WO2024011892A1 - 电池单体、电池及用电设备 - Google Patents

电池单体、电池及用电设备 Download PDF

Info

Publication number
WO2024011892A1
WO2024011892A1 PCT/CN2023/074107 CN2023074107W WO2024011892A1 WO 2024011892 A1 WO2024011892 A1 WO 2024011892A1 CN 2023074107 W CN2023074107 W CN 2023074107W WO 2024011892 A1 WO2024011892 A1 WO 2024011892A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
battery
core assembly
battery core
battery cell
Prior art date
Application number
PCT/CN2023/074107
Other languages
English (en)
French (fr)
Inventor
钱欧
李耀
陈小波
蔡加进
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Publication of WO2024011892A1 publication Critical patent/WO2024011892A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/244Secondary casings; Racks; Suspension devices; Carrying devices; Holders characterised by their mounting method
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the field of battery technology, specifically to a battery cell, a battery and electrical equipment.
  • this application proposes a battery cell, battery and electrical equipment, which can effectively solve the problem of short circuits in battery core components.
  • this application provides a battery cell, which includes:
  • Battery core assembly the battery core assembly is located in the installation cavity
  • An insulating layer is provided between at least part of the battery core assembly and the housing.
  • an insulating layer is provided between at least part of the battery core components and the casing.
  • the battery cell further includes an end cover
  • the housing is provided with an opening connected to the installation cavity
  • the end cover is disposed at the opening, at least partially
  • the insulation layer is provided between the battery core assembly and the end cover.
  • the battery cell further includes a pole, the pole is penetrated through the end cover, and the pole is connected to the battery core assembly through a conductive sheet, at least part of the The insulation layer is disposed between the battery core component and the conductive sheet.
  • the insulating layer overlaps the end of the tab in a direction perpendicular to the tab of the battery core assembly.
  • the insulation layer overlaps the ends of the tabs, which helps the battery component to exhaust, thereby preventing explosions caused by the failure of high-pressure gas to be discharged in time.
  • the conductive sheet is provided with a bent portion
  • the insulating layer is provided with a plug-in hole
  • the bent portion passes through the plug-in hole and is connected to the tab.
  • the insulating layer is provided with a through hole, and the through hole is connected to the pressure relief component on the end cover.
  • the high-pressure gas generated can act on the pressure relief part through the through hole, causing the pressure relief part to burst, and then discharge the high-pressure gas to the outside of the battery cell, ensuring the use of the battery cell. safety and reliability.
  • the insulating layer is connected to the battery core component.
  • the insulating layer is connected to the battery core component, and the battery core component is protected through the insulation layer to prevent the battery core component from being arced or broken down by arc, thereby improving the safety and reliability of the battery cell.
  • the insulation layer is connected to the housing.
  • the insulation layer is connected to the casing, and the battery core components are protected through the insulation layer to prevent the battery core components from being arced or broken down by electric arc, thereby improving the safety and reliability of the battery cells.
  • the insulating layer is fixed between the housing and the battery core assembly.
  • the insulating layer is fixed between the casing and the battery core component, and the battery core component is protected by the insulation layer to prevent the battery core component from being arced or broken down by arc, thereby improving the safety and reliability of the battery cell.
  • the insulating layer is connected to the conductive sheet.
  • the insulating layer is connected to the conductive sheet, and the battery core components are protected through the insulating layer to prevent the battery core components from being arced or broken down by arc, thereby improving the safety and reliability of the battery cells.
  • the insulating layer is fixed between the conductive sheet and the battery core component.
  • the insulating layer is fixed between the conductive sheet and the battery core component, and the battery core component is protected through the insulation layer to prevent the battery core component from being arced or broken down by arc, thereby improving the safety and reliability of the battery cell.
  • the melting point of the insulating layer is greater than 250°C and less than 1000°C. Setting the melting point of the insulating layer to be greater than 250°C and less than 1000°C can prevent the insulating layer from melting under the action of electric arc or arc, thereby effectively protecting the battery core components.
  • the insulating layer includes at least one of a polyimide layer, a phenolic plastic layer, a ceramic layer and a polytetrafluoroethylene layer.
  • a polyimide layer a polyimide layer
  • phenolic plastic layer a phenolic plastic layer
  • ceramic layer a polytetrafluoroethylene layer.
  • the thickness dimension of the insulating layer is D, 0.05mm ⁇ D ⁇ 2mm, and the voltage of the battery cell is V, 200V/mm ⁇ V/D ⁇ 40000V/mm.
  • the above-mentioned thickness range of the insulating layer can effectively prevent electric arcing or arc breakdown generated under corresponding voltages from penetrating the insulating layer, thereby protecting the battery core components.
  • the total weight of the insulating layer is 0.1% to 1% of the total weight of the battery cells.
  • the size and area corresponding to the weight of the above-mentioned insulating layer can not only prevent electric arcing or arc breakdown from the insulating layer and battery core components, but also the insulating layer will not occupy too much volume in the case, thus meeting the needs of miniaturization and miniaturization of battery cells. Lightweight requirements.
  • the battery core assembly has a rectangular structure, and the insulation layer is provided between at least one of two sides in the length direction of the battery core assembly and the casing.
  • the battery core assembly has a rectangular structure, and the insulation layer is provided between at least one of two sides in the width direction of the battery core assembly and the casing.
  • the battery core assembly has a rectangular structure, and the insulation layer is provided between the bottom surface of the battery core assembly and the casing.
  • the battery core assembly has a rectangular structure, and the insulation layer is provided on the top surface of the battery core assembly.
  • the insulating layer completely covers the surface of the corresponding battery core component.
  • the corresponding surface can be comprehensively and effectively prevented from being arced or broken down by arc.
  • the present application provides a battery having the battery cell in the above embodiment.
  • the present application provides an electrical device having the battery in the above embodiment.
  • Figure 1 is a schematic structural diagram of a vehicle according to an embodiment of the present application.
  • FIG. 2 is a schematic structural diagram of a battery pack according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of a battery module according to an embodiment of the present application.
  • Figure 4 is a schematic diagram of the exploded structure of a battery cell according to an embodiment of the present application.
  • Figure 5 is a schematic diagram of the connection structure between the battery core component and the first insulating layer according to an embodiment of the present application
  • Figure 6 is a schematic diagram of the connection structure of the battery core assembly and the first insulating layer from another angle according to an embodiment of the present application;
  • Figure 7 is a schematic structural diagram of the first insulating layer according to an embodiment of the present application.
  • Figure 8 is a schematic diagram of the connection structure between the battery core component and the second insulating layer according to an embodiment of the present application.
  • Figure 9 is a schematic diagram of the connection structure of the battery core assembly and the second insulating layer from another angle according to an embodiment of the present application.
  • Figure 10 is a schematic structural diagram of the second insulating layer according to an embodiment of the present application.
  • Figure 11 is a schematic diagram of the connection structure between the battery core component and the third insulating layer according to an embodiment of the present application.
  • Figure 12 is a schematic diagram of the connection structure of the battery core assembly and the third insulating layer from another angle according to an embodiment of the present application;
  • Figure 13 is a schematic structural diagram of the third insulating layer according to an embodiment of the present application.
  • Figure 14 is a schematic diagram of the connection structure between the battery core assembly and the fourth insulating layer according to an embodiment of the present application.
  • FIG. 15 is a schematic diagram of the connection structure between the battery core component and the fourth insulating layer according to an embodiment of the present application.
  • a first feature is “on” a second feature.
  • under may mean that the first and second features are in direct contact, or the first and second features are in indirect contact through an intermediary.
  • the terms “above”, “above” and “above” the first feature is above the second feature may mean that the first feature is directly above or diagonally above the second feature, or simply means that the first feature is higher in level than the second feature.
  • "Below”, “below” and “beneath” the first feature to the second feature may mean that the first feature is directly below or diagonally below the second feature, or simply means that the first feature has a smaller horizontal height than the second feature.
  • Power batteries are not only used in energy storage power systems such as hydropower, thermal power, wind power and solar power stations, but are also widely used in electric vehicles such as electric bicycles, electric motorcycles and electric cars, as well as in many fields such as military equipment and aerospace. . As the application fields of power batteries continue to expand, their market demand is also constantly expanding.
  • the casing and poles of battery cells are usually made of metal parts, when a double-point insulation failure occurs in the battery system, the positive and negative poles, casing (made of aluminum or steel) and other metal live parts in the battery cell will undergo electrical shock. Draw the arc. Electric arcing will break down the poles and metal casing, further causing damage to the battery components inside the battery, causing internal short circuits in the battery components, causing thermal runaway of the battery, and even causing fire safety accidents. .
  • an insulation layer can be provided on the outside of the battery core components.
  • an insulation failure occurs in a battery cell and electrical arcing occurs on the metal live parts, due to the arrangement of the insulating layer, the electrical arcing on the metal live parts will not penetrate the insulating layer, thus damaging at least part of the part opposite to the insulating layer.
  • the battery cell assembly plays a protective role, reducing or avoiding damage to the battery cell assembly, preventing short circuits inside the battery cell assembly, thereby avoiding safety accidents and improving the safety and reliability of the use of battery cells.
  • FIG. 1 is a schematic structural diagram of a vehicle 1 provided by an embodiment of the present application.
  • Vehicle 1 may be a fuel vehicle, a gas vehicle or a new energy vehicle, and the new energy vehicle may be a pure electric vehicle, a hybrid vehicle or an extended-range vehicle, etc.
  • the battery 10 is disposed inside the vehicle 1 , and the battery 10 can be disposed at the bottom, head, or tail of the vehicle 1 .
  • the battery 10 may be used to power the vehicle 1 , for example, the battery 10 may serve as an operating power source for the vehicle 1 .
  • the vehicle 1 may also include a controller 11 and a motor 12 .
  • the controller 11 is used to control the battery 10 to provide power to the motor 12 , for example, for starting, navigating, and driving the vehicle 1 to meet its power requirements.
  • the battery 10 can not only be used as an operating power source of the vehicle 1 , but also can be used as a driving power source of the vehicle 1 , replacing or partially replacing fuel or natural gas to provide driving power for the vehicle 1 .
  • the battery 10 may include multiple battery cells 21 , where the battery cells 21 refer to the smallest unit that constitutes the battery module 20 or the battery pack. Multiple battery cells 21 can be connected in series and/or in parallel via poles to be used in various applications.
  • the battery mentioned in this application includes a battery module 20 or a battery pack. Among them, the plurality of battery cells 21 can be connected in series, in parallel, or in mixed connection. Mixed connection refers to a mixture of series connection and parallel connection. Battery 10 can also be called For the battery pack. In the embodiment of the present application, multiple battery cells 21 can directly form a battery pack, or they can first form a battery module 20, and then the battery module 20 can form a battery pack.
  • FIG. 2 shows a schematic structural diagram of a battery 10 according to an embodiment of the present application.
  • the battery 10 may include a plurality of battery modules 20 and a case 30 , and the plurality of battery modules 20 are accommodated inside the case 30 .
  • the box 30 is used to accommodate the battery cells 21 or the battery modules 20 to prevent liquid or other foreign matter from affecting the charging or discharging of the battery cells 21 .
  • the box 30 may be a single cuboid, a simple three-dimensional structure such as a cylinder or a sphere, or a complex three-dimensional structure composed of a combination of simple three-dimensional structures such as a cuboid, a cylinder or a sphere.
  • the embodiments of the present application are not limited to this.
  • the material of the box body 30 can be alloy materials such as aluminum alloy, iron alloy, etc., or polymer materials such as polycarbonate, polyisocyanurate foam, or composite materials such as glass fiber and epoxy resin. The embodiment of the present application is not limited
  • the box 30 may include a first part 301 and a second part 302.
  • the first part 301 and the second part 302 cover each other.
  • the first part 301 and the second part 302 jointly define a space for accommodating the battery.
  • the second part 302 may be a hollow structure with one end open, and the first part 301 may be a plate-like structure.
  • the first part 301 covers the open side of the second part 302 so that the first part 301 and the second part 302 jointly define a space for accommodating the battery.
  • the space of the unit 21; the first part 301 and the second part 302 may also be hollow structures with one side open, and the open side of the first part 301 is covered with the open side of the second part 302.
  • FIG. 3 shows a schematic structural diagram of a battery module 20 according to an embodiment of the present application.
  • the battery module 20 may include a plurality of battery cells 21.
  • the plurality of battery cells 21 may first be connected in series, parallel or mixed to form the battery module 20.
  • the plurality of battery modules 20 may then be connected in series, parallel or mixed to form the battery 10.
  • the battery cell 21 may include a lithium-ion battery, a sodium-ion battery, a magnesium-ion battery, etc., and the embodiment of the present application is not limited thereto.
  • the battery cell 21 may be in the shape of a cylinder, a flat body, a rectangular parallelepiped or other shapes, and the embodiments of the present application are not limited thereto.
  • Battery cells 21 are generally divided into three types according to packaging methods: cylindrical battery cells, rectangular battery cells and soft-pack battery cells, and the embodiment of the present application is not limited to this. However, for the sake of simplicity of description, the following embodiments are all described using a rectangular battery cell as an example.
  • FIG. 4 is a schematic diagram of the exploded structure of the battery cell 21 provided in an embodiment of the present application.
  • the battery cell 21 refers to the smallest unit that constitutes the battery 10 .
  • the battery cell 21 includes a casing 211 , an end cover 212 and a cell assembly 213 .
  • the end cap 212 refers to a component that covers the opening of the housing 211 to isolate the internal environment of the battery cell 21 from the external environment.
  • the shape of the end cap 212 may be adapted to the shape of the housing 211 to fit the housing 211 .
  • the end cap 212 can be made of a material with a certain hardness and strength (such as aluminum alloy). In this way, the end cap 212 is less likely to deform when subjected to extrusion and collision, so that the battery cell 21 can have higher durability. Structural strength and safety performance can also be improved.
  • the end cap 212 may be provided with functional components such as pole posts 215 and the like.
  • the pole 215 can be used to electrically connect with the cell assembly 212 Connected for outputting or inputting electric energy of the battery cell 21 .
  • the end cover 212 may also be provided with a pressure relief mechanism for releasing the internal pressure when the internal pressure or temperature of the battery cell 21 reaches a threshold value.
  • an insulating member may also be provided inside the end cover 212, and the insulating member may be used to isolate the electrical connection components in the housing 211 from the end cover 212 to reduce the risk of short circuit.
  • the insulating member may be plastic, rubber, etc.
  • the housing 211 is a component used to cooperate with the end cover 212 to form an internal environment of the battery cell 21 , wherein the formed internal environment can be used to accommodate the battery core assembly 212 , electrolyte (not shown in the figure) and other components. .
  • the housing 211 and the end cover 212 may be independent components, and an opening may be provided on the housing 211.
  • the end cover 212 covers the opening at the opening to form the internal environment of the battery cell 21.
  • the end cap 212 and the shell 211 can also be integrated. Specifically, the end cap 212 and the shell 211 can form a common connection surface before other components are put into the shell.
  • the housing 211 When it is necessary to encapsulate the inside of the shell 211 When the end cap 212 is closed, the housing 211 is closed.
  • the housing 211 can be of various shapes and sizes, such as rectangular parallelepiped, cylinder, hexagonal prism, etc. Specifically, the shape of the housing 211 can be determined according to the specific shape and size of the battery core assembly 213 .
  • the housing 211 can be made of a variety of materials, such as copper, iron, aluminum, stainless steel, aluminum alloy, plastic, etc., which are not specifically limited in the embodiment of the present application.
  • the battery cell assembly 213 is a component in the battery cell 21 that undergoes electrochemical reactions.
  • One or more battery core assemblies 212 may be contained within the housing 211 .
  • the battery core assembly 213 is mainly formed by winding or stacking positive electrode sheets and negative electrode sheets, and a separator is usually provided between the positive electrode sheets and the negative electrode sheets.
  • the portions of the positive electrode sheet and the negative electrode sheet that contain active material constitute the main body of the cell assembly 213, and the portions of the positive electrode sheet and the negative electrode sheet that do not contain active material each constitute tabs (not shown in the figure).
  • the positive electrode tab and the negative electrode tab can be located together at one end of the main body or respectively located at both ends of the main body.
  • the positive active material and the negative active material react with the electrolyte, and the tabs are connected to the poles 215 to form a current loop.
  • FIG. 5 is a schematic diagram of the connection structure between the battery core component 213 and the first insulating layer 214 in an embodiment of the present application.
  • FIG. 6 is a schematic diagram of an embodiment of the present application. is a schematic diagram of the connection structure between the battery core component 213 and the first insulating layer 214 from another angle.
  • This application provides a battery cell 21.
  • the battery cell 21 includes a casing 211, a battery core assembly 213 and an insulating layer.
  • the casing 211 is provided with an installation cavity inside, and the battery cell assembly 213 is located in the installation cavity. At least part of the battery is An insulation layer is provided between the core component 213 and the shell 211 .
  • the insulating layer is usually made of insulating material and is used to prevent electrical conduction between two adjacent conductors.
  • the battery core assembly 213 has a rectangular structure, and a first insulating layer 214 is provided at both ends of the battery core assembly 213 in the length direction.
  • FIG. 7 is a schematic structural diagram of the first insulating layer 214 according to an embodiment of the present application.
  • the first insulating layer 214 includes a first main body part 2141, a first side part 2142 and a second side part 2143.
  • the first side part 2142 and the second side part 2143 are respectively provided on the same side of the first main body part 2141 and are arranged oppositely.
  • the first side 2142 and the second side portion 2143 are respectively connected to both sides of the battery core assembly 213 in the width direction, and the first main body portion 2141 is disposed facing one side of the battery core assembly 213 in the length direction, and then through the first main body portion 214 The sides of the battery core assembly 213 in the length direction are protected.
  • the first insulating layers 214 on both sides in the length direction play a protective role on both sides of the battery core assembly 213 in the length direction, reduce or avoid damage to the battery core assembly 213, and prevent short circuits inside the battery core assembly 213. , thereby avoiding the occurrence of safety accidents and improving the safety and reliability of the battery cell 21 .
  • the battery cell 21 also includes an end cover 212 .
  • the housing 211 is provided with an opening connected to the installation cavity, and the end cover 212 is located at the opening.
  • an insulating layer is provided between at least part of the cell assembly 213 and the end cover 212 .
  • the housing 211 and the end cover 212 have a split structure, and the insulation layer is provided between the housing 211 and the battery core assembly 213, or the insulation layer is provided between the end cover 212 and the battery core assembly 213. Or, the insulating layer is disposed between the housing 211 and the cell assembly 213 and between the end cover 212 and the cell assembly 213 at the same time.
  • Figure 8 is a schematic diagram of the connection structure between the battery core assembly 213 and the second insulating layer 217 according to an embodiment of the present application
  • Figure 9 is a schematic diagram of the connection structure between the battery core assembly 213 and the second insulating layer 217 according to an embodiment of the present application.
  • a second insulation layer 217 is provided between the top surface of the cell assembly 213 and the end cover 212 .
  • the top surface of the battery core assembly 213 corresponding to the second insulating layer 212 will not It will be broken down by electric arc or arc, thereby reducing or avoiding short circuit in the battery core assembly 213 .
  • the housing 211 and the end cover 212 can also be an integrated structure.
  • the battery core assembly 213 can also be prevented from being pulled by electricity. The effect of arc or arc breakdown.
  • the battery unit 21 also includes a pole 215 , which is penetrated through the end cover 212 , and the pole 215 is connected to the end cap 212 through a conductive sheet 216 .
  • the battery core components 213 are connected, and a second insulating layer 217 is provided between at least part of the battery core components 213 and the conductive sheet 216 .
  • the two ends of the pole 215 are respectively disposed on both sides of the end cover 212, that is, one end of the pole 215 extends to the outside of the housing 211, and the other end of the pole 215 passes through the end cover 212 and is connected to the battery core assembly.
  • 213 is connected to form an electrical circuit with the battery core assembly 213 for external power supply.
  • the pole 215 is connected to the battery core assembly 213 through the conductive sheet 216, which conducts electricity.
  • the sheet 216 can be made of a conductive metal plate or other circuit board.
  • pole posts 215 and the conductive sheets 216 are both conductive parts, when the insulation failure of the battery cell 21 occurs, the poles 215 and/or the conductive sheets 216 are prone to electrical arcing or arcing. Therefore, in order to prevent the poles 215 and/or The electric arc or arc breakdown generated by the conductive sheet 216 penetrates the battery core assembly 213, and an insulation layer can be provided between the battery core assembly 213 and the conductive sheet 216. As shown in FIGS. 8 and 9 , a second insulating layer 217 is provided between the conductive sheet 216 and the top surface of the cell assembly 213 .
  • the battery core assembly 213 corresponds to the second insulating layer 217.
  • the top surface of the battery core assembly 213 will not be penetrated by electric arcing or arc breakdown, thereby reducing or avoiding the occurrence of short circuit in the battery core assembly 213 .
  • an insulation layer can also be provided between the battery core assembly 213 and the housing 211 to protect other sides of the battery core assembly 213 at the same time.
  • a second insulating layer 217 is provided between the conductive sheet 216 and the battery core assembly 213 .
  • the second insulating layer 217 is along the tabs perpendicular to the battery core assembly 213
  • the direction of 2131 overlaps the end of pole lug 2131.
  • tabs 2131 are protruding from the top surface of the battery core assembly 213, and the tabs 2131 are used to connect the pole posts 215 and the battery core assembly 213.
  • Two pole tabs 2131 are spaced on one side of the battery core assembly 213 in the length direction.
  • Two pole tabs 2131 are also spaced on the other side of the battery core assembly 213 in the length direction.
  • the pole tabs on the two sides are also spaced apart.
  • 2131 are set in one-to-one correspondence.
  • the second insulating layer 217 overlaps the upper end of the tab 2131 so that the second insulating layer 217 is spaced apart from the main body of the battery core assembly 213 .
  • the battery core assembly 213 contains a large amount of chemical substances, such as electrolytes, a large amount of mixed gases and liquids will be produced during the charging and discharging process, accompanied by a constant accumulation of pressure. Therefore, in order to prevent excessive pressure within the battery core assembly 213 In the event of an explosion, the second insulating layer 217 is spaced from the main body of the battery core assembly 213 to help the battery core assembly 213 exhaust, thus preventing an explosion caused by the failure of the high-pressure gas to be discharged in time.
  • FIG. 10 is a schematic structural diagram of the second insulating layer 217 according to an embodiment of the present application.
  • the conductive sheet 216 is provided with a bent portion (not shown in the figure), and the second insulating layer 217 is provided with a plug hole 2172 corresponding to the bent portion. The bent portion passes through Connected to the pole lug 2131 through the plug hole 2172.
  • the second insulation layer 217 corresponding to the top surface of the cell assembly 213 includes a second main body portion 2171 . Since the second main body part 2171 is provided between the pole lug 2131 and the conductive sheet 216, in order to facilitate the bending part to pass through the second insulating layer 217 and then be connected to the pole lug 2131, so as to provide external power supply through the pole post 215, the second main body part 2171 is provided between the pole lug 2131 and the conductive sheet 216. 2171 is provided with an insertion hole 2172 for the bent portion of the conductive sheet 216 to pass through. Among them, the battery core assembly 213 includes four tabs 2131, so four bending portions need to be provided to connect to the tabs 2131.
  • insertion holes 2172 are provided on the second main body 2171, and The four insertion holes 2172 are respectively provided in one-to-one correspondence with the four bending portions. The four bending portions respectively pass through the four insertion holes 2172 and are connected to the pole tabs 2131.
  • the second insulating layer 217 is provided with a through hole 2173 , and the through hole 2173 is connected to the pressure relief component on the end cover 212 .
  • the pressure relief component is an explosion-proof valve.
  • the explosion-proof valve is provided on the end cover 212, and when the air pressure in the battery cell 21 rises, it can explode and open under the action of high-pressure gas, thereby discharging the gas in the battery cell 21 and releasing the pressure to prevent the battery cell from being damaged. 21 An explosion occurred.
  • the generated high-pressure gas can act on the pressure relief part through the through hole 2173, causing the pressure relief part to burst, and then discharge the high-pressure gas to the outside of the battery cell 21, ensuring that the battery The safety and reliability of monomer 21 use.
  • the insulating layer is connected to the battery core assembly 213 , and/or the insulating layer is connected to the housing 211 , and/or the insulating layer is connected to the conductive
  • the sheets 216 are connected, and/or the insulating layer is fixed between the housing 211 and the battery core assembly 213, and/or the insulating layer is fixed between the conductive sheet 216 and the battery core assembly 213.
  • first insulating layers 214 are respectively provided on both sides of the battery core assembly 213 in the length direction.
  • the first insulating layer 214 can be connected to the side surfaces of the battery core assembly 213 in the length direction.
  • the first insulating layer 214 can be connected to the housing 211 corresponding to the side of the battery core assembly 214 in the length direction, or, after the battery core assembly 213 and the first insulating layer 214 are installed inside the housing 211, they can be connected through the electrical
  • the core assembly 213 and the housing 211 jointly clamp and fix the first insulation layer 214 .
  • a second insulating layer 217 is provided on the top surface of the battery core assembly 213 .
  • the second insulating layer 217 can be connected to the tabs 2131 on the top surface of the battery core component 213 , or, The insulating layer 217 can be connected to the conductive sheet 216, or when the conductive sheet 216 is connected to the tab 2131, the second insulating layer 217 is clamped and fixed by the conductive sheet 216 and the tab 2131.
  • the above-mentioned methods can all provide the insulating layer corresponding to the outside of the battery cell assembly 213, thereby protecting the battery cell assembly 213 through the insulating layer, preventing the battery cell assembly 213 from being arced or broken down by electric arc, thereby improving the performance of the battery cells. 21Safety and reliability of use.
  • the melting point of the insulating layer is greater than 250°C and less than 1000°C.
  • the melting point of the insulating layer is the temperature at which the insulating layer changes from a solid state to a liquid state.
  • the temperature of the insulating layer reaches above 250° C., the insulating layer will melt and deform, thereby losing its protective effect on the battery core assembly 213 .
  • the temperature of the insulating layer is less than or equal to 250°C, melting and deformation will not occur, and the battery core assembly 213 will always be protected.
  • the insulating layer includes at least one of a polyimide layer, a phenolic plastic layer, a ceramic layer, and a polytetrafluoroethylene layer.
  • the above-mentioned several material layers all have insulation properties and certain heat resistance, thereby meeting the insulation and heat resistance requirements of the insulation layer.
  • the thickness dimension of the insulating layer is D, 0.05mm ⁇ D ⁇ 2mm, and the voltage of the battery cell 21 is V, 200V/mm ⁇ V/D ⁇ 40000V/mm.
  • the thickness dimension of the insulation layer is the thickness dimension of a single insulation layer.
  • the thickness D of the insulating layer is generally selected to be greater than 0.05 mm and less than 2 mm, so that the insulating layer will not be broken down by electric arc, thus providing protection for the cell assembly 213.
  • the thickness of the insulating layer can also be selected according to the voltage V of the battery cell 21. Generally, 200V/mm ⁇ V/D ⁇ 40000V/mm.
  • the above-mentioned thickness range of the insulating layer can effectively prevent electric arcing or arc breakdown generated under corresponding voltages from penetrating the insulating layer, thereby protecting the battery core assembly 213 .
  • the total weight of the insulating layer is 0.1% to 1% of the total weight of the battery cells 21 .
  • the total weight of the insulating layers refers to the sum of the weights of all the insulating layers in the battery cell 21 .
  • the size and area corresponding to the weight of the above-mentioned insulating layer can prevent arc breakdown of the insulating layer and battery core assembly 213, and at the same time, the insulating layer does not occupy too much volume in the casing 211, thus satisfying the small size of the battery cell 21. requirements of lightening and lightweighting.
  • the battery core assembly 213 has a rectangular structure, and an insulation layer is provided between at least one of the two sides in the length direction of the battery core assembly 213 and the casing.
  • the battery core assembly 213 has a rectangular structure, and first insulating layers 214 are respectively provided on both sides of the battery core assembly 213 in the length direction.
  • the battery core assembly 213 has a rectangular structure, and an insulation layer is provided on the top surface of the battery core assembly 213 .
  • the battery core assembly 213 has a rectangular structure, and a second insulating layer 217 is provided on the top surface of the battery core assembly 213 .
  • the battery core assembly 213 has a rectangular structure, and at least one of the two sides in the width direction of the battery core assembly 213 is provided with an insulating layer on the casing 211 .
  • FIG. 11 is a schematic diagram of the connection structure between the battery core component 213 and the third insulation layer 218 according to an embodiment of the present application
  • FIG. 12 is a schematic diagram of the battery core component 213 and the third insulation layer according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of the third insulating layer 218 according to an embodiment of the present application.
  • third insulating layers 218 are respectively provided on both sides of the battery core assembly 213 in the width direction.
  • the third insulating layer 218 includes a third main body portion 2181.
  • the top of the third main body portion 2181 is also provided with first convex portions 2182 and second convex portions 2183 spaced apart, wherein the third main body portion 2181 is in contact with the battery core.
  • the side surfaces of the component 213 in the width direction are arranged correspondingly, and the first convex portion 2182 and the second convex portion 2183 are respectively arranged corresponding to the tabs 2131, thereby comprehensively protecting the side surfaces of the battery core component 213 in the width direction and preventing electric arcing or arcing.
  • the side surfaces of the battery core assembly 213 in the width direction are broken down, or the electric arc or arc passes through the tabs 2131 to break down the side surfaces of the battery core assembly 213 in the width direction.
  • the battery core assembly 213 has a rectangular structure, and an insulating layer is provided between the bottom surface of the battery core assembly 213 and the casing 211
  • FIG. 14 is a schematic diagram of the connection structure between the battery core assembly 213 and the fourth insulation layer 219 according to an embodiment of the present application. Schematic diagram of the connection structure of layer 219 from another angle.
  • a fourth insulating layer 219 is provided correspondingly to the bottom surface of the battery core assembly 213.
  • the fourth insulating layer 219 protects the bottom surface of the battery core component 213 to prevent arcing or arc breakdown of the battery core.
  • the insulating layer in this application can be provided on any surface of the battery core assembly 213, or simultaneously on multiple surfaces or all surfaces of the battery core assembly 213, thereby effectively protecting the battery core assembly 213 and preventing the battery core assembly from being damaged. 213 is struck by electric arc or arc breakdown.
  • the insulating layer completely covers the surface of the corresponding battery core component 213 .
  • the first insulating layer 214 is disposed facing the two sides of the battery core assembly 213 in the length direction, and completely covers the two sides of the battery core assembly 213 in the length direction that are facing each other, so that it can Comprehensively and effectively prevent both sides of the battery core assembly 213 in the length direction from being arced or broken down by arc.
  • the second insulating layer 217 is disposed directly opposite the top surface of the battery core component 213 and completely covers the top surface of the battery core component 213 , thereby fully and effectively preventing the top surface of the battery core component 213 from being electrically pulled. Arc or arc breakdown.
  • the third insulating layer 218 is disposed facing the two sides of the battery core assembly 213 in the width direction, and completely covers the two sides of the width direction of the battery core assembly 213 that are facing each other, so that it can effectively and comprehensively This prevents both sides of the battery core assembly 213 in the width direction from being arced or broken down by arc.
  • the fourth insulating layer 219 is disposed directly opposite the bottom surface of the battery core component 213 and completely covers the bottom surface of the battery core component 213 , thereby fully and effectively preventing the bottom surface of the battery core component 213 from being arced or arced. breakdown.
  • the corresponding side surface can be completely and effectively prevented from being arced or broken down by arc.
  • the present application provides a battery 10 having the battery cell 21 in the above embodiment.
  • the present application provides an electrical device, which has the battery 10 of any of the above embodiments, and the battery 10 is used to provide electrical energy to the electrical device.
  • the powered device may be any of the aforementioned devices or systems using batteries.
  • the battery cell 21 includes a case 211, an end cover 212, a cell assembly 213, and an insulating layer.
  • the housing 211 is provided with an installation cavity inside, and the battery core assembly 213 is located in the installation cavity.
  • the housing 211 is provided with an opening that communicates with the installation cavity, and the end cover 212 is located at the opening.
  • the battery cell 21 also includes a pole 215 that is inserted through the end cover 212 and connected to the battery core assembly 213 through a conductive sheet 216 .
  • the battery core assembly 213 has a rectangular structure.
  • a first insulating layer 214 is provided between both sides of the battery core assembly 213 in the length direction and the casing 211.
  • a third insulation layer 214 is provided between the top surface of the battery core assembly 213 and the conductive sheet 216.
  • the second insulating layer 217 is provided with a third insulating layer 218 between the two sides of the battery cell assembly 213 in the width direction and the case 211, and a fourth insulating layer 219 is provided between the bottom surface of the battery core assembly 213 and the case 211, and
  • An insulating layer 214 completely covers both sides of the battery core assembly 213 in the length direction
  • a second insulating layer 217 completely covers the top surface of the battery core assembly 213, and a third insulating layer 218 completely covers both sides of the battery core assembly 213 in the width direction.
  • the fourth insulating layer 219 completely covers the bottom surface of the battery core assembly 213 .
  • the second insulating layer 217 is disposed between the conductive sheet 216 and the cell assembly 213 , and the second insulating layer 217 overlaps the end of the tab 2131 in a direction perpendicular to the tab 2131 of the cell assembly 213 .
  • the conductive sheet 216 is provided with a bent portion, and the second insulating layer 217 is provided with a plug-in hole 2172 corresponding to the bent portion. The bent portion passes through the plug-in hole 2172 and is connected to the tab 2131.
  • the second insulating layer 217 is also provided with a through hole 2173, and the through hole 2173 is connected with the pressure relief component on the end cover 212.
  • the first insulating layer 214, the second insulating layer 217 and the third insulating layer 218 are respectively connected to the battery core component 213, and the fourth insulating layer 219 is connected to the conductive sheet 216.
  • the melting points of the first insulating layer 214, the second insulating layer 217, the third insulating layer 218 and the fourth insulating layer 219 are respectively greater than 250°C and less than 1000°C.
  • the first insulating layer 214, the second insulating layer 217, the third insulating layer 218 and the fourth insulating layer 219 respectively include at least one of a polyimide layer, a phenolic plastic layer, a ceramic layer and a polytetrafluoroethylene layer.
  • the thickness dimensions of the first insulating layer 214, the second insulating layer 217, the third insulating layer 218 and the fourth insulating layer 219 are respectively D, 0.05mm ⁇ D ⁇ 2mm, and the voltage of the battery cell 21 is V, and 200V/mm. ⁇ V/D ⁇ 40000V/mm.
  • the total weight of the first insulating layer 214 , the second insulating layer 217 , the third insulating layer 218 and the fourth insulating layer 219 is 0.1% to 1% of the total weight of the battery cell 21 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请涉及电池领域,具体涉及一种电池单体、电池及用电设备。本申请的电池单体包括壳体、电芯组件和绝缘层,壳体的内部设有安装腔,电芯组件设于安装腔,至少部分电芯组件与壳体间设有绝缘层。本申请的技术方案中,通过将至少部分电芯组件与壳体间设有绝缘层,当壳体发生绝缘失效并产生电拉弧或电弧时,由于绝缘层的设置,壳体产生的电拉弧或电弧不会击穿绝缘层,从而对与绝缘层相对设置的至少部分电芯组件起到防护的作用,减少或避免对电芯组件造成损害,防止电芯组件的内部发生短路现象,进而避免安全事故的发生,提高电池单体使用的安全性和可靠性。

Description

电池单体、电池及用电设备
相关申请的交叉引用
本申请要求享有于2022年07月15日提交的名称为“电池单体、电池及用电设备”的中国专利申请202221839791.3的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及电池技术领域,具体涉及一种电池单体、电池及用电设备。
背景技术
目前随着环境问题的日益突出,人们开始积极倡导低碳经济。新能源汽车随着越来越严重的空气质量而兴起。广大生产商和消费者也开始逐步认可混合动力汽车和纯电动汽车作为代表的新能源汽车。动力电池作为新能源汽车的主要动力源,已成为电动汽车的核心部件之一。
当电池系统发生绝缘失效时,电池内部的电芯组件容易发生短路,引发电池发生热失控,更有甚者还会造成起火安全事故。
发明内容
鉴于现有技术存在的缺陷,本申请提出了一种电池单体、电池及用电设备,能够有效地解决电芯组件容易发生短路的问题。
第一方面,本申请提供了一种电池单体,所述电池单体包括:
壳体,所述壳体的内部设有安装腔;
电芯组件,所述电芯组件设于所述安装腔;
绝缘层,至少部分所述电芯组件与所述壳体间设有所述绝缘层。
本申请的技术方案中,通过将至少部分电芯组件与壳体间设有绝缘层,当壳体发生绝缘失效并产生电拉弧或电弧时,由于绝缘层的设置,壳体产生的电拉弧或电弧不会击穿绝缘层, 从而对与绝缘层相对设置的至少部分电芯组件起到防护的作用,减少或避免对电芯组件造成损害,防止电芯组件的内部发生短路现象,进而避免安全事故的发生,提高电池单体使用的安全性和可靠性。
在本申请的一实施方式中,所述电池单体还包括端盖,所述壳体上设有与所述安装腔相连通的开口,所述端盖盖设于所述开口处,至少部分所述电芯组件与所述端盖间设有所述绝缘层。通过在电芯组件与端盖间设置绝缘层,当端盖发生绝缘失效并产生电拉弧或电弧时,电芯组件与绝缘层相对应的部分不会被电拉弧或电弧所击穿,从而减少或避免电芯组件发生短路现象。
在本申请的一实施方式中,所述电池单体还包括极柱,所述极柱穿设于所述端盖,所述极柱通过导电片与所述电芯组件相连,至少部分所述电芯组件与所述导电片间设有所述绝缘层。通过在电芯组件与导电片间设置绝缘层,当极柱或导电片发生绝缘失效并产生电拉弧或电弧时,电芯组件与绝缘层相对应的部分不会被电拉弧或电弧所击穿,从而减少或避免电芯组件发生短路现象。
在本申请的一实施方式中,所述绝缘层沿垂直于所述电芯组件的极耳的方向搭接于所述极耳的端部。当电芯组件内部压力升高时,由于绝缘层搭接于极耳的端部,有助于电芯组件进行排气,从而防止由于高压气体无法及时排除而引起爆炸现象。
在本申请的一实施方式中,所述导电片上设有弯折部,所述绝缘层上设有插接孔,所述弯折部穿过所述插接孔与所述极耳相连。通过设置插接孔,便于弯折部穿过绝缘层后与极耳相连,从而通过极柱进行外部供电。
在本申请的一实施方式中,所述绝缘层上设有通孔,所述通孔与所述端盖上的泄压件相连通。当电池单体的内部压力升高时,产生的高压气体能够通过通孔作用于于泄压件,从而使泄压件爆破,进而将高压气体排出至电池单体的外部,保证电池单体使用的安全性和可靠性。
在本申请的一实施方式中,所述绝缘层与所述电芯组件相连。将绝缘层与电芯组件相连,通过绝缘层对电芯组件进行防护,防止电芯组件被电拉弧或电弧击穿,进而提高电池单体使用的安全性和可靠性。
在本申请的一实施方式中,所述绝缘层与所述壳体相连。将绝缘层与壳体相连,通过绝缘层对电芯组件进行防护,防止电芯组件被电拉弧或电弧击穿,进而提高电池单体使用的安全性和可靠性。
在本申请的一实施方式中,所述绝缘层固定于所述壳体和所述电芯组件之间。将绝缘层固定于壳体和电芯组件之间,通过绝缘层对电芯组件进行防护,防止电芯组件被电拉弧或电弧击穿,进而提高电池单体使用的安全性和可靠性。
在本申请的一实施方式中,所述绝缘层与所述导电片相连。将绝缘层与导电片相连,通过绝缘层对电芯组件进行防护,防止电芯组件被电拉弧或电弧击穿,进而提高电池单体使用的安全性和可靠性。
在本申请的一实施方式中,所述绝缘层固定于所述导电片和所述电芯组件之间。将绝缘层固定于导电片和电芯组件之间,通过绝缘层对电芯组件进行防护,防止电芯组件被电拉弧或电弧击穿,进而提高电池单体使用的安全性和可靠性。
在本申请的一实施方式中,所述绝缘层的熔点大于250℃小于1000℃。将绝缘层的熔点设置为大于250℃小于1000℃,能够防止绝缘层在电拉弧或电弧的作用下发生熔化,从而对电芯组件进行有效的防护。
在本申请的一实施方式中,所述绝缘层包括聚酰亚胺层、酚醛塑料层、陶瓷层和聚四氟乙烯层中的至少一种。上述几种材料层均具有绝缘性和一定耐热性,从而满足绝缘层的绝缘性和耐热性的要求。
在本申请的一实施方式中,所述绝缘层厚度尺寸为D,0.05mm<D<2mm,所述电池单体的电压为V,200V/mm<V/D<40000V/mm。上述绝缘层的厚度范围,能够有效地防止在对应电压下产生的电拉弧或电弧击穿绝缘层,从而对电芯组件进行防护。
在本申请的一实施方式中,所述绝缘层的总重量为所述电池单体的总重量的0.1%~1%。上述绝缘层的重量对应的尺寸面积,既能够防止电拉弧或电弧击穿绝缘层和电芯组件,同时绝缘层又不会占据壳体内的过多体积,从而满足电池单体的小型化和轻型化的要求。
在本申请的一实施方式中,所述电芯组件为方体形结构,所述电芯组件的长度方向的两侧面中的至少一个与所述壳体间设有所述绝缘层。通过上述设置方式,能够防止电芯组件的长度方向的至少一个侧面被电拉弧或电弧击穿。
在本申请的一实施方式中,所述电芯组件为方体形结构,所述电芯组件的宽度方向的两侧面中的至少一个与所述壳体间设有所述绝缘层。通过上述设置方式,能够防止电芯组件的宽度方向的至少一个侧面被电拉弧或电弧击穿。
在本申请的一实施方式中,所述电芯组件为方体形结构,所述电芯组件的底面与所述壳体间设有所述绝缘层。通过上述设置方式,能够防止电芯组件的底面被电拉弧或电弧击穿。
在本申请的一实施方式中,所述电芯组件为方体形结构,所述电芯组件的顶面设有所述绝缘层。通过上述设置方式,能够防止电芯组件的顶面被电拉弧或电弧击穿。
在本申请的一实施方式中,所述绝缘层完全覆盖相对应的所述电芯组件的表面。通过将绝缘层完全覆盖相对应的表面,能够全面有效地防止相应表面被电拉弧或电弧击穿。
第二方面,本申请提供了一种电池,其具有上述实施方式中的电池单体。
第三方面,本申请提供了一种用电设备,其具有上述实施方式中的电池。
上述说明仅是本申请技术方案的概述,为了能够更清楚了解本申请的技术手段,而可依照说明书的内容予以实施,并且为了让本申请的上述和其它目的、特征和优点能够更明显易懂,以下特举本申请的具体实施方式。
附图说明
通过阅读下文优选实施方式的详细描述,各种其他的优点和益处对于本领域普通技术人员将变得清楚明了。附图仅用于示出优选实施方式的目的,而并不认为是对本申请的限制。而且在整个附图中,用相同的参考符号表示相同的部件。在附图中:
图1为本申请一实施方式的车辆的结构示意图;
图2为本申请一实施方式的电池包的结构示意图;
图3为本申请一实施方式的电池模块的结构示意图;
图4为本申请一实施方式的电池单体的分解结构示意图;
图5为本申请一实施方式的电芯组件与第一绝缘层的连接结构示意图;
图6为本申请一实施方式的电芯组件与第一绝缘层的另一角度的连接结构示意图;
图7为本申请一实施方式的第一绝缘层的结构示意图;
图8为本申请一实施方式的电芯组件与第二绝缘层的连接结构示意图;
图9为本申请一实施方式的电芯组件与第二绝缘层的另一角度的连接结构示意图;
图10为本申请一实施方式的第二绝缘层的结构示意图;
图11为本申请一实施方式的电芯组件与第三绝缘层的连接结构示意图;
图12为本申请一实施方式的电芯组件与第三绝缘层的另一角度的连接结构示意图;
图13为本申请一实施方式的第三绝缘层的结构示意图;
图14为本申请一实施方式的电芯组件与第四绝缘层的连接结构示意图;
图15为本申请一实施方式的电芯组件与第四绝缘层的另一角度的连接结构示意图。
具体实施方式中的附图标号如下:
1:车辆;
10:电池、11:控制器、12:马达;
20:电池模块、21:电池单体、211:壳体、212:端盖、213:电芯组件、2131:极耳、214:第一绝缘层、2141:第一主体部、2142:第一侧部、2143:第二侧部、215:极柱、216:导电片、217:第二绝缘层、2171:第二主体部、2172:插接孔、2173:通孔、218:第三绝缘层、2181:第三主体部、2182:第一凸部、2183:第二凸部、219:第四绝缘层;
30:箱体、301:第一部分、302:第二部分。
具体实施方式
下面将结合附图对本申请技术方案的实施方式进行详细的描述。以下实施方式仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
需要注意的是,除非另有说明,本申请实施方式使用的技术术语或者科学术语应当为本申请实施方式所属领域技术人员所理解的通常意义。
在本申请实施方式的描述中,技术术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施方式和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施方式的限制。
此外,技术术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。在本申请实施方式的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本申请实施方式的描述中,除非另有明确的规定和限定,技术术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施方式中的具体含义。
在本申请实施方式的描述中,除非另有明确的规定和限定,第一特征在第二特征“上” 或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
目前,从市场形势的发展来看,动力电池的应用越加广泛。动力电池不仅被应用于水力、火力、风力和太阳能电站等储能电源系统,而且还被广泛应用于电动自行车、电动摩托车、电动汽车等电动交通工具,以及军事装备和航空航天等多个领域。随着动力电池应用领域的不断扩大,其市场的需求量也在不断地扩增。
由于电池单体的壳体和极柱通常选用金属件,当电池系统发生双点绝缘失效时,电池单体中的正负极柱、壳体(铝制或者钢制)等金属带电部件发生电拉弧。电拉弧会击穿带极柱、金属壳体,进一步地会对电池内部的电芯组件造成损害,使电芯组件发生内部短路,引发电池发生热失控,更有甚者或造成起火安全事故。
为了解决电拉弧击穿极柱或金属外壳后损伤电芯组件的问题,可在电芯组件的外部设置绝缘层。当电池单体发生绝缘失效,并使金属带电部件发生电拉弧时,由于绝缘层的设置,金属带电部件发生的电拉弧不会击穿绝缘层,从而对与绝缘层相对设置的至少部分电芯组件起到防护的作用,减少或避免对电芯组件造成损害,防止电芯组件的内部发生短路现象,进而避免安全事故的发生,提高电池单体使用的安全性和可靠性。
请参照图1,图1为本申请一实施方式提供的车辆1的结构示意图。车辆1可以为燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等。车辆1的内部设置有电池10,电池10可以设置在车辆1的底部或头部或尾部。电池10可以用于车辆1的供电,例如,电池10可以作为车辆1的操作电源。车辆1还可以包括控制器11和马达12,控制器11用来控制电池10为马达12供电,例如,用于车辆1的启动、导航和行驶时的工作用电需求。
在本申请一实施方式中,电池10不仅可以作为车辆1的操作电源,还可以作为车辆1的驱动电源,代替或部分地代替燃油或天然气为车辆1提供驱动动力。
为了满足不同的使用电力需求,电池10可以包括多个电池单体21,电池单体21是指组成电池模块20或电池包的最小单元。多个电池单体21可经由极柱而被串联和/或并联在一起以应用于各种应用场合。本申请中所提到的电池包括电池模块20或电池包。其中,多个电池单体21之间可以串联或并联或混联,混联是指串联和并联的混合。电池10也可以称 为电池包。本申请的实施方式中多个电池单体21可以直接组成电池包,也可以先组成电池模块20,电池模块20再组成电池包。
图2示出了本申请一实施方式的电池10的结构示意图。图2中,电池10可以包括多个电池模块20和箱体30,多个电池模块20容纳于箱体30内部。箱体30用于容纳电池单体21或电池模块20,以避免液体或其他异物影响电池单体21的充电或放电。箱体30可以是单独的长方体或者圆柱体或球体等简单立体结构,也可以是由长方体或者圆柱体或球体等简单立体结构组合而成的复杂立体结构,本申请实施方式对此并不限定。箱体30的材质可以是如铝合金、铁合金等合金材料,也可以是如聚碳酸酯、聚异氰脲酸酯泡沫塑料等高分子材料,或者是如玻璃纤维加环氧树脂的复合材料,本申请实施方式对此也并不限定。
在本申请的一实施方式中,箱体30可以包括第一部分301和第二部分302,第一部分301与第二部分302相互盖合,第一部分301和第二部分302共同限定出用于容纳电池单体21的空间。第二部分302可以为一端开口的空心结构,第一部分301可以为板状结构,第一部分301盖合于第二部分302的开口侧,以使第一部分301与第二部分302共同限定出容纳电池单体21的空间;第一部分301和第二部分302也可以是均为一侧开口的空心结构,第一部分301的开口侧盖合于第二部分302的开口侧。
图3示出了本申请一实施方式的电池模块20的结构示意图。图3中,电池模块20可以包括多个电池单体21,多个电池单体21可以先串联或并联或混联组成电池模块20,多个电池模块20再串联或并联或混联组成电池10。本申请中,电池单体21可以包括锂离子电池、钠离子电池或镁离子电池等,本申请实施方式对此并不限定。电池单体21可呈圆柱体、扁平体、长方体或其它形状等,本申请实施方式对此也不限定。电池单体21一般按封装的方式分成三种:柱形电池单体、方体形电池单体和软包电池单体,本申请实施方式对此也不限定。但为描述简洁,下述实施方式均以方体形电池单体为例进行说明。
图4为本申请一实施方式提供的电池单体21的分解结构示意图。电池单体21是指组成电池10的最小单元。如图4,电池单体21包括有壳体211、端盖212和电芯组件213。
端盖212是指盖合于壳体211的开口处以将电池单体21的内部环境隔绝于外部环境的部件。不限地,端盖212的形状可以与壳体211的形状相适应以配合壳体211。可选地,端盖212可以由具有一定硬度和强度的材质(如铝合金)制成,这样,端盖212在受挤压碰撞时就不易发生形变,使电池单体21能够具备更高的结构强度,安全性能也可以有所提高。端盖212上可以设置有如极柱215等的功能性部件。极柱215可以用于与电芯组件212电连 接,以用于输出或输入电池单体21的电能。在本申请的一实施方式中,端盖212上还可以设置有用于在电池单体21的内部压力或温度达到阈值时泄放内部压力的泄压机构。在本申请的一实施方式中,在端盖212的内侧还可以设置有绝缘件,绝缘件可以用于隔离壳体211内的电连接部件与端盖212,以降低短路的风险。示例性的,绝缘件可以是塑料、橡胶等。
壳体211是用于配合端盖212以形成电池单体21的内部环境的组件,其中,形成的内部环境可以用于容纳电芯组件212、电解液(在图中未示出)以及其他部件。壳体211和端盖212可以是独立的部件,可以于壳体211上设置开口,通过在开口处使端盖212盖合开口以形成电池单体21的内部环境。不限地,也可以使端盖212和壳体211一体化,具体地,端盖212和壳体211可以在其他部件入壳前先形成一个共同的连接面,当需要封装壳体211的内部时,再使端盖212盖合壳体211。壳体211可以是多种形状和多种尺寸的,例如长方体形、圆柱体形、六棱柱形等。具体地,壳体211的形状可以根据电芯组件213的具体形状和尺寸大小来确定。壳体211的材质可以是多种,比如,铜、铁、铝、不锈钢、铝合金、塑胶等,本申请实施方式对此不作特殊限制。
电芯组件213是电池单体21中发生电化学反应的部件。壳体211内可以包含一个或更多个电芯组件212。电芯组件213主要由正极片和负极片卷绕或层叠放置形成,并且通常在正极片与负极片之间设有隔膜。正极片和负极片具有活性物质的部分构成电芯组件213的主体部,正极片和负极片不具有活性物质的部分各自构成极耳(在图中未示出)。正极极耳和负极极耳可以共同位于主体部的一端或是分别位于主体部的两端。在电池的充放电过程中,正极活性物质和负极活性物质与电解液发生反应,极耳连接极柱215以形成电流回路。
在本申请的一实施方式中,结合图4至图6所示,图5为本申请一实施方式的电芯组件213与第一绝缘层214的连接结构示意图,图6为本申请一实施方式的电芯组件213与第一绝缘层214的另一角度的连接结构示意图。本申请提供了一种电池单体21,电池单体21包括壳体211、电芯组件213和绝缘层,壳体211的内部设有安装腔,电芯组件213设于安装腔,至少部分电芯组件213与壳体211间设有绝缘层。
绝缘层通常采用绝缘材料制成,用于阻止相邻的两个导体间发生导电现象。如图5所示,电芯组件213为方体形结构,电芯组件213的长度方向的两端分别各设有一个第一绝缘层214。具体地,结合图5至图7所示,图7为本申请一实施方式的第一绝缘层214的结构示意图。第一绝缘层214包括第一主体部2141、第一侧部2142和第二侧部2143,第一侧部2142和第二侧部2143分别设于第一主体部2141的同一侧面且相对设置。其中,第一侧部 2142和第二侧部2143分别与电芯组件213的宽度方向的两侧面相连,并使第一主体部2141与电芯组件213的长度方向的一个侧面正对设置,进而通过第一主体部214对电芯组件213的长度方向的侧面进行防护。
当电池单体21发生绝缘失效,并使壳体211产生电拉弧或电弧时,由于第一绝缘层214的设置,壳体211产生的电拉弧或电弧不会击穿电芯组件213的长度方向两侧的第一绝缘层214,从而对电芯组件213的长度方向的两侧面起到防护的作用,减少或避免对电芯组件213造成损害,防止电芯组件213的内部发生短路现象,进而避免安全事故的发生,提高电池单体21使用的安全性和可靠性。
结合图4和图5所示,在本申请的一实施方式中,电池单体21还包括端盖212,壳体211上设有与安装腔相连通的开口,端盖212盖设于开口处,至少部分电芯组件213与端盖212间设有绝缘层。
如图4所示,壳体211和端盖212为分体式结构,绝缘层设置于壳体211与电芯组件213之间,或,绝缘层设置于端盖212与电芯组件213之间,或,绝缘层同时设置于壳体211与电芯组件213之间,以及端盖212与电芯组件213之间。
结合图4、图8和图9所示,图8为本申请一实施方式的电芯组件213与第二绝缘层217的连接结构示意图;图9为本申请一实施方式的电芯组件213与第二绝缘层217的另一角度的连接结构示意图。在本申请的一实施方式中,电芯组件213的顶面与端盖212间设有第二绝缘层217。通过在电芯组件213与端盖212间设置第二绝缘层217,当端盖212发生绝缘失效并产生电拉弧或电弧时,电芯组件213与第二绝缘层212相对应的顶面不会被电拉弧或电弧所击穿,从而减少或避免电芯组件213发生短路现象。
在本申请的一实施方式中,壳体211和端盖212还可以为一体式结构,通过在电芯组件213的外表面对应设置绝缘层,同样可以对电芯组件213起到防止被电拉弧或电弧击穿的作用。
再次结合图4、图8和图9所示,在本申请的一实施方式中,电池单体21还包括极柱215,极柱215穿设于端盖212,极柱215通过导电片216与电芯组件213相连,至少部分电芯组件213与导电片216间设有第二绝缘层217。
具体地,极柱215的两端分别设于端盖212的两侧,即极柱215的一端伸出至壳体211的外部,极柱215的另一端穿过端盖212后与电芯组件213相连,从而与电芯组件213形成电回路,用于对外部进行供电。其中,极柱215通过导电片216与电芯组件213相连,导电 片216可选用具有导电作用的金属板,或其他线路板。由于极柱215和导电片216均为导电件,因此当电池单体21发生绝缘失效时,极柱215和/或导电片216容易产生电拉弧或电弧,因此为防止极柱215和/或导电片216产生的电拉弧或电弧击穿电芯组件213,可在电芯组件213与导电片216间设置绝缘层。如图8和图9所示,导电片216和电芯组件213的顶面间设有第二绝缘层217。
通过在电芯组件213与导电片216间设置第二绝缘层217,当极柱215或导电片216发生绝缘失效并产生电拉弧或电弧时,电芯组件213与第二绝缘层217相对应的顶面不会被电拉弧或电弧所击穿,从而减少或避免电芯组件213发生短路现象。同时,也可以在电芯组件213与壳体211之间设置绝缘层,从而对电芯组件213的其他侧面同时进行防护。
结合图8和图9所示,在本申请的一实施方式中,导电片216与电芯组件213间设有第二绝缘层217,第二绝缘层217沿垂直于电芯组件213的极耳2131的方向搭接于极耳2131的端部。
具体地,电芯组件213的顶面凸出设有极耳2131,极耳2131用于连接极柱215和电芯组件213。电芯组件213的长度方向的一个侧面上间隔设有两个极耳2131,电芯组件213的长度方向的另一个侧面上同样间隔设有两个极耳2131,且两个侧面上的极耳2131分别一一对应设置。第二绝缘层217搭接于极耳2131的上方的端部,从而使第二绝缘层217与电芯组件213的主体间隔设置。
由于电芯组件213内装大量化学物质,如电解质,在充放电过程中会产生大量混合气体和液体等,伴随而来的还有不断积聚的压力,因此为防止电芯组件213内容易压力过大而发生爆炸,将第二绝缘层217与电芯组件213的主体间隔设置,有助于电芯组件213进行排气,从而防止由于高压气体无法及时排除而引起爆炸现象。
结合图8至图10所示,图10为本申请一实施方式的第二绝缘层217的结构示意图。在本申请的一实施方式中,导电片216上设有弯折部(图中未示出),第二绝缘层217上设有与弯折部相对应的插接孔2172,弯折部穿过插接孔2172与极耳2131相连。
具体地,与电芯组件213的顶面相对应的第二绝缘层217包括第二主体部2171。由于第二主体部2171设于极耳2131和导电片216之间,为了便于弯折部穿过第二绝缘层217后与极耳2131相连,从而通过极柱215进行外部供电,第二主体部2171上设有用于供导电片216的弯折部穿过的插接孔2172。其中,电芯组件213包括四个极耳2131,因此需要设置四个弯折部与极耳2131相连接。相应地,第二主体部2171上设有四个插接孔2172,且 四个插接孔2172分别与四个弯折部一一对应设置,四个弯折部分别穿过四个插接孔2172后与极耳2131相连接。
再结合图8至图10所示,在本申请的一实施方式中,第二绝缘层217上设有通孔2173,通孔2173与端盖212上的泄压件相连通。
具体地,泄压件为防爆阀。防爆阀设于端盖212上,并当电池单体21内的气压升高时,能够在高压气体的作用下爆破开启,从而排出电池单体21内的气体并进行泄压,防止电池单体21发生爆炸现象。
当电池单体21的内部压力升高时,产生的高压气体能够通过通孔2173作用于于泄压件,从而使泄压件爆破,进而将高压气体排出至电池单体21的外部,保证电池单体21使用的安全性和可靠性。
结合图4、图5和图8所示,在本申请的一实施方式中,绝缘层与电芯组件213相连,和/或,绝缘层与壳体211相连,和/或,绝缘层与导电片216相连,和/或,绝缘层固定于壳体211和电芯组件213之间,和/或,绝缘层固定于导电片216和电芯组件213之间。
具体地,结合图4和图5所示,电芯组件213的长度方向的两侧面分别对应设有一个第一绝缘层214,第一绝缘层214可以与电芯组件213的长度方向的侧面相连,或,第一绝缘层214可以与电芯组件214的长度方向的侧面对应的壳体211相连,或,当电芯组件213和第一绝缘层214安装于壳体211的内部后,通过电芯组件213和壳体211共同夹紧固定第一绝缘层214。结合图4和图8所示,电芯组件213的顶面对应设有一个第二绝缘层217,第二绝缘层217可以与电芯组件213顶面的极耳2131相连,或,第二绝缘层217可以与导电片216相连,或,当导电片216与极耳2131相连时,通过导电片216和极耳2131共同夹紧固定第二绝缘层217。
上述几种方式均能够将绝缘层对应设于电芯组件213的外部,从而通过绝缘层对电芯组件213进行防护,防止电芯组件213被电拉弧或电弧击穿,进而提高电池单体21使用的安全性和可靠性。
在本申请的一实施方式中,绝缘层的熔点大于250℃小于1000℃。
具体地,绝缘层的熔点即绝缘层由固态转为液态的温度。当绝缘层的温度达到250℃以上,绝缘层则会发生熔化变形,从而失去对电芯组件213的防护作用。而当绝缘层的温度小于等于250℃,则不会发生熔化变形,始终对电芯组件213起到防护作用。
将绝缘层的熔点设置为大于250℃小于1000℃,能够防止绝缘层在电拉弧或电弧的作用 下发生熔化,从而对电芯组件213进行有效的防护。
在本申请的一实施方式中,绝缘层包括聚酰亚胺层、酚醛塑料层、陶瓷层和聚四氟乙烯层中的至少一种。
上述几种材料层均具有绝缘性和一定耐热性,从而满足绝缘层的绝缘性和耐热性的要求。
在本申请的一实施方式中,绝缘层厚度尺寸为D,0.05mm<D<2mm,电池单体21的电压为V,200V/mm<V/D<40000V/mm。
具体地,绝缘层厚度尺寸为单个绝缘层的厚度尺寸。根据现有电池单体21的尺寸大小,绝缘层的厚度尺寸D一般选择大于0.05mm,小于2mm,从而能够满足绝缘层不会被电拉弧击穿,从而为电芯组件213提供防护作用。进一步地,绝缘层厚度尺寸还可以根据电池单体21的电压V进行选择,一般情况下,200V/mm<V/D<40000V/mm。
上述绝缘层的厚度范围,能够有效地防止在对应电压下产生的电拉弧或电弧击穿绝缘层,从而对电芯组件213进行防护。
在本申请的一实施方式中,绝缘层的总重量为电池单体21的总重量的0.1%~1%。其中,绝缘层的总重量是指电池单体21内的所有绝缘层的重量总和。
上述绝缘层的重量对应的尺寸面积,既能够防止电拉弧击穿绝缘层和电芯组件213,同时绝缘层又不会占据壳体211内的过多体积,从而满足电池单体21的小型化和轻型化的要求。
在本申请一实施方式中,电芯组件213为方体形结构,电芯组件213的长度方向的两侧面中的至少一个与壳体间设有绝缘层。
具体地,如图5所示,在本申请的一实施方式中,电芯组件213为方体形结构,电芯组件213的长度方向的两侧面分别对应设有第一绝缘层214。
在本申请一实施方式中,电芯组件213为方体形结构,电芯组件213的顶面设有绝缘层。
如图8所示,在本申请的一实施方式中,电芯组件213为方体形结构,电芯组件213的顶面对应设有第二绝缘层217。
在本申请一实施方式中,电芯组件213为方体形结构,电芯组件213的宽度方向的两侧面中的至少一个与壳体211设有绝缘层。
结合图11至图14所示,图11为本申请一实施方式的电芯组件213与第三绝缘层218的连接结构示意图;图12为本申请一实施方式的电芯组件213与第三绝缘层218的另一角度的连接结构示意图;图13为本申请一实施方式的第三绝缘层218的结构示意图。在本申 请的一实施方式中,电芯组件213的宽度方向的两侧面分别对应设有第三绝缘层218。具体地,第三绝缘层218包括第三主体部2181,第三主体部2181的顶部还设有间隔设置的第一凸部2182和第二凸部2183,其中,第三主体部2181与电芯组件213宽度方向的侧面对应设置,第一凸部2182和第二凸部2183分别与极耳2131对应设置,从而对电芯组件213的宽度方向的侧面进行全面的防护,防止电拉弧或电弧击穿电芯组件213的宽度方向的侧面,或者,电拉弧或者电弧通过极耳2131击穿电芯组件213的宽度方向的侧面。
在本申请一实施方式中,电芯组件213为方体形结构,电芯组件213的底面与壳体211间设有绝缘层
结合图14和图15所示,图14为本申请一实施方式的电芯组件213与第四绝缘层219的连接结构示意图;图15为本申请一实施方式的电芯组件213与第四绝缘层219的另一角度的连接结构示意图。在本申请的一实施方式中,电芯组件213的底面对应设有第四绝缘层219,通过第四绝缘层219对电芯组件213的底面进行防护,防止电拉弧或电弧击穿电芯组件213的底面。
本申请中的绝缘层可对应设于电芯组件213的任一个表面,或同时设于电芯组件213的多个表面或全部表面,从而对电芯组件213进行有效地防护,防止电芯组件213被电拉弧或电弧击穿。
在本申请的一实施方式中,绝缘层完全覆盖相对应的电芯组件213的表面。
具体地,如图5所示,第一绝缘层214与电芯组件213的长度方向的两侧面分别正对设置,且完全覆盖正对设置的电芯组件213的长度方向的两侧面,从而能够全面有效地防止电芯组件213的长度方向的两侧面被电拉弧或电弧击穿。
如图8所示,第二绝缘层217与电芯组件213的顶面正对设置,且完全覆盖电芯组件213的顶面,从而能够全面有效地防止电芯组件213的顶面被电拉弧或电弧击穿。
如图11所示,第三绝缘层218与电芯组件213的宽度方向的两侧面分别正对设置,且完全覆盖正对设置的电芯组件213的宽度方向的两侧面,从而能够全面有效地防止电芯组件213的宽度方向的两侧面被电拉弧或电弧击穿。
如图14所示,第四绝缘层219与电芯组件213的底面正对设置,且完全覆盖电芯组件213的底面,从而能够全面有效地防止电芯组件213的底面被电拉弧或电弧击穿。
通过将绝缘层完全覆盖正对设置的表面,能够全面有效地防止相应侧表面被电拉弧或电弧击穿。
第二方面,结合图2和图3所示,本申请提供了一种电池10,其具有上述实施方式中的电池单体21。
第三方面,结合图1和图2所示,本申请提供了一种用电设备,其具有上述任一实施方式的电池10,并且电池10用于为用电设备提供电能。
其中,用电设备可以是前述任一应用电池的设备或系统。
由于本申请中的电池和用电设备具有与上述实施方式中的电池单体相同的技术特征,能够达到相同的技术效果,在此不再进行赘述。
在本申请的一个实施方式中,结合图4和图15所示,电池单体21包括壳体211、端盖212、电芯组件213和绝缘层。壳体211的内部设有安装腔,电芯组件213设于安装腔。壳体211上设有与安装腔相连通的开口,端盖212盖设于开口处。电池单体21还包括极柱215,极柱215穿设于端盖212,极柱215通过导电片216与电芯组件213相连。其中,电芯组件213为方体形结构,电芯组件213的长度方向的两侧面分别与壳体211间设有第一绝缘层214,电芯组件213的顶面与导电片216间设有第二绝缘层217,电芯组件213的宽度方向的两侧面分别与壳体211间设有第三绝缘层218,电芯组件213的底面与壳体211间设有第四绝缘层219,且第一绝缘层214完全覆盖电芯组件213的长度方向的两侧面,第二绝缘层217完全覆盖电芯组件213的顶面,第三绝缘层218完全覆盖电芯组件213的宽度方向的两侧面,第四绝缘层219完全覆盖电芯组件213的底面。其中,第二绝缘层217设于导电片216与电芯组件213之间,且第二绝缘层217沿垂直于电芯组件213的极耳2131的方向搭接于极耳2131的端部。导电片216上设有弯折部,第二绝缘层上217设有与弯折部相对应的插接孔2172,弯折部穿过插接孔2172与极耳2131相连。第二绝缘层217上还设有通孔2173,通孔2173与端盖212上的泄压件相连通。其中,本实施方式中的第一绝缘层214、第二绝缘层217和第三绝缘层218分别于电芯组件213相连,第四绝缘层219与导电片216相连。第一绝缘层214、第二绝缘层217、第三绝缘层218和第四绝缘层219的熔点分别大于250℃小于1000℃。第一绝缘层214、第二绝缘层217、第三绝缘层218和第四绝缘层219分别包括聚酰亚胺层、酚醛塑料层、陶瓷层和聚四氟乙烯层中的至少一种。第一绝缘层214、第二绝缘层217、第三绝缘层218和第四绝缘层219的厚度尺寸分别为D,0.05mm<D<2mm,电池单体21的电压为V,且200V/mm<V/D<40000V/mm。第一绝缘层214、第二绝缘层217、第三绝缘层218和第四绝缘层219的总重量为电池单体21的总重量的0.1%~1%。
最后应说明的是:以上各实施方式仅用以说明本申请的技术方案,而非对其限制;尽管 参照前述各实施方式对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施方式所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施方式技术方案的范围,其均应涵盖在本申请的权利要求和说明书的范围当中。尤其是,只要不存在结构冲突,各个实施方式中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施方式,而是包括落入权利要求的范围内的所有技术方案。

Claims (22)

  1. 一种电池单体,其特征在于,包括:
    壳体,所述壳体的内部设有安装腔;
    电芯组件,所述电芯组件设于所述安装腔;
    绝缘层,至少部分所述电芯组件与所述壳体间设有所述绝缘层。
  2. 根据权利要求1所述的电池单体,其特征在于,所述电池单体还包括端盖,所述壳体上设有与所述安装腔相连通的开口,所述端盖盖设于所述开口处,至少部分所述电芯组件与所述端盖间设有所述绝缘层。
  3. 根据权利要求2所述的电池单体,其特征在于,所述电池单体还包括极柱,所述极柱穿设于所述端盖,所述极柱通过导电片与所述电芯组件相连,至少部分所述电芯组件与所述导电片间设有所述绝缘层。
  4. 根据权利要求3所述的电池单体,其特征在于,所述绝缘层沿垂直于所述电芯组件的极耳的方向搭接于所述极耳的端部。
  5. 根据权利要求4所述的电池单体,其特征在于,所述导电片上设有弯折部,所述绝缘层上设有插接孔,所述弯折部穿过所述插接孔与所述极耳相连。
  6. 根据权利要求3所述的电池单体,其特征在于,所述绝缘层上设有通孔,所述通孔与所述端盖上的泄压件相连通。
  7. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述绝缘层与所述电芯组件相连。
  8. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述绝缘层与所述壳体相连。
  9. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述绝缘层固定于所述壳体和所述电芯组件之间。
  10. 根据权利要求3至6中任一项所述的电池单体,其特征在于,所述绝缘层与所述导电片相连。
  11. 根据权利要求3至6中任一项所述的电池单体,其特征在于,所述绝缘层固定于所述导电片和所述电芯组件之间。
  12. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述绝缘层的熔点大于250℃小于1000℃。
  13. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述绝缘层包括聚酰亚胺层、酚醛塑料层、陶瓷层和聚四氟乙烯层中的至少一种。
  14. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述绝缘层厚度尺寸为D,0.05mm<D<2mm,所述电池单体的电压为V,200V/mm<V/D<40000V/mm。
  15. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述绝缘层的总重量为所述电池单体的总重量的0.1%~1%。
  16. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述电芯组件为方体形结构,所述电芯组件的长度方向的两侧面中的至少一个与所述壳体间设有所述绝缘层。
  17. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述电芯组件为方体形结构,所述电芯组件的宽度方向的两侧面中的至少一个与所述壳体间设有所述绝缘层。
  18. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述电芯组件为方体形结构,所述电芯组件的底面与所述壳体间设有所述绝缘层。
  19. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述电芯组件为方体形结构,所述电芯组件的顶面设有所述绝缘层。
  20. 根据权利要求1至6中任一项所述的电池单体,其特征在于,所述绝缘层完全覆盖相对应的所述电芯组件的表面。
  21. 一种电池,其特征在于,具有根据权利要求1至20中任一项所述的电池单体。
  22. 一种用电设备,其特征在于,具有根据权利要求21所述的电池。
PCT/CN2023/074107 2022-07-15 2023-02-01 电池单体、电池及用电设备 WO2024011892A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202221839791.3U CN218769817U (zh) 2022-07-15 2022-07-15 电池单体、电池及用电设备
CN202221839791.3 2022-07-15

Publications (1)

Publication Number Publication Date
WO2024011892A1 true WO2024011892A1 (zh) 2024-01-18

Family

ID=85690564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074107 WO2024011892A1 (zh) 2022-07-15 2023-02-01 电池单体、电池及用电设备

Country Status (2)

Country Link
CN (1) CN218769817U (zh)
WO (1) WO2024011892A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317457A (ja) * 2004-04-30 2005-11-10 Sanyo Electric Co Ltd パック電池
CN215266598U (zh) * 2021-07-30 2021-12-21 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN215989141U (zh) * 2021-05-27 2022-03-08 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN216750230U (zh) * 2022-01-07 2022-06-14 宁德时代新能源科技股份有限公司 一种电池单体、电池及用电装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005317457A (ja) * 2004-04-30 2005-11-10 Sanyo Electric Co Ltd パック電池
CN215989141U (zh) * 2021-05-27 2022-03-08 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN215266598U (zh) * 2021-07-30 2021-12-21 宁德时代新能源科技股份有限公司 电池单体、电池以及用电装置
CN216750230U (zh) * 2022-01-07 2022-06-14 宁德时代新能源科技股份有限公司 一种电池单体、电池及用电装置

Also Published As

Publication number Publication date
CN218769817U (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
CN214589171U (zh) 电池及用电装置
CN216872217U (zh) 电池单体、电池及用电装置
CN216213729U (zh) 电池单体、电池及用电设备
WO2024016451A1 (zh) 顶盖组件、电池单体、电池及用电设备
WO2023207402A1 (zh) 顶盖组件、电池单体、电池及用电设备
WO2023221598A1 (zh) 连接组件、电池单体、电池及用电设备
US20230420798A1 (en) Battery, electric apparatus, and method and apparatus for manufacturing battery
WO2023221583A1 (zh) 端盖组件、电池单体、电池及用电设备
WO2023160389A1 (zh) 电池壳体、电池单体、电池和用电设备
CN218586253U (zh) 电池单体、电池及用电装置
CN218586128U (zh) 电池单体、电池及用电装置
CN216872135U (zh) 电池及电池模组、电能设备
CN217740741U (zh) 电池单体、电池及用电设备
CN217768553U (zh) 电池端盖组件、电池单体、电池及用电装置
WO2024011892A1 (zh) 电池单体、电池及用电设备
CN217158573U (zh) 电池单体、电池及用电装置
CN218414891U (zh) 电池的箱体、电池、用电装置和制备电池的装置
KR101576597B1 (ko) 이차 전지 및 이를 포함하는 배터리 팩
WO2023133748A1 (zh) 电池模块、电池、用电设备、制备电池的方法和设备
CN115968515A (zh) 电池、用电设备、制备电池的方法和设备
WO2024040545A1 (zh) 顶盖组件、电池单体、电池及用电装置
CN220692426U (zh) 插座结构、电池箱、电池和用电装置
CN218586250U (zh) 底护板、箱体、电池包和用电设备
CN220138398U (zh) 一种动力电池包及车辆
CN220963648U (zh) 电池单体、电池及用电设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23838394

Country of ref document: EP

Kind code of ref document: A1