WO2024012380A1 - 导管植入物系统以及所包含的相关的装置、人工心脏瓣膜和方法 - Google Patents

导管植入物系统以及所包含的相关的装置、人工心脏瓣膜和方法 Download PDF

Info

Publication number
WO2024012380A1
WO2024012380A1 PCT/CN2023/106397 CN2023106397W WO2024012380A1 WO 2024012380 A1 WO2024012380 A1 WO 2024012380A1 CN 2023106397 W CN2023106397 W CN 2023106397W WO 2024012380 A1 WO2024012380 A1 WO 2024012380A1
Authority
WO
WIPO (PCT)
Prior art keywords
balloon
heart valve
state
fluid
artificial heart
Prior art date
Application number
PCT/CN2023/106397
Other languages
English (en)
French (fr)
Inventor
王翔
王健
曾敏
周斌
杨灵锋
胡翔
杨园峰
齐均
范郑·万
金文超
丁振军
侯志远
董群
Original Assignee
杭州启明医疗器械股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210828216.1A external-priority patent/CN117427256A/zh
Priority claimed from CN202210828221.2A external-priority patent/CN117427257A/zh
Application filed by 杭州启明医疗器械股份有限公司 filed Critical 杭州启明医疗器械股份有限公司
Publication of WO2024012380A1 publication Critical patent/WO2024012380A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M25/00Catheters; Hollow probes
    • A61M25/01Introducing, guiding, advancing, emplacing or holding catheters

Definitions

  • the present application relates to the technical field of medical devices, and specifically to a catheter implant system and related devices, artificial heart valves and methods included therein.
  • transcatheter implant systems mainly include artificial implants and interventional delivery systems for delivering artificial implants into the subject's body.
  • Artificial implants such as artificial heart valves, etc.
  • the parts can be artificial aortic valves, artificial pulmonary valves, artificial mitral valves, artificial tricuspid valves, etc. They are usually compressed to a smaller diameter outside the body, and the artificial heart valve is delivered to the predetermined position using an interventional delivery system.
  • Existing interventional input systems mainly include functional components such as control handles and catheter components, locking wire structures, and bending components.
  • the control handle operates the catheter components and delivers the artificial implant loaded in the catheter component to the lesion site.
  • the artificial implant The release can be by self-expansion, or by using a balloon catheter to expand the artificial implant from the inside out.
  • the interventional input system includes multiple controlled devices, and the remote ends of each controlled device cooperate with each other to operate the artificial implant, such as releasing, retrieving, locking the position, adjusting the spatial posture, etc.
  • the control handle needs to be further improved to increase the flexibility of the outer sheath operation.
  • the artificial implant has safety risks such as displacement and offset in the early stage of release, and some solutions in the existing technology are not ideal.
  • This application provides an interventional delivery system that is more flexible in the operation of the outer sheath.
  • the present application provides an interventional delivery system, including a catheter assembly and a control handle connected to the catheter assembly.
  • the catheter assembly has opposite distal ends and proximal ends and includes an inner sheath and an outer sheath that are slidably sleeved with each other.
  • the outer sheath tube includes a loading section and a sheath section from the distal end to the proximal end, and the loading section is used to wrap the artificial implant and maintain the artificial implant in a compressed state;
  • the control handle includes:
  • a main handle, the proximal end of the inner sheath is connected to the main handle;
  • the auxiliary handle is slidably sleeved on the outer periphery of the inner sheath, and the proximal end of the outer sheath is connected to the auxiliary handle.
  • the auxiliary handle includes:
  • a housing having an axial direction in space, and a distal end and a proximal end opposite to each other in the axial direction, and the housing has an axial through passage;
  • a connecting sleeve fixed in the housing and arranged around the penetration channel, the distal side of the connecting sleeve is used for the outer sheath tube to be inserted and matched;
  • a positioning piece movably installed in the housing, the positioning piece having a locking position that interferes with the penetration channel and an unlocking position that releases the penetration channel;
  • the driving member drives the positioning member to switch positions in transmission cooperation with the positioning member.
  • the housing has a split buckle structure, and a mutually matching engaging positioning structure is provided between the inner wall of the housing and the outer periphery of the connecting sleeve.
  • the casing includes two half-shells that are buckled radially along the connecting sleeve, and heads located at both axial ends of the two half-shells; each head is clamped with the two half-shells. Fastened by buckle or twist.
  • the sliding stroke of the auxiliary handle relative to the main handle is 10 to 40 cm.
  • the side wall of the connecting sleeve is provided with a first exhaust hole connected to the passage passage, and a first pipe joint is fixedly connected to the first exhaust hole.
  • the hole and the first pipe joint define a first exhaust channel, and a one-way valve core is provided in the first exhaust channel.
  • a first annular seat is provided on the edge of the first exhaust hole, the first pipe joint is plug-fitted with the first annular seat, and a mutually matched anti-rotation structure is provided between them.
  • a first protective sleeve located on the outer periphery of the first pipe joint is embedded in the housing, and a pipeline insertion gap is formed between the outer wall of the first pipe joint and the inner wall of the first protective sleeve.
  • the anti-rotation structure includes:
  • Positioning ribs cooperate with the slots, and are provided on the side wall of the other of the first pipe joint and the first annular seat.
  • This application also provides an exhaust structure on a control handle.
  • the control handle is provided with a first exhaust hole, and a first pipe joint is fixedly connected to the first exhaust hole.
  • the first exhaust hole A first exhaust channel is defined with the first pipe joint, and a one-way valve core is provided in the first exhaust channel.
  • the one-way valve core can be applied to the auxiliary handle.
  • the one-way valve core has a relative sealing state and an open state
  • the one-way valve core specifically includes:
  • a limiting rod slidably installed in the inner cavity of the first pipe joint, with a fluid gap between the outer periphery of the limiting rod and the inner wall of the first pipe joint;
  • a sealing piece is connected to the limiting rod. In a sealed state, the sealing piece closes the fluid gap, and in an open state, the sealing piece opens the fluid gap.
  • the inner wall of the first pipe joint is provided with a snap ring surrounding the outer periphery of the limiting rod, and the fluid gap is located between the outer periphery of the snap ring and the inner wall of the first pipe joint;
  • One end of the limiting rod away from the sealing piece passes through the snap ring and has a head.
  • the head In the open state, the head is against the snap ring, and the sealing piece is away from the snap ring and opens all the stops.
  • the inner wall of the first pipe joint is provided with a snap ring surrounding the outer periphery of the limiting rod, and the fluid gap is located between the outer periphery of the snap ring and the inner wall of the first pipe joint;
  • One end of the limiting rod away from the sealing piece passes through the snap ring and has a head restricted by the snap ring.
  • the head and the sealing sheet clamping portion are fixed to the snap ring.
  • the edges of the sealing piece can be elastically deformed to open or close the fluid gap accordingly.
  • the positioning member is an elastic claw, one end of the elastic claw is fixed to the connecting sleeve, and the other end is a free end that swings along the radial direction of the connecting sleeve.
  • the elastic claw and the connecting sleeve are an integral structure.
  • the number of the elastic claws is two to six (for example, four), and they are distributed circumferentially along the connecting sleeve.
  • the driving member is cylindrical and a sliding sleeve is provided on the outer periphery of the connecting sleeve, and the inner wall of the driving member acts on the elastic claw.
  • a guide ramp is provided on the outside of the elastic claw, and the inner wall of the driving member acts on the guide ramp.
  • an elastic lining tube is provided inside the connecting sleeve, and the elastic claws act on the outer wall of the elastic lining tube to interfere with the penetration channel by squeezing the elastic lining tube.
  • the distal end of the elastic liner extends out of the connecting sleeve, and a radially outwardly protruding positioning step is provided at the extended part.
  • the positioning step is in contact with the connecting sleeve.
  • the end face and/or the inner wall of the housing are axially positioned to fit.
  • a mutually matching guide structure is provided between the inner wall of the driving member and the outer wall of the connecting sleeve.
  • the guide structure includes:
  • a chute provided on one of the inner wall of the driving member and the outer wall of the connecting sleeve;
  • the guide rib cooperates with the slide groove and is provided on the other one of the inner wall of the driving member and the outer wall of the connecting sleeve.
  • the outer wall of the driving member is provided with an operating button
  • the housing is provided with a first escape opening corresponding to the position of the operating button
  • the side wall of the driving member is provided with a second escape opening
  • the side wall of the connecting sleeve is provided with an exhaust hole matching the through passage; along the axial direction of the connecting sleeve, all The position of the second escape opening corresponds to the position of the exhaust hole.
  • the catheter assembly also includes a balloon catheter
  • the balloon catheter includes:
  • a balloon body is arranged at the distal end of the inner sheath, and is switched between an expanded state and a folded state under the action of fluid, and the artificial implant in the loading state is located on the outer periphery of the balloon body;
  • the catheter body is sleeved on the outer periphery of the inner sheath or arranged in parallel with the inner sheath.
  • the distal end of the catheter body is connected to the balloon body, and the proximal end of the catheter body is connected to the main body.
  • the catheter body is a fluid channel.
  • the balloon body is provided with a fluid guide member located on the outer periphery of the inner sheath tube.
  • the fluid guide member defines a flow guide channel, and the flow guide channel communicates with the distal end of the balloon body and the inner sheath. proximal site.
  • the fluid guide is tubular, and the position of the flow guide channel relative to the fluid guide is at least one of the following ways:
  • the flow guide channel is a flow guide groove opened on the outer peripheral wall of the fluid guide.
  • the distal side and the proximal side of the fluid guide are respectively adjacent to the distal side and the proximal side of the balloon body.
  • each guide groove is arranged along the circumferential direction of the fluid guide.
  • the same guide groove extends along the axial direction of the fluid guide or is spirally wound. way of setting.
  • the wrapping angle of the same guide groove is 0 to 180 degrees.
  • a connecting groove is provided between two adjacent guide grooves.
  • communicating grooves there are a plurality of communicating grooves arranged at intervals, and the communicating grooves corresponding to the axial positions constitute an annular groove.
  • a fluid guide is provided on the outer periphery of the inner sheath.
  • the fluid guide is tubular and is located inside the balloon.
  • the tube wall of the fluid guide has a hollow area.
  • the hollow area Continuously or spacedly extend from the distal end of the fluid guide to the proximal side of the fluid guide.
  • the fluid guide there is a radial gap between the fluid guide and the inner sheath, and the radial gap serves as the flow guide channel.
  • the fluid guide When the fluid guide is tubular, it is a drainage tube located on the periphery of the inner sheath, and the meridional gap between the drainage tube and the inner sheath serves as a fluid channel for transporting fluid to inflate the balloon.
  • this application also provides an interventional delivery device based on balloon expansion release, which has opposite distal ends and proximal ends and includes an inner shaft and a balloon catheter located around the inner shaft.
  • the balloon The catheter includes a balloon body connected to the catheter body at the proximal end of the balloon body.
  • the balloon body sequentially includes a first part, a middle part and a second part from the distal end to the proximal end.
  • the middle part is used for loading and fixing the artificial implant.
  • the catheter body has a main channel;
  • a drainage tube is provided in the radial gap between the inner shaft and the balloon body. Among the fluids output from the main channel to the balloon body, at least part of the fluid passes through the drainage tube and crosses the second After entering and filling the first part and the middle part.
  • the inner shaft can generally be a pipe fitting, and the inside of the pipe fitting can be used to pass the guide wire during intervention.
  • the pipe fitting can also be called a core tube or an inner sheath tube.
  • the interventional delivery device is suitable for balloon expansion, which is equivalent to a balloon device.
  • the present application also provides an interventional delivery device based on balloon dilatation release, which has opposite distal ends and proximal ends and includes an inner shaft and a balloon catheter located around the inner shaft.
  • the balloon catheter includes a balloon body to communicate with The catheter body at the proximal end of the balloon body, the balloon body includes a first part, a middle part and a second part in sequence from the distal end to the proximal end, and the middle part is used for loading and fixing the artificial implant;
  • a drainage tube is provided in the radial gap between the inner shaft and the balloon body.
  • the distal end of the drainage tube is fixed to the distal end of the inner shaft.
  • the remaining part of the drainage tube is suspended on the inner shaft. and between the balloon catheters;
  • At least part of the fluid output from the catheter body to the balloon body passes through the second part and the middle part through the drainage tube and then enters and inflates the first part.
  • the radial gap between the inner shaft and the catheter body serves as a main flow channel, and the main flow channel is an integrated flow channel.
  • part of the fluid output from the main channel to the balloon body enters and inflates the second part, and the other part enters the drainage tube and enters after crossing the second part and the middle part. And charge up the first part.
  • the proximal end of the drainage tube has an open port and serves as a fluid inlet.
  • the axial position of the fluid inlet is adjacent to the combination site of the balloon body and the catheter body.
  • the artificial implant in the loading state, is radially compressed and wrapped around the periphery of the middle part, and the first and second parts are exposed to both ends of the artificial implant; the proximal end of the drainage tube There is a fluid inlet located in the second portion.
  • a first gap with a radial span of L1 between the inner shaft and the drainage tube there is a first gap with a radial span of L1 between the inner shaft and the catheter body.
  • the balloon body is in an inflated state after being filled with fluid.
  • the fluid inlet is located at a sudden change in the flow channel cross-sectional area of the second part relative to the catheter body.
  • the drainage tube includes a distal section, a middle section and a proximal section in order from the distal end to the proximal end, and corresponds to each part of the balloon body respectively.
  • the distal section of the drainage tube has a A first fluid outlet is communicated with the first part, and the first fluid outlet is located on the tube wall of the distal section and/or on the end surface of the distal section.
  • the pipe wall of the distal section is provided with a plurality of first fluid outlets.
  • the plurality of first fluid outlets are distributed along the circumference of the drainage tube.
  • the plurality of first fluid output ports are located in the middle of the distal section.
  • proximal end of the drainage tube and the distal end of the catheter body are integrally connected with each other, and a second fluid outlet connected to the second part is provided on the wall of the proximal section.
  • the proximal end of the drainage tube has a chamfered section with a gradually converging shape, and at least a part of the chamfered section extends into the distal end of the catheter body.
  • the chamfered section has one or two chamfered surfaces.
  • the inner lumen of the drainage tube is open to the oblique section and is connected to the inner lumen of the catheter body and the second part at the same time.
  • a spacer is provided radially between the inner shaft and the drainage tube to maintain a radial gap between them.
  • the isolation member is a rib located on the inner wall of the drainage tube.
  • the isolation member is fixed to a hollow structural member radially between the inner shaft and the drainage tube.
  • a guide head is fixed at the distal end of the inner shaft, and the distal end of the drainage tube is fixed to the proximal end of the guide head.
  • the distal end of the drainage tube is closed by the guide head.
  • the proximal side of the guide head is provided with a positioning structure adapted to the distal end of the drainage tube.
  • the positioning structure is a coupling groove for the drainage tube to be inserted, or a combination for inserting the drainage tube. column.
  • the interventional delivery device of this application is mainly aimed at the ball expansion method and improves the fluid delivery and diversion method. During the release process of the artificial implant, it can avoid axial slippage and ensure the positioning effect.
  • the present application provides a method of using fluid to drive a balloon catheter.
  • the balloon catheter has opposite distal ends and proximal ends and includes a balloon body and a catheter body.
  • the distal end of the catheter body is connected to the balloon body.
  • the proximal end of the balloon body includes a first part, a middle part and a second part in sequence from the distal end to the proximal end.
  • the middle part is used for loading and fixing artificial implants.
  • the catheter body has a main channel.
  • the method includes :
  • all fluid used to inflate the balloon body comes from the main channel before being diverted.
  • the diversion method is:
  • the fluid is divided into two paths at the joint between the conduit body and the second part, one of which enters and inflates the second part, and the other passes through the second part and the middle part through an independent flow channel Then enter and charge as described in the first part.
  • the fluids all enter the independent flow channels from the main channel, and the independent flow channels are connected with branch flow channels, and a part of the fluid passes through the branch flow channels when flowing through the second part. It enters and charges the second part, and the other channel passes through the second part and the middle part through an independent flow channel and then enters and charges the first part.
  • the method also includes:
  • the fluid is divided into two paths, each path including one or more streams.
  • the artificial implant is a cylindrical structure, and the fluid entering the independent flow channel passes through the middle part of the cylindrical structure.
  • the balloon body has an axial direction extending between the distal end and the proximal end and corresponding radial and circumferential directions.
  • the method of inflating the first part includes:
  • the catheter assembly further includes a bending tube and a pulling member that drives the bending tube.
  • the bending tube is sleeved on the outer periphery of the inner sheath.
  • the bending tube and the pulling member The distal ends of the two are fixedly connected, and the proximal ends of the two are connected to the main handle and are relatively slidingly matched.
  • the bending tube and the pulling member are both located on the outer periphery of the catheter body.
  • the catheter assembly further includes a bending tube and a pulling member that drives the bending tube.
  • the bending tube is sleeved on the outer periphery of the inner sheath.
  • the bending tube and the pulling member The distal ends of the two are fixedly connected, and the proximal ends of the two are connected to the main handle and are relatively slidingly matched.
  • the traction member is set as follows:
  • the traction member is a traction tube and is located inside or outside the bending tube; or
  • the traction member is a traction line and is located inside, outside or inside the pipe wall of the bending pipe.
  • the pipe wall of the bending pipe has a sandwich structure, a liner is fixed in the sandwich, and the traction member is movably installed in the liner.
  • the main handle includes:
  • the support body has an axial direction in space.
  • the proximal end of the bending tube is fixedly connected to the support body.
  • the inner sheath tube and the catheter body of the balloon catheter are both extended and connected to the support body. proximal side;
  • a first sliding seat is slidably fitted relative to the support body in the axial direction, and the proximal end of the traction member is fixed to the first sliding seat;
  • a first drive sleeve, a rotating sleeve is installed on the support body and is located on the outer periphery of the first slide seat, and the first drive sleeve and the first slide seat adopt a threaded transmission fit;
  • a housing, a fixed sleeve is provided on the support body, and at least part of it is an indication section located outside the bending drive sleeve;
  • An identification piece is axially slidably installed on the indicating section and is located on the outer periphery of the first drive sleeve.
  • the first drive sleeve and the identification are matched with thread transmission.
  • the first drive sleeve has internal threads and external threads
  • the first slide seat has external teeth that cooperate with the internal threads
  • the identification piece has internal teeth that cooperate with the external threads. tooth.
  • the identification piece and the first sliding seat move synchronously under the action of the first drive sleeve.
  • a window corresponding to the position of the identification piece is provided on the side wall of the indication section.
  • the support body is provided with an installation groove extending in the axial direction, a guide tube is fixed in the installation groove, and the first slide seat is slidably sleeved on the guide tube.
  • the proximal end of the bending tube is inserted into and fixed on the guide tube.
  • the distal end of the bending tube is exposed to the outer sheath tube, and the exposed length is 0 to 20 cm.
  • This application also provides an exhaust structure on a control handle.
  • the control handle is provided with a second exhaust hole, and a second pipe joint is fixedly connected to the second exhaust hole.
  • the second exhaust hole A second exhaust passage is defined with the second pipe joint, and a one-way valve core is provided in the second exhaust passage.
  • the one-way valve core can be applied to the main handle.
  • the side wall of the guide tube is provided with a second exhaust hole, and the radial gap between the bending tube and the conduit body is connected to the As for the second exhaust hole, the proximal end of the catheter body passes through the proximal end of the bending pipe and then further extends through the guide tube;
  • a second pipe joint is fixedly connected to the second exhaust hole.
  • the second exhaust hole and the second pipe joint define a second exhaust channel.
  • the one-way valve core has a relative sealing state and an open state
  • the one-way valve core specifically includes:
  • a limiting rod slidably installed in the inner cavity of the second pipe joint, with a fluid gap between the outer periphery of the limiting rod and the inner wall of the second pipe joint;
  • a sealing piece is connected to the limiting rod. In a sealed state, the sealing piece closes the fluid gap, and in an open state, the sealing piece opens the fluid gap.
  • a second annular seat is provided on the edge of the second exhaust hole, the second pipe joint is plug-fitted with the second annular seat, and a mutually matched anti-rotation structure is provided between them.
  • a second protective sleeve is provided around the second pipe joint, and a pipeline insertion gap is formed between the outer wall of the second pipe joint and the inner wall of the second protective sleeve.
  • the anti-rotation structure includes:
  • Positioning ribs cooperate with the slots, and are provided on the side wall of the other of the second pipe joint and the second annular seat.
  • the inner wall of the second pipe joint is provided with a snap ring surrounding the outer periphery of the limiting rod, and the fluid gap is located between the outer periphery of the snap ring and the inner wall of the second pipe joint;
  • One end of the limiting rod away from the sealing piece passes through the snap ring and has a head restricted by the snap ring.
  • the head and the sealing sheet clamping portion are fixed to the snap ring.
  • the edges of the sealing piece can be elastically deformed to open or close the fluid gap accordingly.
  • the main handle includes:
  • a support body has an axial direction in space, and the inner sheath tube and the catheter body of the balloon catheter are both extended and connected to the proximal end side of the support body;
  • a second drive sleeve is rotatably mounted on the support body and is located on the outer periphery of the second slide seat.
  • the second drive sleeve and the second slide seat adopt a threaded transmission fit
  • a multi-way connector is connected to the proximal side of the second slide seat.
  • the proximal ends of both the balloon catheter and the inner sheath are connected to the multi-way connector.
  • the inside of the inner sheath is A penetrating guide wire channel, the multi-way joint at least has interfaces respectively connected with the guide wire channel and the fluid channel.
  • the multi-way joint is rotationally matched with the proximal side of the second slide seat and is axially limited.
  • the second sliding seat has a cylindrical structure as a whole, and at least part of it is located in the second driving sleeve. There are threads between the outer wall of the second sliding seat and the inner wall of the second driving sleeve.
  • the support body is provided with a guide groove for guiding the second slide seat to move in the axial direction.
  • the distal end of the multi-way joint and the proximal end of the second slide seat are rotationally plug-fitted, and there is a mutually matched axial limiting structure between the two.
  • Limiting structures include:
  • the latch is fixed to one of the two and protrudes radially toward the other;
  • the latching slot is provided in the other of the two to receive the latching teeth.
  • the interventional delivery system can also be combined with an artificial implant to form a transcatheter implant system.
  • the artificial implant is radially compressed and wrapped by an outer sheath.
  • the artificial implant includes a stent and a leaflet.
  • the stent has a unit cell structure. The two ends of the stent are the inflow side and the outflow side respectively.
  • the inside of the stent For blood flow channels;
  • the leaflets are multiple, and each leaflet cooperates with each other in the blood flow channel to relatively open or close the blood flow channel; the edge of the leaflet includes a fixed edge fixed to the stent, and cooperates with other leaflets Controls the free edges of blood flow channels.
  • the bracket is connected with an anti-peripheral leakage component.
  • the anti-peripheral leakage component is an integrated structure, including a base located inside the bracket and an anti-peripheral leakage component fixed on the outside of the base.
  • the anti-peripheral leakage component is distributed in multiple intervals. The block shape and the position correspond to the hollow area of the bracket cell.
  • the base is made of PET material
  • the anti-circular leakage component is made of PU material.
  • the anti-circular leakage component includes at least one of a second ring of anti-peripheral leakage parts and a third ring of anti-peripheral leakage parts, and a first ring of anti-peripheral leakage parts.
  • the first circle of anti-peripheral leakage components covers the entire cell;
  • the second ring of anti-circular leakage components is adjacent to the inflow side of the first ring of anti-circular leakage components and is distributed in the local area of the entire unit cell;
  • the third ring of anti-circular leakage components is adjacent to the outflow side of the first ring of anti-circular leakage components and is distributed in the local area of the entire cell where it is located.
  • the axial length of the second ring of anti-circular leakage components and the third ring of anti-peripheral leakage components only occupies half of a unit cell, and are adjacent to the first ring of anti-peripheral leakage components.
  • the thickness gradually becomes thicker from the outflow side to the inflow side, and then gradually becomes thinner after reaching the highest convex part.
  • the highest protruding part is closer to the inflow side of the cell.
  • the distance between the maximum convex height and the inflow side of the cell is S1
  • the distance between the maximum convex height and the outflow and inlet side of the cell is S2, where S1: S2 is 0.2 ⁇ 0.8. .
  • the diameter of the loading section is larger than the diameter of the sheath section.
  • the distal end of the inner sheath is provided with a guide head
  • the outer periphery of the guide head is provided with an annular step
  • the distal end surface of the loading section is limited by the annular step.
  • the interventional delivery system of the present application separates the movement of the outer sheath tube from other internal pipe fittings, and at the same time releases the restriction on the length of the main handle, making the operation of the outer sheath tube more flexible.
  • the present application provides a limiting mechanism, that is, a stop mechanism, which provides a relatively durable stopping effect during the interventional delivery and initial release of an artificial heart valve.
  • This application provides a limiting mechanism for interventional delivery systems, including:
  • a coupling part for connecting with the interventional delivery system having an axial direction and corresponding circumferential and radial directions;
  • the deformation part includes a plurality of slender rods arranged sequentially along the circumferential direction.
  • Each rod has:
  • each rod has a compressed state suitable for interventional delivery and a relative expanded state based on elastic deformation. In the expanded state , the second end of each rod diverges outward relative to the radial direction of the coupling portion in the compressed state.
  • the coupling part is straight-cylindrical, the rods are distributed radially, and the converging position of the first ends of the rods is one axial end of the coupling part.
  • the coupling part is radially deformable in an annular shape.
  • the coupling part is an axially undulating wave structure with opposite wave crests and wave troughs, and the first end of each rod member is connected to the corresponding wave crest.
  • the coupling part and the deformation part have an integral structure.
  • the coupling part and the deformation part are integrally cut from a pipe.
  • each rod moves independently.
  • the rod has a tendency to extend helically around the axis of the coupling portion.
  • the number of rods is 4 to 10.
  • the second end of the rod has a smooth outer contour and/or is covered with a protective layer.
  • the portion of the rod close to the second end has a radially inward bending tendency.
  • the portion of the rod close to the second end has a lower radial stiffness relative to the remaining portion of the rod.
  • the present application provides another limiting mechanism for an interventional delivery system, for installation in a balloon body.
  • the balloon body has a relative folding state and an inflation state. In the folding state, the balloon body has a There are multiple creases, and the limiting mechanism includes:
  • a coupling part for connecting with the interventional delivery system having an axial direction and corresponding circumferential and radial directions;
  • the deformation part includes a plurality of rods arranged in sequence along the circumferential direction.
  • Each rod is configured to have a compression state suitable for interventional delivery and a relative expansion state based on elastic deformation. In the compression state, each rod is positioned into the corresponding crease.
  • the balloon body is wound in a first direction along the circumferential direction in the folded state, and the spiral direction of each rod member is consistent with the first direction. towards the same.
  • the second end of at least one rod is not lower than the artificial implant in the radial direction.
  • This application provides another limiting mechanism for interventional delivery systems, including:
  • a coupling part for connecting with the interventional delivery system having an axial direction and corresponding circumferential and radial directions;
  • the deformation part includes a plurality of rods arranged sequentially along the circumferential direction, each rod having:
  • each rod is on one side of the coupling portion in the axial direction relative to the first end, and each rod is configured to have a compressed state suitable for interventional delivery and a relative expanded state based on elastic deformation.
  • the present application provides a balloon device for delivering artificial implants, including an inner shaft and a balloon body located on the periphery of the inner shaft.
  • the inner shaft is equipped with any of the above-mentioned balloons located inside the balloon body. A limiting mechanism.
  • the inner shaft can generally be a pipe fitting, and the inside of the pipe fitting can be used to pass the guide wire during intervention.
  • the pipe fitting can also be called a core tube or an inner sheath tube.
  • this application provides an interventional delivery system based on balloon expansion for delivering artificial implants.
  • the interventional delivery system includes a balloon device and an outer sheath.
  • the balloon device It includes an inner shaft and a balloon body located on the outer periphery of the inner shaft.
  • the distal end of the inner shaft is equipped with a plurality of rods arranged sequentially in the circumferential direction.
  • Each rod is configured to have a shape suitable for interventional delivery based on elastic deformation.
  • each member In the compressed state and the relative expanded state, each member has:
  • the first end is connected to the inner shaft
  • a second end is located on one side of the first end and is suspended relative to the inner shaft. In the expanded state, the second end of each rod diverges radially outward relative to the compressed state;
  • the artificial implant can be installed on the balloon body in a radially compressed loading state and is located at the proximal end of the rod.
  • the rod acts on the balloon body so that the outer peripheral surface of the balloon is not lower than the artificial implant. Peripheral surface of the distal side of the implant.
  • the rod acts on the balloon body so that the outer peripheral surface of the balloon is substantially flush with the outer peripheral surface of the distal side of the artificial implant.
  • this application provides another interventional delivery system based on ball expansion for delivering artificial implants.
  • the interventional delivery system has a relatively distal end and a proximal end, and extends at the proximal end. axially between and distally, the interventional delivery system includes:
  • the balloon device includes an inner shaft and a balloon body located on the outer periphery of the inner shaft.
  • the distal end of the inner shaft is equipped with a first limiting mechanism (can be installed inside the balloon body). Adopt the limiting mechanism described in this application);
  • the intermediate shaft is located outside the inner shaft.
  • the distal end of the intermediate shaft is equipped with a second limiting mechanism located outside the balloon body.
  • the second limiting mechanism is located outside the inner shaft.
  • the artificial implant Proximal to the first limiting mechanism, the artificial implant can be installed on the balloon body in a radially compressed loading state and is between the first limiting mechanism and the second limiting mechanism.
  • the two limiting mechanisms configured to limit axial movement of the artificial implant relative to the balloon body;
  • the outer sheath tube is slidably fitted on the outer periphery of the balloon device.
  • the outer sheath tube has an extreme position of proximal movement on its own sliding path. At this extreme position, the first limiting mechanism The artificial implant is exposed outside the outer sheath tube, and the second limiting mechanism is located inside the outer sheath tube.
  • this application provides another interventional delivery system based on ball expansion for delivering artificial implants.
  • the interventional delivery system includes:
  • the balloon device includes an inner shaft and a balloon body located on the outer periphery of the inner shaft.
  • the distal end of the inner shaft is equipped with a plurality of balloons arranged circumferentially inside the balloon body.
  • Rods, each rod is configured to have a compression state suitable for interventional delivery and a relative expansion state based on elastic deformation.
  • Each rod has a first end connected to the inner shaft, and a first end located at the first end. side and the second end that is suspended relative to the inner shaft. In the unfolded state, the second end of each rod diverges radially outward relative to the compressed state, and the artificial implant can radially
  • the compressed loading state is installed on the balloon body and is located at the proximal end of each rod;
  • An adjustment wire is used to releasably fix the artificial implant on the balloon body.
  • One end of the adjustment wire can remain fixed to the balloon body, and the other end can pass through the artificial implant and have a keyhole;
  • the locking wire has a relative locking state and an unlocking state. In the locking state, the locking wire penetrates into each keyhole to limit the artificial implant. In the unlocking state, the locking wire separates from each keyhole to release the artificial implant. things.
  • the first end of the rod is connected to a coupling part connected to the inner shaft, and all the rods constitute a deformation part.
  • the interventional delivery system further includes a control handle, the control handle is connected to and controls the balloon device, and the balloon device adopts the above balloon device.
  • the balloon body is provided with a fluid guide member located on the outer periphery of the inner shaft.
  • the fluid guide member defines a flow guide channel, and the flow guide channel connects the distal part and the proximal part of the balloon body. end part.
  • each rod in the limiting mechanism of this application is relatively independent.
  • the artificial implant deforms and expands during the expansion process to extend the timeliness of the stop and better limit the axial displacement of the artificial implant. In addition, it can also reduce mutual traction in the radial direction, further ensuring Positioning effect of artificial implants in eccentric state.
  • the present application provides a balloon device for delivering an artificial heart valve, which provides a relatively durable stopping effect during the early stages of interventional delivery and release of the artificial heart valve.
  • This application provides a balloon device for delivering artificial heart valves, including:
  • Conduit body the extension direction of the conduit body is the axial direction
  • the balloon body is in communication with the catheter body.
  • the balloon body can receive fluid from the catheter body to enter the inflation state from the folded state.
  • the artificial heart valve responds accordingly based on changes in the balloon body. Expand from radially compressed state to radially expanded state;
  • a limiting mechanism configured to limit the movement of the artificial heart valve in the axial direction at least when the artificial heart valve is installed on the balloon body in a radially compressed state.
  • the limiting mechanism specifically include:
  • the limiting body includes a plurality of rods, the plurality of rods as a whole extend from the first end in the axial direction to the second end in the axial direction, and are respectively in the The first end and the second end are gathered together to form a hollow cage structure.
  • the plurality of rods are configured as side walls of the cage structure, and a gap between two adjacent rods forms a hollow area on the side wall.
  • the hollow area includes a main hollow area and an auxiliary hollow area, and the span of the main hollow area along the axial direction is greater than the span of the auxiliary hollow area along the axial direction.
  • the main hollow area spans the first end and the second end.
  • the cage structure has an expanded portion, the expanded portion has a maximum outer diameter of the cage structure, and the main hollow area spans the expanded portion.
  • the main hollow area and the auxiliary hollow area are sequentially distributed in the circumferential direction.
  • the limiting mechanism is located inside or outside the balloon body.
  • At least one of the catheter body and the balloon body is directly fixed to the limiting mechanism, or indirectly fixed to the limiting mechanism through an intermediate piece.
  • the balloon device further includes an inner shaft (as the intermediate piece), which is penetrated inside the catheter body and the balloon body; the limiting mechanism further includes:
  • At least one coupling member is fixed to the inner shaft and connected to the gathering portion of the limiting body.
  • the coupling member is located inside or outside the limiting body.
  • the coupling member is located at at least one end of the limiting body in the axial direction.
  • the outer diameter ratio of the expanded portion and the coupling member is 2 to 4:1, preferably 3:1.
  • This application also provides a balloon device for delivering artificial heart valves, including:
  • Conduit body the extension direction of the conduit body is the axial direction
  • the balloon body is in communication with the catheter body.
  • the balloon body can receive fluid from the catheter body to enter the inflation state from the folded state.
  • the artificial heart valve responds accordingly based on changes in the balloon body. Expand from radially compressed state to radially expanded state;
  • a limiting mechanism configured to limit the movement of the artificial heart valve in the axial direction at least when the artificial heart valve is installed on the balloon body in a radially compressed state.
  • the limiting mechanism specifically include:
  • the limiting body is a cage structure as a whole, and a part of the cage structure is an expanded portion, which has the largest radial expansion relative to other parts of the cage structure.
  • one end of the limiting body is the first end facing the artificial heart valve in use, and the other end is the opposite second end, and the expanded portion is adjacent to the first end of the limiting body .
  • the balloon device further includes an inner shaft that passes through the catheter body and the balloon body; the limiting mechanism further includes a coupling member fixed to the inner shaft.
  • the shaft is connected to the limiting body.
  • a recessed area for accommodating the end of the artificial heart valve is formed in the limiting body between one side of the first end and the coupling member on that side.
  • This application also provides a balloon device for delivering artificial heart valves, including:
  • Conduit body the extension direction of the conduit body is the axial direction
  • the balloon body is in communication with the catheter body.
  • the balloon body can receive fluid from the catheter body to enter the inflation state from the folded state.
  • the artificial heart valve responds accordingly based on changes in the balloon body. Expand from radially compressed state to radially expanded state;
  • a limiting mechanism configured to limit the movement of the artificial heart valve in the axial direction at least when the artificial heart valve is installed on the balloon body in a radially compressed state.
  • the limiting mechanism specifically include:
  • the limiting body includes a plurality of rods that form a cage structure as a whole.
  • a part of the cage structure is an expanded portion, and the expanded portion has a structure relative to other parts of the cage structure.
  • each rod is arranged at intervals along the circumference of the limiting mechanism and the enclosed area approaches a polygon.
  • the polygon is a regular polygon, and the number of sides is 4 to 12.
  • the number of sides of the regular polygon is 6 to 8.
  • one end of the limiting body is a first end facing the artificial heart valve in use, and the other end is an opposite second end. Both ends of the limiting body are directed toward the central axis of the limiting body. Gather.
  • each rod extends spatially from the first end to the second end and forms a sphere or ellipsoid.
  • the cross-section of the ellipsoid is an elliptical surface, and the long axis of the elliptical surface is consistent with the axial direction.
  • the cage structure is surrounded by a plurality of rods, and each rod extends spatially from the first end to the second end and forms a cone.
  • the cone includes a first cone and a second cone.
  • the first cone and the second cone are located on both sides or on the same side of the expanded portion.
  • the first cone and the second cone when the first cone and the second cone are on both sides of the outer expansion part, the first cone and the second cone originate from the outer expansion part.
  • the shape gradually shrinks, and the shrinking trend is different.
  • one end of the limiting body is the first end facing the artificial heart valve in use, the other end is the opposite second end, and the first cone is connected to the first end, and the The convergence trend of the first cone is faster.
  • the first cone and the second cone interact with the outer expansion portion, and the included angle at the intersection is 20 to 120 degrees.
  • one end of the limiting body is the first end facing the artificial heart valve in use, and the other end is One end is an opposite second end, and the first cone is connected to the first end, and the first cone shrinks in a direction away from the first end.
  • the balloon device further includes an inner shaft that passes through the catheter body and the balloon body; the limiting mechanism further includes a coupling piece, and the coupling piece is connected to the catheter body.
  • the inner shaft is connected, and the coupling member is radially compressible tubular.
  • the coupling has an axially undulating wave structure or a deformable mesh.
  • the cage structure is surrounded by a plurality of rods. All rods spatially define the side walls of the cage structure, and all rods are coupled by one of them.
  • the coupling member extends from another coupling member and has at least one bifurcation on its extension path, or intersects with an adjacent rod member.
  • a plurality of intersection points of two rods are distributed at intervals along the circumferential direction of the outer expansion portion.
  • the rods are extended in pairs and side by side from one of the coupling members.
  • the number of main hollow areas is 4 to 12.
  • the number of main hollow areas is 6 to 8.
  • each main hollow area has the same shape and is evenly arranged along the circumferential direction.
  • the main hollow area is strip-shaped.
  • the length of the main hollow area is at least 40% of the total length of the limiting body.
  • the length of the main hollow area is at least 60% of the total length of the limiting body.
  • the length of the main hollow area is 75% to 100% of the total length of the limiting body.
  • the main hollow area extends to both sides of the outer expansion portion, and the extended length is at least 20% of the total length of the limiting body.
  • the shape of the main hollow area is rhombus.
  • the hollow part of the cage structure includes the main hollow area and an opposite auxiliary hollow area, wherein the auxiliary hollow area avoids the outer expansion part.
  • the limiting mechanism is integrally cut and formed from a pipe.
  • the pipe has an initial outer diameter D1
  • the coupling member has an outer diameter D2
  • the outer diameter D2 of at least one coupling member is smaller than D1.
  • the present application also provides a balloon device for delivering an artificial heart valve, having opposite distal ends and proximal ends, including:
  • Conduit body the extension direction of the conduit body is the axial direction
  • the balloon body is in communication with the catheter body.
  • the balloon body can receive fluid from the catheter body to enter the inflation state from the folded state.
  • the artificial heart valve responds accordingly based on changes in the balloon body. Expand from radially compressed state to radially expanded state;
  • Inner shaft the inner shaft penetrates inside the catheter body and the balloon body;
  • a limiting mechanism configured to limit the movement of the artificial heart valve in the axial direction at least when the artificial heart valve is installed on the balloon body in a radially compressed state.
  • the limiting mechanism specifically include:
  • the limiting body is a cage-shaped structure as a whole;
  • the guide tube is connected to the limiting body and is integrally cut and formed with a pipe made of shape memory alloy with the limiting body;
  • a coupling member is connected to the inner shaft, and the coupling member is also connected to at least one of the limiting body and the guide tube.
  • the guide tube is connected to the proximal side of the limiting body.
  • the number of the limiting bodies is two, and they are respectively connected to the proximal side and the distal side of the guide tube.
  • the cage structures of the two limiting bodies are independent of each other.
  • the balloon body includes a first part, a middle part and a second part in sequence from the distal end to the proximal end, and the middle part is used for loading and fixing the artificial heart valve;
  • the guide tube is disposed in a radial gap between the inner shaft and the balloon body, and a guide channel for fluid to pass is left between the guide tube and the inner shaft.
  • the coupling member includes a first coupling member and a second coupling member located at the distal end of the first coupling member, both coupling members are located on the outer periphery of the inner shaft, and at least one coupling member The coupling member is fixed to the inner shaft, and the distal end of the balloon body also wraps the second coupling member.
  • the second coupling member is located at the proximal end of the guide tube and adjacent to the connection site between the balloon body and the catheter body.
  • the proximal end of the guide tube has a reduced diameter section and is connected to the coupling piece on the corresponding side through the reduced diameter section.
  • the drainage tube has a fluid inlet, and the fluid inlet is distributed in the reduced diameter section and/or the peripheral wall of the drainage tube.
  • the entire peripheral wall of the drainage tube has a hollow gap.
  • the limiting mechanism is integrally cut and formed from a pipe.
  • the pipe has an initial outer diameter D1
  • the drainage tube has an outer diameter D1
  • the coupling member has an outer diameter D2
  • the outer diameter D2 of at least one coupling member is smaller than D1.
  • This application also provides a transcatheter implant intervention system, including the balloon device described in this application and an artificial implant.
  • the balloon device includes:
  • a balloon body connected with the catheter body
  • the artificial implant is installed on the balloon body in a radially compressed loading state and is blocked by the limiting mechanism in the axial direction.
  • the transcatheter implant intervention system further includes an outer sheath slidably fitted outside the balloon device, and the limiting body includes a loading state, an intermediate state and an expansion state;
  • the limiting body in the loading state, is located inside the balloon body and the outer sheath tube, and is subject to the radial force of both the balloon body and the outer sheath tube;
  • the limiting body In the intermediate state, the limiting body is separated from the radial restraint of the outer sheath and is subject to the radial force of the balloon body;
  • the balloon body expands and the limiting body expands.
  • the outer sheath is an introducer sheath.
  • the artificial implant is an artificial heart valve.
  • This application improves the limiting mechanism to make it more suitable for interventional delivery of artificial implants and cooperation with ball expansion release.
  • the present application provides an artificial heart valve, which includes a first stent and a leaflet.
  • the first stent is a radially deformable cylindrical structure.
  • the interior of the first stent is a blood flow channel.
  • the leaflets are Multiple pieces cooperate with each other to control the blood flow channel;
  • the first bracket has a grid structure surrounded by frames.
  • the first bracket is straight-cylindrical.
  • the grid structure includes a rhombus-shaped grid.
  • the end of the first bracket has a protruding surface.
  • the eyelet structure at the end is composed of a frame bar at the end, the first bracket has a relative expansion state and a compression state, and in the compression state, the eyelet structure protrudes from the The distance between the ends is L1; in the expanded state, the distance between the eyelet structure and the end is L2, and L1>L2 ⁇ 0.
  • the grid structure of the first bracket forms several grid nodes at the end.
  • the eyelet structure In the expansion state, the eyelet structure is basically flush with its surrounding grid nodes; in the compression state, the eyelets The structure is significantly higher than its surrounding grid nodes.
  • L1:L2 is 1.2 ⁇ 1.6:1.
  • L1 is 0.6 ⁇ 0.8mm
  • L2 is 0.4 ⁇ 0.6mm.
  • the hole structure in the expanded state, is an arc-shaped structure as a whole, and in the compression state, the hole structure approaches a circular structure.
  • the artificial heart valve is an artificial pulmonary valve or an artificial aortic valve.
  • the frame bars at the ends are bent around themselves to form an arc and define the edge of the eyelet structure.
  • both axial ends of the first bracket are provided with the eyelet structures, and the circumferential positions of the eyelet structures at both ends are the same or offset.
  • the mesh with the perforated structure is a first mesh
  • the mesh circumferentially adjacent to the first mesh is a second mesh
  • the perforated structure Surrounding frames include:
  • the connecting section extends from both ends of the arc-shaped section in opposite directions to the grid nodes on both circumferential sides of the first grid.
  • the angle between the connecting segments on both sides of the arc segment is A1
  • the internal angle of the mesh node located at the axial end of the second mesh is A2
  • A1 is greater than A2 in the expanded state.
  • the central angle corresponding to the arc segment itself is 150 to 210 degrees.
  • the span of the arc segment in the circumferential direction of the first stent accounts for 1/4 to 1/2 of the span of the first grid, for example, about 1/3.
  • the strength of the frame bars around the eyelet structure is smaller than the strength of the frame bars in other parts of the first grid.
  • the grid in the first bracket is composed of multiple turns, and two axially adjacent turns are arranged circumferentially offset and share part of the frame strips.
  • the internal angle of the nodes of each grid is 75 to 105 degrees, for example, 90 degrees, which is basically a square.
  • the artificial heart valve further includes a skirt connected to and surrounding the inner wall of the first stent, and one axial side of the skirt is connected to the valve leaflet.
  • the artificial heart valve further includes a blocking member arranged circumferentially along the first stent.
  • the blocking member is fixed to the skirt and passes through a corresponding mesh from the radially inner side of the first stent.
  • the grid protrudes radially outward of the first bracket.
  • the skirt and the blocking member are integrally formed or bonded, and both are made of PU material.
  • the blocking member includes:
  • a plurality of blocking blocks are arranged along the circumferential direction of the first bracket.
  • Each blocking block is made of foam material and embedded in a grid structure corresponding to the position.
  • the blocking member also includes:
  • Lining film the plurality of blocking blocks are fixed on one side of the lining film, and the lining film and the plurality of blocking blocks are made of the same material.
  • the skirt is made of biological pericardial material, and the lining membrane is sewn to the skirt.
  • this application also provides an artificial heart valve, which includes a stent (ie, the first stent) and multiple valve leaflets connected to the stent.
  • the stent has a cylindrical structure and an internal For blood flow channels;
  • At least part of the stent is a support bar.
  • at least one side of the support bar has a recessed area.
  • the leaflets are fixed to the support bar through sutures, and the sutures are All knots are located in corresponding recessed areas.
  • the leaflets include:
  • the body has opposite transverse and longitudinal directions in a flat state.
  • the outer edge of the body includes a free edge and a fixed edge distributed on two opposite sides in the longitudinal direction.
  • the plurality of leaflets are fixed to the stent through their respective fixed edges.
  • the free edges of the multiple valve leaflets cooperate with each other to control the blood flow channel in the artificial heart valve;
  • Ears are arranged on two opposite sides of the body in the transverse direction, and the free edge and the fixed edge intersect with the ears on the corresponding sides;
  • the ears between two adjacent leaflets are connected to each other through a first suture, and are also connected to the support bar through a second suture and a third suture, wherein the second suture and the third suture All knots in are located in the corresponding recessed areas.
  • the part where the ears between two adjacent leaflets are connected to each other through the first suture abuts against the radially inner side of the support bar.
  • the ears between two adjacent leaflets cooperate with each other to wrap the support bar.
  • the knot in the second suture is wrapped by the ear piece, and the knot in the third suture is exposed to the ear piece.
  • the two axial sides of the bracket are the opposite inflow side and the outflow side, wherein a circle of hexagonal cells is arranged circumferentially on the outflow side, and the support bar serves as one of the two adjacent cells. shared edge between them.
  • the extension direction of the support bar is the axial direction of the bracket.
  • This application also provides a transcatheter implant system, including a balloon device and an artificial heart valve.
  • the balloon device and the artificial heart valve can respectively adopt the solutions described in this application.
  • the balloon device include:
  • the balloon body is in communication with the catheter body, the balloon body can receive fluid from the catheter body, thereby entering the inflation state from the folded state, and the artificial heart valve correspondingly changes from the compression to the expansion state based on the changes of the balloon body.
  • the state expands to an expanded state;
  • the inner shaft is inserted inside the catheter body and the balloon body, and a guide head is fixed at the distal end;
  • the transcatheter implant system also includes a locking wire structure for limiting the axial relative position of the artificial heart valve and the balloon body, and the locking wire is used to pass through the eyelet structure of the first stent. .
  • the locking line structure includes:
  • the first adjustment wire is used to releasably fix the artificial implant on the balloon body.
  • One end of the first adjustment wire can remain fixed to the catheter body, and the other end can pass through the eyelet structure and carry the There is a first keyhole;
  • a second adjustment wire one end of which is connected to the guide head, and the other end of which can pass through the eyelet structure and has a second keyhole;
  • the locking wire has a relative locking state and an unlocking state.
  • the locking state the locking wire penetrates into each keyhole to limit the artificial implant.
  • the unlocking state the locking wire separates from each keyhole to release the artificial implant. thing;
  • the guide head is provided with an insertion hole, and the end portion of the locking wire extends into the insertion hole in the locked state.
  • At least two coupling sites between the adjustment line and the locking line there are at least two coupling sites between the adjustment line and the locking line, at least one coupling site restricts the movement of the artificial implant in the distal direction, and at least one coupling site limits the movement of the artificial implant in the distal direction. Proximal movement.
  • the first adjustment line and the second adjustment line match in axial length, so that the first bracket is maintained in the middle region of the balloon body.
  • the present application also provides a transcatheter implant system, including a balloon device and an artificial heart valve as described above, where the balloon device includes:
  • the balloon body is in communication with the catheter body.
  • the balloon body can receive fluid from the catheter body to enter the inflation state from the folded state.
  • the artificial heart valve correspondingly changes from the compression state to the expansion state based on the changes of the balloon body.
  • the state expands to an expanded state;
  • a limiting mechanism configured to limit the movement of the artificial heart valve in the axial direction at least when the artificial heart valve is installed on the balloon body in a compressed state.
  • the limiting mechanism specifically includes a limiting mechanism.
  • the limiting body may be the limiting body described above. For example, it includes multiple rods and forms a hollow cage structure.
  • the limiting mechanism includes at least one limiting body, and at least the distal end of the first bracket is blocked by the limiting body.
  • the distal end of the first stent has an eyelet structure protruding from the end, and in the compressed state of the first stent, the eyelet structure is close to the limiting body.
  • both ends of the first stent have eye structures protruding from the ends, and the limiting mechanism at least includes two limiting bodies respectively located at the proximal end and distal end of the balloon body. In the compressed state, the eyelet structures are respectively pressed against the corresponding limiting bodies.
  • the balloon device is further configured with a locking wire structure for axial limitation on the first stent.
  • the limiting mechanism includes a limiting body, and at least the distal end of the first bracket is blocked by the limiting body;
  • the locking line structure includes:
  • the first adjustment wire is used to releasably fix the artificial heart valve on the balloon body.
  • One end of the first adjustment wire can remain fixed to the catheter body, and the other end can pass through the eyelet structure and has the first keyhole;
  • a second adjustment wire one end of which is connected to the guide head, and the other end of which can pass through the eyelet structure and has a second keyhole;
  • the locking wire has a relative locking state and an unlocking state.
  • the locking state the locking wire penetrates into each keyhole to restrict the artificial heart valve.
  • the unlocking state the locking wire separates from each keyhole to release the artificial heart valve.
  • the guide head is provided with an insertion hole, and the end portion of the locking wire extends into the insertion hole in the locked state.
  • This application also provides an artificial heart valve assembly, including:
  • Artificial heart valves (such as artificial pulmonary valves, etc.);
  • An anchoring stent is placed on the radially outer side of the artificial heart valve after assembly. Both the artificial heart valve and the anchoring stent have an expanded state and a compressed state. In the expanded state, the artificial heart valve and the anchoring stent abut against each other. ;
  • the anchoring bracket has a grid structure surrounded by frames, and the grid structure includes in the axial direction:
  • the middle part includes two circles of fishbone mesh
  • the end part includes two circles of diamond grids, respectively located on both sides of the middle part in the axial direction;
  • the anchoring stent also has a pre-expanded state before assembly, the anchoring stent has a first diameter in the pre-expanded state and a second diameter in the expanded state, and the second diameter is larger than the first diameter.
  • the axial length of the anchoring bracket is greater than the length of the first bracket.
  • the first bracket is located in the axial middle of the anchor bracket.
  • the fishbone mesh is a concave hexagon with opposite convex tips and concave tails.
  • the concave tails of the two circles of fishbone meshes are symmetrical to each other and the convex tips are opposite to each other;
  • the two circles of rhombus grids are respectively located on both sides of the middle part in the axial direction, and each rhombus grid is located between the convex tips of two adjacent fishbone grids.
  • the axial position of the first bracket does not exceed the middle part.
  • the first bracket has a denser mesh than the anchoring bracket.
  • the number of circumferential grids in the first bracket is 1.2 to 2 times the number of circumferential grids in the anchoring bracket.
  • the anchoring bracket is located in the diamond grid at the end, and the two frame bars facing away from the middle part have lower strength than the two frame bars shared with the middle part.
  • the artificial heart valve and anchoring stent are released based on ball expansion.
  • the artificial heart valve is released based on a bulb expansion method, and the anchoring stent is released based on a self-expansion method.
  • the present application also provides a transcatheter implant system, including:
  • a first delivery system with a first balloon for delivering and expanding the artificial heart valve.
  • the transcatheter implant system further includes a second delivery system for expanding the anchoring stent.
  • the first delivery system and the second delivery system may use the same or different interventional paths to implement interventional delivery.
  • the first delivery system further includes a second balloon for expanding the anchoring stent.
  • first balloon body and the second balloon body are respectively configured with fluid channels (to avoid mutual interference).
  • the two balloon bodies are arranged along the axial direction and are respectively loaded with the artificial heart valve and the anchoring stent.
  • the anchoring stent is released first. at the distal end of the first stent.
  • the second delivery system is configured with a limiting mechanism for the distal end or both ends of the anchoring stent.
  • the second balloon body is configured with a limiting mechanism for the distal end or both ends of the anchoring stent.
  • the limiting mechanism is configured to limit at least when the anchoring bracket is installed on the corresponding balloon body in a radially compressed state.
  • the limiting mechanism specifically includes a limiting body, and the limiting body can be the limiting body described above. For example, it includes multiple rods and forms a hollow cage structure.
  • a limiting mechanism is configured in the first balloon body for the distal end or both ends of the artificial heart valve.
  • the limiting mechanism is configured to limit the movement of the artificial heart valve in the axial direction at least when the artificial heart valve is installed on the first balloon body in a radially compressed state.
  • the positioning mechanism specifically includes a limiting body, and the limiting body may be the limiting body described above. For example, it includes multiple rods and forms a hollow cage structure.
  • the second delivery system is configured with locking wire structures for axial limitation at both ends of the anchoring bracket.
  • the end of the first bracket and/or the anchoring bracket has an eye structure protruding from the end.
  • the locking line structure includes:
  • the first adjustment wire is used to releasably fix the artificial heart valve or anchoring stent to the corresponding delivery system.
  • One end of the first adjustment wire can remain fixed to the catheter body, and the other end can pass through the eyelet structure and With first keyhole;
  • a second adjustment wire one end of which is connected to the guide head, and the other end of which can pass through the eyelet structure and has a second keyhole;
  • the first locking wire has a relative locking state and an unlocking state.
  • the locking state the locking wire penetrates into each keyhole to restrict the anchoring stent.
  • the unlocking state the locking wire separates from each keyhole to release the artificial heart valve. or anchor bracket.
  • the locking wire structure is also configured with two sets for the two sets of delivery systems.
  • the locking line structure includes:
  • the third adjustment line and the fourth adjustment line are used to releasably fix the artificial heart valve on the first balloon body, and have a keyhole that can pass through the eyelet structure;
  • the fifth adjustment line and the sixth adjustment line are used to releasably fix the anchoring bracket on the second balloon body, and have a keyhole that can pass through the anchoring bracket;
  • the second locking wire has a relative locking state and an unlocking state.
  • the second locking wire penetrates into each keyhole to restrict the artificial heart valve and anchoring stent.
  • the second locking wire breaks away. Each keyhole releases the prosthetic heart valve and anchoring stent.
  • the locking wire includes a first locking wire and a third locking wire.
  • the first locking wire penetrates into the keyhole to restrict the artificial heart valve
  • the third locking wire penetrates into the keyhole to restrict the artificial heart valve.
  • Limit anchor bracket In the locked state, the first locking wire penetrates into the keyhole to restrict the artificial heart valve, and the third locking wire penetrates into the keyhole to restrict the artificial heart valve. Limit anchor bracket.
  • the anchoring bracket includes an eyelet structure, and the second locking line or the third locking line passes through the eyelet structure of the anchoring bracket.
  • the first delivery system is configured with locking wire structures for axial limitation at both ends of the artificial heart valve.
  • the transcatheter implant system is configured with a locking wire structure for the anchoring stent.
  • the transcatheter implant system is configured with a locking wire structure for the artificial heart valve and anchoring stent.
  • the first delivery system further includes an outer sheath tube, the anchoring stent is accommodated in the outer sheath tube in a compressed state, and the anchoring stent is released based on self-expansion.
  • the present application also provides a method for detaching an artificial heart valve assembly from an interventional delivery system.
  • the artificial heart valve assembly includes an artificial heart valve and an anchoring stent, both of which have an expanded state and a compressed state;
  • the interventional delivery system at least includes an interventionally deliverable inner shaft, and both the artificial heart valve and the anchoring stent are connected to the inner shaft in a compressed state;
  • the detachment methods include:
  • Step S100 release the connection between the anchoring bracket and the inner shaft, so that the anchoring bracket enters an expanded state
  • Step S200 deliver the artificial heart valve to the inside of the anchoring stent
  • Step S300 Release the connection between the artificial heart valve and the inner shaft, so that the artificial heart valve enters an expanded state and is pressed against the inner wall of the anchoring stent.
  • the interventional delivery system further includes an outer sheath tube, which is relatively slidably installed on the outer periphery of the inner shaft, and the anchoring bracket is connected to the inner shaft and wrapped by the outer sheath tube;
  • the outer sheath tube and the inner shaft are first relatively moved so that the anchoring stent is exposed to the outer sheath tube and enters an expanded state in a self-expanding manner.
  • the inner shaft is one, and the interventional delivery system further includes:
  • Two balloon bodies are arranged sequentially along the inner axis, and the artificial heart valve and the anchoring stent are respectively connected to the outer periphery of the corresponding balloon body;
  • a locking line used to simultaneously limit the axial positions of the artificial heart valve and the anchoring stent relative to the balloon body where they are located;
  • the interventional delivery system also includes a bending component, which can act on at least the inner shaft to change the distance of the inner shaft. end orientation;
  • the inner shaft Before the artificial heart valve assembly is separated from the inner shaft, the inner shaft has one smooth turning part in space through the action of the bending component, or has at least two smooth turning parts, and two The steering direction of the turning part is opposite (take S as an example).
  • the part of the inner shaft corresponding to the turning part is made of metal cutting tube.
  • This application improves the artificial heart valve and the interventional delivery system.
  • the two cooperate with each other during the interventional delivery and expansion process of the artificial heart valve, and the operation effect is more ideal.
  • Figure 1 is a schematic diagram of the auxiliary handle of the conveying system away from the main handle in an embodiment of the present application
  • Figure 2 is a schematic diagram of the auxiliary handle close to the main handle in Figure 1;
  • Figure 3a is a schematic diagram of the cooperation between the distal end of the outer sheath tube and the inner sheath tube in Figure 1;
  • Figure 3b is a schematic diagram of the distal side bending of the delivery system in one embodiment of the present application.
  • Figure 4 is a perspective view of the auxiliary handle in an embodiment of the present application.
  • Figure 5 is an exploded view of the outer shell and head of the auxiliary handle in Figure 4.
  • Figure 6 is an assembly view between the outer shell of the auxiliary handle, the first head and the second head in Figure 4;
  • Figure 7 is an assembly view from another perspective of Figure 6;
  • Figure 8 is an exploded view of the remaining components of the auxiliary handle except the outer shell and the head in one embodiment of the present application;
  • Figure 9 is a structural view of the auxiliary handle in an embodiment of the present application.
  • Figure 10a is an enlarged view of part A in Figure 9 (the sealing sheet closes the fluid gap);
  • Figure 10b is an enlarged view of the open fluid gap of the sealing plate in Figure 10a;
  • Figure 11 is an exploded view of the first protective sleeve and the connecting sleeve in an embodiment of the present application
  • Figure 12 is a perspective view of the sliding locking of the driving member in an embodiment of the present application.
  • Figure 13 is a structural view of the connecting sleeve in an embodiment of the present application.
  • Figure 14 is a three-dimensional view of the operating button of the auxiliary handle sliding and unlocking in an embodiment of the present application
  • Figure 15a is a perspective view of the sliding lock of the operating button in Figure 14;
  • Figure 15b is a three-dimensional view of the auxiliary handle and the outer sheath
  • Figures 16a to 16d are schematic diagrams of the positioning principle of the distal end of the balloon after inflation when the outer sheath reaches different positions;
  • Figure 17a is a structural view of the distal end of the catheter assembly in an embodiment of the present application.
  • Figure 17b is an enlarged partial cross-sectional view of the fluid guide in Figure 17a;
  • Figure 18 is a schematic diagram of the balloon body loaded with an artificial implant and in a folded state according to an embodiment of the present application
  • Figure 19a is a schematic diagram of the flow path of the fluid when the balloon body is filled with water and expanded in an embodiment of the present application;
  • Figure 19b is a schematic diagram of the water-filled expansion of the balloon body in Figure 18;
  • Figure 20a is a perspective view of a fluid guide in an embodiment of the present application.
  • Figure 20b is a front view of the fluid guide in Figure 20a;
  • Figure 21a is a perspective view of a fluid guide in another embodiment of the present application.
  • Figure 21b is a front view of the fluid guide in Figure 21a;
  • Figure 22a is a perspective view of a fluid guide in another embodiment of the present application.
  • Figure 22b is a front view of the fluid guide in Figure 22a;
  • Figure 23a is a perspective view of a fluid guide in another embodiment of the present application.
  • Figure 23b is a front view of the fluid guide in Figure 23a;
  • Figure 24a is a perspective view of a fluid guide in another embodiment of the present application.
  • Figure 24b is a front view of the fluid guide in Figure 24a;
  • Figure 25 is a schematic structural diagram of the interior of the balloon body in an embodiment of the present application.
  • Figure 26a is an enlarged view of one embodiment of part C in Figure 25;
  • Figure 26b is a schematic diagram of the bending process in Figure 26a;
  • Figure 27a is an enlarged view of another embodiment of part C in Figure 25;
  • Figure 27b is a schematic diagram of the bending process in Figure 27a;
  • Figure 28 is an exploded view of the main handle in an embodiment of the present application.
  • Figure 29 is a front view of the main handle in an embodiment of the present application.
  • Figure 30a is a cross-sectional view of part A-A in Figure 29;
  • Figure 30b is a cross-sectional view of part B-B in Figure 29;
  • Figure 31 is a partial enlarged view of the first sliding seat in Figure 30b;
  • Figure 32 is a partial exploded view of the identification piece in an embodiment of the present application.
  • Figure 33 is a view of the cooperation between the identification piece and the indication section in an embodiment of the present application.
  • Figure 34 is a view of the cooperation between the first slide seat and the guide tube in an embodiment of the present application.
  • Figure 35 is an exploded view of the second joint in an embodiment of the present application.
  • Figure 36 is an assembly view of Figure 35;
  • Figure 37 is an enlarged view of part E in Figure 30b;
  • Figure 38 is an enlarged view of part D in Figure 30a;
  • Figure 39 is a partial cross-sectional view of the multi-way joint in Figure 30b;
  • Figure 40 is an exploded view of the multi-way joint and the second sliding seat in an embodiment of the present application.
  • Figure 41 is an assembly view of Figure 40
  • Figure 42 is a schematic diagram of the distal locking line of the delivery system in an embodiment of the present application.
  • Figure 43 is a front view of the artificial implant in one embodiment of the present application.
  • Figure 44 is a perspective view of the artificial implant of Figure 43;
  • Figure 45 is a front view of an artificial implant in another embodiment of the present application.
  • Figure 46 is a front view of an artificial implant in another embodiment of the present application.
  • Figures 47 to 48 are structural schematic diagrams of balloon catheters in the prior art
  • Figure 49 is a flow chart of a method of using fluid to drive a balloon catheter in an embodiment of the present application.
  • Figure 50a is a schematic diagram of the balloon catheter before injecting fluid according to an embodiment of the present application.
  • Figure 50b is a schematic diagram of the principle of a method of using fluid to drive a balloon catheter in an embodiment of the present application
  • Figure 51 is a schematic diagram of injecting fluid into the balloon catheter to bring the balloon catheter to a transition state
  • Figure 52 is a schematic diagram of the balloon catheter after it is fully inflated
  • Figure 53 is a schematic diagram of the state of the artificial implant being inserted into the body (taking the aortic valve as an example);
  • Figure 54 is an enlarged view of part A in Figure 50a, where the fluid has not yet begun to flow;
  • Figure 55a is a schematic diagram of the first flow splitting method for fluid
  • Figure 55b is an enlarged view of part B in Figure 55a, in which the fluid is diverted according to the first diverting method;
  • Figure 56 is a schematic diagram of the principle of the second flow splitting method for fluid
  • Figure 57a is a schematic diagram of the second flow splitting method for fluid
  • Figure 57b is an enlarged view of part C in Figure 57a, where the fluid has not yet started to flow;
  • Figure 57c is a schematic diagram of the flow direction after the fluid in Figure 57a is diverted
  • Figure 58 is a schematic structural diagram of the fully expanded balloon catheter provided by this application.
  • Figure 59 is a schematic structural diagram of the flow channel section of the balloon catheter provided by this application.
  • Figure 60 is a schematic structural diagram of an embodiment of the interventional instrument delivery device provided by this application.
  • Figure 61a is a schematic diagram of the principle of fixing the distal end of the drainage tube relative to the core tube in the interventional device delivery device provided by this application;
  • Figure 61b is a schematic structural diagram of the distal end of the drainage tube being fixed relative to the core tube in the interventional device delivery device provided by this application;
  • Figure 62 is a partial cross-sectional view of the drainage tube and catheter in the interventional device delivery device provided by this application;
  • Figure 63 is a schematic structural diagram of the drainage tube in the interventional device delivery device provided by this application.
  • Figure 64 is a schematic structural diagram of another embodiment of the interventional instrument delivery device provided by this application.
  • Figure 65a is a partial cross-sectional view of a chamfered section of an embodiment of the interventional instrument delivery device provided by the present application;
  • Figure 65b is a partial cross-sectional view of a chamfered section of another embodiment of the interventional instrument delivery device provided by the present application.
  • Figure 66 is a schematic structural diagram of the isolation member in the interventional instrument delivery device provided by this application.
  • Figure 67a is a schematic structural diagram of the positioning structure of an embodiment of the interventional instrument delivery device provided by this application.
  • Figure 67b is a schematic structural diagram of the positioning structure of another embodiment of the interventional instrument delivery device provided by this application.
  • Figure 68 is a schematic structural diagram of an interventional delivery system according to an embodiment of the present application.
  • Figure 69 is a schematic structural diagram of the distal part in Figure 68;
  • Figure 70 is a schematic structural diagram of the rod of the limiting mechanism in Figure 69 in the unfolded state
  • Figure 71 is a schematic structural diagram of the rod of the limiting mechanism in Figure 70 in a compressed state
  • Figure 72 is a schematic structural diagram of the adaptation of the limiting mechanism and the inner shaft according to an embodiment of the present application.
  • Figure 73 is a schematic structural diagram of the limiting mechanism in Figure 72;
  • Figure 74 is a schematic structural diagram of the limiter in Figure 72 when it is formed into a straight tube shape
  • Figure 75 is a front view of the limiting mechanism in Figure 72 in a compressed state or an intermediate state
  • Figure 76 is a side view of the balloon body in a folded state cooperating with the limiting mechanism in Figure 75;
  • Figure 77a is a schematic structural diagram of the sheathed tube at the distal end (with balloon device) of the delivery system according to another embodiment of the present application;
  • Figure 77b is a schematic structural diagram of the sheath in Figure 77a after it has moved to one end;
  • Figure 77c is a schematic structural diagram of the balloon body in Figure 77a after inflation
  • Figure 77d is an enlarged schematic diagram of the existing artificial implant installed on the balloon body to create steps
  • Figure 77e is an enlarged view of part A in Figure 77b;
  • Figure 78a is a schematic structural diagram of the far end of the delivery system according to another embodiment of the present application.
  • Figure 78b is a schematic structural diagram of the sheath moving and wrapping the proximal limiting mechanism in Figure 78a;
  • Figure 78c is a schematic structural diagram of the balloon body in Figure 78b after inflation
  • Figures 79 to 83 are schematic structural diagrams of limiting mechanisms in other embodiments of the present application.
  • Figure 84 is a front view of the limiting mechanism of Figure 83;
  • Figures 85a to 85c are schematic structural diagrams of the far end of the delivery system in different embodiments of the present application.
  • Figure 86 is a schematic structural diagram of a limiting mechanism according to an embodiment of the present application.
  • Figures 87 to 89 are schematic structural diagrams of the distribution of coupling elements in an embodiment of the present application.
  • Figure 90 is a longitudinal cross-sectional schematic view of the limiting mechanism of Figure 86;
  • Figures 91 to 92 are schematic structural diagrams of the folded parts of the cage structure in some embodiments of the present application.
  • Figure 93 is a schematic structural diagram of a limiting mechanism according to another embodiment of the present application.
  • Figure 94 is a schematic structural diagram of a balloon device according to an embodiment of the present application.
  • Figure 95 is a schematic structural diagram of the limiting mechanism in Figure 94;
  • Figure 96 is a schematic longitudinal cross-section of the limiting mechanism in Figure 95;
  • Figure 97 is a schematic cross-sectional view of the limiting mechanism of Figure 86;
  • Figure 98 is a schematic structural diagram of a balloon device according to another embodiment of the present application.
  • Figure 99 is a schematic structural diagram of the limiting mechanism in Figure 98;
  • Figure 100 is a schematic longitudinal cross-sectional view of a limiting mechanism according to another embodiment of the present application.
  • Figure 101 is a schematic structural diagram of a coupling according to another embodiment of the present application.
  • Figure 102 is a perspective view of a stopper according to another embodiment of the present application.
  • Figure 103 is a partial cross-sectional view of the limiting body in Figure 102
  • Figure 104 is a schematic diagram of the limiting mechanism of Figure 102 integrally cutting pipes
  • Figures 105 to 106 are schematic structural diagrams of the limiting mechanism according to another embodiment of the present application.
  • Figure 107 is a schematic diagram of the inflation of the balloon device with the limiting mechanism in Figure 106;
  • Figure 108 is a partial enlarged view of F in Figure 107;
  • Figure 109 is a partial enlarged view of G in Figure 107;
  • Figure 110 is a perspective view of a stopper according to another embodiment of the present application.
  • Figure 111 is a schematic structural diagram of a stopper according to another embodiment of the present application.
  • Figure 112 is a schematic structural diagram of a stopper according to another embodiment of the present application.
  • Figure 113 is a schematic structural diagram of a stopper according to another embodiment of the present application.
  • Figure 114 is a schematic structural diagram of a stopper according to another embodiment of the present application.
  • Figure 115 is a schematic diagram of the limiting mechanism of Figure 110 integrally cutting pipes
  • Figure 116 is a schematic structural diagram of the coupling between the coupling and the pin in an embodiment of the present application.
  • Figure 117 is a schematic structural diagram of a transcatheter implant system according to an embodiment of the present application.
  • Figure 118 is a schematic structural diagram of an artificial heart valve in an embodiment of the present application.
  • Figure 119 is a partial structural diagram of the first bracket in Figure 118;
  • Figure 120 is a partial schematic diagram of radial compression of the first stent in Figure 118;
  • Figure 121 is a schematic structural diagram of the first bracket eyelet structure in Figure 118;
  • Figure 122 is a schematic diagram 2 of the partial structure of the first bracket in Figure 118;
  • Figure 123 is a schematic structural diagram of the eyelet structure in Figure 122;
  • Figure 124 is a schematic diagram of the first bracket in Figure 123 from another perspective
  • Figure 125 is a schematic structural diagram of an artificial heart valve in another embodiment of the present application.
  • Figure 126 is a schematic diagram of the integrated molding of the blocking member in Figure 125;
  • Figure 127 is a schematic structural diagram of the conveying system of the present application.
  • Figure 128 is a schematic structural diagram of the balloon body in Figure 127 in an inflated state
  • Figure 129 is a schematic structural diagram of the valve leaflets in the expanded state in the prior art.
  • Figure 130 is a schematic structural diagram of the multiple leaflets in Figure 129 after being sutured
  • Figure 131 is a schematic structural diagram of an artificial heart valve in the prior art
  • Figure 132 is a schematic structural diagram of an artificial heart valve leaflet in a flattened state according to an embodiment of the present application.
  • Figure 133 is a schematic structural diagram of the outer protrusion and opening area in Figure 132;
  • Figure 134 is a schematic structural diagram of using a first suture to sew the joint
  • Figure 135a is a schematic structural diagram of a bracket according to an embodiment of the present application.
  • Figure 135b is an enlarged view of A in Figure 135a;
  • Figure 135c is a schematic structural diagram of using multiple second sutures to sew the two joint parts and the support bar;
  • Figure 136 is a schematic structural diagram of using multiple third sutures to wrap the ears of the valve leaflets around the support bars and suture them;
  • Figures 137 to 139 are schematic diagrams of a transcatheter implant system with a locking wire structure in an embodiment of the present application
  • Figure 140 is a schematic structural diagram of a transcatheter implant system in an embodiment of the present application.
  • Figure 141 is a schematic diagram of the inflation state of the balloon of Figure 140;
  • Figure 142 is a schematic structural diagram of a transcatheter implant system in another embodiment of the present application.
  • Figures 143 to 144 are schematic diagrams of a transcatheter implant system with a locking wire structure and a limiting mechanism in an embodiment of the present application;
  • Figure 145 is a schematic structural diagram of an artificial heart valve in another embodiment of the present application.
  • Figure 146 is a schematic structural diagram of the anchoring bracket in Figure 145;
  • Figure 147 is a schematic structural diagram of the first bracket in Figure 145;
  • Figure 148 is a partial structural diagram of Figure 146;
  • Figure 149 is a schematic diagram of the eyelet structure of the anchor bracket in Figure 148;
  • Figure 150 is a schematic diagram of radial compression of the anchoring bracket of Figure 146;
  • Figures 151 to 156 are schematic structural diagrams of transcatheter implant systems in other embodiments of the present application.
  • Figure 157 is a schematic structural diagram of a transcatheter implant system with a bending assembly in other embodiments of the present application.
  • Figure 158 is a schematic structural diagram of the bending pipe in Figure 156 in a bent state.
  • Control handle 10. Main handle; 100. Support body; 1001. Installation slot; 1002. Guide slot;
  • the first sliding seat 1101. The chute; 111.
  • Second pipe joint 1131. Second exhaust channel; 1132. Positioning rib;
  • Multi-pass connector 1401. Card slot; 141. Interface; 142. Interface;
  • Driving member 2301. Guide rib; 2302. First escape opening; 2303. Second escape opening; 240. Elastic liner; 2401. Positioning step; 250. Operation button;
  • Catheter assembly 310. Outer sheath; 3101. Insertion section; 3102. Loading section; 3103. Sheath section; 320. Inner sheath; 321. Guidewire channel; 322. Fluid channel; 323. Second development ring ;324. The third developing ring;
  • Balloon catheter 331. Balloon body; 332. Catheter body;
  • Fluid guide 351. Diversion groove; 352. Communication groove; 353. Hollow area; 354. Diversion channel;
  • Interventional delivery system 5101. Proximal end; 5102. Distal end;
  • Control handle 54. Catheter assembly; 541. Balloon device; 542. Balloon body; 5421. Proximal section; 5422. Middle section; 5423. Distal section; 5424. Crease; 5425. Protrusion; 5425 , distal part; 5426, proximal part; 543, intermediate shaft; 544, outer sheath; 545, inner shaft; 546, first direction;
  • Transcatheter implant system 6101, proximal end; 6102, distal end; 611, first delivery system; 612, second delivery system; 613, bending module; 614, bending tube; 6141, turning part;
  • Catheter assembly 641. Balloon device; 6411. Catheter body; 642. Balloon body; 642a. Second balloon body; 642b. First balloon body; 6421. First part; 6422. Middle part; 6423. The second part; 6424, folding part; 643, inner shaft; 644, outer sheath; 645, fluid inlet; 646, guide head;
  • Anchor bracket 6561. Frame; 6562. Grid structure; 65621. Middle part; 65622. End; 6563. Fishbone grid; 65631. Convex tip; 65632. Concave tail; 65633. Frame; 6564. Diamond grid; 65641, frame strips; 65642, frame strips; 65643, frame strips; 65644, frame strips;
  • Locking thread structure 681. First adjusting thread; 6811. First locking hole; 682. Locking thread; 6821. First locking thread; 6822. Second locking thread; 683. Second adjusting thread; 6831. Second Keyhole; 684, third adjustment line; 685, fourth adjustment line; 686, fifth adjustment line; 687, sixth adjustment line.
  • a component when a component is said to be “connected” to another component, it can be directly connected to the other component or there can also be an intermediate component.
  • a component When a component is said to be “set on” another component, it can be directly set on the other component or there may be a centered component at the same time.
  • first, second, etc. are only used for descriptive purposes and cannot be understood as indicating or implying the relative importance or implicitly indicating the number or order of the indicated technical features. Therefore, features defined as “first” and “second” may explicitly or implicitly include one or more of these features.
  • “plurality” means at least two, such as two, three, etc., unless otherwise expressly and specifically limited.
  • distal end and proximal end are commonly used terms in the field of interventional medical devices.
  • distal end refers to the point far away from the operator during the operation.
  • proximal end refers to the side close to the operator during surgery.
  • end in the text refers to the end point of the structure or a certain point or area on the side or connected to A specific structure at that point or area.
  • the axial direction mentioned in the embodiments of this application means that theoretically, when the catheter assembly and the control handle are completely straightened, the straight line between the proximal end and the distal end determines the axial direction, unless otherwise specified.
  • the radial direction perpendicular to the axial direction and the circumferential direction arranged around the axial direction.
  • FIG. 3b a schematic diagram of the posture of the instrument at the aortic arch during cardiac interventional surgery is shown.
  • the distal end of the catheter assembly 30 exhibits an obvious bend.
  • bending means are used to actively intervene in the distal end of the catheter assembly.
  • the artificial implant is basically in place, whether it is self-expansion or ball expansion, the artificial implant is exposed by withdrawing the outer sheath to facilitate the complete release of the artificial implant.
  • the proximal end of the catheter assembly is connected and controlled by the control handle. Limited by the volume (length) of the control handle, the relative movable stroke of each pipe fitting is limited. Therefore, during the process of withdrawing the outer sheath, the distal end of the outer sheath is generally still In the aortic arch, for the entire catheter assembly, the stiffness of each part (the part exposed to the outer sheath and the part still inside the outer sheath) is quite different, and the spatial posture is no longer stable, and may need to be readjusted for surgery. It brings unnecessary cumbersome operations. Especially in scenarios where artificial implants are released by ball expansion, the outer sheath is allowed to withdraw quickly in order to improve efficiency.
  • an interventional delivery system 1 which includes a catheter assembly 30 and a control handle 9 connected to the catheter assembly 30.
  • the catheter assembly 30 has an opposite distal end and a proximal end and includes a sliding sleeve that is sleeved with each other.
  • the outer sheath 310 includes a loading section 3102 and a sheath section 3103 from the distal end to the proximal end.
  • the loading section 3102 is used to wrap the artificial implant and keep the artificial implant in a compressed state. ;
  • Control handle 9 includes:
  • the main handle 10 the proximal end of the inner sheath 320 is connected to the main handle 10;
  • the auxiliary handle 20 is slidably sleeved on the outer periphery of the inner sheath 320 , and the proximal end of the outer sheath 310 is connected to the auxiliary handle 20 .
  • an auxiliary handle 20 is independently configured for the outer sheath in the catheter assembly.
  • the entire auxiliary handle 20 is provided with a passageway, which is used for inserting the butt outer sheath on the one hand, and for other pipe fittings in the catheter assembly on the other. After extending through the proximal end of the outer sheath tube, it slides through the auxiliary handle 20.
  • the outer sheath tube is controlled by the auxiliary handle, and the other pipe fittings are controlled by the main handle (herein, the main and auxiliary handles are understood). is a relative concept).
  • auxiliary handle and the main handle separately can further improve the flexibility of outer sheath control. More importantly, the stroke of the outer sheath is no longer limited by the length of the main handle.
  • the outer sheath can be moved The distal part of the sheath is also withdrawn from the aortic arch to minimize the impact on the spatial posture of the remaining tubing.
  • the inner sheath and the outer sheath can be directly nested (that is, directly adjacent in the radial direction) or other pipes can be added radially between the two.
  • the artificial implant itself Conventional technology can be used. Taking artificial heart valves as an example, they generally include a radially deformable stent and multiple leaflets connected to the stent.
  • the stent is a tubular structure with hollow cells.
  • the interior of the stent is a blood flow channel.
  • the leaflets cooperate with each other to control the opening and closing of blood flow channels.
  • the inner sheath tube has a mounting head near the distal end.
  • the radially compressed artificial implant is connected to the mounting head.
  • the distal end of the outer sheath tube is an expanded loading section.
  • the loading section surrounds the periphery of the artificial implant and restricts the artificial implant in a compressed state. When the outer sheath is withdrawn proximally, the artificial implant is gradually exposed and released.
  • a balloon catheter When released in a balloon expansion mode, a balloon catheter is also provided between the inner sheath tube and the outer sheath tube.
  • the radially compressed artificial implant is located on the periphery of the balloon body 331 and is wrapped by the loading section of the outer sheath tube.
  • the balloon catheter is inflated by injecting fluid, that is, the artificial implant is radially stretched to complete the release.
  • each pipe fitting can also be equipped with a development mark, such as A first developing ring is provided at the distal end of the loading section, and a second developing ring 323 and a third developing ring 324 are provided at the location of the balloon on the inner sheath tube (visible in Figure 19a).
  • the material of the pipe fitting itself can be made of conventional materials.
  • the loading section 3102 of the outer sheath 310 is made of Pebax, and the other parts, such as the sheath section 3103, are made of PTFE.
  • the bending pipe can be made of metal hypotube. The cutting density of different parts changes slightly. , for example, the density at the distal end is high and the density at the proximal end is small, making the distal end more flexible than the proximal end.
  • the diameter of the loading section 3102 is larger than the sheath section 3103 to adapt to artificial implants of different specifications.
  • the artificial implant When the artificial implant is loaded, it is radially compressed into a tubular shape and stored and wrapped inside the loading section 3102.
  • the introducer sheath can establish a temporary channel in the blood vessel for the catheter assembly 30 to penetrate.
  • the wall of the introducer sheath is preferably an expandable structure to adapt to the loading section 3102 with a slightly larger diameter, such as the cross-section of the introducer sheath wall. With a roundabout part, through the deformation and reset of the roundabout part, the temporary channel can be changed, and the part where the loading section 3102 passes will expand, and after the loading section 3102 passes, it will reset and shrink.
  • the distal end of the inner sheath 320 is provided with a guide head 370.
  • the outer periphery of the guide head 370 is provided with an annular step 3701.
  • the distal end surface of the loading section 3102 offsets the annular step 3701. Achieve axial limit. It also makes the outer periphery of the guide head 370 and the outer periphery of the loading section 3102 flush with each other, reducing the safety hazard of scratches.
  • the auxiliary handle 20 includes:
  • the housing 200 has an axial direction in space and a distal end and a proximal end that are opposite in the axial direction.
  • the housing 200 has an axially penetrating through channel 201;
  • the connecting sleeve 210 is fixed in the shell 200 and arranged around the penetration channel 201.
  • the distal side of the connecting sleeve 210 is used for the outer sheath tube 310 to be plugged and matched;
  • the positioning piece 220 is movably installed in the housing 200.
  • the positioning piece 220 has a locking position for interfering with the threading channel 201 and an unlocking position for releasing the threading channel 201;
  • the driving member 230 cooperates with the positioning member 220 to drive the positioning member 220 to switch positions.
  • the positioning member 220 and the driving member 230 are mainly provided to adjust and lock the relative position of the auxiliary handle 20 and the main handle 10 to avoid unnecessary slippage and dislocation of the outer sheath tube 310 relative to other pipe parts, so as to reduce safety risks.
  • the positioning member 220 interferes with the threading channel 201, it also means that it can exert force on other pipe fittings, thereby locking the auxiliary handle 20 and other pipe fittings.
  • Relative position, in the same way, releasing the penetration channel 201 means reducing or completely removing the force exerted on other pipe fittings, allowing the auxiliary handle 20 to drive the outer sheath tube 310 to slide relative to other pipe fittings, and the driving member 230 and the positioning member 220 can be The integrated structure, split fixation, or transmission matching is used to drive the positioning member 220 to switch between the locking position and the unlocking position.
  • the movement direction of the positioning member and the driving member relative to the auxiliary handle is not strictly limited.
  • a positioning member it at least has a movement component along the radial direction of the passage to change the force or radial direction of other pipe parts. relative position.
  • the force exerted by the positioning parts on other pipe parts can be the friction force generated by the radial contact with each other, or it can be provided with structures that cooperate with each other to generate axial phase force, such as latches, axial blocking parts, etc., and the driving parts
  • the movement mode can be axial sliding, radial pressing, or circumferential rotation, etc.
  • the housing 200 provides an environment for installing and accommodating other components, and is generally held directly during operation to facilitate assembly.
  • the housing 200 has a split buckle structure, and a mutually matching engaging positioning structure is provided between the inner wall of the housing 200 and the outer periphery of the connecting sleeve 210 .
  • the split fastening can be a radial multi-petal fastening, or can also be combined with an axial multi-section structure.
  • the shell 200 includes two half shells 202 that are fastened radially along the connecting sleeve 210, and respectively The heads 203 are located at both axial ends of the two half-shells 202; each head 203 is fixed to the two half-shells 202 by snapping or screwing.
  • each head is provided with a through hole 2031 to avoid the passage 201.
  • the inner circumferential surface of the first head 203a is provided with latch teeth 2032, and the outer periphery of each half shell 202 is provided with latch teeth.
  • the second head 203b at the other end is provided with an elastic buckle 2033 on the axial end surface, and the axial end surface of each half shell 202 is provided with a plug-in card that cooperates with the elastic buckle 2033.
  • the engagement structure between the shell 200 and the connecting sleeve 210 includes a positioning groove 2023 provided on the inner circumference of each half-shell, and a positioning shoulder 2101 fixed on the outer circumference of the connecting sleeve. After the two half-shells 202 are fastened, the positioning shoulder 2101 It is inserted into the positioning groove 2023 to achieve axial positioning, and at the same time, it also limits the displacement of the connecting sleeve in the radial direction.
  • each rib 2024 can also be provided on the inner wall of the half shell 202.
  • Each rib 2024 surrounds and supports the outer periphery of the connecting sleeve 210 to assist positioning.
  • the positioning shoulder 2101 and each rib The plates 2024 are respectively located at both ends of the connecting sleeve 210.
  • the side wall of the connecting sleeve 210 is provided with a first exhaust hole 2102 connected with the passage 201, and a first pipe joint 211 is fixedly connected to the first exhaust hole 2102.
  • the hole 2102 and the first pipe joint 211 define a first exhaust passage 2103.
  • a one-way valve core 26 is provided in the exhaust passage 2103.
  • the sealing fitting position of other pipe fittings in the outer sheath tube 310 on the inner wall of the connecting sleeve is roughly the interference position between the positioning member 220 and the penetration channel 201.
  • this position can seal and cooperate with the internal pipe fittings;
  • the settings of the above parts allow the physiological saline injected from the first exhaust hole 2102 to only enter the radial gap between the outer sheath 310 and the internal pipe, and flow toward the distal side to achieve exhaust.
  • an external control valve is omitted, and a one-way valve core that can float under the action of fluid pressure difference is provided in the first exhaust channel.
  • the one-way valve core When physiological saline is injected into it, the one-way valve core will be pushed to open the first row. If there is a reverse flow in the air passage, the corresponding push-back one-way valve core will close the first exhaust passage to prevent fluid from escaping.
  • the adaptive one-way valve core can improve the overall system integration and eliminate the tedious operation of control valves.
  • a first annular seat 2104 is provided on the edge of the first exhaust hole 2102.
  • the first pipe joint 211 and the first annular seat 2104 are plug-fitted and provided with mutually matched anti-rotation joints. structure.
  • One end of the first pipe joint 211 can have a threaded structure to facilitate quick disassembly and assembly with external pipelines, and the other end can be inserted into the first annular seat 2104.
  • a seal arranged around the first exhaust hole 2102 can be provided in the first annular seat 2104. Ring 213.
  • the end face of the first pipe joint 211 inserted into the first annular seat 2104 is sealed against the sealing ring 213.
  • the sealing ring 213 is elastic and can ensure the sealing effect.
  • the shell 200 is embedded with a first protective sleeve 212 located on the outer periphery of the first pipe joint 211.
  • the outer wall of the first pipe joint 211 and the inner wall of the first protective sleeve 212 are constitute a pipeline insertion gap.
  • the anti-rotation structure can prevent the first pipe joint 211 from unnecessary movement when disassembling and installing external pipelines.
  • the anti-rotation structure includes:
  • the slot 2111 extends along the insertion direction of the first pipe joint 211, and the slot 2111 is provided on the side wall of one of the first pipe joint 211 and the first annular seat 2104;
  • the positioning rib 2105 cooperates with the slot 2111, and the positioning rib is provided on the side wall of the other of the first pipe joint 211 and the first annular seat 2104.
  • the inner wall of the first annular seat illustrates three slots 2111, and three positioning ribs 2105 are provided at corresponding positions on the outer wall of the first pipe joint.
  • the one-way valve core 26 has a relative sealing state and an open state, and the one-way valve core 26 specifically includes:
  • the limiting rod 261 is slidably installed in the inner cavity of the first pipe joint 211. There is a fluid gap between the outer circumference of the limiting rod and the inner wall of the first pipe joint 211 (the fluid gap is also used as the first exhaust channel 2103. part);
  • the sealing piece 262 is connected to the limiting rod 261. In the sealed state, the sealing piece 262 closes the fluid gap, and in the open state, the sealing piece 262 opens the fluid gap 214.
  • the one-way valve core can be set to float as a whole.
  • the limit rod 261 is movably installed and its position is limited by the first pipe joint 211, which can limit the stroke of the sealing plate 262, especially in the open state. If the stroke of the sealing plate 262 is too large, it may The first exhaust hole 2102 will be blocked directly.
  • the inner wall of the first pipe joint 211 is provided with a snap ring 2112 surrounding the outer periphery of the limiting rod, and the fluid gap is located between the outer periphery of the snap ring 2112 and the inner wall of the first pipe joint 211;
  • the end of the limiting rod 261 away from the sealing piece 262 passes through the snap ring 2112 and has a head 2611.
  • the head 2611 offsets the snap ring 2112, and the sealing sheet 262 is away from the snap ring 2112 and opens the fluid gap 214; in the sealed state The head is away from the snap ring 2112, and the sealing piece 262 resists the snap ring 2112 and closes the fluid gap 214.
  • the one-way valve core as a whole can also be fixedly installed, the limiting rod 261 is fixedly installed, and the fluid gap is opened or closed only by the deformation of the edge of the sealing piece 262.
  • the inner wall of the first pipe joint 211 is provided with a snap ring 2112 surrounding the outer periphery of the limiting rod, and the fluid gap is located between the outer periphery of the snap ring 2112 and the inner wall of the first pipe joint 211;
  • the end of the limiting rod 261 away from the sealing piece 262 passes through the snap ring 2112 and has a head 2611.
  • the head 2611 and the sealing piece are clamped and fixed on the two opposite sides of the snap ring 2112.
  • the edge of the sealing piece 262 can be elastically deformed.
  • the fluid gap 214 is opened or closed accordingly.
  • the positioning member 220 is an elastic claw. One end of the elastic claw is fixed to the connecting sleeve 210, and the other end is a free end that swings along the radial direction of the connecting sleeve. 2201.
  • the driving member 230 is linked with the free end 2201 of the elastic claw 221, so that the free end 2201 moves radially inward along the connecting sleeve (i.e., interferes with the passage 201 and holds the internal pipe fittings tightly), or releases the elastic claw 221, which has a reset function. trend (that is, moving away from the passageway and reducing the effect on the internal pipe fittings), the auxiliary handle 20 is allowed to slide relative to the internal pipe fittings to change the relative position of the distal end of the outer sheath.
  • the fixed end 2202 of the elastic claw 221 and the connecting sleeve 210 can be fixed separately, or the elastic claw and the connecting sleeve 210 can be an integral structure.
  • the connecting sleeve 210 is tubular as a whole, and can have a U-shaped hollow area 2204 on the tube wall.
  • the part surrounded by the U-shaped hollow area is the elastic claw 221.
  • the elastic claw 221 is strip-shaped as a whole. Relatively speaking, the elastic claw 221 is in the shape of a strip.
  • the fixed end 2202 is on the distal side, and the free end 2201 is on the proximal side.
  • multiple elastic claws may be configured, for example, two to six elastic claws (for example, four), distributed along the circumferential direction of the connecting sleeve 210 .
  • the driving member 230 is cylindrical and a sliding sleeve is provided on the outer periphery of the connecting sleeve 210.
  • the inner wall of the driving member 230 acts on the elastic claws.
  • the sliding direction of the driving member 230 is the length direction of the connecting sleeve 210.
  • the driving member 230 moves to different positions, the radial force exerted on the elastic claw will change, causing the positioning member 220 to switch between the locking position and the unlocking position.
  • the elastic claw and the driving member 230 can cooperate with each other through an inclined plane.
  • a guide ramp 2203 is provided on the outside of the elastic claw 221, and the driving member 230 can The inner wall acts on the guide ramp 2203.
  • the height of the guide ramp 2203 gradually increases from the distal end to the proximal end.
  • the free end of the elastic claw 221 can be 2201 moves further inward, increasing the force against the internal pipe until it is locked.
  • elastic components can be provided between the elastic claws 221 and the internal pipes.
  • an elastic lining tube 240 is provided inside the connecting sleeve 210 , and the elastic claws 221 act on the outer wall of the elastic lining tube to interfere with the penetration channel 201 by squeezing the elastic lining tube 240 .
  • the elastic claws 221 press the elastic liner 240 inward and tighten the inner pipe through the elastic liner 240.
  • the elastic liner 240 can be inserted into the connecting sleeve in an interference manner.
  • the distal end of the elastic liner 240 extends out of the connecting sleeve 210, and a radially outwardly protruding positioning step 2401 is provided at the extended part.
  • the positioning step 2401 is in contact with the end surface of the connecting sleeve 210 and /or the inner wall of the housing 200 is axially positioned and matched.
  • Guidance structures include:
  • the chute 2107 is provided on one of the inner wall of the driving member 230 and the outer wall of the connecting sleeve 210;
  • the guide rib 2301 cooperates with the slide groove 2107 and is provided on the other of the inner wall of the driving member 230 and the outer wall of the connecting sleeve 210 .
  • the chute 2107 is located on the outer wall of the connecting sleeve, and there are three of them.
  • the guide ribs 2301 are located on the inner wall of the driving member 230, and the position and number match the chute.
  • the outer wall of the driving member 230 is provided with an operating button 250, and the housing 200 is provided with a first escape opening 2302 corresponding to the position of the operating button 250.
  • the operating button 250 is exposed to the first escape opening 2302.
  • the first escape opening 2302 can also be further extended along the radial direction of the connecting sleeve 210.
  • the first escape opening 2302 has a corresponding configuration length according to the sliding stroke of the driving member 230.
  • the side wall of the driving member 230 is provided with a second escape opening 2303.
  • the side wall of the connecting sleeve 210 is provided with a first exhaust hole that matches the through passage 201; along the axial direction of the connecting sleeve 210, the position of the second escape opening 2303 corresponds to the position of the first exhaust hole.
  • the one-way valve core 26 at the exhaust hole, the connecting first pipe joint 211 and other components are all located at the second escape port 2303.
  • the distal side of the second escape port 2303 is an open structure.
  • an embodiment of the present application also provides an intervention control assembly, including:
  • one end of the outer sheath tube 310 is fixedly connected to the connecting sleeve 210 .
  • the proximal end of the outer sheath 310 is the insertion section 3101 (located at the proximal end of the sheath section 3103, which can also be regarded as a part of the sheath section 3103) and is extended and fixed to the connecting sleeve 210 by the distal end of the connecting sleeve 210. Inside the set (not visible when assembled).
  • the side wall of the connecting sleeve 210 is provided with reinforcement holes corresponding to the position of the plug-in section 3101.
  • the reinforcement holes 2106 are fixed by at least one method of dispensing glue, welding, and anchoring.
  • the catheter assembly 30 further includes a balloon catheter 330, and the balloon catheter 330 includes:
  • the balloon body 331 is disposed at the distal end of the inner sheath 340 and switches between the expanded state and the folded state under the action of fluid.
  • the artificial implant 8 in the loaded state is located on the outer periphery of the balloon body 331;
  • the catheter body 332 is sleeved on the outer periphery of the inner sheath tube 340 or arranged in parallel with the inner sheath tube 320.
  • the distal end of the catheter body 332 is connected to the balloon body 331, and the proximal end of the catheter body 332 is connected to the main handle 10.
  • the catheter body 332 Inside is a fluid channel.
  • the artificial implant 8 and the balloon body 331 are wrapped in the outer sheath tube 310.
  • the outer sheath tube may retreat proximally before reaching the finger lesion position.
  • the balloon body 331 is still in place.
  • the distal end of the artificial implant 8 will form a raised step 86 with the outer periphery of the balloon body 331, which may cause a safety risk of injuring the tissue during subsequent delivery.
  • This embodiment provides a method, namely After the distal part of the balloon body 331 is exposed to the outer sheath 310, fluid can be injected to cause it to expand first, because the proximal part of the balloon body 331 has not yet been exposed to the outer sheath tube 310.
  • the outer sheath tube wraps it, so it can be kept in a folded state; when injecting fluid, if the artificial implant 8 is exposed to more parts of the outer sheath tube 310, appropriate fluid pressure can be used to make the balloon body 331 only exposed to the artificial implant.
  • the distal part of the implant 8 expands, while other parts remain folded under the constraints of the artificial implant 8 .
  • the convex step 86 can be eliminated or compensated to smooth the transition between the outer periphery of the balloon body 331 and the end face of the artificial implant 8 or reduce the height difference to avoid potential safety hazards.
  • the proximal end of the catheter body can be connected to the perfusion device to inject fluid (such as physiological saline) into the balloon body 331 to inflate the balloon body 331.
  • fluid such as physiological saline
  • the fluid first enters the proximal part of the balloon body and gradually inflates.
  • the artificial implant is still in a compressed state, and the fluid cannot reach the distal part of the balloon body smoothly.
  • the release is bound to be later than the proximal end, and may slip to the distal side relative to the balloon body, or even deviate from the balloon body, affecting the release effect.
  • a fluid guide 350 is provided around the inner sheath tube in the balloon body 331.
  • the fluid guide 350 defines a flow guide.
  • Channel 354 this diversion channel connects the distal part and the proximal part in the balloon body.
  • the axial length of the balloon body 331 is slightly larger than the artificial implant 8 in the loaded state.
  • the fluid can reach the distal part of the balloon body 331 as quickly as possible. , therefore the distal part and the proximal part in the balloon body 331 are basically inflated simultaneously (refer to the dotted line in Figure 19a as the flow path of the fluid).
  • the two ends of the corresponding artificial implant 8 expand before the middle part.
  • the artificial implant 8 forms a girdle structure 81 as a whole, and the girdle structure 81 can also limit the slippage of the artificial implant 8 in the axial direction.
  • the fluid guide 350 is tubular, and the position relative to the fluid guide 350 and the flow guide channel 354 is at least one of the following ways:
  • the flow guide channel 354 is a flow guide groove 351 opened on the outer peripheral wall of the fluid guide.
  • the radially outwardly protruding groove walls between adjacent guide grooves 351 can support the inner wall of the balloon in the folded state, so that when the balloon body 331 is in the folded state, the guide grooves 351 are connected to the distal side of the balloon body. and proximal side.
  • the fluid guide 350 should have sufficient length.
  • the distal side and the proximal side of the fluid guide 350 are adjacent to the distal side and the proximal side of the balloon body 331 respectively.
  • each guide groove 351 is arranged along the circumferential direction of the fluid guide 350.
  • the same guide groove 351 extends along the axial direction of the fluid guide 350 (see Figure 20a, Figure 20a, Figure 20a, Figure 20a. 20b) or adopt a spiral winding method (as shown in Figure 21a to Figure 22b).
  • the wrapping angle of the same guide groove 351 is 0 to 180 degrees.
  • the same flow guide The wrap angle of the groove 351 (the offset angle of the circumferential positions of the two ends) is approximately 60 degrees.
  • a communication groove 352 is provided between two adjacent guide grooves 351. There are a plurality of communication grooves 352 arranged at intervals, and the communication grooves 352 corresponding to the axial position constitute an annular groove.
  • a plurality of guide grooves 351 and communication grooves 352 intersect with each other to form a guide network.
  • a fluid guide 350 is provided on the outer periphery of the inner sheath 320.
  • the fluid guide 350 is tubular and located within the balloon body 331.
  • the tube wall of the fluid guide 350 has a hollow area 353.
  • the hollow area 353 extends continuously or at intervals from the distal end of the fluid guide 350 to the proximal side of the fluid guide 350 .
  • the hollow area 353 can take many forms, for example, as shown in Figures 23a to 24b.
  • a radial gap exists between the fluid guide 350 and the inner sheath 320, and the radial gap serves as the flow guide channel 354 (as shown in Figure 17b).
  • the above diversion methods can also be used in combination.
  • the catheter assembly 30 also includes a bending tube 340 and a traction drive for the bending tube 340.
  • the bending tube 340 is sleeved on the outer periphery of the inner sheath tube 320, the distal ends of the bending tube 340 and the traction member 341 are fixedly connected, and the proximal ends of both are connected to the main handle 10 and are relatively slidingly matched.
  • the bending tube 340 and the traction member 341 are both located on the outer periphery of the catheter body 332, and the distal end of the bending tube 340 avoids the balloon body 331.
  • the bending tube 340 Under the action of the traction member, the bending tube 340 itself The distal end can bend, which will drive the surrounding pipe fittings to bend together.
  • the distal end of the bending pipe and other pipe fittings (except the traction piece) are not strictly required to be fixed to each other.
  • the traction member 341 is arranged in the following manner:
  • the traction member 341 is a traction tube and is located inside or outside the bending tube 340 (as shown in Figure 26a and Figure 26b); or
  • the traction member 341 is a traction line, and is located inside the bending pipe 340 (as shown in Figure 27a, Figure 27b), outside or within the pipe wall.
  • the pipe wall of the bending pipe 340 has a sandwich structure, a liner is fixed in the sandwich (not visible in the assembled state), and the pulling member 341 is movably installed in the liner.
  • the main handle 10 includes:
  • the support body 100 has an axial direction in space.
  • the proximal end of the bending tube 340 is fixedly connected to the support body 100.
  • the inner sheath tube 340 and the catheter body 332 of the balloon catheter are both extended and connected to the proximal end side of the support body 100;
  • the first sliding seat 110 is slidably fitted relative to the support body 100 in the axial direction, and the proximal end of the traction member 341 is fixed to the first sliding seat 110;
  • the first driving sleeve 111 is rotatably mounted on the support body 100 and is located on the outer periphery of the first sliding seat 110.
  • the first driving sleeve 111 and the first sliding seat 110 adopt a threaded transmission fit;
  • the housing 120 is fixedly sleeved on the support body 100, and at least part of it is an indication section located outside the first driving sleeve;
  • the identification piece 122 is slidably installed in the indication section along the axial direction and is located on the outer periphery of the first drive sleeve 111.
  • the first drive sleeve 111 and the identification piece 122 adopt a threaded transmission fit.
  • the first driving sleeve 111 When the first driving sleeve 111 rotates, it can drive the first sliding seat 110 to slide axially, that is, to pull the proximal end of the traction wire (i.e., the traction member), which is fixedly connected to the proximal end of the bending tube 340 relative to the support body 100, so the proximal end of the traction wire is pulled.
  • the wire will pull the far end of the bending tube 340 to cause the far end of the bending tube 340 to change direction.
  • the bending angle is not easy to observe in the body, so the marking member 122 can be further combined to predict the bending effect according to the displacement of the first slide 110 .
  • the identification piece 122 can be fixedly connected to the first sliding seat 110, it must bypass the first driving sleeve 111 or open a viewing window on the first driving sleeve 111 for observation, which will cause a waste of space or a reduction in structural strength.
  • the first driving sleeve 111 is used to synchronously drive the identification piece 122 and the first sliding seat 110, which can ensure accurate indication and overcome existing defects.
  • the first drive sleeve 111 has internal threads and external threads
  • the first sliding seat 110 has external teeth that match the internal threads
  • the identification piece 122 has internal teeth that match the external threads.
  • the identification piece 122 and the first sliding seat 110 move synchronously under the action of the first driving sleeve 111 .
  • a window corresponding to the position of the identification piece 122 is provided on the side wall of the indication section.
  • a guide structure can be used on the inner edge of the window or the support body 100 to limit the movement direction of the identification piece 122.
  • two chute 1211 are provided on the side wall of the indication section, and the identification piece 122 is located outside the side wall and horizontally. Spanning between the two slide grooves 1211 , the end of the identification piece 122 extends inward through the slide groove 1211 and serves as an internal tooth 1221 to cooperate with the external thread of the first drive sleeve 111 .
  • a transparent cover 123 can be provided on the outside of the identification piece 122, which is fixedly embedded in the outer wall of the indication section.
  • a frame 121 can be provided.
  • a positioning ring is provided on the outer periphery of the first driving sleeve along the axial sliding sleeve.
  • the first driving sleeve has a positioning state in which the positioning ring engages with each other and a free state in which they are separated from each other. In the positioning state, the positioning ring limits the first driving sleeve. Drive the rotation of the sleeve.
  • the first drive sleeve and the positioning ring are provided with locking teeth that mesh with each other so that the first drive sleeve is in a positioning state.
  • a mounting groove 1001 extending in the axial direction can be provided in the support body 100.
  • a guide tube 112 is fixed in the installation groove 1001, and the first slide seat 110 is slidably sleeved on the guide tube 112.
  • a guide structure that cooperates with each other to guide axial movement is provided between the first sliding seat 110 and the outer wall of the guide tube 112 .
  • the outer wall of the guide tube 112 is provided with an axially extending guide bar 1121
  • the sliding inner side of the first sliding seat 110 is provided with a slide groove 1101 that cooperates with the guide bar 1121 .
  • the proximal end of the bending tube 340 is inserted into and fixed on the guide tube 112 .
  • the side wall of the guide tube 112 is provided with a second exhaust hole 1122, and the radial gap between the bending pipe 340 and the conduit body 332 is connected to the second exhaust hole 1122.
  • the proximal end of the catheter body 332 passes through the proximal end of the bending tube 340 and then further extends through the guide tube 112;
  • a second pipe joint 113 is fixedly connected to the second exhaust hole 1122.
  • the second exhaust hole 1122 and the second pipe joint 113 define a second exhaust channel 1131.
  • a one-way exhaust channel 1131 is provided in the second exhaust channel 1131.
  • Spool 114 is fixedly connected to the second exhaust hole 1122.
  • the arrangement of the above parts allows the physiological saline injected from the second exhaust hole 1122 to only enter the radial gap between the bending tube 340 and the catheter body 332, and flow toward the distal side to achieve exhaust.
  • a second annular seat 1123 is provided at the edge of the second exhaust hole 1122.
  • the second pipe joint 113 and the second annular seat 1123 are plug-fitted and provided with mutually matched anti-rotation structures.
  • One end of the second pipe joint 113 can have a threaded structure to facilitate quick disassembly and assembly with external pipelines, and the other end can be inserted into the second annular seat 1123.
  • the second annular seat 1123 can be provided with a seal arranged around the second exhaust hole 1122. Ring 115, the end face of the second pipe joint 113 inserted into the second annular seat 1123 is sealed against the sealing ring 115, and the sealing ring 115 is elastic to ensure the sealing effect.
  • the anti-rotation structure can prevent the second pipe joint 113 from unnecessary movement when disassembling and installing external pipelines.
  • the anti-rotation structure includes:
  • the slot 1124 extends along the insertion direction of the second pipe joint 113, and the slot 1124 is provided on the side wall of one of the second pipe joint 113 and the second annular seat 1123;
  • the positioning ribs 1132 cooperate with the slots 1124.
  • the positioning ribs 1132 are provided on the side wall of the other of the second pipe joint 113 and the second annular seat 1123.
  • the inner wall of the second annular seat 1123 illustrates three slots 1124, and three positioning ribs 1132 are provided at corresponding positions on the outer wall of the second pipe joint.
  • a second protective sleeve 116 is provided on the outer periphery of the second pipe joint 113.
  • the outer wall of the second pipe joint 113 and the inner wall of the second protective sleeve 116 form a pipeline insertion connection. gap.
  • the second protective sleeve 116 is divided into two parts (the first part 116a and the second part 116b in Figures 35 and 36 respectively), which are respectively fixed on the support body 100 and the guide tube 112.
  • the main handle 10 also includes:
  • the second sliding seat 130 slides and fits relative to the support body 100 in the axial direction;
  • the second driving sleeve 131 is rotatably mounted on the support body 100 and is located on the outer periphery of the second sliding seat 130.
  • the second driving sleeve 131 and the second sliding seat 130 adopt a threaded transmission fit;
  • the multi-way connector 140 is connected to the proximal end of the second sliding seat 130.
  • the proximal ends of the balloon catheter 330 and the inner sheath 320 are both connected to the multi-way connector 140.
  • the interior of the inner sheath 320 is a through-guide wire channel. 321.
  • the multi-way connector 140 at least has interfaces connected to the guide wire channel 321 and the fluid channel 322 respectively. Specifically, as shown in Figure 39, the interface 141 connected to the guide wire channel 321 and the interface 142 connected to the fluid channel 322 are connected.
  • the second slide seat 130 slides in the axial direction relative to the support body 100 through thread transmission. Since the multi-way joint 140 is connected to the proximal side of the second slide seat 130, the balloon is also driven. Movement of catheter 330 and inner sheath 320. As a further improvement, the multi-way joint 140 is rotationally engaged with the proximal side of the second sliding seat 130 and is axially limited.
  • the multi-way joint 140 and the second sliding seat 130 are axially limited to ensure that the axial movement of the second sliding seat 130 is transmitted to the balloon body 331 and the artificial implant 8 synchronously.
  • 130 is a rotational fit, allowing the balloon body 331 and the artificial implant 8 to rotate relative to the support body 100 to achieve precise adjustment of the spatial posture of the artificial implant 8 .
  • the second sliding seat 130 is a cylindrical structure as a whole, and at least part of it is located in the second driving sleeve 131.
  • the outer wall of the second sliding seat 130 and the inner wall of the second driving sleeve 131 are threadedly matched.
  • the support body 100 is provided with a guide groove 1002 for guiding the second sliding seat 130 to move in the axial direction.
  • the bit structure includes:
  • the latch 1301 is fixed to one of the two and protrudes radially toward the other;
  • the latching slot 1401 is provided in the other of the two to receive the latching teeth 1301 .
  • the multi-pass connector 140 can be configured with multiple interfaces, corresponding to the guidewire channel 321 and the fluid channel 322 respectively.
  • a locking wire channel 143 is also configured, and the locking wire channel 143 can be threaded with a lock directly driven at the proximal end.
  • the locking wire 360 extends to the distal end and is located outside the balloon body 331. Cooperating with the wire loop structure on the balloon body 331, the locking wire 360 can further lock the axial position of the artificial implant 8.
  • a first pull ring 381 and a second pull ring 382 are provided at the distal end of the catheter assembly.
  • the first pull ring 381 passes through the first eyelet 811 at the distal end of the artificial implant 8, and the second pull ring passes through the artificial implant 8.
  • the distal end of the locking wire 360 passes through the second pull ring 382 and the first pull ring 381 in sequence and then extends into the guide head 370 at the distal end of the inner sheath (with a keyhole for the locking wire to be inserted), so that the artificial implant can be realized 8
  • the axial position is further locked, and the locking wire is withdrawn proximally as needed to release the constraint on the artificial implant 8 .
  • the artificial implant in the following embodiments takes an artificial heart valve as an example.
  • One embodiment provides an artificial heart valve, including a stent 800 and leaflets 83.
  • the stent 800 has a cell structure.
  • the two ends of the stent are the inflow side 834 and the outflow side 833 respectively.
  • the inside of the stent is a blood flow channel 85.
  • the valve leaflets 83 are multiple. Each leaflet 83 cooperates with each other in the blood flow channel to open or close the blood flow channel 85 relative to each other.
  • the edges of the leaflets 83 include a fixed edge 831 that is fixed to the stent 800 , and a free edge 832 that cooperates with other leaflets 83 to control the blood flow channel 85 .
  • the bracket 800 is connected to an anti-peripheral leakage assembly.
  • the anti-peripheral leakage assembly is an integrated structure, including a base 84 located inside the bracket and an anti-peripheral leakage component 841 fixed on the outside of the base.
  • the anti-peripheral leakage component 841 is Multiple spaced blocks are distributed and their positions correspond to the hollow areas of the scaffold cells.
  • the anti-peripheral leakage component 841 extends radially outward from the corresponding cells along the stent, or is radially higher than the outer periphery of the stent.
  • the base 84 and the anti-peripheral leakage component 841 can be formed by infiltration and fusion.
  • the base 84 can be made of PET, and the anti-peripheral leakage component 841 can be made of porous material, such as PU material.
  • the holes are the gaps in the material's own structure or are formed by external processing.
  • the anti-peripheral leakage component 841 includes:
  • the first circle of anti-peripheral leakage components 8411 covers the entire cell where it is located;
  • the second ring of anti-circular leakage parts 8412 is adjacent to the inflow side 834 of the first ring of anti-peripheral leakage parts 8411 and is distributed in the local area of the entire cell;
  • the third ring of anti-circular leakage parts 8413 is adjacent to the outflow side 833 of the first ring of anti-peripheral leakage parts 8411 and is distributed throughout the cell. department area.
  • the anti-circular leakage component 841 includes:
  • the first circle of anti-peripheral leakage components 8411 covers the entire cell where it is located;
  • the second ring of anti-circular leakage components 8412 is adjacent to the inflow side 834 of the first ring of anti-peripheral leakage components 8411 and is distributed in the local area of the entire cell where it is located.
  • the anti-circular leakage component 841 includes:
  • the first circle of anti-peripheral leakage components 8411 covers the entire cell where it is located;
  • the third ring of anti-circular leakage parts 8413 is adjacent to the outflow side 833 of the first ring of anti-peripheral leakage parts 8411 and is distributed in the local area of the entire cell where it is located.
  • the axial length of the second ring of anti-circular leakage parts 8412 and the third ring of anti-peripheral leakage parts 8413 only occupies half a cell.
  • the thickness gradually increases from the outflow side 833 to the inflow side 834 until it reaches the highest protrusion (along the radial direction of the stent) and then gradually becomes thinner.
  • the change in thickness facilitates recovery of the highest convex parts.
  • the part with the maximum convex height is closer to the inflow side 834.
  • the peripheral leakage prevention component After the peripheral leakage prevention component is convex, it can fill the space surrounded by the rods of the cell in terms of area. From the perspective of the degree of convexity, the peripheral leakage prevention component and the side edge of the rod of the cell are in close contact with each other, that is, the anti-peripheral leakage component is convex.
  • the lowest position of the peripheral leakage component is not lower than the outer peripheral surface of the unit cell rod, so as to avoid the gap between the peripheral leakage prevention component and the side edge of the rod, and avoid the gap absorbing the deformation of the peripheral leakage prevention component and reducing the sealing effect.
  • the side edge of the rod is understood to be the side of the rod facing the inside of the cell where it is located.
  • the control handle piece of this application can independently operate the outer sheath tube, so that the movement of the outer sheath tube is separated from other internal pipe parts. It also releases the restriction on the length of the main handle.
  • the auxiliary sheath tube can be directly driven. handle, and the stroke is sufficient to make the distal end of the outer sheath tube detach from the aortic arch.
  • the auxiliary handle is retracted proximally to the extreme position, the remaining tubing components in the catheter assembly, especially the distal end of the bending tube, are exposed (the distal end of the outer sheath tube is released). restraint) a longer section, such as 0 to 20cm.
  • the stroke is generally 10 to 40cm to avoid the bending part of the aortic arch or the distal end of the catheter assembly to facilitate the adjustment of artificial implants or other operate.
  • the existing interventional delivery system for ball-expandable valves generally includes a sliding sleeved inner shaft 44 and a balloon catheter 42.
  • the distal end of the balloon catheter 42 is a ball that is inflated by fluid to release the artificial implant.
  • the balloon body 423 is loaded with the artificial implant 41 (taking the artificial heart valve as an example, also referred to as the valve below), is pressed to a smaller diameter, and is placed around the outer periphery of the balloon body 423, roughly at the balloon body 423. axial middle region.
  • the artificial implant 41 reaches a predetermined position in the human body, fluid is injected into the balloon body 423 from the proximal end and inflated. Finally, the artificial implant 41 completes balloon expansion and release in the body.
  • fluid needs to be injected into the balloon body 423. Since the middle part of the balloon body 423 is compressed by the artificial implant 41 and basically fits the outer circumference of the inner shaft 44, that is, the flow channel in this part is blocked, so the fluid is generally filled first.
  • the proximal part of the balloon body 423 causes the artificial implant 1 to have the risk of distally shifting, thereby affecting the registration of the artificial implant's position in the body.
  • the balloon In actual situations, we expect the balloon to form a "dog bone” shape (or “figure 8"), that is, the two axial ends of the balloon body 423 will expand first, and then the middle, which will not only play a role in the valve
  • the positioning function prevents the valve from sliding on the balloon body 423 during the expansion process of the balloon body 423, and also enables both ends of the balloon body 423 to expand evenly, which helps to provide a uniform expansion force to the valve.
  • an embodiment of the present application discloses a method of using fluid to drive a balloon catheter.
  • the balloon catheter 42 has an opposite distal end 422 and a proximal end 421.
  • the distal end 422 is the end away from the operator.
  • the near end 421 is the end close to the operator.
  • the balloon catheter 42 of this embodiment includes a balloon body 423 and a catheter body 424.
  • the catheter body 424 is connected to the proximal end of the balloon body 423.
  • the balloon body 423 sequentially includes a first part 4233 and a middle part 4232 from the distal end to the proximal end. and the second part 4231.
  • the inner cavities of these three parts are interconnected internal channels for fluid injection.
  • the middle part 4232 is for loading and fixing the artificial implant 41. That is, in the loading state in Figure 50a, the diameter of the artificial implant 41 Compressed towards and wrapped around the outer periphery of the middle part 4232.
  • the conduit body 424 has a main channel 4241;
  • the method that can be adopted is that all the fluid used to inflate the balloon 423 comes from the main channel 4241 before being diverted. From the source of the fluid, all the fluid used to inflate the balloon body 423 is supplied from the proximal end of the catheter body 424 through the main channel 4241 , only for different direct inflation parts (i.e., the first part 4233 and the second part 4231). There is no other pipeline or flow for supplying fluid except the main channel 4241 inside the conduit body 424. channel, and there is no need to separate the inside of the main channel 4241 (for example, using multiple cavities in parallel, etc.).
  • the fluid in the main channel 4241 (in order to express the splitting process in the subsequent process, the fluid Q1 and the fluid Q2 are schematically included in the figure. In fact, the fluid Q1 and the fluid Q2 are in a mixed state before the splitting).
  • the flow is divided. A part of the fluid Q1 enters and inflates the second part 4231.
  • the other part of the fluid Q2 is drained through the independent flow channel 426 and enters and inflates the first part after crossing the second part 4231 and the middle part 4232.
  • the material of the balloon body 423 generally has better compliance or elasticity than the catheter body 424, that is, it is easy to expand and deform in the radial direction of the fluid. Therefore, after the fluid enters the balloon body 423 from the catheter body 424, it follows the balloon body. 423 deforms, the fluid will present a relatively more obvious turbulent state than in the catheter body 424, and then directly act on the second part 4231 for inflation.
  • this embodiment is aimed at the fluid entering the balloon body before it is completely When entering a turbulent flow state to implement charging and expansion, the flow is diverted to allow at least a part of the fluid to directly target the second part 4231 for charging and expansion.
  • the flow splitting in this embodiment is for the fluid from the main channel 4241.
  • the radial gap between the conduit body 424 and the inner shaft 44 is the main channel 4241.
  • the main channel 4241 is an integrated flow channel, that is, there is no need for multi-cavity or multi-cavity internal flow channels. Isolate multiple pipelines in parallel.
  • the fluid in the catheter body 424 is output to the balloon body 423 through the main channel 4241.
  • the diverted part can use an independent flow channel 426.
  • the independent flow channel can be understood as an additional relatively closed drainage channel, which can prevent the fluid entering the independent flow channel 426 from participating or excessively participating in the inflation of the second part 4231. , reducing unnecessary diffusion when flowing through the second part 4231 and the middle part 4232.
  • This part of the fluid can reach the first part 4233 as quickly as possible along the independent flow channel 426 with less resistance, so as to reduce the filling of the first part 4233 and the second part 4231.
  • the main purpose of splitting is to partially intercept the fluid from the main channel 4241 and flowing into the inner cavity of the second part 4231, that is, split all the fluid into two paths and inject them into the first part 4233 and the second part 4231 as simultaneously as possible, and Acting on the inner wall of the balloon body 423 respectively causes the first part 4233 and the second part 4231 to expand simultaneously, overcoming the defect of the proximal end being first inflated in the prior art, and further solving the problem of position deviation during the release process of the artificial implant.
  • the entire balloon catheter 423 is still in a compressed state because the artificial implant 41 is radially compressed and wrapped around the periphery of the middle portion 4232.
  • the fluid 45 flowing out of the distal end of the main channel 4241 and about to flow into the inner cavity of the second part 4231 is partially intercepted, that is, the fluid is between the catheter body 424 and the second part 4231.
  • the junction of the second part 4231 is divided into two paths, one of which enters and charges the second part 4231, and the other passes through the split flow channel formed by the independent flow channel 426 and passes through the second part 4231 and the middle part 4232 before entering and charging the first part 4231. Department 4233.
  • the proximal end of the independent flow channel and the distal end of the catheter body 424 can be directly connected, or even have an integrated structure, which can further delay the filling time of the second part 4231 and facilitate the maintenance of consistency with the deformation of the first part 4233 .
  • Figure 59 shows the charging A schematic diagram showing that the part of fluid Q2 in the first part 4233 is divided into three strands (that is, forming three strands of fluid Q21, fluid Q22, and fluid Q23).
  • the radiation distribution between the strands in the same path can be realized by using splitters or branch flow channels 4261, which can make the different parts of the circumferential direction of the balloon body 423 expand to the same or similar extent during the deformation process, reducing the flow rate or flow rate. Control requirements.
  • the flow ratio of one fluid directly acting on the second part 4231 and the other fluid directly acting on the first part 4233 is 1:0.6 ⁇ 1.5.
  • the size of the flow can be determined by changing the cross-sectional area of the flow channel. Adjustment.
  • the artificial implant 41 has a cylindrical structure.
  • the fluid entering the independent flow channel 426 passes through the middle part 4232 through the inside of the cylindrical structure and enters the first part 4233, which can avoid interference with the shunt flow channel after deformation of the artificial implant.
  • the balloon body 423 has an axial direction extending between the distal end and the proximal end and corresponding radial and circumferential directions. After the fluid is output from the shunt channel, According to different directions, the ways to enter and charge the first part 4233 include:
  • the portion of the independent flow channel 426 within the first part 4233 may be provided with corresponding output holes or flow guides according to the fluid output direction.
  • Some of the embodiments below also provide an interventional delivery device based on balloon expansion release and can be used to implement the above method.
  • one embodiment of the present application provides an interventional delivery device based on bulbar expansion release, which has opposite distal ends 422 and proximal ends 421.
  • the distal end 422 is the end far away from the operator, and the proximal end 421 is the end close to the operator.
  • the interventional delivery device includes an inner shaft 44 and a balloon catheter 42 located around the inner shaft 44. There is a radial gap between the inner shaft 44 and the balloon catheter 42, which is an internal channel for fluid injection.
  • the balloon catheter 42 includes a balloon body 423 and a catheter body 424.
  • the catheter body 424 is connected to the proximal end of the balloon body 423.
  • the balloon body 423 includes a first part 4233, a middle part 4232 and a second part in sequence from the distal end to the proximal end.
  • the inner part 4231 and the middle part 4232 are used for loading and fixing the artificial implant 41.
  • the catheter body 424 has a main channel 4241.
  • a drainage tube 425 is provided in the radial gap between the inner shaft 44 and the balloon body 423.
  • the main channel 4241 leads to the balloon body 423.
  • At least part of the output fluid passes through the second part 4231 and the middle part 4232 through the drainage tube 425 and then enters and inflates the first part 4233.
  • the drainage tube 425 shunts the fluid output from the distal end of the catheter body 424.
  • the drainage tube 425 can be used to divide the fluid from the main channel 4241 into two parts. One part enters and inflates the second part 4231, and the other part enters the inside of the drainage tube 425 (i.e., the independent flow channel 426 mentioned above. Since the drainage tube 425 is inside The outer circumference of the shaft 44 (so the independent flow channel 426 is the radial gap between the drainage tube 425 and the inner shaft 44) is directly transported to the first part 4233 to avoid diffusion in the second part 4231 and the middle part 4232.
  • This embodiment uses simple pipe fittings to implement flow diversion, which not only has low cost and is easy to assemble, but also can use the same material as the surrounding components according to strength requirements, reducing the difficulty of material selection.
  • Some of the embodiments below also provide an interventional delivery device based on balloon expansion release and can be used to implement the above method.
  • one embodiment of the present application provides an interventional instrument device based on ball expansion release, with opposite distal ends 422 and proximal ends 421.
  • the interventional instrument device includes an inner shaft 44 and a ball located on the outer circumference of the inner shaft 44.
  • the balloon catheter 42 includes a balloon body 423 and a catheter body 424.
  • the catheter body 424 is connected to the proximal end of the balloon body 423.
  • the balloon body 423 includes a first part 4233 and a middle part in sequence from the distal end to the proximal end. 4232 and the second part 4231, the middle part 4232 is used for loading and fixing the artificial implant 41.
  • the inner shaft 44 and the proximal end of the catheter body 424 can be connected and controlled by a control handle. As for the control handle itself, either conventional technology or solutions provided by various embodiments of the present application can be used.
  • a drainage tube 425 is provided in the radial gap between the inner shaft 44 and the balloon body 423.
  • the distal end of the drainage tube 425 is fixed to the distal end of the inner shaft 44, and the remaining portion of the drainage tube 425 is suspended between the inner shaft 44 and the balloon catheter 423. between;
  • At least part of the fluid passes through the second part 4231 and the middle part 4232 through the drainage tube 425 and then enters and inflates the first part 4233.
  • the interventional delivery device When the interventional delivery device is transported in the body, it will turn and bend to adapt to the physiological structure of the body, which will cause the drainage tube 425 to shift. In addition, under the action of fluid, it may also cause the drainage tube 425 to shift and affect the diversion effect.
  • the drainage tube is used to divert the fluid. The key point is that the far end of the drainage tube 425 is fixed relative to the inner shaft 4, which can limit the overall position of the drainage tube 425. At the same time, the remaining parts are suspended to allow a certain degree of relative movement.
  • the suspension setting can It is understood that the radial gap between the drainage tube 425 and the inner shaft 44 is no longer provided with components or matching structures that connect (or limit) each other, and the drainage tube 425 and the inner shaft 44 can be within the range of the gap between each other in the radial direction. internal relative motion.
  • the suspension setting is conducive to improving the overall compliance of the balloon catheter.
  • the fluid inlet of the drainage tube 425 may be squeezed by the inner wall of the balloon and cause local blockage.
  • the suspension setting is beneficial to the proximal end of the drainage tube 425.
  • the adaptive relative inner shaft 44 is radially offset to ensure the necessary exposed area for the fluid inlet.
  • the proximal end of the drainage tube 425 has an open port and serves as a fluid inlet 4254.
  • the fluid output through the catheter body 424 (the part that needs to be diverted) directly enters the interior of the drainage tube 425 from the fluid inlet 4254.
  • the fluid inlet 4254 can be the proximal port of the drainage tube 425, or an opening in the side wall, and the diameter (cross-sectional area) can be selected to be the same as the inner diameter of the drainage tube 425, or slightly larger than the inner diameter of the drainage tube 425, both of which can achieve a diverting effect.
  • the axial position of the fluid inlet 4254 is adjacent to the junction of the balloon body 423 and the catheter body 424.
  • the inner diameter of the junction of the balloon body 423 and the catheter body 424 changes greatly, so the fluid flows before inflation.
  • the axial position of the fluid inlet 4254 is adjacent to this part, so that good flow timing and effect can be obtained.
  • the balloon body 423 is in an inflated state after being filled with fluid. In the inflated state, the fluid inlet 4254 is located at a sudden change in the cross-sectional area of the flow channel of the second portion 4231 relative to the catheter body 424 .
  • first gap with a radial span of L1 between the inner shaft 44 and the drainage tube 425.
  • the first gap affects the flow rate of the fluid that enters the drainage tube 425, that is, the shunt flow channel.
  • second gap with a radial span of L2 between the inner shaft 44 and the conduit body 424.
  • the artificial implant In the loading state, the artificial implant is radially compressed and wrapped around the outer periphery of the middle part 4232, and the first part 4233 and the second part 4231 are exposed to the artificial implant 41, so as to reduce the deformation activation pressure and avoid the deformation of the artificial implant. Risk of slippage.
  • the proximal end of the drainage tube has a fluid inlet 4254.
  • the fluid inlet 4254 is located in the second part 4231 and is timely diverted.
  • the fluid delivered to the first part 4233 passes through the first part located in the first part 4233.
  • Fluid outlet 4255 output.
  • the drainage tube 425 includes a distal section 4253, a middle section 4252 and a proximal section 4251 in sequence from the distal end to the proximal end, and corresponds to each part of the balloon body 423 respectively.
  • the distal section 4253 of the drainage tube 425 has a The first fluid outlet 4255 communicates with the distal section 4233, and the first fluid outlet 4255 is located on the tube wall of the distal section 4253, and/or on the end surface of the distal section 4253.
  • the tube wall of the distal section 4253 is provided with multiple first fluid outlets 4255, such as two to four.
  • the plurality of first fluid outlets are distributed along the circumferential direction of the drainage tube 425, allowing fluid to flow evenly from around the drainage tube to the first part of the balloon body, and also allowing the balloon body to receive a more uniform expansion force.
  • a plurality of first fluid output ports 4255 are located in the middle of the distal section 4253, thus shortening the path of the water path along the periphery of the drainage tube, and making the corresponding middle part of the first part of the balloon body 4233
  • the expansion force that is first experienced contributes to the uniform expansion of the balloon body.
  • the proximal end of the drainage tube 425 and the distal end of the catheter body 424 are interconnected as one body, and the tube wall of the proximal section 4251 is provided with a second fluid outlet 4256 that communicates with the second portion 4231 .
  • the fluid output from the distal end of the catheter body 424 can all enter the drainage tube 425, and then undergo secondary distribution through the drainage tube 425 to enter and inflate different parts of the balloon body 423 respectively.
  • the fluid can pass through the first fluid outlet 4255 and the third fluid outlet 4255.
  • the position and effective area configuration of the second fluid outlet 4256 are used to control the flow rate and improve the controllability of the deformation process of the second part 4231 and the first part 4233.
  • the proximal end of the drainage tube 425 is provided with a chamfered section 4257 that gradually converges in shape. At least a portion of the chamfered section 4257 extends into the catheter body 424. within the distal end.
  • the chamfered section 4257 can extend into the catheter body 424 at least adjacent to the tip, thereby limiting the spatial position in the radial direction.
  • the distal end of the chamfered section 4257 can be opened for direct drainage.
  • the chamfered section 4257 has one or two chamfered surfaces, as shown in Figure A beveled surface 4258 is provided at the distal end of the beveled section 4257 in 65a to drain the fluid output from the distal end of the catheter body 424.
  • the inner cavity of the drainage tube 425 is open to the beveled plane 4258, and is simultaneously connected with the inner cavity of the catheter body 424 and the inner cavity of the second part 4231. It can not only take into account positioning, but also realize direct shunting at the port. Depending on the angle of the bevel, it can also have different flow relationships between the two paths.
  • an isolation piece 441 is provided radially between the inner shaft 44 and the drainage tube 425 to maintain a radial gap between each other.
  • the isolation member 441 can be a separate component or a corresponding component that is integrally formed.
  • ribs are distributed on the inner wall of the drainage tube to achieve the purpose of isolation.
  • the isolation member 441 may also be a hollow structural member fixed radially between the inner shaft 44 and the drainage tube 425 .
  • a guide head 43 is fixed at the distal end of the inner shaft 44, and the distal end of the drainage tube 425 is fixed to the proximal end of the guide head 43.
  • the distal end of the drainage tube 425 is closed to the guide head 43, so that when the fluid enters the distal end of the drainage tube 425, it can only enter the balloon body through multiple fluid output ports, which contributes to the uniform expansion of the balloon body. .
  • the proximal side of the guide head 43 is provided with a positioning structure 431 that is adapted to the distal end of the drainage tube 425.
  • the positioning structure 431 is a combination groove for the drainage tube 425 to be inserted (as shown in Figure 67a), or a positioning structure 431 for the insertion of the drainage tube 425. Bind the column (shown in Figure 67b).
  • This application distributes the fluid entering the balloon body 423 to achieve synchronous deformation of the balloon body 423 at both ends of the artificial implant, thereby reducing the risk of positional deviation of the artificial implant when it is released, and can omit artificial implantation.
  • the axial positioning structure of the object is not limited.
  • An interventional delivery system 51 is provided in Figure 68, which includes a control handle 53, and a catheter assembly 54 controlled connected to the control handle 53, and is provided in the catheter assembly 54 for loading and delivering the artificial implant 55.
  • the catheter assembly 54 can include a balloon device, and the limiting mechanism 52 can be applied to the balloon device.
  • the catheter assembly 54 can include an outer sheath that is slidably fitted outside the balloon device and within the outer sheath as needed.
  • the interventional delivery system 1 as a whole has a proximal end 5101 and a distal end 5102 as shown in the figure.
  • the artificial implant has a loading state and an expanded state loaded on the catheter assembly 54.
  • the artificial implant can be a heart valve, such as an artificial aortic valve, an artificial pulmonary valve, etc.
  • the artificial implant below takes an artificial heart valve as an example. , including a stent and a leaflet arranged on the stent, where the stent is made of stainless steel that is released by ball expansion, and the stent itself can be cut and shaped using pipes.
  • this application provides a limiting mechanism 52 for an interventional delivery system, including a coupling part 521 and a deformation part 523.
  • the coupling part 521 is used to connect to the interventional delivery system 51, and the coupling part 521 is used to connect to the interventional delivery system 51.
  • the portion 521 has the same axial direction as the conveying system 51 and the corresponding circumferential and radial directions;
  • the deformation portion 523 includes a plurality of rods arranged in the circumferential direction, each rod having a first end 5251 and a second end 5252 respectively.
  • One end 5251 is connected to the coupling part 521; the second end 5252 is on one side of the coupling part 521 in the axial direction relative to the first end 5251.
  • Each rod has a compression state suitable for interventional delivery based on elastic deformation and a relative In the expanded state, the second end 5252 of each rod member diverges outward in the radial direction of the coupling portion 521 relative to the compressed state.
  • the existing structure has poor stopping effect, especially after the balloon body is slightly inflated, that is, the artificial implant loses its stopping effect in the early stage of release.
  • the existing structure has poor stopping effect, especially after the balloon body is slightly inflated, that is, the artificial implant loses its stopping effect in the early stage of release.
  • the existing structure has poor stopping effect, especially after the balloon body is slightly inflated, that is, the artificial implant loses its stopping effect in the early stage of release.
  • the rods in this embodiment have a slender structure as a whole.
  • the multiple rods, especially at the second end 5251 can reduce mutual traction and avoid local failure from affecting the overall effect, especially when the effect is eccentric relative to the artificial implant. It is more prominent.
  • it can achieve a relatively large expansion range in the radial direction and has better compliance with the folding deformation of the balloon body later.
  • each rod member 525 may be the same or different, and the slender structure may be understood to mean that the length of the rod member 525 is at least 5 times the diameter of the rod. Preferably it is 20 times.
  • the length of the rod 525 is the distance between the first end and the second end.
  • the rod diameter corresponds to the diameter. If the cross-section of the rod 525 is of other shapes, the rod diameter should be understood as the diameter of a circle with equal area.
  • the rods are elastic, such as using nickel-titanium memory alloy, and are heat-treated to obtain a pre-shaped state. At this time, the rods are not restrained and stretch naturally.
  • the expanded state of the rod can be understood as the state in which the end of the rod expands to the maximum extent when the limit mechanism is in use. For example, when the limit mechanism is used with a balloon body, after the balloon is inflated, the end of the rod expands accordingly. That is the expanded state.
  • the shape of the end of the balloon may still radially constrain the second end of the rod.
  • the deployment angle of the rod in the deployed state is smaller than the deployment angle in the pre-shaped state.
  • the unfolded state of the rods is consistent with the predetermined state, which facilitates the retraction of the delivery system, and the balloon body is more conducive to guiding the radial contraction of each rod during the folding and folding process.
  • the compressed state of the rod refers to the radial contraction of the second end of the rod, which is at least suitable for interventional delivery through the catheter.
  • the object of the external force applied to maintain the radial contraction of the second end may be a balloon device or an outer sheath, etc. One.
  • the axial distance between the second end of the rod and the coupling part is R1 in the expanded state; the second end of the rod in the compressed state
  • R1:R2 2 ⁇ 10:1.
  • the shape of the rod is not strictly limited. Of course, better effects can be obtained when a slender structure is used.
  • the coupling part 521 is connected to the conduit assembly 54.
  • the rods 525 can be gathered together and form a cylindrical structure with the coupling part 521.
  • the rods 525 are distributed in a radial manner.
  • the first ends 5251 of each rod 525 are at the converging position. is the axial end of the coupling part.
  • the rod 525 has a relative axial expansion angle ⁇ .
  • the expansion angle ⁇ in the compressed state (Fig. 71) is smaller than the expansion angle ⁇ in the expansion angle (Fig. 70).
  • the expansion angles between the rods are the same or different, and the axial positions of the second ends can be relatively aligned or misaligned, that is, the lengths of the rods may not be exactly the same.
  • the angle ⁇ and the length of the rod can be converted to the distance R2 between the second end and the axis of the coupling part.
  • the rod 525 radially protrudes outward from the artificial implant 55 in the loaded state or at least is not lower than the artificial implant 55, and the second end 5252 faces the artificial implant 55 to limit the direction of the artificial implant 55.
  • the side where the limiting mechanism 52 is located moves.
  • Limiting mechanisms 52 can be respectively disposed on both sides of the artificial implant 55 in the axial direction, thereby limiting the displacement of the artificial implant 55 relative to the catheter assembly 54 in the axial direction.
  • the rod 525 can adapt to changes in the surrounding environment. For example, when the artificial implant 55 is loaded, the rod 525 can deform and shrink radially to facilitate the loading operation of the artificial implant; and after the loading is completed, the rod 525 can deform adaptively. To limit the displacement of the artificial implant 55.
  • the limiting mechanism of this embodiment has a simpler structure and does not require a control handle to perform the unlocking operation, thereby avoiding increasing the radial size of the distal end of the delivery system.
  • the catheter assembly includes at least one pipe, and the coupling part 521 is connected to the pipe (shown as the inner shaft 545 below), where the coupling part 521 is a radially deformable annular structure, and the coupling part 521 is a radially deformable annular structure.
  • 521 is sleeved outside the inner shaft 545.
  • the coupling part 521 is first expanded radially outward, sleeved on the inner shaft 545 and moved to a predetermined position, and then the coupling part 521 is contracted radially inward and fitted to the outer circumference of the inner shaft 545 surface to achieve connection between the two.
  • the method of driving the coupling part 521 to expand or contract radially may be to apply a corresponding driving force, or the radial contraction may rely on the elastic deformation ability of the coupling part 521 itself.
  • the coupling part 521 can Retract on its own.
  • the coupling part 521 may be made of materials such as memory alloy. Eliminate damage to the inner shaft caused by the coupling part during assembly.
  • the radial deformation of the coupling portion 521 can be achieved by making the coupling portion into a spring-like form, as shown in Figure 73.
  • the coupling portion 521 is an axially undulating wave structure and has opposite wave peaks 5211 and Trough 5212.
  • the side connected to the first end 5251 of the deformation part 523 is the wave peak 5211.
  • the corrugated structure is conducive to adapting to the radial deformation of the coupling portion 521 during assembly, and the spaced apart corrugated peaks 5211 further reduce the mutual traction of the rods.
  • the limiting mechanism 52 can be cut as a whole using a pipe.
  • the inner diameter of the pipe is larger than the outer diameter of the inner shaft.
  • the inner diameter of the pipe is 3.5-4.5mm
  • the outer diameter of the inner shaft is 1-2mm.
  • the inner diameter of the pipe is It is 2 to 5 times the outer diameter of the inner shaft.
  • Each rod member (especially the second end) can be given a relatively wide size in the circumferential direction, that is, damage to the balloon body is reduced.
  • the coupling portion 521 adopts an outer diameter of about 5 mm (wall thickness of 0.3 to 0.7 mm). mm), and then compressed to match and install with an inner shaft with an outer diameter of about 1.3 mm.
  • the coupling part 521 can be tightly pressed on the outer periphery of the inner shaft to increase the friction between the two, and Combined with glue fixation.
  • the coupling portion 521 When the coupling portion 521 is assembled with the balloon body, the coupling portion 521 can be inserted into the pins at the end of the balloon body and then welded to fix this part in the pins of the balloon body.
  • the number of limiting mechanisms is two, which are used to limit the distal end and proximal end of the artificial implant 55. In some embodiments, when only the distal end or the proximal end of the artificial implant 55 needs to be limited, When limiting the near end, you only need to configure a limiting mechanism.
  • the two are separate or integrated structures, and preferably the two are integrated. structure, and the pipe is integrally cut to form a corresponding corrugated structure and multiple rods 525.
  • Each rod 525 of the deformation portion 523 has a tendency to extend spirally around the axis of the coupling portion. As shown in Figure 74, one of the rods extends along a spiral line 5253 (dashed line in the figure), and the starting point of the spiral line 5253 is located at the corresponding wave peak 5211.
  • the spiral extension facilitates further expansion of the length of the rod 525 itself while maintaining the same axial span. And it is beneficial to insert into the crease of the balloon:
  • the balloon body 542 when the limiting mechanism 52 is installed in the balloon body 542, the balloon body 542 has a relatively folded state and an inflation state. In the folded state, the balloon body 542 is in a folded state. The body 542 has a plurality of folds 5424, and each rod 525 is placed in the corresponding fold 5424.
  • one embodiment of the present application also provides a balloon device 541 for delivering artificial implants, including an inner shaft 545 and an inner shaft 545.
  • the outer peripheral balloon body 542 and the inner shaft 545 are equipped with a limiting mechanism 52 located inside the balloon body 542 .
  • the inner shaft can be a hollow structure, for example, it can be used to pass a guide wire.
  • the balloon body 542 can be inflated under the action of fluid to release the artificial implant.
  • the fluid used to inflate the balloon body can be transported through the inner shaft, or
  • the system also includes an intermediate shaft 543 sleeved on the outer periphery of the inner shaft.
  • the distal end of the intermediate shaft 543 can be connected with the proximal end of the balloon body 542, and the two are connected so that the radial gap between the intermediate shaft 543 and the inner shaft 545 is connected with the proximal end of the balloon body 542 for fluid delivery.
  • Both the intermediate shaft 543 and the inner shaft 545 are pipe fittings and can be connected to the control handle and configured with corresponding interfaces.
  • the catheter assembly in the interventional delivery system may also include an outer sheath 544.
  • the distal end of the outer sheath 544 is slidably sleeved on the periphery of the balloon body 542, and the proximal end of the outer sheath 544 is controlled and connected to Control handle.
  • the outer sheath 544 will act on the balloon body 542 to further compress the rod 525 of the limiting mechanism 52, keeping the distal peripheral surface of the delivery system flat, which is beneficial to interventional delivery in the body and avoids damage to surrounding tissues. After the artificial implant is delivered to the preset position, the constraints of the outer sheath 544 can be released.
  • both the distal and proximal limiting mechanisms are exposed outside the outer sheath 544.
  • the rod 525 expands slightly radially based on its own elasticity, and then returns to the expanded state as the balloon body 542 inflates.
  • the rod when the limiting mechanism is wrapped and restrained by the outer sheath 544, the rod is in a compressed state. After the outer sheath is withdrawn to release the restraint on the limiting mechanism, the rod is only restrained by the balloon body 542. , that is, the overall radial binding force is reduced, so that the second end expands radially. However, since the balloon body has not yet been inflated, the rod has not been fully expanded and is also in a compressed state. In order to distinguish it from the aforementioned compressed state, This is called the intermediate state.
  • the number of the limiting mechanism 52 is one and is disposed at the distal end of the inner shaft 545.
  • the artificial implant 55 is located at the proximal end of the limiting mechanism 52, and the rod 525 acts on the balloon.
  • the body 542 makes the outer peripheral surface of the balloon (understood as the part adjacent to the distal side of the artificial implant) not lower than the outer peripheral surface of the distal side of the artificial implant, which is equivalent to compensating for the above step, reducing risks, and is beneficial to Transvalve.
  • this setting method can also be used at the near end as needed.
  • the rods are not strictly limited to a slender structure in this embodiment, since the rods are independent of each other and have a larger deformation span in the radial direction, it is more conducive to the compensation step 551, which is suitable for artificial implants or balloons of different diameters.
  • the body is more versatile, and other structural features of this embodiment can be combined with other embodiments in this article.
  • the inner shaft 545 may have a through guide wire channel, and the balloon body 542 is located at the distal end of the inner shaft 545 and has a relative folded state (Fig. 77b) and an inflation state (Fig. 77c).
  • the balloon body 542 includes a distal section 5423, a middle section 5422 and a proximal section 5421 from the distal end to the proximal end.
  • the periphery of the middle section 5422 is used for placing the artificial implant 55; there are two sets of limiting mechanisms 52, one for each position.
  • two sets of deformation portions 523 of the limiting mechanisms 52 are arranged facing each other to limit the axial position of the artificial implant 55.
  • the length of the middle section 5422 is substantially equal to the axial length of the artificial implant 55 in the compressed state.
  • the balloon body 542 is wrapped around the circumference of the limiting mechanism. When folding the balloon body 542, the rods are gathered together. After the loading is completed, the limiting mechanism 52 enters the compressed state, and the artificial implant is radially deformed after being pressed. Located on the outer periphery of the balloon body 542.
  • Each rod 525 in the limiting mechanism 52 is placed in the corresponding fold 5424.
  • the balloon bodies 542 are stacked in an orderly manner to reduce the number of layers between the artificial implant and the deformation part 523 caused by disordered stacking. For example, in this embodiment, there is only one layer of balloon bodies between the artificial implant and the deformation part.
  • the radial outward convex effect of the rod 525 is more obvious, improving the stop effect.
  • the balloon body 542 is wound in the first direction 546 along the circumferential direction in the folded state, and the spiral direction of each rod member is the same as the first direction 546 .
  • the number of rods 525 is the common divisor of the number of folds 5424 . This is explained in combination with the number, expansion angle and size of the second end of the rods 525:
  • the stop effect is related to the deployment angle.
  • the number of rods 525 is 4 to 10. Specifically, for example, the number of rods 525 in FIG. 79 is 4, or the number of rods 525 in FIG. 80 is 8.
  • the length of the rod 525 is 7 to 17 mm.
  • the wall thickness of the deformation part 523 and the coupling part 521 is 0.3-0.7 mm.
  • the wall thickness of both can be the same or different.
  • the second end 5252 of at least one rod 525 is not lower than the outer circumferential surface of the artificial implant 55 in the radial direction, and the second end 5252 acts on the balloon body 542 to form a limiting artificial implant.
  • the step 5425 moves the object axially. "No less than” situations include:
  • the second end 5252 of the rod 525 can be understood to be equal to the outer diameter of the artificial implant in the radial direction;
  • the rod 525 After releasing the constraints of the outer sheath, the rod 525 is allowed to expand radially outward, and its second end 5252 is slightly larger than the implant 55 in the radial direction.
  • the conveying system further includes an intermediate shaft 543, which is located outside the inner shaft.
  • the first limiting mechanism 5210 is installed at the distal end of the inner shaft 545 and is located between the balloon body 542 (bold lines in the figure).
  • the second limiting mechanism 5220 is installed at the distal end of the intermediate shaft 543 and is outside the balloon body 542, and is located proximal to the first limiting mechanism.
  • the artificial implant 55 is located between the two limiting mechanisms.
  • the first limiting mechanism 5210 can adopt the limiting mechanism of various embodiments of the present application
  • the second limiting mechanism 5220 is used to fill the radial gap between the outer sheath 544 and the intermediate shaft 543 to prevent the artificial implant from moving toward Proximal movement.
  • the second limiting mechanism 5220 may adopt the limiting mechanism of each embodiment of the present application or other existing limiting mechanisms.
  • the outer sheath tube 544 When the outer sheath tube 544 is released from restraint, it has an extreme position on its own sliding path. At this extreme position, the first limiting mechanism 5210 and the artificial implant 55 are exposed outside the outer sheath tube 544, and the second limiting mechanism 5220 is located within the outer sheath tube 544. This embodiment can further improve safety and prevent the second limiting mechanism 5220 from being exposed and scratching the tissue in the body.
  • the preferred way for the second limiting mechanism 5220 to be located within the outer sheath tube 544 is to be completely located within the outer sheath tube 544 .
  • the control handle injects fluid, that is, filling medium (such as physiological saline), into the balloon component 55 through the catheter component, causing the balloon body 542 to expand to drive the artificial implant to expand.
  • fluid that is, filling medium (such as physiological saline)
  • the injected fluid can pass through the intermediate shaft, and the intermediate shaft can also slide relative to the balloon body, that is, the second limiting mechanism 220 is movable, and the axial position with the balloon body can be adjusted according to timing or stroke needs to act as a stop.
  • the proximal end of the balloon can be connected with a catheter body.
  • the catheter body can be placed outside the inner shaft, which facilitates the radial gap with the inner shaft to serve as a fluid channel, or the catheter body Arranged side by side with the inner shaft (with independent pipe fittings or a multi-lumen tube), the proximal end of the catheter body is connected to the control handle and equipped with a corresponding fluid interface.
  • the middle section 5422 can guide the filling medium injected into the balloon body 542 from the proximal section 5421 to the distal section 5423, so that the balloon body 542 is in a position corresponding to the distal section 5423 and the proximal section 5421 respectively.
  • the filling medium is injected to reduce the probability that the artificial implant will be axially displaced relative to the balloon body 542 when the balloon body 542 expands against the artificial implant, and to obtain expected posture changes during the release process.
  • the second end 5252 of the rod has a rounded outer contour
  • the three structures are all used to prevent the inner peripheral surface of the balloon 542 from being scratched by the rods 525 of the deformation part 523 during the folding/inflation process of the balloon 542 .
  • the second end 5252 can be coated with a polymer layer to form a protective layer.
  • a hole 5256 is opened in the part of the rod 525 close to the second end 5252, and the protective layer is partially embedded in the hole 5256 and passes through the point. Fix it with glue.
  • the part of the rod near the second end has a lower radial direction than the rest of the rod. Stiffness.
  • the abutment portion 5254 is grooved to form a wavy structure, which can undergo elastic deformation after being acted upon by the balloon body 542, such as radially inward bending and/or circumferential twisting, etc., after releasing the effect of the balloon body 542.
  • the elastic deformation of the abutment portion 5254 causes the rod to return to its original extension tendency.
  • the width of the slot is 0.02 ⁇ 0.2mm.
  • the abutment portion 5254 when no external force is applied, the abutment portion 5254 is bent radially inward. As shown in FIG. 84 , preferably, when the rod 525 is in the unfolded state, the end 5255 of the abutting portion 5254 close to the first end 5251 is the maximum radial size position of the deformation portion 523 . That is, during the folding and inflation process of the balloon body 542, the smooth part where the end 5255 is located acts on the balloon body 542, thereby avoiding damage to the balloon body 542.
  • an interventional delivery system based on balloon expansion for delivering artificial implants.
  • the interventional delivery system includes a balloon device 54, an adjustment wire 5710 and a locking wire 5720.
  • the balloon device 54 includes an inner shaft and a balloon body 542 located on the outer periphery of the inner shaft 545.
  • the distal end of the inner shaft 545 is equipped with a limiting mechanism located inside the balloon body 542 (the previous embodiments can be used), for example It is a plurality of rods 525 arranged in sequence in the circumferential direction.
  • the specific structure and other parts of the rods 525 can refer to the above embodiment.
  • the adjustment wire 5710 is used to releasably fix the artificial implant 55 to the balloon body 542.
  • One end of the adjustment wire 5710 can remain fixed to the balloon body 542, and the other end can be fixed to the balloon body 542. It can pass through the eyelet 552 on the artificial implant 55, and one end has a keyhole 5711; the locking wire 5720 has a relative locking state and an unlocking state. In the locking state, the locking wire 5720 penetrates into each keyhole 5711 to The artificial implant 55 is restricted. In the unlocked state, the locking wires 5720 are separated from each lock hole 5711 to release the artificial implant 55 .
  • the proximal end of the locking wire 5720 is controlled by the control handle.
  • the distal end of the locking wire 5720 is fixed to the distal end of the inner shaft 545, for example, plugged into the guide head.
  • the locking wire is driven by the control handle. 5720 motion switches to unlocked state.
  • the locking line 5720 Before the locking line 5720 is unlocked, it can provide axial limitation to the artificial implant 55 during the entire process of balloon body expansion, and combine with the rod 525 to compensate for the radial drop between the balloon body and the artificial implant 55 , the application method is wider.
  • Figure 85a shows only one adjustment wire and it is arranged at the far end. As shown in Figure 85b, in other embodiments, there may be two adjustment wires 710, which are respectively arranged at the distal end and the proximal end of the artificial implant 55. As shown in Figure 85c, in another embodiment, it can also be used in conjunction with an outer sheath 544.
  • the artificial implant 55 and the balloon body 542 are wrapped by the outer sheath 544.
  • the outer sheath 544 can be retracted proximally and the artificial implant 55 and the balloon body 542 are exposed, and then inflated.
  • the balloon body 542 expands and releases the artificial implant.
  • the limiting mechanism of this application has the ability to elastically deform by optimizing the structure of the deformation part, thereby extending the stopping time of the artificial implant, and facilitating the assembly of the artificial implant in the compressed state; the deformation of the rod Adapt to changes in the balloon body during the folding and inflation processes to reduce damage to the balloon body. In addition, it can also reduce mutual traction in the radial direction, further ensuring the positioning effect of the artificial implant in the eccentric state.
  • One embodiment of the present application provides a balloon device 641 for delivering an artificial heart valve, which can be used to deliver and expand an artificial implant 65a.
  • the artificial implant can be the artificial heart valve 65 or anchor in other embodiments. Bracket 656.
  • the balloon device 641 includes a catheter body 6411 and a balloon body 642.
  • the extension direction of the catheter body is regarded as the axial direction.
  • the balloon body is connected to the catheter body.
  • the balloon body can receive fluid from the catheter body and has a folded state and an inflation state under the action of fluid.
  • the balloon body is connected to the distal end of the catheter body.
  • the artificial heart valve 65 is pressed and held outside the balloon body; as shown in Figure 128, the proximal end of the catheter body 6411 is provided with a fluid inlet 645.
  • fluid can enter the interior of the balloon body through the fluid inlet 645 and inflate it.
  • the balloon body and the artificial implant correspondingly expand from a radially compressed state to a radially expanded state based on changes in the balloon body, so that the artificial implant 65a can be expanded and released.
  • a fluid inlet may also be provided on the distal end and side wall of the balloon body, which is not shown in the figure.
  • the balloon device also includes a limiting mechanism 62 for limiting the axial movement of the artificial implant 65a.
  • the axial movement of the artificial implant in at least one axial direction can be limited, for example, the axial movement of the proximal and/or distal sides of the artificial implant can be limited.
  • the limiting mechanism can be located inside the balloon or outside the balloon. At least one of the catheter body and the balloon body is directly fixed to the limiting mechanism, or indirectly fixed to the limiting mechanism through an intermediate piece.
  • the limiting mechanism includes a limiting body 622, which includes a plurality of rods (such as rods 221).
  • the plurality of rods as a whole extend from the first end in the axial direction to the second end in the axial direction, and are respectively The first and second ends are gathered together to form a hollow cage structure (having an internal space 62a).
  • One side of the cage structure ie, the side facing the artificial implant in use
  • Multiple rods are constructed to form the side walls of the cage structure, and the gap between the rods forms a hollow area on the side wall.
  • a hollow area is formed between the rods 6221a and 6221b in the figure, so that the internal space 62a of the cage structure It is connected with the external space 62b through the hollow area, that is, the hollow area can be used as a filling and expansion channel for fluid.
  • the outer expansion part is the area with the largest radial size. In the axial direction, the outer expansion part can be a point position or a section of area.
  • main hollow area 6222 is main hollow area 6222.
  • main hollow area 6222 is main hollow area 6222.
  • the difference between the main hollow area 6222 and other hollow areas is that these main hollow areas 6222 can be the expanded portion with the largest outer diameter across the cage structure in the axial direction, such as between the rods 623a and 623b in Figure 86
  • the hollow area is the main hollow area 6222, and the hollow area between the rod 623b and the rod 623e is also the main hollow area 6222.
  • the main hollow area 6222 may be a hollow area with a larger axial span than other hollow areas.
  • some of the other hollow areas may be auxiliary hollow areas 6223, and the main hollow area 6222 may also be a hollow area with an axial span greater than that of the auxiliary hollow areas 6223.
  • the main hollow area may also be a hollow area spanning the first end and the second end of the limiting body.
  • two main hollow areas 6222 are distributed in the outer expansion area at intervals along the circumferential direction.
  • the hollow parts in the same main hollow area extend continuously (that is, the interior is no longer divided into smaller areas by physical components).
  • the balloon body In the state of use, the balloon body is wrapped around the outer periphery of the limiting body, the side of the cage structure facing the artificial implant limits the axial position of the artificial implant 65a, and the side of the cage structure facing away from the artificial implant
  • the side plays the role of providing a guiding angle for the distal end of the balloon body, making the interventional delivery of the artificial implant in the body smoother.
  • the balloon device also includes an inner shaft 643 (which can be used as an intermediate piece).
  • the distal end of the inner shaft is fixed with a guide head 646.
  • the inner shaft passes through the catheter body and the balloon body.
  • the inner shaft can be a guide wire shaft, with To accommodate the guide wire.
  • the limiting mechanism 62 also includes a coupling piece 621.
  • the coupling piece 621 can be fixed on the inner shaft and connected to the limiting body. It can be understood that when the artificial implant is loaded on the balloon device (that is, in the use state), the coupling piece 621 can be fixed on the inner shaft and connected to the limiting body.
  • the connector 621 can be sleeved outside the inner shaft, and the positions of the two are relatively fixed.
  • the coupling piece and the limiting body can be directly or indirectly connected, so that in use, the coupling piece, the conduit body, and the limiting body are all connected. The position is relatively fixed.
  • the limiting mechanism of this embodiment is assembled into the balloon body 642 of the balloon device, and the balloon body 642 has a relative folded state and an inflation state, as shown in Figure 97 in the folded state.
  • the balloon body 642 has a plurality of folding parts 6424, and each folding part 6424 can be placed in the corresponding main hollow area. It can be seen that the balloon body 42 can be folded in an orderly manner through the main hollow area, and the outer periphery of the outer expansion part is only covered with a layer of balls.
  • the capsule avoids an increase in the maximum radial size of the limiting body caused by disordered stacking.
  • a main hollow area is set at the outer expansion part. It is more convenient for the rods on both sides of the main hollow area to be adaptive in the circumferential direction, that is, to adjust the spacing according to the radial binding force in different directions and sizes (that is, the rods adaptively adjust the size of the main hollow area), which facilitates loading.
  • the cage structure 624 has two gathering (gathering) parts (gathering parts 624a, 624b) spaced apart along the axial direction, and the side walls of the cage structure extend between the two gathering parts (i.e. A plurality of rods extend between two gathering parts), and each gathering part is distributed around and adjacent to the inner axis.
  • the gathering parts 624a and 624b are respectively the starting point and the end point on the extension path of the rod, and they surround and are adjacent to the catheter body.
  • Site 624c Since this embodiment does not expect the limiting mechanism to produce radial compression when the artificial implant is limited, introducing multiple gathering parts can enhance the circumferential strength of the cage structure.
  • At least one side of the main hollow area extends adjacent to the coupling member on that side.
  • Proximity can be understood as relative proximity between the two, and the rod that constitutes the main hollow area can be directly or indirectly connected.
  • the coupling member can be arranged inside the cage structure 624, and is indirectly connected to and supports the cage structure through rods; as shown in Figure 88, there is at least one coupling member 621, and it is connected to one of the folded parts. Connection can be understood as at least one end of each rod member being gathered into the coupling member.
  • the main hollow area spans the expanded part of the cage structure along the axial direction and extends close to the first coupling member 6211 and the second coupling member 6212 on both sides respectively.
  • the main hollow area 6222 corresponds to the figure. span range W1.
  • each of the above-mentioned coupling pieces can be connected to the inner shaft through bonding, welding, or snapping.
  • the outer diameter of the outer expansion portion of the limiting body is larger than the outer diameter of the coupling member.
  • the outer diameter ratio of the outer expansion portion and the coupling member is 2 to 4:1, preferably 3:1.
  • the balloon device 641 includes a catheter body 6411, a balloon body 642, and a limiting mechanism 62. This embodiment mentions The catheter body, balloon body and limiting mechanism can be combined with other embodiments.
  • the limiting mechanism is configured to limit the movement of the artificial implant in the axial direction at least when the artificial implant is installed on the balloon body in a radially compressed state.
  • the limiting mechanism specifically includes a limiting body, and the limiting body as a whole
  • the upper part is a cage-shaped structure 624, which can be formed by gathering multiple rods.
  • One part of the cage-shaped structure is an expanded part, and the expanded part has the greatest radial expansion relative to other parts of the cage-shaped structure.
  • the cage-shaped The structure and structure of the outer expansion portion may also be combined with other embodiments.
  • one end of the limiting body is a first end 6224 facing the artificial implant 65a in use, and the other end is an opposite second end 6225.
  • the expanded portion 623 is adjacent to the first end of the limiting body.
  • the first end 6224 faces the artificial implant 65a, and the second end 6225 and the first end 6224 are along the axis.
  • the limiting body has a certain span in the axial direction, that is, the distance between the first end 6224 and the second end 6225. Compared to the second end 6225, the outer expansion part is closer to the first end.
  • the balloon device 641 also includes an inner shaft 643, which passes through the inside of the catheter body 6411 and the balloon body.
  • the limiting mechanism also includes a coupling piece 621, which is fixed to the inner shaft and connected to the limiting body.
  • the outer expansion portion 623 is adjacent to the first end 6224 of the limiting body. It can also be understood that the axial distance H2 between the outer expansion portion and the second end 6225 is greater than the axial distance H1 between the outer expansion portion and the first end 6224. .
  • the extension trend of the rod 623d between the outer expansion part and the second end and the rod 623c between the outer expansion part and the first end is relatively gentle, which is convenient for guiding interventional delivery.
  • the rod 623c has a more obvious vertical steepening tendency, has a better stopping effect, and reduces the axial misalignment between the limiting body and the artificial implant.
  • an artificial implant 65a is formed between the side of the first end 6224 and the coupling member on this side (that is, the first coupling member 6211) in the limiting body.
  • the concave area 62241 at the end is generally pyramid-shaped and converges toward the second end 6225.
  • the cage structure is shown in Figure 96 (the cage structure is longitudinally sectioned using the plane where the axis is located to obtain the longitudinal section of the cage structure). From the extension direction of both ends of the outer expansion part, the cage structure starts from the outer expansion part 623 It is formed by extending radially inward. In the figure, the two ends of the expanded portion 623 extend radially inward to the first end 6224 and the second end 6225, and the position of the expanded portion is offset axially toward the first end 6224 or even The first end can be crossed to form the recessed area 62241 described above.
  • the balloon device 641 includes a catheter body 6411, a balloon body 642, and a limiting mechanism 62.
  • the catheter body mentioned in this embodiment, The balloon body and the limiting mechanism can be combined with other embodiments.
  • the limiting mechanism 62 specifically includes a limiting body.
  • the limiting body includes a plurality of rods 6221 to form a cage structure as a whole.
  • One part of the cage structure is an expanded portion 623.
  • the outer expansion part has the largest degree of radial expansion relative to other parts of the cage structure.
  • each part of the rod 6221a and the rod 6221b has different degrees of expansion, and there is a gap between it and the central axis of the limiting body. At a certain distance, the position on the rod that reaches the maximum distance from the central axis is the expanded part.
  • each rod 6221 is arranged at intervals along the circumference of the limiting mechanism (rods 6221a and 6221b in the figure), and the center point of each rod The enclosed area approaches a polygon.
  • each rod can be adaptive in the circumferential direction, that is, each rod can adapt to loading based on local deformation. It will not cause the overall deformation of the cage structure.
  • the gaps between adjacent vertices of the polygon can accommodate the folding parts of the balloon body, so that the balloon body can be folded in an orderly manner and reduce the radial size after loading.
  • the polygon surrounded by the center point of each rod is a regular polygon, and the number of sides can be 4 to 12 depending on the number of rods at that location.
  • the preferred number of sides is 6 to 8, which ensures circumferential strength while taking into account better deformation adaptability. force.
  • one end of the limiting body is the first end 6224 facing the artificial implant 65a in the use state, and the other end is the opposite second end 6225. Both ends of the limiting body are directed toward the limiting body.
  • the central axis is drawn together. Compared with the limiting body with one end open in the prior art, the cage-shaped structure with both ends drawn together can provide better radial support.
  • the cage structure 624 is surrounded by multiple rods, and each rod 6221 can extend along a spherical or ellipsoidal surface in space, so that the cage structure 624 as a whole roughly forms a sphere or an ellipsoid, where the ellipsoid
  • the cross-section is an ellipsoid, and the long axis of the ellipsoid is consistent with the axial direction.
  • the circumferentially spaced rods extend along the sphere or ellipsoid (each rod rotates around the axis of the limiting body to form a continuous A sphere or ellipsoid, the radial dimensions of the expanded portion mentioned above can also be measured with reference to the rotating body formed in this way), and the line connecting the center points of each rod in the radial cross section is still a polygon.
  • the cage structure is surrounded by multiple rods, and each rod can extend along the cone 6241 in space, which can be understood as the position of each rod around the limiting body.
  • the first cone and the second cone can be on both sides of the expanded part or on the same side (the two cones in Figure 93 (located on both sides of the external expansion part, the two cones are on the same side of the external expansion part in Figure 95), the first cone and the second cone can adopt the same taper, or they can adopt different tapers.
  • first cone and the second cone adopt different tapers
  • shape of the first cone and the second cone gradually shrinks from the outer expansion part, and the shrinking trends are different.
  • the intersection of the cones is the location of the outer expansion (as shown in Figure 93).
  • the limiting body when the artificial implant 65a is loaded on the balloon device, the limiting body is in use. Along the axial direction of the limiting body, one end of the limiting body faces the first end of the artificial implant. 6224, the other end is the opposite second end 6225, and the first cone 62411 is connected to the first end 6224, and the first cone has a faster shrinking tendency.
  • the second cone 62412 deviates axially toward the second end 6225 and converges relatively slowly in the radial direction.
  • the cone 62411 is deflected toward the first end (that is, in the direction away from the first end) and extends and converges relatively quickly in the radial direction; for example, in Figure 96, the second cone 62412 is deflected axially toward the second end 6225 and relatively slowly.
  • the first cone 62411 is also deflected toward the second end and extends and shrinks in the radial direction relatively quickly.
  • the second cone 62412 is axially offset toward the second end 6225 and converges relatively slowly in the radial direction, and the first cone 62411 converges in the radial direction.
  • the angle A of the radial offset of the first cone 62411 relative to the limiting body is less than 45 degrees. Preferably, the angle is less than 30 degrees.
  • the angle B of the radial offset of the second cone 62412 relative to the limiting body is greater than 60 degrees.
  • the first cone and the second cone interact with each other in the expanded part, and the expanded part is the maximum radial size of the two cones, and the angle C between the two cones at the intersection is 20 to 120 Spend.
  • the balloon device 641 of the delivery system includes a catheter body 6411, a balloon body 642, and an inner shaft 643.
  • the inner shaft passes through the catheter body and the ball.
  • the limiting mechanism also includes a coupling connected to the inner shaft.
  • the limiting mechanism 62 is installed inside the balloon body 642 and sleeved outside the inner shaft 643.
  • the coupling member 621 is a radially compressible tubular structure. Compressible can be understood as the coupling member is radially compressible during the assembly process. However, the shape of the coupling remains fixed during use.
  • the inner diameter of the coupling member 621 before assembly may be larger than the outer diameter of the catheter.
  • the coupling member 621 is forced to shrink radially inward and tighten and be fixed to the catheter body.
  • the coupling member 621 can adopt a mesh structure or a corrugated structure. As shown in Figure 101, the coupling member 621 It is an axially undulating wave structure and has opposite wave crests 6213 and wave troughs 6214. The wave troughs are arranged at intervals in the circumferential direction of the coupling, and the side connected to the limiting body is the wave crest. The wave structure is conducive to adapting to the radial deformation during assembly of the coupling, and the spaced wave crests 6213 further reduce the mutual traction of the rods.
  • the cage structure 624 is surrounded by a plurality of rods 6221, and all rods spatially define the side walls of the cage structure. In order to ensure the necessary support strength, it is preferred that no isolated rods extend on both sides.
  • the coupling parts that is, for a single rod, intersect with the adjacent rods at least once during the extension process, and the intersection between the adjacent rods is the intersection point.
  • the two metal wires at the intersections can move relative to each other. In this application, the adjacent metal wires can move relative to each other.
  • the intersection points of the rods are all fixed nodes, which improves the radial support strength.
  • all the rods extend from the first coupling part 6211 to the second coupling part 6212, and have at least one fork 62211 on the extension path, or as shown in Figure 93, the rods are
  • the second coupling member 6212 extends to the first coupling member 6211, and the rod member meets the adjacent rod member in the circumferential direction to form an intersection point 62212.
  • a plurality of intersection points 62212 are spaced on the cage structure 624. Through multiple bifurcations or intersections, the contact area between the outer expansion portion and the balloon body is increased, so that the balloon body is circumferentially surrounded.
  • the expanded shape is more ideal, and the problem of insufficient stiffness of the limiting mechanism caused by too thin rods and easy damage to the balloon is avoided.
  • slits can be made.
  • the slits 6226 in Figure 93 generally do not expand in the cage structure, so they are not understood as hollow areas.
  • the number of main hollow areas is 4 to 12, and the preferred number is 6 to 8.
  • Each main hollow area has the same shape and is evenly arranged along the circumferential direction.
  • the main hollow areas are The hollow area is strip-shaped.
  • the projected length of the main hollow area on the axis is L1
  • the projected length of the limiting body on the axis is L2.
  • L1 accounts for at least 40% of L2, or even at least 60%. above.
  • the projected length L1 of the main hollow area is 75% to 100% of the total projected length of the limiting body.
  • the main hollow area can extend to both sides of the outer expansion part, and the extended length is at least 20% of the total length of the limiting body.
  • the main outer expansion part is the widest part of the projection area.
  • the number of main hollow areas is 6 to 9. .
  • the hollow portion of the cage structure may include a main hollow area 6222 and an opposite auxiliary hollow area 6223, where the auxiliary hollow area avoids the expanded portion 623.
  • the two rods can pass through the bifurcation on the extension path.
  • the auxiliary hollow area 6223 is formed by re-intersection. From the perspective of the circumferential span of the main hollow area and the auxiliary hollow area, the maximum span S1 of the main hollow area along the circumferential direction corresponds to the position of the external expansion, and the maximum span S2 of the auxiliary hollow area 6223 along the circumferential direction avoids the external expansion. part, and is smaller than the span S1 of the main hollow area.
  • the limiting mechanism can be formed by integrally cutting the pipe.
  • the slit corresponding to the auxiliary hollow area 6223 can be extended to the coupling part.
  • the slit extending to the coupling part is not carried out. The expansion ultimately results in the maximum circumferential span of the auxiliary hollow area being smaller than the main hollow area.
  • the pipe When using pipes for integral cutting, for example, as shown in Figure 104, the pipe has an initial outer diameter D1, and the outer diameter D2 after assembly of the coupling is smaller than D1.
  • the pipe with the outer diameter D1 of the cage structure can provide a longer circumferential direction. distance, the number of rods can be configured more flexibly (can be counted in the circumferential direction along a certain part of the limiting body) and greater rod width and strength can be obtained, and the rod width can be prevented from being too thin and easily scratching the balloon.
  • an embodiment of the present application also provides a balloon device for delivering artificial implants, which has opposite distal ends and proximal ends.
  • the balloon device 641 includes an inner shaft 643, a balloon body 642.
  • the catheter body, balloon body, and inner shaft mentioned in this embodiment can be combined with the above embodiments.
  • the limiting mechanism includes a coupling 621, a limiting body 622, and a guide tube 625.
  • the coupling is connected to the inner shaft.
  • the coupling is also connected to at least one of the limiting body and the guide tube.
  • the limiting body is a cage structure as a whole.
  • the cage structure can be formed by using multiple rods extending along a sphere or cone in space. Rods are arranged at circumferential intervals on the limiting body, and a main hollow area is formed between adjacent rods. , the structures of the cage structure, rods and hollow areas can also be combined with the above embodiments.
  • the guide tube 625 is connected to the proximal side of the limiting body.
  • the guide tube 625 and the limiting body are integrally cut and formed from a pipe made of a shape memory alloy (such as nickel-titanium alloy).
  • the pipe has an initial outer diameter D1 and is cut to form a guide. tube and a limiting body with multiple rods.
  • the outer diameter of the guide tube is the outer diameter D1 of the pipe.
  • the multiple rods can be made into a cage structure through preforming processes such as molds. Based on the characteristics of shape memory alloys, in During the assembly process of the limiting mechanism, the limiting body can be restored to its tubular shape.
  • the coupling members have various distribution methods. As shown in Figure 105, the coupling member 621a can be provided inside the guide tube and connected to the inner wall of the guide tube; or the coupling member 621b can be provided at the proximal end of the guide tube; or as The coupling member 621d is provided at the distal end of the limiting body; and the coupling member 621c is provided inside the limiting body.
  • Several coupling members may be used individually or in combination.
  • the coupling members may include first coupling members 6211 and second coupling members 6212 arranged at intervals along the axial direction, respectively used to connect to the limiting body and the guide tube, and both coupling members are in The outer periphery of the inner shaft, and at least one coupling member is fixed to the inner shaft, and the distal part of the balloon body also wraps the second coupling member.
  • the radial gap between the inner shaft 643 and the catheter body 6411 is a fluid channel communicating with the interior of the balloon body.
  • the fluid in the fluid channel enters the balloon body and combines with the above-mentioned guide channel to inflate the balloon body.
  • the second coupling member 6212 is located at the proximal end of the guide tube 625 and is adjacent to the connection between the balloon body 642 and the catheter body 6411.
  • the second coupling member 6212 can divert the fluid in the fluid channel.
  • the proximal end of the guide tube 625 has a reduced diameter section 6252 and is connected to the coupling member on the corresponding side through the reduced diameter section, so as to be suitable for connection between coupling members of different diameters and the guide tube.
  • the guide tube has a fluid inlet 6251, which is distributed in the reduced diameter section and/or the peripheral wall of the drainage tube.
  • the peripheral wall of the guide tube has a hollow gap as a whole, and the gap can be a long strip as shown in Figure 105 It can also be a circular hollow as shown in Figure 110.
  • the gap between the middle part of the balloon body and the catheter body is fully utilized to allow the fluid to pass through the gap faster, achieving The fluid inflates the first and second parts of the balloon body at the same time.
  • the guide tube is connected to the proximal side of the limiting body. During use, the limiting body limits the distal end of the artificial implant, and the inside of the guide tube serves as a flow channel for inflation fluid in the delivery system. Play the role of drainage.
  • the number of limiting bodies is two, namely a limiting body 622a located at the proximal end of the guide tube and a limiting body 622b located at the distal end of the guiding tube. .
  • Both the limiting body 22a and the limiting body 22b are cage structures, and the two cage structures are independent of each other.
  • the two cage structures are formed by multiple rods extending along a spherical surface in space.
  • the two cage structures are formed by multiple rods extending along the cone in space; in Figure 113, the limiting body 622a is formed by multiple rods extending along the spherical surface in space, and the limiting body 22b is formed by multiple rods extending in space.
  • the upper edge of the cone is formed by extending; in Figure 114, the first cone 62411 of the two cage structures has different radial offset trends (ie, offset angle) relative to the limiting body.
  • the interventional delivery system includes a control handle 63 and a catheter assembly 64 controlled connected to the control handle 63.
  • the artificial implant 65a is loaded on the catheter assembly 64.
  • the catheter assembly 64 may include a balloon device 641 and may further include an outer sheath 644 slidably fitted outside the balloon device.
  • the balloon device 641 includes a balloon body 642, and sequentially includes a first part 6421, a middle part 6422 and a second part 6423 from the distal end to the proximal end.
  • the middle part 6422 is used for loading and fixing the artificial implant 65a.
  • the limiting mechanism is entirely arranged in the balloon body 642.
  • the limiting body is located at the first part 6421, and the guide tube 625 is sleeved outside the inner shaft, and extends from the proximal end of the limiting body to the side of the balloon body.
  • the middle part and the second extension part leave a guide channel for fluid to pass between the guide tube 625 and the inner shaft 643.
  • the length of the guide tube ranges from 36 mm to 50 mm
  • the inner diameter ranges from 1.6 mm to 2.3 mm.
  • the proximal end of the guide tube and the inner shaft are relatively fixed. The following provides an improved method of fixing the two.
  • the limiting mechanism of this application has a simple structure and can be cut and formed from a single piece of pipe.
  • the specific structures of the coupling and the limiting body can be combined with the above embodiments.
  • the pipe has an initial outer diameter D1, and is cut to form a corresponding
  • the two corrugated structures, multiple rods, and guide tubes with hollow gaps correspond to the three-part structure of the two couplings, the limiting body, and the guide tube.
  • the outer diameter of the guide tube is the outer diameter D1 of the pipe.
  • the plurality of rods can be formed into a cage structure through molding processes such as molds, and at least one coupling member can be used after radial compression molding.
  • the outer diameter D2 of at least one coupling member is smaller than D1.
  • the outer diameter of the artificial implant in the pressed state is larger than the catheter.
  • the outer diameter of the artificial implant will form a step between the proximal and distal ends of the artificial implant, which will lead to certain risks.
  • the limiting body of the limiting mechanism can fill the step, especially the distal step, which is beneficial to implantation.
  • the artificial implant is an artificial heart valve, it is beneficial to cross the valve.
  • the circumferential strength and step effect of the limiting body are related to the wall thickness of the pipe.
  • the wall thickness of the pipe is selected from 0.1mm to 0.25mm.
  • an embodiment of the present application also provides a balloon device 641 for delivering artificial implants, including an inner shaft 643, a catheter body 6411 and a balloon body 642.
  • the balloon body 642 is distal to It includes a first part 6421, a middle part 6422 and a second part 6423 in sequence from end to proximal end.
  • the middle part 6422 is used for loading and fixing the artificial implant 65a.
  • the inner shaft 643 is installed with the limiting mechanism 62 as described in the above embodiments inside the balloon body.
  • the limiting mechanism includes a coupling 621, a limiting body 622, and a guide tube 625. The couplings mentioned below, The limiting body and guide tube structure can be combined with other embodiments.
  • the coupling includes a first coupling 6211 (located at the proximal end) and a second coupling 6212 (located at the distal end) spaced apart along the axial direction.
  • the two couplings are sleeved on the inner shaft 643, and the couplings and The inner shaft 643 can be bonded, or a sleeve 62121 can be placed outside the coupling as shown in Figure 116, so that the tool 66 can be used to push the stopper into the balloon body.
  • the limiting body is used to fill the first part 6421 of the balloon body 642 without interfering with the loading area in the middle of the balloon body, and serves to provide a guiding angle for the distal end of the balloon body.
  • Rods are arranged at circumferential intervals on the limiting body, and main hollow areas are formed between adjacent outer expansion parts. The structures of the rods and the hollow areas can be combined with the above embodiments.
  • the balloon body 642 has a relative folded state and an inflation state. As shown in Figure 97, in the folded state, the balloon body 642 has a plurality of folding parts 6424, and each folding part 6424 is embedded inside the cage structure, that is, in the corresponding main hollow area. , and the outer periphery of the expanded part is only covered with a layer of balloon body. If there is no The avoidance of the main hollow area may cause the folding part 6424 to form a three-layer outer packaging structure, resulting in an increase in the size of the outer expansion part of the limiting body, which is not conducive to loading.
  • the guide tube 625 runs through the loading area in the middle of the balloon body, and the guide tube 625 can be provided with a fluid inlet 6251 on the peripheral wall, so that when the balloon body is inflated, the first part 6421 and the second part 6423 can be inflated at the same time.
  • the limiting mechanism of this embodiment is cut and formed by one-piece pipe.
  • the pipe can be made of memory alloy or other materials. It is pre-shaped to form a cage structure before being assembled into the balloon body. During assembly, the stopper can be straightened to facilitate the installation. assembly.
  • the assembly process of the integral balloon device is as follows:
  • the limiting body returns to the predetermined cage structure. It can also be used to apply axial push to limit the position.
  • the main body is shaped. As shown in Figure 116, the tooling 66 can be used to apply force to the limiting mechanism to push or squeeze;
  • the present application also provides a transcatheter implant system, including a balloon device 641 and an artificial implant 65a.
  • the balloon device 641 includes a limiting mechanism 62, a catheter body 6411 for transporting fluid, and an artificial implant 65a.
  • the catheter body is connected to the balloon body 642, and the artificial implant 65a is installed on the balloon body in a radially compressed loading state, and is blocked by the positioning mechanism in the axial direction, and at least the distal end of the artificial implant 65a Blocked by the limiting mechanism, the catheter body, balloon body, and limiting mechanism can be combined with the limiting mechanisms of the above embodiments.
  • the balloon body 642 has a relative folded state and an inflation state.
  • the balloon body When the artificial implant is being delivered during interventional delivery, the balloon body is in a folded state, and the operator injects fluid, that is, an inflation medium (such as physiological saline), into the balloon body 642, so that The balloon body 642 is inflated to drive the artificial implant 65a to expand and release.
  • an inflation medium such as physiological saline
  • the radial gap between the catheter body 6411 and the inner shaft 643 is equal to There is a fluid channel connected inside the balloon body.
  • the guide tube 625 can shunt the fluid in the fluid channel, and realize the simultaneous flow of fluid to the balloon body through the guide channel.
  • the first and second parts are inflated.
  • the balloon body is in an inflated state.
  • the limiting body is used to fill the first part of the balloon body 642, and the side of the limiting body facing the first end blocks the distal end of the artificial implant 5a, so that the artificial implant can be filled during the inflation process.
  • the positioning effect of incoming objects The side of the limiting body facing the second end serves to provide a guiding angle for the distal end of the balloon body, making the interventional delivery of the artificial implant in the body smoother.
  • the radial size of the limiting body should be larger than the radial size of the artificial implant pressed on the balloon body, but at the same time it should not be too large to avoid affecting the assembly.
  • the limiting body The radial size is 7.5mm-9.5mm.
  • the stopper 67 can be provided outside the proximal end of the balloon body to further limit the proximal end of the artificial implant, or the proximal end of the artificial implant can be further limited through a conventional locking wire structure in the art. Limit.
  • the transcatheter implant system in the above embodiments also includes a control handle 63 and an outer sheath 644, where the proximal end of the control handle has an interface 631 (as shown in Figure 127) that communicates with the catheter body for injecting fluid.
  • the outer sheath 644 is slidably fitted on the periphery of the balloon device.
  • the proximal end of the outer sheath is connected to the control handle.
  • the outer sheath and the balloon body are configured to move relative to each other so that the outer sheath wraps or exposes the artificial implant.
  • the outer sheath tube 644 is set on the outer layer of the balloon device and the artificial implant to play a protective role. After the artificial implant is delivered to the preset position, the outer sheath 644 can be released from the restraints by operating the control handle.
  • the limiting body includes a loading state, an intermediate state and an expansion state.
  • the limiting body in the loading state, is located inside the balloon body and the outer sheath tube, and is subject to the radial force of both the balloon body and the outer sheath tube.
  • the outer sheath here may be the outer sheath 644 (i.e., the introducer sheath), or may be distinguished from other devices of the delivery system, such as the outer sheath of an introducer sheath or a sheath protector.
  • the limiting body In the intermediate state, the limiting body is separated from the radial restraint of the outer sheath and is only subject to the radial force of the balloon body. At this time, the limiting body is appropriately expanded, which is equivalent to the loading state, but it is not fully expanded because it is also subject to the radial force of the balloon body, so it is called an intermediate state.
  • the balloon body When the delivery system and artificial implant reach the appropriate part of the body, the balloon body can be filled with fluid. When the balloon body is inflated to the point where it no longer exerts radial force on the limiting body, the limiting body enters the expanded state. , the limiting body in the expanded state is fully expanded.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biophysics (AREA)
  • Pulmonology (AREA)
  • Engineering & Computer Science (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Media Introduction/Drainage Providing Device (AREA)

Abstract

一种导管植入物系统(61)以及所包含的相关的装置、人工心脏瓣膜(65、7200)和方法,涉及医疗器械的技术领域,其中包含的介入输送系统(1、51)包括导管组件(30、54、64)以及与导管组件(30、54、64)相连的控制手柄(9、20、53、63、63a、63b),导管组件(30、54、64)具有相对的远端和近端且包括彼此滑动套设的内鞘管(320)和外鞘管(310、544、644),外鞘管(310、544、644)由远端至近端依次包括装载段(3102)和鞘管段(3103),装载段(3102)用于包裹介入器械并将介入器械保持在压缩状态;控制手柄(9、20、53、63、63a、63b)包括:主手柄(10),内鞘管(320)的近端连接于主手柄(10);副手柄(20),滑动套设在内鞘管(320)的外周,外鞘管(310、544、644)的近端连接于副手柄(20)。

Description

导管植入物系统以及所包含的相关的装置、人工心脏瓣膜和方法 技术领域
本申请涉及医疗器械的技术领域,具体涉及一种导管植入物系统以及所包含的相关的装置、人工心脏瓣膜和方法。
背景技术
现有技术中,经导管植入物系统主要包括人工植入物以及用于将人工植入物输送至对象体内的介入输送系统,常见的人工植入物例如人工心脏瓣膜等,根据其具体应用部位可以是人工主动脉瓣瓣膜、人工肺动脉瓣瓣膜、人工二尖瓣瓣膜、人工三尖瓣瓣膜等,通常在体外压缩到较小直径,利用介入输送系统将人工心脏瓣膜送入至预定位置。
现有的介入输入系统主要包括控制手柄以及导管组件、锁线结构、调弯组件等功能组件,控制手柄操作导管组件,将装载于导管组件的人工植入物输送至病灶部位,人工植入物的释放可以是利用自膨方式,也可以是利用球囊导管由内而外的将人工植入物扩张。介入输入系统中包括多个受控件,各受控件的远端相互配合操作人工植入物,例如释放,回收,锁定位置,调整空间姿态等等。
在球扩方式中,并不严格要求精细调节外鞘管的运动,因此关于控制手柄有待于进一步改进,提高外鞘管操作的灵活性。在一些球扩操作过程中,人工植入物在释放初期有位移偏移等安全风险,且现有技术的部分解决方案效果并不理想。
发明内容
本申请提供了一种介入输送系统,对外鞘管的操作更加灵活。
本申请提供了一种介入输送系统,包括导管组件以及与所述导管组件相连的控制手柄,所述导管组件具有相对的远端和近端且包括彼此滑动套设的内鞘管和外鞘管,所述外鞘管由远端至近端依次包括装载段和鞘管段,所述装载段用于包裹人工植入物并将人工植入物保持在压缩状态;
所述控制手柄包括:
主手柄,所述内鞘管的近端连接于所述主手柄;
副手柄,滑动套设在所述内鞘管的外周,所述外鞘管的近端连接于所述副手柄。
以下还提供了若干可选方式,但并不作为对上述总体方案的额外限定,仅仅是进一步的增补或优选,在没有技术或逻辑矛盾的前提下,各可选方式可单独针对上述总体方案进行组合,还可以在多个可选方式之间进行组合。
可选的,所述副手柄包括:
外壳,具有空间上的轴向,以及在所述轴向上相对的远端和近端,所述外壳具有轴向贯通的穿引通道;
连接套,固定在所述外壳内且绕所述穿引通道布置,所述连接套的远端侧供外鞘管插接配合;
定位件,活动安装在所述外壳内,所述定位件具有干涉所述穿引通道的锁定位以及释放所述穿引通道的解锁位;
驱动件,与所述定位件传动配合带动所述定位件切换位置。
可选的,所述外壳为分体扣合结构,且所述外壳的内壁与所述连接套的外周之间设有相互配合的卡合定位结构。
可选的,所述外壳包括沿连接套径向扣合的两个半壳,以及分别位于两个半壳轴向两端的封头;各封头与所述两个半壳之间各自采用卡扣或旋合方式固定。
可选的,所述副手柄的相对于所述主手柄的滑动行程为10~40cm。
可选的,所述连接套的侧壁设有与所述穿引通道连通的第一排气孔,在所述第一排气孔处固定连接有第一管接头,所述第一排气孔与所述第一管接头限定形成第一排气通道,在所述第一排气通道内设有单向阀芯。
可选的,所述第一排气孔的边缘设有第一环形座,所述第一管接头与所述第一环形座插接配合,且彼此之间设有相互配合的止转结构。
可选的,所述外壳上嵌装有位于所述第一管接头外周的第一防护套,所述第一管接头的外壁与所述第一防护套的内壁之间构成管路插接间隙。
可选的,所述止转结构包括:
插槽,沿所述第一管接头的插入方向延伸,所述插槽设置在所述第一管接头与所述第一环形座两者 中其中一者的侧壁;
定位筋,与所述插槽配合,所述定位筋设置在所述第一管接头与所述第一环形座两者中另一者的侧壁。
本申请也提供一种控制手柄上的排气结构,所述控制手柄设有第一排气孔,在所述第一排气孔处固定连接有第一管接头,所述第一排气孔与所述第一管接头限定形成第一排气通道,在所述第一排气通道内设有单向阀芯。
单向阀芯可应用至副手柄,例如,可选的,所述单向阀芯具有相对的密封状态和开放状态,且单向阀芯具体包括:
限位杆,滑动安装于所述第一管接头的内腔中,在所述限位杆的外周与所述第一管接头的内壁之间带有流体间隙;
密封片,连接于所述限位杆,密封状态下所述密封片封闭所述流体间隙,开放状态下所述密封片开启所述流体间隙。
可选的,所述第一管接头的内壁设有环绕在所述限位杆外周的卡环,所述流体间隙位于卡环的外周与所述第一管接头的内壁之间;
所述限位杆远离所述密封片的一端穿过所述卡环且带有头部,开放状态下所述头部与所述卡环相抵,所述密封片远离所述卡环并开放所述流体间隙;密封状态下所述头部远离所述卡环,所述密封片远离与所述卡环相抵并封闭所述流体间隙。
可选的,所述第一管接头的内壁设有环绕在所述限位杆外周的卡环,所述流体间隙位于卡环的外周与所述第一管接头的内壁之间;
所述限位杆远离所述密封片的一端穿过所述卡环且带有受限于所述卡环的头部,该头部与所述密封片夹持部固定于所述卡环的两相对侧,所述密封片的边缘可弹性形变,相应的开放或封闭流体间隙。
可选的,所述定位件为弹性爪,所述弹性爪的一端固定于所述连接套,另一端为沿连接套径向摆动的自由端。
可选的,所述弹性爪与所述连接套为一体结构。
可选的,所述弹性爪为二~六个(例如四个),沿所述连接套周向分布。
可选的,所述驱动件为筒状且滑动套设在所述连接套的外周,所述驱动件的内壁作用于所述弹性爪。
可选的,沿所述连接套的径向,所述弹性爪的外侧设有导向斜台,所述驱动件的内壁作用于所述导向斜台。
可选的,所述连接套的内部设有弹性衬管,所述弹性爪作用在所述弹性衬管的外壁、通过挤压所述弹性衬管干涉所述穿引通道。
可选的,所述弹性衬管的远端延伸出所述连接套,在延伸出的部位上设有径向外凸的定位台阶,沿所述轴向,所述定位台阶与所述连接套的端面和/或所述外壳的内壁轴向定位配合。
可选的,所述驱动件的内壁与所述连接套的外壁之间设有相互配合的导向结构。
所述导向结构包括:
滑槽,设置于所述驱动件的内壁和所述连接套的外壁这两者中的其中一者;
导向筋,与所述滑槽配合,设置于所述驱动件的内壁和所述连接套的外壁这两者中的另一者。
可选的,所述驱动件的外壁设有操作钮,所述外壳上开设有与所述操作钮位置相应的第一避让口。
可选的,所述驱动件的侧壁设有第二避让口,所述连接套的侧壁设有与所述穿引通道相配合的排气孔;沿所述连接套的轴向、所述第二避让口的位置与所述排气孔的位置对应。
可选的,所述导管组件还包括球囊导管,所述球囊导管包括:
球囊体,设置在所述内鞘管的远端部位,且在流体作用下切换于膨胀状态和折叠状态之间,装载状态下的人工植入物处在所述球囊体的外周;
导管体,套设在所述内鞘管的外周或与所述内鞘管并行布置,所述导管体的远端与所述球囊体连通,所述导管体的近端连接于所述主手柄,所述导管体内为流体通道。
可选的,在所述球囊体内,设有处在所述内鞘管外周的流体引导件,所述流体引导件限定构成导流通道,该导流通道连通球囊体内的远端部位和近端部位。
可选的,所述流体引导件为管状,相对于所述流体引导件、所述导流通道的位置为以下方式的至少一种:
处在所述流体引导件的外壁;
处在所述流体引导件的内部;
处在所述流体引导件的侧壁夹层或镂空区。
可选的,所述导流通道为开设在所述流体引导件外周壁的导流槽。
可选的,所述流体引导件的远端侧和近端侧分别邻近所述球囊体的远端侧和近端侧。
可选的,所述导流槽为多条,各条之间沿所述流体引导件的周向排布,同一条所述导流槽沿所述流体引导件的轴向延伸或采用螺旋绕置的方式。
可选的,沿所述流体引导件的周向,同一条所述导流槽的包角为0~180度。
可选的,相邻两导流槽之间设有连通槽。
可选的,连通槽为间隔布置的多个,轴向位置对应的连通槽构成环形槽。
可选的,所述内鞘管的外周设有流体引导件,所述流体引导件呈管状且处在所述球囊体内,所述流体引导件的管壁带有镂空区,所述镂空区连续或间隔的由所述流体引导件的远端延伸至所述流体引导件的近端侧。
可选的,所述流体引导件与所述内鞘管之间存在经向间隙,该径向间隙作为所述导流通道。
流体引导件为管状时,即处在内鞘管外周的引流管,引流管与内鞘管的经向间隙作为流体通道用以输送流体充涨球囊体。
针对引流管的相关改进,本申请还提供了一种基于球扩释放的介入输送装置,具有相对的远端和近端且包括内轴以及处在内轴外周的球囊导管,所述球囊导管包括球囊体以连通于球囊体近端的导管体,所述球囊体由远端至近端依次包括第一部、中部和第二部,所述中部供人工植入物装载固定,所述导管体内具有主流道;
所述内轴与所述球囊体的径向间隙中设置有引流管,由所述主流道向所述球囊体输出的流体中,至少有一部分流体经由所述引流管越过所述第二部以及所述中部后进入并充涨所述第一部。
内轴一般可以采用管件,管件内部可供介入时穿引导丝,该管件也可以称为芯管或内鞘管。介入输送装置适用至球扩方式,即相当于球囊装置。
本申请还提供了一种基于球扩释放的介入输送装置,具有相对的远端和近端且包括内轴以及处在内轴外周的球囊导管,所述球囊导管包括球囊体以连通于球囊体近端的导管体,所述球囊体由远端至近端依次包括第一部、中部和第二部,所述中部供人工植入物装载固定;
所述内轴与所述球囊体的径向间隙中设置有引流管,所述引流管的远端与所述内轴的远端固定,所述引流管的其余部分悬浮在所述内轴以及所述球囊导管之间;
由所述导管体向所述球囊体输出的流体中,至少有一部分流体经由所述引流管越过所述第二部以及所述中部后进入并充涨所述第一部。
可选的,所述内轴与所述导管体的径向间隙作为主流道,且所述主流道为一体式流道。
可选的,所述主流道向所述球囊体输出的流体中,一部分进入并充涨所述第二部,另一部分进入所述引流管、越过所述第二部以及所述中部后进入并充涨所述第一部。
可选的,所述引流管的近端具有开放的端口且作为流体入口。
可选的,所述流体入口的轴向位置邻近所述球囊体与所述导管体的结合部位。
可选的,装载状态下,人工植入物径向压缩且包裹于所述中部的外周,所述第一部和第二部暴露于人工植入物的两端;所述引流管的近端具有流体入口,所述流体入口处在所述第二部内。
可选的,在所述引流管的近端端口处,所述内轴与所述引流管的之间具有径向跨度为L1的第一间隙,所述内轴与所述导管体之间具有径向跨度为L2的第二间隙;且满足L1:L2=1:1.25~1.6。
可选的,所述球囊体受流体灌注后呈充涨状态,充涨状态下所述流体入口位于所述第二部相对于所述导管体的流道截面积突变部位。
可选的,所述引流管由远端至近端依次包括远端段、中间段和近端段,且分别与所述球囊体的各个部分对应,所述引流管的远端段带有与所述第一部连通的第一流体出口,所述第一流体出口位于所述远端段的管壁,和/或所述远端段的端面。
可选的,所述远端段的管壁开设有多个第一流体出口。
可选的,所述多个第一流体出口沿所述引流管的周向分布。
可选的,沿所述引流管的长度方向,所述多个第一流体输出口处在所述远端段的中间部位。
可选的,所述引流管的近端与所述导管体的远端相互连通为一体,所述近端段的管壁开设有与所述第二部连通的第二流体出口。
可选的,所述引流管的近端带有形状逐渐收敛的斜切段,所述斜切段的至少一部分伸入所述导管体的远端内。
可选的,所述斜切段具有一个或两个斜切面。
可选的,所述引流管的内腔开放于所述斜切面,且同时与所述导管体的内腔以及所述第二部的内腔连通。
可选的,所述内轴与所述引流管径向之间设有保持彼此之间径向间隙的隔离件。
可选的,所述隔离件为处于所述引流管内壁的筋条。
可选的,所述隔离件固定在所述内轴与所述引流管径向之间的镂空结构件。
可选的,所述内轴的远端固定有引导头,所述引流管的远端与所述引导头的近端侧固定。
可选的,所述引流管的远端被所述引导头封闭。
可选的,所述引导头的近端侧带有与引流管的远端相适配的定位结构,所述定位结构为供所述引流管插入的结合槽,或插入所述引流管的结合柱。
本申请介入输送装置主要针对球扩方式,改进了流体的输送分流方式,在人工植入物的释放过程中,可避免轴向滑移,保证定位效果。
本申请提供一种利用流体驱动球囊导管的方法,所述球囊导管具有相对的远端和近端且包括球囊体以及导管体,所述导管体的远端连通于所述球囊体的近端,所述球囊体由远端至近端依次包括第一部、中部以及第二部,所述中部供人工植入物装载固定,所述导管体内具有主流道,所述方法包括:
由所述导管体的近端向所述主流道内注入流体;
将所述主流道向所述球囊体输出的流体进行分流,仅允许部分流体进入并充涨所述第二部;
针对另一部分流体进行引流,越过所述第二部以及所述中部后进入并充涨所述第一部。
可选的,所有用于充涨所述球囊体的流体在分流之前均来自所述主流道。
可选的,所述分流的方式为:
所述流体在所述导管体与所述第二部的结合部位分为两路,其中一路进入并充涨所述第二部,另一路经由独立流道越过所述第二部以及所述中部后进入并充涨所述第一部。
可选的,所述流体由所述主流道均进入所述独立流道,所述独立流道连通有分支流道,其中一部分流体在流经所述第二部时,经由所述分支流道进入并充涨所述第二部,另一路经由独立流道越过所述第二部以及所述中部后进入并充涨所述第一部。
可选的,所述方法还包括:
控制所述流体,使所述第一部和所述第二部先于所述中部充涨,所述球囊体进入两端充涨、中部相对收拢的过渡状态;向所述导管体持续注入流体,直至所述球囊体完全充涨、且所述人工植入物径向扩张。
可选的,所述流体被分流为两路,每路包括一股或多股。
可选的,同一路的各股之间辐射分布。
可选的,所述人工植入物为筒状结构,进入所述独立流道的流体经由所述筒状结构的内部越过所述中部。
可选的,所述球囊体具有延伸于远端和近端之间的轴向以及相应的径向和周向,充涨所述第一部的方式包括:
经由所述独立流道沿所述球囊体的径向输出、并充涨所述第一部;
和/或经由所述独立流道沿所述球囊体的轴向输出、并充涨所述第一部。
可选的,所述导管组件还包括调弯管以及驱动所述调弯管的牵引件,所述调弯管套设在所述内鞘管的外周,所述调弯管与所述牵引件两者的远端固定连接,两者的近端均连接至所述主手柄且相对滑动配合。
可选的,所述调弯管以及所述牵引件均处在所述导管体的外周。
可选的,所述导管组件还包括调弯管以及驱动所述调弯管的牵引件,所述调弯管套设在所述内鞘管的外周,所述调弯管与所述牵引件两者的远端固定连接,两者的近端均连接至所述主手柄且相对滑动配合。
可选的,所述牵引件的设置方式为:
所述牵引件为牵引管,且处在所述调弯管的内侧或外侧;或者
所述牵引件为牵引线,且处在所述调弯管的内侧、外侧或管壁内。
可选的,调弯管的管壁带有夹层结构,夹层内固定有衬管,所述牵引件活动穿设在衬管内。
可选的,所述主手柄包括:
支撑体,具有空间上的轴向,所述调弯管的近端相对于所述支撑体固定连接,所述内鞘管以及所述球囊导管的导管体均延伸连接至所述支撑体的近端侧;
第一滑座,相对于所述支撑体沿轴向滑动配合,所述牵引件的近端固定至所述第一滑座;
第一驱动套,转动套设于所述支撑体且处在所述第一滑座的外周,所述第一驱动套与所述第一滑座之间采用螺纹传动配合;
外壳,固定套设于所述支撑体,且至少一部分为处在所述调弯驱动套外侧的指示段;
标识件,沿轴向滑动安装于所述指示段且处在所述第一驱动套的外周,所述第一驱动套与所述标识 件之间采用螺纹传动配合。
可选的,所述第一驱动套带有内螺纹以及外螺纹,所述第一滑座带有与所述内螺纹配合的外齿,所述标识件带有与所述外螺纹配合的内齿。
可选的,所述标识件和所述第一滑座在所述第一驱动套的作用下同步运动。
可选的,所述指示段的侧壁上设有与所述标识件位置相应的视窗。
可选的,所述支撑体内设有沿轴向延伸的安装槽,在所述安装槽内固定有导向筒,所述第一滑座滑动套设于所述导向筒,所述第一滑座与所述导向筒的外壁之间设有相互配合引导轴向运动的导向结构。
可选的,所述调弯管的近端插入并固定于所述导向筒。
可选的,所述副手柄向近端滑动至极限位置时,所述调弯管的远端暴露于所述外鞘管,且暴露长度为0~20cm。
本申请也提供一种控制手柄上的排气结构,所述控制手柄设有第二排气孔,在所述第二排气孔处固定连接有第二管接头,所述第二排气孔与所述第二管接头限定形成第二排气通道,在所述第二排气通道内设有单向阀芯。
单向阀芯可应用至主手柄,例如,可选的,所述导向筒的侧壁设有第二排气孔,所述调弯管与所述导管体之间的径向间隙连通于所述第二排气孔,所述导管体的近端穿出所述调弯管的近端后进一步延伸贯穿所述导向筒;
在所述第二排气孔处固定连接有第二管接头,所述第二排气孔与所述第二管接头限定形成第二排气通道,在所述第二排气通道内设有单向阀芯。
可选的,所述单向阀芯具有相对的密封状态和开放状态,且单向阀芯具体包括:
限位杆,滑动安装于所述第二管接头的内腔中,在所述限位杆的外周与所述第二管接头的内壁之间带有流体间隙;
密封片,连接于所述限位杆,密封状态下所述密封片封闭所述流体间隙,开放状态下所述密封片开启所述流体间隙。
可选的,所述第二排气孔的边缘设有第二环形座,所述第二管接头与所述第二环形座插接配合,且彼此之间设有相互配合的止转结构。
可选的,所述第二管接头外周设有第二防护套,所述第二管接头的外壁与所述第二防护套的内壁之间构成管路插接间隙。
可选的,所述止转结构包括:
插槽,沿所述第二管接头的插入方向延伸,所述插槽设置在所述第二管接头与所述第二环形座两者中其中一者的侧壁;
定位筋,与所述插槽配合,所述定位筋设置在所述第二管接头与所述第二环形座两者中另一者的侧壁。
可选的,所述第二管接头的内壁设有环绕在所述限位杆外周的卡环,所述流体间隙位于卡环的外周与所述第二管接头的内壁之间;
所述限位杆远离所述密封片的一端穿过所述卡环且带有受限于所述卡环的头部,该头部与所述密封片夹持部固定于所述卡环的两相对侧,所述密封片的边缘可弹性形变,相应的开放或封闭流体间隙。
可选的,所述主手柄包括:
支撑体,具有空间上的轴向,所述内鞘管以及所述球囊导管的导管体均延伸连接至所述支撑体的近端侧;
第二滑座,相对于所述支撑体沿轴向滑动配合;
第二驱动套,转动套设于所述支撑体且处在所述第二滑座的外周,所述第二驱动套与所述第二滑座之间采用螺纹传动配合;
多通接头,与所述第二滑座的近端侧连接,所述球囊导管以及所述内鞘管两者的近端均连接至所述多通接头,所述内鞘管的内部为贯通的导丝通道,所述多通接头至少具有与所述导丝通道和所述流体通道分别连通的接口。
可选的,所述多通接头与所述第二滑座的近端侧转动配合且轴向限位。
可选的,所述第二滑座整体上为筒状结构,且至少一部分处在所述第二驱动套内,所述第二滑座的外壁与所述第二驱动套的内壁之间螺纹配合,所述支撑体上带有引导所述第二滑座沿轴向运动的导槽。
可选的,所述多通接头的远端与所述第二滑座的近端两者转动插接配合,且两者之间带有相互配和的轴向限位结构,所述轴向限位结构包括:
卡齿,固定于两者中的其中一者且沿径向向另一者凸出;
卡槽,设置于两者中的另一者,接纳所述卡齿。
可选的,所述介入输送系统还可以配合人工植入物构成经导管植入物系统,人工植入物径向压缩后被外鞘管包裹。
本申请也提供一种改进的人工植入物,所述人工植入物包括支架和瓣叶,所述支架带有单元格结构,所述支架的两端分别为流入侧和流出侧,支架内部为血流通道;
所述瓣叶为多片、各瓣叶处在血流通道内相互配合以相对的开放或封闭血流通道;所述瓣叶的边缘包括固定至支架的固定缘,以及与其他瓣叶相互配合控制血流通道的自由缘。
所述支架上连接有防周漏组件,所述防周漏部件为一体结构,包括处在支架内侧的基底和固定于基底外侧的防周漏部件,所述防周漏部件为多个间隔分布的块状且位置与支架单元格的镂空区域对应。
可选的,所述基底采用PET材质,所述防周漏部件采用PU材质。
可选的,按照所在单元格轴向位置的不同,所述防周漏部件包括第二圈防周漏部件和第三圈防周漏部件中的至少一者,以及第一圈防周漏部件,其中:所述第一圈防周漏部件布满所在的整个单元格;
所述第二圈防周漏部件邻近第一圈防周漏部件流入侧,分布于所在的整个单元格的局部区域;
所述第三圈防周漏部件邻近第一圈防周漏部件流出侧,分布于所在的整个单元格的局部区域。
可选的,所述第二圈防周漏部件以及所述第三圈防周漏部件的轴向长度仅占半个单元格,且邻近所述第一圈防周漏部件。
可选的,同一块防周漏部件中,由流出侧至流入侧逐渐增厚、至外凸最高的部位后再逐渐变薄。
可选的,同一块防周漏部件中,外凸最高的部位更加靠近所在单元格的流入侧。
可选的,同一块防周漏部件中,外凸高度最大处到所在单元格的流入侧之间距离为S1,外凸高度最大处到所在单元格的流出入侧之间距离为S2,其中S1:S2为0.2~0.8。。
可选的,所述装载段的直径大于所述鞘管段的直径。
可选的,所述内鞘管的远端带有引导头,所述引导头的外周带有环形台阶,所述装载段的远端端面与所述环形台阶相抵限位。
本申请的介入输送系统将外鞘管的运动与内部的其他管件相分离,同时也释放了对主手柄长度的限制,对外鞘管的操作更加灵活。
本申请提供了一种限位机构即止挡机构,在人工心脏瓣膜的介入输送以及释放初期提供相对持久的止挡效果。
本申请提供了一种用于介入输送系统的限位机构,包括:
耦接部,用于与介入输送系统相连,所述耦接部具有轴向以及相应的周向和径向;
形变部,包括沿周向依次布置的多根细长的杆件,各杆件分别具有:
第一端,与所述耦接部相连;
第二端,相对于所述第一端处在所述耦接部轴向的一侧,各杆件基于弹性形变具有适于介入输送的压缩状态以及相对的展开状态,在所述展开状态下,各杆件的第二端相对于在压缩状态下在所述耦接部的径向上向外发散。
可选的,所述耦接部为直筒状,各杆件呈辐射状分布,所述各杆件的第一端的汇聚位置为所述耦接部轴向的一端。
可选的,所述耦接部为径向可形变的环形。
可选的,所述耦接部为轴向起伏的波浪结构且具有相对的波峰和波谷,所述各杆件的第一端连接至对应的波峰。
可选的,所述耦接部与所述形变部为一体结构。
可选的,所述耦接部与所述形变部采用管材一体切割。
可选的,所述各杆件的第二端独立运动。
可选的,所述杆件具有绕耦接部轴线螺旋延伸的趋势。
可选的,所述杆件数量为4~10根。
可选的,所述杆件的第二端具有圆滑的外轮廓、和/或包覆有防护层。
可选的,所述杆件靠近第二端的部分具有径向向内的弯折趋势。
可选的,所述杆件靠近第二端的部分相对于所在杆件的其余部分具有更低的径向刚度。
本申请提供另一种用于介入输送系统的限位机构,用于安装在球囊体内,所述球囊体具有相对的折叠状态和充涨状态,折叠状态下在所述球囊体带有多个折缝,所述限位机构包括:
耦接部,用于与介入输送系统相连,所述耦接部具有轴向以及相应的周向和径向;
形变部,包括沿周向依次布置的多根杆件,各杆件配置为基于弹性形变具有适于介入输送的压缩状态以及相对的展开状态,在所述压缩状态下,各所述杆件置入对应的折缝内。
可选的,所述球囊体在折叠状态向沿周向上的第一方向卷绕,所述各杆件的螺旋方向与所述第一方 向相同。
可选的,所述球囊体在折叠状态下,至少一杆件的第二端在径向上不低于人工植入物。
本申请提供另一种用于介入输送系统的限位机构,包括:
耦接部,用于与介入输送系统相连,所述耦接部具有轴向以及相应的周向和径向;
形变部,包括沿周向依次布置的多根杆件,各杆件分别具有:
第一端,与所述耦接部相连;
第二端,相对于所述第一端处在所述耦接部轴向的一侧,各杆件配置为基于弹性形变具有适于介入输送的压缩状态以及相对的展开状态,在所述展开状态下,各杆件的第二端相对于在压缩状态下在所述耦接部的径向上向外发散;所述杆件采用记忆合金制成,在所述展开状态和压缩状态,所述杆件的第二端端部与耦接部轴线距离分别为R1和R2,且满足R1:R2=2~20:1。
本申请提供一种用于递送人工植入物的球囊装置,包括内轴以及处在所述内轴外周的球囊体,所述内轴安装有处在所述球囊体内部的上述任一限位机构。
内轴一般可以采用管件,管件内部可供介入时穿引导丝,该管件也可以称为芯管或内鞘管。
针对本申请提供的各限位机构,本申请提供一种基于球扩的介入输送系统,用于递送人工植入物,所述介入输送系统包括球囊装置和外鞘管,所述球囊装置包括内轴以及处在所述内轴外周的球囊体,所述内轴的远端安装有沿周向依次布置的多个杆件,各杆件配置为基于弹性形变具有适于介入输送的压缩状态以及相对的展开状态,各杆件分别具有:
第一端,与所述内轴相连;
第二端,位于所述第一端的一侧且相对所述内轴悬浮设置,在所述展开状态下,各杆件的第二端相对于在压缩状态下径向上向外发散;
所述人工植入物能够以径向压缩的装载状态安装于球囊体上,并处于所述杆件的近端,所述杆件作用于球囊体使得球囊体外周面不低于人工植入物远端侧的外周面。
可选的,所述杆件作用于球囊体使得球囊体外周面与人工植入物远端侧的外周面大致齐平。
针对本申请提供的各限位机构,本申请提供另一种基于球扩的介入输送系统,用于递送人工植入物,所述介入输送系统具有相对远端和近端,以及延伸在近端和远端之间的轴向,所述介入输送系统包括:
球囊装置,所述球囊装置包括内轴以及处在所述内轴外周的球囊体,所述内轴的远端安装有处在所述球囊体内部的第一限位机构(可采用本申请所述的限位机构);
中间轴,所述中间轴处在所述内轴外,所述中间轴的远端安装有处在所述球囊体外部的第二限位机构,所述第二限位机构处在所述第一限位机构的近侧,所述人工植入物能够以径向压缩的装载状态安装于球囊体上,并处于第一限位机构和第二限位机构之间,两限位机构被配置限制所述人工植入物相对所述球囊体沿轴向移动;
外鞘管,所述外鞘管滑动配合在所述球囊装置的外周,所述外鞘管在自身滑动路径上具有向近端运动的极限位置,在该极限位置下,第一限位机构和人工植入物暴露于外鞘管外,第二限位机构处在所述外鞘管内。
针对本申请提供的各限位机构,本申请提供另一种基于球扩的介入输送系统,用于递送人工植入物,所述介入输送系统包括:
球囊装置,所述球囊装置包括内轴以及处在所述内轴外周的球囊体,所述内轴的远端安装有处在所述球囊体内部的周向依次布置的多根杆件,各杆件配置为基于弹性形变具有适于介入输送的压缩状态以及相对的展开状态,各杆件分别具有与所述内轴相连的第一端,和位于所述第一端的一侧且相对所述内轴悬浮设置的第二端,在所述展开状态下,各杆件的第二端相对于在压缩状态下径向上向外发散,所述人工植入物能够以径向压缩的装载状态安装于球囊体上,并处于各杆件的近端;
调节线,用于将人工植入物可释放地固定在所述球囊体上,所述调节线上的一端能够保持与球囊体的固定,另一端可穿过人工植入物并带有锁孔;
锁线,具有相对的锁定状态和解锁状态,在锁定状态下、所述锁线穿入各锁孔以限制人工植入物,解锁状态下、所述锁线脱离各锁孔以释放人工植入物。
可选的,所述杆件的第一端连接用与内轴相连的耦接部,所有杆件构成形变部。
可选的,所述介入输送系统还包括控制手柄,所述控制手柄连接并控制球囊装置,所述球囊装置采用上述球囊装置。
可选的,在所述球囊体内,设有处在所述内轴外周的流体引导件,所述流体引导件限定构成导流通道,该导流通道连通球囊体内的远端部位和近端部位。
本申请的限位机构中的各杆件相对独立,一方面使得人工植入物在扩张过程中,形变扩张以延长止挡的时效,更好地限制人工植入物发生轴向上的位移,另外还可以在径向上减少彼此牵引,进一步保证 人工植入物在偏心状态下的定位效果。
本申请提供了一种用于输送人工心脏瓣膜的球囊装置,在人工心脏瓣膜的介入输送以及释放初期提供相对持久的止挡效果。
本申请提供了一种用于输送人工心脏瓣膜的球囊装置,包括:
导管体,所述导管体的延伸方向作为轴向;
球囊体,与所述导管体连通,所述球囊体能够接收来自所述导管体的流体,从而从折叠状态进入充涨状态,所述人工心脏瓣膜基于所述球囊体的变化相应地从径向压缩状态膨胀至径向膨胀状态;
限位机构,被配置为至少当所述人工心脏瓣膜以径向压缩状态安装在所述球囊体上时,限制所述人工心脏瓣膜在所述轴向上的移动,所述限位机构具体包括:
限位主体,所述限位主体包括多根杆件,所述多根杆件整体上由所述轴向上的第一端延伸至所述轴向上的第二端,并分别在所述第一端和所述第二端聚拢形成中空的笼形结构。
可选的,所述多根杆件被构造成所述笼形结构的侧壁,且所述侧壁上,两相邻杆件之间的间隙形成镂空区。
可选的,所述镂空区包括主镂空区和辅镂空区,所述主镂空区沿所述轴向的跨度大于所述辅镂空区沿所述轴向的跨度。
可选的,所述主镂空区跨越所述第一端和所述第二端。
可选的,所述笼形结构具有外扩部,所述外扩部具有所述笼形结构的最大外径,所述主镂空区跨越所述外扩部。
可选的,在周向上,所述主镂空区和所述辅镂空区沿周向依次间隔分布。
可选的,所述限位机构位于所述球囊体的内部或外部。
可选的,所述导管体和所述球囊体这两者中的至少一者与所述限位机构直接固定,或通过中间件与所述限位机构间接固定。
可选的,所述球囊装置还包括内轴(作为所述中间件),所述内轴穿设于所述导管体和所述球囊体内部;所述限位机构还包括:
至少一个耦接件,固定于所述内轴并与所述限位主体的聚拢部位相连。
可选的,所述耦接件位于所述限位主体内部或外部。
可选的,所述耦接件位于所述限位主体轴向上的至少一端。
可选的,所述外扩部与所述耦接件的外径比为2~4:1,优选为3:1。
本申请还提供了一种用于输送人工心脏瓣膜的球囊装置,包括:
导管体,所述导管体的延伸方向作为轴向;
球囊体,与所述导管体连通,所述球囊体能够接收来自所述导管体的流体,从而从折叠状态进入充涨状态,所述人工心脏瓣膜基于所述球囊体的变化相应地从径向压缩状态膨胀至径向膨胀状态;
限位机构,被配置为至少当所述人工心脏瓣膜以径向压缩状态安装在所述球囊体上时,限制所述人工心脏瓣膜在所述轴向上的移动,所述限位机构具体包括:
限位主体,所述限位主体整体上为笼形结构,所述笼形结构的其中一部分为外扩部,该外扩部相对于所述笼形结构其他部分具有最大的径向外扩程度,沿所述轴向,所述限位主体一端为使用状态下朝向人工心脏瓣膜的第一端,另一端为相对的第二端,所述外扩部邻近所述限位主体的第一端。
可选的,所述球囊装置还包括内轴,所述内轴穿设于所述导管体和所述球囊体内部;所述限位机构还包括:耦接件,固定于所述内轴并与所述限位主体相连。
可选的,所述限位主体中在所述第一端一侧与该侧的耦接件之间形成容纳人工心脏瓣膜端部的内凹区。
本申请还提供了一种用于输送人工心脏瓣膜的球囊装置,包括:
导管体,所述导管体的延伸方向作为轴向;
球囊体,与所述导管体连通,所述球囊体能够接收来自所述导管体的流体,从而从折叠状态进入充涨状态,所述人工心脏瓣膜基于所述球囊体的变化相应地从径向压缩状态膨胀至径向膨胀状态;
限位机构,被配置为至少当所述人工心脏瓣膜以径向压缩状态安装在所述球囊体上时,限制所述人工心脏瓣膜在所述轴向上的移动,所述限位机构具体包括:
限位主体,所述限位主体包括多根杆件在整体上围成笼形结构,所述笼形结构的其中一部分为外扩部,该外扩部相对于所述笼形结构其他部分具有最大的径向外扩程度,在经过所述外扩部的横截面上,各杆件沿所述限位机构的周向间隔布置且所围的区域趋近于多边形。
可选的,所述多边形为正多边形,且边数为4~12。
可选的,所述正多边形的边数为为6~8。
可选的,所述限位主体一端为使用状态下朝向人工心脏瓣膜的第一端,另一端为相对的第二端,所述限位主体的两端均向所述限位主体的中心轴线收拢。
可选的,各杆件在空间上自所述第一端向所述第二端延伸并形成球体或椭圆体。
可选的,所述椭球体的截面为一椭圆面,所述椭圆面的长轴与所述轴向方向一致。
可选的,所述笼形结构有多根杆件围成,各杆件在空间上自所述第一端向所述第二端延伸并形成锥体。
可选的,所述锥体包括第一锥体和第二锥体。
可选的,所述第一锥体和所述第二锥体处在所述外扩部的两侧或同侧。
可选的,当所述第一锥体和所述第二锥体处在所述外扩部的两侧时,所述第一锥体和所述第二锥体由所述外扩部起形状逐渐收拢,且收拢的趋势不同。
可选的,所述限位主体一端为使用状态下朝向人工心脏瓣膜的第一端,另一端为相对的第二端,与所述第一端衔接的为所述第一锥体,且所述第一锥体的收拢趋势更快。
可选的,所述第一锥体和所述第二锥体交互于所述外扩部,且在交汇部位的夹角为20~120度。
可选的,当所述第一锥体和所述第二锥体处在所述外扩部的同侧时,所述限位主体一端为使用状态下朝向人工心脏瓣膜的第一端,另一端为相对的第二端,与所述第一端衔接的为所述第一锥体,所述第一锥体朝向远离所述第一端的方向收拢。
可选的,所述球囊装置还包括内轴,所述内轴穿设于所述导管体和所述球囊体内部;所述限位机构还包括耦接件,所述耦接件与所述内轴连接,所述耦接件为径向可压缩的管状。
可选的,所述耦接件具有沿轴向起伏的波浪结构或具有可形变的网格。
可选的,所述耦接件为两个,所述笼形结构由多根杆件围成,所有杆件在空间上限定所述笼形结构的侧壁,所有的杆件由其中一耦接件起延伸至另一耦接件且在延伸路径上至少带有一分叉,或与相邻的杆件交汇。
可选的,沿所述外扩部周向,间隔分布多个两两杆件的交汇点。
可选的,所述杆件两两成对的并排由其中一耦接件延伸。
可选的,所述主镂空区的数量为4~12个。
可选的,所述主镂空区的数量为6~8个。
可选的,各个主镂空区形状相同且沿周向均匀布置。
可选的,所述主镂空区为条状。
可选的,沿所述轴向,所述主镂空区的长度为所述限位主体总长的至少40%。
可选的,所述主镂空区的长度为所述限位主体总长的至少60%以上。
可选的,所述主镂空区的长度为所述限位主体总长的75%~100%。
可选的,沿所述轴向,所述主镂空区延伸至所述外扩部的两侧,且延伸出的长度为所述限位主体总长的至少20%。
可选的,所述主镂空区的形状呈菱形。
可选的,所述笼形结构的镂空部位中包括所述主镂空区以及相对的辅镂空区,其中所述辅镂空区避让所述外扩部。
可选的,所述限位机构采用管材一体切割成型。
可选的,所述管材具有初始的外径D1,所述耦接件具有的外径D2,且至少一个耦接件的外径D2小于D1。
本申请还提供了一种用于输送人工心脏瓣膜的球囊装置,具有相对的远端和近端,包括:
导管体,所述导管体的延伸方向作为轴向;
球囊体,与所述导管体连通,所述球囊体能够接收来自所述导管体的流体,从而从折叠状态进入充涨状态,所述人工心脏瓣膜基于所述球囊体的变化相应地从径向压缩状态膨胀至径向膨胀状态;
内轴,所述内轴穿设于所述导管体和所述球囊体内部;
限位机构,被配置为至少当所述人工心脏瓣膜以径向压缩状态安装在所述球囊体上时,限制所述人工心脏瓣膜在所述轴向上的移动,所述限位机构具体包括:
限位主体,所述限位主体整体上为笼形结构;
引导管,连接于所述限位主体且与所述限位主体采用形状记忆合金材质的管材一体切割成型;
耦接件,与所述内轴连接,所述耦接件还至少与所述限位主体、引导管的其中一者连接。
可选的,所述引导管连接于所述限位主体的近端侧。
可选的,所述限位主体数量为两个,且分别连接于所述引导管的近端侧和远端侧。
可选的,两个限位主体的笼形结构相互独立。
可选的,所述球囊体由远端至近端依次包括第一部、中部和第二部,所述中部供人工心脏瓣膜装载固定;
所述引导管设置在所述内轴与所述球囊体的径向间隙中,所述引导管与所述内轴之间留有供流体通过的引导通道。
可选的,所述耦接件包括第一耦接件以及处在所述第一耦接件远端的第二耦接件,两耦接件均处于所述内轴的外周,且至少一耦接件固定于所述内轴,所述球囊体的远端部位还包裹所述第二耦接件。
可选的,所述第二耦接件处在所述引导管的近端,且临近所述球囊体与所述导管体的连接部位。
可选的,所述引导管的近端带有缩径段并通过该缩径段与对应侧的耦接件相连。
可选的,所述引流管带有流体入口,所述流体入口分布在于所述缩径段和/或所述引流管的周壁。
可选的,所述引流管的周壁整体上带有镂空的间隙。
可选的,所述限位机构采用管材一体切割成型。
可选的,所述管材具有初始的外径D1,所述引流管的外径为D1,所述耦接件具有的外径D2,且至少一个耦接件的外径D2小于D1。
本申请还提供了一种经导管植入物介入系统,包括本申请所述的球囊装置和人工植入物例如所述球囊装置包括:
导管体;
与所述导管体连通的球囊体;
所述的限位机构,所述人工植入物以径向压缩的装载状态安装于球囊体上,并在轴向上受所述限位机构的阻挡。
可选的,所述经导管植入物介入系统还包括滑动配合在球囊装置外部的外鞘管,所述限位主体包括装载状态、中间状态及扩展状态;
其中,在装载状态,所述限位主体位于所述球囊体和所述外鞘管内部,并受到所述球囊体和所述外鞘管的两者的径向力;
在中间状态,所述限位主体脱离所述外鞘管的径向束缚,并受到所述球囊体的径向力;
在扩展状态,所述球囊体膨胀,且所述限位主体扩张。
可选的,所述外鞘管为导管鞘。
可选的,所述人工植入物为人工心脏瓣膜。
本申请通过对限位机构的改进,使其更适用至人工植入物的介入输送以及与球扩方式释放相互配合。
本申请提供了一种人工心脏瓣膜,包括第一支架以及瓣叶,所述第一支架为径向可形变的筒状结构,所述第一支架的内部为血流通道,所述瓣叶为多片且相互配合控制所述血流通道;
所述第一支架具有通过框条围成的网格结构,所述第一支架为直筒状,所述网格结构包括菱形状的网格,所述第一支架的端部具有凸出于所述端部的孔眼结构,所述孔眼结构由处在端部的框条构成,所述第一支架具有相对的扩张状态和压缩状态,所述压缩状态下、所述孔眼结构凸出于所述端部的距离为L1;所述扩张状态下、所述孔眼结构凸出于所述端部的距离为L2,且L1>L2≥0。
可选的,所述第一支架的网格结构在端部形成若干网格节点,所述扩张状态下,所述孔眼结构基本与其周围网格节点平齐;所述压缩状态下,所述孔眼结构明显高于其周围网格节点。
可选的,L1:L2为1.2~1.6:1。
可选的,L1为0.6~0.8mm,L2为0.4~0.6mm。
可选的,扩张状态下所述孔眼结构整体上为弧形结构,压缩状态下所述孔眼结构趋近于圆形结构。
可选的,所述人工心脏瓣膜为人工肺动脉瓣瓣膜或人工主动脉瓣瓣膜。
可选的,所述扩张状态下,所述处在端部的框条自身弯折绕置呈弧形且限定所述孔眼结构的边缘。
可选的,所述第一支架轴向的两端均具有所述孔眼结构,且两端孔眼结构的周向位置相同或错位布置。
可选的,带有所述孔眼结构的网格为第一网格,与所述第一网格周向相邻的网格为第二网格,在所述第一网格中,所述孔眼结构周边的框条包括:
弧形段,限定所述孔眼结构的边缘;
连接段,由所述弧形段的两端相背延伸直至所述第一网格中周向两侧的网格节点。
可选的,所述弧形段两侧的连接段之间的夹角为A1,所述第二网格中位于轴向端部的网格节点的内角为A2,扩张状态下A1大于A2。
可选的,所述扩张状态下、所述弧形段自身对应的圆心角为150~210度。
可选的,所述扩张状态下、所述弧形段在所述第一支架周向上的跨度占所述第一网格跨度的1/4~1/2,例如1/3左右。
可选的,所述第一网格中,在所述孔眼结构周边的框条的强度小于所述第一网格中其他部位框条的强度。
可选的,所述第一支架中的网格为多圈,轴向相邻的两圈之间在周向上错位布置且共用部分框条。例如3~6圈,又例如5圈。扩张状态下,各个网格的节点内角为75~105度,例如90度即基本为正方形。
可选的,所述人工心脏瓣膜还包括连接并环绕于所述第一支架内壁的裙边,所述裙边轴向的一侧与所述瓣叶衔接。
可选的,所述人工心脏瓣膜还包括且沿所述第一支架周向布置的封堵件,所述封堵件固定于所述裙边,且从第一支架径向内侧经由对应的网格向第一支架径向外侧凸出。
可选的,所述裙边与所述封堵件为一体成型或粘结固定,均采用PU材质。
可选的,所述封堵件包括:
多个封堵块,沿所述第一支架的周向布置,各封堵块采用发泡材料并嵌入位置对应的网格结构。
可选的,所述封堵件还包括:
内衬膜,所述多个封堵块固定于所述内衬膜的一侧,且所述内衬膜与所述多个封堵块采用相同材质。
可选的,所述裙边为生物心包材料,所述内衬膜与所述裙边缝合。
关于瓣叶的连接方式改进,本申请还提供了一种人工心脏瓣膜,包括支架(即所述第一支架)和连接于所述支架的多片瓣叶,所述支架为筒状结构且内部为血流通道;
所述支架的至少一部分为支撑条,沿所述支架的周向,所述支撑条的至少一侧带有凹陷区,所述瓣叶通过缝线与支撑条固定,其而该缝线中的所有线结位于对应的凹陷区内。
可选的,所述瓣叶包括:
本体,展平状态下具有相对的横向和纵向,所述本体的外边缘包括分布在纵向两对侧的自由缘和固定缘,所述多片瓣叶通过各自的固定缘与所述支架固定,多片瓣叶的自由缘相互配合控制人工心脏瓣膜内的血流通道;
耳片,布置在所述本体横向的两相对侧,所述自由缘和所述固定缘交汇于相应侧的耳片;
相邻两瓣叶之间的耳片通过第一缝线彼此连接,还通过第二缝线和第三缝线与所述支撑条连接,其中所述第二缝线和所述第三缝线中的所有线结位于对应的凹陷区内。
可选的,相邻两瓣叶之间的耳片通过所述第一缝线相互连接的部位抵靠于所述支撑条的径向内侧。
可选的,相邻两瓣叶之间的耳片相互配合包裹所述支撑条。
可选的,所述第二缝线中的线结被所述耳片包裹,所述第三缝线中的线结暴露于所述耳片。
可选的,所述支架轴向的两侧为相对的流入侧和流出侧,其中在流出侧沿周向布置有一圈六边形的单元格,所述支撑条作为其中两相邻单元格之间的共用边。
可选的,所述支撑条的延伸方向为支架轴向。
本申请还提供了一种经导管植入物系统,包括球囊装置和人工心脏瓣膜,球囊装置和人工心脏瓣膜可分别采用本申请所述的各方案,作为改进方案,所述球囊装置包括:
导管体;
球囊体,与所述导管体连通,所述球囊体能够接收来自所述导管体的流体,从而从折叠状态进入充涨状态,所述人工心脏瓣膜基于球囊体的变化相应地从压缩状态膨胀至扩张状态;
内轴,穿设于导管体和球囊体内部,远端固定有引导头;
所述经导管植入物系统中还包括用于限制所述人工心脏瓣膜与所述球囊体轴向相对位置的锁线结构,所述锁线用于穿过所述第一支架的孔眼结构。
可选的,所述锁线结构包括:
第一调节线,用于将人工植入物可释放地固定在球囊体上,所述第一调节线上的一端能够保持与导管体的固定,另一端可穿过所述孔眼结构并带有第一锁孔;
第二调节线,一端连接于所述引导头,另一端可穿过孔眼结构并带有第二锁孔;
锁线,具有相对的锁定状态和解锁状态,在锁定状态下、所述锁线穿入各锁孔以限制人工植入物,解锁状态下、所述锁线脱离各锁孔以释放人工植入物;
引导头开设有插孔,在锁定状态下所述锁线的端头部位伸入所述插孔。
可选的,所述调节线与所述锁线之间至少有两处结合部位,其中至少一结合部位限制人工植入物向远端方向运动,还有至少一结合部位限制人工植入物向近端方向运动。
可选的,所述第一调节线、第二调节线在轴向长度上相配合,使得第一支架保持在所述球囊体的中部区域。
本申请还提供了一种经导管植入物系统,包括球囊装置和如上述所述的人工心脏瓣膜,所述球囊装置包括:
导管体;
球囊体,与所述导管体连通,所述球囊体能够接收来自所述导管体的流体,从而从折叠状态进入充涨状态,所述人工心脏瓣膜基于球囊体的变化相应地从压缩状态膨胀至扩张状态;
限位机构,被配置为至少当所述人工心脏瓣膜以压缩状态安装在所述球囊体上时,限制所述人工心脏瓣膜在所述轴向上的移动,所述限位机构具体包括限位主体,所述限位主体可采用上文各所述的限位主体。例如包括多根杆件并形成中空的笼形结构等方式。
可选的,所述限位机构至少包括一个限位主体,第一支架的至少远端受到限位主体的阻挡。
可选的,第一支架的远端具有凸出于端部的孔眼结构,在第一支架压缩状态下,所述孔眼结构贴靠所述限位主体。
可选的,第一支架的两端具有凸出于端部的孔眼结构,所述限位机构至少包括分别位于所述球囊体近端和远端的两个限位主体,在第一支架压缩状态下,所述孔眼结构分别贴靠相对应的限位主体。
可选的,所述球囊装置还针对第一支架配置有用于轴向限位的锁线结构。
可选的,所述限位机构包括一个限位主体,所述第一支架的至少远端受到限位主体的阻挡;
所述锁线结构包括:
第一调节线,用于将人工心脏瓣膜可释放地固定在球囊体上,所述第一调节线上的一端能够保持与导管体的固定,另一端可穿过孔眼结构并带有第一锁孔;
第二调节线,一端连接于所述引导头,另一端可穿过孔眼结构并带有第二锁孔;
锁线,具有相对的锁定状态和解锁状态,在锁定状态下、所述锁线穿入各锁孔以限制人工心脏瓣膜,解锁状态下、所述锁线脱离各锁孔以释放人工心脏瓣膜,所述引导头开设有插孔,在锁定状态下所述锁线的端头部位伸入所述插孔。
本申请还提供了一种人工心脏瓣膜组件,包括:
人工心脏瓣膜(例如人工肺动脉瓣膜等);
锚固支架,装配后套于所述人工心脏瓣膜径向外侧,所述人工心脏瓣膜和所述锚固支架均具有扩张状态和压缩状态,扩张状态下所述人工心脏瓣膜与锚固支架之间相互抵靠;
所述锚固支架具有由框条围成的网格结构,所述网格结构沿轴向包括:
中间部,包括两圈鱼骨网格;
端部,包括两圈菱形格,分别处在所述中间部轴向的两侧;
所述锚固支架还具有装配前的预扩状态,所述锚固支架在预扩状态具有第一直径、以及在扩张状态下具有第二直径,且第二直径大于第一直径。
可选的,扩张状态下,所述锚固支架的轴向长度大于所述第一支架的长度。
可选的,所述第一支架位于所述锚固支架轴向的中部。
可选的,所述鱼骨网格为凹六边形,具有相对的凸尖和凹尾,两圈鱼骨网格的凹尾相向对称,凸尖相背;
所述两圈菱形格分别处在所述中间部轴向的两侧,各菱形格处在相邻两鱼骨网格的凸尖之间。
可选的,所述第一支架的轴向位置不超出所述中间部。
可选的,所述第一支架比所述锚固支架的网格更致密。
可选的,所述第一支架中周向网格数量为所述锚固支架中周向网格数量的1.2~2倍。
可选的,所述锚固支架内处在端部的菱形格中,背向所述中间部的两根框条相对于与所述中间部共用的两个框条具有更低的强度。
可选的,所述人工心脏瓣膜、锚固支架均基于球扩方式释放。
可选的,所述人工心脏瓣膜基于球扩方式释放,所述锚固支架为基于自膨方式释放。
本申请还提供了一种经导管植入物系统,包括:
如上述所述的人工心脏瓣膜组件;
第一输送系统,所述第一输送系统带有输送和扩张所述人工心脏瓣膜的第一球囊体。
可选的,经导管植入物系统还包括用于扩张所述锚固支架的第二输送系统。
可选的,所述第一输送系统、第二输送系统可采用相同或不同的介入路径实施介入递送。
可选的,所述第一输送系统还包括用于扩张所述锚固支架的第二球囊体。
可选的,第一球囊体、第二球囊体分别配置流体通道(以避免相互干涉),两球囊体沿轴向排布,分别装载人工心脏瓣膜和锚固支架,先释放的锚固支架处在第一支架的远端。
可选的,所述第二输送系统中针对锚固支架的远端或两端配置限位机构。
可选的,所述第二球囊体针对锚固支架的远端或两端配置限位机构。
可选的,所述限位机构被配置为至少当所述锚固支架以径向压缩状态安装在相应的球囊体上时,限 制所述锚固支架在轴向上的移动,所述限位机构具体包括限位主体,所述限位主体可采用上文各所述的限位主体。例如包括多根杆件并形成中空的笼形结构等方式。
可选的,所述第一球囊体中针对人工心脏瓣膜的远端或两端配置限位机构。
可选的,所述限位机构被配置为至少当所述人工心脏瓣膜以径向压缩状态安装在第一球囊体上时,限制所述人工心脏瓣膜在轴向上的移动,所述限位机构具体包括限位主体,所述限位主体可采用上文各所述的限位主体。例如包括多根杆件并形成中空的笼形结构等方式。
可选的,所述第二输送系统中针对锚固支架的两端配置有用于轴向限位的锁线结构。
可选的,所述第一支架和/或锚固支架的端部具有凸出于所述端部的孔眼结构。
可选的,所述锁线结构包括:
第一调节线,用于将人工心脏瓣膜或锚固支架可释放地固定在相应的输送系统上,所述第一调节线上的一端能够保持与导管体的固定,另一端可穿过孔眼结构并带有第一锁孔;
第二调节线,一端连接于所述引导头,另一端可穿过孔眼结构并带有第二锁孔;
第一锁线,具有相对的锁定状态和解锁状态,在锁定状态下、所述锁线穿入各锁孔以限制锚固支架,解锁状态下、所述锁线脱离各锁孔以释放人工心脏瓣膜或锚固支架。
可选的,当经导管植入物系统包括两套输送系统时,所述锁线结构也针对两套输送系统配置两套。
可选的,当第一输送系统包括第一球囊体、第二球囊体时,所述锁线结构包括:
第三调节线、第四调节线,用于将人工心脏瓣膜可释放地固定在第一球囊体上,具有可穿过孔眼结构的锁孔;
第五调节线、第六调节线,用于将锚固支架可释放地固定在第二球囊体上,具有可穿过锚固支架的锁孔;
第二锁线,具有相对的锁定状态和解锁状态,在锁定状态下、所述第二锁线穿入各锁孔以限制人工心脏瓣膜和锚固支架,解锁状态下、所述第二锁线脱离各锁孔以释放人工心脏瓣膜和锚固支架。
可选的,所述锁线包括第一锁线和第三锁线,锁定状态下,所述第一锁线穿入锁孔以限制人工心脏瓣膜,所述第三锁线穿入锁孔以限制锚固支架。
可选的,所述锚固支架包括孔眼结构,所述第二锁线或所述第三锁线穿过所述锚固支架的孔眼结构。
可选的,所述第一输送系统中针对人工心脏瓣膜的两端配置有用于轴向限位的锁线结构。
可选的,所述经导管植入物系统中针对锚固支架配置锁线结构。
可选的,所述经导管植入物系统中针对人工心脏瓣膜、锚固支架配置锁线结构。
可选的,所述第一输送系统还包括外鞘管,所述锚固支架在压缩状态下容纳在所述外鞘管内,所述锚固支架基于自膨方式释放。
本申请还提供一种人工心脏瓣膜组件从介入输送系统的脱离方法,所述人工心脏瓣膜组件包括人工心脏瓣膜和锚固支架,两者均具有扩张状态和压缩状态;
所述介入输送系统至少包括可介入递送的内轴,所述人工心脏瓣膜和所述锚固支架两者以压缩状态连接于所述内轴;
所述脱离方法包括:
步骤S100,解除所述锚固支架与内轴的连接,使所述锚固支架进入扩张状态;
步骤S200,将所述人工心脏瓣膜递送至所述锚固支架的内部;
步骤S300,解除所述人工心脏瓣膜与内轴的连接,使所述人工心脏瓣膜进入扩张状态并抵紧于所述锚固支架的内壁。
可选的,所述介入输送系统还包括外鞘管,所述外鞘管相对滑动的安装于所述内轴的外周,所述锚固支架与内轴相连并被所述外鞘管包裹;
解除所述锚固支架与内轴连接时,先相对运动所述外鞘管和所述内轴,使所述锚固支架暴露于所述外鞘管,并以自膨方式进入扩张状态。
可选的,所述内轴为一根,所述介入输送系统还包括:
两个球囊体,沿所述内轴依次布置,所述人工心脏瓣膜和所述锚固支架分别连接在对应球囊体的外周;
锁线,用于同时限制所述人工心脏瓣膜和所述锚固支架相对于各自所在球囊体的轴向位置;
解除所述锚固支架与内轴连接时,还包括在所述锚固支架对应的球囊体被充涨之前或之后运动所述锁线,解除对所述锚固支架的轴向限位,且保持对所述人工心脏瓣膜的轴向限位;
解除人工心脏瓣膜与内轴连接时,还包括在所述人工心脏瓣膜对应的球囊体被充涨之前或之后沿原运动方向进一步运动所述锁线,解除对所述人工心脏瓣膜的轴向限位。
可选的,介入输送系统还包括调弯组件,所述调弯组件至少可作用于所述内轴,改变所述内轴的远 端朝向;
所述人工心脏瓣膜组件在脱离所述内轴前,所述内轴通过所述调弯组件的作用在空间上具有一处圆滑的转弯部位,或具有至少两处圆滑的转弯部位,且两处转弯部位的转向相反(以S为例)。
所述内轴中与转弯部位对应的部分采用金属切割管。
本申请通过对人工心脏瓣膜、介入输送系统的改进,两者在人工心脏瓣膜的介入输送、扩张过程中相互配合,操作效果更理想。
附图说明
图1为本申请一实施例中输送系统的的副手柄远离主手柄的示意图;
图2为图1中副手柄靠近主手柄的示意图;
图3a为图1中外鞘管远端部位与内鞘管的配合示意图;
图3b为本申请一实施例中输送系统远端侧调弯示意图;
图4为本申请一实施例中副手柄的立体视图;
图5为图4中副手柄的外壳和封头的爆炸视图;
图6为图4中副手柄的外壳、第一封头和第二封头之间的组装视图;
图7为图6的另一视角下的组装视图;
图8为本申请一实施例中副手柄除外壳和封头外其余部件的爆炸视图;
图9为本申请一实施例中副手柄的结构视图;
图10a为图9中A部放大视图(密封片封闭流体间隙);
图10b为图10a中密封片开放流体间隙的放大视图;
图11为本申请一实施例中第一防护套与连接套的爆炸视图;
图12为本申请一实施例中驱动件滑动锁紧的立体视图;
图13为本申请一实施例中连接套的结构视图;
图14为本申请一实施例中副手柄的操作钮滑动解锁的立体视图;
图15a为图14中操作钮滑动锁定的立体视图;
图15b为副手柄以及外鞘管的立体视图;
图16a~图16d为外鞘管至不同位置时,球囊体远端充涨后的定位原理示意图;
图17a为本申请一实施例中导管组件的远端的结构视图;
图17b为图17a中流体引导件处的局部剖视放大图;
图18为本申请一实施例中球囊体装载人工植入物且在折叠状态下的示意图;
图19a为本申请一实施例中球囊体充水膨胀时流体的流动路径示意图;
图19b为图18中球囊体充水膨胀的示意图;
图20a为本申请一实施例中流体引导件的立体视图;
图20b为图20a中的流体引导件的主视图;
图21a为本申请另一实施例中流体引导件的立体视图;
图21b为图21a中的流体引导件的主视图;
图22a为本申请另一实施例中流体引导件的立体视图;
图22b为图22a中的流体引导件的主视图;
图23a为本申请另一实施例中流体引导件的立体视图;
图23b为图23a中的流体引导件的主视图;
图24a为本申请另一实施例中流体引导件的立体视图;
图24b为图24a中的流体引导件的主视图;
图25为本申请一实施例中球囊体内部的结构示意图;
图26a为图25中C部的其中一实施例的放大图;
图26b为图26a中调弯时的示意图;
图27a为图25中C部的另一实施例的放大图;
图27b为图27a中调弯时的示意图;
图28为本申请一实施例中主手柄的爆炸视图;
图29为本申请一实施例中主手柄的主视图;
图30a为图29中A-A部的剖视图;
图30b为图29中B-B部的剖视图;
图31为图30b中第一滑座处的局部放大视图;
图32为本申请一实施例中标识件处的局部爆炸视图;
图33为本申请一实施例中标识件与指示段的配合视图;、
图34为本申请一实施例中第一滑座与导向筒的配合视图;
图35为本申请一实施例中第二接头处的爆炸视图;
图36为图35的装配视图;
图37为图30b中E部放大视图;
图38为图30a中D部放大视图;
图39为图30b中多通接头处的局部剖视图;
图40为本申请一实施例中多通接头与第二滑座的爆炸视图;
图41为图40的装配视图;
图42为本申请一实施例中输送系统的远端带锁线的示意图;
图43为本申请一实施例中人工植入物的主视图;
图44为图43的人工植入物的立体图;
图45为本申请另一实施例中人工植入物的主视图;
图46为本申请另一实施例中人工植入物的主视图;
图47至图48为现有技术的球囊导管的结构示意图;
图49为本申请一实施例中利用流体驱动球囊导管的方法的流程图;
图50a为本申请一实施例中球囊导管在注入流体之前的示意图;
图50b为本申请一实施例中利用流体驱动球囊导管的方法的原理示意图;
图51为向球囊导管中注入流体,使球囊导管至过渡状态的示意图;
图52为球囊导管被完全充涨后的示意图;
图53为人工植入物置入体内(以主动脉瓣处为例)的状态示意图;
图54为图50a中A部位的放大图,其中流体尚未开始分流;
图55a为针对流体进行第一种分流方式的示意图;
图55b为图55a中B部位的放大图,其中流体按照第一种分流方式进行分流;
图56为针对流体进行第二种分流方式的原理示意图;
图57a为针对流体进行第二种分流方式的示意图;
图57b为图57a中C部位的放大图,其中流体尚未开始分流;
图57c为图57a中流体被分流后的流向示意图;
图58为本申请提供的球囊导管完全扩张的结构示意图;
图59为本申请提供的球囊导管的流道截面的结构示意图;
图60为本申请提供的介入器械输送装置中一实施例结构示意图;
图61a为本申请提供的介入器械输送装置中引流管远端相对芯管固定的原理示意图;
图61b为本申请提供的介入器械输送装置中引流管远端相对芯管固定的结构示意图;
图62为本申请提供的介入器械输送装置中引流管与导管的局部剖视图;
图63为本申请提供的介入器械输送装置中引流管的结构示意图;
图64为本申请提供的介入器械输送装置中另一实施例的结构示意图;
图65a为本申请提供的介入器械输送装置中一实施例的斜切段的局部剖视图;
图65b为本申请提供的介入器械输送装置中另一实施例的斜切段的局部剖视图;
图66为本申请提供的介入器械输送装置中隔离件的结构示意图;
图67a为本申请提供的介入器械输送装置中一实施例的定位结构的结构示意图;
图67b为本申请提供的介入器械输送装置中另一实施例的定位结构的结构示意图;
图68为本申请一实施例的介入输送系统的结构示意图;
图69为图68中远端部分的结构示意图;
图70为图69中限位机构的杆件在展开状态下的结构示意图;
图71为图70中限位机构的杆件在压缩状态下的结构示意图;
图72为本申请一实施例的限位机构与内轴适配的结构示意图;
图73为图72中限位机构的结构示意图;
图74为图72中限位机构成直筒状时的结构示意图;
图75为图72中限位机构在压缩状态或中间状态下的主视图;
图76为球囊体在折叠状态下与图75中的限位机构配合的侧视图;
图77a为本申请另一实施例的输送系统的远端(带球囊装置)带鞘管的结构示意图;
图77b为图77a中鞘管向一端运动后的结构示意图;
图77c为图77a中球囊体充涨后的结构示意图;
图77d为现有的人工植入物安装在球囊体上产生台阶的放大示意图;
图77e为图77b中A部放大视图;
图78a为本申请另一实施例的输送系统远端的结构示意图;
图78b为图78a中鞘管运动并包裹近端限位机构的结构示意图;
图78c为图78b中球囊体充涨后的结构示意图;
图79~图83为本申请另一些实施例的限位机构的结构示意图;
图84为图83的限位机构的主视图;
图85a~85c为本申请不同实施例中,输送系统远端的结构示意图;
图86为本申请一实施例的限位机构的结构示意图;
图87~图89为本申请一实施例中耦接件分布的结构示意图;
图90为图86的限位机构的纵向截面示意图;
图91~图92为本申请一些实施例中笼形结构的收拢部位的结构示意图;
图93为本申请另一实施例的限位机构的结构示意图;
图94为本申请一实施例的球囊装置的结构示意图;
图95为图94中限位机构的结构示意图;
图96为图95中限位机构的纵向截面示意图;
图97为图86的限位机构的横向截面示意图;
图98为本申请另一实施例的球囊装置的结构示意图;
图99为图98中限位机构的结构示意图;
图100为本申请另一实施例的限位机构的纵向截面示意图;
图101为本申请另一实施例的耦接件的结构示意图;
图102为本申请另一实施例的止挡件的立体图;
图103为图102中限位主体的局部剖视图
图104为图102的限位机构一体切割管材的示意图;
图105~图106为本申请另一实施例限位机构的结构示意图;
图107为带有图106中限位机构的球囊装置的充涨示意图;
图108为图107中F处的局部放大图;
图109为图107中G处的局部放大图;
图110为本申请另一实施例的止挡件的立体图;
图111为本申请另一实施例的止挡件的结构示意图;
图112为本申请另一实施例的止挡件的结构示意图;
图113为本申请另一实施例的止挡件的结构示意图;
图114为本申请另一实施例的止挡件的结构示意图;
图115为图110的限位机构一体切割管材的示意图;
图116为本申请一实施例中耦接件与管脚配合的结构示意图;
图117为本申请一实施例的经导管植入物系统的结构示意图;
图118为本申请一实施例中人工心脏瓣膜的结构示意图;
图119为图118中第一支架的局部结构示意图一;
图120为图118中第一支架径向压缩的局部示意图;
图121为图118中第一支架孔眼结构的结构示意图;
图122为图118中第一支架的局部结构示意图二;
图123为图122中孔眼结构的结构示意图;
图124为图123中第一支架另一视角的示意图;
图125为本申请另一实施例中人工心脏瓣膜的结构示意图;
图126为图125中封堵件一体成型的示意图;
图127为本申请的输送系统的结构示意图;
图128为图127中球囊体充涨状态下的结构示意图;
239
图129为现有技术中瓣叶处于展开状态的结构示意图;
图130为图129中多片瓣叶缝合后的结构示意图;
图131为现有技术中人工心脏瓣膜的结构示意图;
图132为本申请提供的一实施例人工心脏瓣膜的瓣叶处于展平状态的结构示意图;
图133为图132中外凸部与开口区的结构示意图;
图134为使用第一缝线缝合结合部的结构示意图;
图135a为本申请一实施例支架的结构示意图;
图135b为图135a中A的放大图;
图135c为使用多根第二缝线将两结合部与支撑条进行缝合的结构示意图;
图136为使用多根第三缝线将瓣叶的耳片包拢支撑条并进行缝合的结构示意图;
图137至图139为本申请一实施例中带有锁线结构的经导管植入物系统的示意图;
图140为本申请一实施例中经导管植入物系统的结构示意图;
图141为图140的球囊体充涨状态的示意图;
图142为本申请另一实施例中经导管植入物系统的结构示意图;
图143至图144为本申请一实施例中带有锁线结构、限位机构的经导管植入物系统的示意图;
图145为本申请另一实施例中人工心脏瓣膜的结构示意图;
图146为图145中锚固支架的结构示意图;
图147为图145中第一支架的结构示意图;
图148为图146的局部结构示意图;
图149为图148中锚固支架设置孔眼结构的示意图;
图150为图146的锚固支架径向压缩的示意图;
图151至图156为本申请另一些实施例中经导管植入物系统的结构示意图;
图157为本申请另一些实施例中带有调弯组件的经导管植入物系统的结构示意图;
图158为图156中调弯管处于弯曲形态的结构示意图。
图中附图标记说明如下:
1、介入输送系统;
8、人工植入物;800、支架;811、第一孔眼;812、第二孔眼;82、束腰结构;83、瓣叶;831、固定缘;832、自由缘;833、流出侧;834、流入侧;84、基底;841、防周漏部件;8411、第一圈防周漏部件;8412、第二圈防周漏部件;8413、第三圈防周漏部件;85、血流通道;86、凸起台阶;
9、控制手柄;10、主手柄;100、支撑体;1001、安装槽;1002、导槽;
110、第一滑座;1101、滑槽;111、第一驱动套;
112、导向筒;1121、导向条;1122、第二排气孔;1123、第二环形座;1124、插槽;
113、第二管接头;1131、第二排气通道;1132、定位筋;
114、单向阀芯;115、密封圈;116、第二防护套;116a、第一部分;116b、第二部分;
120、外壳;121、边框;1211、滑槽;122、标识件;1221、内齿;123、透明盖板;
130、第二滑座;1301、卡齿;131、第二驱动套;
140、多通接头;1401、卡槽;141、接口;142、接口;
20、副手柄;200、外壳;201、穿引通道;202、半壳;2021、旋合卡槽;2022、插接卡槽;2023、定位槽;
203、封头;203a、第一封头;203b、第二封头;2031、通孔;2032、卡齿;2033、弹性卡扣;
210、连接套;2101、定位凸肩;2102、第一排气孔;2103、第一排气通道;2104、第一环形座;2105、定位筋;2106、加固孔;2107、滑槽;
211、第一管接头;2111、插槽;2112、卡环;212、第一防护套;213、密封圈;214、流体间隙;
220、定位件;2201、自由端;2202、固定端;2203、导向斜台;2204、镂空区;221、弹性爪;
230、驱动件;2301、导向筋;2302、第一避让口;2303、第二避让口;240、弹性衬管;2401、定位台阶;250、操作钮;
26、单向阀芯;261、限位杆;2611、头部;262、密封片;
30、导管组件;310、外鞘管;3101、插接段;3102、装载段;3103、鞘管段;320、内鞘管;321、导丝通道;322、流体通道;323、第二显影环;324、第三显影环;
330、球囊导管;331、球囊体;332、导管体;
340、调弯管;341、牵引件;
350、流体引导件;351、导流槽;352、连通槽;353、镂空区;354、导流通道;
360、锁线;370、引导头;3701、环形台阶;381、第一拉环;382、第二拉环。
41、人工植入物;42、球囊导管;421、近端;422、远端;423、球囊体;4231、第二部;4232、中 部;4233、第一部;424、导管体;4241、主流道;425、引流管;4251、近端段;42511、流体输出口;4252、中间段;4253、远端段;4254、流体入口;4255、第一流体出口;4256、第二流体出口;4257、斜切段;4258、斜切面;426、独立流道;43、引导头;431、定位结构;44、内轴;441、隔离件;45、流体。
51、介入输送系统;5101、近端;5102、远端;
52、限位机构;521、耦接部;5211、波峰;5212、波谷;
523、形变部;525、杆件;5251、第一端;5252、第二端;5253、螺旋线;5254、抵靠部;5255、端部;5256、孔;
53、控制手柄;54、导管组件;541、球囊装置;542、球囊体;5421、近端段;5422、中间段;5423、远端段;5424、折缝;5425、凸起;5425、远端部位;5426、近端部位;543、中间轴;544、外鞘管;545、内轴;546、第一方向;
55、人工植入物;551、台阶;552、孔眼;
5710、调节线;5711、锁孔;5720、锁线。
图中附图标记说明如下:
61、经导管植入物系统;6101、近端;6102、远端;611、第一输送系统;612、第二输送系统;613、调弯模块;614、调弯管;6141、转弯部位;
62、限位机构;62a、内部空间;62b、外部空间;621、耦接件;621a、耦接件;621b、耦接件;621c、耦接件;621d、耦接件;6211、第一耦接件;6212、第二耦接件;62121、套管;6213、波峰;6214、波谷;622、限位主体;622a、限位主体;622b、限位主体;6221、杆件;62211、分叉;62212、交汇点;6222、主镂空区;6223、辅镂空区;6224、第一端;62241、内凹区;6225、第二端;6226、切缝;623、外扩部;623a、杆件;623b、杆件;623c、杆件;623d、杆件;623e、杆件;624、笼形结构;624a、收拢部位;624b、收拢部位;624c、收拢部位;624d、收拢部位;6241、锥体;62411、第一锥体;62412、第二锥体;625、引导管;6251、流体入口;6252、缩径段;
63、控制手柄;63a、控制手柄;63b、控制手柄;631、接口;631a、接口;631b、接口;
64、导管组件;641、球囊装置;6411、导管体;642、球囊体;642a、第二球囊体;642b、第一球囊体;6421、第一部;6422、中部;6423、第二部;6424、折叠部位;643、内轴;644、外鞘管;645、流体入口;646、引导头;
65、人工心脏瓣膜;65a、人工植入物;651、第一支架;6511、框条;6511a、框条;6511b、框条;6511c、框条;6511d、框条;6511e、框条;6511f、框条;65111、网格节点;65111a、网格节点;65111b、网格节点;65111c、网格节点;65112、弧形段;65113、连接段;65113a、连接段;65113b、连接段;65113c、连接段;65113d、连接段;6512、网格结构;6512a、网格结构;6512b、网格结构;6512c、网格结构;6513、流入侧;6514、流出侧;652、瓣叶;6521、固定缘;6522、自由缘;653a、孔眼结构;653b、孔眼结构;654、第一网格;655、第二网格;
656、锚固支架;6561、框条;6562、网格结构;65621、中间部;65622、端部;6563、鱼骨网格;65631、凸尖;65632、凹尾;65633、框条;6564、菱形格;65641、框条;65642、框条;65643、框条;65644、框条;
657、裙边;658、内衬膜;659、封堵件;
66、工装;67、止挡件;
68、锁线结构;681、第一调节线;6811、第一锁孔;682、锁线;6821、第一锁线;6822、第二锁线;683、第二调节线;6831、第二锁孔;684、第三调节线;685、第四调节线;686、第五调节线;687、第六调节线。
7100、瓣叶;7110、本体;7120、自由缘;7130、固定缘;7131、开口区;7140、耳片;7150、外凸部;7151、内缘;7152、外缘;7170、结合部;7171、第一弯折部;7172、第二弯折部;7173、线孔;7174、第一缝线;7175、线孔;7175a、线孔;7175b、线孔;7175c、线孔;7176、第二缝线;7178、第三缝线;7180、线结;7181、线结;7182、线结;
7200、人工心脏瓣膜;7210、支架;7220、支撑条;7221、凹陷区;7222、第一凹陷区;7223、第二凹陷区。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当组件被称为与另一个组件“连接”时,它可以直接与另一个组件连接或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请中,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、次序。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,“多个”的含义是至少两个,例如两个、三个等,除非另有明确具体的限定。
为了方便理解本申请,下文各实施例中提及的“远端”、“近端”为介入医疗器械领域惯用术语,当用于指示方向时,“远端”表示手术过程中远离操作者的一侧,“近端”表示手术过程中靠近操作者的一侧,当用于指代结构时,文中“端”表示该结构的端点或在该侧方向上的某一点或一区域或连接在该点或该区域上的具体结构。
本申请中各实施例提及的轴向在未作特殊说明情况下指理论上当导管组件与控制手柄完全拉直后,近端和远端之间为直线即确定了轴向,相应的也确定了与轴向垂直的径向以及绕轴向布置的周向。
参见图3b,显示了心脏介入手术中,主动脉弓部位的器械姿态示意图,为了适应该部位的生理结构,导管组件30的远端呈现明显的弯曲转折,通常会借助调弯手段主动干预导管组件的远端姿态,人工植入物基本就位后,无论是自膨或球扩方式,均是通过回撤外鞘管的方式暴露人工植入物,以便于人工植入物的完全释放。
导管组件的近端连接并受控于控制手柄,受控制手柄体积(长度)的限制,各管件的相对活动行程有限,因此在回撤外鞘管的过程中,外鞘管的远端一般仍处在主动脉弓部位,对于导管组件整体而言,各部位的刚度(暴露于外鞘管的部位以及仍处在外鞘管内的部位)差异较大,空间姿态不再稳定,可能需要重新调整,给手术带来了不必要的繁琐操作。尤其在针对球扩方式释放人工植入物的场景中,容许外鞘管快速回撤,以期提高效率。
参见图1~图3a,本申请提供一种介入输送系统1,包括导管组件30以及与导管组件30相连的控制手柄9,导管组件30具有相对的远端和近端且包括彼此滑动套设的内鞘管320和外鞘管310,外鞘管310由远端至近端依次包括装载段3102和鞘管段3103,装载段3102用于包裹人工植入物并将人工植入物保持在压缩状态;
控制手柄9包括:
主手柄10,内鞘管320的近端连接于主手柄10;
副手柄20,滑动套设在内鞘管320的外周,外鞘管310的近端连接于副手柄20。
本申请中针对导管组件中的外鞘管,独立配置副手柄20柄,整个副手柄20中带有穿引通道,一方面用以插入对接外鞘管,另一方面供导管组件中的其他管件经由外鞘管近端延伸出以后、滑动的穿过副手柄20,就整个介入输送系统而言,外鞘管受控于副手柄,其余管件受控于主手柄(此处的主、副理解为相对概念)。
将副手柄与主手柄分别设置,可进一步提高外鞘管控制的灵活程度,更为重要的是外鞘管的行程不再受主手柄长度的限制,在回撤外鞘管时,可将外鞘管的远端部位也撤出主动脉弓,尽可能的减少对其余管件空间姿态的影响。
根据人工植入物装载以及释放方式的不同,内鞘管和外鞘管之间可以直接套设(即径向上直接相邻)或在两者径向之间增设其他管件,人工植入物自身可采用常规技术,以人工心脏瓣膜为例,一般包括径向可形变的支架以及连接于支架的多片瓣叶,支架为管状结构且带有镂空的单元格,支架内部为血流通道,各瓣叶相互配合控制血流通道的开放以及封闭。
以自膨方式释放为例,内鞘管在邻近远端部位带有安装头,径向压缩后的人工植入物连接于该安装头,外鞘管的远端为扩径的装载段,该装载段包围在人工植入物外周,将人工植入物限制在压缩状态,当外鞘管向近端回撤时,逐渐暴露并释放人工植入物。
当以球扩方式释放时,在内鞘管与外鞘管之间还设置有球囊导管,径向压缩后的人工植入物处在球囊体331外周并被外鞘管的装载段包裹,当外鞘管向近端回撤暴露人工植入物后,通过注入流体的方式使球囊导管膨胀、即将人工植入物径向撑开完成释放。
内鞘管和外鞘管之间还可以根据操作需要设置调弯管等,下文将进一步描述,为了配合手术,实时获取导管组件在体内的位置和姿态,各管件上还可以配置显影标识,例如装载段远端设置第一显影环,在内鞘管上的球囊体的部位设置第二显影环323和第三显影环324(图19a可见)。
就个管件的自身材质可以采用常规材质,例如外鞘管310的装载段3102采用Pebax,其余部位例如鞘管段3103采用PTFE,调弯管可采用金属海波管,不同部位的切割密度稍作变化,例如远端密度大,近端密度小,使得远端可弯曲性大于近端。
装载段3102的直径大于鞘管段3103,以适应不同规格的人工植入物,人工植入物装载时,径向压缩呈管状并收纳包裹在装载段3102内部,为了便于向体内介入输送装载段3102,可配合导管鞘实施,导管鞘在血管内可建立临时通道供导管组件30穿入,导管鞘的管壁优选可扩张结构,以适应直径略大的装载段3102,例如导管鞘管壁横截面带有迂回部位,通过该迂回部位的形变和复位,可改变临时通道,在装载段3102经过的部位扩张,而装载段3102经过后,则复位收缩。
为了限制外鞘管310的远端极限位,内鞘管320的远端带有引导头370,引导头370的外周带有环形台阶3701,装载段3102的远端端面与环形台阶3701相抵,可实现轴向限位。还使得引导头370的外周与装载段3102的外周相互平齐,减少划伤的安全隐患。
参见图1~图5,副手柄20包括:
外壳200,具有空间上的轴向,以及在轴向上相对的远端和近端,外壳200具有轴向贯通的穿引通道201;
连接套210,固定在外壳200内且绕穿引通道201布置,连接套210的远端侧供外鞘管310插接配合;
定位件220,活动安装在外壳200内,定位件220具有干涉穿引通道201的锁定位以及释放穿引通道201的解锁位;
驱动件230,与定位件220传动配合带动定位件220切换位置。
其中,定位件220与驱动件230的设置主要是为了调节以及锁定副手柄20与主手柄10的相对位置,避免外鞘管310相对于其他管件发生不必要的滑移错位,以降低安全隐患。
在配合使用时,除外鞘管310的其他管件均处在穿引通道201内,因定位件220干涉穿引通道201也意味着可以对其他管件施加作用力,继而锁定副手柄20与其他管件的相对位置,同理释放穿引通道201则意味着降低或彻底解除对其他管件施加作用力,允许副手柄20带动外鞘管310与其他管件相对滑动,驱动件230与定位件220之间可以是一体结构,分体固定,或传动配合,用以带动定位件220在锁定位和解锁位之间切换。
本实施例中并不严格限制定位件和驱动件相对于副手柄的运动方向,作为定位件而言,至少具有沿穿引通道径向的运动分量,以改变对其他管件的作用力或径向相对位置。
定位件对其他管件的作用力可以是径向相互抵接而产生的摩擦力,也可以是设置彼此配合能够产生轴向相位作用力的结构,例如卡齿、轴向阻挡件等,驱动件的运动方式可以是轴向滑动、径向按压、或周向转动等。
外壳200提供安装容纳其余部件的环境,操作时一般也直接持握,为了便于装配。参阅图4、图5,一实施例中,外壳200为分体扣合结构,且外壳200的内壁与连接套210的外周之间设有相互配合的卡合定位结构。
其中分体扣合可以是径向多瓣式扣合,还可以结合轴向的多段式结构,本实施例中,外壳200包括沿连接套210径向扣合的两个半壳202,以及分别位于两个半壳202轴向两端的封头203;各封头203与两个半壳202之间各自采用卡扣或旋合方式固定。
具体参阅图6、图7,两个半壳202的扣合部位彼此相抵或咬合,两端的封头203将两个半壳202箍套在一起相互固定,此外还可通过粘结、紧固件、卡扣等方式固定,各封头均带有通孔2031以避让穿引通道201,其中第一封头203a的内周面带有卡齿2032,各半壳202的外周设置有与卡齿2032配合的旋合卡槽2021,另一端的第二封头203b上则在轴向端面上设置弹性卡扣2033,各半壳202的轴向端面上设置与弹性卡扣2033配合的插接卡槽2022。
外壳200与连接套210之间的卡合结构包括设置于各半壳内周面的定位槽2023,以及固定于连接套外周的定位凸肩2101,两半壳202扣合后,定位凸肩2101恰插入定位槽2023内实现轴向定位,同时也在径向上限制连接套的位移。
为了确保定位效果,在半壳202的内壁还可以设置多道肋板2024,各道肋板2024环绕扶持在连接套210的外周,辅助定位,沿连接套轴向,定位凸肩2101与各肋板2024分别处在连接套210的两端。
外鞘管310与内部的其他管件之间存在径向间隙,在手术前,需要将该径向间隙内的空气排出,以减少安全隐患,例如在外鞘管310的近端侧向该径向间隙内注入生理盐水,将空气从远端排出。常规技术中会配置与该径向间隙连通的管路,并在该管路上额外设置控制阀,本申请一实施例还提供了改进的方式。
参阅图8、图9,连接套210的侧壁设有与穿引通道201连通的第一排气孔2102,在第一排气孔2102处固定连接有第一管接头211,第一排气孔2102与第一管接头211限定形成第一排气通道2103,在第一 排气通道2103内设有单向阀芯26。
沿由远端至近端方向,依次为:
连接套内壁与外鞘管310之间的密封配合部位;
第一排气孔2102;
连接套内壁外鞘管310内其他管件的密封配合部位,大致为定位件220与穿引通道201的干涉部位,该部位在定位件220锁紧内部管件时,可与内部管件密封配合;
以上各部位的设置,可使由第一排气孔2102注入的生理盐水只能进入外鞘管310与内部管件的径向间隙,并向远端侧流动以实现排气。
本实施例中省略了外接的控制阀,而在第一排气通道内设置可在流体压差作用下浮动的单向阀芯,向内注入生理盐水时会推动单向阀芯开放第一排气通道,若有逆流产生,则相应的反推单向阀芯封闭第一排气通道,避免流体外逸。自适应的单向阀芯可提高系统整体集成度,免去了操作控制阀的繁琐。
为了连接第一管接头211,第一排气孔2102的边缘设有第一环形座2104,第一管接头211与第一环形座2104插接配合,且彼此之间设有相互配合的止转结构。
第一管接头211的一端可带有螺纹结构,便于同外部管路快速拆装,另一端插入第一环形座2104内,第一环形座2104内可设置绕第一排气孔2102布置的密封圈213,第一管接头211插入第一环形座2104的端面与该密封圈213相抵密封,密封圈213带有弹性,可确保密封效果。
为了在对接外部管路时,保证对接部位的强度,外壳200上嵌装有位于第一管接头211外周的第一防护套212,第一管接头211的外壁与第一防护套212的内壁之间构成管路插接间隙。
止转结构可防止拆装外部管路时,第一管接头211不必要的随动,止转结构包括:
插槽2111,沿第一管接头211的插入方向延伸,插槽2111设置在第一管接头211与第一环形座2104两者中其中一者的侧壁;
定位筋2105,与插槽2111配合,定位筋设置在第一管接头211与第一环形座2104两者中另一者的侧壁。
图8、图11中,第一环形座内壁示意了三个插槽2111,第一管接头外壁的相应位置设置三条定位筋2105。
单向阀芯26具有相对的密封状态和开放状态,且单向阀芯26具体包括:
限位杆261,滑动安装于第一管接头211的内腔中,在限位杆的外周与第一管接头211的内壁之间带有流体间隙(流体间隙也作为第一排气通道2103的一部分);
密封片262,连接于限位杆261,密封状态下密封片262封闭流体间隙,开放状态下密封片262开启流体间隙214。
单向阀芯整体而言可浮动设置,限位杆261活动安装且位置受限于第一管接头211,可限制密封片262的行程,尤其在开放状态,若密封片262行程过大,可能会直接封堵第一排气孔2102。例如第一管接头211的内壁设有环绕在限位杆外周的卡环2112,流体间隙位于卡环2112的外周与第一管接头211的内壁之间;
限位杆261远离密封片262的一端穿过卡环2112且带有头部2611,开放状态下头部2611与卡环2112相抵,密封片262远离卡环2112并开放流体间隙214;密封状态下头部远离卡环2112,密封片262与卡环2112相抵并封闭流体间隙214。
在另一实施例中,参阅图9~图10b,单向阀芯整体而言也可以固定设置,限位杆261固定安装,仅依靠密封片262边缘的形变开放或封闭流体间隙。例如第一管接头211的内壁设有环绕在限位杆外周的卡环2112,流体间隙位于卡环2112的外周与第一管接头211的内壁之间;
限位杆261远离密封片262的一端穿过卡环2112且带有头部2611,该头部2611与密封片夹持固定于卡环2112的两相对侧,密封片262的边缘可弹性形变,相应的开放或封闭流体间隙214。
开放状态下密封片262的边缘远离卡环2112并开放流体间隙214(如图10b,图示中虚线为流体流动路径)。
密封状态下(图10a)密封片262的边缘向卡环2112贴靠并封闭流体间隙214。
以下实施例中提供了关于定位件的具体结构,例如参阅图8~图13,定位件220为弹性爪,弹性爪的一端固定于连接套210,另一端为沿连接套径向摆动的自由端2201。
驱动件230与弹性爪221的自由端2201联动,使得自由端2201沿连接套径向向内(即干涉穿引通道201、抱紧内部管件)运动,或释放弹性爪221,弹性爪221具有复位趋势(即远离穿引通道、减小对内部管件的作用),容许副手柄20相对内部管件滑动,改变外鞘管远端的相对位置。
弹性爪221的固定端2202与连接套210之间可以是分体固定,还可以是弹性爪与连接套210为一体结构。
连接套210整体上为管状,在其管壁部位可带有U形镂空区2204,U形镂空区环绕的部位即为弹性爪221,弹性爪221整体上为条状,相对而言、弹性爪的固定端2202在远端侧,自由端2201在近端侧。为了获得比较均匀的束紧力,弹性爪可配置多个,例如弹性爪为二~六个(例如四个),沿连接套210周向分布。
为了同步驱动各弹性爪,简化部件结构,驱动件230为筒状且滑动套设在连接套210的外周,驱动件230的内壁作用于弹性爪。
驱动件230的滑动方向即连接套210的长度方向,驱动件230运动至不同位置时,对弹性爪施加的径向力会发生变化,使定位件220在锁定位和解锁位之间切换,为了使弹性爪获得较为均匀的径向力变化趋势,弹性爪和驱动件230彼此可通过斜面配合,例如沿连接套210的径向,弹性爪221的外侧设有导向斜台2203,驱动件230的内壁作用于导向斜台2203。
沿连接套210径向,导向斜台2203的高度有远端至近端逐渐变高,在不考虑驱动件内壁变化时,驱动件230向近端运动时,即可使得弹性爪221的自由端2201进一步向内运动,增加与内部管件的作用力,直至锁紧。为了实现缓冲、保护,以及获得较好的束紧、密封效果,在弹性爪221于内部管件之间可设置弹性部件,在副手柄20滑动时还可以获得阻尼效果,改善操作体验。例如连接套210的内部设有弹性衬管240,弹性爪221作用在弹性衬管的外壁、通过挤压弹性衬管240干涉穿引通道201。
在穿入内部管件时,弹性爪221向内挤压弹性衬管240,并通过弹性衬管240箍紧内部管件。为了避免不必要的松脱,弹性衬管240可采用过盈的方式插入连接套内部。为了进一步轴向定位,弹性衬管240的远端延伸出连接套210,在延伸出的部位上设有径向外凸的定位台阶2401,沿轴向,定位台阶2401与连接套210的端面和/或外壳200的内壁轴向定位配合。
为了引导驱动件230的运动,驱动件230的内壁与连接套210的外壁之间设有相互配合的导向结构。导向结构包括:
滑槽2107,设置于驱动件230的内壁和连接套210的外壁这两者中的其中一者;
导向筋2301,与滑槽2107配合,设置于驱动件230的内壁和连接套210的外壁这两者中的另一者。
图8中,滑槽2107位于连接套外壁,且分布有三条,导向筋2301位于驱动件230的内壁,位置和数量与滑槽相匹配。
为了便于操作,参阅图14、图15a,在一实施例中,驱动件230的外壁设有操作钮250,外壳200上开设有与操作钮250位置相应的第一避让口2302。
操作钮250暴露于该第一避让口2302,也可以沿连接套210径向进一步延伸出第一避让口2302,根据驱动件230的滑动行程,第一避让口2302相应的配置长度。
为了使驱动件230稳定滑动以及保证必要的结构强度,应具有足够的轴向长度,基于此尚需考虑与第一排气通道的干涉,驱动件230的侧壁设有第二避让口2303,连接套210的侧壁设有与穿引通道201相配合的第一排气孔;沿连接套210的轴向、第二避让口2303的位置与第一排气孔的位置对应。
排气孔处的单向阀芯26,连接第一管接头211等部件都处在第二避让口2303的位置,为了便于装配,第二避让口2303的远端侧为开放结构。
结合上文各实施例的副手柄20,参阅图15b,本申请一实施例还提供一种介入控制组件,包括:
外鞘管310,装载状态下的人工植入物(装载状态下不可视)处在外鞘管310的内腔中;
基于直接驱动外鞘管310的控制手柄(即副手柄20),外鞘管310的一端固定连接于连接套210。
在具体连接方式上,外鞘管310的近端为插接段3101(处在鞘管段3103的近端,也可视为鞘管段3103的一部分)且由连接套210的远端延伸固定至连接套(装配状态下不可视)内。
参阅图9,为了保证连接强度,连接套210的侧壁开设有与插接段3101位置相应的加固孔,经由加固孔2106采用点胶、焊接、锚定件中的至少一种方式固定。
针对人工植入物的释放,下文以球扩方式为例,该方式也恰可以同本申请中主、副手柄的分离相协同,发挥更佳的效果。参阅图图16a~17a,在一实施例中,导管组件30还包括球囊导管330,球囊导管330包括:
球囊体331,设置在内鞘管340的远端部位,且在流体作用下切换于膨胀状态和折叠状态之间,装载状态下的人工植入物8处在球囊体331的外周;
导管体332,套设在内鞘管340的外周或与内鞘管320并行布置,导管体332的远端与球囊体331连通,导管体332的近端连接于主手柄10,导管体332内为流体通道。
操作时,人工植入物8以及球囊体331被包裹于外鞘管310中,一些情况下外鞘管可能在到达指病灶位置前即向近端回撤,此时球囊体331尚处在折叠状态,因此人工植入物8的远端会与球囊体331的外周形成凸起台阶86,在后续的递送过程中会产生戳伤组织的安全风险,本实施例提供一方式,即在球囊体331的远端部位暴露于外鞘管310后,可注入流体使其先行膨胀,由于球囊体331的近端部位尚被 外鞘管包裹,因此可保持在折叠状态;注入流体时,若人工植入物8暴露于外鞘管310的部位较多,可以通过适宜的流体压力使得球囊体331中仅暴露于人工植入物8的远端部位膨胀,而其他部分在人工植入物8的束缚下仍保持折叠状态。
球囊体331的远端部位充涨后可以消除或补偿凸起台阶86,使球囊体331的外周与人工植入物8的端面之间平滑过渡或减少高度差,以避免安全隐患。
导管体近端可对接灌注装置,用以向球囊体331内注入流体(例如生理盐水)以充涨球囊体331,现有技术中在球囊体向膨胀状态切换的过程中,轴向的不同部位的外扩趋势不尽相同。
例如流体先进入球囊体的近端部位并逐渐充涨,此时人工植入物仍处在压缩状态,流体无法通畅的到达球囊体的远端位置,人工植入物的远端部分的释放势必迟于近端,且可能相对于球囊体向远端侧滑移、甚至偏移出球囊体而影响释放效果。
本申请针对该问题提供了改进的方式,参见图17a,在一实施例中,在球囊体331内,设有处在内鞘管外周的流体引导件350,流体引导件350限定构成导流通道354,该导流通道连通球囊体内的远端部位和近端部位。
参阅图17a~图19b,球囊体331的轴向长度,略大于装载状态的人工植入物8,在流体引导件350的作用下,流体可尽快的到达球囊体331内的远端部位,因此球囊体331内的远端部位和近端部位基本上同步充涨(参考图19a中的虚线为流体的流动路径),相应的人工植入物8的两端先于中部膨胀,在此过程中,人工植入物8整体上形成束腰结构81,该束腰结构81可还可以在轴向上限制人工植入物8的滑移。
流体引导件350为管状,相对于流体引导件350、导流通道354的位置为以下方式的至少一种:
处在流体引导件350的外壁;
处在流体引导件350的内部;
处在流体引导件350的侧壁夹层或镂空区353。其中镂空区353的具体结构详见下述。
结合导流通道的具体结构,下文各实施例进一步说明。
导流通道354为开设在流体引导件外周壁的导流槽351。
相邻导流槽351之间的径向外凸的槽壁,可支撑折叠状态下的球囊体内壁,使得球囊体331在折叠状态下,导流槽351连通球囊体内的远端侧和近端侧。为了保证导流效果,流体引导件350应具备足够的长度,例如流体引导件350的远端侧和近端侧分别邻近球囊体331的远端侧和近端侧。
在一实施例中,导流槽351为多条,各条之间沿流体引导件350的周向排布,同一条导流槽351沿流体引导件350的轴向延伸(如图20a、图20b)或采用螺旋绕置(如图21a~图22b)的方式。
螺旋绕置时角度不易过大,否则会影响导流效果,例如沿流体引导件350的周向,同一条导流槽351的包角为0~180度,例如图21a中,同一条导流槽351的包角(两端周向位置的错位角度)约为60度。
参阅图20a~图21b,在一实施例中,相邻两导流槽351之间设有连通槽352。连通槽352为间隔布置的多个,轴向位置对应的连通槽352构成环形槽。
多条导流槽351、连通槽352彼此交汇形成导流网络。
在另一实施方式中,内鞘管320的外周设有流体引导件350,流体引导件350呈管状且处在球囊体331内,流体引导件350的管壁带有镂空区353,镂空区353连续或间隔的由流体引导件350的远端延伸至流体引导件350的近端侧。
镂空区353可以采用多种形式,例如图23a~图24b所示。
在另一实施方式中,流体引导件350与内鞘管320之间存在径向间隙,该径向间隙作为导流通道354(如图17b所示)。当然以上各导流方式也可以结合使用。
在复杂的体内环境下,导管组件30的远端为了顺利介入前行、或保持在特定姿态,有时需要进行主动调弯,例如导管组件30还包括调弯管340以及驱动调弯管340的牵引件341,调弯管340套设在内鞘管320的外周,调弯管340与牵引件341两者的远端固定连接,两者的近端均连接至主手柄10且相对滑动配合。
结合球囊导管时,调弯管340以及牵引件341均处在导管体332的外周,且调弯管340的远端避让球囊体331,在牵引件的作用下、调弯管340自身的远端可发生弯曲,进而会带动周边管件一并调弯,调弯管远端与其他管件(除牵引件)并严格不要求相互固定。
关于牵引件341的设置,在不同的实施例中,牵引件341的设置方式:
牵引件341为牵引管,且处在调弯管340的内侧或外侧(如图26a、图26b);或者
牵引件341为牵引线,且处在调弯管340的内侧(如图27a、图27b)、外侧或管壁内。
调弯管340的管壁带有夹层结构,夹层内固定有衬管(装配状态下不可视),牵引件341活动穿设在衬管内。
参阅图28~图34,主手柄10包括:
支撑体100,具有空间上的轴向,调弯管340的近端相对于支撑体100固定连接,内鞘管340以及球囊导管的导管体332均延伸连接至支撑体100的近端侧;
第一滑座110,相对于支撑体100沿轴向滑动配合,牵引件341的近端固定至第一滑座110;
第一驱动套111,转动套设于支撑体100且处在第一滑座110的外周,第一驱动套111与第一滑座110之间采用螺纹传动配合;
外壳120,固定套设于支撑体100,且至少一部分为处在第一驱动套外侧的指示段;
标识件122,沿轴向滑动安装于指示段且处在第一驱动套111的外周,第一驱动套111与标识件122之间采用螺纹传动配合。
第一驱动套111旋转时,可驱动第一滑座110轴向滑动,即拉动牵引线(即牵引件)近端,有与调弯管340的近端相对于支撑体100固定连接,因此牵引线会拉动调弯管340远端促使调弯管340远端改变指向。调弯角度在体内并不便于观察,因此可进一步结合标识件122,根据第一滑座110的位移量预判调弯效果。
尽管可以将标识件122固定连接至第一滑座110,但必须绕过第一驱动套111、或在第一驱动套111上开设视窗,以便观察,这样会造成空间浪费或结构强度的下降,本实施例中利用第一驱动套111同步驱动标识件122和第一滑座110,可保证准确指示并克服现有缺陷。在具体连接上,第一驱动套111带有内螺纹以及外螺纹,第一滑座110带有与内螺纹配合的外齿,标识件122带有与外螺纹配合的内齿。
标识件122和第一滑座110在第一驱动套111的作用下同步运动。为了观察标识件122,指示段的侧壁上设有与标识件122位置相应的视窗。
为了引导标识件122,在视窗的内缘或支撑体100上可利用导向结构限制标识件122运动方向,例如指示段的侧壁开设两条滑槽1211,标识件122处在侧壁外且横跨在这两条滑槽1211之间,标识件122的端部向内延伸穿过滑槽1211并作为内齿1221、与第一驱动套111的外螺纹配合。参阅图28,在一实施例中,标识件122的外侧可设置透明盖板123,固定镶嵌于指示段的外壁,为了便于安装,可设置边框121。
第一驱动套运动至合适位置后需要定位,以免与其他操作之间发生影响。一实施例中,第一驱动套外周沿轴向滑动套设有定位环,第一驱动套具有与定位环相互卡合的定位状态以及相互脱离的自由状态,定位状态下,定位环限制第一驱动套的旋转。
其中,第一驱动套和定位环之间的设置有相互啮合,使得第一驱动套处于定位状态的锁齿。
关于第一滑座110的导向,可以在支撑体100内设有沿轴向延伸的安装槽1001,在安装槽1001内固定有导向筒112,第一滑座110滑动套设于导向筒112,第一滑座110与导向筒112的外壁之间设有相互配合引导轴向运动的导向结构。
例如图31、图34所示,导向筒112的外壁带有轴向延伸的导向条1121,第一滑座110滑动内侧带有与导向条1121配合的滑槽1101。调弯管340的近端插入并固定于导向筒112。
参见图35~图37,为便于排气,导向筒112的侧壁设有第二排气孔1122,调弯管340与导管体332之间的径向间隙连通于第二排气孔1122,导管体332的近端穿出调弯管340的近端后进一步延伸贯穿导向筒112;
在第二排气孔1122处固定连接有第二管接头113,第二排气孔1122与第二管接头113限定形成第二排气通道1131,在第二排气通道1131内设有单向阀芯114。
沿由远端至近端方向,依次为:
调弯管340的近端与导向筒112之间的密封配合部位;
第二排气孔1122;
导向筒内壁与导管体332之间的密封配合部位;
以上各部位的设置,可使由第二排气孔1122注入的生理盐水只能进入调弯管340与导管体332之间的径向间隙,并向远端侧流动以实现排气。
本实施例中省略了外接的控制阀,单向阀芯114的工作原理与前述实施例的单向阀芯26相同,在此不做进一步的阐述。
第二排气孔1122的边缘设有第二环形座1123,第二管接头113与第二环形座1123插接配合,且彼此之间设有相互配合的止转结构。
第二管接头113的一端可带有螺纹结构,便于同外部管路快速拆装,另一端插入第二环形座1123内,第二环形座1123内可设置绕第二排气孔1122布置的密封圈115,第二管接头113插入第二环形座1123的端面与该密封圈115相抵密封,密封圈115带有弹性,可确保密封效果。
止转结构可防止拆装外部管路时,第二管接头113不必要的随动,止转结构包括:
插槽1124,沿第二管接头113的插入方向延伸,插槽1124设置在第二管接头113与第二环形座1123两者中其中一者的侧壁;
定位筋1132,与插槽1124配合,定位筋1132设置在第二管接头113与第二环形座1123两者中另一者的侧壁。
图35、图36中,第二环形座1123内壁示意了三个插槽1124,第二管接头外壁的相应位置设置三条定位筋1132。
为了在对接外部管路时,保证对接部位的强度,第二管接头113外周设置有第二防护套116,第二管接头113的外壁与第二防护套116的内壁之间构成管路插接间隙。其中第二防护套116分为两部分(分别为图35、图36中的第一部分116a和第二部分116b),分别固定设置在支撑体100和导向筒112上。
为了充涨球囊体331,在主手柄10的近端配置与导管体332相连的接口,此外为了在体内环境下可以轴向微调球囊体331的位置,参阅图28、图38~图41,在一实施例中,主手柄10还包括:
第二滑座130,相对于支撑体100沿轴向滑动配合;
第二驱动套131,转动套设于支撑体100且处在第二滑座130的外周,第二驱动套131与第二滑座130之间采用螺纹传动配合;
多通接头140,与第二滑座130的近端侧连接,球囊导管330以及内鞘管320两者的近端均连接至多通接头140,内鞘管320的内部为贯通的导丝通道321,多通接头140至少具有与导丝通道321和流体通道322分别连通的接口,具体如图39所示,连通导丝通道321的接口141,连通流体通道322的接口142。
第二驱动套131转动时,通过螺纹传动使第二滑座130相对于支撑体100沿轴向滑动,由于多通接头140与第二滑座130的近端侧连接,因此也带动了球囊导管330以及内鞘管320的运动。作为进一步的改进,多通接头140与第二滑座130的近端侧转动配合且轴向限位。
多通接头140与第二滑座130轴向限位,可确保第二滑座130的轴向运动同步传递至球囊体331和人工植入物8,而多通接头140与第二滑座130转动配合,侧允许相对于支撑体100转动球囊体331和人工植入物8,实现人工植入物8空间姿态的精准调节。在具体配合结构上,第二滑座130整体上为筒状结构,且至少一部分处在第二驱动套131内,第二滑座130的外壁与第二驱动套131的内壁之间螺纹配合,支撑体100上带有引导第二滑座130沿轴向运动的导槽1002。
参见图40、图41,多通接头140的远端与第二滑座130的近端两者转动插接配合,且两者之间带有相互配和的轴向限位结构,轴向限位结构包括:
卡齿1301,固定于两者中的其中一者且沿径向向另一者凸出;
卡槽1401,设置于两者中的另一者,接纳卡齿1301。
多通接头140可配置多个接口,分别对应导丝通道321、流体通道322、在进一步改进的方式中,还配置锁线通道143,锁线通道143中可以穿引在近端直接驱动的锁线360,该锁线360延伸至远端并处在球囊体331外侧,配合球囊体331上的线环结构,锁线360可以将人工植入物8的轴向位置进一步锁定。
例如图42,导管组件远端部位设有第一拉环381和第二拉环382,第一拉环381穿过人工植入物8远端的第一孔眼811,第二拉环穿过人工植入物8近端上的第二孔眼812;
锁线360远端依次穿过第二拉环382和第一拉环381后伸入内鞘管远端的引导头370(带有供锁线插入的锁孔),如此可实现人工植入物8轴向位置的进一步锁定,根据需要向近端回撤锁线即可解除对人工植入物8的束缚。
以下实施例的人工植入物以人工心脏瓣膜为例,参见图43、图44,一实施例中提供一种人工心脏瓣膜,包括支架800和瓣叶83,支架800带有单元格结构,支架的两端分别为流入侧834和流出侧833,支架内部为血流通道85,瓣叶83为多片、各瓣叶83处在血流通道内相互配合以相对的开放或封闭血流通道85。瓣叶83的边缘包括固定至支架800的固定缘831,以及与其他瓣叶83相互配合控制血流通道85的自由缘832。
为了解决周漏问题,支架800上连接有防周漏组件,防周漏组件为一体结构,包括处在支架内侧的基底84和固定于基底外侧的防周漏部件841,防周漏部件841为多个间隔分布的块状且位置与支架单元格的镂空区域对应。
支架800释放后的膨胀状态下,防周漏部件841由对应的单元格沿支架径向向外延伸,或径向上高出支架外周。
基底84和防周漏部件841形成方式可以为浸润融合,基底84可采用PET材质,防周漏部件841采用多孔材料,例如PU材质,孔是材料的自身结构间隙或或通过外加工而成。
参见图43,一实施方式中,按照所在单元格轴向位置的不同,防周漏部件841包括:
第一圈防周漏部件8411,第一圈防周漏部件8411布满所在的整个单元格;
第二圈防周漏部件8412,邻近第一圈防周漏部件8411的流入侧834,分布于所在的整个单元格的局部区域;
第三圈防周漏部件8413,邻近第一圈防周漏部件8411的流出侧833,分布于所在的整个单元格的局 部区域。
参见图45,另一实施方式中,防周漏部件841包括:
第一圈防周漏部件8411,第一圈防周漏部件8411布满所在的整个单元格;
第二圈防周漏部件8412,邻近第一圈防周漏部件8411的流入侧834,分布于所在的整个单元格的局部区域。
参见图46,另一实施方式中,防周漏部件841包括:
第一圈防周漏部件8411,第一圈防周漏部件8411布满所在的整个单元格;
第三圈防周漏部件8413,邻近第一圈防周漏部件8411的流出侧833,分布于所在的整个单元格的局部区域。
第二圈防周漏部件8412以及第三圈防周漏部件8413的轴向长度仅占半个单元格。
同一块防周漏部件中,由流出侧833至流入侧834逐渐增厚、直至外凸(沿支架径向)最高的部位后再逐渐变薄。厚度上的变化利于外凸最高的部位回收。外凸高度最大的部位更靠近流入侧834,图中可见防周漏部件841外凸高度最大处到所在单元格的流入侧834之间距离为S1,防周漏部件841外凸高度最大处到所在单元格的流出侧833之间距离为S2,其中S1:S2的比值范围为0.2至0.8。例如图46,S1:S2=0.8。
防周漏部件外凸后从面积上看可填满所在单元格杆件围成的空间,从外凸程度上看,防周漏部件与所在单元格的杆件侧缘相互贴靠,即防周漏部件的最低位置亦不低于单元格杆件的外周面,避免防周漏部件与杆件侧缘之间产生的间隙,避免该间隙吸收防周漏部件的形变而降低封堵效果,其中杆件侧缘理解为杆件朝向所在单元格内部的一侧。
本申请控制手柄件可独立的操作外鞘管,使外鞘管的运动与内部的其他管件相分离,同时也释放了对主手柄长度的限制,在回撤外鞘管时,可以直接驱动副手柄,且行程足以使得外鞘管的远端脱离主动脉弓,例如副手柄向近端回撤至极限位置时,导管组件中其余管件、尤其是调弯管的远端暴露(解除被外鞘管的束缚)较长的一段,例如0~20cm,以副手柄整体行程作为衡量时,行程一般10~40cm,以避让主动脉弓或导管组件远端的调弯部位,便于对人工植入物进行调整或其他操作。
参考图47,现有的球扩式瓣膜的介入输送系统一般包括滑动套设的内轴44和球囊导管42,球囊导管42的远端为通过流体充涨以释放人工植入物的球囊体423,人工植入物41(即以人工心脏瓣膜为例,下文也简称瓣膜)装载后、被压握至较小直径并绕置在球囊体423的外周,大致处于球囊体423轴向的中部区域。当人工植入物41达到人体内预定位置时,由近端向球囊体423内注入流体并充涨,最终人工植入物41在体内完成球扩释放。
在手术时需要向球囊体423内注入流体,由于球囊体423中部被人工植入物41压缩并与内轴44外周基本贴合,即该部位的流道受阻,从而流体一般先充涨球囊体423近端部位,导致人工植入物1存在向远端偏移的风险,进而影响人工植入物在体内位置的配准。
参考图48,现有其他球囊导管在球囊体423中部引入支撑件,在一定程度上可以保持球囊体423与内轴44之间的径向间隙,起到了支撑内部流道的作用,改善了球囊导管远端充涨严重滞后的问题,但由于受到支撑件尺寸的限制,流体进入球囊体423后,主要还是先进行近端的充涨,仅有部分流体在充涨球囊体423近端的同时或略滞后的时机下进入并充涨球囊体423的远端,虽然能缩短球囊体423两端的充涨时间差,但是效果仍有待提高。
在实际情况下,我们期望球囊能够形成“狗骨”的形状(或称“8字形”),即球囊体423轴向的两端先膨胀,其次再中部膨胀,不仅可对瓣膜起到定位作用,防止在球囊体423膨胀过程中瓣膜在球囊体423上滑动,也能使球囊体423的两端均匀地膨胀,有助于给瓣膜提供均匀的膨胀力。
参考图49至图53,本申请一实施例公开了一种利用流体驱动球囊导管的方法,球囊导管42具有相对的远端422和近端421,远端422为远离操作人员的一端,近端421为接近操作人员的一端。
本实施例的球囊导管42包括球囊体423以及导管体424,导管体424连通于球囊体423的近端,球囊体423由远端至近端依次包括第一部4233、中部4232以及第二部4231,这三个部位的内腔为相互连通的内部流道供流体注入,中部4232供人工植入物41装载固定,即图50a中的装载状态下,人工植入物41径向压缩且包裹在中部4232的外周。导管体424内具有主流道4241;
本实施例方法操作过程中包括如下步骤:
由导管体424的近端向主流道4241内注入流体;
将主流道4241向球囊体423输出的流体进行分流,仅允许部分流体进入并充涨第二部4231,针对另一部分流体进行引流,该部分流体越过第二部4231以及中部4232后进入并充涨第一部4233。
为了避免流道的复杂化,可采用的方式是所有用于充涨球囊体423的流体在分流之前均来自主流道4241。从流体的来源看,用于充涨球囊体423的所有流体都是由导管体424的近端通过主流道4241供应 的,仅仅是针对不同的直接充涨部位(即第一部4233和第二部4231)做了分流,在导管体424内部除了主流道4241以外不再配置其他用于供应流体的管路或流道,另外主流道4241内部也并不需要分隔(例如采用多腔并行的方式等)。
如图50b中所示,主流道4241内的流体(图中为了表达后续过程中的分流,示意性的包括了流体Q1和流体Q2,实际上在分流之前流体Q1和流体Q2呈混合状态)在向球囊体423输出时进行分流,一部分流体Q1进入并充涨第二部4231,另一部分流体Q2利用独立流道426进行引流并在越过第二部4231以及中部4232后进入并充涨第一部4233,其中该部分流体Q2在独立流道426的内部流动,且在越过第二部4231、中部4232时与这两个部位内的流体隔离开来、避免压力损失和扩散。由于分流后的各部分流体均来自导管体424的输送,因此导管体424内提供的流体输送空间称为主流道。
由于球囊体423的选材一般比导管体424具有更好的顺应性或弹性,即容易在流体作用的径向扩张形变,因此流体由导管体424进入球囊体423后,随着球囊体423的形变,流体会相对于在导管体424内呈现相对更为明显的湍流状态,继而直接作用至第二部4231实施充涨,而本实施例针对进入球囊体的流体,在其未完全进入湍流状态实施充涨时进行分流,至少允许一部分流体直接针对第二部4231实施充涨作用。
本实施例中的分流是针对来自主流道4241的流体,导管体424与内轴44两者的径向间隙为主流道4241,主流道4241为一体式流道,即内部不再采用多腔或多管路并行的方式进行隔离。为了精简结构,导管体424内的流体均由4241主流道向球囊体423输出。
被分流的部分可采用独立流道426,独立流道可理解为额外建立了相对封闭的引流流道,可避免进入独立流道426内的流体参与或过多参与对第二部4231的充涨,减少流经第二部4231以及中部4232时不必要的扩散,该部分流体可沿独立流道426以较小的阻力尽快到达第一部4233,以减少第一部4233和第二部4231充涨形变的时间差。
分流的主要目的是将来自主流道4241且将流进第二部4231内腔的流体进行部分截流,即将全部流体分流成两路、尽可能的同步注入第一部4233和第二部4231,并分别作用至球囊体423内壁使第一部4233和第二部4231同时膨胀,克服现有技术中近端先充涨的缺陷,进一步也解决人工植入物释放过程中的位置偏移问题。
参考图54,在主流道4241的流体45未注入球囊导管423之前,由于人工植入物41径向压缩且包裹在中部4232的外周,整个球囊导管423也仍处于压缩状态。
关于分流时机或相对位置,参考图55a至图55b,在一实施例中把流出主流道4241远端即将流进第二部4231内腔的流体45进行部分截流,即流体在导管体424与第二部4231的结合部位分为两路,其中一路进入并充涨第二部4231,另一路经由独立流道426形成的分流流道越过第二部4231以及中部4232后、进入并充涨第一部4233。
在另一实施例中,参考图56、图57a至图57c,还可以是把流出主流道4241远端即将流进第二部4231的流体45(包括流体Q1和流体Q2)进行全部截流,即将主流道4241远端输出的所有流体均进入独立流道426,独立流道426连通有分支流道4261,该分支流道4261与第二部4231连通,一部分流体Q1在流经第二部4231时,经由分支流道4261进入并充涨第二部4231,另一部分流体Q2经由独立流道426越过第二部4231以及中部后4232、进入并充涨第一部4233。本实施例中独立流道近端与导管体424远端可直接相连通,甚至还可以为一体结构,可进一步延缓第二部4231的充涨时间,便于保持与第一部4233形变的一致性。
第一部4233和第二部4231几乎同步的充涨形变后,由于中部4232更多的受到人工植入物的径向束缚,形变更为滞后,因此球囊体423进入两端充涨、中部相对收拢的过渡状态;该状态下尚可对人工植入物的位置加以调整或确认,而后继续向导管体424注入流体,直至球囊体423完全充涨、且人工植入物41径向扩张,如图58所示。上述的操作过程即相当于一种人工植入物的球扩释放方法。
如前文所述,在分流过程中,流体被分流为两路,分别针对第一部4233和第二部4231进行充涨,就每路而言,可包括一股或多股,图59为充涨第一部4233的这部分流体Q2分成3股(即形成流体Q21、流体Q22、流体Q23这三股)的示意图。
同一路的各股之间辐射分布,可利用分流件或分支流道4261的方式实现,可使球囊体423在形变过程中,周向的不同部位扩张程度相同或相近,减少流量或流速的控制要求。
为了保证同步形变效果,直接作用至第二部4231的一路流体,和直接作用至第一部4233另一路流体的流量比为1:0.6~1.5,流量的大小可以通过流道截面积的变化相应调整。
人工植入物41为筒状结构,进入独立流道426的流体经由筒状结构的内部越过中部4232,并进入第一部4233,可避免人工植入物形变后对分流流道的干涉。
球囊体423内具有延伸于远端和近端之间的轴向以及相应的径向和周向,流体由分流流道输出后, 按照不同的朝向,进入并充涨第一部4233的方式包括:
经由独立流道426沿球囊体423的径向输出、并充涨第一部4233;
和/或经由独立流道426沿球囊体423的轴向输出、并充涨第一部4233。
独立流道426在处于第一部4233内的部分,可根据流体输出方向设置相应的输出孔或导流件。
下文的一些实施例还提供了基于球扩释放的介入输送装置,并可用以实施上文的方法。
参考图60,本申请一实施例提供了基于球扩释放的介入输送装置,具有相对的远端422和近端421,远端422为远离操作人员的一端,近端421为接近操作人员的一端。介入输送装置包括内轴44以及处在内轴44外周的球囊导管42,内轴44与球囊导管42之间存在径向间隙,即为流体注入的内部通道。
球囊导管42包括球囊体423以及导管体424,导管体424连通于球囊体423的近端,球囊体423包括由远端至近端依次包括第一部4233、中部4232和第二部4231,中部4232供人工植入物41装载固定,导管体424内具有主流道4241,内轴44与球囊体423的径向间隙中设置有引流管425,主流道4241向球囊体423输出的流体中,至少有一部分流体经由引流管425越过第二部4231以及中部4232后进入并充涨第一部4233。引流管425将导管体424远端输出的流体进行分流,具体原理和过程以及相应的效果可参见前文。
利用引流管425可将来自主流道4241的流体分为两部分,一部分进入并充涨第二部4231,另一部分进入引流管425内部(即前文的独立流道426,由于引流管425处在内轴44的外周,因此该独立流道426即为引流管425与内轴44两者的径向间隙)直接输送至第一部4233,避免在第二部4231以及中部4232的扩散。本实施例采用简单的管件实施分流,不仅成本低、装配方便,而且可根据强度需求采用与周边部件相同的材质,降低选材难度。
下文的一些实施例还提供了基于球扩释放的介入输送装置,并可用以实施上文的方法。
参考图61a至图61b,本申请一实施例提供了基于球扩释放的介入器械装置,具有相对的远端422和近端421,介入器械装置包括内轴44以及处在内轴44外周的球囊导管42,球囊导管42包括球囊体423以及导管体424,导管体424连通于球囊体423的近端,球囊体423包括由远端至近端依次包括第一部4233、中部4232和第二部4231,中部4232供人工植入物41装载固定。内轴44以及导管体424的近端可连接并受控于控制手柄实施操控,就控制手柄本身而言既可以采用常规技术也可以采用本申请各实施例提供的方案。
内轴44与球囊体423的径向间隙中设置有引流管425,引流管425的远端与内轴44的远端固定,引流管425的其余部分悬浮在内轴44以及球囊导管423之间;
内轴44向球囊体423输出的流体中,至少有一部分流体经由引流管425越过第二部4231以及中部4232后进入并充涨第一部4233。
介入输送装置在体内输送时会因适应体内生理构造而转折弯曲,会导致引流管425位移,另外在流体作用下也可能导致引流管425位移而影响分流效果,本实施例中可采用前文的原理利用引流管对流体分流,重点在于引流管425的远端相对内轴4固定,可以对引流管425整体上进行限位,同时,其余部分采用悬浮设置即允许一定幅度的相对运动,悬浮设置可理解为引流管425与内轴44的径向间隙中不再设置彼此连接(或限位)的部件或配合结构,引流管425与内轴44两者之间在径向上能够在彼此间隙的范围内相对运动。
悬浮设置有利于提高球囊导管整体的顺应性,另外在球囊体扩张的初期,引流管425的流体入口可能球囊体内壁挤压造成局部封堵,悬浮设置则有利于引流管425近端自适应的相对内轴44径向偏移,以保证流体入口必要的暴露面积。
参考图62至图63,引流管425近端部位具有开放的端口且作为流体入口4254,经由导管体424输出的流体(需要分流的部分)直接从流体入口4254进入引流管425内部。流体入口4254可以是引流管425近端端口,或侧壁的开口,口径(截面积)可选择与引流管425内径尺寸相同,或比引流管425内径略大,均能起到分流的效果。
流体入口4254的轴向位置邻近球囊体423与导管体424的结合部位,充涨状态下,球囊体423与导管体424的结合部位内径变化较大,因此在充涨前也是流体的流动状态更容易改变的部位,流体入口4254的轴向位置邻近该部位,能获得良好的分流时机和效果。球囊体423受流体灌注后呈充涨状态,充涨状态下流体入口4254位于第二部4231相对于导管体424的流道截面积突变部位。
在引流管425的近端端口处,内轴44与引流管425的之间具有径向跨度为L1的第一间隙,第一间隙影响到分流进入引流管425部分流体的流量,即分流流道的通过能力;内轴44与导管体424之间具有径向跨度为L2的第二间隙,第二间隙影响流体的总流量,于引流管425的内径较小,进入引流管425的水路需要稍大的流量才能达到与另一水路相同的流速,因此,两个间隙的径向跨度比例满足L1:L2=1:1.25~1.6,最终能使分流后两个水路的充涨速度大致相同。
装载状态下,人工植入物径向压缩且包裹于中部4232的外周,第一部4233和第二部4231暴露于人工植入物41,便于减小形变启动压力,以及避免人工植入物的滑脱风险。
图63中,引流管的近端具有流体入口4254,该流体入口4254处在第二部4231内,以及时分流,输送至第一部4233的流体则通过处在第一部4233内的第一流体出口4255输出。
引流管425由远端至近端依次包括远端段4253、中间段4252和近端段4251,且分别与球囊体423的各个部分对应,引流管425的远端段4253带有与第一部4233连通的第一流体出口4255,第一流体出口4255位于远端段4253的管壁,和/或远端段4253的端面。
为了获得辐射输送的效果,远端段4253的管壁开设有多个第一流体出口4255,例如两个~四个。多个第一流体出口沿引流管425的周向分布,使流体从引流管的四周均匀的流向球囊体的第一部,也使球囊体受到的扩张力更均匀。
沿引流管425的长度方向,多个第一流体输出口4255处在远端段4253的中间部位,从而缩短了沿引流管外周的水路的路径,且使得相应的球囊体第一部4233中部最先受到的扩张力,有助于球囊体的均匀扩张。
参考图64,引流管425的近端与导管体424的远端相互连通为一体,近端段4251的管壁开设有与第二部4231连通的第二流体出口4256。
导管体424远端输出的流体可以全部进入引流管425,再通过引流管425进行二次分配而分别进入并充涨球囊体423的不同部位,本实施例可通过第一流体出口4255以及第二流体出口4256的位置和有效面积的配置、进行流量调控,提高对第二部4231以及第一部4233形变过程的可控性。
参考图65a、图65b,为了进一步稳定引流管425的近端的空间位置,引流管425的近端带有形状逐渐收敛的斜切段4257,斜切段4257的至少一部分伸入导管体424的远端内。
斜切段4257至少在邻近尖端部位可以伸入导管体424,据此限制径向上的空间位置,斜切段4257远端可以开放直接引流,斜切段4257具有一个或两个斜切面,如图65a中斜切段4257远端设置一个斜切面4258,将导管体424远端输出的流体进行引流。
如图65b所示,为了减少径向偏心度,也可采用形状对称的两个斜切面。引流管425的内腔开放于斜切面4258,且同时与导管体424的内腔以及第二部4231的内腔连通。既可以兼顾定位还可实现在端口部位直接分流,根据斜切的角度,还可以是两路的不同流量关系。
在一些场景下,为了保持引流管425的径向相对位置,以及分流流道周向的均匀性,内轴44与引流管425径向之间设有保持彼此之间径向间隙的隔离件441。
隔离件441可采用单独的零部件或一体成型的相应的零件上,例如,图66所示在引流管内壁分布筋条达到隔离的目的。
隔离件441还可以采用固定在内轴44与引流管425径向之间的镂空结构件。
为了定位引流管425的远端,参考图67a至图67b,内轴44的远端固定有引导头43,引流管425的远端与引导头43的近端侧固定,在引流管425的远端得到有效固定后,引流管425的远端封闭于引导头43,从而流体进入引流管425的远端时仅能从多个流体输出口进入球囊体,有助于球囊体的均匀扩张。
引导头43的近端侧带有与引流管425的远端相适配的定位结构431,定位结构431为供引流管425插入的结合槽(如图67a所示),或插入引流管425的结合柱(如图67b所示)。
本申请通过对进入球囊体423中流体的分配,实现球囊体423在人工植入物两端部分的同步形变,减少人工植入物在释放时位置偏移的风险,可以省略人工植入物的轴向定位结构。
图68中提供一种介入输送系统51,其包括控制手柄53,以及于受控连接于控制手柄53的导管组件54,以及设置在导管组件54用以负载并递送人工植入物55,当采用球扩释放时,导管组件54可包括球囊装置,而限位机构52则可应用至球囊装置,导管组件54可根据需要包括滑动配合在球囊装置外部的外鞘管和处在外鞘管内的中间轴,介入输送系统1整体上具有图示所示的近端5101和远端5102。
人工植入物具有装载于导管组件54上的装载状态和扩张状态,人工植入物可以是心脏瓣膜,例如人工主动脉瓣膜、人工肺动脉瓣膜等,下文的人工植入物以人工心脏瓣膜为例,包括支架和设置在支架上的瓣叶,其中支架为利用球扩释放的不锈钢材质等,支架本身可利用管材切割成型。
参阅图68~图71,本申请提供了一种用于介入输送系统的限位机构52,包括耦接部521和形变部523,耦接部521用于与介入输送系统51相连,且耦接部521具有与输送系统51相同的轴向以及相应的周向和径向;形变部523包括沿周向布置的多根杆件,各杆件分别具有第一端5251和第二端5252,第一端5251与耦接部521相连;第二端5252相对于第一端5251处在耦接部521轴向的一侧,各杆件基于弹性形变而具有适于介入输送的压缩状态以及相对的展开状态,在展开状态下,各杆件的第二端5252相对于在压缩状态下在耦接部521的径向上向外发散。
现有的结构止挡效果差,尤其是在球囊体稍充涨后,即人工植入物的释放初期失去止挡效果,另外 还有些结构复杂,需要相应的解锁操作。
本实施例中的杆件整体上为细长结构,一方面多根杆件尤其在第二端5251可以减少彼此牵引,避免局部失效时影响整体效果,尤其在与人工植入物相对偏心时效果更为凸显,另一方面在径向上可相对较大的扩张幅度以及针对下文中球囊体折叠形变时较佳的顺应性。
各杆件525的长度相同或不同,细长结构可理解为杆件525的长度为杆径的至少5倍。优选的为20倍。其中,杆件525的长度为第一端与第二端的连线距离。杆件525的截面为圆形时,杆径对应直径,若杆件的截面为其他形状,杆径应理解为等面积圆形的直径。
为了便于收束和外扩,杆件具有弹性,例如采用镍钛记忆合金,并热处理定型得到预定型状态,此时杆件不受束缚、自然舒展。
杆件的展开状态可理解为限位机构在使用时,杆件末端外扩至最大幅度的状态,例如限位机构配合球囊体使用时,球囊体充涨后,杆件末端相应外扩即为展开状态。
实际应用中,球囊体充涨后,可能彻底解除对杆件第二端的径向束缚,使得杆件的展开状态与其自身的预定型状态一致。如图77a所示,杆件不受制于充涨后的球囊体,则展开状态即为预定型状态。
此外,球囊体充涨后,球囊体端部形状可能对杆件第二端仍有径向束缚,此时杆件的展开状态下的展开角度则小于预定型状态下的展开角度。
本实施例中杆件的展开状态与预定型状态一致,便于回撤输送系统时,球囊体在折叠收拢过程中更利于引导各杆件径向收拢。杆件的压缩状态指杆件的第二端径向收拢,至少可适于经导管介入输送,将第二端保持在径向收拢所施加外力的对象可以是球囊装置或者外鞘管等至少一者。
例如,在另一实施例中,为了获得较大的扩张幅度,在展开状态下杆件的第二端端部与耦接部轴线距离为R1;在压缩状态下杆件的第二端端部与耦接部轴线距离为R2;且满足R1:R2=2~20:1。例如R1:R2=2~10:1。本实施例中杆件形状并不严格限制,当然采用细长结构时可获得更好的效果。
耦接部521相连于导管组件54上,各杆件525可相互聚拢并与耦接部521形成一直筒结构,各杆件525呈辐射状分布,各杆件525的第一端5251的汇聚位置为耦接部轴向的一端。杆件525具有一相对轴向的展开角度α,例如压缩状态(图71)的展开角度α小于展开角度(图70)的展开角度α。其中,在对应状态下,各杆件之间的展开角度相同或不同,第二端的轴向位置即可以相对对正还可以错位布置,即各杆件长度可以并不完全相同。通过角度α以及杆件长度可换算至第二端端部与耦接部轴线的距离R2。
杆件525在径向上外凸于装载状态下的人工植入物55或至少不低于人工植入物55,且第二端5252朝向人工植入物55,用以限制人工植入物55向限位机构52所在一侧运动。在人工植入物55轴向的两侧可以分别配置限位机构52,进而限制了人工植入物55在轴向上相对导管组件54的位移。
杆件525能够适应周围环境变化,例如人工植入物55在装载状态下,杆件525可形变径向收缩,以方便人工植入物的装载操作;以及装载完成后,杆件525适应性形变以起到限制人工植入物55的位移。
本实施例的限位机构结构更简单,且无需控制手柄来进行解锁操作,避免增加输送系统远端的径向尺寸。
如图72,导管组件包括至少一根管件,耦接部521相连于该管件(图示为下文中的内轴545),其中耦接部521为径向可形变的环形结构,耦接部521套设于内轴545外。在装配限位机构时,先将耦接部521径向外扩,套设于内轴545并移动至预定位置后,再将耦接部521径向内缩并贴合于内轴545的外周面,实现两者相连。驱使耦接部521径向外扩或内缩的方法可以是施加相应的驱动力,或者是径向内缩依靠耦接部521自身的弹性形变能力,例如一旦释放驱动力,耦接部521能够自行内缩。相应的,耦接部521可采用记忆合金等材料。消除在装配过程中,耦接部对内轴的损伤。
耦接部521的径向形变可以通过将耦接部做成类似弹簧形式,如图73所示,在一实施例中,耦接部521为轴向起伏的波浪结构且具有相对的波峰5211和波谷5212。其中与形变部523的第一端5251连接的一侧为波峰5211。波浪结构有利于适应耦接部521装配时的径向形变,间隔布置的波峰5211进一步减少各杆件的彼此牵引。
限位机构52整体可采用管材一体切割,该管材的内径大于所述内轴的外径,例如管材的内径为3.5~4.5mm,内轴的外径为1~2mm,总体而言,管材内径为内轴外径的2~5倍。
可以在周向上使各个杆件(尤其是第二端)获得相对较宽的尺寸,即减小对球囊体的损伤,例如耦接部521采用外径为5mm左右(壁厚为0.3~0.7mm)的管材切割而成,再经压缩后与外径为1.3mm左右的内轴匹配安装,又例如可将耦接部521紧压在内轴外周增大两者之间的摩擦力,并结合涂胶固定。耦接部521与球囊体装配时,可伸入球囊体端部的管脚后进行熔接,将该部分固定在球囊体的管脚中。
图69中,限位机构的数量为两个,用以对人工植入物55的远端和近端进行限位,而在一些实施例中,当只需要对人工植入物的远端或近端进行限位时,则只需配置一个限位机构即可。
关于耦接部521与形变部523之间的连接,如图74,两者为分体或者一体结构,优选的两者为一体 结构,并采用管材一体切割形成相应的波浪结构和多根杆件525。
形变部523的各杆件525具有绕耦接部轴线螺旋延伸的趋势。如图74所示,其中一杆件沿螺旋线5253(图示中的虚线)延伸,螺旋线5253的起点位于相应的波峰5211。
螺旋延伸有利于在轴向跨度保持不变时,进一步扩张杆件525自身的长度。且有利于置入球囊的折缝中:
结合多根杆件彼此独立的特点,在另一实施例中,限位机构52安装在球囊体542内时,球囊体542具有相对的折叠状态和充涨状态,折叠状态下在球囊体542带有多个折缝5424,各杆件525置入对应的折缝5424内。
如图77a~图77d,基于上文各实施例的限位机构52,本申请一实施例还提供一种用于递送人工植入物的球囊装置541,包括内轴545以及处在内轴外周的球囊体542,内轴545安装有处在球囊体542内部的限位机构52。
内轴可以是空心结构,例如可用以穿引导丝,球囊体542可在流体的作用下充涨以释放人工植入物,用于充涨球囊体的流体可以经由内轴输送,或输送系统还包括套设在内轴外周的中间轴543。中间轴543的远端可以与球囊体542的近端侧对接,两者相连通使得中间轴543与内轴545的径向间隙与球囊体542近端连通供流体输送。中间轴543与内轴545均为管件且可连接至控制手柄并配置相应的接口。
如图77a所示,介入输送系统中的导管组件还可以包括外鞘管544,外鞘管544的远端滑动套设在球囊体542的外周,外鞘管544的近端受控连接于控制手柄。外鞘管544会作用于球囊体542使其进一步压缩限位机构52的杆件525,保持输送系统的远端外周面平整,有利于在体内的介入递送以及避免损伤周边组织。在人工植入物被递送至预设位置后,可解除外鞘管544的束缚,如图77b、图77c所示,远端和近端的限位机构均暴露在外鞘管544外,相应的,杆件525基于自身弹性略径向外扩,而后随球囊体542的充涨而恢复至展开状态。
本实施例中,限位机构在被外鞘管544包裹束缚时,此时杆件为压缩状态,外鞘管回撤解除对限位机构的束缚后,杆件仅受到球囊体542的束缚,即总体上的径向束缚力降低,从而第二端径向外扩,但由于球囊体尚未充涨,杆件也并未完全展开,也是处于压缩状态,为了与前述的压缩状态区分,此处称之为中间状态。
参见图77d,当球囊体尤其是人工植入物暴露于外鞘管或系统中没有配置外鞘管及限位机构的情形下,在球囊体542被充涨前,由于人工植入物55轴向端面在径向上高于球囊体542外周,进而会产生较明显的径向高度转折,形成台阶551,存在安全隐患。
如图77e,在一实施例中,限位机构52的数量为一个且设置在内轴545的远端,人工植入物55位于该限位机构52的近端,杆件525作用于球囊体542使得球囊体外周面(理解为与人工植入物远端侧邻近的部位)不低于人工植入物远端侧的外周面,相当于补偿了上述台阶,降低风险,且有利于跨瓣。
当然在近端也可以根据需要采用该设置方式。尽管本实施例中并不严格限制杆件为细长结构,但由于杆件彼此独立,径向上具有较大的形变跨度,更利于补偿台阶551,其针对不同直径的人工植入物或球囊体通用性更强,本实施例其他结构特点可与文中其他实施例结合。
其中,“不低于”人工植入物远端侧的外周面理解为允许球囊体542外凸的部分略高于人工植入物远端侧的外周面,还可以大致齐平,“高于”时,由于球囊体542质地相对较软以及可适应性的径向形变,从而不至于产生与台阶551类似的安全隐患。
内轴545可以带有贯通的导丝通道,球囊体542处在内轴545的远端,且具有相对的折叠状态(图77b)和充涨状态(图77c)。球囊体542由远端至近端依次包括远端段5423、中间段5422以及近端段5421,其中中间段5422的外围供人工植入物55放置;限位机构52为两套,分别处在球囊体542的远端段5423和近端段5421内,两套限位机构52的形变部523相向布置,限制人工植入物55的轴向位置。
折叠状态下,中间段5422的长度与压缩状态的人工植入物55的轴向长度基本相等。球囊体542包裹在限位机构外周,折叠球囊体542时一并将各杆件收束聚拢,完成装载后限位机构52进入压缩状态,而人工植入物经压握径向形变后处在球囊体542外周。
限位机构52中的各杆件525置入对应的折缝5424内。球囊体542有序堆叠,减少无序堆叠导致人工植入物与形变部523之间的层数,例如本实施例中,人工植入物与形变部仅存在一层球囊体的间隔,杆件525的径向外凸效果更明显,提升止挡效果。其中,球囊体542在折叠状态向沿周向上的第一方向546卷绕,各杆件的螺旋方向为与第一方向546相同。
杆件525的第二端5252越宽越利于减少对球囊体542的损害,但考虑到杆件525不能干涉与之对应的相邻的折缝5424,因此杆件525的第二端5252的宽度(或直径)尺寸为0.7~1.8mm。
其中,杆件525的数量为折缝5424数量的公约数。在此结合杆件525的数量、展开角度以及第二端的大小进行说明:
止挡效果与展开角度有关,展开角度越大止挡效果越佳,但容易对球囊体造成损伤;杆件的个数越多止挡效果越佳,但相应的,第二端的尺寸缩小,容易对球囊体造成损伤。在一些实施例中杆件525的数量为4~10根,具体地,例如图79中杆件525为4根,或图80中杆件525为8根。杆件525的长度为7~17mm。
鉴于杆件525的展开角度与之弹性性能相关,在一实施例中,形变部523和耦接部521的壁厚为0.3~0.7mm。两者的壁厚可以相同或不同。
球囊体542在折叠状态下,至少一个杆件525的第二端5252在径向上不低于人工植入物55外周面,第二端5252作用于球囊体542使其形成限制人工植入物轴向移动的台阶5425。“不低于”的情况包括:
当外鞘管544的内径接近于人工植入物的外径尺寸,则杆件525的第二端5252在径向上可以理解为等于人工植入物的外径尺寸;
解除外鞘管的束缚后,允许杆件525径向外扩,其第二端5252在径向上略大于工植入物55。
如图78a~图78c,在另一实施例中,输送系统还包括中间轴543,中间轴543处在内轴外。限位机构为两个且包括第一限位机构5210和第二限位机构5220,第一限位机构5210安装在内轴545的远端且处于球囊体542(图示中加粗线条)的内部;第二限位机构5220安装中间轴543的远端且处在球囊体542的外部,并位于第一限位机构的近侧。人工植入物55处在两限位机构的之间。其中,第一限位机构5210可采用本申请各实施例的限位机构,第二限位机构5220用于填充外鞘管544和中间轴543之间的径向间隙以阻止人工植入物向近端移动。第二限位机构5220可采用本申请各实施例的限位机构或现有其他的限位机构。
外鞘管544在解除束缚时,在其自身的滑动路径上具有一极限位置,在该极限位置,第一限位机构5210和人工植入物55暴露在外鞘管544外,第二限位机构5220处在外鞘管544内。本实施例可以进一步提高安全性,避免第二限位机构5220暴露后划伤体内组织。第二限位机构5220处在外鞘管544内优选的方式是完全处在外鞘管544内。
控制手柄通过导管组件向球囊组件55注入流体即充盈介质(例如生理盐水),使得球囊体542膨胀,以驱使人工植入物扩张。
注入流体可以通过中间轴,另外中间轴也可以相对于球囊体滑动,即第二限位机构220是可运动的,根据时机或行程需要调整与球囊体的轴向位置以起到止挡的作用,此时为了输送流体充涨球囊体,球囊体的近端可以连接有导管体,导管体可以套在内轴外部,利于与内轴的径向间隙作为流体通道,或导管体与内轴并排布置(独立配置管件或采用多腔管的方式),导管体近端连接至控制手柄,并配置相应的流体接口。
在一些实施例中,中间段5422能够将注入球囊体542的充盈介质由近端段5421引导至远端段5423,使得球囊体542与远端段5423和近端段5421分别对应的位置同时被注入充盈介质,以降低球囊体542对人工植入物扩张时引起人工植入物相对球囊体542轴向移位的几率,以及获得释放过程中预期的姿态变化。
如图80~图83,在一些实施例中,杆件的第二端5252具有圆滑的外轮廓;
和/或杆件的第二端5252包覆有防护层;
和/或杆件靠近第二端5252的部分径向向内弯折使得第二端5252具有径向向内弯折的趋势。
三种结构均用以避免球囊体542在折叠/充涨过程中,球囊体542的内周面被形变部523的各杆件525划损。
其中,第二端5252可以涂敷高分子层以构成防护层,优选的,如图80所示,杆件525靠近第二端5252的部分开设孔5256,防护层部分嵌入孔5256内并通过点胶等形式加以固定。
为了提高第二端附近的顺应性,以更好的贴合并塑形球囊体,例如图81、图82,杆件靠近第二端的部分相对于所在杆件的其余部分具有更低的径向刚度。具体地,抵靠部5254开槽形成波浪型结构,能够在受到球囊体542作用后发生弹性形变,例如径向向内弯曲和/或周向扭转等等,在解除球囊体542的作用后,抵靠部5254弹性形变使得杆件恢复成原有的延伸趋势。开槽的宽度为0.02~0.2mm。
又例如图83,在未受到外力作用时,抵靠部5254径向向内弯曲。如图84,优选的,杆件525在展开状态下,抵靠部5254靠近第一端5251的端部5255为形变部523的最大径向尺寸位置。即在球囊体542折叠和充涨过程中,端部5255所在的圆滑部位作用于球囊体542,从而避免损伤球囊体542。
如图85a,在另一实施例中,提供一种基于球扩的介入输送系统,用于递送人工植入物,介入输送系统包括球囊装置54、调节线5710和锁线5720。其中球囊装置54包括内轴以及处在内轴545外周的球囊体542,内轴545的远端安装有处在球囊体542内部的限位机构(可采用前文各实施例),例如为周向依次布置的多个杆件525,杆件525的具体结构以及其他部位可参照上述实施例。调节线5710用于将人工植入物55可释放地固定在球囊体542上,调节线5710上的一端能够保持与球囊体542的固定,另一端 可穿过人工植入物55上的孔眼552,穿过的一端带有锁孔5711;锁线5720具有相对的锁定状态和解锁状态,在锁定状态下、锁线5720穿入各锁孔5711以限制人工植入物55,解锁状态下、锁线5720脱离各锁孔5711以释放人工植入物55。
锁孔5711的至少为一个,其中一个布置于人工植入物55的近端,调节线5710至少为一个,其中一个位于杆件525的近端一侧,且至少部分处在球囊体542外侧。锁线5720的近端受控于控制手柄,在锁定状态下,锁线5720的远端固定于内轴545的远端,例如插接至引导头,在解锁状态下,由控制手柄驱动锁线5720运动切换至解锁状态。
锁线5720在解锁之前,能够在球囊体膨胀的全过程提供对人工植入物55的轴向限位,结合杆件525对球囊体与人工植入物55之间径向落差的补偿,应用方式更广。
图85a示中仅展示了调节线为一根且布置在远端。如图85b在其他实施例中,调节线710可以是两根,分别布置在人工植入物55的远端和近端。如图85c,另一实施例中还可以结合外鞘管544使用。
递送时人工植入物55以及球囊体542被外鞘管544所包裹,根据手术进程可向近端回撤外鞘管544并暴露人工植入物55以及球囊体542,而后再充涨球囊体542对人工植入物进行扩张释放。
本申请的限位机构,通过优化形变部的结构,使其具有弹性形变的能力,进而延长对人工植入物的止挡时效,且在压缩状态下方便人工植入物的装配;杆件形变适应球囊体在折叠和充涨过程中的变化,以减小对球囊体的损伤。另外还可以在径向上减少彼此牵引,进一步保证人工植入物在偏心状态下的定位效果。
本申请一实施例提供一种用于输送人工心脏瓣膜的球囊装置641,可用于输送和扩张人工植入物65a,该人工植入物可为其他各实施例中的人工心脏瓣膜65或锚固支架656。
球囊装置641包括导管体6411、球囊体642,导管体的延伸方向作为轴向,当导管体6411拉直时也确定了与轴向垂直的径向及绕该轴向布置的周向。球囊体与导管体连通,球囊体能够接收来自导管体的流体,具有折叠状态以及在流体作用下的充涨状态,如图127中在折叠状态球囊体连接于导管体的远端,人工心脏瓣膜65压握在球囊体外部;如图128中导管体6411的近端处带有流体入口645,在充涨状态下流体能够从该流体入口645进入到球囊体内部并充涨球囊体,人工植入物基于球囊体的变化相应地从径向压缩状态膨胀至径向膨胀状态,使得人工植入物65a得以球扩释放。在某些情况下球囊体的远端、侧壁上也可设置流体入口,图中未示出。
参见图86-89,球囊装置内还包括限位机构62,用于限制人工植入物65a的轴向移动。具体的,可以限制人工植入物至少在一个轴向方向上的轴向移动,例如可以限制人工植入物近侧和/或远侧的轴向移动。限位机构可以位于球囊体内,也可以位于球囊体外,导管体和球囊体这两者中的至少一者与限位机构直接固定,或通过中间件与限位机构间接固定。
限位机构包括限位主体622,限位主体包括多根杆件(如杆件221),多根杆件整体上从轴向上的第一端延伸至轴向上的第二端,并分别在第一端、第二端聚拢,围成中空的笼形结构(具有内部空间62a),笼形结构的其中一侧(即在使用状态下朝向人工植入物的一侧)用以限制人工植入物65a的轴向位置。
多根杆件构造成笼形结构的侧壁,且杆件间隙在侧壁上形成镂空区,如图中的杆件6221a、杆件6221b之间形成镂空区,从而笼形结构的内部空间62a与外部空间62b通过镂空区连通,即镂空区可作为流体的充涨通道。
笼形结构的其中一部分为外扩部623,该外扩部相对于笼形结构其他部分具有最大的径向外扩程度,如图88所示(采用轴线所在平面对笼形结构进行纵剖获得笼形结构的纵截面),从笼形结构的外轮廓来看,外扩部为具有最大径向尺寸的区域,在轴向上外扩部可以是一个点位置,也可以是一段区域。
镂空区中的其中一些为主镂空区6222。对主镂空区:
例如,主镂空区6222和其他镂空区的区别在于,这些主镂空区6222可以是沿轴向跨越笼形结构具有最大外径的外扩部,如图86中杆件623a、杆件623b之间的镂空区即为主镂空区6222,杆件623b和杆件623e之间的镂空区也为主镂空区6222。
再例如,主镂空区6222可以是轴向跨度大于其他镂空区的镂空区。可参考图102,镂空区中的其他一些可以是辅镂空区6223,主镂空区6222也可以是轴向跨度大于辅镂空区6223的镂空区。
再例如,主镂空区也可以是跨越限位主体的第一端和第二端的镂空区。
沿限位机构的周向,两个主镂空区6222在外扩部区域沿周向依次间隔分布。另外,同一主镂空区内的镂空部位连续延伸(即内部不再通过实体部件划分更小的区域)。
在使用状态下,球囊体包裹在限位主体的外周,笼形结构的朝向人工植入物的一侧限制人工植入物65a的轴向位置,笼形结构的背离人工植入物的一侧起到为球囊体远端提供引导角的作用,使人工植入物在体内的介入输送更为顺畅。当流体从流体入口645进入到球囊体内部时,流体可从内部空间62a经主镂空区6222流向外部空间,从而充涨球囊体。
球囊装置还包括一内轴643(可作为中间件),内轴的远端固定有引导头646,内轴穿设于导管体和球囊体内,例如,内轴可以为导丝轴,用于容纳导丝。
限位机构62还包括耦接件621、耦接件621可以固定于内轴并与限位主体相连,可理解为在球囊装置上装载有人工植入物时(即使用状态下),耦接件621可套设于内轴外,且两者的位置相对固定,另外耦接件与限位主体可直接或间接相连,使得在使用状态下耦接件、导管体、限位主体三者的位置相对固定。另外在本实施例的限位机构使用时,限位机构装配到球囊装置的球囊体642内,球囊体642具有相对的折叠状态和充涨状态,如图97中折叠状态下在球囊体642带有多个折叠部位6424,各折叠部位6424可置入对应的主镂空区内,可见球囊体42通过主镂空区能有序的进行折叠,外扩部外周仅覆盖一层球囊体,避免了无序堆叠导致限位主体的最大径向尺寸增加。
另外,在人工植入物装载在球囊装置的过程中,限位主体周向上的不同位置会受到径向束缚力,但不同位置的受力方向并不一致,因而在外扩部设置主镂空区,更便于主镂空区两侧的杆件在周向上可以自适应,即根据不同方向、大小的径向束缚力来调整间距(即杆件自适应调节主镂空区的大小),便于装载。
如图86所示,笼形结构624具有沿轴向间隔布置的两个聚拢(收拢)部位(收拢部位624a、收拢部位624b),笼形结构的侧壁延伸在两个收拢部位之间(即多根杆件在两个收拢部位之间延伸),各收拢部位环绕且临近内轴分布。收拢部位624a、收拢部位624b分别为杆件延伸路径上的起点和终点,两者环绕且临近导管体。在一些实施例中,如图91、图92所示,杆件在两个收拢部位(收拢部位624a、收拢部位624b)之间延伸过程中可能会存在其他的收拢部位,如收拢部位624d、收拢部位624c。由于在对人工植入物进行限位的状态下,本实施例并不期望限位机构产生径向压缩,引入多处收拢部位能够增强笼状结构的周向强度。
在一些实施例中,沿限位机构的轴向,主镂空区的至少一侧延伸邻近该侧的耦接件,邻近可理解为两者相对接近,且构成该主镂空区的杆件可直接或间接相连。例如图87所示,耦接件可设置在笼形结构624的内部,通过杆件间接连接并支撑笼形结构;如图88所示,耦接件621至少为一个,且与其中一收拢部位连接,可理解为各杆件的至少一端收拢于耦接件。
再如图89所示,耦接件621为两个,为沿轴向间隔分布的第一耦接件6211、第二耦接件6212,且第一耦接件6211、第二耦接件6212分别与对应的收拢部位连接,主镂空区沿轴向跨越笼形结构的外扩部且两侧分别延伸接近第一耦接件6211、第二耦接件6212,主镂空区6222对应图中的跨度范围W1。
再如图93所示,耦接件621为两个,为沿轴向间隔分布的第一耦接件6211、第二耦接件6212,主镂空区6222的近端侧(图中的右侧)延伸邻近至第一耦接件6211,主镂空区6222对应图中的跨度范围W2。另外,上述各耦接件可通过粘接、熔接、卡接的方式与内轴连接。限位主体的外扩部的外径大于耦接件的外径,例如,外扩部与所述耦接件的外径比为2~4:1,优选为3:1。
参考图93至图96,本申请还提供一种用于输送人工植入物的球囊装置641,球囊装置641包括导管体6411、球囊体642、限位机构62,本实施例提及的导管体、球囊体、限位机构可结合其他各实施例。
限位机构被配置为至少当人工植入物以径向压缩状态安装在球囊体上时,限制人工植入物在轴向上的移动,限位机构具体包括限位主体,限位主体整体上为笼形结构624,可采用多根杆件聚拢形成,笼形结构的其中一部分为外扩部,该外扩部相对于笼形结构其他部分具有最大的径向外扩程度,该笼形结构及外扩部的结构也可结合其他实施例。
沿限位机构的轴向,限位主体一端为使用状态下朝向人工植入物65a的第一端6224,另一端为相对的第二端6225,外扩部623邻近限位主体的第一端,如图95所示,当人工植入物65a装载于球囊装置时,此时限位主体处于使用状态,第一端6224朝向人工植入物65a,第二端6225与第一端6224沿轴向间隔设置,限位主体在轴向具有一定跨度即第一端6224、第二端6225之间的距离,相对于第二端6225,外扩部更接近第一端。
球囊装置641还包括内轴643,内轴穿设于导管体6411和球囊体内部,限位机构还包括耦接件621,耦接件固定于内轴并与限位主体相连。
外扩部623邻近限位主体的第一端6224,也可理解为,外扩部与第二端6225之间的轴向距离H2大于外扩部与第一端6224之间的轴向距离H1。
从整体上看,处在外扩部与第二端之间的杆件623d,处在外扩部与第一端之间的杆件623c,杆件623d的延伸趋势比较平缓,便于引导介入递送。杆件623c具有更明显的立陡趋势,具有更佳的止挡效果,减少限位主体与人工植入物之间的轴向错位。
根据杆件623c的延伸趋势变化,如图95中限位主体中在第一端6224一侧与该侧的耦接件(即为第一耦接件6211)之间形成容纳人工植入物65a端部的内凹区62241,该内凹区62241大致呈棱台形,且朝向第二端6225收敛。
笼形结构如图96所示(采用轴线所在平面对笼形结构进行纵剖获得笼形结构的纵截面),从外扩部的两端延伸方向来看,笼形结构由外扩部623起径向向内延伸形成,如图中外扩部623的两端沿径向向内延伸至第一端6224、第二端6225,且外扩部的位置沿轴向向第一端6224偏移甚至可越过第一端,即形成上文所述的内凹区62241。
本申请另一实施例还提供一种用于输送人工植入物的球囊装置,球囊装置641包括导管体6411、球囊体642、限位机构62,本实施例提及的导管体、球囊体、限位机构可结合其他各实施例。
如图86、图90所示,限位机构62具体包括限位主体,限位主体包括多根杆件6221在整体上围成笼形结构,笼形结构的其中一部分为外扩部623,该外扩部相对于笼形结构其他部分具有最大的径向外扩程度,如图86中杆件6221a、杆件6221b上各个部分具有不同程度的外扩,与限位主体的中心轴线之间存在一定距离,杆件上与中心轴线距离达到最大的位置处,该处即为外扩部。
从整体来看,杆件6221a、杆件6221b之间形成上述的主镂空区6222。在经过外扩部的横截面上,如图97所示,各杆件6221沿限位机构的周向间隔布置(如图中的杆件6221a、杆件6221b),且各杆件的中心点所围的区域趋近于多边形。
在人工植入物的装载过程中,限位主体周向上的不同部位对于径向束缚的抵抗力略有差异,各杆件在周向上可自适应,即各杆件可基于局部形变适应装载,不至于引发笼形结构的整体形变。另外,多边形相邻顶点之间的空隙(对应上文的主镂空区)可收纳球囊体的折叠部位,使球囊体能有序的进行折叠,减小装载后径向尺寸。
各杆件的中心点所围的多边形为正多边形,且边数根据该部位杆件数量可以为4~12,优选边数为6~8,保证周向的强度的同时兼顾较好的形变适应力。
沿限位机构的轴向,限位主体一端为使用状态下朝向人工植入物65a的第一端6224,另一端为相对的第二端6225,限位主体的两端均向限位主体的中心轴线收拢,相比于现有技术中一端开放的限位主体,两端收拢的笼形结构能够提供更好的径向支撑力。
在一些实施例中,笼形结构624有多根杆件围成,各杆件6221在空间上可沿球面或椭球面延伸,从而笼形结构624整体上大致形成球体或椭圆体,其中椭球体的截面为一椭圆面,椭球面的长轴与轴向方向一致,如图86所示,周向间隔的各杆件沿球体或椭球体延伸(各杆件绕限位主体的轴线旋转形成连续的球体或椭球体,前文中关于外扩部的径向尺寸也可以参照以该方式所构成的旋转体进行测量),在径向的横截面上各杆件的中心点连线仍呈多边形。
在一些实施例中,如图93、图95所示,笼形结构有多根杆件围成,各杆件在空间上可沿锥体6241延伸,可理解为各杆件绕限位主体的轴线旋转形成的锥体,其中锥体包括第一锥体62411和第二锥体62412,第一锥体和第二锥体可处在外扩部的两侧或同侧(图93中两锥体处于外扩部两侧、图95中两锥体处于外扩部同侧),第一锥体和第二锥体可以采用相同锥度,也可采用不同锥度。
当第一锥体和第二锥体采用不同锥度,也可理解为,第一锥体和第二锥体由外扩部起形状逐渐收拢,且收拢的趋势不同,第一锥体和第二锥体的相交处即为外扩部的位置(如图93所示)。
参考图94至图99,当人工植入物65a装载于球囊装置时,此时限位主体处于使用状态,沿限位主体的轴向,限位主体一端为朝向人工植入物的第一端6224,另一端为相对的第二端6225,与第一端6224衔接的为第一锥体62411,且第一锥体的收拢趋势更快。
两个锥体的偏移方向、径向收拢趋势会影响笼形结构的整体形状,例如图99第二锥体62412沿轴向朝第二端6225偏移并相对缓慢的径向收拢,第一锥体62411朝向第一端(即远离第一端的方向)偏移并相对快的沿径向延伸收拢;例如图96,第二锥体62412沿轴向朝第二端6225偏移并相对缓慢的径向收拢,第一锥体62411也朝向第二端偏移并相对快的沿径向延伸收拢。例如第二锥体62412沿轴向朝第二端6225偏移并相对缓慢的径向收拢,第一锥体62411沿径向收拢。
如图96所示,第一锥体62411相对于限位主体径向偏移的角度A小于45度,作为优选,该角度小于30度。第二锥体62412相对于限位主体径向偏移的角度B大于60度。
第一锥体和第二锥体交互于外扩部,且,外扩部均为两个锥体的最大径向尺寸处,且在交汇部位的两个锥体的夹角C为20~120度。
关于耦接件与输送系统的连接结构,如图127、图101所示,输送系统的球囊装置641包括导管体6411、球囊体642以及内轴643,内轴穿设于导管体和球囊体内部,限位机构还包括与内轴连接的耦接件。
限位机构62安装在球囊体642内部且套设在内轴643外,耦接件621为径向可压缩的管状结构,可压缩可理解为耦接件在装配过程中径向可压缩,但在使用状态下耦接件的形状保持固定。
例如耦接件621在装配前的内径可以大于导管体外径,装配时驱使耦接件621径向内缩箍紧并固定于导管体。
耦接件621为了获得径向形变能力,可以采用网格节后或者波浪结构,如图101所示,耦接件621 为轴向起伏的波浪结构且具有相对的波峰6213和波谷6214,波谷在耦接件的周向间隔布置,其中与限位主体连接的一侧为波峰。波浪结构有利于适应耦接件装配时的径向形变,间隔布置的波峰6213进一步减少各杆件的彼此牵引。
关于杆件的分布,笼形结构624由多根杆件6221围成,所有杆件在空间上限定笼形结构的侧壁,为了保证必要的支撑强度,优选且没有孤立的杆件延伸在两耦接件之间,即就单根杆件而言,在延伸的过程中至少与相邻杆件交汇一次,相邻杆件之间的相交部位为交汇点。相比于现有的金属丝编制形成的限位机构,虽金属丝之间也会有交叉点,但该交叉点处的两根金属丝之间是可相对移动的,而本申请中相邻杆件的交汇点均为固定的节点,提高了径向支撑强度。
如图95所示,所有的杆件由其中第一耦接件6211起延伸至第二耦接件6212,且在延伸路径上至少带有一分叉62211,或如图93所示,杆件由第二耦接件6212延伸至第一耦接件6211,杆件在周向上与相邻的杆件交汇形成交汇点62212。
沿外扩部周向,笼形结构624上间隔分布多个交汇点62212,通过多处的分叉或交汇,从而增大外扩部与球囊体的接触面积,使球囊体周向被撑开的形状更为理想,同时避免了过细的杆件导致限位机构刚度不够、容易损伤球囊的问题。
针对较宽的杆件,为了调整其刚度,可做切缝处理,如图93中切缝6226在笼形结构中一般并不扩张,因此并不理解为镂空区。
关于主镂空区的分布,参考图86、图102,主镂空区的数量为4~12个,优选数量为6~8个,各个主镂空区形状相同且沿周向均匀布置,作为优选,主镂空区为条状。
参考图103,沿限位主体的轴向,主镂空区在轴线上的投影长度为L1,限位主体在轴线上的投影长度为L2,L1至少占L2的40%,甚至至少占比60%以上。作为优选,主镂空区的投影长度L1为限位主体投影总长的75%~100%。且沿限位主体轴向,主镂空区可往外扩部的两侧延伸,且延伸出的长度为限位主体总长的至少20%。
若将主镂空区沿径向投影在轴线所在的平面,主外扩部为投影区最宽的部位,为了增大外扩部与球囊体的接触面积,主镂空区数量采用6~9个。
在一些实施例中,笼形结构的镂空部位中可包括主镂空区6222以及相对的辅镂空区6223,其中辅镂空区避让外扩部623,例如两杆件可通过在延伸路径上通过分叉再交汇的方式形成辅镂空区6223。从主镂空区、辅镂空区的周向跨度来看,主镂空区沿周向的最大跨度S1位置即对应着外扩部的位置,辅镂空区6223沿周向的最大跨度S2位置避让外扩部,且小于主镂空区的跨度S1。限位机构可采用管材一体切割成型,利用管材进行一体切割时,辅镂空区6223对应的切缝可延伸至耦接部,结合图102、图104,延伸至耦接部的切缝部分未进行扩张,也最终导致辅镂空区的周向最大跨度小于主镂空区。
在利用管材进行一体切割时,例如图104所示,管材具有初始的外径D1,而耦接件装配后的外径D2小于D1,笼形结构外径D1的管材可提供更长的周向距离,可以更灵活的配置杆件数量(可在沿限位主体某一部位的周向统计)以及获得更大的杆件宽度和强度,且可避免杆件宽度太细容易划伤球囊。
参考图105~图106,本申请一实施例还提供了一种用于输送人工植入物的球囊装置,具有相对的远端和近端,球囊装置641包括内轴643、球囊体642、导管体6411、限位机构62,本实施例提及的导管体、球囊体、内轴可结合上文各实施例。
限位机构包括耦接件621、限位主体622、引导管625,耦接件与内轴连接,耦接件还至少与限位主体、引导管的其中一者连接,下文所涉及的耦接件、限位主体可结合上文各实施例。
限位主体整体上为笼形结构,笼形结构可采用多根杆件在空间上沿球面或锥体延伸形成,限位主体周向间隔设置杆件,相邻杆件之间形成主镂空区,笼形结构、杆件和镂空区的结构也可结合上文各实施例。
引导管625连接于限位主体的近端侧,引导管625且与限位主体采用形状记忆合金材质(如镍钛合金)的管材一体切割成型,例如管材具有初始的外径D1,切割形成引导管、具有多根杆件的限位主体,引导管的外径即为管材的外径D1,多根杆件可经模具等预成型工艺制成笼形结构,基于形状记忆合金的特性,在限位机构的装配过程,限位主体可恢复至管状。
耦接件具有多种分布方式,如图105所示,耦接件621a可设于引导管的内部,与引导管的内壁相连;或如耦接件621b设于引导管的近端;或如耦接件621d设于限位主体的远端;再如耦接件621c设于限位主体的内部,几种耦接件可单独使用或组合设置。
再如图106所示,耦接件可包括沿轴向间隔布置的第一耦接件6211、第二耦接件6212,分别用于与限位主体、引导管相连,两耦接件均处于内轴的外周,且至少一耦接件固定于内轴,球囊体的远端部位还包裹第二耦接件。
参考图107至图108,内轴643与导管体6411之间的径向间隙为与球囊体内部连通的流体通道,在 人工植入物的球扩释放时,流体通道内的流体进入球囊体内,并结合上述的引导通道并对球囊体进行充涨。
第二耦接件6212处在引导管625的近端,且临近球囊体642与导管体6411的连接部位,第二耦接件6212可将流体通道内流体进行分流,在球囊体未充涨前、将部分流体分流至引流管内部,且该部分流体最终通过笼形结构的镂空区充涨第一部。
引导管625的近端带有缩径段6252并通过该缩径段与对应侧的耦接件相连,以适用于不同直径的耦接件与引导管之间的衔接。
引导管带有流体入口6251,流体入口6251分布在于缩径段和/或引流管的周壁,作为优选,引导管的周壁整体上带有镂空的间隙,该间隙可以是如图105中的长条形镂空,也可以是图110中圆形镂空,在人工植入物还在压握状态下,充分利用球囊体中部与导管体之间的间隙,以使流体更快的通过该间隙,实现流体同时对球囊体第一部、第二部的同时充涨。在一些实施例中,引导管连接于限位主体的近端侧,在使用过程中限位主体对人工植入物的远端进行限位,引导管内部充当输送系统内充涨流体流道,起到引流的作用。
参考图111,为了进一步对人工植入物的近端进行限位,限位主体的数量为两个,分别为位于引导管近端的限位主体622a、位于引导管远端的限位主体622b。
限位主体22a、限位主体22b均为笼形结构,两个笼形结构相互独立,例如,图111中两个笼形结构均由多根杆件在空间上沿球面延伸形成,图112中两个笼形结构由多根杆件在空间上沿锥体延伸形成;图113中限位主体622a由多根杆件在空间上沿球面延伸形成,限位主体22b由多根杆件在空间上沿锥体延伸形成;图114中两个笼形结构的第一锥体62411的相对于限位主体径向偏移的趋势(即偏移角度)不同。
介入输送系统包括控制手柄63,以及于受控连接于控制手柄63的导管组件64,人工植入物65a负载在导管组件64上。在球扩式的介入输送系统中,导管组件64可包括球囊装置641,还可包括滑动配合在球囊装置外部的外鞘管644。
球囊装置641包括球囊体642,且由远端至近端依次包括第一部6421、中部6422和第二部6423,中部6422供人工植入物65a装载固定。
限位机构整体设置在球囊体642内,如图107中,限位主体位于第一部6421,引导管625套设在内轴外,且从限位主体的近端侧向球囊体的中部、以及第二部延伸,引导管625与内轴643之间留有供流体通过的引导通道,作为优选,引导管的长度范围为36mm~50mm,内径范围为1.6mm-2.3mm。且引导管的近端与内轴相对固定,下文提供两者的固定改进方式。
本申请的限位机构的结构简单,可采用管材一体切割成型,耦接件、限位主体的具体结构可结合上文各实施例,例如图115中管材具有初始的外径D1,切割形成相应的两处波浪结构和多根杆件、带有镂空间隙的引导管,对应着两个耦接件、限位主体、引导管三部分结构,引导管的外径即为管材的外径D1,多根杆件可经模具等成型工艺制成笼形结构,且至少一个耦接件经过径向压缩成型后再使用,至少一个耦接件的外径D2小于D1。
在输送系统上未安装限位机构的情况下,人工植入物被压握在输送系统的导管(例如球囊体)上,则由于压握状态下的人工植入物的外径大于该导管的外径,人工植入物的近端、远端会和该导管形成台阶,这会导致一定风险。而限位机构的限位主体则可以填充该台阶,特别是可以填充远端台阶,有利于植入,例如当人工植入物为人工心脏瓣膜时,有利于跨瓣。另外,限位主体的周向强度及台阶效果(外扩部相对于人工心脏瓣膜形成阻挡台阶)与管材的壁厚相关,管材壁厚选择0.1mm到0.25mm。
参考图107至图116,本申请一实施例还提供了一种用于递送人工植入物的球囊装置641,包括内轴643、导管体6411以及球囊体642,球囊体642由远端至近端依次包括第一部6421、中部6422和第二部6423,中部6422供人工植入物65a装载固定。内轴643安装有处在球囊体内部的如上述各实施例所述的限位机构62,限位机构包括耦接件621、限位主体622、引导管625,下文涉及的耦接件、限位主体、引导管结构可结合其他各实施例。
耦接件包括沿轴向间隔布置的第一耦接件6211(位于近端)、第二耦接件6212(位于远端),两耦接件穿套于内轴643上,耦接件和内轴643可粘接,或者如图116所示耦接件外也可套设套管62121,便于采用工装66将止挡件推入球囊体。
限位主体用于填充球囊体642第一部6421,且不干涉球囊体中部的装载区域,起到为球囊体远端提供引导角的作用。限位主体周向间隔设置杆件,相邻外扩部之间形成主镂空区,杆件和镂空区的结构可结合上文各实施例。
球囊体642具有相对的折叠状态和充涨状态,如图97中折叠状态下在球囊体642带有多个折叠部位6424,各折叠部位6424嵌入笼形结构内部即对应的主镂空区内,且外扩部外周仅覆盖一层球囊体,若没 有主镂空区的避让,可能导致折叠部位6424形成三层外包结构,导致限位主体的外扩部处尺寸增加不利于装载。引导管625贯穿球囊体中部的装载区域,且引导管625可在周壁上设置流体入口6251,便于球囊体充涨时,能同时充涨第一部6421、第二部6423。
本实施例的限位机构采用管材一体切割成型,其中管材可采用记忆合金等材质,在装配进入球囊体之前进行预定型形成笼形结构,在装配时可将止挡件拉直,以便于装配。
整体球囊装置的装配过程如下:
1、先将第一耦接件6211通过胶粘固定在内轴643上,将限位机构拉直形成直管形状;
2、从球囊体远端管脚将限位机构62和内轴643一同推入球囊体642,限位主体恢复至预定型的笼形结构,还可以配合施加轴向推挤对限位主体塑形,如图116中可通过工装66给限位机构施力进行推送或挤压;
3、推入球囊体后再将第二耦接件6212固定在内轴643上,可通过粘接的方式,或者第二耦接件6212熔接在球囊体远端管脚上,或者在第二耦接件6212上增加套管62121以与球囊体远端管脚固定连接。
参考图117,本申请还提供了一种经导管植入物系统,包括球囊装置641和人工植入物65a,球囊装置641包括限位机构62、用于输送流体的导管体6411以及与导管体连通的球囊体642,人工植入物65a以径向压缩的装载状态安装于球囊体上,并在轴向上受限位机构的阻挡,且至少人工植入物65a的远端受到限位机构的阻挡,其中导管体、球囊体、限位机构可结合上文各实施例的限位机构。
球囊体642具有相对的折叠状态和充涨状态,当人工植入物在介入输送时球囊体处于折叠状态,操作者向球囊体642注入流体即充涨介质(例如生理盐水),使得球囊体642充胀,以驱使人工植入物65a扩张、释放,在人工植入物释放过程中即球囊体充涨过程中,导管体6411与内轴643之间的径向间隙为与球囊体内部连通的流体通道,引导管625与内轴643之间留有供流体通过的引导通道,引导管625可将流体通道内流体进行分流,并通过引导通道实现流体同时对球囊体第一部、第二部充涨,当人工植入物释放完成时球囊体处于充涨状态。在输送过程中,限位主体用于填充球囊体642第一部,限位主体上朝向第一端的一侧使人工植入物5a的远端受到阻挡,实现在充涨过程中人工植入物的定位效果。限位主体上朝向第二端的一侧起到为球囊体远端提供引导角的作用,使人工植入物在体内的介入输送更为顺畅。为了起到足够的引导效果,限位主体的径向尺寸应大于人工植入物压握在球囊体上的径向尺寸,但同时不能过大,以免影响装配,作为优选,限位主体的径向尺寸采用7.5mm-9.5mm。
输送过程中可通过在球囊体的近端外部设置止挡件67,对人工植入物的近端进一步限位,也可通过本领域常规的锁线结构对人工植入物的近端进一步限位。
上述各实施例中的经导管植入物系统还包括控制手柄63、外鞘管644,其中控制手柄的近端具有与导管体连通的接口631(如图127所示),用于注入流体。
外鞘管644滑动配合在球囊装置外周,外鞘管的近端连接于控制手柄,外鞘管和球囊体配置为能够相对运动,使外鞘管包裹或暴露人工植入物。在人工植入物在介入输送的过程中,外鞘管644套设在球囊装置、人工植入物的外层,起到保护作用。在人工植入物被递送至预设位置后,可通过操作控制手柄来解除外鞘管644的束缚。
在植入过程中,限位主体包括装载状态、中间状态及扩展状态。其中,在装载状态,限位主体位于球囊体和外鞘管内部,并受到球囊体和外鞘管的两者的径向力。此处的外鞘管可以是外鞘管644(即导管鞘),也可以区别于输送系统的其他装置,例如导管鞘或者过鞘保护器的外鞘管。
在中间状态,限位主体脱离外鞘管的径向束缚,只受到所述球囊体的径向力。此时限位主体相当于装载状态适当扩张,但由于还受到球囊体的径向力故未完全扩展,因而称之为中间状态。
当输送系统及人工植入物到达体内的合适部位时,可以对球囊体注入流体进行充盈,当球囊体充盈到不再对限位主体有径向力时,此时限位主体进入扩展状态,扩张状态下的限位主体完全扩张。
本申请的一些实施例对人工心脏瓣膜的结构进行改进,以提高人工心脏瓣膜和介入输送系统两者的适配性,也增强控制效果。
参考图118至图127,本申请的一些实施例提供一种人工心脏瓣膜65,可采用基于球扩或自膨的方式释放,人工心脏瓣膜具体包括第一支架651以及瓣叶652,第一支架为径向可形变的筒状结构,第一支架651的内部为血流通道,瓣叶652为多片且相互配合控制血流通道,如图118中各瓣叶的固定缘6521与第一支架缝合固定,多片瓣叶的自由缘6522相互配合控制血流通道,瓣叶可由生物材料(例如猪心包或者牛心包)或合成材料制成。
第一支架可采用中空的直筒形,中空的直筒形的侧壁可通过雕刻的方式形成框条6511,并由框条结构限定出多个网格结构6512,网格结构可采用菱形、六边形、鱼骨形等,相邻的框条相交位置为网格节点65111。
第一支架具有相应的轴向(轴线方向,如图119中的X方向)、与轴向垂直的径向以及绕轴线布置的 周向,第一支架具有径向相对的扩张状态(如图119所示)和压缩状态(如图120所示),在径向压缩过程中网格、框条也相应的产生形变,且在压缩状态下第一支架可装载于经导管植入物系统中。
在第一支架的轴向上,以人工心脏瓣膜65为主动脉瓣膜或肺动脉瓣膜为例,按照体内正常血流方向分别为流入侧6513和流出侧6514。第一支架两侧具有端部,且端部可理解为最外侧的网格节点65111所在的位置,例如图119中网格节点65111a的投影点P即为第一支架流出侧端部的投影,流入侧的端部同理得出即为网格节点65111b的投影点Q。
第一支架的流入侧和/或流出侧具有凸出于端部的孔眼结构653,以流出侧为例,如图120所示在压缩状态下、孔眼结构653a投影的最高点N凸出于端部(投影点P)的距离为L1;如图119所示在扩张状态下、孔眼结构653投影的最高点M凸出于端部(投影点P)的距离为L2,且L1>L2≥0,可理解为扩张状态下孔眼结构通过框条的形变扩张,孔眼结构基本与其周围的网格节点平齐,使得第一支架的端部基本保持齐平状态。另外,本实施例中孔眼结构并不是封闭式的孔,如图119中孔眼结构653a整体上为弧形结构,具有朝向流入侧的开口,随着第一支架扩张形态向压缩状态变化(如图120),该开口也产生压缩。当第一支架的压缩幅度较大时,开口的两侧也会产生贴靠,从而出现孔眼结构基本上趋近于封闭的圆形结构,例如可参见图120中的孔眼结构653。在图120所示的压缩状态下,孔眼结构653明显高于其周围的网格节点。
在一个实施例中,L1:L2约为1.2~1.6:1。具体的,L1可以为0.6~0.8mm,优选为0.7mm;L2可以为0.4~0.6mm,优选为0.5mm。
人工心脏瓣膜通常会采用输送系统进行植入,当采用球扩式的介入输送系统时,第一支架以径向压缩状态安装在球囊体642,凸出的孔眼结构能便于输送系统的锁线结构的连接、控制,便于将锁线结构穿过孔眼结构,有助于将人工心脏瓣膜轴向定位在输送系统上。且在第一支架形变扩张时,孔眼结构也跟随着形变扩张,与第一支架的端部基本齐平,以避免在人工心脏瓣膜植入后,凸出的孔眼结构导致戳破血管等风险。
本实施例的人工心脏瓣膜可以为人工肺瓣瓣膜,作为优选,采用球扩方式释放,压缩状态下孔眼结构653a更为突出,便于与球囊体之间实施轴向定位,扩张状态下突出趋势减少,降低风险。
在一些实施例中,第一支架具有通过框条围成的网格结构,孔眼结构由处在端部的框条绕成,如图121中网格结构6512c由处于端部的框条6511a、框条6511b、框条6511c、框条6511d、框条6511e、框条6511f围成,孔眼结构653a则由框条6511a、框条6511b绕成,作为优选,框条可通过自身弯折绕置呈弧形,来限定孔眼结构653a的边缘。
第一支架轴向的两端均具有孔眼结构,即如图119中流出侧设有孔眼结构653a、流入侧设有孔眼结构653b,且两端孔眼结构的周向位置可相同(即如图119中孔眼结构653a、孔眼结构653b相向布置);或两端孔眼结构错位布置。
在一些实施例中,第一支架651为直筒状,沿轴向包括多圈网格结构,网格结构的形状大致为菱形或类菱形。其中如图122所示,带有孔眼结构653的网格为第一网格654,与第一网格周向相邻的网格为第二网格655,在第一网格654中,孔眼结构周边的框条包括:
弧形段65112,限定孔眼结构的边缘;
连接段65113,由弧形段65112的两端相背延伸直至第一网格654中周向两侧的网格节点(即如图中的网格节点65111b、网格节点65111c)。
如图123,弧形段两侧的连接段65113a、连接段65113b之间的夹角为A1,第二网格中位于轴向端部的网格节点65111a的内角为A2,扩张状态下A1大于A2,以适应孔眼结构的端部具有更大的轴向收敛趋势,有利于压缩状态下孔眼结构进一步轴向凸出。弧形段自身对应的圆心角C为150~210度。
参考图124,弧形段65112在第一支架周向上的跨度为L1,第一网格在周向上的跨度为L2,L1占L2的1/4~1/2,例如1/3左右。
在一些实施例中,第一网格654中,在孔眼结构周边的框条的强度小于第一网格中其他部位框条的强度,使得孔眼结构更易形变,具体的,例如图123的第一网格654中,连接段65113c、连接段65113d的强度大于连接段65113a、连接段65113b的强度,降低框条的强度可通过减少金属量、厚度等方式实现,使得连接段65113a、连接段65113b扩张后形成的夹角A1更大,即孔眼结构更易形变。
第一支架中的网格为多圈,例如3~6圈,又例如图122中网格共布置5圈,轴向相邻的两圈之间在周向上错位布置且共用部分框条。在第一支架的扩张状态下,各个网格的节点内角为75~105度,例如90度即基本为正方形。
参考图125,本申请还提供一种人工心脏瓣膜,包括第一支架651、瓣叶652、裙边657、封堵件659,以增强防周漏效果,其中第一支架651、瓣叶652可结合其他各实施例。
裙边657连接并环绕于第一支架的内壁,裙边轴向的一侧与瓣叶652衔接,裙边可与支架、瓣叶缝 合、粘接,从而封闭血流通道。
封堵件659固定于裙边657的径向外侧,且从第一支架径向内侧经由对应的网格向第一支架径向外侧凸出,封堵件为发泡材料,发挥自适应封堵的作用,减少瓣周漏。
在一个实施例中,裙边与封堵件为一体成型或粘结固定,例如,裙边可以采用PET材料,封堵件可以采用PU发泡材料;再例如,裙边和封堵件均采用PU材质。
一方面,PU裙边具有高伸长率、厚度薄的优势,且能防范上述裙边撕裂的风险,且基于高伸长率的优势,PU裙边能够适配多种形状、面积的网格,例如面积较小、形变较小的菱形格,再如面积较大、形变较大的鱼骨形网格。
另一方面,由于PU封堵件的可压缩性、自膨胀性,当其受到四周不均匀的外力时,可自动调整泡沫高度、厚度,紧密贴合瓣环,实现防瓣周漏的功能,同时PU封堵件不会过多增加输送系统尺寸。
当封堵件和裙边采用相同材质PU(分别加工时并不要求分子量或软硬度比例严格相同),封堵件和裙边粘接或一体加工,能获得较大的剥离强度,从而在封堵件外露时,即使与介入式输送系统的导管组件或体内组织接触摩擦,也不易脱离,避免安全风险。
如图125所示,封堵件659可采用多个封堵块的形式,沿第一支架的周向布置,各封堵块采用发泡材料并嵌入位置对应的网格结构。
在另一个实施例中,裙边也可采用生物心包材料,例如猪心包或者牛心包,为了便于多个封堵块的安装,封堵件659还包括内衬膜658,内衬膜可与封堵块采用相同材质,便于两者的粘接或一体加工,如图126所示,封堵块与内衬膜一体成型。在人工心脏瓣膜的使用状态下,内衬膜658处在第一支架内侧,内衬膜与裙边缝合拼接,各封堵块固定在内衬膜上且嵌入位置对应的网格结构并向外侧凸出,内衬膜的厚度可设为非常薄,不会对人工植入物压握后的直径产生过多影响。
在一些实施例中,经导管植入物系统可通过连接在球囊装置上的锁线结构68与孔眼结构相互穿引并限制人工心脏瓣膜轴向移动,即对第一支架的近端和远端进行限位,其中锁线结构68可采用调节线和锁线的结构,具有限制第一支架的锁定状态及释放第一支架的解锁状态。具体将会在后文详细说明。
本申请还提供了一种经导管植入物系统的实施例,例如图127中提供一种经导管植入物系统61,包括人工心脏瓣膜65及用于输送、扩张人工心脏瓣膜的介入输送系统,介入输送系统包括控制手柄63,以及于受控连接于控制手柄63的导管组件64,人工心脏瓣膜65负载在导管组件64上。其中,导管组件中包括多个受控件,各受控件的远端相互配合操作人工心脏瓣膜,例如释放、回收、锁定位置、调弯、调整空间姿态等等操作,各受控件自身可以是空心的管,实心的杆,柔性的线,或多种形式的结合,受控件为多个,且至少有两者(以近端为例)可沿轴向相对滑动或绕轴向相对旋转。控制手柄上用于操作各受控件的施力部件(使用者直接操作接触的部位)与相应的受控件之间可直接固定传动,或采用螺纹,齿轮齿条等方式传动。人工心脏瓣膜可以是人工主动脉瓣膜、人工肺动脉瓣瓣膜、人工二、三尖瓣瓣膜等,具有装载于导管组件64上的装载状态(即压缩状态)和扩张状态。
经导管植入物系统61整体上具有相对的近端6101和远端6102,当用于指示方向时,文中的近端一般指邻近操作者(例如医生)的一侧,远端为相对远离的一侧,沿介入路径,各部件自身均有相对的远端和近端;理论上当导管组件与控制手柄完全拉直后,近端和远端之间为直线即确定了轴向,相应的也确定了与轴向垂直的径向以及绕轴向布置的周向;当用于指代结构时,文中的“端”表示该结构的端点或在该侧方向上的某一点或某一区域或连接在该点或该区域上的具体结构。上下文各实施例提及的轴向在未作特殊说明情况下指理论上当导管组件与控制手柄完全拉直后,近端和远端之间为直线即确定了轴向,相应的也确定了与轴向垂直的径向以及绕轴向布置的周向。
导管组件64一般包括球囊装置641,还可根据需要配置滑动配合在球囊装置外部的外鞘管644,如图127中为外鞘管644向近端滑动并暴露球囊装置的状态。球囊装置641主要包括导管体6411、球囊体642,导管体的延伸方向作为轴向,当导管体6411拉直时也确定了与轴向垂直的径向及绕该轴向布置的周向。球囊体与导管体连通,球囊体能够接收来自导管体的流体,具有折叠状态以及在流体作用下的充涨状态,如图127中在折叠状态球囊体连接于导管体的远端,人工心脏瓣膜65压握在球囊体外部;如图128中导管体6411的近端处带有流体入口645,在充涨状态下流体能够从该流体入口645进入到球囊体内部并充涨球囊体,人工心脏瓣膜基于球囊体的变化相应地从径向压缩状态膨胀至径向膨胀状态,使得人工心脏瓣膜65得以球扩释放。在某些情况下球囊体的远端、侧壁上也可设置流体入口,图中未示出。
经导管植入物系统中还可包括用于限制人工心脏瓣膜移动的限位结构62和锁线结构68,例如锁线结构应用至球囊装置外部,限位机构62可应用至球囊装置内部或外部,均可限制人工心脏瓣膜65的轴向移动,下文一些实施例对限位结构和锁线结构进行改进。
参考图129~图131,现有人工心脏瓣膜7200中的瓣叶7100顶侧为自由缘7120,底侧为固定缘7130,自由缘7120与固定缘7130交汇部位为耳片7140,加工时先用缝线将相邻两瓣叶的耳片7140进行缝合, 再整体连接至支架7210,但缝合时拉紧后的缝线会使自由缘产生一定的形变,以致于在紧邻支架部位可能导致闭合不严,影响血流通道密封效果。参考图132~图133,本申请一实施例提供一种人工心脏瓣膜的瓣叶7100,以及采用瓣叶的人工心脏瓣膜。本申请各实施例的人工心脏瓣膜按照处理工艺或保存条件可以是保存于溶液中的湿瓣或经过干化处理的干瓣。
瓣叶7100包括:本体7110,展平状态下具有相对的横向和纵向,本体7110的外边缘包括分布在纵向两对侧的自由缘7120和固定缘7130,其中自由缘7120通过形变控制人工心脏瓣膜内的血流通道;耳片7140,布置在本体7110横向的两相对侧,自由缘7120和固定缘7130交汇于相应侧的耳片7140,耳片7140与自由缘7120相结合的部位设有相对于自由缘7120沿纵向延伸的外凸部7150。本申请所涉及的横向和纵向可参考图132中的X方向和Y方向,具体的,X方向为横向,Y方向为纵向。瓣叶7100整体而言基本是对称结构,下文以及部分附图中以其中一侧为例进行描述,另一侧同理。
缝合时,将两瓣叶7100的耳片7140折叠贴合进行缝线,最后进行拉紧打结固定,其中线结具体设置于外凸部7150上,缝线拉紧打结时外凸部7150产生形变并吸收应力,极大程度上减小了对自由缘7120的影响,即缝线的拉紧打结不会对自由缘7120产生明显干扰,解决了瓣叶7100缝合时由于自由缘7120形变导致其闭合不佳引起的血流通道闭合较差的问题。外凸部7150还增加了连接缝合部位的面积,提供了额外的强度保证。
本实施例中外凸部7150与固定缘7130的趋势延长线相交,该趋势延长线内侧基本为瓣叶7100的工作区,外凸部7150处在该位置可以兼顾连接强度以及瓣叶7100开口大小,例如外凸部7150面积的至少1/4处在固定缘7130的延长线(参考图132中L)内侧。又例如外凸部7150面积的至少1/2,甚至3/4处在固定缘7130的延长线内侧。
外凸部7150自身为条状,近似于矩形,且该条状的长度方向与本体横向一致,折叠为双层结构后,依然可保持必要的横向跨度,以便于缝合操作以及吸收受线结挤压的形变。
外凸部7150具有相对的内缘7151和外缘7152,外缘7152与耳片7140的顶侧之间转折过渡,即有明显的拐角,也使得外缘7152与耳片7140的外侧边大致平行。
外凸部7150自身对折后可为下文中提及的线孔7173提供足够的周边结构强度。为了减少对耳片7140的折叠以及缝合操作,沿本体横向,耳片7140的外侧边超出外缘7152至少2mm,例如超出外缘2.5~5mm。耳片7140与固定缘7130相结合的部位带有开口区7131,由于缝合时耳片7140需要折叠,因此开口区7131能够在折叠时减少本体7110和耳片7140牵引和形变,尤其是释放纵向偏转时的牵拉应力。
进一步的,外凸部7150与开口区7131两者的横向位置对正。展开状态下,外凸部7150大致为矩形,外凸部7150的横向长度大于开口区7131的横向长度,且该开口区7131位于矩形的中心线下方(图133中L1为中心线)。折叠后外凸部7150自身形成双层结构,进一步提高强度。在本实施例中,外凸部7150的横向长度为1~3mm,纵向长度为0.2mm~0.8mm。又例如外凸部7150的横向长度为1.08mm~2.43mm,纵向长度为0.29mm~0.44mm。
一实施例中耳片7140具有:
第一弯折部7171,由耳片7140与本体7110的结合部位向本体7110的横向内侧弯折,并与本体7110相互贴靠构成双层结构的结合部7170;
第二弯折部7172,由第一弯折部7171的末端向本体7110的横向外侧弯折;
内侧和外侧为相对于本体7110而言,靠近本体7110中线的一侧为内侧,远离本体7110中线的一侧为外侧。为了便于与支架7210之间的缝合,相邻两瓣叶7100之间的结合部7170相互贴靠缝合固定(加工时可将瓣叶7100两两之间进行预固定形成筒状的预制品),并抵靠固定于支架7210的径向内侧(结合部7170与支架7210也可以采用缝合固定),各瓣叶7100的第二弯折部7172延伸至支架7210的径向外侧并包拢支架7210的相应部位,且在包拢部位与支架7210缝合固定。
参考图134,相邻两瓣叶7100之间的结合部7170通过第一缝线7174固定,第一缝线7174为一根或多根,第一缝线7174中的所有线结7180均处在外凸部7150的顶侧,便于外凸部7150形变后吸收打结部位处的应力和形变。具体的,用第一缝线7174先穿过两结合部7170,图中可见穿针部位处在外凸部7150与自由缘7120延长线相交的部位,再进行第一次打结处理,使两结合部7170进行预固定,以便于后续继续缝合固定。
待第一缝线7174穿绕过所有线孔7173后,回到外凸部7150的顶侧,再进行第二次打结处理,完成两结合部7170的固定,图中可见第一缝线7174整体上带有两个线结7180,并排布置于相邻两外凸部7150顶侧。此时,线结7180只对外凸部7150产生干涉,即外凸部7150会产生一定的形变,而外凸部7150的形变对自由缘7120干涉作用较弱,因此降低了对自由缘7120的影响。
参见图135a,图135b,图135c以及图136,为了便于线结7181的固定,沿支架7210的周向,支撑条7220的至少一侧带有凹陷区7221,第二缝线7176中的线结7181处在凹陷区7221内,凹陷区7221可 以是支撑条7220自身的结构弯曲、切口部位、或者例如网格处的分支结构,凹陷区7221便于线结7181固定减少外凸部位,线结7181在该凹陷区7221内不易轴向滑动脱落。
考虑到加固结合部7170与支撑条7220之间的连接强度,第二缝线7176每环绕一道带有一个线结7181。其中,第二缝线7176的每一道在支架7210的径向内侧贯穿相邻两瓣叶7100的结合部7170,使得两结合部7170紧密贴合,各线结7181置于对应凹陷区7221内。
相邻两瓣叶7100的第二弯折部7172从支撑条7220的两相对侧包拢支撑条7220,以提高连接强度,且第二弯折部7172包裹第二缝线7176的线结7181,使得整体更为简洁,减少了外露的线结数量。第二弯折部7172通过第三缝线7178连接于支撑条7220,沿支架7210的周向,第三缝线7178中的所有线结7182处在支撑条7220侧向。当然为了便于打结以及定位,第三缝线7178的所有线结7182优选处在支撑条7220同侧。即针对同一支撑条7220,沿支架7210的周向相对的两侧中,其中一侧为第一凹陷区7222供第二缝线7176的所有线结7181置入;另一侧为第二凹陷区7223供第三缝线7178的所有线结7182置入。第二缝线7176以及第三缝线7178中的所有线结7180均置入对应的凹陷区。第一凹陷区7222和第二凹陷区7223可相对于支撑条7220对称或错位布置。
处在支撑条7220同侧的凹陷区沿支撑条7220的延伸方向排布有多个,第二缝线7176以及第三缝线7178分别环绕于支撑条7220多道,且每环绕一道带有一个线结,各线结处在位置相应的凹陷区内。第三缝线7178的每一道在支架7210的径向内侧贯穿相邻两瓣叶7100的结合部7170以及第二弯折部7172,即同一瓣叶7100中,第二弯折部7172与结合部7170相互贴靠构成三层结构,第三缝线7178贯穿该三层结构。当然,第三缝线7178贯穿结合部7170时,考虑到尽可能的减小线孔数量的问题,第三缝线7178可通过第二缝线7176的线孔7175进行穿引,线孔7175沿轴向布置,数量具体为3个,且该3个线孔均处于结合部7170上,分别为线孔7175a、线孔7175b以及线孔7175c。
参考图137至图139,本申请还提供一种经导管植入物系统,包括球囊装置和如上述各实施例的人工心脏瓣膜,人工心脏瓣膜65包括第一支架651和瓣叶652,第一支架轴向的两端均具有孔眼结构,分别为靠近限位主体622a的孔眼结构653a、靠近限位主体622b的孔眼结构653b,且两端孔眼结构的轴向位置相同。
球囊装置641包括:
导管体6411;
球囊体642,与导管体连通,球囊体能够接收来自导管体的流体,第一支架651以径向压缩的装载状态安装于球囊体上。从而从折叠状态进入充涨状态,第一支架基于球囊体的变化相应地从径向压缩状态膨胀至径向膨胀状态;
内轴,穿设于导管体和球囊体内部,远端固定有引导头646;
锁线结构68,用于限制人工心脏瓣膜与球囊体轴向相对位置。
其中,锁线结构68包括:
第一调节线681,用于将人工心脏瓣膜65可释放地固定在球囊体上,第一调节线上的一端能够保持与导管体6411的固定,另一端可穿过孔眼结构并带有第一锁孔6811;
锁线682,具有相对的锁定状态和解锁状态,在锁定状态下、锁线682穿入各锁孔以限制人工心脏瓣膜,解锁状态下、锁线脱离各锁孔以释放人工心脏瓣膜;引导头646开设有插孔,在锁定状态下锁线682的端头部位伸入插孔;
第二调节线683,其一端连接于引导头646,另一端可穿过孔眼结构并带有第二锁孔6831,从而各调节线与锁线之间至少有两处结合部位,其中至少一结合部位限制人工心脏瓣膜向远端方向运动,还有至少一结合部位限制人工心脏瓣膜向近端方向运动。
第一调节线、第二调节线在长度上相配合,两者同时对第一支架的近端和远端位置进行调整,使得第一支架在轴向上大致位于球囊体的中部,调整好第一支架和球囊体的相对位置后并限位锁定。
经导管植入物系统还包括上述的控制手柄63、外鞘管644,使用时操作如下:
通过控制手柄驱动外鞘管644向输送系统近端侧运动以暴露人工心脏瓣膜65;
拉动锁线682从调节线(第一调节线和第二调节线)的锁孔中抽出;
充涨球囊体642外扩并带动人工心脏瓣膜65形变至膨胀状态,还使调节线从人工心脏瓣膜中抽出;
使球囊体642收缩,向经导管植入物系统近端侧运动球囊装置与人工心脏瓣膜分离。
在一些实施例中,经导管植入物系统可通过限位机构限制人工心脏瓣膜轴向移动,即对第一支架的远端和/或近端进行限位。
参考图140至图142,本申请还提供一种经导管植入物系统,用于输送并扩张上文各实施例的人工心脏瓣膜65,经导管植入物系统包括能够限制人工心脏瓣膜轴向移动的球囊装置,该球囊装置641具体包括:
导管体6411;
与导管体连通的球囊体642,球囊体642由远端至近端依次包括第一部6421、中部6422和第二部6423,中部6422供人工心脏瓣膜65装载固定;
限位机构62,被配置为至少当人工心脏瓣膜以径向压缩状态安装在球囊体上时,限制人工心脏瓣膜在轴向上的移动,限位机构具体包括限位主体,限位主体包括多根杆件,多根杆件整体上由轴向上的第一端延伸至轴向上的第二端,并分别在第一端和第二端聚拢形成中空的笼形结构。
其中导管体、球囊体可结合上文各实施例的限位机构,下文的一些实施例也进一步对限位机构进行改进。参见图141,在一些实施例中,限位机构62至少包括一个限位主体622,第一支架的至少远端受到限位主体622的阻挡。
导管体6411用于输送流体,球囊体642具有相对的折叠状态(如图140)和充涨状态(如图141),当人工心脏瓣膜在介入输送时,球囊体处于折叠状态,操作者向球囊体642注入流体即充涨介质(例如生理盐水),使得球囊体642充胀,以驱使人工心脏瓣膜65扩张、释放。
在输送过程中,限位主体用于填充球囊体642第一部,限位主体上朝向近端的一侧使人工心脏瓣膜65的远端受到阻挡。并且,限位机构可以填充球囊体和人工心脏瓣膜之间的台阶,有助于输送,降低风险。
在充涨完成后,第一支架处于扩张状态,使得人工心脏瓣膜65得以球扩释放。
在一些实施例中,限位机构包括限位主体、引导管、耦接件,限位主体整体上为笼形结构,引导管连接于限位主体且与限位主体采用形状记忆合金材质的管材一体切割成型,耦接件与内轴连接,耦接件还至少与限位主体、引导管的其中一者连接,限位主体、引导管、耦接件的具体结构可结合下文各实施例。
参见图142,限位主体为2个,分别为位于引导管近端的限位主体622a、位于引导管远端的限位主体622b,在输送过程中,第一支架的远端和近端分别受到对应的限位主体的阻挡。作为优选,限位主体具有容纳人工心脏瓣膜65端部的内凹区(参见图95),该内凹区62241大致呈棱台形,对第一支架的两端均进行准确限位。
在一些实施例中,参考图143至图144,球囊装置中针对人工心脏瓣膜同时配置有用于轴向限位的锁线结构68和限位机构62。
在一些实施例中,限位机构62可包括限位主体,限制第一支架远端在轴向上的移动。第一支架的近端和远端均具有凸出于相应端部的孔眼结构,一端或两端可采用锁线结构进行限位,其中:
参见图143,近端采用锁线固定,远端采用限位机构固定。锁线结构68包括第一调节线681,用于将人工心脏瓣膜可释放地固定在球囊体642上,第一调节线上的一端能够保持与导管体的固定,另一端可穿过孔眼结构并带有第一锁孔6811,第一锁孔6811用于限制人工心脏瓣膜近端的孔眼结构;
参见图144,近端采用锁线固定,远端端采用限位机构与锁线结合的方式固定。锁线结构68除了包括图143所示的第一调节线681外,还包括第二调节线683,带有第二锁孔6831,用来穿引第一支架远端处的孔眼结构。
在图143和图144所示的实施例中,锁线结构还包括:锁线682,具有相对的锁定状态和解锁状态,锁线682分别穿引一个或两个锁孔,在锁定状态下、锁线穿入各锁孔以限制人工心脏瓣膜,解锁状态下、锁线脱离各锁孔以释放人工心脏瓣膜。
在一些实施例中,限位机构62可包括分别位于球囊体近端和远端的两个限位主体,限制第一支架远端和近端在轴向上的移动。
本申请中,针对经导管植入物系统中的人工心脏瓣膜进行了改进。
本申请还提供一种人工心脏瓣膜组件,包括人工肺动脉瓣膜(参考前述人工心脏瓣膜65)和锚固支架656,其中人工肺动脉瓣膜包括第一支架651以及瓣叶652,第一支架651为径向可形变的筒状结构,第一支架的内部为血流通道,瓣叶为多片且相互配合控制血流通道;
参考图145至图150,第一支架和锚固支架均具有扩张状态和压缩状态,以锚固支架为例,图150为锚固支架压缩状态下的示意图,图145为锚固支架656装配后套于第一支架外侧即扩张状态下的示意图,扩张状态下第一支架与锚固支架之间抵靠。
锚固支架还具有装配前的预扩状态(如图146所示),锚固支架在预扩状态具有第一直径D2、以及在扩张状态下具有第二直径D3,且第二直径D3大于第一直径D2。
人工心脏瓣膜组件除了用于上述的人工肺动脉瓣膜,也可以用于其他主瓣、二尖瓣、三尖瓣等。在扩张状态下,锚固支架的轴向长度S2大于第一支架的长度S1,S2大致为S1的1.5~2倍,且第一支架大致位于锚固支架轴向的中部。
如图146所示,锚固支架的侧壁也可通过切割的方式形成为框条6561,并由框条结构围成出多个网 格结构6562,作为优选,锚固支架可由钴铬合金管材切割,降低成本的同时大幅提高了疲劳性能。如图148,网格结构沿轴向包括:
中间部65621,包括两圈鱼骨网格6563,鱼骨网格为凹六边形,具有相对的凸尖65631和凹尾65632,两圈鱼骨网格的凹尾相向对称,凸尖相背,如图149,相邻鱼骨网格共用一条框条65633,不仅消除中间菱形格(即凹尾相向形成)的短缩率,也避免过大的短缩率造成对血管的刮擦,同时保留整体的径向强度。
端部65622,包括两圈菱形格6564,分别处在中间部轴向的两侧,各菱形格处在相邻两鱼骨网格6563的凸尖之间。
在一些实施例中,第一支架的轴向位置不超出中间部,即第一支架的两端处于两圈鱼骨网格的两凸尖之间。
锚固支架处在端部的菱形格中,背向中间部的两根框条相对于与中间部共用的两个框条具有更低的强度,即如图149中,构成菱形格6564的框条分别为框条65641、框条65642、框条65643、框条65644,其中框条65641和框条65642之间的夹角B1相较于菱形格内其他几个夹角大一些,大夹角设计不仅增大形变量,且具有防翘作用,减少向外翻的程度,从而降低安全风险。
框条65641和框条65642的强度低于另外两框条,框条降低强度可通过减少金属量实现,也能进一步使菱形格6564扩张后形成的夹角B1更大。
另外,也可通过调整锚固支架各个位置的金属量,避免锚固支架轴向结构金属量不同、以及压握到球囊上时锚固支架各个位置压握直径大小不同的问题。结合图149、图150,通过将鱼骨网格的凹尾65632处夹角B2设计成大于凸尖65631处夹角B3,来消除菱形格金属量不同造成的径向力不同的问题,使整体的径向力趋于相同。
在一些实施例中,如图149,锚固支架的菱形格6564也具有凸出于端部的孔眼结构653,可结合上文的关于第一支架的孔眼结构的实施例。
上述的人工肺动脉瓣膜和锚固支架均可采用基于球扩或自膨方式释放。
作为优选,为了使得扩张状态下人工肺动脉瓣膜和锚固支架抵靠,锚固支架可采用球扩或自膨方式先释放,而后人工肺动脉瓣膜可采用基于球扩方式释放。
为了便于与上述实施例中的人工心脏瓣膜组件相互配合,参考图151至图153,本申请还提供一种经导管植入物系统,包括:
如上述各实施例的人工心脏瓣膜;
锚固支架,套于人工心脏瓣膜外侧,人工心脏瓣膜和锚固支架之间均具有扩张状态和压缩状态,扩张状态下人工心脏瓣膜的第一支架与锚固支架抵靠;
经导管植入物系统首先释放锚固支架,释放完成后锚固支架处于第一直径即预扩状态,例如此时的锚固支架可以小于或等于锚固支架的标称直径;
再次释放人工心脏瓣膜并使其与锚固支架贴靠,此时锚固支架处于第二直径,且第二直径大于第一直径,此时第二直径可以大于或等于锚固支架的标称直径;
在一个实施例中,输送系统可以配置有两套,分别用于植入人工心脏瓣膜和锚固支架。
如图151,经导管植入物系统还包括第一输送系统611,第一输送系统611带有输送和扩张人工心脏瓣膜的第一球囊体642。
其中人工心脏瓣膜、锚固支架结合上文各实施例,输送系统中还包括上文所述的用于向第一球囊体内输送流体的导管体及控制手柄。
如图152,当锚固支架为球扩释放时,经导管植入物系统还包括用于扩张所述锚固支架的第二输送系统612,第二输送系统与第一输送系统配置相同,包括用于输送和扩张人工心脏瓣膜的球囊体及控制手柄。即输送系统可配置独立的两套,分别对应人工心脏瓣膜和锚固支架,两套输送系统独立配置控制手柄(如图中的控制手柄63a、控制手柄63b),可采用相同或不同的介入路径实施介入递送。
当然,锚固支架也可以为自膨方式释放,例如锚固支架为形状记忆金属材料。相应的,第二输送系统可以为用于输送自膨支架的输送系统,具体可以参考现有技术,本申请在此不再一一说明。
在另一个实施例中,输送系统也可以配置一套、供人工心脏瓣膜和锚固支架共用。
当锚固支架为球扩释放时,如图153所示,第一输送系统中配置时可设置两个独立控制的球囊体即用于输送和扩张人工心脏瓣膜的第一球囊体642b、用于输送和扩张锚固支架的第二球囊体642a,并分别配置流体通道,例如在控制手柄63处设置接口631a、接口631b分别对应第一球囊体642a、第二球囊体642b,以避免相互干涉,两球囊体沿轴向排布,分别装载人工心脏瓣膜和锚固支架,先释放的锚固支架656处在人工心脏瓣膜的远端。
当然,当锚固支架为自膨释放时,输送系统也可以仅包含一个球囊装置,用于扩张人工心脏瓣膜(未 图示)。输送系统还可以包括护套,用于将压缩状态的锚固支架容纳在护套中。
上述实施例中,当锚固支架为球扩释放时,在输送和扩张锚固支架的过程中,还可针对锚固支架的远端或两端配置限位机构62。当为独立配置的两套输送系统时,在第二输送系统的球囊体中配置限位机构,用以限制锚固支架远端和/或近端的轴向移动。当输送系统仅配置一套时,则第一球囊体、第二球囊体均配置限位机构,用以限制人工心脏瓣膜和锚固支架的远端和/或近端的轴向移动。限位机构的具体结构可结合下文实施例。
在一些实施例中,经导管植入物系统还可通过锁线结构限制人工心脏瓣膜组件的轴向移动,参考图154-156,上述的第一输送系统、第二输送系统(即第二球囊体)中可针对锚固支架的两端配置有用于轴向限位的锁线结构68;
或者针对人工心脏瓣膜和锚固支架中的两者均配置有用于轴向限位的锁线结构68,具体的,即在一套系统的两个球囊体中均配置锁线结构。或在两套输送系统的球囊体中均配置锁线结构。
如图154,当锁线结构仅针对锚固支架配置时,锚固支架的两端具有凸出于端部的孔眼结构,锁线结构包括:
第一调节线681,用于将第一支架可释放地固定在球囊体上,第一调节线上的一端能够保持与导管体的固定,另一端可穿过孔眼结构并带有第一锁孔;
第二调节线683,一端连接于引导头,另一端可穿过孔眼结构并带有第二锁孔。
第一锁线6821,具有相对的锁定状态和解锁状态,在锁定状态下、锁线穿入各锁孔以限制第一支架,解锁状态下、锁线脱离各锁孔以释放锚固支架。
当锁线结构针对人工心脏瓣膜和锚固支架配置时,尤其输送系统为供第一支架和锚固支架共用的一套时,如图155所示,第一球囊体642b、第二球囊体642a分别独立的对人工心脏瓣膜、锚固支架进行轴向限位,锁线结构具体包括:
第三调节线684、第四调节线685,用于将锚固支架可释放地固定在第一球囊体上,具有可穿过孔眼结构的锁孔;
第五调节线686、第六调节线687,用于将人工心脏瓣膜可释放地固定在第二球囊体上,具有可穿过孔眼结构的锁孔;
第二锁线6822,具有相对的锁定状态和解锁状态,在锁定状态下、锁线穿入各锁孔以限制人工心脏瓣膜和锚固支架,解锁状态下、锁线脱离各锁孔以释放人工心脏瓣膜和锚固支架。两球囊体沿轴向排布,分别装载人工心脏瓣膜和锚固支架,先释放的锚固支架656处在第一支架的远端。
在其他实施例中,锁线也可以包括第一锁线和第三锁线(未图示),锁定状态下,第一锁线穿入锁孔以限制人工心脏瓣膜,第三锁线穿入锁孔以限制锚固支架。
在一些实施例中,不论是独立配置的两套输送系统,还是共用的一套输送系统,均可同时配置锁线结构和限位机构,可针对锚固支架配置,或同时针对人工心脏瓣膜和锚固支架两者配置。
当经导管植入物系统采用独立配置的两套输送系统,可在第二输送系统中针对锚固支架配置锁线结构和限位机构,或可第一输送系统、第二输送系统均配置锁线结构和限位机构,具体结合下文各实施例。
当经导管植入物系统采用共用的一套输送系统,可在第二球囊体中针对锚固支架配置锁线结构和限位机构,或在第一球囊体和第二球囊体均配置锁线结构和限位机构,具体结合上文各实施例。
本申请还提供一种人工心脏瓣膜组件从介入输送系统的脱离方法,适用于上述各实施例中的人工心脏瓣膜组件、介入输送系统。
人工心脏瓣膜组件包括人工心脏瓣膜和锚固支架,两者均具有扩张状态和压缩状态,人工心脏瓣膜组件的具体结构结合上文各实施例。
介入输送系统至少包括可介入递送的内轴643,人工心脏瓣膜和锚固支架两者以压缩状态连接于内轴。
将上述的人工心脏瓣膜组件从介入输送系统中脱离方法,包括以下步骤:
步骤S100,解除锚固支架与内轴的连接,使锚固支架进入扩张状态;
步骤S200,将人工心脏瓣膜递送至锚固支架的内部;
步骤S300,解除人工心脏瓣膜与内轴的连接,使人工心脏瓣膜进入扩张状态并抵紧于锚固支架的内壁。
该脱离方法不仅可在产品测试、体外模拟训练阶段进行实施,也适用于介入手术过程。
在一些实施例中,当人工心脏瓣膜组件采用自膨的方式进行释放,介入输送系统还包括外鞘管644,外鞘管相对滑动的安装于内轴的外周,锚固支架656与内轴643相连并被外鞘管包裹。
实施步骤S100中解除锚固支架与内轴连接时,先相对运动外鞘管和内轴,使锚固支架暴露于外鞘管,从而锚固支架以自膨方式进入扩张状态。
在一些实施例中,当人工心脏瓣膜组件采用球扩的方式进行释放,用于人工心脏瓣膜组件的输送经 导管植入物系统,仅包括一根内轴,也可理解为上文所述的经导管植入物系统仅包括第一输送系统,第一输送系统带有输送和扩张人工心脏瓣膜的第一球囊体、输送和扩张锚固支架的第二球囊体,即人工心脏瓣膜和锚固支架共用一套输送系统的情形。
作为优选,介入输送系统还包括:
两个球囊体(即第一球囊体、第二球囊体),沿内轴依次布置,人工心脏瓣膜和锚固支架分别连接在对应球囊体的外周;
锁线,用于同时限制人工心脏瓣膜和锚固支架相对于各自所在球囊体的轴向位置。
实施步骤S100中解除锚固支架与内轴连接时,还包括在锚固支架对应的球囊体被充涨之前或之后运动锁线的操作步骤,以解除对锚固支架的轴向限位,且保持对人工心脏瓣膜的轴向限位。
实施步骤S300中解除人工心脏瓣膜与内轴连接时,还包括在人工心脏瓣膜对应的球囊体被充涨之前或之后沿原运动方向进一步运动锁线的操作步骤,解除对人工心脏瓣膜的轴向限位。
在一些实施例中,当人工心脏瓣膜为人工肺动脉瓣瓣膜,在进行体外模拟或介入手术过程中,介入输送系统的介入路径在经过三尖瓣附近时,需要经历2个转弯,可理解为内轴至少呈S形才能达到释放位置。
参见图157,为了满足上述的调弯需求,介入输送系统还包括调弯组件,调弯组件可以包括输送系统手柄的调弯模块613以及导管组件中的调弯管614,调弯组件至少可作用于内轴,改变内轴的远端朝向。调弯模块的具体实现方式可参考现有技术,对此不再赘述。
人工心脏瓣膜组件在脱离内轴前,内轴通过调弯组件的作用在空间上具有一处圆滑的转弯部位,或具有至少两处圆滑的转弯部位,且两处转弯部位的转向相反,如图158所示,调弯管614具有两处圆滑的转弯部位6141,大体呈S形的弯曲形态。内轴中与转弯部位对应的部分可采用金属切割管,以适应弯曲形态。
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。不同实施例中的技术特征体现在同一附图中时,可视为该附图也同时披露了所涉及的各个实施例的组合例。
以上实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。

Claims (225)

  1. 一种介入输送系统,包括导管组件以及与所述导管组件相连的控制手柄,其特征在于,所述导管组件具有相对的远端和近端且包括彼此滑动套设的内鞘管和外鞘管,所述外鞘管由远端至近端依次包括装载段和鞘管段,所述装载段用于包裹介入器械并将介入器械保持在压缩状态;
    所述控制手柄包括:
    主手柄,所述内鞘管的近端连接于所述主手柄;
    副手柄,滑动套设在所述内鞘管的外周,所述外鞘管的近端连接于所述副手柄。
  2. 如权利要求1所述介入输送系统,其特征在于,所述副手柄包括:
    外壳,具有空间上的轴向,以及在所述轴向上相对的远端和近端,所述外壳具有轴向贯通的穿引通道;
    连接套,固定在所述外壳内且绕所述穿引通道布置,所述连接套的远端侧供外鞘管插接配合;
    定位件,活动安装在所述外壳内,所述定位件具有干涉所述穿引通道的锁定位以及释放所述穿引通道的解锁位;
    驱动件,与所述定位件传动配合带动所述定位件切换位置。
  3. 如权利要求1所述介入输送系统,其特征在于,所述副手柄的相对于所述主手柄的滑动行程为10~40cm以上。
  4. 如权利要求2所述介入输送系统,其特征在于,所述连接套的侧壁设有与所述穿引通道连通的第一排气孔,在所述第一排气孔处固定连接有第一管接头,所述第一排气孔与所述第一管接头限定形成第一排气通道,在所述第一排气通道内设有单向阀芯。
  5. 如权利要求4所述介入输送系统,其特征在于,所述第一排气孔的边缘设有第一环形座,所述第一管接头与所述第一环形座插接配合,且彼此之间设有相互配合的止转结构。
  6. 如权利要求4所述介入输送系统,其特征在于,可选的,所述外壳上嵌装有位于所述第一管接头外周的第一防护套,所述第一管接头的外壁与所述第一防护套的内壁之间构成管路插接间隙。
  7. 如权利要求5所述介入输送系统,其特征在于,可选的,所述止转结构包括:
    插槽,沿所述第一管接头的插入方向延伸,所述插槽设置在所述第一管接头与所述第一环形座两者中其中一者的侧壁;
    定位筋,与所述插槽配合,所述定位筋设置在所述第一管接头与所述第一环形座两者中另一者的侧壁。
  8. 如权利要求4所述介入输送系统,其特征在于,所述单向阀芯具有相对的密封状态和开放状态,且单向阀芯具体包括:
    限位杆,滑动安装于所述第一管接头的内腔中,在所述限位杆的外周与所述第一管接头的内壁之间带有流体间隙;
    密封片,连接于所述限位杆,密封状态下所述密封片封闭所述流体间隙,开放状态下所述密封片开启所述流体间隙。
  9. 如权利要求8所述介入输送系统,其特征在于,所述第一管接头的内壁设有环绕在所述限位杆外周的卡环,所述流体间隙位于卡环的外周与所述第一管接头的内壁之间;
    所述限位杆远离所述密封片的一端穿过所述卡环且带有头部,开放状态下所述头部与所述卡环相抵,所述密封片远离所述卡环并开放所述流体间隙;密封状态下所述头部远离所述卡环,所述密封片远离与所述卡环相抵并封闭所述流体间隙。
  10. 如权利要求8所述介入输送系统,其特征在于,所述第一管接头的内壁设有环绕在所述限位杆外周的卡环,所述流体间隙位于卡环的外周与所述第一管接头的内壁之间;
    所述限位杆远离所述密封片的一端穿过所述卡环且带有受限于所述卡环的头部,该头部与所述密封片夹持部固定于所述卡环的两相对侧,所述密封片的边缘可弹性形变,相应的开放或封闭流体间隙。
  11. 如权利要求2所述介入输送系统,其特征在于,所述定位件为弹性爪,所述弹性爪的一端固定于所述连接套,另一端为沿连接套径向摆动的自由端。
  12. 如权利要求11所述介入输送系统,其特征在于,所述弹性爪与所述连接套为一体结构;所述弹性爪为二~六个,沿所述连接套周向分布。
  13. 如权利要求11所述介入输送系统,其特征在于,所述驱动件为筒状且滑动套设在所述连接套的外周;沿所述连接套的径向,所述弹性爪的外侧设有导向斜台,所述驱动件的内壁作用于所述导向斜台。
  14. 如权利要求11所述介入输送系统,其特征在于,所述连接套的内部设有弹性衬管,所述弹性爪作用在所述弹性衬管的外壁、通过挤压所述弹性衬管干涉所述穿引通道。
  15. 如权利要求14所述介入输送系统,其特征在于,所述弹性衬管的远端延伸出所述连接套,在延伸 出的部位上设有径向外凸的定位台阶,沿所述轴向,所述定位台阶与所述连接套的端面和/或所述外壳的内壁轴向定位配合。
  16. 如权利要求2所述介入输送系统,其特征在于,所述驱动件为筒状且滑动套设在所述连接套的外周,所述驱动件的内壁与所述连接套的外壁之间设有相互配合的导向结构;所述导向结构包括:
    滑槽,设置于所述驱动件的内壁和所述连接套的外壁这两者中的其中一者;
    导向筋,与所述滑槽配合,设置于所述驱动件的内壁和所述连接套的外壁这两者中的另一者。
  17. 如权利要求1所述介入输送系统,其特征在于,所述导管组件还包括球囊导管,所述球囊导管包括:
    球囊体,设置在所述内鞘管的远端部位,且在流体作用下切换于膨胀状态和折叠状态之间,装载状态下的介入器械处在所述球囊体的外周;
    导管体,套设在所述内鞘管的外周或与所述内鞘管并行布置,所述导管体的远端与所述球囊体连通,所述导管体的近端连接于所述主手柄,所述导管体内为流体通道。
  18. 如权利要求17所述介入输送系统,其特征在于,在所述球囊体内,设有处在所述内鞘管外周的流体引导件,所述流体引导件限定构成导流通道,该导流通道连通球囊体内的远端部位和近端部位。
  19. 如权利要求18所述介入输送系统,其特征在于,所述流体引导件为管状,相对于所述流体引导件、所述导流通道的位置为以下方式的至少一种:
    处在所述流体引导件的外壁;
    处在所述流体引导件的内部;
    处在所述流体引导件的侧壁夹层或镂空区。
  20. 如权利要求19所述介入输送系统,其特征在于,所述导流通道为开设在所述流体引导件外周壁的导流槽;所述导流槽为多条,各条之间沿所述流体引导件的周向排布,同一条所述导流槽沿所述流体引导件的轴向延伸或采用螺旋绕置的方式。
  21. 如权利要求20所述介入输送系统,其特征在于,沿所述流体引导件的周向,同一条所述导流槽的包角为0~180度。
  22. 如权利要求20所述介入输送系统,其特征在于,相邻两导流槽之间设有连通槽;连通槽为间隔布置的多个,轴向位置对应的连通槽构成环形槽。
  23. 如权利要求19所述介入输送系统,其特征在于,所述内鞘管的外周设有流体引导件,所述流体引导件呈管状且处在所述球囊体内,所述流体引导件的管壁带有镂空区,所述镂空区连续或间隔的由所述流体引导件的远端延伸至所述流体引导件的近端侧。
  24. 如权利要求19所述介入输送系统,其特征在于,所述流体引导件与所述内鞘管之间存在径向间隙并作为所述导流通道。
  25. 如权利要求17所述介入输送系统,其特征在于,所述导管组件还包括调弯管以及驱动所述调弯管的牵引件,所述调弯管套设在所述内鞘管的外周,所述调弯管与所述牵引件两者的远端固定连接,两者的近端均连接至所述主手柄且相对滑动配合,所述调弯管以及所述牵引件均处在所述导管体的外周。
  26. 如权利要求25所述介入输送系统,其特征在于,所述牵引件为牵引管,且处在所述调弯管的内侧或外侧。
  27. 如权利要求25所述介入输送系统,其特征在于,所述牵引件为牵引线,且处在所述调弯管的内侧、外侧或管壁内。
  28. 如权利要求26所述介入输送系统,其特征在于,调弯管的管壁带有夹层结构,夹层内固定有衬管,所述牵引件活动穿设在衬管内。
  29. 如权利要求17所述介入输送系统,其特征在于,所述主手柄包括:
    支撑体,具有空间上的轴向,所述内鞘管以及所述球囊导管的导管体均延伸连接至所述支撑体的近端侧;
    第二滑座,相对于所述支撑体沿轴向滑动配合;
    第二驱动套,转动套设于所述支撑体且处在所述第二滑座的外周,所述第二驱动套与所述第二滑座之间采用螺纹传动配合;
    多通接头,与所述第二滑座的近端侧连接,所述球囊导管以及所述内鞘管两者的近端均连接至所述多通接头,所述内鞘管的内部为贯通的导丝通道,所述多通接头至少具有与所述导丝通道和所述流体通道分别连通的接口。
  30. 如权利要求29所述介入输送系统,其特征在于,所述多通接头与所述第二滑座的近端侧转动配合且轴向限位。
  31. 如权利要求29所述介入输送系统,其特征在于,所述第二滑座整体上为筒状结构,且至少一部分 处在所述第二驱动套内,所述第二滑座的外壁与所述第二驱动套的内壁之间螺纹配合,所述支撑体上带有引导所述第二滑座沿轴向运动的导槽。
  32. 如权利要求29所述介入输送系统,其特征在于,所述多通接头的远端与所述第二滑座的近端两者转动插接配合,且两者之间带有相互配和的轴向限位结构,所述轴向限位结构包括:
    卡齿,固定于两者中的其中一者且沿径向向另一者凸出;
    卡槽,设置于两者中的另一者,接纳所述卡齿。
  33. 如权利要求1所述介入输送系统,其特征在于,所述导管组件还包括调弯管以及驱动所述调弯管的牵引件,所述调弯管套设在所述内鞘管的外周,所述调弯管与所述牵引件两者的远端固定连接,两者的近端均连接至所述主手柄且相对滑动配合。
  34. 如权利要求33所述介入输送系统,其特征在于,所述主手柄包括:
    支撑体,具有空间上的轴向,所述调弯管的近端相对于所述支撑体固定连接,所述内鞘管延伸连接至所述支撑体的近端侧;
    第一滑座,相对于所述支撑体沿轴向滑动配合,所述牵引件的近端固定至所述第一滑座;
    第一驱动套,转动套设于所述支撑体且处在所述第一滑座的外周,所述第一驱动套与所述第一滑座之间采用螺纹传动配合;
    外壳,固定套设于所述支撑体,且至少一部分为处在所述调弯驱动套外侧的指示段;
    标识件,沿轴向滑动安装于所述指示段且处在所述第一驱动套的外周,所述第一驱动套与所述标识件之间采用螺纹传动配合。
  35. 如权利要求34所述介入输送系统,其特征在于,所述第一驱动套带有内螺纹以及外螺纹,所述第一滑座带有与所述内螺纹配合的外齿,所述标识件带有与所述外螺纹配合的内齿;所述标识件和所述第一滑座在所述第一驱动套的作用下同步运动。
  36. 如权利要求34所述介入输送系统,其特征在于,所述指示段的侧壁上设有与所述标识件位置相应的视窗。
  37. 如权利要求34所述介入输送系统,其特征在于,所述支撑体内设有沿轴向延伸的安装槽,在所述安装槽内固定有导向筒,所述第一滑座滑动套设于所述导向筒,所述第一滑座与所述导向筒的外壁之间设有相互配合引导轴向运动的导向结构;所述调弯管的近端插入并固定于所述导向筒。
  38. 如权利要求33所述介入输送系统,其特征在于,所述副手柄向近端滑动至极限位置时,所述调弯管的远端暴露于所述外鞘管,且暴露长度0~20cm。
  39. 如权利要求37所述介入输送系统,其特征在于,所述导向筒的侧壁设有第二排气孔,所述调弯管与所述导管体之间的径向间隙连通于所述第二排气孔,所述导管体的近端穿出所述调弯管的近端后进一步延伸贯穿所述导向筒;
    在所述第二排气孔处固定连接有第二管接头,所述第二排气孔与所述第二管接头限定形成第二排气通道,在所述第二排气通道内设有单向阀芯。
  40. 如权利要求39所述介入输送系统,其特征在于,所述单向阀芯具有相对的密封状态和开放状态,且单向阀芯具体包括:
    限位杆,滑动安装于所述第二管接头的内腔中,在所述限位杆的外周与所述第二管接头的内壁之间带有流体间隙;
    密封片,连接于所述限位杆,密封状态下所述密封片封闭所述流体间隙,开放状态下所述密封片开启所述流体间隙。
  41. 如权利要求40所述介入输送系统,其特征在于,所述第二排气孔的边缘设有第二环形座,所述第二管接头与所述第二环形座插接配合,且彼此之间设有相互配合的止转结构。
  42. 如权利要求41所述介入输送系统,其特征在于,所述第二管接头外周设有第二防护套,所述第二管接头的外壁与所述第二防护套的内壁之间构成管路插接间隙。
  43. 如权利要求41所述介入输送系统,其特征在于,所述止转结构包括:
    插槽,沿所述第二管接头的插入方向延伸,所述插槽设置在所述第二管接头与所述第二环形座两者中其中一者的侧壁;
    定位筋,与所述插槽配合,所述定位筋设置在所述第二管接头与所述第二环形座两者中另一者的侧壁。
  44. 如权利要求40所述介入输送系统,其特征在于,所述第二管接头的内壁设有环绕在所述限位杆外周的卡环,所述流体间隙位于卡环的外周与所述第二管接头的内壁之间。
  45. 如权利要求44所述介入输送系统,其特征在于,所述限位杆远离所述密封片的一端穿过所述卡环且带有受限于所述卡环的头部,该头部与所述密封片夹持部固定于所述卡环的两相对侧,所述密封片的 边缘可弹性形变,相应的开放或封闭流体间隙。
  46. 如权利要求1所述介入输送系统,其特征在于,所述介入输送系统用于递送人工植入物,所述人工植入物包括支架和瓣叶,所述支架带有单元格结构,所述支架的两端分别为流入侧和流出侧,支架内部为血流通道;
    所述瓣叶为多片、各瓣叶处在血流通道内相互配合以相对的开放或封闭血流通道,所述瓣叶的边缘包括固定至支架的固定缘,以及与其他瓣叶相互配合控制血流通道的自由缘;
    所述支架上连接有防周漏组件,所述防周漏部件为一体结构,包括处在支架内侧的基底和固定于基底外侧的防周漏部件,所述防周漏部件为多个间隔分布的块状且位置与支架单元格的镂空区域对应。
  47. 如权利要求46所述介入输送系统,其特征在于,所述基底采用PET材质。
  48. 如权利要求47所述介入输送系统,其特征在于,所述防周漏部件采用PU材质。
  49. 如权利要求46所述介入输送系统,其特征在于,按照所在单元格轴向位置的不同,所述防周漏部件包括第二圈防周漏部件和第三圈防周漏部件中的至少一者,以及第一圈防周漏部件,其中:所述第一圈防周漏部件布满所在的整个单元格;
    所述第二圈防周漏部件和所述第三圈防周漏部件分布于所在的整个单元格的局部区域。
  50. 如权利要求49所述介入输送系统,其特征在于,所述第二圈防周漏部件邻近第一圈防周漏部件流入侧。
  51. 如权利要求49所述介入输送系统,其特征在于,所述第三圈防周漏部件邻近第一圈防周漏部件流出侧。
  52. 如权利要求49所述介入输送系统,其特征在于,所述第二圈防周漏部件以及所述第三圈防周漏部件的轴向长度仅占半个单元格,且邻近所述第一圈防周漏部件。
  53. 如权利要求49所述介入输送系统,其特征在于,同一块防周漏部件中,由流出侧至流入侧逐渐增厚、至外凸最高的部位后再逐渐变薄。
  54. 如权利要求53所述介入输送系统,其特征在于,同一块防周漏部件中,外凸最高的部位更加靠近所在单元格的流入侧。
  55. 如权利要求54所述介入输送系统,其特征在于,同一块防周漏部件中,外凸高度最大处到所在单元格的流入侧之间距离为S1,外凸高度最大处到所在单元格的流出入侧之间距离为S2,其中S1:S2为0.2~0.8。
  56. 如权利要求1所述介入输送系统,其特征在于,所述装载段的直径大于所述鞘管段的直径。
  57. 如权利要求1所述介入输送系统,其特征在于,所述内鞘管的远端带有引导头,所述引导头的外周带有环形台阶,所述装载段的远端端面与所述环形台阶相抵限位。
  58. 一种基于球扩释放的介入输送装置,其特征在于,具有相对的远端和近端且包括内轴以及处在内轴外周的球囊导管,所述球囊导管包括球囊体以连通于球囊体近端的导管体,所述球囊体由远端至近端依次包括第一部、中部和第二部,所述中部供人工植入物装载固定;
    所述内轴与所述球囊体的径向间隙中设置有引流管,所述引流管的远端与所述内轴的远端固定,所述引流管的其余部分悬浮在所述内轴以及所述球囊导管之间;
    由所述导体向所述球囊体输出的流体中,至少有一部分流体经由所述引流管越过所述第二部以及所述中部后进入并充涨所述第一部。
  59. 如权利要求58所述介入输送装置,其特征在于,所述内轴与所述导管体的径向间隙作为主流道,且所述主流道为一体式流道。
  60. 如权利要求58所述介入输送装置,其特征在于,所述主流道向所述球囊体输出的流体中,一部分进入并充涨所述第二部,另一部分进入所述引流管、越过所述第二部以及所述中部后进入并充涨所述第一部。
  61. 一种基于球扩释放的介入输送装置,其特征在于,具有相对的远端和近端且包括内轴以及处在内轴外周的球囊导管,所述球囊导管包括球囊体以连通于球囊体近端的导管体,所述球囊体由远端至近端依次包括第一部、中部和第二部,所述中部供人工植入物装载固定,所述导管体内具有主流道;
    所述内轴与所述球囊体的径向间隙中设置有引流管,由所述主流道向所述球囊体输出的流体中,至少有一部分流体经由所述引流管越过所述第二部以及所述中部后进入并充涨所述第一部。
  62. 如权利要求61所述介入输送装置,其特征在于,所述引流管的近端具有开放的端口且作为流体入口。
  63. 如权利要求62所述介入输送装置,其特征在于,所述流体入口的轴向位置邻近所述球囊体与所述导管体的结合部位。
  64. 如权利要求62所述介入输送装置,其特征在于,所述球囊体受流体灌注后呈充涨状态,充涨状态 下所述流体入口位于所述第二部相对于所述导管体的流道截面积突变部位。
  65. 如权利要求61所述介入输送装置,其特征在于,装载状态下,人工植入物径向压缩且包裹于所述中部的外周,所述第一部和第二部暴露于人工植入物的两端;所述引流管的近端具有流体入口,所述流体入口处在所述第二部内。
  66. 如权利要求61所述介入输送装置,其特征在于,在所述引流管的近端端口处,所述内轴与所述引流管的之间具有径向跨度为L1的第一间隙,所述内轴与所述导管体之间具有径向跨度为L2的第二间隙;且满足L1:L2=1:1.25~1.6。
  67. 如权利要求61所述介入输送装置,其特征在于,所述引流管由远端至近端依次包括远端段、中间段和近端段,且分别与所述球囊体的各个部分对应,所述引流管的远端段带有与所述第一部连通的第一流体出口,所述第一流体出口位于所述远端段的管壁,和/或所述远端段的端面。
  68. 如权利要求67所述介入输送装置,其特征在于,所述远端段的管壁开设有多个第一流体出口。
  69. 如权利要求68所述介入输送装置,其特征在于,所述多个第一流体出口沿所述引流管的周向分布。
  70. 如权利要求68所述介入输送装置,其特征在于,沿所述引流管的长度方向,所述多个第一流体输出口处在所述远端段的中间部位。
  71. 如权利要求61所述介入输送装置,其特征在于,所述引流管的近端与所述导管体的远端相互连通为一体,所述近端段的管壁开设有与所述第二部连通的第二流体出口。
  72. 如权利要求61所述介入输送装置,其特征在于,所述引流管的近端带有形状逐渐收敛的斜切段,所述斜切段的至少一部分伸入所述导管体的远端内。
  73. 如权利要求72所述介入输送装置,其特征在于,所述斜切段具有一个或两个斜切面。
  74. 如权利要求73所述介入输送装置统,其特征在于,所述引流管的内腔开放于所述斜切面,且同时与所述导管体的内腔以及所述第二部的内腔连通。
  75. 如权利要求61所述介入输送装置,其特征在于,所述内轴与所述引流管径向之间设有保持彼此之间径向间隙的隔离件。
  76. 如权利要求75所述介入输送装置,其特征在于,所述隔离件为处于所述引流管内壁的筋条。
  77. 如权利要求75所述介入输送装置,其特征在于,所述隔离件固定在所述内轴与所述引流管径向之间的镂空结构件。
  78. 如权利要求61所述介入输送装置,其特征在于,所述内轴的远端固定有引导头,所述引流管的远端与所述引导头的近端侧固定。
  79. 如权利要求78所述介入输送系统,其特征在于,所述引流管的远端被所述引导头封闭。
  80. 如权利要求78所述介入输送装置,其特征在于,所述引导头的近端侧带有与引流管的远端相适配的定位结构,所述定位结构为供所述引流管插入的结合槽,或插入所述引流管的结合柱。
  81. 一种利用流体驱动球囊导管的方法,其特征在于,所述球囊导管具有相对的远端和近端且包括球囊体以及导管体,所述导管体的远端连通于所述球囊体的近端,所述球囊体由远端至近端依次包括第一部、中部以及第二部,所述中部供人工植入物装载固定,所述导管体内具有主流道,所述方法包括:
    由所述导管体的近端向所述主流道内注入流体;
    将所述主流道向所述球囊体输出的流体进行分流,仅允许部分流体进入并充涨所述第二部;
    针对另一部分流体进行引流,越过所述第二部以及所述中部后进入并充涨所述第一部。
  82. 如权利要求81所述的方法,其特征在于,所有用于充涨所述球囊体的流体在分流之前均来自所述主流道。
  83. 如权利要求81所述的方法,其特征在于,所述分流的方式为:
    所述流体在所述导管体与所述第二部的结合部位分为两路,其中一路进入并充涨所述第二部,另一路经由独立流道越过所述第二部以及所述中部后进入并充涨所述第一部。
  84. 如权利要求83所述的方法,其特征在于,所述流体由所述主流道均进入所述独立流道,所述独立流道连通有分支流道,其中一部分流体在流经所述第二部时,经由所述分支流道进入并充涨所述第二部,另一路经由独立流道越过所述第二部以及所述中部后进入并充涨所述第一部。
  85. 如权利要求81所述的方法,其特征在于,所述方法还包括:
    控制所述流体,使所述第一部和所述第二部先于所述中部充涨,所述球囊体进入两端充涨、中部相对收拢的过渡状态;向所述导管体持续注入流体,直至所述球囊体完全充涨、且所述人工植入物径向扩张。
  86. 如权利要求81所述的方法,其特征在于,所述流体被分流为两路,每路包括一股或多股。
  87. 如权利要求86所述的方法,其特征在于,同一路的各股之间辐射分布。
  88. 如权利要求81所述的方法,其特征在于,所述人工植入物为筒状结构,进入所述独立流道的流体 经由所述筒状结构的内部越过所述中部。
  89. 如权利要求81所述的方法,其特征在于,所述球囊体具有延伸于远端和近端之间的轴向以及相应的径向和周向,充涨所述第一部的方式包括:
    经由所述独立流道沿所述球囊体的径向输出、并充涨所述第一部;
    和/或经由所述独立流道沿所述球囊体的轴向输出、并充涨所述第一部。
  90. 一种用于介入输送系统的限位机构,其特征在于,包括:
    耦接部,用于与介入输送系统相连,所述耦接部具有轴向以及相应的周向和径向;
    形变部,包括沿周向依次布置的多根细长的杆件,各杆件分别具有:
    第一端,与所述耦接部相连;
    第二端,相对于所述第一端处在所述耦接部轴向的一侧,各杆件基于弹性形变具有适于介入输送的压缩状态以及相对的展开状态,在所述展开状态下,各杆件的第二端相对于在压缩状态下在所述耦接部的径向上向外发散。
  91. 如权利要求90所述限位机构,其特征在于,所述耦接部为直筒状,各杆件呈辐射状分布,所述各杆件的第一端的汇聚位置为所述耦接部轴向的一端。
  92. 如权利要求91所述限位机构,其特征在于,所述耦接部为径向可形变的环形。
  93. 如权利要求92所述限位机构,其特征在于,所述耦接部为轴向起伏的波浪结构且具有相对的波峰和波谷,所述各杆件的第一端连接至对应的波峰。
  94. 如权利要求90所述限位机构,其特征在于,所述耦接部与所述形变部为一体结构。
  95. 如权利要求94所述限位机构,其特征在于,所述耦接部与所述形变部采用管材一体切割。
  96. 如权利要求90所述限位机构,其特征在于,所述各杆件的第二端独立运动。
  97. 如权利要求90所述限位机构,其特征在于,所述杆件具有绕耦接部轴线螺旋延伸的趋势。
  98. 如权利要求90所述限位机构,其特征在于,所述杆件数量为4~10根。
  99. 如权利要求90所述限位机构,其特征在于,所述杆件的第二端具有圆滑的外轮廓、和/或包覆有防护层。
  100. 如权利要求90所述限位机构,其特征在于,所述杆件靠近第二端的部分具有径向向内的弯折趋势。
  101. 如权利要求90所述限位机构,其特征在于,所述杆件靠近第二端的部分相对于所在杆件的其余部分具有更低的径向刚度。
  102. 用于介入输送系统的限位机构,用于安装在球囊体内,其特征在于,所述球囊体具有相对的折叠状态和充涨状态,折叠状态下在所述球囊体带有多个折缝,所述限位机构包括:
    耦接部,用于与介入输送系统相连,所述耦接部具有轴向以及相应的周向和径向;
    形变部,包括沿周向依次布置的多根杆件,各杆件配置为基于弹性形变具有适于介入输送的压缩状态以及相对的展开状态,在所述压缩状态下,各所述杆件置入对应的折缝内。
  103. 如权利要求102所述限位机构,其特征在于,所述球囊体在折叠状态向沿周向上的第一方向卷绕,所述各杆件的螺旋方向与所述第一方向相同。
  104. 如权利要求102所述限位机构,其特征在于,所述球囊体在折叠状态下,至少一杆件的第二端在径向上不低于人工植入物。
  105. 一种用于介入输送系统的限位机构,其特征在于,包括:
    耦接部,用于与介入输送系统相连,所述耦接部具有轴向以及相应的周向和径向;
    形变部,包括沿周向依次布置的多根杆件,各杆件分别具有:
    第一端,与所述耦接部相连;
    第二端,相对于所述第一端处在所述耦接部轴向的一侧,各杆件配置为基于弹性形变具有适于介入输送的压缩状态以及相对的展开状态,在所述展开状态下,各杆件的第二端相对于在压缩状态下在所述耦接部的径向上向外发散;所述杆件采用记忆合金制成,在所述展开状态和压缩状态,所述杆件的第二端端部与耦接部轴线距离分别为R1和R2,且满足R1:R2=2~20:1。
  106. 一种用于递送人工植入物的球囊装置,其特征在于,包括内轴以及处在所述内轴外周的球囊体,所述内轴安装有处在所述球囊体内部且如权利要求90~105任一项所述的限位机构。
  107. 一种基于球扩的介入输送系统,用于递送人工植入物,其特征在于,所述介入输送系统包括球囊装置和外鞘管,所述球囊装置包括内轴以及处在所述内轴外周的球囊体,所述内轴的远端安装有沿周向依次布置的多个杆件,各杆件配置为基于弹性形变具有适于介入输送的压缩状态以及相对的展开状态,各杆件分别具有:
    第一端,与所述内轴相连;
    第二端,位于所述第一端的一侧且相对所述内轴悬浮设置,在所述展开状态下,各杆件的第二端相对于在压缩状态下径向上向外发散;
    所述人工植入物能够以径向压缩的装载状态安装于球囊体上,并处于所述杆件的近端,所述杆件作用于球囊体使得球囊体外周面不低于人工植入物远端侧的外周面。
  108. 如权利要求107所述的介入输送系统,其特征在于,所述杆件作用于球囊体使得球囊体外周面与人工植入物远端侧的外周面大致齐平。
  109. 一种基于球扩的介入输送系统,用于递送人工植入物,其特征在于,所述介入输送系统具有相对远端和近端,以及延伸在近端和远端之间的轴向,所述介入输送系统包括:
    球囊装置,所述球囊装置包括内轴以及处在所述内轴外周的球囊体,所述内轴的远端安装有处在所述球囊体内部的第一限位机构;
    中间轴,所述中间轴处在所述内轴外,所述中间轴的远端安装有处在所述球囊体外部的第二限位机构,所述第二限位机构处在所述第一限位机构的近侧,所述人工植入物能够以径向压缩的装载状态安装于球囊体上,并处于第一限位机构和第二限位机构之间,两限位机构被配置限制所述人工植入物相对所述球囊体沿轴向移动;
    外鞘管,所述外鞘管滑动配合在所述球囊装置的外周,所述外鞘管在自身滑动路径上具有向近端运动的极限位置,在该极限位置下,第一限位机构和人工植入物暴露于外鞘管外,第二限位机构处在所述外鞘管内。
  110. 一种基于球扩的介入输送系统,用于递送人工植入物,其特征在于,所述介入输送系统包括:
    球囊装置,所述球囊装置包括内轴以及处在所述内轴外周的球囊体,所述内轴的远端安装有处在所述球囊体内部的周向依次布置的多根杆件,各杆件配置为基于弹性形变具有适于介入输送的压缩状态以及相对的展开状态,各杆件分别具有与所述内轴相连的第一端,和位于所述第一端的一侧且相对所述内轴悬浮设置的第二端,在所述展开状态下,各杆件的第二端相对于在压缩状态下径向上向外发散,所述人工植入物能够以径向压缩的装载状态安装于球囊体上,并处于各杆件的近端;
    调节线,用于将人工植入物可释放地固定在所述球囊体上,所述调节线上的一端能够保持与球囊体的固定,另一端可穿过人工植入物并带有锁孔;
    锁线,具有相对的锁定状态和解锁状态,在锁定状态下、所述锁线穿入各锁孔以限制人工植入物,解锁状态下、所述锁线脱离各锁孔以释放人工植入物。
  111. 如权利要求107~110任一项所述的介入输送系统,其特征在于,所述介入输送系统还包括控制手柄,所述控制手柄连接并控制球囊装置。
  112. 如权利要求111所述的介入输送系统,其特征在于,在所述球囊体内,设有处在所述内轴外周的流体引导件,所述流体引导件限定构成导流通道,该导流通道连通球囊体内的远端部位和近端部位。
  113. 一种用于输送人工心脏瓣膜的球囊装置,其特征在于,包括:
    导管体,所述导管体的延伸方向作为轴向;
    球囊体,与所述导管体连通,所述球囊体能够接收来自所述导管体的流体,从而从折叠状态进入充涨状态,所述人工心脏瓣膜基于所述球囊体的变化相应地从径向压缩状态膨胀至径向膨胀状态;
    限位机构,被配置为至少当所述人工心脏瓣膜以径向压缩状态安装在所述球囊体上时,限制所述人工心脏瓣膜在所述轴向上的移动,所述限位机构具体包括:
    限位主体,所述限位主体包括多根杆件,所述多根杆件整体上由所述轴向上的第一端延伸至所述轴向上的第二端,并分别在所述第一端和所述第二端聚拢形成中空的笼形结构。
  114. 如权利要求113所述的球囊装置,其特征在于,所述多根杆件被构造成所述笼形结构的侧壁,且所述侧壁上,两相邻杆件之间的间隙形成镂空区。
  115. 如权利要求114所述的球囊装置,其特征在于,所述镂空区包括主镂空区和辅镂空区,所述主镂空区沿所述轴向的跨度大于所述辅镂空区沿所述轴向的跨度。
  116. 如权利要求115所述的球囊装置,其特征在于,所述主镂空区跨越所述第一端和所述第二端。
  117. 如权利要求115所述的球囊装置,其特征在于,所述笼形结构具有外扩部,所述外扩部具有所述笼形结构的最大外径,所述主镂空区跨越所述外扩部。
  118. 如权利要求115所述的球囊装置,其特征在于,在周向上,所述主镂空区和所述辅镂空区沿周向依次间隔分布。
  119. 如权利要求113所述的球囊装置,其特征在于,所述限位机构位于所述球囊体的内部或外部。
  120. 如权利要求113所述的球囊装置,其特征在于,所述导管体和所述球囊体这两者中的至少一者与所述限位机构直接固定,或通过中间件与所述限位机构间接固定。
  121. 如权利要求113所述的球囊装置,其特征在于,所述球囊装置还包括内轴,所述内轴穿设于所述 导管体和所述球囊体内部;
    所述限位机构还包括至少一个耦接件,耦接件固定于所述内轴并与所述限位主体的聚拢部位相连。
  122. 如权利要求121所述的球囊装置,其特征在于,所述耦接件位于所述限位主体内部或外部。
  123. 如权利要求121所述的球囊装置,其特征在于,所述耦接件位于所述限位主体轴向上的至少一端。
  124. 如权利要求121所述的球囊装置,其特征在于,所述笼形结构具有外扩部,所述外扩部具有所述笼形结构的最大外径,所述外扩部与所述耦接件的外径比为2~4:1。
  125. 如权利要求124所述的球囊装置,其特征在于,所述外扩部与所述耦接件的外径比为3:1。
  126. 如权利要求121所述的球囊装置,其特征在于,所述耦接件为径向可压缩的管状。
  127. 如权利要求126所述的球囊装置,其特征在于,所述耦接件具有沿轴向起伏的波浪结构或具有可形变的网格。
  128. 如权利要求126所述的球囊装置,其特征在于,所述限位机构采用管材一体切割成型,所述管材具有初始的外径D1,所述耦接件具有的外径D2,且至少一个耦接件的外径D2小于D1。
  129. 如权利要求121所述的球囊装置,其特征在于,所述耦接件为两个,所述笼形结构由多根杆件围成,所有杆件在空间上限定所述笼形结构的侧壁,所有的杆件由其中一耦接件起延伸至另一耦接件且在延伸路径上至少带有一分叉,或与相邻的杆件交汇。
  130. 如权利要求129所述的球囊装置,其特征在于,所述笼形结构具有外扩部,所述外扩部具有所述笼形结构的最大外径,沿所述外扩部周向,间隔分布多个两两杆件的交汇点。
  131. 如权利要求115所述的球囊装置,其特征在于,所述主镂空区的数量为4~12个。
  132. 如权利要求131所述的球囊装置,其特征在于,所述主镂空区的数量为6~8个。
  133. 如权利要求115所述的球囊装置,其特征在于,各个主镂空区形状相同且沿周向均匀布置。
  134. 如权利要求115所述的球囊装置,其特征在于,所述主镂空区为条状。
  135. 如权利要求115所述的球囊装置,其特征在于,沿所述轴向,所述主镂空区的长度为所述限位主体总长的至少40%。
  136. 如权利要求135所述的球囊装置,其特征在于,所述主镂空区的长度为所述限位主体总长的至少60%以上。
  137. 如权利要求116所述的球囊装置,其特征在于,所述主镂空区的长度为所述限位主体总长的75%~100%。
  138. 如权利要求115所述的球囊装置,其特征在于,所述主镂空区的形状呈菱形。
  139. 如权利要求117所述的球囊装置,其特征在于,沿所述轴向,所述主镂空区延伸至所述外扩部的两侧,且延伸出的长度为所述限位主体总长的至少20%。
  140. 如权利要求139所述的球囊装置,其特征在于,所述辅镂空区避让所述外扩部。
  141. 如权利要求113所述的球囊装置,其特征在于,所述限位主体一端为使用状态下朝向人工心脏瓣膜的第一端,另一端为相对的第二端,所述限位主体的两端均向所述限位主体的中心轴线收拢。
  142. 如权利要求141所述的球囊装置,其特征在于,各杆件在空间上自所述第一端向所述第二端延伸并形成球体或椭圆体。
  143. 如权利要求141所述的球囊装置,其特征在于,所述椭球体的截面为一椭圆面,所述椭圆面的长轴与所述轴向方向一致。
  144. 如权利要求113所述的球囊装置,其特征在于,所述笼形结构有多根杆件围成,各杆件在空间上自所述第一端向所述第二端延伸并形成锥体。
  145. 如权利要求144所述的球囊装置,其特征在于,所述笼形结构具有外扩部,所述外扩部具有所述笼形结构的最大外径,所述锥体包括第一锥体和第二锥体;所述第一锥体和所述第二锥体处在所述外扩部的两侧或同侧。
  146. 如权利要求145所述的球囊装置,其特征在于,所述第一锥体和所述第二锥体处在所述外扩部的两侧,所述第一锥体和所述第二锥体由所述外扩部起形状逐渐收拢,且收拢的趋势不同。
  147. 如权利要求146所述的球囊装置,其特征在于,所述限位主体一端为使用状态下朝向人工心脏瓣膜的第一端,另一端为相对的第二端,与所述第一端衔接的为所述第一锥体,且所述第一锥体的收拢趋势更快。
  148. 如权利要求146所述的球囊装置,其特征在于,所述第一锥体和所述第二锥体交互于所述外扩部,且在交汇部位的夹角为20~120度。
  149. 如权利要求145所述的球囊装置,其特征在于,所述第一锥体和所述第二锥体处在所述外扩部的同侧,所述限位主体一端为使用状态下朝向人工心脏瓣膜的第一端,另一端为相对的第二端,与所述第一端衔接的为所述第一锥体,所述第一锥体朝向远离所述第一端的方向收拢。
  150. 一种用于输送人工心脏瓣膜的球囊装置,其特征在于,包括:
    导管体,所述导管体的延伸方向作为轴向;
    球囊体,与所述导管体连通,所述球囊体能够接收来自所述导管体的流体,从而从折叠状态进入充涨状态,所述人工心脏瓣膜基于所述球囊体的变化相应地从径向压缩状态膨胀至径向膨胀状态;
    限位机构,被配置为至少当所述人工心脏瓣膜以径向压缩状态安装在所述球囊体上时,限制所述人工心脏瓣膜在所述轴向上的移动,所述限位机构具体包括:
    限位主体,所述限位主体整体上为笼形结构,所述笼形结构的其中一部分为外扩部,该外扩部相对于所述笼形结构其他部分具有最大的径向外扩程度,沿所述轴向,所述限位主体一端为使用状态下朝向人工心脏瓣膜的第一端,另一端为相对的第二端,所述外扩部邻近所述限位主体的第一端。
  151. 如权利要求150所述的球囊装置,其特征在于,所述球囊装置还包括内轴,所述内轴穿设于所述导管体和所述球囊体内部;
    所述限位机构还包括:耦接件,固定于所述内轴并与所述限位主体相连。
  152. 如权利要求151所述的球囊装置,其特征在于,所述限位主体中在所述第一端一侧与该侧的耦接件之间形成容纳人工心脏瓣膜端部的内凹区。
  153. 一种用于输送人工心脏瓣膜的球囊装置,其特征在于,包括:
    导管体,所述导管体的延伸方向作为轴向;
    球囊体,与所述导管体连通,所述球囊体能够接收来自所述导管体的流体,从而从折叠状态进入充涨状态,所述人工心脏瓣膜基于所述球囊体的变化相应地从径向压缩状态膨胀至径向膨胀状态;
    限位机构,被配置为至少当所述人工心脏瓣膜以径向压缩状态安装在所述球囊体上时,限制所述人工心脏瓣膜在所述轴向上的移动,所述限位机构具体包括:
    限位主体,所述限位主体包括多根杆件在整体上围成笼形结构,所述笼形结构的其中一部分为外扩部,该外扩部相对于所述笼形结构其他部分具有最大的径向外扩程度,在经过所述外扩部的横截面上,各杆件沿所述限位机构的周向间隔布置且所围的区域趋近于多边形。
  154. 如权利要求153所述的球囊装置,其特征在于,所述多边形为正多边形,且边数为4~12。
  155. 如权利要求154所述的球囊装置,其特征在于,所述正多边形的边数为为6~8。
  156. 一种用于输送人工心脏瓣膜的球囊装置,具有相对的远端和近端,其特征在于,包括:
    导管体,所述导管体的延伸方向作为轴向;
    球囊体,与所述导管体连通,所述球囊体能够接收来自所述导管体的流体,从而从折叠状态进入充涨状态,所述人工心脏瓣膜基于所述球囊体的变化相应地从径向压缩状态膨胀至径向膨胀状态;
    内轴,所述内轴穿设于所述导管体和所述球囊体内部;
    限位机构,被配置为至少当所述人工心脏瓣膜以径向压缩状态安装在所述球囊体上时,限制所述人工心脏瓣膜在所述轴向上的移动,所述限位机构具体包括:
    限位主体,所述限位主体整体上为笼形结构;
    引导管,连接于所述限位主体且与所述限位主体采用形状记忆合金材质的管材一体切割成型;
    耦接件,与所述内轴连接,所述耦接件还至少与所述限位主体、引导管的其中一者连接。
  157. 如权利要求156所述的球囊装置,其特征在于,所述引导管连接于所述限位主体的近端侧。
  158. 如权利要求156所述的球囊装置,其特征在于,所述限位主体数量为两个,且分别连接于所述引导管的近端侧和远端侧。
  159. 如权利要求158所述的球囊装置,其特征在于,两个限位主体的笼形结构相互独立。
  160. 如权利要求156所述的球囊装置,其特征在于,所述球囊体由远端至近端依次包括第一部、中部和第二部,所述中部供人工心脏瓣膜装载固定;
    所述引导管设置在所述内轴与所述球囊体的径向间隙中,所述引导管与所述内轴之间留有供流体通过的引导通道。
  161. 如权利要求156所述的球囊装置,其特征在于,所述耦接件包括第一耦接件以及处在所述第一耦接件远端的第二耦接件,两耦接件均处于所述内轴的外周,且至少一耦接件固定于所述内轴,所述球囊体的远端部位还包裹所述第二耦接件。
  162. 如权利要求161所述的球囊装置,其特征在于,所述第二耦接件处在所述引导管的近端,且临近所述球囊体与所述导管体的连接部位。
  163. 如权利要求156所述的球囊装置,其特征在于,所述引导管的近端带有缩径段并通过该缩径段与对应侧的耦接件相连。
  164. 如权利要求163所述的球囊装置,其特征在于,所述引流管带有流体入口,所述流体入口分布在于所述缩径段和/或所述引流管的周壁。
  165. 如权利要求156所述的球囊装置,其特征在于,所述引流管的周壁整体上带有镂空的间隙。
  166. 如权利要求156所述的球囊装置,其特征在于,所述限位机构采用管材一体切割成型;所述管材具有初始的外径D1,所述引流管的外径为D1,所述耦接件具有的外径D2,且至少一个耦接件的外径D2小于D1。
  167. 一种经导管植入物介入系统,其特征在于,包括人工植入物以及如权利要求106、113~166任一项所述的球囊装置,所述球囊装置包括:
    导管体;
    与所述导管体连通的球囊体;
    所述的限位机构,所述人工植入物以径向压缩的装载状态安装于球囊体上,并在轴向上受所述限位机构的阻挡。
  168. 如权利要求167所述经导管植入物介入系统,其特征在于,所述经导管植入物介入系统还包括滑动配合在球囊装置外部的外鞘管,所述限位机构中的限位主体包括装载状态、中间状态及扩展状态;
    其中,在装载状态,所述限位主体位于所述球囊体和所述外鞘管内部,并受到所述球囊体和所述外鞘管的两者的径向力;
    在中间状态,所述限位主体脱离所述外鞘管的径向束缚,并受到所述球囊体的径向力;
    在扩展状态,所述球囊体膨胀,且所述限位主体扩张。
  169. 如权利要求167所述经导管植入物介入系统,其特征在于,所述人工植入物为人工心脏瓣膜。
  170. 一种人工心脏瓣膜,其特征在于,包括第一支架以及瓣叶,所述第一支架为径向可形变的筒状结构,所述第一支架的内部为血流通道,所述瓣叶为多片且相互配合控制所述血流通道;
    所述第一支架具有通过框条围成的网格结构,所述第一支架为直筒状,所述网格结构包括菱形状的网格,所述第一支架的端部具有凸出于所述端部的孔眼结构,所述孔眼结构由处在端部的框条构成,所述第一支架具有相对的扩张状态和压缩状态,所述压缩状态下、所述孔眼结构凸出于所述端部的距离为L1;所述扩张状态下、所述孔眼结构凸出于所述端部的距离为L2,且L1>L2≥0。
  171. 如权利要求170所述人工心脏瓣膜,其特征在于,所述第一支架的网格结构在端部形成若干网格节点,所述扩张状态下,所述孔眼结构基本与其周围网格节点平齐;所述压缩状态下,所述孔眼结构高于其周围网格节点。
  172. 如权利要求170所述人工心脏瓣膜,其特征在于,L1:L2为1.2~1.6:1。
  173. 如权利要求170所述人工心脏瓣膜,其特征在于,L1为0.6~0.8mm,L2为0.4~0.6mm。
  174. 如权利要求170所述人工心脏瓣膜,其特征在于,扩张状态下所述孔眼结构整体上为弧形结构,压缩状态下所述孔眼结构趋近于圆形结构。
  175. 如权利要求170所述人工心脏瓣膜,其特征在于,所述人工心脏瓣膜为人工肺动脉瓣瓣膜或人工主动脉瓣瓣膜。
  176. 如权利要求170所述人工心脏瓣膜,其特征在于,所述扩张状态下,所述处在端部的框条自身弯折绕置呈弧形且限定所述孔眼结构的边缘。
  177. 如权利要求170所述人工心脏瓣膜,其特征在于,所述第一支架轴向的两端均具有所述孔眼结构,且两端孔眼结构的周向位置相同或错位布置。
  178. 如权利要求170所述人工心脏瓣膜,其特征在于,带有所述孔眼结构的网格为第一网格,与所述第一网格周向相邻的网格为第二网格,在所述第一网格中,所述孔眼结构周边的框条包括:
    弧形段,限定所述孔眼结构的边缘;
    连接段,由所述弧形段的两端相背延伸直至所述第一网格中周向两侧的网格节点。
  179. 如权利要求178所述人工心脏瓣膜,其特征在于,所述弧形段两侧的连接段之间的夹角为A1,所述第二网格中位于轴向端部的网格节点的内角为A2,扩张状态下A1大于A2。
  180. 如权利要求178所述人工心脏瓣膜,其特征在于,所述扩张状态下、所述弧形段自身对应的圆心角为150~210度。
  181. 如权利要求178所述人工心脏瓣膜,其特征在于,所述扩张状态下、所述弧形段在所述第一支架周向上的跨度占所述第一网格跨度的1/4~1/2。
  182. 如权利要求178所述人工心脏瓣膜,其特征在于,所述第一网格中,在所述孔眼结构周边的框条的强度小于所述第一网格中其他部位框条的强度。
  183. 如权利要求170所述人工心脏瓣膜,其特征在于,所述第一支架中的网格为多圈,轴向相邻的两圈之间在周向上错位布置且共用部分框条;
    扩张状态下,各个网格的节点内角为75~105度。
  184. 如权利要求170所述人工心脏瓣膜,其特征在于,所述人工心脏瓣膜还包括连接并环绕于所述第 一支架内壁的裙边,所述裙边轴向的一侧与所述瓣叶衔接。
  185. 如权利要求184所述人工心脏瓣膜,其特征在于,所述人工心脏瓣膜还包括且沿所述第一支架周向布置的封堵件,所述封堵件固定于所述裙边,且从第一支架径向内侧经由对应的网格向第一支架径向外侧凸出。
  186. 如权利要求185所述人工心脏瓣膜,其特征在于,所述裙边与所述封堵件为一体成型或粘结固定,均采用PU材质。
  187. 如权利要求185所述人工心脏瓣膜,其特征在于,所述封堵件包括:
    多个封堵块,沿所述第一支架的周向布置,各封堵块采用发泡材料并嵌入位置对应的网格结构。
  188. 如权利要求187所述人工心脏瓣膜,其特征在于,所述封堵件还包括:
    内衬膜,所述多个封堵块固定于所述内衬膜的一侧,且所述内衬膜与所述多个封堵块采用相同材质。
  189. 如权利要求188所述人工心脏瓣膜,其特征在于,所述裙边为生物心包材料,所述内衬膜与所述裙边缝合。
  190. 如权利要求170所述人工心脏瓣膜,其特征在于,所述支架的至少一部分为支撑条,沿所述支架的周向,所述支撑条的至少一侧带有凹陷区,所述瓣叶通过缝线与支撑条固定,其而该缝线中的所有线结位于对应的凹陷区内。
  191. 如权利要求190所述人工心脏瓣膜,其特征在于,所述瓣叶包括:
    本体,展平状态下具有相对的横向和纵向,所述本体的外边缘包括分布在纵向两对侧的自由缘和固定缘,所述多片瓣叶通过各自的固定缘与所述支架固定,多片瓣叶的自由缘相互配合控制人工心脏瓣膜内的血流通道;
    耳片,布置在所述本体横向的两相对侧,所述自由缘和所述固定缘交汇于相应侧的耳片;
    相邻两瓣叶之间的耳片通过第一缝线彼此连接,还通过第二缝线和第三缝线与所述支撑条连接,其中所述第二缝线和所述第三缝线中的所有线结位于对应的凹陷区内。
  192. 如权利要求191所述人工心脏瓣膜,其特征在于,相邻两瓣叶之间的耳片通过所述第一缝线相互连接的部位抵靠于所述支撑条的径向内侧;
    相邻两瓣叶之间的耳片相互配合包裹所述支撑条。
  193. 如权利要求192所述人工心脏瓣膜,其特征在于,所述第二缝线中的线结被所述耳片包裹,所述第三缝线中的线结暴露于所述耳片。
  194. 如权利要求190所述人工心脏瓣膜,其特征在于,所述支架轴向的两侧为相对的流入侧和流出侧,其中在流出侧沿周向布置有一圈六边形的单元格,所述支撑条作为其中两相邻单元格之间的共用边。
  195. 如权利要求190所述人工心脏瓣膜,其特征在于,所述支撑条的延伸方向为支架轴向。
  196. 如权利要求190所述人工心脏瓣膜,其特征在于,所述支撑条的两个侧边分别M形,M形的起伏结构相应的构成所述凹陷区;
    两个侧边对应的M形对称布置或沿轴向错位布置。
  197. 一种经导管植入物系统,其特征在于,包括球囊装置以及权利要求170~196任一项所述的人工心脏瓣膜,所述球囊装置包括:
    导管体;
    球囊体,与所述导管体连通,所述球囊体能够接收来自所述导管体的流体,从而从折叠状态进入充涨状态,所述人工心脏瓣膜基于球囊体的变化相应地从压缩状态膨胀至扩张状态;
    内轴,穿设于导管体和球囊体内部,远端固定有引导头;
    所述经导管植入物系统中还包括用于限制所述人工心脏瓣膜与所述球囊体轴向相对位置的锁线结构,所述锁线用于穿过所述第一支架的孔眼结构。
  198. 如权利要求197所述经导管植入物系统,其特征在于,所述锁线结构包括:
    第一调节线,用于将人工植入物可释放地固定在球囊体上,所述第一调节线上的一端能够保持与导管体的固定,另一端可穿过所述孔眼结构并带有第一锁孔;
    第二调节线,一端连接于所述引导头,另一端可穿过孔眼结构并带有第二锁孔;
    锁线,具有相对的锁定状态和解锁状态,在锁定状态下、所述锁线穿入各锁孔以限制人工植入物,解锁状态下、所述锁线脱离各锁孔以释放人工植入物;
    引导头开设有插孔,在锁定状态下所述锁线的端头部位伸入所述插孔。
  199. 如权利要求198所述经导管植入物系统,其特征在于,所述调节线与所述锁线之间至少有两处结合部位,其中至少一结合部位限制人工植入物向远端方向运动,还有至少一结合部位限制人工植入物向近端方向运动。
  200. 如权利要求199所述经导管植入物系统,其特征在于,所述第一调节线、第二调节线在轴向长度 上相配合,使得第一支架保持在所述球囊体的中部区域。
  201. 如权利要求197所述经导管植入物系统,其特征在于,所述球囊装置采用权利要求106、113~166任一项所述的球囊装置。
  202. 一种人工心脏瓣膜组件,其特征在于,包括:
    人工心脏瓣膜,包括第一支架以及瓣叶,所述第一支架为径向可形变的筒状结构,所述第一支架的内部为血流通道,所述瓣叶为多片且相互配合控制所述血流通道;
    锚固支架,装配后套于所述人工心脏瓣膜径向外侧,所述人工心脏瓣膜和所述锚固支架均具有扩张状态和压缩状态,扩张状态下所述人工心脏瓣膜与锚固支架之间相互抵靠;
    所述锚固支架具有由框条围成的网格结构,所述网格结构沿轴向包括:
    中间部,包括两圈鱼骨网格;
    端部,包括两圈菱形格,分别处在所述中间部轴向的两侧;
    所述锚固支架还具有装配前的预扩状态,所述锚固支架在预扩状态具有第一直径、以及在扩张状态下具有第二直径,且第二直径大于第一直径。
  203. 如权利要求202所述人工心脏瓣膜组件,其特征在于,扩张状态下,所述锚固支架的轴向长度大于所述第一支架的长度。
  204. 如权利要求202所述人工心脏瓣膜组件,其特征在于,所述第一支架位于所述锚固支架轴向的中部。
  205. 如权利要求202所述人工心脏瓣膜组件,其特征在于,所述鱼骨网格为凹六边形,具有相对的凸尖和凹尾,两圈鱼骨网格的凹尾相向对称,凸尖相背;
    所述两圈菱形格分别处在所述中间部轴向的两侧,各菱形格处在相邻两鱼骨网格的凸尖之间。
  206. 如权利要求202所述人工心脏瓣膜组件,其特征在于,所述第一支架的轴向位置不超出所述中间部。
  207. 如权利要求202所述人工心脏瓣膜组件,其特征在于,所述第一支架比所述锚固支架的网格更致密。
  208. 如权利要求202所述人工心脏瓣膜组件,其特征在于,所述第一支架中周向网格数量为所述锚固支架中周向网格数量的1.2~2倍。
  209. 如权利要求202所述人工心脏瓣膜组件,其特征在于,所述锚固支架内处在端部的菱形格中,背向所述中间部的两根框条相对于与所述中间部共用的两个框条具有更低的强度。
  210. 如权利要求202所述人工心脏瓣膜组件,其特征在于,所述人工心脏瓣膜、锚固支架均基于球扩方式释放。
  211. 如权利要求202所述人工心脏瓣膜组件,其特征在于,所述人工心脏瓣膜基于球扩方式释放,所述锚固支架为基于自膨方式释放。
  212. 如权利要求202所述人工心脏瓣膜组件,其特征在于,所述人工心脏瓣膜为权利要求170~196任一项所述的人工心脏瓣膜。
  213. 一种经导管植入物系统,其特征在于,包括:
    如权利要求202~212任一项所述的上述所述的人工心脏瓣膜组件;
    第一输送系统,所述第一输送系统带有输送和扩张所述人工心脏瓣膜的第一球囊体。
  214. 如权利要求213所述经导管植入物系统,其特征在于,还包括:
    第二输送系统,用于扩张所述锚固支架。
  215. 如权利要求214所述经导管植入物系统,其特征在于,所述第一输送系统、第二输送系统采用相同或不同的介入路径实施介入递送。
  216. 如权利要求213所述经导管植入物系统,其特征在于,所述第一输送系统还包括用于扩张所述锚固支架的第二球囊体;
    或所述第一输送系统还包括外鞘管,所述锚固支架在压缩状态下容纳在所述外鞘管内,所述锚固支架基于自膨方式释放。
  217. 如权利要求216所述经导管植入物系统,其特征在于,所述第一球囊体、所述第二球囊体分别配置流体通道,两球囊体沿轴向排布,分别装载所述人工心脏瓣膜和所述锚固支架,先释放的所述锚固支架处在所述人工心脏瓣膜的远端。
  218. 如权利要求213所述经导管植入物系统,其特征在于,所述第一球囊体中针对人工心脏瓣膜的远端或两端配置限位机构;
    所述限位机构被配置为至少当所述人工心脏瓣膜以径向压缩状态安装在第一球囊体上时,限制所述人工心脏瓣膜在轴向上的移动。
  219. 如权利要求217所述经导管植入物系统,其特征在于,所述第二球囊体针对锚固支架的远端或两端配置限位机构;
    所述限位机构被配置为至少当所述锚固支架以径向压缩状态安装在相应的球囊体上时,限制所述锚固支架在轴向上的移动。
  220. 如权利要求213所述经导管植入物系统,其特征在于,所述人工心脏瓣膜的第一支架和/或所述锚固支架具有凸出于轴向两端部的孔眼结构,所述经导管植入物系统针对所述人工心脏瓣膜和/或所述锚固支架配置锁线结构,所述锁线结构包括:
    第一调节线,所述第一调节线上的一端能够保持与输送系统的固定,另一端可穿过对应端的孔眼结构,穿出部分带有第一锁孔;
    第二调节线,所述第二调节线上的一端能够保持与输送系统的固定,另一端可穿过对应端的孔眼结构,穿出部分带有第二锁孔;
    第一锁线,具有相对的锁定状态和解锁状态,在锁定状态下、所述锁线穿入各锁孔以限制所述人工心脏瓣膜和/或所述锚固支架,解锁状态下、所述锁线脱离各锁孔以释放所述人工心脏瓣膜和/或所述锚固支架。
  221. 一种人工心脏瓣膜组件从介入输送系统的脱离方法,其特征在于,所述人工心脏瓣膜组件包括人工心脏瓣膜和锚固支架,两者均具有扩张状态和压缩状态;
    所述介入输送系统至少包括可介入递送的内轴,所述人工心脏瓣膜和所述锚固支架两者以压缩状态连接于所述内轴;
    所述脱离方法包括:
    步骤S100,解除所述锚固支架与内轴的连接,使所述锚固支架进入扩张状态;
    步骤S200,将所述人工心脏瓣膜递送至所述锚固支架的内部;
    步骤S300,解除所述人工心脏瓣膜与内轴的连接,使所述人工心脏瓣膜进入扩张状态并抵紧于所述锚固支架的内壁。
  222. 如权利要求221所述的脱离方法,其特征在于,所述介入输送系统还包括外鞘管,所述外鞘管相对滑动的安装于所述内轴的外周,所述锚固支架与内轴相连并被所述外鞘管包裹;
    解除所述锚固支架与内轴连接时,先相对运动所述外鞘管和所述内轴,使所述锚固支架暴露于所述外鞘管,并以自膨方式进入扩张状态。
  223. 如权利要求221所述的脱离方法,其特征在于,所述内轴为一根,所述介入输送系统还包括:
    两个球囊体,沿所述内轴依次布置,所述人工心脏瓣膜和所述锚固支架分别连接在对应球囊体的外周;
    锁线,用于同时限制所述人工心脏瓣膜和所述锚固支架相对于各自所在球囊体的轴向位置;
    解除所述锚固支架与内轴连接时,还包括在所述锚固支架对应的球囊体被充涨之前或之后运动所述锁线,解除对所述锚固支架的轴向限位,且保持对所述人工心脏瓣膜的轴向限位;
    解除人工心脏瓣膜与内轴连接时,还包括在所述人工心脏瓣膜对应的球囊体被充涨之前或之后沿原运动方向进一步运动所述锁线,解除对所述人工心脏瓣膜的轴向限位。
  224. 如权利要求221所述的脱离方法,其特征在于,介入输送系统还包括调弯组件,所述调弯组件至少可作用于所述内轴,改变所述内轴的远端朝向;
    所述人工心脏瓣膜组件在脱离所述内轴前,所述内轴通过所述调弯组件的作用在空间上具有一处圆滑的转弯部位,或具有至少两处圆滑的转弯部位,且两处转弯部位的转向相反。
  225. 如权利要求224所述的脱离方法,其特征在于,所述内轴中与转弯部位对应的部分采用金属切割管。
PCT/CN2023/106397 2022-07-13 2023-07-07 导管植入物系统以及所包含的相关的装置、人工心脏瓣膜和方法 WO2024012380A1 (zh)

Applications Claiming Priority (14)

Application Number Priority Date Filing Date Title
CN202210828216.1A CN117427256A (zh) 2022-07-13 2022-07-13 控制手柄及控制组件
CN202210828216.1 2022-07-13
CN202210828221.2A CN117427257A (zh) 2022-07-13 2022-07-13 介入器械输送系统
CN202210828221.2 2022-07-13
US202263429560P 2022-12-02 2022-12-02
US63/429,560 2022-12-02
CN202310226501 2023-03-03
CN202310226501.0 2023-03-03
CN202310229828 2023-03-06
CN202310229828.3 2023-03-06
CN202310391496.9 2023-04-07
CN202310391496 2023-04-07
CN202310722355 2023-06-16
CN202310722355.0 2023-06-16

Publications (1)

Publication Number Publication Date
WO2024012380A1 true WO2024012380A1 (zh) 2024-01-18

Family

ID=89535590

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/106397 WO2024012380A1 (zh) 2022-07-13 2023-07-07 导管植入物系统以及所包含的相关的装置、人工心脏瓣膜和方法

Country Status (1)

Country Link
WO (1) WO2024012380A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579305B1 (en) * 1995-12-07 2003-06-17 Medtronic Ave, Inc. Method and apparatus for delivery deployment and retrieval of a stent comprising shape-memory material
WO2004035127A1 (en) * 2002-10-15 2004-04-29 Scimed Life Systems, Inc. Catheter balloon with advantageous cone design
CN204600796U (zh) * 2015-04-20 2015-09-02 上海纽脉医疗科技有限公司 一种用于介入式人工心脏瓣膜的简易输送装置
CN108371570A (zh) * 2017-10-24 2018-08-07 杭州启明医疗器械有限公司 一种操作稳定的介入心脏瓣膜可回收输送系统
CN109843152A (zh) * 2016-10-14 2019-06-04 M·D·诺亚 带有用于锚固在身体通道中的锚固部分的气囊结构
CN113143540A (zh) * 2021-03-18 2021-07-23 启晨(上海)医疗器械有限公司 一种用于系绳固定人工瓣膜的输送装置及输送方法
CN113367774A (zh) * 2020-07-06 2021-09-10 杭州启明医疗器械股份有限公司 介入器械输送系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579305B1 (en) * 1995-12-07 2003-06-17 Medtronic Ave, Inc. Method and apparatus for delivery deployment and retrieval of a stent comprising shape-memory material
WO2004035127A1 (en) * 2002-10-15 2004-04-29 Scimed Life Systems, Inc. Catheter balloon with advantageous cone design
CN204600796U (zh) * 2015-04-20 2015-09-02 上海纽脉医疗科技有限公司 一种用于介入式人工心脏瓣膜的简易输送装置
CN109843152A (zh) * 2016-10-14 2019-06-04 M·D·诺亚 带有用于锚固在身体通道中的锚固部分的气囊结构
CN108371570A (zh) * 2017-10-24 2018-08-07 杭州启明医疗器械有限公司 一种操作稳定的介入心脏瓣膜可回收输送系统
CN113367774A (zh) * 2020-07-06 2021-09-10 杭州启明医疗器械股份有限公司 介入器械输送系统
CN113143540A (zh) * 2021-03-18 2021-07-23 启晨(上海)医疗器械有限公司 一种用于系绳固定人工瓣膜的输送装置及输送方法

Similar Documents

Publication Publication Date Title
JP7401581B2 (ja) 嵌込式人工弁および送達システム
JP7096899B2 (ja) 人工弁の直径方向拡張機能
US20210361416A1 (en) Heart valve sealing devices and delivery devices therefor
US11083582B2 (en) Heart valve sealing devices and delivery devices therefor
US20220287841A1 (en) Heart valve sealing devices and delivery devices therefor
CN107624058B (zh) 心脏瓣膜密封装置及其递送装置
KR20190132362A (ko) 심장 판막 밀봉 장치 및 그를 위한 전달 장치
KR20220079814A (ko) 심장 판막 밀봉 장치 및 이를 위한 전달 장치
WO2021035032A1 (en) Delivery and retrieval devices and methods for side-deliverable transcatheter prosthetic valves
EP4344676A1 (en) Prosthetic valve and deployment system
CN105873545A (zh) 包括导管及支承瓣膜的植入体的套组
JP2016537134A (ja) 封止デバイス、関係する送達装置、およびそれらの使用
WO2022268219A1 (zh) 人工心脏瓣膜支架、装置、输送系统和介入系统
WO2022073441A1 (zh) 植入式医疗器械的输送系统及其控制手柄、植入式医疗器械及其固定方法、装载方法、释放方法
WO2024012380A1 (zh) 导管植入物系统以及所包含的相关的装置、人工心脏瓣膜和方法
CN117017574B (zh) 人工心脏瓣膜组件和经导管植入物系统
US20240225823A9 (en) Preloading and delivering system, preloading and delivering assembly and loading method for interventional instrument

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838872

Country of ref document: EP

Kind code of ref document: A1