ヒートシンク、50 第1樹脂流れ止め、51,52,53 突起、50a,55a 凸部、5 凹部、55 第2樹脂流れ止め、56,57,58 突起、59 凹部。 1 Thermal print head, 10 Substrate, 11 Main surface, 12 Back surface, 15 Glaze layer, 20 Wiring layer, 21 Common wiring, 22 Base, 23 Extension, 25 Individual wiring, 26 Extension, 27 End, 28 Terminal Part, 29 Lead wiring, 30 Resistor layer, 31 Heat generating part, 33 Protective layer, 33a Base layer, 35 Drive circuit, 36, 37 Conductive wire, 40 Connector, 43 Sealing member, 45 Projection, 46 Platen roller, 47 Printing Medium, 49 heat sink, 50 first resin stopper, 51, 52, 53 protrusion, 50a, 55a convex part, 5 recess, 55 second resin stopper, 56, 57, 58 protrusion, 59 recess.

Claims (14)

  1.  主面を有する基板と、
     前記主面上に配置されている配線層と、
     抵抗体層と、
     前記主面上に実装されており、かつ、前記配線層に電気的に接続されている駆動回路と、
     封止樹脂材料を硬化することによって形成され、かつ、前記駆動回路を封止する封止部材と、
     前記封止樹脂材料の流れを止める第1樹脂流れ止めとを備え、
     前記抵抗体層は、前記配線層上に配置されており、かつ、複数の発熱部を含み、
     前記配線層は、前記複数の発熱部に導通し、かつ、前記抵抗体層に接触しており、
     前記第1樹脂流れ止めは、前記主面の平面視において前記駆動回路と前記抵抗体層との間に配置されており、かつ、前記封止部材に接触している、サーマルプリントヘッド。
    a substrate having a main surface;
    a wiring layer disposed on the main surface;
    a resistor layer;
    a drive circuit mounted on the main surface and electrically connected to the wiring layer;
    a sealing member formed by curing a sealing resin material and sealing the drive circuit;
    a first resin flow stopper that stops the flow of the sealing resin material;
    The resistor layer is arranged on the wiring layer and includes a plurality of heat generating parts,
    The wiring layer is electrically connected to the plurality of heat generating parts and is in contact with the resistor layer,
    In the thermal print head, the first resin flow stopper is disposed between the drive circuit and the resistor layer in a plan view of the main surface, and is in contact with the sealing member.
  2.  前記第1樹脂流れ止めの高さは、前記封止部材の高さよりも低い、請求項1に記載のサーマルプリントヘッド。 The thermal print head according to claim 1, wherein the height of the first resin flow stopper is lower than the height of the sealing member.
  3.  前記第1樹脂流れ止めの高さは、250μm以下である、請求項1に記載のサーマルプリントヘッド。 The thermal print head according to claim 1, wherein the first resin flow stopper has a height of 250 μm or less.
  4.  前記封止部材の高さは、300μm以下である、請求項1から請求項3のいずれか一項に記載のサーマルプリントヘッド。 The thermal print head according to any one of claims 1 to 3, wherein the height of the sealing member is 300 μm or less.
  5.  前記封止樹脂材料の粘度は、65Pa・s以下である、請求項1から請求項4のいずれか一項に記載のサーマルプリントヘッド。 The thermal print head according to any one of claims 1 to 4, wherein the viscosity of the sealing resin material is 65 Pa·s or less.
  6.  前記第1樹脂流れ止めは、前記主面上に形成されている凸部である、請求項1から請求項5のいずれか一項に記載のサーマルプリントヘッド。 The thermal print head according to any one of claims 1 to 5, wherein the first resin flow stopper is a convex portion formed on the main surface.
  7.  前記凸部は、前記主面上に形成されている突起を含む、請求項6に記載のサーマルプリントヘッド。 The thermal print head according to claim 6, wherein the convex portion includes a protrusion formed on the main surface.
  8.  前記複数の発熱部及び前記配線層を覆う保護層と、
     前記保護層上に設けられている突起とをさらに備え、
     前記凸部は、前記突起を含む、請求項6に記載のサーマルプリントヘッド。
    a protective layer covering the plurality of heat generating parts and the wiring layer;
    further comprising a protrusion provided on the protective layer,
    The thermal print head according to claim 6, wherein the convex portion includes the protrusion.
  9.  前記突起は、低温同時焼成セラミック、高融点金属またはSi粉体が混合されたガラスで形成されている、請求項7または請求項8に記載のサーマルプリントヘッド。 The thermal print head according to claim 7 or 8, wherein the protrusion is formed of a low-temperature co-fired ceramic, a high melting point metal, or a glass mixed with Si powder.
  10.  前記複数の発熱部及び前記配線層を覆い、かつ、突起を含む保護層をさらに備え、
     前記凸部は前記突起を含む、請求項6に記載のサーマルプリントヘッド。
    further comprising a protective layer that covers the plurality of heat generating parts and the wiring layer and includes a protrusion,
    The thermal print head according to claim 6, wherein the convex portion includes the protrusion.
  11.  前記複数の発熱部及び前記配線層を覆う保護層をさらに備え、
     前記第1樹脂流れ止めは、前記保護層に形成されている凹部である、請求項1から請求項5のいずれか一項に記載のサーマルプリントヘッド。
    further comprising a protective layer covering the plurality of heat generating parts and the wiring layer,
    The thermal print head according to any one of claims 1 to 5, wherein the first resin flow stopper is a recess formed in the protective layer.
  12.  前記基板に取り付けられているコネクタと、
     前記封止樹脂材料の流れを止める第2樹脂流れ止めとをさらに備え、
     前記コネクタは、前記主面の前記平面視において、前記駆動回路に対して前記抵抗体層とは反対側に配置されており、かつ、前記配線層を通して前記駆動回路に電気的に接続されており、
     前記第2樹脂流れ止めは、前記主面の前記平面視において前記駆動回路と前記コネクタとの間に配置されており、かつ、前記封止部材に接触している、請求項1から請求項11のいずれか一項に記載のサーマルプリントヘッド。
    a connector attached to the board;
    further comprising a second resin flow stopper that stops the flow of the sealing resin material,
    The connector is disposed on a side opposite to the resistor layer with respect to the drive circuit in the plan view of the main surface, and is electrically connected to the drive circuit through the wiring layer. ,
    Claims 1 to 11, wherein the second resin flow stopper is disposed between the drive circuit and the connector in the plan view of the main surface, and is in contact with the sealing member. The thermal print head according to any one of the above.
  13.  前記配線層は、共通配線と、複数の個別配線とを含み、
     前記共通配線は、前記複数の発熱部に導通しており、
     前記複数の個別配線の各々は、前記複数の発熱部のうち対応するものに導通している、請求項1から請求項12のいずれか一項に記載のサーマルプリントヘッド。
    The wiring layer includes a common wiring and a plurality of individual wirings,
    The common wiring is electrically connected to the plurality of heat generating parts,
    The thermal print head according to any one of claims 1 to 12, wherein each of the plurality of individual wirings is electrically connected to a corresponding one of the plurality of heat generating parts.
  14.  前記主面の少なくとも一部を覆うグレーズ層をさらに備え、
     前記主面の法線方向において、前記グレーズ層は、前記基板と前記抵抗体層との間に配置されている、請求項1から請求項13のいずれか一項に記載のサーマルプリントヘッド。
    further comprising a glaze layer covering at least a portion of the main surface,
    The thermal print head according to any one of claims 1 to 13, wherein the glaze layer is disposed between the substrate and the resistor layer in the normal direction of the main surface.
PCT/JP2023/012247 2022-07-11 2023-03-27 Thermal printhead WO2024014066A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022111197 2022-07-11
JP2022-111197 2022-07-11

Publications (1)

Publication Number Publication Date
WO2024014066A1 true WO2024014066A1 (en) 2024-01-18

Family

ID=89536344

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/012247 WO2024014066A1 (en) 2022-07-11 2023-03-27 Thermal printhead

Country Status (1)

Country Link
WO (1) WO2024014066A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205249A (en) * 1987-02-20 1988-08-24 Konica Corp Thermal recording head
US6028619A (en) * 1997-10-06 2000-02-22 Seiko Instruments Inc. Thermal head
JP2001071547A (en) * 1999-09-03 2001-03-21 Rohm Co Ltd Thermal print head
JP2001113740A (en) * 1999-10-19 2001-04-24 Rohm Co Ltd Thermal print head, heating resistor and manufacturing method for heating resistor of thermal print head
JP2004175049A (en) * 2002-11-29 2004-06-24 Kyocera Corp Thermal head, thermal printer using the same, and manufacturing method for the thermal head
JP2005335264A (en) * 2004-05-28 2005-12-08 Kyocera Corp Thermal head
WO2014132870A1 (en) * 2013-02-27 2014-09-04 京セラ株式会社 Thermal head and thermal printer
JP2019038184A (en) * 2017-08-25 2019-03-14 ローム株式会社 Thermal print head and manufacturing method of thermal print head

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205249A (en) * 1987-02-20 1988-08-24 Konica Corp Thermal recording head
US6028619A (en) * 1997-10-06 2000-02-22 Seiko Instruments Inc. Thermal head
JP2001071547A (en) * 1999-09-03 2001-03-21 Rohm Co Ltd Thermal print head
JP2001113740A (en) * 1999-10-19 2001-04-24 Rohm Co Ltd Thermal print head, heating resistor and manufacturing method for heating resistor of thermal print head
JP2004175049A (en) * 2002-11-29 2004-06-24 Kyocera Corp Thermal head, thermal printer using the same, and manufacturing method for the thermal head
JP2005335264A (en) * 2004-05-28 2005-12-08 Kyocera Corp Thermal head
WO2014132870A1 (en) * 2013-02-27 2014-09-04 京セラ株式会社 Thermal head and thermal printer
JP2019038184A (en) * 2017-08-25 2019-03-14 ローム株式会社 Thermal print head and manufacturing method of thermal print head

Similar Documents

Publication Publication Date Title
CN105026165A (en) Thermal head and thermal printer
WO2024014066A1 (en) Thermal printhead
CN109397884B (en) Thermal print head
JP5063018B2 (en) Recording head and printer using the same
CN108883641B (en) Thermal head and thermal printer
JP5080335B2 (en) Thermal print head
JP3945838B2 (en) Manufacturing method of charge plate
JP2010173128A (en) Thermal print head and method for manufacturing the same
JP2024009569A (en) Thermal print head and manufacturing method for the same
JPH0825272B2 (en) Liquid jet recording head
JP2022018608A (en) Thermal print head and thermal printer
JP2008001062A (en) Thermal print head
CN111716915A (en) Thermal print head and thermal printer
JP6643207B2 (en) Thermal head and thermal printer
JP5638235B2 (en) Head substrate, recording head, and recording apparatus
JP5329887B2 (en) Thermal head
JP2019098667A (en) Thermal print head
WO2024004658A1 (en) Thermal printhead, thermal printer, and method for producing thermal printhead
WO2024029512A1 (en) Thermal head and thermal printer
JP4978042B2 (en) Thermal head and printing device
JP7036692B2 (en) Thermal head and thermal printer
JP2023165460A (en) thermal print head
JP2023153472A (en) Manufacturing method of thermal print head and thermal print head
JP2023128840A (en) thermal print head
JP3457821B2 (en) Thermal head

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23839245

Country of ref document: EP

Kind code of ref document: A1