WO2024012189A1 - 基于包络特征的路面抗滑性能评价方法及评价装置 - Google Patents

基于包络特征的路面抗滑性能评价方法及评价装置 Download PDF

Info

Publication number
WO2024012189A1
WO2024012189A1 PCT/CN2023/102572 CN2023102572W WO2024012189A1 WO 2024012189 A1 WO2024012189 A1 WO 2024012189A1 CN 2023102572 W CN2023102572 W CN 2023102572W WO 2024012189 A1 WO2024012189 A1 WO 2024012189A1
Authority
WO
WIPO (PCT)
Prior art keywords
skid performance
image
road surface
test piece
evaluation device
Prior art date
Application number
PCT/CN2023/102572
Other languages
English (en)
French (fr)
Inventor
张久鹏
黄果敬
郭福成
胡哲
牛振兴
何印章
裴建中
李蕊
Original Assignee
长安大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长安大学 filed Critical 长安大学
Publication of WO2024012189A1 publication Critical patent/WO2024012189A1/zh
Priority to US18/423,175 priority Critical patent/US20240158997A1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C11/00Details of pavings
    • E01C11/24Methods or arrangements for preventing slipperiness or protecting against influences of the weather
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/02Measuring coefficient of friction between materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0004Industrial image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30241Trajectory

Definitions

  • the invention belongs to the technical field of pavement anti-skid performance detection, and relates to a pavement anti-skid performance evaluation method and evaluation device based on envelope characteristics.
  • the anti-skid performance of the road surface is closely related to the driving safety of the vehicle.
  • the insufficient anti-skid ability of the road surface is also an important factor leading to frequent traffic accidents.
  • the skid resistance of pavement is closely related to the macro and micro texture structure of the pavement.
  • the macro structure of the pavement plays a leading role in skid resistance
  • the microstructure of the pavement plays a leading role in skid resistance. Therefore, the structural depth of the pavement, as an important indicator to characterize the pavement texture, is widely used in the evaluation of pavement anti-skid performance; however, the existing index evaluation only measures different pavement texture characteristics, and as we all know, friction is It refers to the complex contact characteristics between tire rubber and road surface under different conditions.
  • the present invention provides a road surface anti-skid performance evaluation method and evaluation device based on envelope characteristics, which have good correlation, high processing efficiency, and accurate evaluation, thereby being more effective. Ensure driving safety.
  • a method for evaluating the anti-skid performance of pavement based on envelope characteristics including the following steps:
  • the blank background image is subjected to grayscale processing, filtering, denoising and binarization in sequence to obtain a black and white binary background image, and the surface texture contour edge pixel information of the test piece is extracted from the black and white binary background image to obtain Surface texture contour curve of the test piece;
  • step 2) Make a difference between the motion trajectory image of step 2) and the blank background image of step 1), retain the status information of the test piece, and obtain a difference image; perform grayscale processing, noise reduction, and threshold segmentation processing on the difference image.
  • Obtain multiple moving images of the sliding part on the test piece extract the lowest point information of the sliding part from each moving image, perform trajectory fitting on the lowest point information of the sliding part during each motion process, and take the fitting curve as The trajectory envelope curve of the sliding piece moving on the piece to be tested;
  • the sliding member in step 2) is a rubber slider or a tire;
  • the test piece in step 1) is a road surface or a friction test piece.
  • step 5 the smaller the ⁇ h value is, the better the anti-skid performance of the test piece is; conversely, the larger the ⁇ h value is, the worse the anti-skid performance of the test piece is.
  • An evaluation device that implements the method for evaluating the anti-skid performance of pavement based on envelope characteristics, including a base plate, a friction test piece, a rubber slider, a high-speed camera, a fixed fixture and a pendulum instrument; the fixed fixture The clamp is placed on the bottom plate, the friction test piece is placed on the fixed fixture, the pendulum instrument is placed above the fixed fixture and connected to the bottom plate, and the rubber slider is placed on the pendulum instrument and on the friction test piece Slide; the high-speed camera is connected to the base plate and located in front of the pendulum instrument.
  • the evaluation device includes a fill light placed on the bottom plate; the fill light is located between the high-speed camera and the pendulum instrument.
  • the evaluation device also includes a lifting mechanism connected to the bottom plate; the lifting mechanism includes a lifting platform and a lifting knob; the lifting platform is connected to the bottom plate through the lifting knob, and the lifting platform moves up and down along the vertical direction of the bottom plate. ; The high-speed phase is placed on the lifting platform.
  • the evaluation device also includes a computer connected to a high-speed camera.
  • the evaluation device further includes a pad provided on the bottom plate; a leveling knob is provided on the pad, and the leveling knob is connected to the pendulum instrument.
  • An evaluation device that implements the road anti-skid performance evaluation method based on envelope characteristics, including a high-speed camera, a fill light, a tire, a road surface and a lateral force test vehicle; the lateral force test vehicle is placed on the road surface, so The high-speed camera, fill-in light and tire are all placed on the lateral force test vehicle, and the high-speed camera and fill-in light are facing the wheel hub surface of the tire.
  • the new evaluation index proposed by the present invention reflects the changes in the contact area under different conditions by characterizing the approach and separation process of the two contact surfaces (i.e., the road surface and the tire surface). It has a better correlation with the road friction performance and can be more accurate. To characterize the anti-skid performance of tire rubber and road surface.
  • the evaluation method provided by the present invention takes into account the influence of external factors such as contact surface characteristics, load, temperature and humidity, etc. on the anti-skid performance.
  • the test method characterizes the tire-road contact under different conditions. Variable characteristics.
  • the present invention collects moving images of the road surface and tire rolling through a high-speed camera, extracts the image texture information and processes it to obtain the road texture contour curve and the envelope curve during the tire sliding process to achieve anti-skid performance evaluation and prediction. It is easy to operate and It has the characteristics of high processing efficiency and accurate evaluation, thus more effectively ensuring driving safety.
  • the present invention realizes the evaluation of road anti-skid performance through two different testing devices. It is flexible and simple to apply, has a simple operation process, reduces the influence of human factors, has low testing cost and high testing efficiency.
  • Figure 1 is a schematic diagram of the bottom plate provided by the present invention.
  • Figure 2 is a schematic diagram of the anti-skid performance evaluation device of the present invention.
  • Figure 3 is a flow chart of the anti-skid performance evaluation method provided by the present invention.
  • Figure 4 is an interface diagram of the image acquisition system of the present invention.
  • Figure 5 is a diagram of image processing steps based on MATLAB
  • Figure 6 is a background image, left and right positioning image and sliding process image collected in Embodiment 1 of the present invention.
  • Figure 7 is an image output result diagram of Embodiment 1 of the present invention.
  • Figure 8 is a diagram of the image acquisition method in Embodiment 2 of the present invention.
  • the road surface can be characterized by the texture profile curve, while the tire surface can be characterized by the envelope curve during rolling. Since the comprehensive characterization index of the contact characteristics of the two contact surfaces will change with the contact surface, load, operating mode, and environmental factors, the use of the contact characteristic index between the tire envelope curve and the road texture curve can achieve anti-skid pavement. Variable performance characterization is more accurate and scientific than existing evaluation methods and indicators. Therefore, a road anti-skid performance evaluation device and method based on tire envelope characteristics are proposed.
  • the evaluation method of the present invention is based on the relative relationship between the tire envelope curve and the road texture contour curve to characterize the anti-skid performance of the road. That is, by collecting the image of the tire moving on the road, eliminating the influence of the noise texture and other apparent features, and extracting Pavement texture information and tire envelope feature information, establish a correlation model between image texture parameters and road anti-skid indicators, and achieve anti-skid performance evaluation and prediction based on tire envelope features.
  • the anti-skid performance testing method provided by the present invention can be used to evaluate the anti-skid performance of rubber sliders and specimens based on a pendulum instrument, or can also be used to evaluate the anti-skid performance of outdoor regular cross-section road surfaces based on a lateral force friction coefficient test vehicle.
  • An embodiment of the road surface anti-skid performance evaluation device based on tire envelope characteristics provided by the present invention.
  • the present invention also provides a road anti-skid performance evaluation device based on tire envelope characteristics, including a base plate 1, a friction test piece 5, a high-speed camera 8, a fixed fixture 2 and a pendulum instrument 4; fixed The fixture 2 is placed on the bottom plate 1, the friction specimen 5 is placed on the fixed fixture 2, the pendulum instrument 4 is placed above the fixed fixture 2 and connected to the bottom plate 1, the pendulum instrument 4 is connected to the friction specimen 5; the high-speed camera 8 is The bottom plate 1 is connected and located in front of the pendulum instrument 4.
  • the evaluation device includes a fill light 6 placed on the base plate 1; the fill light 6 is located between the high-speed camera 8 and the pendulum instrument 4.
  • the evaluation device also includes a lifting mechanism connected to the base plate 1; the lifting mechanism includes a lifting platform 9 and a lifting knob 10; the lifting platform 9 is connected to the base plate 1 through the lifting knob 10, and the lifting platform 9 moves up and down along the vertical direction of the base plate 1; a high-speed camera 8 is placed on the lifting platform 9.
  • the evaluation device also includes a computer 13 connected to the high-speed camera 8 .
  • the computer 13 is portable and is used to set the image collection mode and parameters, store the collected images and process the images.
  • the MATLAB software is installed on the computer 13, and the image processing is completed through MATLAB.
  • the evaluation device also includes a pad 3 arranged on the base plate 1; a leveling knob 11 is provided on the pad 3, and the leveling knob 11 is connected to the pendulum instrument 4.
  • the pendulum instrument 4 is connected to the leveling knob 11, and the horizontal position of the pendulum instrument 4 is adjusted through the leveling knob 11.
  • the friction test piece 5 is placed on the fixed fixture 2 and locked by the fixing screw 7.
  • a rubber slider 12 is provided on the pendulum of the pendulum instrument 4. When the pendulum swings, the rubber slider 12 frictionally moves on the friction test piece 5. .
  • the pendulum instrument 4 used in this embodiment simulates the friction behavior between the tire and the road surface on the real road during the friction process of the friction specimen 5.
  • the surface of the friction specimen 5 can first be replaced by 3D printed specimens with different texture depths and texture shapes.
  • the friction test piece 5 is the road surface
  • the rubber slider 12 is the tire; it is used to establish a correlation model between the anti-skid evaluation index and the road surface anti-skid performance.
  • this embodiment provides a road surface anti-skid performance evaluation method based on envelope characteristics, which specifically includes the following steps.
  • the main equipment includes: base plate 1, high-speed camera 8, pendulum instrument 4, fill light 6 and computer 13.
  • the base plate 1 is used to fix the relative positions of the friction specimen 5 and the pendulum instrument 4.
  • the high-speed camera 8 is an industrial camera
  • the pendulum instrument 4 is a BM-III pendulum friction coefficient measuring instrument
  • the fill light 6 is adjustable in brightness. Two rectangular LED light sources.
  • the assembly process of the image acquisition equipment is as follows: place the pendulum instrument 4 and the test piece (friction test piece 5) at the calibration position on the base plate 1, and turn the fixing screw 7 to lock the friction test piece 5. At this time The pendulum of the pendulum instrument 4 can just drop to the middle position of the friction specimen 5. Then, the leveling, zeroing, and sliding length (126mm) calibration of the pendulum instrument 4 are carried out through the leveling knob 11, and then the high-speed camera 8 is fixed. On the lifting platform 9, adjust the lifting knob 10 so that the distance from the plane of the lifting platform 9 to the bottom plate 1 is 65mm. At this time, the height from the center of the high-speed camera 8 to the bottom is 80mm.
  • the image acquisition software interface is shown in Figure 4.
  • the image acquisition software is used to realize the soft trigger mode acquisition of the 12 trajectories of the rubber slider, which includes image storage parameter setting and camera parameter setting.
  • the acquisition parameters are set on the image acquisition software interface (as shown in Figure 4).
  • the image storage parameter setting steps are as follows: adjust the camera acquisition mode to soft trigger mode, trigger 500 frames per second, trigger 500 times per second, last 1s, save 300 images per trigger, set the save address and image format, and select the automatic save mode. .
  • the camera parameter setting steps are as follows: first set the image resolution to 1280*1024, then set the camera exposure control in sequence, select manual exposure control, set the analog gain multiple to 6 times, and the exposure time to 0.5s. After the above settings are completed, adjust the camera aperture and focal length through the two knobs on the front of the camera until the object image is clear, and then start collecting rubber slider trajectory images.
  • the threshold conversion value due to the difference between each set of images collected, There will be differences between the images. During conversion, the threshold value is adjusted according to the actual situation of each image, combined with conditions such as light intensity, to ensure that the image texture edges after thresholding are clear. When implemented, the threshold can be adjusted between 150 and 200.
  • step (1) Read in the left and right positioning maps and images during the sliding process, and then compare these images with the blank background image to retain the slider status information, remove other parts of the image that affect the recognition results, and obtain the difference image, which will be used as the difference
  • the difference image is converted into a grayscale image, and image noise reduction and threshold segmentation are performed. After processing, the corresponding black and white binary image is obtained.
  • the processed left and right positioning images and the sliding process are shown in Figure 6.
  • the processing method is the same as step (1).
  • the surface texture contour curves are rectangles, triangles, circles and other texture shapes of different heights.
  • the trajectory envelope curve is related to the coordinates of each point in the collected image.
  • the trajectory envelope curve is a cubic spline using MATLAB. Derived from the curve interpolation function.
  • Table 1 is a comparison of the results using the evaluation method of the present invention and the traditional evaluation method for 3D printed friction specimens with a rectangular surface texture, a texture height of 2mm, and a texture spacing of 2mm-12mm.
  • the traditional method is to evaluate the anti-skid performance of the pavement through the structural depth and the friction coefficient measured by a pendulum friction meter.
  • ⁇ h is related to the contact area between the sliding part and the test piece, the smaller the ⁇ h value, the larger the contact area between the tire and the road surface, and the better the anti-skid performance. On the contrary, the larger the ⁇ h value, the better the slip resistance. The smaller the contact area between the piece and the piece to be tested, the worse the anti-skid performance.
  • a high-speed camera 8 is installed at the bottom of the lateral force friction coefficient test vehicle to collect images of tire motion on regular textured roads, obtain tire envelope curves and road texture curves, and calculate wheel speeds.
  • the height difference ⁇ h between the arithmetic mean of the tire envelope curve and the arithmetic mean of the road surface texture contour curve is used to evaluate the anti-skid performance of the tire and the road surface.
  • the collection method provided by this embodiment is shown in Figure 8.
  • the lateral force friction coefficient test vehicle is a lateral force test vehicle, and then the high-speed camera 8 and the fill light 6 are installed and fixed on the bottom of the lateral force test vehicle to capture images of the tire 15 moving on the regular cross-section road surface 14; Tire 15 is placed on the test wheel of the lateral force test vehicle.
  • the image storage setting steps are as follows: adjust the camera acquisition mode to soft trigger mode, set the number of images saved in a single trigger to 300, save the address and image format, and select the automatic save mode.
  • the camera setting steps are as follows: Set the image resolution to 1280*1024, then set the camera exposure control, select manual exposure control, set the analog gain multiple to 6 times, the exposure time to 0.5s, and adjust the camera acquisition frame rate to the maximum. After the above settings are completed, adjust the camera aperture and focal length through the two knobs on the front of the camera until the object image is clear, and then start collecting images of the tire movement trajectory on the road.
  • the driving speed of the lateral force test vehicle is controlled at 50km/h. At this time, the frame rate of the high-speed camera 8 reaches 1500fps.
  • the lateral force test vehicle is first raised to collect a set of blank background pictures, that is, the collected images only contain regular textured road surfaces. 14 information, excluding tires 15, while lowering the lateral force test car's test wheels, The tire 15 is brought into contact with the road surface 14 and images of the tire 15 moving on the regular cross-section road surface 14 are started.
  • MATLAB's image tilt correction algorithm is used to detect the tilt angle of the image and correct the image.
  • the purpose is to transform the image taken at an angle into an image taken at the same level.
  • the road surface texture profile curve obtained in step 1) and the trajectory envelope curve obtained in step 2) calculate the height difference between the arithmetic mean value of the tire envelope curve and the arithmetic mean value of the road surface texture profile curve, which is ⁇ h.
  • ⁇ h The size reflects the change in tire-road surface contact area under different conditions to characterize the anti-skid performance.
  • the envelope curve When the load becomes larger, the envelope curve will move downward, ⁇ h becomes smaller, and the anti-skid performance becomes larger; when the speed increases, the envelope curve moves upward, ⁇ h becomes larger, and the anti-skid performance becomes smaller; when there is water or pollutants on the road surface , in ice and snow, the envelope curve moves upward, ⁇ h becomes larger, and the anti-skid performance becomes smaller, which is consistent with the actual situation.
  • the smaller the ⁇ h value the larger the contact area between the tire and the road surface, and the better the anti-skid performance.
  • the larger the ⁇ h value the smaller the contact area between the sliding part and the test piece, and the better the anti-skid performance. The worse the performance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Multimedia (AREA)
  • Analytical Chemistry (AREA)
  • Quality & Reliability (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Tires In General (AREA)
  • Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)

Abstract

本发明属于路面抗滑性能检测技术领域,涉及一种基于包络特征的路面抗滑性能评价方法及评价装置,包括以下步骤:1)采集待测试件的表面轮廓图像作为空白背景图;2)采集滑动件在待测试件上的运动轨迹图像;3)将空白背景图依次进行处理,获得待测试件的表面纹理轮廓曲线;4)运动轨迹图像在空白背景图做差,进行处理得到滑动件运动的轨迹包络曲线;5)计算轨迹包络曲线的算术平均值以及表面纹理轮廓曲线的算术平均值,通过两个算术平均值之间的高差Δh评价抗滑性能。本发明的评价方法关联性好、处理效率高、评价准确,从而更为有效保障行车安全。

Description

基于包络特征的路面抗滑性能评价方法及评价装置 技术领域
本发明属于路面抗滑性能检测技术领域,涉及一种基于包络特征的路面抗滑性能评价方法及评价装置。
背景技术
路面抗滑性能与车辆行驶安全性具有密切关联性,路面抗滑能力不足也是导致交通事故频发的一个重要诱因。一般来说,路面的抗滑性与路面的宏微观纹理结构密切相关,在高速、路面潮湿的条件下,路面的宏观结构对抗滑性起主导作用,而在低速下,路面的微观结构对抗滑性起主导作用,因此,路面的构造深度作为表征路面纹理的重要指标被广泛运用于路面抗滑性能评价;但是现有的指标评价,只对不同的路面纹理特征进行测量,而众所周知,摩擦是指轮胎橡胶与路面表面在不同条件下的复杂接触特性,是与路面材料、尺寸参数、纹理特征、载荷、压力信息、运行模式以及环境因素等相关的综合表征,此外,路面纹理范围与摩擦贡献的具体定量关系也尚不明确。显然,用简单的路面纹理特征指标描述轮胎与路面间的摩擦行为这种传统的测试方法,存在以下问题:人为因素干扰大、测试效率低、及抗滑评价指标与路面抗滑性能关联性差,使得评价准确性差。
发明内容
针对现有技术存在测试效率低以及准确性差的技术问题,本发明提供一种基于包络特征的路面抗滑性能评价方法及评价装置,关联性好、处理效率高、评价准确,从而更为有效保障行车安全。
为了实现上述目的,本发明采用的技术方案是:
一种基于包络特征的路面抗滑性能评价方法,包括以下步骤:
1)采集待测试件的表面轮廓图像,作为空白背景图;
2)采集滑动件在待测试件上的运动轨迹图像;
3)将空白背景图依次进行灰度化处理、滤波去噪以及二值化处理,得到黑白二值背景图,并从黑白二值背景图提取待测试件的表面纹理轮廓边缘像素点信息,获得待测试件的表面纹理轮廓曲线;
4)将步骤2)的运动轨迹图像在步骤1)的空白背景图做差,保留待测试件的状态信息,得到差值图像;对差值图像经灰度处理、降噪、阈值分割处理,得到多张滑动件在待测试件的上的运动图像,从每张运动图像中提取滑动件的最低点信息,对每张运动过程的滑动件最低点信息进行轨迹拟合,取拟合曲线作为滑动件在待测试件上运动的轨迹包络曲线;
5)计算步骤4)轨迹包络曲线的算术平均值以及步骤3)的表面纹理轮廓曲线的算术平均值,并定义两个算术平均值之间的高差作为待测试件抗滑性能指标Δh,通过Δh的大小评价滑动件与待测试件的间抗滑性能。
所述步骤3)、步骤4)和步骤5),均是通过MATLAB来完成的。
进一步的,所述步骤2)中的滑动件为橡胶滑块或轮胎;所述步骤1)中的待测试件为路面或摩擦试件。
进一步的,所述步骤5)中,Δh值越小,待测试件的抗滑性能越好;反之,Δh值越大,待测试件的抗滑性能越差。
一种实现所述的基于包络特征的路面抗滑性能评价方法的评价装置,包括底板、摩擦试件、橡胶滑块、高速相机、固定夹具以及摆式仪;所述固定 夹具置于底板上,所述摩擦试件置于固定夹具上,所述摆式仪置于固定夹具上方并与底板连接,所述橡胶滑块置于与摆式仪上并在摩擦试件上滑动;所述高速相机与底板连接,并位于摆式仪前方。
进一步的,所述评价装置包括置于底板上的补光灯;所述补光灯位于高速相机与摆式仪之间。
进一步的,所述评价装置还包括与底板连接的升降机构;所述升降机构包括升降平台和升降旋钮;所述升降平台通过升降旋钮与底板连接,所述升降平台沿着底板竖直方向上下移动;所述高速相置于升降平台上。
进一步的,所述评价装置还包括与高速相机连接的计算机。
进一步的,所述评价装置还包括设置在底板上的垫块;所述垫块上设置调平旋钮,所述调平旋钮与摆式仪连接。
一种实现所述的基于包络特征的路面抗滑性能评价方法的评价装置,包括高速相机、补光灯、轮胎、路面和横向力测试车;所述横向力测试车置于路面上,所述高速相机、补光灯和轮胎均置于横向力测试车上,所述高速相机、补光灯均正对着轮胎的轮毂面。
本发明的有益效果是:
1、本发明提出的评价新指标通过表征两个接触面(即路表面和轮胎面)的接近和分离过程来反映不同条件下接触面积的变化,与路面摩擦性能关联性较好,能更准确地表征轮胎橡胶与路面的抗滑性能。
2、与传统的基于路面纹理抗滑性能检测方式相比,本发明提供的评价方法考虑了接触面特性、荷载、温湿度等外部因素对抗滑性能的影响,测试方法表征不同条件下轮胎路面接触可变特性。
3、本发明通过高速相机采集路面及轮胎滚动的运动图像,提取图像纹理信息后处理,获取路面纹理轮廓曲线及轮胎滑动过程中的包络曲线,实现抗滑性能评价及预估,操作简便、处理效率高、评价准确等特点,从而更为有效保障行车安全。
4、本发明通过两种不同的测试装置,实现对路面抗滑性能评价,应用灵活,简易,操作流程简便,降低人为因素的影响,测试成本低,测试效率高。
附图说明
图1是本发明提供的底板示意图;
图2是本发明抗滑性能评价装置示意图;
图3是本发明提供的抗滑性能评价方法流程图;
图4是本发明图像采集系统界面图;
图5是基于MATLAB图像处理步骤图;
图6是本发明实施例1采集的背景图、左右定位图及滑动过程图;
图7是本发明实施例1图像输出结果图;
图8是本发明实施例2图像采集方式图;
其中:
1—底板;2—固定夹具;3—垫块;4—摆式仪;5—摩擦试件;6—补光
灯;7—固定螺杆;8—高速相机;9—升降平台;10—升降旋钮;11—调平旋钮;12—橡胶滑块;13—计算机;14—路面;15—轮胎。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动的前提下所获得的所有其他实施例,都应属于本发明保护的范围。
大多数研究表明,轮胎与路面的接触面积与路面抗滑性能密切相关,接触面积越大,抗滑性能越好;不同条件下轮胎-路面接触面积的变化实际上是指两个接触面(即路表面和轮胎面)的接近和分离过程。
简单地说,路面表面可以用纹理轮廓曲线来表征,而轮胎表面可以用滚动过程中的包络曲线来表征。由于两个接触面接触特性的综合表征指标,会随着接触面、荷载、运行方式、环境因素的不同而变化,采用轮胎包络曲线与路面纹理曲线之间的接触特性指标能够实现路面抗滑性能可变表征,较现有评价方法及指标更为准确科学,因此提出了基于轮胎包络特征的路面抗滑性能评价装置及方法。
本发明的评价方法,是基于轮胎包络曲线与路面纹理轮廓曲线的相对关系来表征路面抗滑性能,即通过采集轮胎在路面上运动图像,剔除噪声纹理与其它表观特征的影响,从中提取路面纹理信息和轮胎包络特征信息,建立图片纹理参数与路面抗滑指标的相关模型,实现基于轮胎包络特征的抗滑性能评价与预估。
本发明提供的抗滑性能测试方法可基于摆式仪进行橡胶滑块与试件的抗滑性能评价,也可基于横向力摩擦系数测试车进行室外规则横断面路面抗滑评价,为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
实施例1
本发明提供的基于轮胎包络特征的路面抗滑性能评价装置的一种实施方式。
参见图1和图2,本发明还提供了一种基于轮胎包络特征的路面抗滑性能评价装置,包括底板1、摩擦试件5、高速相机8、固定夹具2以及摆式仪4;固定夹具2置于底板1上,摩擦试件5置于固定夹具2上,摆式仪4置于固定夹具2上方并与底板1连接,摆式仪4与摩擦试件5连接;高速相机8与底板1连接,并位于摆式仪4前方。
评价装置包括置于底板1上的补光灯6;补光灯6位于高速相机8与摆式仪4之间。
评价装置还包括与底板1连接的升降机构;升降机构包括升降平台9和升降旋钮10;升降平台9通过升降旋钮10与底板1连接,升降平台9沿着底板1竖直方向上下移动;高速相机8置于升降平台9上。
评价装置还包括与高速相机8连接的计算机13。计算机13为便携式,用于设置图像的采集模式及参数,采集图像的存储及图像处理,计算机13上安装MATLAB软件,图像的处理均是通过MATLAB来完成的。
评价装置还包括设置在底板1上的垫块3;垫块3上设置调平旋钮11,调平旋钮11与摆式仪4连接。实施时,垫块3为三个,分布在摆式仪4左侧、右侧以及后侧,摆式仪4与调平旋钮11连接,通过调平旋钮11调整摆式仪4的水平位置。摩擦试件5置于固定夹具2上,并通过固定螺杆7固锁,摆式仪4的摆锤上设置橡胶滑块12,摆锤摆动时,橡胶滑块12在摩擦试件5上摩擦运动。
本实施例采用的摆式仪4在摩擦试件5的摩擦过程模拟真实道路上轮胎与路面的摩擦行为,摩擦试件5的表面可先采用不同纹理深度和纹理形状的3D打印试件代替真实路面,摩擦试件5即路面,橡胶滑块12即轮胎;用于建立抗滑评价指标与路面抗滑性能关联模型。
参见图3,本实施例提供的基于包络特征的路面抗滑性能评价方法,具体包括以下步骤。
S1:高速相机采集设备组装调试
主要设备包括:底板1、高速相机8、摆式仪4、补光灯6以及计算机13。底板1用于固定摩擦试件5及摆式仪4的相对位置,高速相机8为工业相机,摆式仪4为BM-Ⅲ型摆式摩擦系数测定仪,补光灯6为亮度可调的矩形LED光源两台。
参见图2,图像采集设备组装流程如下:将摆式仪4及待测试件(摩擦试件5)分别放置在底板1上的标定位置处,转动固定螺杆7固锁摩擦试件5,此时摆式仪4的摆锤刚好可下落在摩擦试件5的中间位置,随后通过调平旋钮11进行摆式仪4的整平、调零、滑动长度(126mm)标定,再将高速相机8固定在升降平台9上,调节升降旋钮10使得升降平台9的平面至底板1的平面距离为65mm,此时高速相机8的中心至底面高度为80mm,同时调整高速相机8前端到摩擦试件5外缘距离为185mm,补光灯6放置在高速相机8与摩擦试件5中间,最后将高速相机8连接至计算机13上。
实施时,为提升图像质量,减小图像噪声,采用吸光布将摩擦试件5以外设备区域进行包裹,同时采用高亮颜料对摆式仪4上的黑色橡胶滑块12(滑动件)进行标记。
S2:图像采集系统参数设置
图像采集软件界面图4所示。采用图像采集软件实现橡胶滑块12轨迹软触发模态采集,包括图像存储参数设置及相机参数设置两部分,在图像采集软件界面(如图4所示)上设置采集参数。
图像存储参数设置步骤如下:调节相机采集模式为软触发模式,一次触发帧为500,每秒触发500次,持续1s,每次触发保存图像300张,设置保存地址及图片格式,选择自动保存模式。
相机参数设置步骤如下:首先设置图像分辨率为1280*1024,其次依次对相机曝光控制进行设置,选择手动曝光控制、设置模拟增益倍数为6倍、曝光时间为0.5s。以上设置完成后,通过相机前端的两个旋钮调节相机光圈及焦距至物像清晰,即可开始橡胶滑块轨迹图像采集。
S3:高速相机图像采集
在采集橡胶滑块12在摩擦试件5上的滑动轨迹前,应先采集空白背景图及摆式仪4摆锤的左右定位图,具体采集步骤如下:
(1)保持摆锤置于水平待释放位置,指针紧靠摆,此时软触发一次,保存一张空白背景图;
(2)放下摆锤,橡胶滑块12的边缘刚刚接触摩擦试件5,对正126mm尺的一端,软触发一次,保存一张右侧定位图,再用手提起举升柄,使滑块向上抬起,同时橡胶滑块12的边缘再一次接触摩擦试件5,对正126mm尺的一端,软触发一次,保存一张左侧定位图;
(3)摩擦试件5干燥(若湿润,用水均匀浇洒试件)条件下,将摆锤置于水平释放位置,同时按下摆锤释放开关并点击软触发,使摆锤在摩擦试件5上滑 过,指针即可指示出摩擦试件5的摩擦系数值;当摆锤向回摆时,用左手接住摆杆,右手提起举升柄使橡胶滑块12升高,将摆向右运动并按下开关,使摆长环进入释放开关,并将摆针拨至紧靠拨针片。
重复以上操作,测定五次(若湿润,每次均应洒水),记录每次的数值。五次数值差不大于三个单位(即刻度盘的一格半)如差值大于三个单位,应检查产生的原因,并再次重复上述各项操作,至符合规定要求为止。
S4:基于MATLAB图像处理流程
为获取橡胶滑块12在摩擦试件5上的滑动包络曲线及试件的表面轮廓曲线,利用S3采集的空白背景图、左右定位图、滑动过程中的图像,按照图5所示的步骤进行识别。
(1)读入空白背景图,通过灰度化处理,将采集的空白背景图从RGB图像转化为灰度图后,采用滤波方法去除图像噪点,选择合适阈值,将图像转化为黑白二值图像,最后提取摩擦试件5表面纹理轮廓边缘信息,获得摩擦试件5的表面纹理轮廓曲线;如图6所示。
上述图像在处理时,先转化成灰度图,滤波去噪采用现有的中值滤波去噪方法,从而有效去除灰度图像中的椒盐噪点;阈值转化值,由于采集的每组图像之间会存在区别,在进行转化时,根据每张图像的实际情况,结合光照强度等条件,进行阈值调整,保证阈值化处理后的图像纹理边缘清晰。实施时,阈值的调整范围在150到200之间。
(2)读入左右定位图、滑动过程中的图像,依次这些图像与空白背景图像作差,从而保留滑块状态信息,去除图像中影响识别结果的其他部分,得到差值图像,将作差后的差值图像转化为灰度图、并进行图像降噪、阈值分割 处理,得到相应的黑白二值图像,处理后的左右定位图及滑动过程的图如图6所示。处理方法与步骤(1)相同。
再从每张图像中提取橡胶滑块12与摩擦试件5表面的接触最低点信息,记录橡胶滑块12左右定位点位置,同时对滑动过程的特征点(最低点信息)进行轨迹拟合,取左右定位线范围内的拟合曲线作为橡胶滑块12在摩擦试件5上滑动的轨迹包络曲线。
(3)结合步骤(1)获得的表面纹理轮廓曲线和步骤(2)获得的橡胶滑块12在摩擦试件5上滑动的轨迹包络曲线,即为需要输出的最终图像处理结果,如图7所示。
本实施例中,表面纹理轮廓曲线是不同高度的矩形、三角形、圆形及其他纹理形状,轨迹包络曲线与所采集图像中每一点的坐标有关,轨迹包络曲线是运用MATLAB的三次样条曲线插值功能得出的。
(4)计算轨迹包络曲线算术平均值与表面纹理轮廓曲线算术平均值之间的高差即为Δh,其通过Δh的大小,反映不同条件下滑块-试件表面接触面积的变化来表征抗滑性能。
下表1是针对表面纹理为矩形,纹理高度2mm,纹理间距分别为2mm-12mm的3D打印摩擦试件,采用本发明评价方法及传统的评价方法的结果对比。
其中,传统的方法是通过构造深度、摆式摩擦仪测定的摩擦系数来评价路面的抗滑性能的。
表1摩擦试件与橡胶滑块的试验结果对比
从表1可知,传统评价方法采用构造深度评价路面抗滑性能时,无法体现水等外界环境荷载条件对抗滑性能的影响;虽然摩擦系数和本发明提出的评价指标Δh可以很好反映处摩擦试件在不同环境下的抗滑性能变化,然而,摩擦系数仅是简单的力学结果值,无法反映滑动件与待测试件之间的动态接触过程,进而无法深入探究摩擦行为来源及时空演变。
此外,从表1还能看出,采用本发明的评价方法,当摩擦试件的纹理间距不断增加时,橡胶滑块与摩擦试件的接触面积逐渐减少,抗滑性能随之下降;摩擦试件干燥条件下抗滑性能要优于湿润条件下。
由于Δh的大小与滑动件和待测试件之间的接触面积有关,Δh值越小,表示轮胎与路面之间的接触面积越大,抗滑性能越好,反之,Δh值越大,表示滑动件与待测试件之间的接触面积越小,抗滑性能越差。
实施例2
本实施例在横向力摩擦系数测试车的底部安装高速相机8来采集轮胎在规则纹理路面上的运动图像,获取轮胎包络曲线及路面纹理曲线,并计算轮 胎包络曲线算术平均值与路表纹理轮廓曲线算术平均值之间的高差Δh,以此评价轮胎与路面的抗滑性能。
本实施例提供的采集方式如图8所示。横向力摩擦系数测试车为横向力测试车,然后将高速相机8、补光灯6安装固定在横向力测试车的车底,用于拍摄轮胎15在规则横断面路面14上运动的图像;将轮胎15放置于横向力测试车的测试轮上。
本实施例提供的基于横向力摩擦系数测试车抗滑性能检测方法具体包括以下步骤:
(1)将高速相机8、补光灯6安装固定在横向力测试车横梁的底部,保证高速相机8和补光灯6为同一偏斜角度安装,正对着轮胎15的侧面,即轮毂面,采集轮胎15在路面14上的运动图像,将高速相机8与计算机13电连接。高速相机8的帧率根据横向力测试车的测试速率选择。
(2)启动图像采集软件,依次进行图像存储及相机参数设置。
图像存储设置步骤如下:调节相机采集模式为软触发模式,设置单次触发保存图像数量300张,保存地址及图片格式,选择自动保存模式。
相机设置步骤如下:设置图像分辨率为1280*1024,其次对相机曝光控制进行设置,选择手动曝光控制、设置模拟增益倍数为6倍、曝光时间为0.5s,调节相机采集帧率达到最大。以上设置完成后,通过相机前端的两个旋钮调节相机光圈及焦距至物像清晰,即可开始轮胎在路面上运动轨迹图像采集。
(3)横向力测试车行驶速度控制在50km/h,此时高速相机8的帧率达到1500fps,先升起横向力测试车,采集一组空白背景图片,即采集图像中只含有规则纹理路面14的信息,不包括轮胎15,而降下横向力测试车的测试轮, 使轮胎15与路面14接触,开始采集轮胎15在规则横断面路面14上运动时的图像。
(4)轮胎包络曲线及路面纹理曲线获取
将所有采集的图像,利用MATLAB的图像倾斜校正算法进行图像倾斜角的检测及图像的校正,其目的是将倾斜拍摄的图像转变为正对同一水平拍摄的图像。
利用倾斜校正后的空白背景图及运动图像,按以下步骤获取轮胎包络曲线及路面纹理曲线。
1)读入空白背景图,通过灰度化处理,将采集的空白背景图从RGB图像转化为灰度图后,采用滤波方法去除图像噪点,选择合适阈值,将图像转化为黑白二值图像后提取路面的表面纹理轮廓边缘信息,路面表面纹理轮廓曲线。
2)读入运动过程中的图像,将其与背景图像作差,从而保留轮胎的状态信息,去除图像中影响识别结果的其他部分,对作差后的图像转化为灰度图、并进行图像降噪、阈值分割处理,再从每张处理后的运动过程的图像中提取轮胎最低点位置信息,而后对每张运动过程的轮胎最低点进行轨迹拟合,取拟合曲线作为轮胎在规则横断面路面上运动的轨迹包络曲线。
(5)基于轮胎包络特征的抗滑指标计算及抗滑性能评价
根据步骤1)获得的路面表面纹理轮廓曲线和步骤2)得到的轨迹包络曲线,计算轮胎包络曲线算术平均值与路表纹理轮廓曲线算术平均值之间的高差即为Δh,通过Δh的大小,反映不同条件下轮胎-路面表面接触面积的变化来表征抗滑性能。
当荷载变大时,包络曲线会向下移动,Δh变小,抗滑性能变大;速度提高,包络曲线上移,Δh变大,抗滑性能变小;当路面有水、污染物、冰雪时,包络曲线上移,Δh变大,抗滑性能变小,与实际情况吻合。
综上,Δh值越小,表示轮胎与路面之间的接触面积越大,抗滑性能越好,反之,Δh值越大,表示滑动件与待测试件之间的接触面积越小,抗滑性能越差。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本发明的保护范围之内。

Claims (10)

  1. 一种基于包络特征的路面抗滑性能评价方法,其特征在于,包括以下步骤:
    1)采集待测试件的表面轮廓图像,作为空白背景图;
    2)采集滑动件在待测试件上的运动轨迹图像;
    3)将空白背景图依次进行灰度化处理、滤波去噪以及二值化处理,得到黑白二值背景图,并从黑白二值背景图提取待测试件的表面纹理轮廓边缘像素点信息,获得待测试件的表面纹理轮廓曲线;
    4)将步骤2)的运动轨迹图像在步骤1)的空白背景图做差,保留待测试件的状态信息,得到差值图像;对差值图像经灰度处理、降噪、阈值分割处理,得到多张滑动件在待测试件的上的运动图像,从每张运动图像中提取滑动件的最低点信息,对每张运动过程的滑动件最低点信息进行轨迹拟合,取拟合曲线作为滑动件在待测试件上运动的轨迹包络曲线;
    5)计算步骤4)轨迹包络曲线的算术平均值以及步骤3)的表面纹理轮廓曲线的算术平均值,并定义两个算术平均值之间的高差作为待测试件的抗滑性能指标Δh,通过Δh的大小评价滑动件与待测试件的间抗滑性能。
  2. 根据权利要求1所述的基于包络特征的路面抗滑性能评价方法,其特征在于,所述步骤3)、步骤4)和步骤5),均是通过MATLAB来完成的。
  3. 根据权利要求1所述的基于包络特征的路面抗滑性能评价方法,其特征在于,所述步骤2)中的滑动件为橡胶滑块(12)或轮胎(15);所述步骤1)中的待测试件为路面(14)或摩擦试件(5)。
  4. 根据权利要求3所述的基于包络特征的路面抗滑性能评价方法,其特征在于,所述步骤5)中,Δh值越小,表示待测试件的抗滑性能越好,反之,Δh值越大,表示待测试件的抗滑性能越差。
  5. 一种实现如权利要求4所述的基于包络特征的路面抗滑性能评价方法的评价装置,其特征在于,所述评价装置包括底板(1)、摩擦试件(5)、橡胶滑块(12)、高速相机(8)、固定夹具(2)以及摆式仪(4);所述固定夹具(2)置于底板(1)上,所述摩擦试件(5)置于固定夹具(2)上,所述摆式仪(4)置于固定夹具(2)上方并与底板(1)连接,所述橡胶滑块(12)置于与摆式仪(4)上并在摩擦试件(5)上滑动;所述高速相机(8)与底板(1)连接,并位于摆式仪(4)前方。
  6. 根据权利要求5所述的评价装置,其特征在于,所述评价装置包括置于底板(1)上的补光灯(6);所述补光灯(6)位于高速相机(8)与摆式仪(4)之间。
  7. 根据权利要求6所述的评价装置,其特征在于,所述评价装置还包括与底板(1)连接的升降机构;所述升降机构包括升降平台(9)和升降旋钮(10);所述升降平台(9)通过升降旋钮(10)与底板(1)连接,所述升降平台(9)沿着底板(1)竖直方向上下移动;所述高速相机(8)置于升降平台(9)上。
  8. 根据权利要求7所述的评价装置,其特征在于,所述评价装置还包括与高速相机(8)连接的计算机(13)。
  9. 根据权利要求8所述的评价装置,其特征在于,所述评价装置还包括设置在底板(1)上的垫块(3);所述垫块(3)上设置调平旋钮(11),所述调平旋钮(11)与摆式仪(4)连接。
  10. 一种实现如权利要求4所述的基于包络特征的路面抗滑性能评价方法的评价装置,其特征在于,所述评价装置包括高速相机(8)、补光灯(6)、轮胎(15)、路面(14)和横向力测试车;所述横向力测试车置于路面(14)上,所述高速相机(8)、补光灯(6)和轮胎(15)均置于横向力测试车上,所述高速相机(8)、补光灯(6)均正对着轮胎(15)的轮毂面。
PCT/CN2023/102572 2022-07-12 2023-06-27 基于包络特征的路面抗滑性能评价方法及评价装置 WO2024012189A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/423,175 US20240158997A1 (en) 2022-07-12 2024-01-25 Pavement anti-skid performance evaluation method and device based on envelope feature

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210853845.X 2022-07-12
CN202210853845.XA CN115238490A (zh) 2022-07-12 2022-07-12 基于包络特征的路面抗滑性能评价方法及评价装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/423,175 Continuation US20240158997A1 (en) 2022-07-12 2024-01-25 Pavement anti-skid performance evaluation method and device based on envelope feature

Publications (1)

Publication Number Publication Date
WO2024012189A1 true WO2024012189A1 (zh) 2024-01-18

Family

ID=83674415

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/102572 WO2024012189A1 (zh) 2022-07-12 2023-06-27 基于包络特征的路面抗滑性能评价方法及评价装置

Country Status (3)

Country Link
US (1) US20240158997A1 (zh)
CN (1) CN115238490A (zh)
WO (1) WO2024012189A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117664962A (zh) * 2023-11-17 2024-03-08 暨南大学 单摩擦轮滑滚状态的光学测算模型与评估方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115238490A (zh) * 2022-07-12 2022-10-25 长安大学 基于包络特征的路面抗滑性能评价方法及评价装置
CN117664846B (zh) * 2023-11-17 2024-06-04 暨南大学 路面抗滑性能滚式摩擦仪

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864727A (zh) * 2012-09-27 2013-01-09 长安大学 一种沥青路面抗滑性能新指标测定仪及其测定方法
US20190362510A1 (en) * 2018-05-24 2019-11-28 Lu Sun Method and system for evaluating friction coefficient and skid resistence of a surface
CN112818563A (zh) * 2021-02-25 2021-05-18 同济大学 一种基于摩擦接触面预估的路面抗滑性能评价方法
CN113984648A (zh) * 2021-09-16 2022-01-28 武汉光谷卓越科技股份有限公司 一种基于三维的路面摩擦系数测量方法
CN115238490A (zh) * 2022-07-12 2022-10-25 长安大学 基于包络特征的路面抗滑性能评价方法及评价装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102864727A (zh) * 2012-09-27 2013-01-09 长安大学 一种沥青路面抗滑性能新指标测定仪及其测定方法
US20190362510A1 (en) * 2018-05-24 2019-11-28 Lu Sun Method and system for evaluating friction coefficient and skid resistence of a surface
CN112818563A (zh) * 2021-02-25 2021-05-18 同济大学 一种基于摩擦接触面预估的路面抗滑性能评价方法
CN113984648A (zh) * 2021-09-16 2022-01-28 武汉光谷卓越科技股份有限公司 一种基于三维的路面摩擦系数测量方法
CN115238490A (zh) * 2022-07-12 2022-10-25 长安大学 基于包络特征的路面抗滑性能评价方法及评价装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 1 September 2019, WUHAN UNIVERSITY OF SCIENCE AND TECHNOLOGY, CN, article RAN, MAOPING: "Asphalt Pavement Texture Characterization and Road Performance Study Based Onenveloped Profile", pages: 1 - 218, XP009552022, DOI: 10.27380/d.cnki.gwkju.2019.000024 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117664962A (zh) * 2023-11-17 2024-03-08 暨南大学 单摩擦轮滑滚状态的光学测算模型与评估方法
CN117664962B (zh) * 2023-11-17 2024-05-28 暨南大学 单摩擦轮滑滚状态的光学测算模型与评估方法

Also Published As

Publication number Publication date
CN115238490A (zh) 2022-10-25
US20240158997A1 (en) 2024-05-16

Similar Documents

Publication Publication Date Title
WO2024012189A1 (zh) 基于包络特征的路面抗滑性能评价方法及评价装置
CN102297660B (zh) 一种盾构隧道衬砌管片接缝张开宽度的测量方法及装置
CN107883891B (zh) 一种沥青路面拥包多维度特征指标识别方法
CN106918299B (zh) 一种线结构光机器视觉轮胎磨损测量方法
CN101354241B (zh) 集料数字图像评价方法
US8085987B2 (en) Method and tool for surface texture evaluation
CN101957178B (zh) 一种隧道衬砌裂缝测量方法及其测量装置
CN102735186B (zh) 利用数字图像获取路面三维构造的装置及方法
CN108399403B (zh) 一种基于车牌尺寸计算的车距检测方法
CN108760740B (zh) 一种基于机器视觉的路面抗滑性能快速检测方法
CN103114514B (zh) 一种水泥混凝土路面刻槽构造深度检测算法
CN105784710A (zh) 一种基于数字图像处理的混凝土桥梁裂缝检测装置
CN104964708B (zh) 一种基于车载双目视觉的路面坑槽检测方法
CN103400141A (zh) 一种基于改进图像法的输电导线覆冰厚度的计算方法
CN103630093B (zh) 用于混凝土表面粗糙度检测的图像分析方法
WO2021227287A1 (zh) 生产线上蜂窝产品规整度的检测方法及检测装置
CN204405556U (zh) 一种基于数字图像处理的混凝土桥梁裂缝检测装置
CN110136196A (zh) 一种桥梁裂缝宽度自动测量方法
CN110516524A (zh) 一种交通场景中基于Mask R-CNN的车辆轴数识别方法
CN113077465A (zh) 一种路面裂缝检测提取装置及其检测方法
CN112986069A (zh) 一种道砟颗粒劣化指数分析仪及分析方法
CN106127147A (zh) 一种基于三维数据的人脸深度纹理修复方法
CN110008955A (zh) 一种汽车刹车片表面字符压印质量检验方法
CN115810054A (zh) 车辆轮胎花纹深度检测设备中一种多相机标定方法
CN108629226B (zh) 一种基于图像分层技术的车辆检测方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838683

Country of ref document: EP

Kind code of ref document: A1