WO2024013458A1 - Additive composition and use thereof for improving the pumpability of water and crude oil mixtures - Google Patents

Additive composition and use thereof for improving the pumpability of water and crude oil mixtures Download PDF

Info

Publication number
WO2024013458A1
WO2024013458A1 PCT/FR2023/051082 FR2023051082W WO2024013458A1 WO 2024013458 A1 WO2024013458 A1 WO 2024013458A1 FR 2023051082 W FR2023051082 W FR 2023051082W WO 2024013458 A1 WO2024013458 A1 WO 2024013458A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
alkylphenol
aldehyde
mass
resin
Prior art date
Application number
PCT/FR2023/051082
Other languages
French (fr)
Inventor
Frederic Tort
David FRETARD
Original Assignee
Totalenergies Onetech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Totalenergies Onetech filed Critical Totalenergies Onetech
Publication of WO2024013458A1 publication Critical patent/WO2024013458A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K8/00Compositions for drilling of boreholes or wells; Compositions for treating boreholes or wells, e.g. for completion or for remedial operations
    • C09K8/58Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids
    • C09K8/584Compositions for enhanced recovery methods for obtaining hydrocarbons, i.e. for improving the mobility of the oil, e.g. displacing fluids characterised by the use of specific surfactants
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/146Macromolecular compounds according to different macromolecular groups, mixtures thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L10/00Use of additives to fuels or fires for particular purposes
    • C10L10/18Use of additives to fuels or fires for particular purposes use of detergents or dispersants for purposes not provided for in groups C10L10/02 - C10L10/16
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1608Well defined compounds, e.g. hexane, benzene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • C10L1/238Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/02Inorganic or organic compounds containing atoms other than C, H or O, e.g. organic compounds containing heteroatoms or metal organic complexes
    • C10L2200/0295Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2200/00Components of fuel compositions
    • C10L2200/04Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/14Function and purpose of a components of a fuel or the composition as a whole for improving storage or transport of the fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2300/00Mixture of two or more additives covered by the same group of C10L1/00 - C10L1/308
    • C10L2300/20Mixture of two components

Definitions

  • the present invention relates to an additive composition
  • an additive composition comprising at least a first compound chosen from copolymers of ethylene and vinyl acetate (EVA) grafted with at least one alkyl (meth)acrylate, at least one second compound chosen from alkylphenol-aldehyde resins modified with an alkylpolyamine, at least one third compound chosen from alkoxylated alkylphenol-aldehyde resins and at least one organic solvent.
  • EVA ethylene and vinyl acetate
  • the invention also relates to the use of this composition to control the viscosity of a mixture of water and crude oil and to improve its pumpability and transport.
  • the invention further relates to a method for extracting a mixture comprising crude oil and water, comprising a step of introducing the additive composition into said mixture and a step of pumping the mixture comprising said composition .
  • the invention finally relates to a crude oil composition comprising water and an additive composition as described below.
  • the extracted crude oil mainly includes two classes of products: maltenes and asphaltenes.
  • the main constituents of maltenes are resins and waxes. These so-called waxes are made up of paraffins (saturated hydrocarbon compounds) and aromatics. Paraffins consist of linear or branched alkanes and can be liquid, oily or solid. Depending on their origin, crude oils have different proportions of waxes, which are essentially made up of long-chain n-paraffins. Depending on the type of crude oil, the proportion of these paraffins can typically be from 1 to 30% by weight of the crude oil. In a manner known per se, during the extraction of crude oil from a well, the extracted crude oil cools.
  • the paraffins crystallize, typically in the form of platelets or platelet aggregates, and the viscosity (both dynamic and kinematic) of the oil increases.
  • Platelet-shaped n-paraffin crystals can form a three-dimensional network that encloses the remaining liquid portion of the crude oil, such that the latter stops flowing, even if the predominant portion is still liquid.
  • Crystallized paraffins, and therefore highly viscous crude oil can block filters, pumps, pipes/pipelines, clog wells, and other installations or be deposited in tanks, thus requiring a high level of cleaning. Crystallization of these paraffins and thus increase in viscosity can occur in oil production wells and in pumping installations.
  • the crude oil is extracted in the form of a mixture, typically an emulsion, of crude oil and more or less salty water with an additional difficulty induced by the low temperatures encountered in the underwater depths (of the order of 4°C): thus, the mixture of water and crude oil is strongly cooled, which promotes an increase in its viscosity.
  • the presence of water in the crude oil significantly increases the viscosity of the extracted mixture, and further complicates pumping and transport operations.
  • the energy consumed during these operations is greatly increased by the presence of water in the crude oil extracted. This phenomenon also leads to a significant loss of productivity, a substantial increase in production costs and a reduction in the lifespan of the well.
  • Known additives are for example modified alkylphenol-aldehyde resins, obtained by Mannich reaction of an alkylphenol-aldehyde condensation resin with at least one aldehyde and at least one hydrocarbon compound having at least one alkylamine group, in fuel compositions as anti-sedimentation additives WASA (from the English “wax anti settling agents”) (WO2012085865), for resistance to low temperatures (WO2013189868).
  • WASA from the English “wax anti settling agents”
  • WO2013189868 for resistance to low temperatures
  • the known additives are not sufficiently effective in the case of the extraction of a mixture of water and crude oil. As explained above, the presence of water significantly increases the phenomena of increasing the viscosity of the mixture during its cooling, so that the compounds conventionally used to control the formation and growth of paraffin crystals are not sufficiently effective.
  • the known solutions consist either of heating the mixture of raw oil and water so as to lower its viscosity, or of increasing the additive contents.
  • increasing additive contents is not only expensive but also does not always make it possible to lower sufficiently the viscosity of the mixture.
  • Such heating proves, in practice, complicated to implement and expensive in energy.
  • the Applicant has now discovered a particular composition of additives, which makes it possible to lower in a very effective and synergistic manner the viscosity of mixtures of crude oils and water, and thus to facilitate the pumping and transport operations of these mixtures. This composition proved to be particularly effective when exploiting underwater oil reserves.
  • the subject of the present invention is an additive composition
  • an additive composition comprising: (1) at least one first compound chosen from copolymers of ethylene and vinyl acetate grafted with at least one (meth)acrylate group. alkyl whose alkyl chain is saturated and contains 12 to 30 carbon atoms; (2) at least one second compound chosen from modified alkylphenol-aldehyde resins; said modified alkylphenol-aldehyde resins being capable of being obtained by Mannich reaction of an alkylphenol-aldehyde condensation resin with - at least one aldehyde and/or a ketone having from 1 to 8 carbon atoms, and - at least one hydrocarbon compound having 1 to 30 carbon atoms and comprising at least one alkylpolyamine group; said alkylphenol-aldehyde condensation resin itself being capable of being obtained by condensation of: • at least one alkylphenol substituted by at least one alkyl group, linear or branched, having from 1 to 30 carbon atoms, with • at
  • the present invention also relates to a composition comprising a crude mineral oil, water and an additive composition as defined above.
  • the invention also relates to the use of the composition of additives to lower the dynamic and/or kinematic viscosity of a mixture of water and crude mineral oil, in particular (but not limited to) at low temperature.
  • the use according to the invention also aims to improve the pumpability of mixtures of water and crude mineral oil and to facilitate their transport.
  • the invention finally relates to a process for extracting a mixture of crude mineral oil and water, comprising the injection into said mixture during its pumping of the composition of additives as defined above.
  • the crude mineral oil is extracted from an underwater well.
  • the composition according to the invention comprises a first compound (1) chosen from copolymers of ethylene and vinyl acetate grafted with at least one alkyl (meth)acrylate whose alkyl chain is saturated and contains 12 to 30 carbon atoms.
  • the copolymer comprises a main chain or basic skeleton consisting of a copolymer of ethylene and vinyl acetate onto which are grafted at least one alkyl (meth)acrylate whose alkyl chain is saturated and contains 12 to 30 carbon atoms.
  • the skeleton of ethylene and vinyl acetate Compound (1) comprises a main chain or basic skeleton consisting of a copolymer of ethylene and vinyl acetate.
  • Such a copolymer therefore comprises a repeating unit of formula (I) as follows:
  • This motif comes from the ethylene monomer.
  • the unit of formula (I) represents from 71 to 94% by moles relative to the total number of moles of units of the grafted copolymer (1), more preferably from 78 to 88% by moles, more preferably still from 80 to 88% in moles, and better still from 82 to 87% in moles.
  • the copolymer also comprises one or more repeating unit(s) of vinyl acetate corresponding to the following formula (II): in which R 1 , R 2 , and R 3 represent a hydrogen atom, and R 4 represents a methyl group (CH 3 ).
  • the unit(s) of formula (II) preferably represent(s) from 5 to 25% by mole, relative to the total number of moles of units of the graft copolymer (1), more preferably from 10% to 15% by mole.
  • the units of formula (II) come from monomers of the C2 carboxylic acid ester and vinyl alcohols, that is to say the vinyl acetate ester of formula (IIA) following: in which R 1 , R 2 , R 3 and R 4 are as defined above.
  • the distribution of the motifs (I) and (II) in the skeleton is preferably of statistical type.
  • the backbone of the copolymers (1) used in the present invention contains only units of formula (I) and units of formula (II).
  • Such ethylene and vinyl acetate skeletons can be prepared according to polymerization processes known per se.
  • the different polymerization techniques and conditions are widely described in the literature and fall within the general knowledge of those skilled in the art. They can in particular be synthesized by conventional radical polymerization as described in document US3627838: we generally proceed by mixing the different monomers in an appropriate solvent, such as benzene, and the copolymerization is initiated by means of a radical polymerization initiator, such as a peroxide such as tert-butyl hydroperoxide.
  • a radical polymerization initiator such as a peroxide such as tert-butyl hydroperoxide.
  • the polymerization conditions are known to those skilled in the art.
  • the reaction temperature can range from 150 to 280°C, and the reaction can be carried out at high pressure (1500 to 2000 bars).
  • the skeleton is prepared by conventional radical polymerization, it may be necessary to carry out, after the polymerization itself, a purification by any appropriate separation technique (in particular by chromatography) so as to isolate a copolymer having the required characteristics in terms of molar mass and dispersity.
  • the ethylene and vinyl acetate skeleton is prepared using the techniques controlled radical polymerizations (PRC).
  • PRC controlled radical polymerizations
  • Controlled radical polymerization techniques known per se, have the advantage of being able to lead directly to copolymers having the required molar mass and dispersity characteristics, such that a separative purification can, depending on the conditions used, not be necessary.
  • Alkyl (meth)acrylate grafts The basic skeleton consisting of a copolymer of ethylene and vinyl acetate as described above is grafted with at least one alkyl (meth)acrylate including the alkyl chain is saturated and contains 12 to 30 carbon atoms.
  • Such a graft typically corresponds to the following formula (III): in which R 5 , R 6, identical or different, represent a hydrogen atom or a C 1 to C 4 alkyl group; R 7 represents a hydrogen atom or a methyl group and R 8 represents a saturated C 12 to C 30 alkyl chain.
  • the alkyl (meth)acrylate graft(s) have a saturated alkyl chain comprising from 14 to 26 carbon atoms, and preferably from 18 to 22 carbon atoms.
  • R5, R 6 , and R 7, identical or different represent a hydrogen atom or a methyl group.
  • R 5 , R 6 and R 7 all represent a hydrogen atom; or R 5 , R 6 represent a hydrogen atom and R 7 represents a methyl group.
  • R 8 represents a linear saturated alkyl chain. More preferably, R 8 is chosen from the groups nC 18 H 37 , nC 19 H 39 , nC 20 H 41 , nC 21 H 43 , and nC 22 H 45 .
  • - R 5 , R 6 , and R 7 all represent a hydrogen atom
  • - R 8 is chosen from the groups nC 18 H 37 , nC 19 H 39 nC 20 H 41 , nC 21:43 , and nC 22:45 .
  • R 8 is chosen from a mixture of the groups nC 18 H 37 , nC 20 H 41 , and nC 22 H 45 , that is to say that the alkyl (meth)acrylate is the acrylate behenyl.
  • Grafting by the alkyl (meth)acrylate function on the ethylene and vinyl acetate skeleton can be carried out by any grafting process known per se, such as grafting by conventional radical route or controlled radical route, or by ATRP (atom transfer polymerization). The different grafting techniques and conditions are widely described in the literature and fall within the general knowledge of those skilled in the art. Grafting by radical route is particularly preferred. The grafting is carried out at the level of the vinyl acetate: either on the methyl group of the acetate, or on the tertiary carbons of the copolymer backbone, depending on the nature of the polymerization initiator.
  • the graft(s) of formula (III) preferably represent(s) from 1 to 4% by mole, relative to the total number of moles of units of the grafted copolymer (1), more preferably from 1.5 to 3% by mole .
  • the molar mass in number Mn of the graft copolymers (1) according to the invention, measured by GPC, is preferably in the range going from 5000 to 50,000 g.mol -1 , preferably from 10,000 to 40,000 g.mol -1 , better from 12,000 to 32,000 g.mol -1 .
  • the molar mass by weight Mw of the graft copolymers (1) according to the invention, measured by GPC, is preferably in the range going from 23,500 to 230,000 g.mol -1 , preferably from 46,500 to 190,000 g.mol -1 , better from 55,000 to 150,000 g.mol -1 .
  • the total content of the grafted ethylene and vinyl acetate copolymer(s) is in the range going from 1 to 15% by mass, preferably from 2 to 10% by mass, and more preferably from 2, 5 to 5% by mass, relative to the total mass of the additive composition.
  • the modified alkylphenol-aldehyde resin(s) used in the present invention is(are) capable of being obtained by Mannich reaction of a alkylphenol-aldehyde condensation resin with - at least one aldehyde and/or one ketone having from 1 to 8 carbon atoms, and - at least one hydrocarbon compound having from 1 to 30 carbon atoms and comprising at least one alkylpolyamine group.
  • Said alkylphenol-aldehyde condensation resin is itself capable of being obtained by condensation of: • at least one alkylphenol substituted by at least one alkyl group, linear or branched, having from 1 to 30 carbon atoms, with • least one aldehyde and/or a ketone having 1 to 8 carbon atoms.
  • the modified alkylphenol-aldehyde resin(s) is(are) capable of being obtained by Mannich reaction of a condensation resin alkylphenol aldehyde with - at least one aldehyde and/or a ketone having from 1 to 4 carbon atoms, and - at least one hydrocarbon compound having from 4 to 30 carbon atoms and comprising at least one alkylpolyamine group, said condensation resin alkylphenol-aldehyde itself being capable of being obtained by condensation of: • at least one mono-alkylphenol substituted by at least one alkyl group, linear or branched, having from 4 to 30 carbon atoms, with • at least one aldehyde and/or a ketone having 1 to 4 carbon atoms.
  • the alkylphenol-aldehyde condensation resin can be chosen from any resin of this type already known and in particular, those described in documents EP857776 and EP1584673.
  • the modified alkylphenol-aldehyde resin according to the invention can advantageously be obtained from at least one para-substituted alkylphenol. Para-nonylphenol is preferably used.
  • the average number of phenolic nuclei per molecule of nonylphenol-aldehyde resin is between 6 and 25, preferably between 8 and 17, and even more preferably between 9 and 16.
  • the number of phenolic nuclei can be determined by nuclear magnetic resonance (NMR) or gel permeation chromatography (GPC).
  • the modified alkylphenol-aldehyde resin is obtained from the same aldehyde or the same ketone as said alkylphenol-aldehyde condensation resin.
  • the modified alkylphenol-aldehyde resin can be obtained from at least one aldehyde and/or at least one ketone chosen from formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde. , 2-ethyl-hexanal, benzaldehyde and/or acetone.
  • the modified alkylphenol-aldehyde resin can be obtained from at least one aldehyde, preferably at least formaldehyde (also called methane).
  • the modified alkylphenol-aldehyde resin can be obtained from at least one alkylpolyamine having at least two groups chosen from the primary amine and secondary amine groups.
  • the alkylpolyamine is advantageously chosen from primary and/or secondary polyamines substituted by, respectively, one or two alkyl groups comprising, preferably, from 12 to 24 carbon atoms, more preferably from 12 to 22 carbon atoms.
  • the modified alkylphenol-aldehyde resin can be obtained from at least one alkylpolyamine having at least two amine groups, and preferably at least three amine groups.
  • the modified alkylphenol-aldehyde resin can be obtained from at least one alkylpolyamine comprising a fatty chain having from 12 to 24 carbon atoms, preferably from 12 to 22 carbon atoms. .
  • the modified alkylphenol-aldehyde resin can be obtained from at least one alkylpolyamine having at least two amine groups, preferably at least three amine groups, and comprising a fatty chain having 12 to 24 carbon atoms, preferably 12 to 22 carbon atoms.
  • Commercial alkylpolyamines are generally not pure compounds but mixtures.
  • Trinoram® which is a tallow dipropylenetriamine, also known under the name N-(Tallowalkyl)dipropylenetriamine (CAS 61791-57-9).
  • the total content of the modified alkylphenol-aldehyde resin(s) is included in the range going from 0.2 to 5% by mass, preferably 0.5 to 3% by mass, and more preferably 0.5 to 1.5% by mass, relative to the total mass of the additive composition.
  • the alkylphenol-aldehyde condensation resin is advantageously obtained by condensation of: • at least one alkylphenol whose alkyl group, linear or branched, contains from 1 to 30 carbon atoms, preferably from 4 to 18 carbon atoms, and more preferably still from 9 to 12 carbon atoms with • at least one aldehyde and/or a ketone having from 1 to 8 carbon atoms, preferably from 1 to 4 carbon atoms.
  • the alkylphenol(s) are advantageously substituted in para.
  • the resin is preferably obtained from at least one aldehyde and/or at least one ketone chosen from formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, 2-ethyl-hexanal, benzaldehyde and/or acetone.
  • the alkylphenol-aldehyde resin is obtained from at least one aldehyde, preferably at least formaldehyde (also called methanal).
  • said resin is obtained by condensation of formaldehyde with at least one alkylphenol whose alkyl group contains from 4 to 18 carbon atoms, and more preferably from 9 to 12 carbon atoms.
  • the average number of phenolic nuclei per molecule of nonylphenol-aldehyde resin is between 5 and 15.
  • the number of phenolic nuclei can be determined by nuclear magnetic resonance (NMR) or gel permeation chromatography (GPC ).
  • Said resin is alkoxylated, that is to say it is grafted by (poly)alkoxy groups onto its phenol functions.
  • said resin is polyethoxylated and/or polypropoxylated, and more preferably polyethoxylated.
  • the average molar percentage of alkoxy groups per mole of alkoxylated resin is preferably in the range from 75% to 95%.
  • the average molar percentage of ethoxy groups per mole of polyethoxylated resin is in the range from 75% to 95%.
  • the molar mass by weight Mw of the alkoxylated alkylphenol-aldehyde condensation resin according to the invention, measured by GPC, is preferably in the range going from 1,000 to 50,000 g.mol- 1 , preferably from 2,000 to 10,000 g. mol - 1 and more preferably from 3,000 to 6,000 g.mol - 1 .
  • the total content of the alkoxylated alkylphenol resin(s) is in the range going from 1 to 20% by mass, preferably from 2 to 15% by mass, and more preferably from 3 to 10 % by mass, relative to the total mass of the additive composition.
  • the additive composition according to the invention further comprises at least one organic solvent.
  • the organic solvent is chosen from aliphatic and/or aromatic hydrocarbons, and/or chosen from mixtures of hydrocarbons, for example gasoline, diesel, kerosene fractions, decane, pentadecane. , toluene, xylene, ethylbenzene, polyethers.
  • the solvent is chosen from aromatic hydrocarbons and more preferably from xylenes and mixtures of aromatic solvents comprising aromatic compounds having 9 and/or 10 carbon atoms.
  • aromatic solvents the following commercial products can be used: Solvarex 10®, Solvarex 10 LN®, Solvent Naphta®, Shellsol AB®, Shellsol D®, Solvesso 150®, Solvesso 150 ND®.
  • the content of the organic solvent(s) is advantageously at least 30% by mass, preferably at least 40% by mass, relative to the total mass of the composition of additives.
  • this content is included in the range going from 40 to 95% by mass, preferably from 50 to 90% by mass, more preferably from 60 to 85% by mass, relative to the total mass of the additive composition.
  • the composition of additives The composition according to the invention is such that the mass ratio of the quantity of the first compound (1) to the quantity of the second compound (2) is advantageously included in the range going from 2 to 10, preferably from 2 to 5, more preferably from 2.5 to 4.
  • the composition of additives may also comprise one or more additional additive(s), different from the compounds (1), (2 ) and (3) described above.
  • the composition further comprises at least one copolymer with ethylene oxide (EO) and propylene oxide (PO) blocks.
  • the average molar ratio between the number of EO groups and the number of PO groups in the block copolymer can typically be in the range of 40:60 to 60:40.
  • the molar mass by weight Mw of the EO/PO block copolymers useful in the invention, measured by GPC, is preferably in the range from 6,000 to 26,000 g.mol -1 .
  • the total content of the ethylene oxide and propylene oxide block copolymer(s) is in the range going from 0.5 to 10% by mass, preferably from 1 to 5% by mass, relative to the total mass of the additive composition.
  • the composition further comprises at least one polyoxyalkylenated polyethyleneimine, and preferably at least one polyoxyethylenated polyethyleneimine.
  • the total content of the polyoxyethylenated polyethyleneimine(s) is in the range going from 0.5 to 10% by mass, preferably from 1 to 5% by mass, relative to the total mass of the composition of additives.
  • Additional additives which may also be incorporated into the composition are, but not limited to: dispersants, corrosion inhibitors, biocides, demulsifiers or anti-foaming agents, paraffin deposit inhibitors; pour point depressants, paraffin anti-sedimentation additives; H 2 S scavengers, organic deposit inhibitors such as naphthenic acids, mineral deposit inhibitors, markers, thermal stabilizers, emulsifiers, friction reducing agents, surfactants, and mixtures thereof.
  • anti-foaming additives in particular (but not limited to) chosen from polysiloxanes, oxyalkylated polysiloxanes, and amides of fatty acids derived from vegetable oils or animals
  • dispersing and/or anti-corrosion additives in particular (but not limited to) chosen from the group consisting of amines, succinimides, alkenylsuccinimides, polyalkylamines, polyalkyl polyamines, polyetheramines; imidazolines; quaternary ammonium salts derived from the above-mentioned compounds; fatty acids and their ester or amide derivatives, in particular glycerol monooleate, and mono- and polycyclic carboxylic acid derivatives; c) crystallization modifier additives, paraffin deposit inhibitor additives, pour point depressant additives; low temperature rheology modifiers such as ethylene/vinyl propionate (EVP)
  • EDP ethylene/vinyl propionate
  • the additive composition comprises a dispersing agent.
  • the dispersant is chosen from surfactants, sulfonates, sulfonic acids (naphthalene, dodecylbenzene, etc.).
  • the crude oil composition This composition comprises at least one crude mineral oil (or crude oil), water and an additive composition as described above.
  • the crude mineral oil comes from a natural reserve or rock formation, preferably underground, underwater, and more preferably underwater.
  • the raw mineral oil(s) can be alone or mixed with other components, such as gas, or other additives used during drilling (anti-limescale, etc.).
  • This composition comprises water, which may contain salts in particular sodium chloride (brine).
  • the water content of the composition is typically in the range from 1 to 80% by mass, preferably from 5 to 60% by mass, and better still from 8 to 50% by mass.
  • the content of the additive composition is in the range going from 20 to 1500 ppm by mass, preferably from 50 to 1000 ppm, more preferably from 75 to 500 ppm, and better still from 100 to 300 ppm.
  • the invention also relates to the use of the composition of additives described above to lower the dynamic and/or kinematic viscosity of a mixture of water and raw mineral oil, preferably at temperature less than or equal to 30°C, more preferably less than or equal 25°C, more preferably less than or equal 20°C, more preferably less than or equal 15°C, more preferably less than or equal 10°C, more preferably less than or equal 5 °C, more preferably even less than or equal to 0°C.
  • dynamic viscosity characterizes the resistance to laminar flow of an incompressible fluid.
  • the viscosity is measured with a rheometer, for example of the Anton Paar MCR 302 type, 27mm coaxial cylinder geometry, CSR (controlled shear rate) control: the flow curves are determined and the viscosity.
  • CSR controlled shear rate
  • Another object of the invention is the use of the composition of additives to improve the pumpability of mixtures of water and crude mineral oil.
  • the additive composition according to the invention is also used to lower the pour point of a mixture of crude mineral oil and water.
  • the pour point is the minimum temperature at which a substance (crude oil) will still flow. It is measured according to ASTM D5853.
  • the additive composition according to the invention is also used to reduce the shear stress, the flow threshold and/or the viscosity (kinematic and/or dynamic) during the flow of the mixture, preferably at a lower temperature or equal to 85°C, more preferably less than or equal 75°C, more preferably still less than or equal 65°C, better still less than or equal 55°C, more preferably less than or equal 45°C, more preferably less than or equal 35°C , more preferably less than or equal to 25°C, more preferably less than or equal 10°C, more preferably less than or equal to 5°C, more preferably still less than or equal to 0°C.
  • Shear stress is the ratio of a tangential force applied to a surface to the area of the tangential section to the force.
  • the shear stress is measured with an Anton Paar MCR 302 rheometer, 27mm coaxial cylinder geometry, CSR control.
  • the flow curves allow the shear stress to be deduced.
  • the mixture of crude mineral oil and water typically contains from 1 to 80% by weight of water, preferably from 5 to 60% by weight, and better still from 8 to 50% by weight of water, relative to the mass of said mixture.
  • the additive composition is used at a content in the range from 20 to 1500 ppm by weight, preferably from 50 to 1000 ppm, more preferably from 75 to 500 ppm, and even better from 100 to 300 ppm.
  • the process for reducing the viscosity of a liquid petroleum product also relates to a process for extracting a mixture of crude mineral oil and water comprising a step of pumping said mixture, characterized in that a additive composition as described above is injected into said mixture.
  • the injection of the additive composition is done during pumping of the mixture, preferably at the outlet of the well (or wellhead).
  • the flow rate of injected composition is preferably regulated proportionally to the pumping flow rate of the mixture of crude oil and water, so as to obtain the desired concentration.
  • the additive composition is injected into the mixture at a content in the range from 20 to 1500 ppm by mass, preferably from 50 to 1000 ppm, more preferably from 75 to 500 ppm, and more preferably 100 to 300 ppm by mass, based on the total mass of the crude oil and water composition.
  • the mixture of raw mineral oil and water is extracted from an underwater well.
  • Example 1 preparation of an additive composition according to the invention
  • the examples use the following additives:
  • EVA grafted copolymer of ethylene and vinyl acetate
  • Mw ethylene and vinyl acetate
  • the elution solvent is tetrahydrofuran and the standards consist of polystyrenes.
  • second compound (2) a modified alkylphenol-aldehyde resin, the synthesis method of which is detailed below.
  • third compound (3) an alkylphenol-aldehyde resin modified by polyethoxylation. Synthesis protocol for modified alkylphenol-aldehyde resin 2: In a first step, an alkylphenol-aldehyde condensation resin was prepared by condensation of para-nonylphenol and formaldehyde (for example according to the procedure described in EP857776).
  • This resin has a viscosity at 50°C of between 1800 and 4800 mPa.s (viscosity measured at 50°C using a dynamic rheometer with a shear speed of 10 s -1 on the resin diluted with 30% by mass of aromatic solvent (Solvesso 150 ®)).
  • the alkylphenol-aldehyde resin resulting from the first step was modified by Mannich reaction by adding 2 molar equivalents of formaldehyde and 2 molar equivalents of tallow dipropylenetriamine, known under the name N- (Tallowalkyl)dipropylenetriamine and marketed for example under the name Trinoram S®, compared to the alkylphenol-aldehyde resin resulting from the first step.
  • N- (Tallowalkyl)dipropylenetriamine known under the name N- (Tallowalkyl)dipropylenetriamine and marketed for example under the name Trinoram S®
  • a composition of additives C according to the invention was prepared, from the following components, the contents of which are indicated as a percentage by mass of active material, relative to the total mass of composition C: - ethylene copolymer and grafted vinyl acetate (1): 2.8% by mass; - modified alkylphenol-aldehyde resin (2): 0.95% by mass; - ethoxylated alkylphenol aldehyde resin (3): 4.8% by mass; - aromatic solvents: Qs 100% by mass
  • Example 2 dynamic viscosity measurements Viscosity measurements were carried out on a crude oil alone, then on the same crude oil with added water and finally on the mixture of crude oil, water and the additive composition C of Example 1.
  • the crude oil used is an oil of Brazilian origin having a density at 15°C of 0.911 g.cm -3 , a pour point (ASTM D5853) of +15°C, a wax content of 9.5% by mass and an asphaltene content of 2.11% by mass.
  • the above crude oil was added with 10% by weight of water, and the viscosity of this mixture was measured.
  • 200 ppm by weight of composition C was added, and the viscosity of the mixture was measured.
  • the dynamic viscosity measurements were carried out at 23°C and 18°C, using an Anton Paar MCR 302 rheometer, 27mm coaxial cylinder geometry, CSR control at a shear rate of 38 s -1 .

Abstract

The present invention relates to an additive composition comprising: (1) at least one copolymer of ethylene and vinyl acetate grafted with at least one alkyl (meth)acrylate group, the alkyl chain of which is saturated and contains 12 to 30 carbon atoms; (2) at least one modified alkylphenol-aldehyde resin capable of being obtained by the Mannich reaction of an alkylphenol-aldehyde condensation resin with at least one aldehyde and/or a ketone having from 1 to 8 carbon atoms, and at least one hydrocarbon compound having from 1 to 30 carbon atoms and comprising at least one alkyl polyamine group; (3) at least one alkoxylated alkylphenol-aldehyde condensation resin; and (4) at least one organic solvent. The present invention also relates to the use of such an additive composition to lower the viscosity of a crude mineral oil and water mixture, and/or to improve the pumpability of such a mixture.

Description

DESCRIPTION TITRE : COMPOSITION D’ADDITIFS ET SON UTILISATION POUR AMELIORER LA POMPABILITE DES MELANGES D’EAU ET DE PETROLE BRUT Domaine technique La présente invention concerne une composition d’additifs comprenant au moins un premier composé choisi parmi les copolymères d’éthylène et d’acétate de vinyle (EVA) greffés par au moins un (méth)acrylate d’alkyle, au moins un second composé choisi parmi les résines alkylphénol-aldéhyde modifiées par une alkylpolyamine, au moins un troisième composé choisi parmi les résines alkylphénol-aldéhyde alcoxylées et au moins un solvant organique. L’invention concerne également l’utilisation de cette composition pour contrôler la viscosité d’un mélange d’eau et de pétrole brut et pour en améliorer la pompabili té et le transport. L’invention concerne en outre un procédé d’extraction d’un mélange comprenant du pétrole brut et de l’eau, comprenant une étape d’introduction dans ledit mélange de la composition d’additifs et une étape de pompage du mélange comprenant ladite composition. L’invention concerne enfin une composition de pétrole brut comprenant de l’eau et une composition d’additifs telle que décri te ci- après. Etat de la technique antérieure Les formations souterraines de pétrole brut , également couramment dénommé « huile minérale brute » ou « huile brute » ou « pétrole brut » présentent des températures relativement élevées. Au cours de son extraction de la formation souterraine vers la surface, l’huile brute se refroidit. Son refroidissement varie en fonction de la température de production et des conditions de stockage ou de transport. L’huile brute extraite comprend principalement deux classes de produits : les maltènes et les asphaltènes. Les maltènes ont pour principaux constituants des résines et des cires. Ces dites cires sont constituées de paraffines (des composés hydrocarbonés saturés) et d’aromatiques. Les paraffines sont constituées d’alcanes linéaires ou ramifiés et peuvent être liquides, huileuses ou solides. Selon leur origine, les huiles brutes ont différentes proportions de cires, qui sont essentiel lement constituées de n-paraffines à longue chaîne. Selon le type de pétrole brut, la proportion de ces paraffines peut typiquement être de 1 à 30% en poids du pétrole brut . De manière connue en soi , lors de l’extraction d’une l’huile brute d’un puits l’huile brute extraite se refroidit. Il en résulte que les paraffines cristallisent , typiquement sous forme de plaquettes ou d’agrégats de plaquettes et que la viscosité (tant dynamique que cinématique) de l’huile augmente. Les cristaux de n-paraffines en forme de plaquettes peuvent former un réseau tridimensionnel qui renferme la partie restant liquide du pétrole brut, de telle sorte que ce dernier cesse de couler, même si la part ie prédominante est encore liquide. Les paraffines cristallisées, et donc l’huile brute très visqueuse, peuvent bloquer les filtres, les pompes, les canalisations/pipelines, boucher le puits , et autres installations ou être déposées dans des réservoirs, impliquant ainsi un haut niveau de nettoyage. La cristallisation de ces paraffines et donc l’augmentation de la viscosité peuvent survenir dans les puits de production de pétrole et dans les installations de pompage. Ces paraffines cristallisées nuisent considérablement à la fluidité de l 'huile, elles augmentent sa viscosité et rendent les opérations de pompage et de transport de celle-ci plus difficiles, et plus onéreuses notamment car elles nécessitent plus d’énergie. Un problème additionnel se pose lorsque l’huile brute extraite est mélangée à de l’eau. C’est le cas par exemple d’un puits en production, dans lequel la quantité d’eau présente augmente progressivement au fil du temps. L’eau provient de sources naturelles présentes dans le sol ou correspond à de l’eau réinjectée dans le puits pour maintenir un niveau de pression suffisant. C’est également le cas des puits sous-marins. Dans le cas de l’exploitation d’un puits sous-marin, le pétrole brut est extrait sous forme d’un mélange, typiquement d’une émulsion, d’huile brute et d’eau plus ou moins salée avec une difficulté supplémentaire induite par les basses températures rencontrées dans les fonds sous-marins (de l’ordre de 4°C) : ainsi, le mélange d’eau et d’huile brute est fortement refroidi ce qui favorise l’augmentation de sa viscosité. La présence d’eau dans l’huile brute augmente de manière importante la viscosité du mélange extrait , et complique encore plus les opérations de pompage et de transport. L’énergie consommée lors de ces opérations est largement majorée par la présence d’eau dans l’huile brute extraite. Ce phénomène entraîne également une perte de productivité importante, une augmentation substantiel le des coûts de production et une diminution de la durée de vie du puits. De manière connue en soi, il est classique d’ajouter aux huiles brutes des additifs visant à réduire les phénomènes de cristallisation des paraffines à basse température, notamment des additifs modificateurs de la cristallisation permettant de modifier la morphologie et la taille des cristaux de paraffines et/ou de limiter les phénomènes d’agglomération des cristaux de paraffines. Des additifs connus sont par exemple des résines alkylphénol- aldéhyde modifiées, obtenues par réaction de Mannich d'une résine de condensation alkylphénol-aldéhyde avec au moins un aldéhyde et au moins un composé hydrocarboné ayant au moins un groupement alkylamine, dans des compositions de carburant comme additifs anti- sédimentation WASA (de l’anglais « wax anti settling agents ») (WO2012085865), pour la tenue aux basses températures (WO2013189868). Cependant, les additifs connus ne sont pas suffisamment efficaces dans le cas de l’extraction d’un mélange d’eau et d’huile brute. Comme exposé ci-avant, la présence d’eau accroit de manière importante les phénomènes d’augmentation de la viscosité du mélange lors de son refroidissement, de telle sorte que les composés classiquement util isés pour contrôler la formation et la croissance de cristaux de paraffines ne sont pas suffisamment efficaces. Pour y remédier, les solutions connues consistent soit à chauffer le mélange d’huile brute et d’eau de manière à abaisser sa viscosité, soit à augmenter les teneurs en additifs. Toutefois, l’augmentation des teneurs en additifs non seulement est couteuse mais en outre ne permet pas toujours d’abaisser suffisamment la viscosité du mélange. En outre, i l n’est pas toujours possible de chauffer le mélange lors de son extraction, notamment dans le cas d’un puits sous-marin. Un tel chauffage s’avère, en pratique, compliqué à mettre en œuvre et couteux en énergie. La Demanderesse a maintenant découvert une composition particulière d’additifs, qui permet d’abaisser de manière très efficace, et synergique, la viscosité des mélanges de pétroles bruts et d’eau, et de facili ter ainsi les opérations de pompage et de transport de ces mélanges. Cette composition s’est avérée particulièrement efficace lors de l’exploitation de réserves de pétrole sous-marines. Résumé de l’invention La présente invention a pour objet une composition d’additifs comprenant : (1) au moins un premier composé choisi parmi les copolymères d’éthylène et d’acétate de vinyle greffés par au moins un groupement (méth)acrylate d’alkyle dont la chaine alkyle est saturée et contient de 12 à 30 atomes de carbone ; (2) au moins un second composé choisi parmi les résines alkylphénol- aldéhyde modifiées ; lesdites résines alkylphénol-aldéhyde modifiées étant susceptibles d’être obtenues par réaction de Mannich d'une résine de condensation alkylphénol-aldéhyde avec - au moins un aldéhyde et/ou une cétone ayant de 1 à 8 atomes de carbone, et - au moins un composé hydrocarboné ayant de 1 à 30 atomes de carbone et comprenant au moins un groupement alkylpolyamine ; ladite résine de condensation alkylphénol-aldéhyde étant elle-même susceptible d'être obtenue par condensation : • d'au moins un alkylphénol substitué par au moins un groupement alkyle, linéaire ou ramifié, ayant de 1 à 30 atomes de carbone, avec • au moins un aldéhyde et/ou une cétone ayant de 1 à 8 atomes de carbone ; (3) au moins un troisième composé choisi parmi les résines de condensation alkylphénol-aldéhyde alcoxylées ; et ; (4) au moins un solvant organique. La présente invention concerne également une composition comprenant une huile minérale brute, de l’eau et une composition d’additifs telle que définie ci-avant. L’invention a également pour objet l’utilisation de la composition d’addit ifs pour abaisser la viscosité dynamique et/ou cinématique d’un mélange d’eau et d’huile minérale brute, notamment (mais non limitativement) à basse température. L’utilisation selon l’invention vise également à améliorer la pompabil ité des mélanges d’eau et d’huile minérale brute et à en facili ter le transport. L’invention concerne enfin un procédé d’extraction d’un mélange d’huile minérale brute et d’eau, comprenant l’injection dans ledit mélange au cours de son pompage de la composition d’additifs telle que définie ci-avant. Selon un mode de réalisation préféré, l’huile minérale brute est extraite d’un puits sous-marin. D’autres objets, caractéristiques, aspects et avantages de l’invention apparaîtront encore plus clairement à la lecture de la description et des exemples qui suivent. Dans ce qui va suivre, et à moins d’une autre indication, les bornes d’un domaine de valeurs sont comprises dans ce domaine, notamment dans les expressions : « compris entre… et…», « compris dans la gamme allant de … à… », et « allant de … à … ». Par ai lleurs, les expressions « au moins un » et « au moins » utilisées dans la présente description sont respectivement équivalentes aux expressions « un ou plusieurs » et « supérieur ou égal ». Enfin, de manière connue en soi , on désigne par composé en CN un composé contenant dans sa structure chimique N atomes de carbone. Description détaillée de l’invention Le copolymère greffé (1) La composition selon l’invention comprend un premier composé (1) choisi parmi les copolymères d’éthylène et d’acétate de vinyle greffés par au moins un (méth)acrylate d’alkyle dont la chaine alkyle est saturée et contient de 12 à 30 atomes de carbone. En d’autres termes, le copolymère comprend une chaine principale ou squelette de base constitué d’un copolymère d’éthylène et d’acétate de vinyle sur lequel sont greffés au moins un (méth)acrylate d’alkyle dont la chaine alkyle est saturée et contient de 12 à 30 atomes de carbone. Le squelette d’éthylène et d’acétate de vinyle Le composé (1) comprend une chaine principale ou squelette de base constitué d’un copolymère d’éthylène et d’acétate de vinyle. Un tel copolymère comprend donc un motif répétitif de formule (I) suivante :
Figure imgf000007_0001
Ce motif est issu du monomère éthylène. De préférence, le motif de formule (I) représente de 71 à 94% en moles par rapport au nombre de moles total de motifs du copolymère greffé (1), plus préférentiellement de 78 à 88% en moles, plus préférentiellement encore de 80 à 88% en moles, et mieux encore de 82 à 87% en moles. Le copolymère comprend également un ou plusieurs motif(s) répétitif(s) d’acétate de vinyle répondant à la formule (II) suivante :
Figure imgf000007_0002
dans laquelle R1, R2, et R3 , représentent un atome d’hydrogène, et R4 représente un groupe méthyle (CH3). Le ou les motifs de formule (II) représente(nt) de préférence de 5 à 25% en moles, par rapport au nombre de moles total de motifs du copolymère greffé (1), plus préférentiellement de 10% à 15% en moles. Les motifs de formule (II) sont issus de monomères de l’ester d’acide carboxylique en C2 et d’alcools vinyliques, c 'est-à-dire l’ester d’acétate de vinyle de formule (IIA) suivante :
Figure imgf000008_0001
dans laquelle R1, R2, R3 et R4 sont tels que définis ci-avant. La répartition des motifs (I) et (II) dans le squelette est de préférence de type statistique. De préférence, le squelette des copolymères (1) employés dans la présente invention contient uniquement des motifs de formule (I) et des motifs de formule (II). De tels squelettes d’éthylène et d’acétate de vinyle peuvent être préparés selon des procédés de polymérisation connus en soi. Les différentes techniques et conditions de polymérisation sont largement décrites dans la li ttérature et relèvent des connaissances générales de l’homme de l’art . Ils peuvent notamment être synthétisés par polymérisation radicalaire classique comme décrit dans le document US3627838 : on procède généralement par mélange des différents monomères dans un solvant approprié, comme le benzène, et la copolymérisation est amorcée au moyen d’un agent amorceur de polymérisation radicalaire, comme un peroxyde tel que l’hydroperoxyde de tert-butyle. Les conditions de polymérisation sont connues de l’homme du métier. La température de réaction peut se situer de 150 à 280°C, et la réaction peut être effectuée à haute pression (1500 à 2000 bars). Dans le cas où le squelette est préparé par polymérisation radicalaire classique, il peut être nécessaire de procéder après la polymérisation proprement dite à une purification par toute technique de séparation appropriée (notamment par chromatographie) de manière à isoler un copolymère ayant les caractéristiques requises en termes de masse molaire et de dispersité. Selon un mode de réalisation préféré, le squelette d’éthylène et d’acétate de vinyle est préparé en uti lisant les techniques polymérisations radicalaires contrôlées (PRC). Les techniques de polymérisation radicalaire contrôlée, connues en soi , présentent l’avantage de pouvoir conduire directement à des copolymères ayant les caractérist iques de masse molaire et de dispersité requises, de telle sorte qu’une purification séparative peut, selon les conditions util isées, ne pas être nécessaire. Parmi ces techniques, on peut citer notamment les polymérisations gouvernées par terminaison réversible ou par transfert réversible (ou transfert dégénératif , en anglais « degenerative transfer »). Parmi ces techniques PRC, celles contrôlées par transfert dégénératif sont préférées et parmi celles-ci la polymérisation radicalaire par transfert de chaîne réversible par addit ion-fragmentation (RAFT en anglais « Reversible Addition-Fragmentation Chain Transfer ») est encore plus préférée. Les greffons (méth)acrylate d’alkyle Le squelette de base constitué d’un copolymère d’éthylène et d’acétate de vinyle tel que décrit ci-avant est greffé par au moins un (méth)acrylate d’alkyle dont la chaine alkyle est saturée et contient de 12 à 30 atomes de carbone. Un tel greffon répond typiquement à la formule (III) suivante :
Figure imgf000009_0001
dans laquelle R5, R6 identiques ou différents, représentent un atome d’hydrogène ou un groupe alkyle en C1 à C4 ; R7 représente un atome d’hydrogène ou un groupe méthyle et R8 représente une chaine alkyle saturée en C12 à C30. Dans un mode de réalisation préféré, le ou les greffon(s) (méth)acrylate d’alkyle ont une chaine alkyle saturée et comprenant de 14 à 26 atomes de carbone, et de préférence de 18 à 22 atomes de carbone Selon un mode de réalisation préféré, R5, R6, et R7 , identiques ou différents, représentent un atome d’hydrogène ou un groupe méthyle. De manière particulièrement préférée, R5, R6 et R7 représentent tous un atome d’hydrogène ; ou R5, R6 représentent un atome d’hydrogène et R7 représente un groupe méthyle. Selon un mode de réalisation également préféré, R8 représente une chaine alkyle saturée linéaire. Plus préférentiellement, R8 est choisi parmi les groupes n-C18H37, n-C19H39 n-C20H41, n-C21H43, et n-C22H45. Selon un mode de réalisation particulièrement préféré : - R5, R6, et R7 représentent tous un atome d’hydrogène, et - R8 est choisi parmi les groupes n-C18H37, n-C19H39 n-C20H41, n-C21H43, et n-C22H45. De manière très préférée, R8 est choisi parmi un mélange des groupes n-C18H37, n-C20H41, et n-C22H45, c’est-à-dire que le (méth)acrylate d’alkyle est l’acrylate de béhényle. Le greffage par la fonction (méth)acrylate d’alkyle sur le squelette d’éthylène et d’acétate de vinyle peut être réalisé par tout procédé de greffage connu en soi , tels que le greffage par voie radicalaire classique ou voie radicalaire contrôlée, ou par ATRP (polymérisation par transfert d’atome). Les différentes techniques et conditions de greffage sont largement décrites dans la littérature et relèvent des connaissances générales de l’homme de l’art. Le greffage par voie radicalaire est particulièrement préféré. Le greffage s’effectue au niveau de l’acétate de vinyle : soit sur le groupe méthyle de l’acétate, soit sur les carbones tertiaires du squelette du copolymère, en fonction de la nature de l’agent amorceur de polymérisation. Si l’agent amorceur est le peroxyde de benzoyle, le greffage est plutôt init ié sur le groupe méthyle de l’acétate. Si l’agent amorceur est le peroxyde de dicumyle, le greffage est plutôt initié sur les carbones tertiaires du squelette du copolymère, ou le groupe méthyle de l’acétate. Le ou les greffons de formule (III) représente(nt) de préférence de 1 à 4% en moles, par rapport au nombre de moles total de motifs du copolymère greffé (1), plus préférentiellement de 1,5 à 3% en moles. La masse molaire en nombre Mn des copolymères greffés (1) selon l’invention, mesurée par GPC, est de préférence comprise dans la gamme allant de 5000 à 50.000 g.mol-1 , de préférence de 10.000 à 40.000 g.mol-1, mieux de 12.000 à 32.000 g.mol-1. La masse molaire en poids Mw des copolymères greffés (1) selon l’invention, mesurée par GPC, est de préférence comprise dans la gamme allant de 23.500 à 230.000 g.mol-1, de préférence de 46.500 à 190.000 g.mol-1, mieux de 55.000 à 150.000 g.mol-1. De préférence, la teneur totale du ou des copolymères d’éthylène et d’acétate de vinyle greffés est comprise dans la gamme allant de 1 à 15% en masse, de préférence de 2 à 10% en masse, et plus préférentiellement de 2,5 à 5% en masse, par rapport à la masse totale de la composition d’additifs. La résine alkylphénol-aldéhyde modifiée (2) La ou les résine(s) alkylphénol-aldéhyde modifiée(s) employées dans la présente invention est(sont) susceptible(s) d’être obtenue(s) par réaction de Mannich d'une résine de condensation alkylphénol-aldéhyde avec - au moins un aldéhyde et/ou une cétone ayant de 1 à 8 atomes de carbone, et - au moins un composé hydrocarboné ayant de 1 à 30 atomes de carbone et comprenant au moins un groupement alkylpolyamine. Ladite résine de condensation alkylphénol-aldéhyde est elle-même susceptible d'être obtenue par condensation : • d'au moins un alkylphénol substitué par au moins un groupement alkyle, linéaire ou ramifié, ayant de 1 à 30 atomes de carbone, avec • au moins un aldéhyde et/ou une cétone ayant de 1 à 8 atomes de carbone. Selon un mode de réalisation préféré, la ou les résine(s) alkylphénol-aldéhyde modifiée(s) est(sont) susceptible(s) d’être obtenue(s) par réaction de Mannich d'une résine de condensation alkylphénol-aldéhyde avec - au moins un aldéhyde et/ou une cétone ayant de 1 à 4 atomes de carbone, et - au moins un composé hydrocarboné ayant de 4 à 30 atomes de carbone et comprenant au moins un groupement alkylpolyamine, ladite résine de condensation alkylphénol-aldéhyde étant elle-même susceptible d'être obtenue par condensation : • d'au moins un mono-alkylphénol substitué par au moins un groupement alkyle, linéaire ou ramifié, ayant de 4 à 30 atomes de carbone, avec • au moins un aldéhyde et/ou une cétone ayant de 1 à 4 atomes de carbone. La résine de condensation alkylphénol-aldéhyde peut être choisie parmi toute résine de ce type déjà connue et notamment, celles décrites dans les documents EP857776 et EP1584673. La résine alkylphénol-aldéhyde modifiée selon l ' invention est avantageusement susceptible d’être obtenue à part ir d 'au moins un alkylphénol substi tué en para. On util ise, de préférence, le para- nonylphénol. Selon un mode de réalisation préféré, le nombre moyen de noyaux phénoliques par molécule de résine nonylphénol-aldéhyde est compris entre 6 et 25, de préférence compris entre 8 et 17, et encore plus préférentiellement compris entre 9 et 16. Le nombre de noyaux phénoliques peut être déterminé par résonance magnétique nucléaire (RMN) ou chromatographie à perméation de gel (GPC). Avantageusement, la résine alkylphénol-aldéhyde modifiée est obtenue à partir du même aldéhyde ou de la même cétone que ladite résine de condensation alkylphénol-aldéhyde. Selon un mode de réalisation préféré, la résine alkylphénol- aldéhyde modifiée est susceptible d’être obtenue à partir d'au moins un aldéhyde et/ou d’au moins une cétone choisis parmi le formaldéhyde, l 'acétaldéhyde, le propionaldéhyde, le butyraldéhyde, le 2-éthyl- hexanal, le benzaldéhyde et/ou l 'acétone. De préférence, la résine alkylphénol-aldéhyde modifiée est susceptible d’être obtenue à partir d’au moins un aldéhyde, de préférence d’au moins le formaldéhyde (également dénommé méthanal). Selon un mode de réalisation part iculier, la résine alkylphénol- aldéhyde modifiée est susceptible d’être obtenue à part ir d'au moins une alkylpolyamine ayant au moins deux groupements choisis parmi les groupements amine primaire et amine secondaire. En particulier, l 'alkylpolyamine est avantageusement choisie parmi les polyamines primaires et/ou secondaires substituées par, respectivement, un ou deux groupements alkyles comprenant, de préférence, de 12 à 24 atomes de carbone, plus préférentiel lement de 12 à 22 atomes de carbone. Selon un mode de réalisation préféré, la résine alkylphénol- aldéhyde modifiée est susceptible d’être obtenue à part ir d'au moins une alkylpolyamine ayant au moins deux groupements amine, et de préférence au moins trois groupements amine. Selon un mode de réalisation préféré, la résine alkylphénol- aldéhyde modifiée est susceptible d’être obtenue à part ir d'au moins une alkylpolyamine comprenant une chaîne grasse ayant de 12 à 24 atomes de carbone, de préférence de 12 à 22 atomes de carbone. Selon un mode de réalisation particulièrement préféré, la résine alkylphénol-aldéhyde modifiée est susceptible d’être obtenue à partir d'au moins une alkylpolyamine ayant au moins deux groupements amine, de préférence au moins trois groupements amine, et comprenant une chaîne grasse ayant de 12 à 24 atomes de carbone, de préférence de 12 à 22 atomes de carbone. Les alkylpolyamines commerciales ne sont en général pas des composés purs mais des mélanges. Parmi les alkylpolyamines commercialisées qui conviennent, on peut notamment citer les alkylpolyamines à chaîne grasse commercialisées sous les dénominations Trinoram®, Duomeen®, Dinoram®, Triameen®, Armeen®, Polyram®, Lilamin® et Cemulcat®. On peut citer à titre d'exemple préféré, la Trinoram®S qui est une dipropylènetriamine de suif, connue également sous la dénomination N- (Tallowalkyl)dipropylènetriamine (CAS 61791-57-9). De préférence, la teneur totale de la ou des résine(s) alkylphénol-aldéhyde modifiée(s) est comprise dans la gamme allant de 0,2 à 5% en masse, de préférence de 0,5 à 3% en masse, et plus préférentiellement de 0,5 à 1,5% en masse, par rapport à la masse totale de la composition d’additifs. La résine de condensation alkylphénol-aldéhyde alcoxylée (3) Ladite résine est constituée d’une résine de condensation alkylphénol- aldéhyde sur laquelle sont greffés des groupements (poly)alcoxy. La résine de condensation alkylphénol-aldéhyde est avantageusement obtenue par condensation : • d'au moins un alkylphénol dont le groupement alkyle, linéaire ou ramifié, contient de 1 à 30 atomes de carbone, de préférence de 4 à 18 atomes de carbone, et plus préférentiellement encore de 9 à 12 atomes de carbone avec • au moins un aldéhyde et/ou une cétone ayant de 1 à 8 atomes de carbone, de préférence de 1 à 4 atomes de carbone. Le ou les alkylphénols sont avantageusement substi tués en para. La résine est de préférence obtenue à partir d'au moins un aldéhyde et/ou d’au moins une cétone choisis parmi le formaldéhyde, l 'acétaldéhyde, le propionaldéhyde, le butyraldéhyde, le 2-éthyl- hexanal, le benzaldéhyde et/ou l 'acétone. De préférence, la résine alkylphénol-aldéhyde est obtenue à partir d’au moins un aldéhyde, de préférence d’au moins le formaldéhyde (également dénommé méthanal). Selon un mode de réalisation préféré, ladite résine est obtenue par condensation du formaldéhyde avec au moins un alkylphénol dont le groupement alkyle contient de 4 à 18 atomes de carbone, et plus préférentiellement de 9 à 12 atomes de carbone. Selon un mode de réalisation préféré, le nombre moyen de noyaux phénoliques par molécule de résine nonylphénol-aldéhyde est compris entre 5 et 15. Le nombre de noyaux phénoliques peut être déterminé par résonance magnétique nucléaire (RMN) ou chromatographie à perméation de gel (GPC). Ladite résine est alcoxylée, c’est-à-dire qu’elle est greffée par des groupements (poly)alcoxy sur ses fonctions phénol. De préférence, ladite résine est polyéthoxylée et/ou polypropoxylée, et plus préférentiellement polyéthoxylée. Le pourcentage molaire moyen de groupes alcoxy par mole de résine alcoxylée est de préférence compris dans la gamme allant de 75% à 95%. De préférence, le pourcentage molaire moyen de groupes éthoxy par mole de résine polyéthoxylée est compris dans la gamme allant de 75% à 95%. La masse molaire en poids Mw de la résine de condensation alkylphénol-aldéhyde alcoxylée selon l’invention, mesurée par GPC, est de préférence comprise dans la gamme allant de 1.000 à 50.000 g.mol- 1, de préférence de 2.000 à 10.000 g.mol- 1 et plus préférentiel lement de 3.000 à 6.000 g.mol- 1. De préférence, la teneur totale de la ou des résine(s) alkylphénol alcoxylée(s) est comprise dans la gamme allant de 1 à 20% en masse, de préférence de 2 à 15% en masse, et plus préférentiellement de 3 à 10% en masse, par rapport à la masse totale de la composition d’additifs. Le solvant (4) La composition d’additifs selon l’invention comprend en outre au moins un solvant organique. À titre d'exemple, le solvant organique est choisi parmi les hydrocarbures aliphatiques et/ou aromatiques, et/ou choisi parmi les mélanges d'hydrocarbures, par exemple les fractions d'essence, de diesel , de kérosène, le décane, le pentadécane, le toluène, le xylène, l 'éthylbenzène, les polyéthers. De préférence, le solvant est choisi parmi les hydrocarbures aromatiques et plus préférentiel lement parmi les xylènes et les mélanges de solvants aromatiques comprenant des composés aromatiques ayant 9 et/ou 10 atomes de carbone. À t itre d’exemples non limitatifs de solvants aromatiques les produits commerciaux suivants peuvent être utilisés : Solvarex 10®, Solvarex 10 LN®, Solvent Naphta®, Shellsol AB ®, Shellsol D ®, Solvesso 150 ®, Solvesso 150 ND®. La teneur du ou des solvants organiques est avantageusement d’au moins 30% en masse, de préférence au moins 40% en masse, par rapport à la masse totale de la composit ion d’additifs. De préférence, cette teneur est comprise dans la gamme allant de 40 à 95% en masse, de préférence de 50 à 90% en masse, plus préférentiellement de 60 à 85% en masse, par rapport à la masse totale de la composition d’additifs . La composition d’additifs La composition selon l’invention est telle que le ratio massique de la quantité du premier composé (1) sur la quantité du second composé (2) est avantageusement compris dans la gamme allant de 2 à 10, de préférence de 2 à 5, plus préférentiellement de 2,5 à 4. Autres additifs de la composition La composition d’additifs peut également comprendre un ou plusieurs additif(s) additionnel(s), différent(s) des composés (1), (2) et (3) décrits ci-avant. Selon un mode de réalisation préféré, la composition comprend en outre au moins un copolymère à blocs oxyde d’éthylène (EO) et oxyde de propylène (PO). Le ratio molaire moyen entre le nombre de groupes EO et le nombre de groupes PO dans le copolymère à blocs peut typiquement se situer dans la gamme allant de 40 :60 à 60 :40. La masse molaire en poids Mw des copolymères à blocs EO/PO utiles dans l’invention, mesurée par GPC, est de préférence comprise dans la gamme allant de 6.000 à 26.000 g.mol-1. De préférence, la teneur totale du ou des copolymères à blocs oxyde d’éthylène et oxyde de propylène est comprise dans la gamme allant de 0,5 à 10% en masse, de préférence de 1 à 5% en masse, par rapport à la masse totale de la composition d’additifs . Selon un mode de réalisation préféré, la composition comprend en outre au moins une polyéthylène-imine polyoxyalkylénée, et de préférence au moins une polyéthylène-imine polyoxyéthylénée. De préférence, la teneur totale de la ou des polyéthylène-imine polyoxyéthylénée(s) est comprise dans la gamme allant de 0,5 à 10% en masse, de préférence de 1 à 5% en masse, par rapport à la masse totale de la composition d’additifs. Des additifs addit ionnels susceptibles d’être également incorporés dans la composition sont, de manière non l imitative : les dispersants, les inhibiteurs de corrosion, les biocides, les désémulsifiants ou agents anti-mousses , les inhibiteurs de dépôts de paraffines ; les abaisseurs de point d’écoulement, les additifs anti- sédimentation des paraffines ; les piégeurs d’H2S , les inhibiteurs de dépôts organiques tels que les acides naphténiques, les inhibiteurs de dépôts minéraux, les marqueurs, les stabilisateurs thermiques, les émulsifiants, les agents réducteurs de frottements, les surfactants, et leurs mélanges. Parmi les autres additifs addit ionnels, on peut citer plus particulièrement : a) les addit ifs anti-mousse, notamment (mais non limitativement) choisis parmi les polysiloxanes, les polysiloxanes oxyalkylés, et les amides d'acides gras issus d'huiles végétales ou animales ; b) les additifs dispersants et/ou anti-corrosion, notamment (mais non limitativement) choisis dans le groupe constitué par les aminés, les succinimides, les alkénylsuccinimides, les polyalkylamines, les polyalkyles polyamines, les polyétheramines; les imidazolines; les sels d’ammonium quaternaire dérivés des composés sus-cités ; les acides gras et leurs dérivés ester ou amide, notamment le monooléate de glycérol , et les dérivés d'acides carboxyliques mono- et polycycliques ; c) les addit ifs modificateurs de la cristallisation, les additifs inhibiteurs de dépôts de paraffines, les addit ifs abaisseurs du point d’écoulement ; les modificateurs de la rhéologie à basse température tels que les copolymères éthylène/vinyl propionate (EVP), les terpolymères éthylène/ acétate de vinyle/ versatate de vinyle (EA/AA/EOVA) ; les terpolymères éthylène/ acétate de vinyle/ acrylate d’alkyle ; les polyacrylates ; les terpolymères acrylates/acétate de vinyle/anhydride maléique ; les copolymères anhydride maléique/alkyl(méth)acrylate amidifiés susceptibles d'être obtenus par réaction d'un copolymère anhydride maléique/alkyl(méth)acrylate et d'une alkylamines ou polyalkylamine ayant une chaîne hydrocarbonée de 4 et 30 atomes de carbone, de préférence, de 12 à 24 atomes de carbone ; les copolymères d'alpha-oléfine/anhydride maléique amidifiés susceptibles d'être obtenus par réaction d'un copolymère d'alpha-oléfine/anhydride maléique et d 'une alkylamine ou polyalkylamine, l 'alpha-oléfine pouvant être choisi parmi les alpha-oléfine en C10-C50, de préférence, en C16-C20 et l 'alkylamine ou la polyalkylamine ayant, avantageusement, une chaîne hydrocarbonée de 4 et 30 atomes de carbone, de préférence de 12 à 24 atomes de carbone. A titre d'exemples de terpolymères, on peut citer ceux qui sont décrits dans EP01692196, WO2009106743, WO2009106744, US4758365 et US4178951, d) les neutralisateurs d'acidité. Selon un mode de réalisation préféré, la composition d’additifs comprend un agent dispersant. À titre d'exemple, le dispersant est choisi parmi les surfactants, les sulfonates, les acides sulfoniques (de naphtalène, de dodécylbenzène…) … La composition de pétrole brut Cette composition comprend au moins une huile minérale brute (ou pétrole brut), de l’eau et une composition d’additifs telle que décrite ci- avant. L’huile minérale brute est issue d’une réserve naturelle ou formation rocheuse, de préférence sous-terraine sous sous-marine, et plus préférentiellement sous-marine. Elle est extraite via un puits ou « puits de forage », qui correspond à un trou ou puits pénétrant dans la formation rocheuse renfermant l’huile. La ou les huiles minérales brutes peuvent être seules ou en mélange avec d’autres composants, comme par exemple du gaz, ou d’autres additifs util isés lors des forages (anti-calcaire…). Cette composition comprend de l’eau, laquelle peut contenir des sels notamment de chlorure de sodium (saumure). La teneur en eau de la composit ion est typiquement comprise dans la gamme allant de 1 à 80 % en masse, de préférence de 5 à 60% en masse, et mieux encore de 8 à 50% en masse. De préférence, la teneur de la composition d’additifs est comprise dans la gamme allant de 20 à 1500 ppm en masse, de préférence de 50 à 1000 ppm, plus préférentiel lement de 75 à 500 ppm, et mieux encore de 100 à 300 ppm en masse, par rapport à la masse totale de la composition de pétrole brut et d’eau. Les util isations L’invention a également pour objet l’utilisation de la composition d’additifs décrite ci-avant pour abaisser la viscosité dynamique et/ou cinématique d’un mélange d’eau et d’huile minérale brute, de préférence à température inférieure ou égale à 30°C, plus préférentiellement inférieure ou égale 25°C, plus préférentiellement inférieure ou égale 20°C, plus préférentiellement inférieure ou égale 15°C, plus préférentiellement inférieure ou égale 10°C, plus préférentiellement inférieure ou égale 5°C, plus préférentiellement encore inférieure ou égale 0°C. De manière connue en soi, la viscosité dynamique caractérise la résistance à l’écoulement laminaire d’un fluide incompressible. La mesure de la viscosité s’effectue avec un rhéomètre par exemple de type Anton Paar MCR 302, géométrie cylindres coaxiaux 27mm, pilotage CSR (de l’anglais « controlled shear rate »): on détermine les courbes d’écoulement et on obtient la viscosité. Cette méthode de détermination est bien connue de l’homme du métier. Un autre objet de l’invention est l’utilisation de la composit ion d’additifs pour améliorer la pompabilité des mélanges d’eau et d’huile minérale brute. La composition d’additifs selon l’invention est également utilisée pour abaisser le point d’écoulement d’un mélange d’huile minérale brute et d’eau. Le point d’écoulement est la température minimale à laquelle une substance (pétrole brut) s 'écoule encore. Il est mesuré selon la norme ASTM D5853. La composition d’additifs selon l’invention est également utilisée pour diminuer la contrainte de cisaillement, le seuil d’écoulement et/ou la viscosité (cinématique et/ou dynamique) lors de l’écoulement du mélange, de préférence à température inférieure ou égale à 85°C, plus préférentiellement inférieure ou égale 75°C, plus préférentiellement encore inférieure ou égale 65°C, mieux inférieure ou égale 55°C, plus préférentiellement inférieure ou égale 45°C, plus préférentiellement inférieure ou égale 35°C, plus préférentiellement inférieure ou égale 25°C, plus préférentiellement inférieure ou égale 10°C, plus préférentiellement inférieure ou égale 5°C, plus préférentiellement encore inférieure ou égale 0°C. La contrainte de cisaillement est le rapport d’une force tangentielle appliquée à une surface sur l’aire de la section tangentiel le à la force. La contrainte de cisaillement est mesurée avec un rhéomètre Anton Paar MCR 302, géométrie cylindres coaxiaux 27mm, pilotage CSR. Les courbes d’écoulement permettent de déduire la contrainte de cisaillement. Le mélange d’huile minérale brute et d’eau contient, typiquement, de 1 à 80 % en masse d’eau, de préférence de 5 à 60 % en masse, et mieux encore de 8 à 50 % en masse d’eau, par rapport à la masse dudit mélange. De préférence, la composition d’additifs est utilisée à une teneur comprise dans la gamme allant de 20 à 1500 ppm en masse, de préférence de 50 à 1000 ppm, plus préférentiel lement de 75 à 500 ppm, et mieux encore de 100 à 300 ppm en masse, par rapport à la masse totale de la composition d’huile minérale brute et d’eau. Le procédé de diminution de la viscosité d’un produit pétrolier liquide L’invention concerne également un procédé d’extraction d’un mélange d’huile minérale brute et d’eau comprenant une étape de pompage dudit mélange, caractérisé en ce qu’une composition d’additifs telle que décrite ci-dessus est injectée dans ledit mélange. L’injection de la composition d’additifs est faite au cours du pompage du mélange, de préférence en sortie du puits (ou tête de puits). Le débit de composition injectée est de préférence régulé proportionnellement au débit de pompage du mélange de pétrole brut et d’eau, de manière à obtenir la concentration voulue. Selon le procédé de l’invention, la composition d’additifs est injectée dans le mélange à une teneur comprise dans la gamme allant de 20 à 1500 ppm en masse, de préférence de 50 à 1000 ppm, plus préférentiellement de 75 à 500 ppm, et mieux encore de 100 à 300 ppm en masse, par rapport à la masse totale de la composition de pétrole brut et d’eau. Selon un mode de réalisation préféré, le mélange d’huile minérale brute et d’eau est extrait d’un puits sous-marin. Les exemples ci-après visent uniquement à illustrer l’invention, et ne sauraient être interprétés comme en limitant la portée. EXEMPLES Exemple 1 : préparation d’une composition d’addit ifs selon l’invention Les exemples mettent en œuvre les additifs suivants : Comme premier composé (1): un copolymère d’éthylène et d’acétate de vinyle (EVA) greffé, comprenant 5 % en masse d’acétate de vinyle et 74% en masse d’acrylate de béhényle , et dont les masses molaires sont Mn=24.471 g/mol, Mw=118.528 g/mol (indice de polydispersité Ip=4,8). Les masses molaires moyennes en nombre (Mn) et en masse (Mw) ont été déterminées sur une chaine chromatographique d’exclusion stérique par perméation de gel AGILENT PL-GPC50-Plus. Le solvant d’élution est le tétrahydrofurane et les étalons sont constitués de polystyrènes. Comme second composé (2): une résine alkylphénol-aldéhyde modifiée dont la méthode de synthèse est détaillée ci-dessous. Comme troisième composé (3) : une résine alkylphénol-aldéhyde modifiée par polyéthoxylation. Protocole de synthèse de la résine alkylphénol-aldéhyde modifiée 2 : Dans une première étape, une résine de condensation alkylphénol- aldéhyde a été préparée par condensation de para-nonylphénol et de formaldéhyde (par exemple selon le mode opératoire décri t dans EP857776). Cette résine présente une viscosité à 50°C comprise entre 1800 et 4800 mPa.s (viscosité mesurée à 50°C à l 'aide d 'un rhéomètre dynamique avec une vitesse de cisaillement de 10 s -1 sur la résine diluée avec 30% en masse de solvant aromatique (Solvesso 150 ®)). Dans une seconde étape, la résine alkylphénol-aldéhyde issue de la première étape a été modifiée par réaction de Mannich par ajout de 2 équivalents molaires de formaldéhyde et 2 équivalents molaires de dipropylènetriamine de suif, connue sous la dénomination N- (Tallowalkyl)dipropylènetriamine et commercialisée par exemple sous la dénomination Trinoram S®, par rapport à la résine alkylphénol- aldéhyde issue de la première étape. Les caractéristiques de la résine obtenue à l’issue de la seconde étape sont répertoriées dans le tableau 1 ci-dessous : [Table 1]
Figure imgf000022_0001
(*) Viscosité à 50°C : mesurée sur une résine diluée avec 30% massique de solvant Solvesso 150®, vitesse de cisaillement 10 s -1, à l 'aide d 'un rhéomètre Haake RheoWin®. (**) Evaluation du nombre moyen de noyaux phénoliques par molécule de résine ou NPh e : mesuré par résonnance magnétique nucléaire du proton. Une composition d’additifs C selon l’invention a été préparée, à partir des composant suivants, dont les teneurs sont indiquées en pourcentage en masse de matière active, par rapport à la masse totale de la composition C : - copolymère d’éthylène et d’acétate de vinyle greffé (1): 2,8% en masse ; - résine alkylphénol-aldéhyde modifiée (2): 0,95% en masse ; - résine alkylphénol aldéhyde éthoxylée (3): 4,8% en masse ; - solvants aromatiques : Qs 100% en masse Exemple 2 : mesures de viscosité dynamique Des mesures de viscosité ont été effectuées sur un pétrole brut seul , puis sur le même pétrole brut additionné d’eau et enfin sur le mélange de pétrole brut, d’eau et de la composition d’additifs C de l’exemple 1. Le pétrole brut employé est un pétrole d’origine brésilienne ayant une densité à 15°C de 0,911 g.cm-3, un point d’écoulement (ASTM D5853) de +15°C, une teneur en cires de 9,5% en masse et une teneur en asphaltènes de 2,11% en masse. Le pétrole brut ci-avant a été addit ionné de 10% en masse d’eau, et la viscosité de ce mélange a été mesurée. Au mélange de pétrole brut et d’eau ci-avant, 200 ppm en masse de la composition C ont été ajoutés, et la viscosité du mélange a été mesurée. Les mesures de viscosité dynamique ont été effectuées à 23°C et à 18°C, au moyen d’un rhéomètre Anton Paar MCR 302, géométrie cylindres coaxiaux 27mm, pilotage CSR à un taux de cisaillement de 38 s-1. Les valeurs de viscosité obtenues (exprimées en mPa.s) sont rassemblées dans le tableau 2 ci-dessous. [Tableau 2]
Figure imgf000023_0001
Les résultats ci-dessus montrent que la viscosité dynamique du pétrole brut augmente très fortement lorsqu’il est mélangé à de l’eau. L’ajout de la composition d’additifs C selon l’invention permet de réduire efficacement la viscosité du mélange d’eau et de pétrole brut, y compris à un faible taux de traitement de 200 ppm. Exemple 3 comparatif : Le pétrole brut employé est un pétrole d’origine brésilienne ayant une densité à 15°C de 0,911 g.cm-3, un point d’écoulement (ASTM D5853) de +12°C, et une teneur en cires de 10,2% en masse. Le pétrole brut ci-avant a été addit ionné de 15% en masse d’eau. Les trois composit ions d’additifs C, C1 et C2, dont la composition est détaillée dans le tableau 3 ci-dessous, ont été comparées. Dans le tableau ci-dessous, les teneurs de chaque composé sont indiquées en pourcentage en masse de matière active, par rapport à la masse totale de la composition. [Tableau 3]
Figure imgf000024_0001
Au mélange de pétrole brut et d’eau ci-avant, 200 ppm en masse de chacune des compositions C, C1 et C2 ont été ajoutés, et la viscosité du mélange a été mesurée. Les mesures de viscosité dynamique ont été effectuées à 23°C et à 18°C, au moyen d’un rhéomètre Anton Paar MCR 302, géométrie cylindres coaxiaux 27mm, pilotage CSR à un taux de cisaillement de 38 s-1. Les valeurs de viscosité obtenues (exprimées en mPa.s) sont rassemblées dans le tableau 4 ci-dessous. [Tableau 4]
Figure imgf000024_0002
DESCRIPTION TITLE: ADDITIVE COMPOSITION AND ITS USE TO IMPROVE THE PUMPABILITY OF MIXTURES OF WATER AND CRUDE OIL Technical field The present invention relates to an additive composition comprising at least a first compound chosen from copolymers of ethylene and vinyl acetate (EVA) grafted with at least one alkyl (meth)acrylate, at least one second compound chosen from alkylphenol-aldehyde resins modified with an alkylpolyamine, at least one third compound chosen from alkoxylated alkylphenol-aldehyde resins and at least one organic solvent. The invention also relates to the use of this composition to control the viscosity of a mixture of water and crude oil and to improve its pumpability and transport. The invention further relates to a method for extracting a mixture comprising crude oil and water, comprising a step of introducing the additive composition into said mixture and a step of pumping the mixture comprising said composition . The invention finally relates to a crude oil composition comprising water and an additive composition as described below. STATE OF THE PRIOR ART Underground formations of crude oil, also commonly referred to as “crude mineral oil” or “crude oil” or “crude oil” have relatively high temperatures. As the crude oil is extracted from the underground formation to the surface, it cools. Its cooling varies depending on the production temperature and storage or transport conditions. The extracted crude oil mainly includes two classes of products: maltenes and asphaltenes. The main constituents of maltenes are resins and waxes. These so-called waxes are made up of paraffins (saturated hydrocarbon compounds) and aromatics. Paraffins consist of linear or branched alkanes and can be liquid, oily or solid. Depending on their origin, crude oils have different proportions of waxes, which are essentially made up of long-chain n-paraffins. Depending on the type of crude oil, the proportion of these paraffins can typically be from 1 to 30% by weight of the crude oil. In a manner known per se, during the extraction of crude oil from a well, the extracted crude oil cools. As a result, the paraffins crystallize, typically in the form of platelets or platelet aggregates, and the viscosity (both dynamic and kinematic) of the oil increases. Platelet-shaped n-paraffin crystals can form a three-dimensional network that encloses the remaining liquid portion of the crude oil, such that the latter stops flowing, even if the predominant portion is still liquid. Crystallized paraffins, and therefore highly viscous crude oil, can block filters, pumps, pipes/pipelines, clog wells, and other installations or be deposited in tanks, thus requiring a high level of cleaning. Crystallization of these paraffins and thus increase in viscosity can occur in oil production wells and in pumping installations. These crystallized paraffins considerably harm the fluidity of the oil, they increase its viscosity and make the pumping and transport operations thereof more difficult, and more expensive, in particular because they require more energy. An additional problem arises when the extracted crude oil is mixed with water. This is the case, for example, of a well in production, in which the quantity of water present gradually increases over time. The water comes from natural sources present in the ground or corresponds to water reinjected into the well to maintain a sufficient level of pressure. This is also the case for underwater wells. In the case of the exploitation of an underwater well, the crude oil is extracted in the form of a mixture, typically an emulsion, of crude oil and more or less salty water with an additional difficulty induced by the low temperatures encountered in the underwater depths (of the order of 4°C): thus, the mixture of water and crude oil is strongly cooled, which promotes an increase in its viscosity. The presence of water in the crude oil significantly increases the viscosity of the extracted mixture, and further complicates pumping and transport operations. The energy consumed during these operations is greatly increased by the presence of water in the crude oil extracted. This phenomenon also leads to a significant loss of productivity, a substantial increase in production costs and a reduction in the lifespan of the well. In a manner known per se, it is conventional to add additives to crude oils aimed at reducing the crystallization phenomena of paraffins at low temperature, in particular crystallization modifier additives making it possible to modify the morphology and size of the paraffin crystals and /or to limit the phenomena of agglomeration of paraffin crystals. Known additives are for example modified alkylphenol-aldehyde resins, obtained by Mannich reaction of an alkylphenol-aldehyde condensation resin with at least one aldehyde and at least one hydrocarbon compound having at least one alkylamine group, in fuel compositions as anti-sedimentation additives WASA (from the English “wax anti settling agents”) (WO2012085865), for resistance to low temperatures (WO2013189868). However, the known additives are not sufficiently effective in the case of the extraction of a mixture of water and crude oil. As explained above, the presence of water significantly increases the phenomena of increasing the viscosity of the mixture during its cooling, so that the compounds conventionally used to control the formation and growth of paraffin crystals are not sufficiently effective. To remedy this, the known solutions consist either of heating the mixture of raw oil and water so as to lower its viscosity, or of increasing the additive contents. However, increasing additive contents is not only expensive but also does not always make it possible to lower sufficiently the viscosity of the mixture. In addition, it is not always possible to heat the mixture during its extraction, particularly in the case of an underwater well. Such heating proves, in practice, complicated to implement and expensive in energy. The Applicant has now discovered a particular composition of additives, which makes it possible to lower in a very effective and synergistic manner the viscosity of mixtures of crude oils and water, and thus to facilitate the pumping and transport operations of these mixtures. This composition proved to be particularly effective when exploiting underwater oil reserves. Summary of the invention The subject of the present invention is an additive composition comprising: (1) at least one first compound chosen from copolymers of ethylene and vinyl acetate grafted with at least one (meth)acrylate group. alkyl whose alkyl chain is saturated and contains 12 to 30 carbon atoms; (2) at least one second compound chosen from modified alkylphenol-aldehyde resins; said modified alkylphenol-aldehyde resins being capable of being obtained by Mannich reaction of an alkylphenol-aldehyde condensation resin with - at least one aldehyde and/or a ketone having from 1 to 8 carbon atoms, and - at least one hydrocarbon compound having 1 to 30 carbon atoms and comprising at least one alkylpolyamine group; said alkylphenol-aldehyde condensation resin itself being capable of being obtained by condensation of: • at least one alkylphenol substituted by at least one alkyl group, linear or branched, having from 1 to 30 carbon atoms, with • at least one aldehyde and/or ketone having 1 to 8 carbon atoms; (3) at least one third compound chosen from alkoxylated alkylphenol-aldehyde condensation resins; And ; (4) at least one organic solvent. The present invention also relates to a composition comprising a crude mineral oil, water and an additive composition as defined above. The invention also relates to the use of the composition of additives to lower the dynamic and/or kinematic viscosity of a mixture of water and crude mineral oil, in particular (but not limited to) at low temperature. The use according to the invention also aims to improve the pumpability of mixtures of water and crude mineral oil and to facilitate their transport. The invention finally relates to a process for extracting a mixture of crude mineral oil and water, comprising the injection into said mixture during its pumping of the composition of additives as defined above. According to a preferred embodiment, the crude mineral oil is extracted from an underwater well. Other objects, characteristics, aspects and advantages of the invention will appear even more clearly on reading the description and examples which follow. In what follows, and unless otherwise indicated, the limits of a domain of values are included in this domain, in particular in the expressions: “between… and…”, “included in the range from… to…”, and “ranging from… to…”. Furthermore, the expressions “at least one” and “at least” used in this description are respectively equivalent to the expressions “one or more” and “greater or equal”. Finally, in a manner known per se, the term C N compound means a compound containing N carbon atoms in its chemical structure. Detailed description of the invention The grafted copolymer (1) The composition according to the invention comprises a first compound (1) chosen from copolymers of ethylene and vinyl acetate grafted with at least one alkyl (meth)acrylate whose alkyl chain is saturated and contains 12 to 30 carbon atoms. In other words, the copolymer comprises a main chain or basic skeleton consisting of a copolymer of ethylene and vinyl acetate onto which are grafted at least one alkyl (meth)acrylate whose alkyl chain is saturated and contains 12 to 30 carbon atoms. The skeleton of ethylene and vinyl acetate Compound (1) comprises a main chain or basic skeleton consisting of a copolymer of ethylene and vinyl acetate. Such a copolymer therefore comprises a repeating unit of formula (I) as follows:
Figure imgf000007_0001
This motif comes from the ethylene monomer. Preferably, the unit of formula (I) represents from 71 to 94% by moles relative to the total number of moles of units of the grafted copolymer (1), more preferably from 78 to 88% by moles, more preferably still from 80 to 88% in moles, and better still from 82 to 87% in moles. The copolymer also comprises one or more repeating unit(s) of vinyl acetate corresponding to the following formula (II):
Figure imgf000007_0002
in which R 1 , R 2 , and R 3 represent a hydrogen atom, and R 4 represents a methyl group (CH 3 ). The unit(s) of formula (II) preferably represent(s) from 5 to 25% by mole, relative to the total number of moles of units of the graft copolymer (1), more preferably from 10% to 15% by mole. The units of formula (II) come from monomers of the C2 carboxylic acid ester and vinyl alcohols, that is to say the vinyl acetate ester of formula (IIA) following:
Figure imgf000008_0001
in which R 1 , R 2 , R 3 and R 4 are as defined above. The distribution of the motifs (I) and (II) in the skeleton is preferably of statistical type. Preferably, the backbone of the copolymers (1) used in the present invention contains only units of formula (I) and units of formula (II). Such ethylene and vinyl acetate skeletons can be prepared according to polymerization processes known per se. The different polymerization techniques and conditions are widely described in the literature and fall within the general knowledge of those skilled in the art. They can in particular be synthesized by conventional radical polymerization as described in document US3627838: we generally proceed by mixing the different monomers in an appropriate solvent, such as benzene, and the copolymerization is initiated by means of a radical polymerization initiator, such as a peroxide such as tert-butyl hydroperoxide. The polymerization conditions are known to those skilled in the art. The reaction temperature can range from 150 to 280°C, and the reaction can be carried out at high pressure (1500 to 2000 bars). In the case where the skeleton is prepared by conventional radical polymerization, it may be necessary to carry out, after the polymerization itself, a purification by any appropriate separation technique (in particular by chromatography) so as to isolate a copolymer having the required characteristics in terms of molar mass and dispersity. According to a preferred embodiment, the ethylene and vinyl acetate skeleton is prepared using the techniques controlled radical polymerizations (PRC). Controlled radical polymerization techniques, known per se, have the advantage of being able to lead directly to copolymers having the required molar mass and dispersity characteristics, such that a separative purification can, depending on the conditions used, not be necessary. Among these techniques, we can cite in particular polymerizations governed by reversible termination or by reversible transfer (or degenerative transfer). Among these PRC techniques, those controlled by degenerative transfer are preferred and among these radical polymerization by reversible addition-fragmentation chain transfer (RAFT) is even more preferred. Alkyl (meth)acrylate grafts The basic skeleton consisting of a copolymer of ethylene and vinyl acetate as described above is grafted with at least one alkyl (meth)acrylate including the alkyl chain is saturated and contains 12 to 30 carbon atoms. Such a graft typically corresponds to the following formula (III):
Figure imgf000009_0001
in which R 5 , R 6, identical or different, represent a hydrogen atom or a C 1 to C 4 alkyl group; R 7 represents a hydrogen atom or a methyl group and R 8 represents a saturated C 12 to C 30 alkyl chain. In a preferred embodiment, the alkyl (meth)acrylate graft(s) have a saturated alkyl chain comprising from 14 to 26 carbon atoms, and preferably from 18 to 22 carbon atoms. According to a preferred embodiment, R5, R 6 , and R 7, identical or different, represent a hydrogen atom or a methyl group. Particularly preferably, R 5 , R 6 and R 7 all represent a hydrogen atom; or R 5 , R 6 represent a hydrogen atom and R 7 represents a methyl group. According to an also preferred embodiment, R 8 represents a linear saturated alkyl chain. More preferably, R 8 is chosen from the groups nC 18 H 37 , nC 19 H 39 , nC 20 H 41 , nC 21 H 43 , and nC 22 H 45 . According to a particularly preferred embodiment: - R 5 , R 6 , and R 7 all represent a hydrogen atom, and - R 8 is chosen from the groups nC 18 H 37 , nC 19 H 39 nC 20 H 41 , nC 21:43 , and nC 22:45 . Very preferably, R 8 is chosen from a mixture of the groups nC 18 H 37 , nC 20 H 41 , and nC 22 H 45 , that is to say that the alkyl (meth)acrylate is the acrylate behenyl. Grafting by the alkyl (meth)acrylate function on the ethylene and vinyl acetate skeleton can be carried out by any grafting process known per se, such as grafting by conventional radical route or controlled radical route, or by ATRP (atom transfer polymerization). The different grafting techniques and conditions are widely described in the literature and fall within the general knowledge of those skilled in the art. Grafting by radical route is particularly preferred. The grafting is carried out at the level of the vinyl acetate: either on the methyl group of the acetate, or on the tertiary carbons of the copolymer backbone, depending on the nature of the polymerization initiator. If the initiating agent is benzoyl peroxide, the grafting is instead initiated on the methyl group of the acetate. If the initiating agent is dicumyl peroxide, the grafting is instead initiated on the tertiary carbons of the copolymer backbone, or the methyl group of the acetate. The graft(s) of formula (III) preferably represent(s) from 1 to 4% by mole, relative to the total number of moles of units of the grafted copolymer (1), more preferably from 1.5 to 3% by mole . The molar mass in number Mn of the graft copolymers (1) according to the invention, measured by GPC, is preferably in the range going from 5000 to 50,000 g.mol -1 , preferably from 10,000 to 40,000 g.mol -1 , better from 12,000 to 32,000 g.mol -1 . The molar mass by weight Mw of the graft copolymers (1) according to the invention, measured by GPC, is preferably in the range going from 23,500 to 230,000 g.mol -1 , preferably from 46,500 to 190,000 g.mol -1 , better from 55,000 to 150,000 g.mol -1 . Preferably, the total content of the grafted ethylene and vinyl acetate copolymer(s) is in the range going from 1 to 15% by mass, preferably from 2 to 10% by mass, and more preferably from 2, 5 to 5% by mass, relative to the total mass of the additive composition. The modified alkylphenol-aldehyde resin (2) The modified alkylphenol-aldehyde resin(s) used in the present invention is(are) capable of being obtained by Mannich reaction of a alkylphenol-aldehyde condensation resin with - at least one aldehyde and/or one ketone having from 1 to 8 carbon atoms, and - at least one hydrocarbon compound having from 1 to 30 carbon atoms and comprising at least one alkylpolyamine group. Said alkylphenol-aldehyde condensation resin is itself capable of being obtained by condensation of: • at least one alkylphenol substituted by at least one alkyl group, linear or branched, having from 1 to 30 carbon atoms, with • least one aldehyde and/or a ketone having 1 to 8 carbon atoms. According to a preferred embodiment, the modified alkylphenol-aldehyde resin(s) is(are) capable of being obtained by Mannich reaction of a condensation resin alkylphenol aldehyde with - at least one aldehyde and/or a ketone having from 1 to 4 carbon atoms, and - at least one hydrocarbon compound having from 4 to 30 carbon atoms and comprising at least one alkylpolyamine group, said condensation resin alkylphenol-aldehyde itself being capable of being obtained by condensation of: • at least one mono-alkylphenol substituted by at least one alkyl group, linear or branched, having from 4 to 30 carbon atoms, with • at least one aldehyde and/or a ketone having 1 to 4 carbon atoms. The alkylphenol-aldehyde condensation resin can be chosen from any resin of this type already known and in particular, those described in documents EP857776 and EP1584673. The modified alkylphenol-aldehyde resin according to the invention can advantageously be obtained from at least one para-substituted alkylphenol. Para-nonylphenol is preferably used. According to a preferred embodiment, the average number of phenolic nuclei per molecule of nonylphenol-aldehyde resin is between 6 and 25, preferably between 8 and 17, and even more preferably between 9 and 16. The number of phenolic nuclei can be determined by nuclear magnetic resonance (NMR) or gel permeation chromatography (GPC). Advantageously, the modified alkylphenol-aldehyde resin is obtained from the same aldehyde or the same ketone as said alkylphenol-aldehyde condensation resin. According to a preferred embodiment, the modified alkylphenol-aldehyde resin can be obtained from at least one aldehyde and/or at least one ketone chosen from formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde. , 2-ethyl-hexanal, benzaldehyde and/or acetone. Preferably, the modified alkylphenol-aldehyde resin can be obtained from at least one aldehyde, preferably at least formaldehyde (also called methane). According to a particular embodiment, the modified alkylphenol-aldehyde resin can be obtained from at least one alkylpolyamine having at least two groups chosen from the primary amine and secondary amine groups. In particular, the alkylpolyamine is advantageously chosen from primary and/or secondary polyamines substituted by, respectively, one or two alkyl groups comprising, preferably, from 12 to 24 carbon atoms, more preferably from 12 to 22 carbon atoms. . According to a preferred embodiment, the modified alkylphenol-aldehyde resin can be obtained from at least one alkylpolyamine having at least two amine groups, and preferably at least three amine groups. According to a preferred embodiment, the modified alkylphenol-aldehyde resin can be obtained from at least one alkylpolyamine comprising a fatty chain having from 12 to 24 carbon atoms, preferably from 12 to 22 carbon atoms. . According to a particularly preferred embodiment, the modified alkylphenol-aldehyde resin can be obtained from at least one alkylpolyamine having at least two amine groups, preferably at least three amine groups, and comprising a fatty chain having 12 to 24 carbon atoms, preferably 12 to 22 carbon atoms. Commercial alkylpolyamines are generally not pure compounds but mixtures. Among the suitable marketed alkylpolyamines, mention may in particular be made of fatty chain alkylpolyamines marketed under the names Trinoram®, Duomeen®, Dinoram®, Triameen®, Armeen®, Polyram®, Lilamin® and Cemulcat®. As a preferred example, we can cite Trinoram®S which is a tallow dipropylenetriamine, also known under the name N-(Tallowalkyl)dipropylenetriamine (CAS 61791-57-9). Preferably, the total content of the modified alkylphenol-aldehyde resin(s) is included in the range going from 0.2 to 5% by mass, preferably 0.5 to 3% by mass, and more preferably 0.5 to 1.5% by mass, relative to the total mass of the additive composition. The alkoxylated alkylphenol-aldehyde condensation resin (3) Said resin consists of an alkylphenol-aldehyde condensation resin onto which (poly)alkoxy groups are grafted. The alkylphenol-aldehyde condensation resin is advantageously obtained by condensation of: • at least one alkylphenol whose alkyl group, linear or branched, contains from 1 to 30 carbon atoms, preferably from 4 to 18 carbon atoms, and more preferably still from 9 to 12 carbon atoms with • at least one aldehyde and/or a ketone having from 1 to 8 carbon atoms, preferably from 1 to 4 carbon atoms. The alkylphenol(s) are advantageously substituted in para. The resin is preferably obtained from at least one aldehyde and/or at least one ketone chosen from formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, 2-ethyl-hexanal, benzaldehyde and/or acetone. Preferably, the alkylphenol-aldehyde resin is obtained from at least one aldehyde, preferably at least formaldehyde (also called methanal). According to a preferred embodiment, said resin is obtained by condensation of formaldehyde with at least one alkylphenol whose alkyl group contains from 4 to 18 carbon atoms, and more preferably from 9 to 12 carbon atoms. According to a preferred embodiment, the average number of phenolic nuclei per molecule of nonylphenol-aldehyde resin is between 5 and 15. The number of phenolic nuclei can be determined by nuclear magnetic resonance (NMR) or gel permeation chromatography (GPC ). Said resin is alkoxylated, that is to say it is grafted by (poly)alkoxy groups onto its phenol functions. Preferably, said resin is polyethoxylated and/or polypropoxylated, and more preferably polyethoxylated. The average molar percentage of alkoxy groups per mole of alkoxylated resin is preferably in the range from 75% to 95%. Preferably, the average molar percentage of ethoxy groups per mole of polyethoxylated resin is in the range from 75% to 95%. The molar mass by weight Mw of the alkoxylated alkylphenol-aldehyde condensation resin according to the invention, measured by GPC, is preferably in the range going from 1,000 to 50,000 g.mol- 1 , preferably from 2,000 to 10,000 g. mol - 1 and more preferably from 3,000 to 6,000 g.mol - 1 . Preferably, the total content of the alkoxylated alkylphenol resin(s) is in the range going from 1 to 20% by mass, preferably from 2 to 15% by mass, and more preferably from 3 to 10 % by mass, relative to the total mass of the additive composition. The solvent (4) The additive composition according to the invention further comprises at least one organic solvent. For example, the organic solvent is chosen from aliphatic and/or aromatic hydrocarbons, and/or chosen from mixtures of hydrocarbons, for example gasoline, diesel, kerosene fractions, decane, pentadecane. , toluene, xylene, ethylbenzene, polyethers. Preferably, the solvent is chosen from aromatic hydrocarbons and more preferably from xylenes and mixtures of aromatic solvents comprising aromatic compounds having 9 and/or 10 carbon atoms. As non-limiting examples of aromatic solvents, the following commercial products can be used: Solvarex 10®, Solvarex 10 LN®, Solvent Naphta®, Shellsol AB®, Shellsol D®, Solvesso 150®, Solvesso 150 ND®. The content of the organic solvent(s) is advantageously at least 30% by mass, preferably at least 40% by mass, relative to the total mass of the composition of additives. Preferably, this content is included in the range going from 40 to 95% by mass, preferably from 50 to 90% by mass, more preferably from 60 to 85% by mass, relative to the total mass of the additive composition. The composition of additives The composition according to the invention is such that the mass ratio of the quantity of the first compound (1) to the quantity of the second compound (2) is advantageously included in the range going from 2 to 10, preferably from 2 to 5, more preferably from 2.5 to 4. Other additives in the composition The composition of additives may also comprise one or more additional additive(s), different from the compounds (1), (2 ) and (3) described above. According to a preferred embodiment, the composition further comprises at least one copolymer with ethylene oxide (EO) and propylene oxide (PO) blocks. The average molar ratio between the number of EO groups and the number of PO groups in the block copolymer can typically be in the range of 40:60 to 60:40. The molar mass by weight Mw of the EO/PO block copolymers useful in the invention, measured by GPC, is preferably in the range from 6,000 to 26,000 g.mol -1 . Preferably, the total content of the ethylene oxide and propylene oxide block copolymer(s) is in the range going from 0.5 to 10% by mass, preferably from 1 to 5% by mass, relative to the total mass of the additive composition. According to a preferred embodiment, the composition further comprises at least one polyoxyalkylenated polyethyleneimine, and preferably at least one polyoxyethylenated polyethyleneimine. Preferably, the total content of the polyoxyethylenated polyethyleneimine(s) is in the range going from 0.5 to 10% by mass, preferably from 1 to 5% by mass, relative to the total mass of the composition of additives. Additional additives which may also be incorporated into the composition are, but not limited to: dispersants, corrosion inhibitors, biocides, demulsifiers or anti-foaming agents, paraffin deposit inhibitors; pour point depressants, paraffin anti-sedimentation additives; H 2 S scavengers, organic deposit inhibitors such as naphthenic acids, mineral deposit inhibitors, markers, thermal stabilizers, emulsifiers, friction reducing agents, surfactants, and mixtures thereof. Among the other additives, we can cite more particularly: a) anti-foaming additives, in particular (but not limited to) chosen from polysiloxanes, oxyalkylated polysiloxanes, and amides of fatty acids derived from vegetable oils or animals; b) dispersing and/or anti-corrosion additives, in particular (but not limited to) chosen from the group consisting of amines, succinimides, alkenylsuccinimides, polyalkylamines, polyalkyl polyamines, polyetheramines; imidazolines; quaternary ammonium salts derived from the above-mentioned compounds; fatty acids and their ester or amide derivatives, in particular glycerol monooleate, and mono- and polycyclic carboxylic acid derivatives; c) crystallization modifier additives, paraffin deposit inhibitor additives, pour point depressant additives; low temperature rheology modifiers such as ethylene/vinyl propionate (EVP) copolymers, ethylene/vinyl acetate/vinyl versatate (EA/AA/EOVA) terpolymers; ethylene/vinyl acetate/alkyl acrylate terpolymers; polyacrylates; acrylate/vinyl acetate/maleic anhydride terpolymers; amidated maleic anhydride/alkyl(meth)acrylate copolymers capable of being obtained by reaction of a maleic anhydride/alkyl(meth)acrylate copolymer and an alkylamine or polyalkylamine having a hydrocarbon chain of 4 and 30 carbon atoms, preferably, from 12 to 24 carbon atoms; the amidated alpha-olefin/maleic anhydride copolymers capable of being obtained by reaction of an alpha-olefin/maleic anhydride copolymer and an alkylamine or polyalkylamine, the alpha-olefin being able to be chosen from alpha- C10-C50 olefin, preferably, in C16-C20 and the alkylamine or polyalkylamine having, advantageously, a hydrocarbon chain of 4 and 30 carbon atoms, preferably of 12 to 24 carbon atoms. As examples of terpolymers, mention may be made of those described in EP01692196, WO2009106743, WO2009106744, US4758365 and US4178951, d) acidity neutralizers. According to a preferred embodiment, the additive composition comprises a dispersing agent. For example, the dispersant is chosen from surfactants, sulfonates, sulfonic acids (naphthalene, dodecylbenzene, etc.)... The crude oil composition This composition comprises at least one crude mineral oil (or crude oil), water and an additive composition as described above. The crude mineral oil comes from a natural reserve or rock formation, preferably underground, underwater, and more preferably underwater. It is extracted via a well or “wellbore”, which corresponds to a hole or well penetrating the rock formation containing the oil. The raw mineral oil(s) can be alone or mixed with other components, such as gas, or other additives used during drilling (anti-limescale, etc.). This composition comprises water, which may contain salts in particular sodium chloride (brine). The water content of the composition is typically in the range from 1 to 80% by mass, preferably from 5 to 60% by mass, and better still from 8 to 50% by mass. Preferably, the content of the additive composition is in the range going from 20 to 1500 ppm by mass, preferably from 50 to 1000 ppm, more preferably from 75 to 500 ppm, and better still from 100 to 300 ppm. by mass, relative to the total mass of the crude oil and water composition. Uses The invention also relates to the use of the composition of additives described above to lower the dynamic and/or kinematic viscosity of a mixture of water and raw mineral oil, preferably at temperature less than or equal to 30°C, more preferably less than or equal 25°C, more preferably less than or equal 20°C, more preferably less than or equal 15°C, more preferably less than or equal 10°C, more preferably less than or equal 5 °C, more preferably even less than or equal to 0°C. In a manner known per se, dynamic viscosity characterizes the resistance to laminar flow of an incompressible fluid. The viscosity is measured with a rheometer, for example of the Anton Paar MCR 302 type, 27mm coaxial cylinder geometry, CSR (controlled shear rate) control: the flow curves are determined and the viscosity. This determination method is well known to those skilled in the art. Another object of the invention is the use of the composition of additives to improve the pumpability of mixtures of water and crude mineral oil. The additive composition according to the invention is also used to lower the pour point of a mixture of crude mineral oil and water. The pour point is the minimum temperature at which a substance (crude oil) will still flow. It is measured according to ASTM D5853. The additive composition according to the invention is also used to reduce the shear stress, the flow threshold and/or the viscosity (kinematic and/or dynamic) during the flow of the mixture, preferably at a lower temperature or equal to 85°C, more preferably less than or equal 75°C, more preferably still less than or equal 65°C, better still less than or equal 55°C, more preferably less than or equal 45°C, more preferably less than or equal 35°C , more preferably less than or equal to 25°C, more preferably less than or equal 10°C, more preferably less than or equal to 5°C, more preferably still less than or equal to 0°C. Shear stress is the ratio of a tangential force applied to a surface to the area of the tangential section to the force. The shear stress is measured with an Anton Paar MCR 302 rheometer, 27mm coaxial cylinder geometry, CSR control. The flow curves allow the shear stress to be deduced. The mixture of crude mineral oil and water typically contains from 1 to 80% by weight of water, preferably from 5 to 60% by weight, and better still from 8 to 50% by weight of water, relative to the mass of said mixture. Preferably, the additive composition is used at a content in the range from 20 to 1500 ppm by weight, preferably from 50 to 1000 ppm, more preferably from 75 to 500 ppm, and even better from 100 to 300 ppm. ppm by mass, relative to the total mass of the composition of crude mineral oil and water. The process for reducing the viscosity of a liquid petroleum product. The invention also relates to a process for extracting a mixture of crude mineral oil and water comprising a step of pumping said mixture, characterized in that a additive composition as described above is injected into said mixture. The injection of the additive composition is done during pumping of the mixture, preferably at the outlet of the well (or wellhead). The flow rate of injected composition is preferably regulated proportionally to the pumping flow rate of the mixture of crude oil and water, so as to obtain the desired concentration. According to the process of the invention, the additive composition is injected into the mixture at a content in the range from 20 to 1500 ppm by mass, preferably from 50 to 1000 ppm, more preferably from 75 to 500 ppm, and more preferably 100 to 300 ppm by mass, based on the total mass of the crude oil and water composition. According to a preferred embodiment, the mixture of raw mineral oil and water is extracted from an underwater well. The examples below are intended solely to illustrate the invention, and should not be interpreted as limiting its scope. EXAMPLES Example 1: preparation of an additive composition according to the invention The examples use the following additives: As first compound (1): a grafted copolymer of ethylene and vinyl acetate (EVA), comprising 5% by mass of vinyl acetate and 74% by mass of behenyl acrylate, and whose molar masses are Mn=24,471 g/mol, Mw=118,528 g/mol (polydispersity index Ip=4.8). The number average molar masses (M n ) and mass averages (M w ) were determined on a size exclusion chromatographic chain by permeation of AGILENT PL-GPC50-Plus gel. The elution solvent is tetrahydrofuran and the standards consist of polystyrenes. As second compound (2): a modified alkylphenol-aldehyde resin, the synthesis method of which is detailed below. As third compound (3): an alkylphenol-aldehyde resin modified by polyethoxylation. Synthesis protocol for modified alkylphenol-aldehyde resin 2: In a first step, an alkylphenol-aldehyde condensation resin was prepared by condensation of para-nonylphenol and formaldehyde (for example according to the procedure described in EP857776). This resin has a viscosity at 50°C of between 1800 and 4800 mPa.s (viscosity measured at 50°C using a dynamic rheometer with a shear speed of 10 s -1 on the resin diluted with 30% by mass of aromatic solvent (Solvesso 150 ®)). In a second step, the alkylphenol-aldehyde resin resulting from the first step was modified by Mannich reaction by adding 2 molar equivalents of formaldehyde and 2 molar equivalents of tallow dipropylenetriamine, known under the name N- (Tallowalkyl)dipropylenetriamine and marketed for example under the name Trinoram S®, compared to the alkylphenol-aldehyde resin resulting from the first step. The characteristics of the resin obtained at the end of the second step are listed in Table 1 below: [Table 1]
Figure imgf000022_0001
(*) Viscosity at 50°C: measured on a resin diluted with 30% by weight of Solvesso 150® solvent, shear speed 10 s -1 , using a Haake RheoWin® rheometer. (**) Evaluation of the average number of phenolic nuclei per resin molecule or N Ph e : measured by proton nuclear magnetic resonance. A composition of additives C according to the invention was prepared, from the following components, the contents of which are indicated as a percentage by mass of active material, relative to the total mass of composition C: - ethylene copolymer and grafted vinyl acetate (1): 2.8% by mass; - modified alkylphenol-aldehyde resin (2): 0.95% by mass; - ethoxylated alkylphenol aldehyde resin (3): 4.8% by mass; - aromatic solvents: Qs 100% by mass Example 2: dynamic viscosity measurements Viscosity measurements were carried out on a crude oil alone, then on the same crude oil with added water and finally on the mixture of crude oil, water and the additive composition C of Example 1. The crude oil used is an oil of Brazilian origin having a density at 15°C of 0.911 g.cm -3 , a pour point (ASTM D5853) of +15°C, a wax content of 9.5% by mass and an asphaltene content of 2.11% by mass. The above crude oil was added with 10% by weight of water, and the viscosity of this mixture was measured. To the above mixture of crude oil and water, 200 ppm by weight of composition C was added, and the viscosity of the mixture was measured. The dynamic viscosity measurements were carried out at 23°C and 18°C, using an Anton Paar MCR 302 rheometer, 27mm coaxial cylinder geometry, CSR control at a shear rate of 38 s -1 . The viscosity values obtained (expressed in mPa.s) are summarized in Table 2 below. [Table 2]
Figure imgf000023_0001
The above results show that the dynamic viscosity of crude oil increases very sharply when mixed with water. The addition of the additive composition C according to the invention makes it possible to effectively reduce the viscosity of the mixture of water and crude oil, including at a low treatment rate of 200 ppm. Comparative Example 3: The crude oil used is an oil of Brazilian origin having a density at 15°C of 0.911 g.cm -3 , a pour point (ASTM D5853) of +12°C, and a wax content of 10.2% by mass. The above crude oil was added with 15% by mass of water. The three compositions of additives C, C1 and C2, the composition of which is detailed in Table 3 below, were compared. In the table below, the contents of each compound are indicated as a percentage by mass of active ingredient, relative to the total mass of the composition. [Table 3]
Figure imgf000024_0001
To the mixture of crude oil and water above, 200 ppm by mass of each of compositions C, C1 and C2 were added, and the viscosity of the mixture was measured. The dynamic viscosity measurements were carried out at 23°C and 18°C, using an Anton Paar MCR 302 rheometer, 27mm coaxial cylinder geometry, CSR control at a shear rate of 38 s -1 . The viscosity values obtained (expressed in mPa.s) are summarized in Table 4 below. [Table 4]
Figure imgf000024_0002
Figure imgf000025_0001
Les résultats ci-dessus montrent que la viscosité dynamique du pétrole brut augmente très fortement lorsqu’il est mélangé à de l’eau. L’ajout de la composition d’additifs C selon l’invention permet de réduire efficacement la viscosité du mélange d’eau et de pétrole brut, y compris à un faible taux de traitement de 200 ppm. La diminution de viscosité obtenue est de 13,3% à 23°C et de 6,7% à 18°C. Les compositions comparatives C1 et C2, qui contiennent respectivement soit les composés (1) et (2) soit le composé (3) dégradent au contraire la viscosité du mélange d’eau et de pétrole brut. Avec la composition C1, l’augmentation de viscosité est de 8,9% à 23°C et de 8,3% à 18°C. Avec la composition C2, l’augmentation de viscosité est de 3,3% à 23°C et de 5% à 18°C. Ces résultats sont rassemblés dans le tableau 5 ci-dessous. [Tableau 5]
Figure imgf000025_0002
Ces résultats illustrent l’effet synergique inattendu procuré par la composition d’additifs selon l’invention.
Figure imgf000025_0001
The above results show that the dynamic viscosity of crude oil increases very sharply when mixed with water. The addition of the additive composition C according to the invention makes it possible to effectively reduce the viscosity of the mixture of water and crude oil, including at a low treatment rate of 200 ppm. The reduction in viscosity obtained is 13.3% at 23°C and 6.7% at 18°C. Comparative compositions C1 and C2, which respectively contain either compounds (1) and (2) or compound (3), on the contrary degrade the viscosity of the mixture of water and crude oil. With composition C1, the increase in viscosity is 8.9% at 23°C and 8.3% at 18°C. With composition C2, the increase in viscosity is 3.3% at 23°C and 5% at 18°C. These results are brought together in Table 5 below. [Table 5]
Figure imgf000025_0002
These results illustrate the unexpected synergistic effect provided by the composition of additives according to the invention.

Claims

REVENDICATIONS 1. Composition d’addit ifs comprenant : (1) au moins un premier composé choisi parmi les copolymères d’éthylène et d’acétate de vinyle greffés par au moins un groupement (méth)acrylate d’alkyle dont la chaine alkyle est saturée et contient de 12 à 30 atomes de carbone ; (2) au moins un second composé choisi parmi les résines alkylphénol- aldéhyde modifiées ; lesdites résines alkylphénol-aldéhyde modifiées étant susceptibles d’être obtenues par réaction de Mannich d'une résine de condensation alkylphénol-aldéhyde avec - au moins un aldéhyde et/ou une cétone ayant de 1 à 8 atomes de carbone, et - au moins un composé hydrocarboné ayant de 1 à 30 atomes de carbone et comprenant au moins un groupement alkylpolyamine ; ladite résine de condensation alkylphénol-aldéhyde étant elle-même susceptible d'être obtenue par condensation : • d'au moins un alkylphénol substitué par au moins un groupement alkyle, linéaire ou ramifié, ayant de 1 à 30 atomes de carbone, avec • au moins un aldéhyde et/ou une cétone ayant de 1 à 8 atomes de carbone ; (3) au moins un troisième composé choisi parmi les résines de condensation alkylphénol-aldéhyde alcoxylées ; et ; (4) au moins un solvant organique. CLAIMS 1. Composition of additives comprising: (1) at least one first compound chosen from copolymers of ethylene and vinyl acetate grafted with at least one alkyl (meth)acrylate group whose alkyl chain is saturated and contains 12 to 30 carbon atoms; (2) at least one second compound chosen from modified alkylphenol-aldehyde resins; said modified alkylphenol-aldehyde resins being capable of being obtained by Mannich reaction of an alkylphenol-aldehyde condensation resin with - at least one aldehyde and/or a ketone having from 1 to 8 carbon atoms, and - at least one hydrocarbon compound having 1 to 30 carbon atoms and comprising at least one alkylpolyamine group; said alkylphenol-aldehyde condensation resin itself being capable of being obtained by condensation of: • at least one alkylphenol substituted by at least one alkyl group, linear or branched, having from 1 to 30 carbon atoms, with • at least one aldehyde and/or ketone having 1 to 8 carbon atoms; (3) at least one third compound chosen from alkoxylated alkylphenol-aldehyde condensation resins; And ; (4) at least one organic solvent.
2. Composition selon la revendication précédente, caractérisée en ce que les copolymères d’éthylène et d’acétate de vinyle sont greffés par au moins un groupement (méth)acrylate d’alkyle dont la chaine alkyle est saturée et comprend de 14 à 26 atomes de carbone, et de préférence de 18 à 22 atomes de carbone. 2. Composition according to the preceding claim, characterized in that the copolymers of ethylene and vinyl acetate are grafted with at least one alkyl (meth)acrylate group whose alkyl chain is saturated and comprises from 14 to 26 atoms carbon, and preferably 18 to 22 carbon atoms.
3. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que la teneur totale du ou des copolymères d’éthylène et d’acétate de vinyle greffés est comprise dans la gamme allant de 1 à 15% en masse, de préférence de 2 à 10% en masse, et plus préférentiellement de 2,5 à 5% en masse, par rapport à la masse totale de la composition d’additifs. 3. Composition according to any one of the preceding claims, characterized in that the total content of the grafted ethylene and vinyl acetate copolymer(s) is included in the range going from 1 to 15% by mass, preferably from 2 to 10% by mass, and more preferably 2.5 to 5% by mass, relative to the total mass of the additive composition.
4. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que la ou les résine(s) alkylphénol- aldéhyde modifiée(s) est(sont) susceptible(s) d’être obtenue(s) par réaction de Mannich d'une résine de condensation alkylphénol-aldéhyde avec au moins un aldéhyde et/ou une cétone ayant de 1 à 4 atomes de carbone et au moins un composé hydrocarboné ayant de 4 à 30 atomes de carbone et comprenant au moins un groupement alkylpolyamine, ladite résine de condensation alkylphénol-aldéhyde étant elle-même susceptible d'être obtenue par condensation : • d'au moins un mono-alkylphénol substitué par au moins un groupement alkyle, linéaire ou ramifié, ayant de 4 à 30 atomes de carbone, avec • au moins un aldéhyde et/ou une cétone ayant de 1 à 4 atomes de carbone, de préférence choisis parmi le formaldéhyde, l 'acétaldéhyde, le propionaldéhyde, le butyraldéhyde, le 2-éthyl-hexanal, le benzaldéhyde et/ou l 'acétone, de préférence le formaldéhyde. 4. Composition according to any one of the preceding claims, characterized in that the modified alkylphenol-aldehyde resin(s) is(are) capable of being obtained by Mannich reaction d 'an alkylphenol-aldehyde condensation resin with at least one aldehyde and/or a ketone having from 1 to 4 carbon atoms and at least one hydrocarbon compound having from 4 to 30 carbon atoms and comprising at least one alkylpolyamine group, said resin of alkylphenol-aldehyde condensation being itself capable of being obtained by condensation of: • at least one mono-alkylphenol substituted by at least one alkyl group, linear or branched, having from 4 to 30 carbon atoms, with • at least one aldehyde and/or a ketone having 1 to 4 carbon atoms, preferably chosen from formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, 2-ethyl-hexanal, benzaldehyde and/or acetone, preferably formaldehyde.
5. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que la résine alkylphénol-aldéhyde modifiée est susceptible d’être obtenue à partir d 'au moins un alkylphénol substitué en para, de préférence le para-nonylphénol. 5. Composition according to any one of the preceding claims, characterized in that the modified alkylphenol-aldehyde resin can be obtained from at least one para-substituted alkylphenol, preferably para-nonylphenol.
6. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que la résine alkylphénol-aldéhyde modifiée est susceptible d’être obtenue à partir d'au moins une alkylpolyamine ayant au moins deux groupements amine, de préférence au moins trois groupements amine, et comprenant une chaîne grasse ayant de 12 à 24 atomes de carbone, de préférence de 12 à 22 atomes de carbone. 6. Composition according to any one of the preceding claims, characterized in that the modified alkylphenol-aldehyde resin is capable of being obtained from at least one alkylpolyamine having at least two amine groups, preferably at least three amine groups , and comprising a fatty chain having from 12 to 24 carbon atoms, preferably from 12 to 22 carbon atoms.
7. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que la teneur totale de la ou des résine(s) alkylphénol-aldéhyde modifiée(s) est comprise dans la gamme allant de 0,2 à 5% en masse, de préférence de 0,5 à 3% en masse, et plus préférentiellement de 0,5 à 1,5% en masse, par rapport à la masse totale de la composition d’additifs. 7. Composition according to any one of the preceding claims, characterized in that the total content of the modified alkylphenol-aldehyde resin(s) is included in the range going from 0.2 to 5% by mass, preferably from 0.5 to 3% by mass, and more preferably from 0.5 to 1.5% by mass, relative to the total mass of the additive composition.
8. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que la résine de condensation alkylphénol-aldéhyde (3) est obtenue par condensation : • d'au moins un alkylphénol dont le groupement alkyle, linéaire ou ramifié, contient de 1 à 30 atomes de carbone, de préférence de 4 à 18 atomes de carbone, et plus préférentiellement encore de 9 à 12 atomes de carbone avec • au moins un aldéhyde et/ou une cétone ayant de 1 à 8 atomes de carbone, de préférence de 1 à 4 atomes de carbone, de préférence choisis parmi le formaldéhyde, l 'acétaldéhyde, le propionaldéhyde, le butyraldéhyde, le 2-éthyl-hexanal, le benzaldéhyde et/ou l 'acétone, et plus préférentiellement le formaldéhyde. 8. Composition according to any one of the preceding claims, characterized in that the alkylphenol-aldehyde condensation resin (3) is obtained by condensation: • at least one alkylphenol whose alkyl group, linear or branched, contains from 1 to 30 carbon atoms, preferably from 4 to 18 carbon atoms, and even more preferably from 9 to 12 carbon atoms with • at least an aldehyde and/or a ketone having from 1 to 8 carbon atoms, preferably from 1 to 4 carbon atoms, preferably chosen from formaldehyde, acetaldehyde, propionaldehyde, butyraldehyde, 2-ethyl-hexanal, benzaldehyde and/or acetone, and more preferably formaldehyde.
9. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que la résine de condensation alkylphénol-aldéhyde (3) est polyéthoxylée et/ou polypropoxylée, de préférence polyéthoxylée. 9. Composition according to any one of the preceding claims, characterized in that the alkylphenol-aldehyde condensation resin (3) is polyethoxylated and/or polypropoxylated, preferably polyethoxylated.
10. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que la teneur totale de la ou des résine(s) alkylphénol alcoxylée(s) est comprise dans la gamme allant de 1 à 20% en masse, de préférence de 2 à 15% en masse, et plus préférentiellement de 3 à 10% en masse, par rapport à la masse totale de la composition d’additifs. 10. Composition according to any one of the preceding claims, characterized in that the total content of the alkoxylated alkylphenol resin(s) is included in the range going from 1 to 20% by mass, preferably 2 at 15% by mass, and more preferably from 3 to 10% by mass, relative to the total mass of the additive composition.
11. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce que le solvant organique est choisi parmi les hydrocarbures al iphatiques et/ou aromatiques, de préférence parmi les hydrocarbures aromatiques et plus préférentiellement parmi les xylènes et les mélanges de solvants aromatiques comprenant des composés aromatiques ayant 9 et /ou 10 atomes de carbone. 11. Composition according to any one of the preceding claims, characterized in that the organic solvent is chosen from al iphatic and/or aromatic hydrocarbons, preferably from aromatic hydrocarbons and more preferably from xylenes and mixtures of aromatic solvents comprising aromatic compounds having 9 and/or 10 carbon atoms.
12. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle comprend en outre au moins un copolymère à blocs oxyde d’éthylène et/ou oxyde de propylène, à une teneur de préférence comprise dans la gamme allant de 0,5 à 10% en masse, plus préférentiellement de 1 à 5% en masse, par rapport à la masse totale de la composition d’additifs. 12. Composition according to any one of the preceding claims, characterized in that it further comprises at least one copolymer with ethylene oxide and/or propylene oxide blocks, at a content preferably in the range from 0 .5 to 10% by mass, more preferably 1 to 5% by mass, relative to the total mass of the additive composition.
13. Composition selon l’une quelconque des revendications précédentes, caractérisée en ce qu’elle comprend en outre au moins une polyéthylène-imine polyoxyalkylénée, et de préférence au moins une polyéthylène-imine polyoxyéthylénée, à une teneur de préférence comprise dans la gamme allant de 0,5 à 10% en masse, plus préférentiellement de 1 à 5% en masse, par rapport à la masse totale de la composition d’additifs 14. Composition comprenant au moins une huile minérale brute, de l’eau et une composition d’additifs telle que définie dans l’une quelconque des revendications 1 à 13. 15. Utilisation de la composition d’additifs telle que définie dans l’une quelconque des revendications 1 à 13 pour abaisser la viscosité dynamique et/ou cinématique d’un mélange d’huile minérale brute et d’eau et/ou pour améliorer la pompabilité d’un mélange d’huile minérale brute et d’eau. 16. Procédé d’extraction d’un mélange d’huile minérale brute et d’eau comprenant une étape de pompage dudit mélange, caractérisé en ce qu’une composition d’additifs telle que définie dans l’une quelconque des revendications 1 à 13 est injectée dans ledit mélange. 13. Composition according to any one of the preceding claims, characterized in that it further comprises at least one polyoxyalkylenated polyethyleneimine, and preferably at least one polyoxyethylenated polyethyleneimine, at a content preferably included in the range going from 0.5 to 10% by mass, more preferably from 1 to 5% by mass, relative to the total mass of the additive composition 14. Composition comprising at least one crude mineral oil, water and an additive composition as defined in any one of claims 1 to 13. 15. Use of the additive composition as defined in any one of claims 1 to 13 to lower the dynamic viscosity and /or kinematics of a mixture of crude mineral oil and water and/or to improve the pumpability of a mixture of crude mineral oil and water. 16. Process for extracting a mixture of crude mineral oil and water comprising a step of pumping said mixture, characterized in that a composition of additives as defined in any one of claims 1 to 13 is injected into said mixture.
PCT/FR2023/051082 2022-07-13 2023-07-12 Additive composition and use thereof for improving the pumpability of water and crude oil mixtures WO2024013458A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2207191A FR3137915A1 (en) 2022-07-13 2022-07-13 COMPOSITION OF ADDITIVES AND ITS USE TO IMPROVE THE PUMPABILITY OF MIXTURES OF WATER AND CRUDE OIL
FRFR2207191 2022-07-13

Publications (1)

Publication Number Publication Date
WO2024013458A1 true WO2024013458A1 (en) 2024-01-18

Family

ID=83438395

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2023/051082 WO2024013458A1 (en) 2022-07-13 2023-07-12 Additive composition and use thereof for improving the pumpability of water and crude oil mixtures

Country Status (2)

Country Link
FR (1) FR3137915A1 (en)
WO (1) WO2024013458A1 (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3627838A (en) 1964-12-11 1971-12-14 Exxon Research Engineering Co Process for manufacturing potent pour depressants
US4178951A (en) 1978-10-10 1979-12-18 Texaco Inc. Low pour point crude oil compositions
US4758365A (en) 1984-06-21 1988-07-19 Societe Nationale Elf Aquitaine & Ceca S.A. Polymeric additives useful for inhibition of the deposit of paraffins in crude oils
EP0857776A1 (en) 1997-01-07 1998-08-12 Clariant GmbH Mineral oil and mineral oil distillate flowability improvemnt using alkylphenol-aldehyde resins
EP1584673A1 (en) 2004-04-07 2005-10-12 Infineum International Limited Fuel oil compositions
WO2009106743A2 (en) 2007-12-26 2009-09-03 Total Raffinage Marketing Difunctional additives for liquid hydrocarbons, obtained by grafting from copolymers of ethylene and/or propylene and vinyl esters
WO2009106744A2 (en) 2007-12-28 2009-09-03 Total Raffinage Marketing Ethylene/vinyl acetate/unsaturated esters terpolymer as additive enchancing the low-temperature resistance of liquid hydrocarbons such as middle distillates and motor fuels or other fuels
WO2012085865A1 (en) 2010-12-23 2012-06-28 Total Raffinage Marketing Modified alkyl-phenol-aldehyde resins, use thereof as additives for improving the properties of liquid hydrocarbon fuels in cold conditions
WO2013189868A1 (en) 2012-06-19 2013-12-27 Total Marketing Services Additive compositions and use thereof for improving the cold properties of fuels and combustibles
WO2014173844A1 (en) * 2013-04-25 2014-10-30 Total Marketing Services Additive for improving the oxidation-stability and/or storage-stability of liquid hydrocarbon fuels or oxidizers
WO2016162392A1 (en) * 2015-04-10 2016-10-13 Total Marketing Services Asphaltene dispersant additive and uses thereof
WO2021122206A1 (en) * 2019-12-20 2021-06-24 Total Marketing Services Process for extracting a crude oil with injection of resin
WO2022136801A1 (en) * 2020-12-22 2022-06-30 Totalenergies Onetech Composition of additives comprising a copolymer and a resin

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3627838A (en) 1964-12-11 1971-12-14 Exxon Research Engineering Co Process for manufacturing potent pour depressants
US4178951A (en) 1978-10-10 1979-12-18 Texaco Inc. Low pour point crude oil compositions
US4758365A (en) 1984-06-21 1988-07-19 Societe Nationale Elf Aquitaine & Ceca S.A. Polymeric additives useful for inhibition of the deposit of paraffins in crude oils
EP0857776A1 (en) 1997-01-07 1998-08-12 Clariant GmbH Mineral oil and mineral oil distillate flowability improvemnt using alkylphenol-aldehyde resins
EP1584673A1 (en) 2004-04-07 2005-10-12 Infineum International Limited Fuel oil compositions
WO2009106743A2 (en) 2007-12-26 2009-09-03 Total Raffinage Marketing Difunctional additives for liquid hydrocarbons, obtained by grafting from copolymers of ethylene and/or propylene and vinyl esters
WO2009106744A2 (en) 2007-12-28 2009-09-03 Total Raffinage Marketing Ethylene/vinyl acetate/unsaturated esters terpolymer as additive enchancing the low-temperature resistance of liquid hydrocarbons such as middle distillates and motor fuels or other fuels
WO2012085865A1 (en) 2010-12-23 2012-06-28 Total Raffinage Marketing Modified alkyl-phenol-aldehyde resins, use thereof as additives for improving the properties of liquid hydrocarbon fuels in cold conditions
WO2013189868A1 (en) 2012-06-19 2013-12-27 Total Marketing Services Additive compositions and use thereof for improving the cold properties of fuels and combustibles
WO2014173844A1 (en) * 2013-04-25 2014-10-30 Total Marketing Services Additive for improving the oxidation-stability and/or storage-stability of liquid hydrocarbon fuels or oxidizers
WO2016162392A1 (en) * 2015-04-10 2016-10-13 Total Marketing Services Asphaltene dispersant additive and uses thereof
WO2021122206A1 (en) * 2019-12-20 2021-06-24 Total Marketing Services Process for extracting a crude oil with injection of resin
WO2022136801A1 (en) * 2020-12-22 2022-06-30 Totalenergies Onetech Composition of additives comprising a copolymer and a resin

Also Published As

Publication number Publication date
FR3137915A1 (en) 2024-01-19

Similar Documents

Publication Publication Date Title
JP5814384B2 (en) Modified alkylphenol-aldehyde resin, its use as an additive to improve the properties of liquid hydrocarbon fuels at low temperatures
EP2867348B1 (en) Additive compositions and use thereof to improve the properties of motor fuels and fuels in cold conditions.
EP3280783A1 (en) Asphaltene dispersant additive and uses thereof
TW201116617A (en) Ethylene/vinyl acetate/unsaturated esters terpolymer as an additive improving cold resistance of liquid hydrocarbons such as middle distillates and fuels or combustible materials
CA3160607A1 (en) Process for extracting a crude oil with injection of resin
WO2022136801A1 (en) Composition of additives comprising a copolymer and a resin
WO2024013458A1 (en) Additive composition and use thereof for improving the pumpability of water and crude oil mixtures
WO2009044021A1 (en) Graft-modified vinyl ester and ethylene polymers, preparation method thereof and use of same as additives that improve the cold properties of liquid hydrocarbons
WO2020141126A1 (en) Use of specific copolymers for lowering the cold filter plugging point of fuels
FR3075813A1 (en) USE OF RETICLE POLYMERS FOR IMPROVING THE COLD PROPERTIES OF FUELS OR COMBUSTIBLES
EP3844250B1 (en) Use of specific copolymers for improving the cold properties of fuels or combustibles
WO2021074006A1 (en) Use of particular cationic polymers as cold-resistant additives for fuels
FR3054240A1 (en) USE OF COPOLYMERS FOR IMPROVING THE COLD PROPERTIES OF FUELS OR COMBUSTIBLES
EP4189048A1 (en) Use of copolymers having a specific molar mass distribution for lowering the cold filter plugging point of fuels
EP3844251A1 (en) Composition of additives, comprising at least one copolymer, one cold-flow improver and one anti-settling additive
WO2024084136A1 (en) Low-sulfur marine fuel composition
FR2746400A1 (en) Acrylic] co-polymers additives for inhibition of paraffin deposition in crude oils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23764352

Country of ref document: EP

Kind code of ref document: A1