WO2024011534A1 - 电池模组尺寸确定方法、装置、电子设备及存储介质 - Google Patents

电池模组尺寸确定方法、装置、电子设备及存储介质 Download PDF

Info

Publication number
WO2024011534A1
WO2024011534A1 PCT/CN2022/105805 CN2022105805W WO2024011534A1 WO 2024011534 A1 WO2024011534 A1 WO 2024011534A1 CN 2022105805 W CN2022105805 W CN 2022105805W WO 2024011534 A1 WO2024011534 A1 WO 2024011534A1
Authority
WO
WIPO (PCT)
Prior art keywords
height
test
module
compensation
upper cover
Prior art date
Application number
PCT/CN2022/105805
Other languages
English (en)
French (fr)
Inventor
赵家声
连登伟
李扬虎
赵宾
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to PCT/CN2022/105805 priority Critical patent/WO2024011534A1/zh
Publication of WO2024011534A1 publication Critical patent/WO2024011534A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/30Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces

Definitions

  • the present application relates to the technical field of battery production and manufacturing, specifically, to a battery module size determination method, device, electronic equipment and storage medium.
  • a battery module can be understood as an intermediate product between a battery core and a battery pack (pack) formed by combining battery cells in series and/or parallel and adding a single battery monitoring and management device. Its structure can play a role in the battery core. Support, fixation and protection.
  • the process of measuring the size of the battery module needs to be advanced before installing the upper cover.
  • the full size of the battery module needs to be used.
  • the purpose of the embodiments of the present application is to provide a battery module size measurement method, device, electronic equipment and storage medium, so as to provide a method for obtaining the full size of the battery module based on the measured size of the module body.
  • inventions of the present application provide a method for determining the size of a battery module.
  • the battery module includes a module without a top cover and a module top cover.
  • the method includes: collecting the first height of the module without a top cover and the module cover. The second height of the upper cover; input the second height of the module upper cover into the height compensation model to obtain the compensation height output by the height compensation model; wherein, the height compensation model is pre-generated based on the test module; according to the first height and Compensate the height to obtain the target height of the battery module.
  • the embodiment of the present application calculates and obtains the compensation height after the module upper cover is installed on the upper coverless module by using the height compensation model, so that the target of the battery module can be obtained based on the first height and the compensation height of the upper coverless module. height, achieving the purpose of measuring the module without a top cover and obtaining the target height of the battery module.
  • obtaining the target height of the battery module based on the first height and the compensation height includes: generating a random error height; and obtaining the target height based on the first height, the compensation height, and the random error height.
  • the sum of the first height, the compensation height and the random error height may be determined as the target height.
  • the method further includes: obtaining the first test height of the test upper cover, the second test height of the test module with the cover, and the third test height of the test module without the upper cover; according to the first test height , the second test height and the third test height to construct a height compensation model.
  • the embodiment of the present application constructs a height compensation model in advance based on the first test height of the test upper cover, the second test height of the test module with the cover, and the third test height of the test module without the upper cover.
  • This height compensation model calculates the compensation height is obtained, and then the height of the module without a top cover can be compensated based on the compensation height to obtain the target height of the battery module.
  • constructing the height compensation model according to the first test height, the second test height and the third test height includes: determining the test compensation height according to the second test height and the third test height; Perform correlation analysis with the test compensation height. If there is a correlation between the first test height and the test compensation height, determine the correlation coefficient between the first test height and the test compensation height; according to the correlation coefficient, compare the first test height and the test compensation height. Perform regression analysis on the compensation height to obtain the height compensation model.
  • the embodiment of the present application performs a correlation analysis on the first test height and the test compensation height to determine whether there is a correlation between the first test height and the test compensation height. On the premise that there is correlation, the correlation between the two is calculated. coefficients, and then perform regression analysis based on the correlation coefficients to obtain a highly compensated model, which improves the efficiency of model construction.
  • performing a correlation analysis on the first test height and the test compensation height includes: calculating the covariance of the first test height and the test compensation height; analyzing whether there is a relationship between the first test height and the test compensation height based on the covariance. Be relevant.
  • the embodiment of the present application accurately determines whether there is correlation between the first test height and the test compensation height by calculating the covariance between the two.
  • determining the correlation coefficient between the first test height and the test compensation height includes: calculating the correlation coefficient between the first test height and the test compensation height according to the covariance.
  • the embodiment of the present application can calculate and obtain the correlation coefficient before the first test height and the test compensation height through covariance, so that the type of regression can be determined based on the correlation coefficient to improve the accuracy and efficiency of model construction.
  • performing a regression analysis on the first test height and the test compensation height according to the correlation coefficient includes: if the correlation coefficient represents a linear correlation between the first test height and the test compensation height, then using the least squares method to perform a regression analysis on the first test height and the test compensation height. A linear regression analysis is performed on the test height and the test compensation height.
  • Embodiments of the present application can improve the accuracy and efficiency of building the obtained model by first determining the correlation between the first test height and the test compensation height, and then determining the regression method based on the judgment results.
  • the production batches corresponding to the test upper cover, the test module with the cover, and the test module without the upper cover respectively are the same as the production batches of the module without the upper cover.
  • the embodiment of the present application constructs a height compensation model by using test modules from the same production batch as the upper cover-less module, thereby improving the accuracy of the compensation height calculation using the height compensation model, thereby improving the accuracy of the battery module. High degree of computational accuracy.
  • the first height of the module without a top cover is collected by the following method: collecting the measured heights from multiple position points on the upper surface of the module without a top cover in the height direction to the bottom of the module without a top cover, according to A plurality of measured heights determine the first height.
  • the embodiment of the present application improves the accuracy of measuring the height of the module without a top cover by collecting the measurement heights of multiple position points on the upper surface of the module without a top cover in the height direction.
  • collecting the measurement height from multiple position points on the upper surface of the upper surface of the upper cover module in the height direction to the bottom of the upper cover module includes: collecting multiple position points on the upper surface to the upper surface of the upper surface. Measured height of bottom of cover module.
  • the embodiment of the present application can improve the accuracy of measuring the height of the module without a top cover by collecting the measurement heights from multiple bar positions to the bottom of the module without a top cover.
  • collecting the measured height from multiple position points on the upper surface of the upper surface of the upper cover module in the height direction to the bottom of the upper cover module includes: collecting multiple rivet hole position points on the upper surface to the upper surface. Measured height of bottom of cover module.
  • the embodiment of the present application can improve the accuracy of height measurement of the module without an upper cover by collecting the measurement heights from multiple rivet position points to the bottom of the module without an upper cover.
  • determining the first height based on multiple measured heights includes: using a maximum value among the multiple measured heights as the first height, or using an average value of the multiple measured heights as the first height.
  • the maximum value of the measured height can be used as the first height according to actual needs, or the average value of the measured height can be used as the first height, which improves the height accuracy of the module without a top cover.
  • inventions of the present application provide a device for determining the size of a battery module.
  • the battery module includes a module without an upper cover and a module upper cover.
  • the device includes a height acquisition module for collecting the height of the module without an upper cover. The first height and the second height of the module upper cover; the height compensation module is used to input the second height into the height compensation model and obtain the compensation height output by the height compensation model; wherein the height compensation model is pre-generated based on the test module;
  • the size determination module is used to obtain the target height of the battery module based on the first height and the compensation height.
  • embodiments of the present application provide an electronic device, including: a processor, a memory, and a bus, wherein the processor and the memory complete communication with each other through the bus; the memory stores program instructions that can be executed by the processor, and the processing The device caller instruction can execute the method of the first aspect.
  • embodiments of the present application provide a non-transitory computer-readable storage medium, which includes: the non-transitory computer-readable storage medium stores computer instructions, and the computer instructions cause the computer to execute the method of the first aspect.
  • Figure 1 is a schematic structural diagram of a battery module
  • Figure 2 is a schematic flow chart of a method for determining the size of a battery module provided by an embodiment of the present application
  • Figure 3 is a schematic structural diagram of a module without a top cover provided by an embodiment of the present application.
  • Figure 4 is a schematic structural diagram of another module without a top cover provided by an embodiment of the present application.
  • Figure 5 is a schematic diagram of the height composition of a battery module provided by an embodiment of the present application.
  • Figure 6 is a schematic diagram of the actual height of a battery module according to an embodiment of the present application.
  • Figure 7 is a schematic structural diagram of a battery module size determination device provided by an embodiment of the present application.
  • FIG. 8 is a schematic diagram of the physical structure of an electronic device provided by an embodiment of the present application.
  • an embodiment means that a particular feature, structure or characteristic described in connection with the embodiment can be included in at least one embodiment of the present application.
  • the appearances of this phrase in various places in the specification are not necessarily all referring to the same embodiment, nor are separate or alternative embodiments mutually exclusive of other embodiments. Those skilled in the art understand, both explicitly and implicitly, that the embodiments described herein may be combined with other embodiments.
  • multiple refers to more than two (including two).
  • multiple groups refers to two or more groups (including two groups), and “multiple pieces” refers to It is more than two pieces (including two pieces).
  • FIG. 1 is a schematic structural diagram of a battery module.
  • the battery module mainly includes cells and a module frame.
  • the module frame includes a module upper cover, side plates, end plates and bottom plates. It can be understood that the shape and structure of the battery module in Figure 1 are just examples.
  • the main functions of the module frame are: (1) Provide frame protection and mechanical strength guarantee for the battery core group; (2) Provide the connection interface between the module and other structural parts; (3) Implement the installation and fixation of the module and pack ; (4) Usually contains the functions of end protection, side protection and bottom protection. It can also be seen from Figure 1 that the upper cover of the module has a certain height. Therefore, the height of the module without a top cover is different from that of the battery module. If the measured height of the module without a top cover is used as the height of the battery module height, it will cause the problem of inaccurate height of the battery module. Furthermore, there is currently no method to determine the height of the battery module by measuring the height of the module without a top cover.
  • the inventor of the present application discovered after long-term research that there is a correlation between the height difference between the battery module and the module without a top cover and the height of the top cover itself. Therefore, a height compensation is constructed based on this correlation. model, and use the height compensation model to calculate and obtain the corresponding compensation height of the module upper cover, and then obtain the target height of the battery module.
  • the embodiments of the present application can be applied to the height measurement calculation of all battery modules with covers, in addition. It can also be used in scenarios where the battery module is measured and the overall height of the battery module is calculated before installing the base plate. It can also be used to measure the battery module before installing the side panel and calculate the overall width of the battery module. It can also be used to measure the battery module before installing the end plate and calculate the overall length and size of the battery module.
  • FIG. 2 is a schematic flow chart of a method for determining the size of a battery module provided by an embodiment of the present application.
  • the battery module includes a module without a top cover and a module top cover.
  • This method can be applied to electronic equipment, and the electronic equipment can be a terminal and a server; the terminal equipment can be a smartphone, a tablet, a computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.; the server can be an application server, Can also be a web server.
  • the execution subject is a terminal
  • the terminal can be understood as a battery module size measuring device, which is provided in the battery module production device, or can be a device integrated with the battery module production device.
  • the execution subject is a server, the server can communicate with the battery module production device.
  • the method includes the following steps:
  • Step 201 Collect the first height of the module without upper cover and the second height of the upper cover of the module;
  • Step 202 Input the second height into the height compensation model to obtain the compensation height output by the height compensation model; wherein the height compensation model is pre-generated based on the test module;
  • Step 203 After obtaining the compensation height, obtain the target height of the battery module based on the first height and the compensation height.
  • the module without a top cover refers to the module body without a module top cover installed in the battery module production process.
  • the side plates, bottom plates, end plates, and internal cells It constitutes a module without a top cover.
  • the module upper cover is also shown in Figure 1. In the actual production process, the module upper cover is produced separately, and after completion of production, it is installed on the module body.
  • the battery module size measurement device includes an image collector, and the image collector includes a CCD camera for collecting the first image of the module without a top cover. and the second image of the upper cover of the acquisition module.
  • the first height of the module without a top cover can be obtained through the first image
  • the second image of the module's upper cover can be obtained through the second image.
  • the CCD camera can be calibrated in advance, that is, the actual physical size corresponding to one pixel in the image collected by the CCD camera is determined.
  • the corresponding acquisition parameters of the CCD camera during the calibration process are used to collect images of the module without a top cover, and the first height is determined based on the number of pixels occupied by the module in the height direction of the first image.
  • the second height of the upper cover of the module can be collected and obtained using the above method, which is not specifically limited in the embodiments of the present application.
  • the server receives the first height of the module without a top cover and the second height of the module top cover sent by the battery module production device.
  • the battery module production device is equipped with an image collector, which can also be a CCD camera. It can be understood that the method for the battery module production device to obtain the first height of the module without a top cover and the second height of the module top cover is as described in the above embodiments and will not be described again here.
  • the height compensation model is constructed in advance based on the test module, where the test module includes a test upper cover, a test module with a cover, and a test module without an upper cover.
  • the height compensation model it is generated based on the test height of the test upper cover and the test compensation height between the test module with the cover and the test module without the upper cover.
  • the test compensation height can be the difference between the test module with a cover and the test module without a cover. Analyze the correlation between multiple test compensation heights and the test height of the test upper cover, and build a height compensation model based on the correlation.
  • the terminal or server After obtaining the second height, the terminal or server inputs the second height into the height compensation model.
  • the height compensation model performs calculations based on the second height and outputs the compensation height.
  • the compensation height refers to the height difference between the coverless module and the battery module. What is calculated through the height compensation model is the common height difference obtained through statistics of multiple test modules. Compared with using only the difference between one battery module and a module without a top cover, the compensation height calculated by the height compensation model in the embodiment of the present application is more accurate.
  • the target height of the battery module can be obtained based on the first height and the compensation height.
  • the sum of the first height and the compensation height can be used as the target height.
  • the embodiment of the present application calculates and obtains the compensation height after the module upper cover is installed on the upper coverless module by using the height compensation model, so that the target of the battery module can be obtained based on the first height and the compensation height of the upper coverless module. height, achieving the purpose of measuring the module without a top cover and obtaining the target height of the battery module.
  • a random error height may be generated, and the target height may be obtained based on the first height, the compensation height, and the random error height.
  • the image collector collects the first height of the module without upper cover and the third height of the module upper cover.
  • the second height due to the equipment error of the image collector, there may be a certain error between the first height and the second height obtained.
  • the slight deformation that occurs during assembly and the equipment of the image collector can be used to eliminate this error.
  • the error determines the value range of the random error height. For example: before mass production, the height compensation model can be used to calculate the compensation height, then determine the target height of the battery module, and then measure the actual height of the assembled battery module to determine the difference between the calculated target coverage and the actual height.
  • the maximum error range between is the value range of the random error height. It can be understood that the value range of the random error height is an interval, for example, it can be [-1.5mm, 1.5mm], or it can also be other numerical ranges, which is not specifically limited in the embodiment of the present application. It can be seen that the random error height may be a positive number, a negative number, or 0.
  • a random number generator When generating a random error height, a random number generator can be used to randomly generate a random error height within the above value range.
  • the target height can be determined based on the first height, the compensation height and the random error height.
  • the slight deformation of the upper cover during assembly to the module without an upper cover is taken into account.
  • a random error height is added, thereby improving the accuracy of the target height calculation. accuracy.
  • the sum of the first height, the compensation height and the random error height is determined as the target height.
  • the terminal or server calculates the sum of the first height, the compensation height and the random error height, and uses the calculated result as the target height corresponding to the battery module.
  • embodiments of the present application also provide a method for building a height compensation model, which method includes:
  • a height compensation model is constructed based on the first test height, the second test height and the third test height.
  • a batch of test modules can be pre-produced, including test upper cover and no upper cover test modules, and the first test height of the test upper cover and the test module without upper cover can be measured.
  • the third test height of the upper cover test module Then, assemble the test upper cover into the test module without an upper cover to obtain a test module with a cover, and measure the second test height of the test module with a cover.
  • the first test height, the second test height and the third test height are all actual physical dimensions, and the measurement methods of the first test height, the second test height and the third test height can adopt the above embodiment.
  • the measurement method of the first height and the second height can also use other measurement tools, such as: three-dimensional coordinate measuring instrument, three-dimensional laser scanning system, etc.
  • the embodiments of this application do not specifically limit the measurement methods of the first test height, the second test height, and the third test height.
  • the camera, three-dimensional coordinate measuring instrument, and three-dimensional laser scanning system that come with the terminal can be used to test the upper cover, the test module without the upper cover, and the test module with the cover respectively. Measure the corresponding height.
  • the execution subject is a server
  • it can use the camera, three-dimensional coordinate measuring instrument, and three-dimensional laser scanning system installed in the battery module production device to test the upper cover, the test module without the upper cover, and the test module with the cover respectively.
  • the corresponding height is measured, and the measured first test height, second test height and third test height are sent to the server.
  • multiple test covers and multiple cover-less test modules can be obtained for measurement, so that multiple first test heights, multiple second test heights and multiple third test heights can be obtained. Three test heights.
  • the terminal or server can analyze the first test height, the second test height and the third test height to build a height compensation model. It can be understood that one test cover corresponds to a coverless module. After the test cover is assembled to the coverless module, the corresponding battery module is obtained. Therefore, there is a one-to-one correspondence between the first test height, the second test height and the third test height.
  • the embodiment of the present application constructs a height compensation model in advance based on the first test height of the test upper cover, the second test height of the test module with the cover, and the third test height of the test module without the upper cover.
  • This height compensation model calculates the compensation height is obtained, and then the height of the module without a top cover can be compensated based on the compensation height to obtain the target height of the battery module.
  • the height compensation model can be constructed through the following method steps:
  • the difference between the second test height and the third test height is used as the test compensation height.
  • the first test height, the second test height and the third test height are in one-to-one correspondence, the first measurement height and the test compensation height are also in one-to-one correspondence, and multiple first test heights with corresponding relationships are used. Correlation analysis is performed on the test height and the test compensation height to determine whether there is a correlation between the first test height and the test compensation height.
  • the purpose of determining whether there is a correlation between the first test height and the test compensation height is to determine whether there is a certain pattern between the two, so as to determine whether the height compensation model can be continued to be constructed. If the two are correlated, it means that the height compensation model can be continued to be constructed; on the contrary, if the two are not correlated, it means that there is a problem with the research direction of the inventor of the present application and the height compensation model cannot be continued to be constructed. Therefore, when building a height compensation model, first determine whether there is a correlation between the first test height and the test compensation height, so as to determine whether the current research and development direction is correct and avoid doing a lot of useless work.
  • the correlation coefficient between the first test height and the test compensation height is further determined. It can be understood that the purpose of determining the correlation coefficient between the first test height and the test compensation height is to determine which regression method to use for regression analysis in subsequent steps. For example: If the correlation coefficient between the first test height and the test compensation height is 1, it means that the two are linearly related, and the linear regression method can be used for regression.
  • a corresponding regression method can be selected based on the correlation coefficient, and a regression analysis can be performed on the first test height and the test compensation height to obtain a height compensation model.
  • regression methods include: linear regression, logistic regression, polynomial regression, stepwise regression, ridge regression, lasso regression and Elastic Net regression.
  • the specific regression analysis method can be determined based on the correlation coefficient.
  • the embodiment of the present application performs a correlation analysis on the first test height and the test compensation height to determine whether there is a correlation between the first test height and the test compensation height. On the premise that there is correlation, the correlation between the two is calculated. coefficients, and then perform regression analysis based on the correlation coefficients to obtain a highly compensated model, which improves the efficiency of model construction.
  • correlation analysis can be performed on the first test height and the test compensation height through the following method:
  • covariance is used to measure the overall error of two variables (i.e., the first test height and the test compensation height).
  • the formula for calculating covariance is as follows:
  • X is the first test height
  • Y is the test compensation height
  • COV(X,Y) is the covariance of the first test height and the test compensation height
  • E[XY] is the expected value of the first test height and the test compensation height
  • E(X) is the expected value of the first test height
  • E(Y) is the expected value of the test compensation height.
  • the embodiment of the present application accurately determines whether there is correlation between the first test height and the test compensation height by calculating the covariance between the two.
  • the correlation coefficient between the first test height and the test compensation height can be calculated by the following method:
  • covariance as a quantity that describes the degree of correlation between the first test height and the test compensation height, plays a certain role under the same physical dimension, but the same two quantities adopt different dimensions so that their covariance The variance exhibits large differences in values. Therefore, the correlation coefficient between the first test height and the test compensation height can be calculated through covariance.
  • the specific formula is as follows:
  • ⁇ XY is the correlation coefficient between the first test height and the test compensation height
  • E[XY] is the expected value of the first test height and the test compensation height
  • E(X) is the expected value of the first test height
  • E(Y) Expected value for height compensation for testing.
  • the correlation coefficient ⁇ XY is a statistical index that reflects the close relationship between the first test height and the test compensation height.
  • the correlation coefficient ranges from 1 to -1. 1 means that the two variables are linearly related, -1 means that the two variables are completely negatively related, and 0 means that the two variables are not related. At this time, the calculated correlation coefficient is close to 1, which can be approximately equivalent to a linear correlation.
  • the linear regression method can be used to calculate The first test height and the test compensation height are subjected to regression analysis to obtain a height compensation model.
  • the embodiment of the present application can calculate and obtain the correlation coefficient before the first test height and the test compensation height through covariance, so that the type of regression can be determined based on the correlation coefficient to improve the accuracy and efficiency of model construction.
  • a regression analysis is performed on the first test height and the test compensation height according to the correlation coefficient, including:
  • the correlation coefficient represents a linear correlation between the first test height and the test compensation height
  • the linear correlation relationship means that the change trend between the first test height and the test compensation height is the same, and the correlation coefficient between the two is 1.
  • the embodiment of the present application can use the least squares method to perform linear regression analysis on the first test height and the test compensation height to obtain a height compensation model.
  • the least squares method also known as the least squares method, finds the best function matching of the data by minimizing the sum of squares of the errors.
  • the least squares method can be used to easily obtain unknown data, and minimize the sum of square errors between the obtained data and the actual data. Therefore, the least squares method can be used for curve fitting.
  • the corresponding function of the height compensation model obtained by the least squares method is:
  • k represents the deformation amount of the test upper cover caused by assembly after the rivet holes are installed
  • b represents the gap between the test upper cover and the upper cover-less module after the test upper cover is installed on the upper cover-less module.
  • Height offset caused by assembly, k and b are obtained by fitting multiple first test heights and test compensation heights through the least square method
  • x represents the height of the test upper cover
  • f(x) is the calculated compensation height .
  • Embodiments of the present application can improve the accuracy and efficiency of building the obtained model by first determining the correlation between the first test height and the test compensation height, and then determining the regression method based on the judgment results.
  • the constructed height compensation model in order to ensure that the constructed height compensation model can accurately output the compensation height of the module without a top cover, when constructing the height compensation model, the same test height as the production batch of the module without a top cover is selected. Cover, test module with cover and test module without cover.
  • battery modules are produced according to project batches.
  • the battery modules of a project can be produced in one batch or divided into multiple batches.
  • Module top covers and modules without top covers belonging to the same batch can be considered to have the same corresponding dimensions.
  • Different projects and different production batches produce module upper covers and modules without upper covers with different corresponding heights. Therefore, in order to ensure that the constructed height compensation model can accurately output the compensation height of the module without a top cover, for each batch of battery modules, the batch of battery modules can be sampled before mass production. corresponding test upper cover and test module without upper cover, and measure the first test height corresponding to the upper cover and the third test height of the test module without upper cover, and install the upper cover to the test module without upper cover. The second test height of the covered test module obtained after assembly. Then the height corresponding to the batch is compensated for the model based on the first test height, the second test height and the third test height.
  • the embodiment of the present application constructs a height compensation model by using test modules from the same production batch as the upper cover-less module, thereby improving the accuracy of the compensation height calculation using the height compensation model, thereby improving the accuracy of the battery module. High degree of computational accuracy.
  • the first height of the module without a top cover can be collected in the following ways:
  • the upper surface of the module without a top cover in the height direction may not be completely flat, it may be uneven. If you randomly select a position point on the upper surface of the module without a top cover and measure the height from that point to the bottom of the module without a top cover, the error may be large and cannot reflect the true height of the module without a top cover. Therefore, in order to obtain the accurate height of the module without a top cover, you can select multiple position points on the upper surface of the module without a top cover, and measure the heights from the multiple position points to the bottom of the module without a top cover respectively. This allows multiple measurement heights to be obtained. Combine multiple measured heights to determine the first height of the module without a top cover.
  • the embodiment of the present application improves the accuracy of measuring the height of the module without a top cover by collecting the measurement heights of multiple position points on the upper surface of the module without a top cover in the height direction.
  • the measured height from multiple position points on the upper surface of the upper coverless module in the height direction to the bottom of the upper coverless module can be collected in the following manner:
  • Figure 3 is a schematic structural diagram of a module without a top cover provided by an embodiment of the present application.
  • bars are provided at multiple positions on the upper surface of the module without a top cover.
  • the ba piece is also called a bus part or a bus component, and is used to realize the electrical connection between battery cells.
  • the buckle can be placed on top of the battery cell and welded to the electrode terminals of the battery cell. Normally, one buckle can be connected to two battery cells.
  • the position of the bar on the upper surface of the module without a top cover can be used as the position point for collection, and the height from the position of the bar to the bottom of the module without a top cover can be measured.
  • a three-dimensional laser scanning system can be used to perform laser marking on the patch position to obtain the measurement height.
  • the embodiment of the present application can improve the accuracy of measuring the height of the module without a top cover by collecting the measurement heights from multiple bar positions to the bottom of the module without a top cover.
  • the measurement height from multiple position points on the upper surface of the upper surface of the upper coverless module in the height direction to the bottom of the upper coverless module can be collected in the following manner:
  • FIG 4 is a schematic structural diagram of another module without a top cover provided by an embodiment of the present application.
  • the module when opening rivet holes, slight deformation may occur on the upper surface of the module without a top cover. Therefore, the module can be The location of the rivet hole serves as the collection point. Collect the measured height from multiple rivet hole locations on the upper surface to the bottom of the module without upper cover.
  • a three-dimensional laser scanning system can be used to perform laser marking at the location of the rivet holes to obtain the measurement height.
  • the embodiment of the present application can improve the accuracy of height measurement of the module without an upper cover by collecting the measurement heights from multiple rivet position points to the bottom of the module without an upper cover.
  • the maximum value among the multiple measured heights may be used as the first height, or the average value of the multiple measured heights may be used as the first height.
  • the method of determining the first height can be selected according to the specific situation.
  • the maximum value of the measured height can be used as the first height according to actual needs, or the average value of the measured height can be used as the first height, which improves the height accuracy of the module without a top cover.
  • the embodiment of this application provides another method for determining the size of a battery module. Its application scenarios include but are not limited to the following two:
  • Scenario 1 Combined battery module size measurement and battery module electrical performance testing. Two completely independent test stations are combined into one test equipment, which saves the layout space of the test equipment and reduces equipment costs. Because the battery module size measurement is advanced to the electrical performance test station, the module is not installed with a top cover at this time; by testing the height of the module without a top cover, the overall height of the battery module is obtained using the top cover compensation algorithm; battery Module size measurement has no impact on other test items except the height size; after completing the full-size test, it flows to the next station for on-off testing.
  • Scenario 2 When performing a continuity test on the battery module, the battery module has not yet installed the upper cover, and the upper cover is installed after the continuity test; the embodiment of this application combines the full-size measurement of the battery module with the continuity test, or The full-size, electrical performance, and continuity tests are all combined and measured by one test equipment, saving equipment layout space and reducing equipment costs; the full-size test is advanced, and the module is in a state where the upper cover is not installed; there is no need to pass the test.
  • the upper cover compensation algorithm For the height of the upper cover module, use the upper cover compensation algorithm to obtain the overall height of the module; the full-size test has no impact on other test items except the height size; complete the full-size test, flow into the next station to install the upper cover, and the module is finally inspected Wire.
  • FIG. 5 is a schematic diagram of the height composition of a battery module provided by an embodiment of the present application.
  • the height of the bottom insulating film is H1
  • the height of the battery core is H2
  • the height of the sheet is H3
  • the plane height of the upper cover itself is H4.
  • the height measurement compensation method for the module without a top cover mainly includes the following steps:
  • Step 1 Measure the height from the bottom of the test module without upper cover to the upper surface, recorded as x1;
  • Step 2 Measure the height of the test cover itself, recorded as x2;
  • Step 3 Measure the height of the test module with the cover, record it as x3;
  • Step 4 Make the difference between the height of the test module with the cover and the height of the test module without the cover, that is, x3-x2, recorded as x4;
  • Figure 6 is a schematic diagram of the true height of the battery module provided in the embodiment of the present application. ,As shown in Figure 6;
  • Step 5 Do relevant analysis on the height x2 of the test cover itself and the height difference x4 of the test module with the cover and the test module without the cover, and calculate the covariance;
  • Step 6 Calculate the correlation coefficient of the two variables x2 and x4;
  • Step 7 Perform regression analysis on x2 and x4 to determine the quantitative relationship between the dependent variable (x4) and the independent variable (x2);
  • Step 9 Substitute the measured second height of the module upper cover into the above function to calculate the compensation height of the module without upper cover;
  • Step 10 Obtain the target height of the battery module obtained by installing the upper module cover of the upper cover-less module based on the first height and the compensation height of the upper cover-less module.
  • FIG. 7 is a schematic structural diagram of a device for determining the size of a battery module provided by an embodiment of the present application.
  • the device may be a module, program segment or code on an electronic device. It should be understood that this device corresponds to the above-mentioned method embodiment in Figure 2 and can perform various steps involved in the method embodiment in Figure 2. For the specific functions of this device, please refer to the above description. To avoid repetition, the detailed description is appropriately omitted here.
  • the device includes: height acquisition module 701, height compensation module 702 and size determination module 703, wherein:
  • the height acquisition module 701 is used to collect the first height of the module without upper cover and the second height of the module upper cover; the height compensation module 702 is used to input the second height into the height compensation model to obtain the compensation height output by the height compensation model;
  • the height compensation model is pre-generated based on the test module; the size determination module 703 is used to obtain the target height of the battery module based on the first height and the compensation height.
  • the size determination module 703 is specifically used to:
  • Generate a random error height obtain the target height based on the first height, compensation height and random error height.
  • the size determination module 703 is specifically used to:
  • the sum of the first height, the compensation height and the random error height is determined as the target height.
  • the device also includes a model building module for:
  • a height compensation model is constructed based on the first test height, the second test height and the third test height.
  • model building module is specifically used to:
  • this model building module is specifically used to:
  • this model building module is specifically used to:
  • this model building module is specifically used to:
  • the correlation coefficient represents a linear correlation between the first test height and the test compensation height
  • the production batches corresponding to the test upper cover, the test module with a cover, and the test module without an upper cover are the same as the production batches of the module without an upper cover.
  • the height collection module 701 is specifically used to:
  • the height collection module 701 is specifically used to:
  • the height collection module 701 is specifically used to:
  • the height collection module 701 is specifically used to:
  • the maximum value among multiple measured heights is used as the first height, or the average value of multiple measured heights is used as the first height.
  • FIG 8 is a schematic diagram of the physical structure of an electronic device provided by an embodiment of the present application.
  • the electronic device includes: a processor (processor) 801, a memory (memory) 802 and a bus 803; wherein,
  • the processor 801 and the memory 802 complete communication with each other through the bus 803;
  • the processor 801 is used to call the program instructions in the memory 802 to execute the methods provided by the above method embodiments, for example, including: collecting the first height of the module without a top cover and the second height of the module top cover. height; input the second height into the height compensation model to obtain the compensation height output by the height compensation model; where the height compensation model is pre-generated based on the test module; obtain the target height of the battery module based on the first height and the compensation height.
  • the processor 801 may be an integrated circuit chip with signal processing capabilities.
  • the above-mentioned processor 801 can be a general-purpose processor, including a central processing unit (CPU), a network processor (Network Processor, NP), etc.; it can also be a digital signal processor (DSP) or an application-specific integrated circuit (ASIC) , field programmable gate array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components. It can implement or execute various methods, steps and logical block diagrams disclosed in the embodiments of this application.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor, etc.
  • Memory 802 may include, but is not limited to, random access memory (Random Access Memory, RAM), read only memory (Read Only Memory, ROM), programmable read only memory (Programmable Read-Only Memory, PROM), erasable read-only memory Memory (Erasable Programmable Read-Only Memory, EPROM), electrically erasable read-only memory (Electrically Erasable Programmable Read-Only Memory, EEPROM), etc.
  • RAM Random Access Memory
  • ROM read only memory
  • PROM programmable read only memory
  • PROM Programmable Read-Only Memory
  • EPROM Erasable Programmable Read-Only Memory
  • EEPROM Electrically Erasable Programmable Read-Only Memory
  • the computer program product includes a computer program stored on a non-transitory computer-readable storage medium.
  • the computer program includes program instructions.
  • the program instructions When the program instructions are executed by a computer, the computer
  • the methods provided by the above method embodiments can be executed, for example, including: collecting the first height of the module without a top cover and the second height of the module top cover; inputting the second height into the height compensation model to obtain the height compensation model output Compensation height; wherein, the height compensation model is pre-generated based on the test module; the target height of the battery module is obtained based on the first height and the compensation height.
  • This embodiment provides a non-transitory computer-readable storage medium.
  • the non-transitory computer-readable storage medium stores computer instructions.
  • the computer instructions cause the computer to execute the methods provided by the above method embodiments, for example, including : Collect the first height of the module without upper cover and the second height of the module upper cover; input the second height into the height compensation model to obtain the compensation height output by the height compensation model; among which, the height compensation model is pre-set based on the test module Generate; obtain the target height of the battery module based on the first height and the compensation height.
  • the disclosed devices and methods can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components may be combined or can be integrated into another system, or some features can be ignored, or not implemented.
  • the coupling or direct coupling or communication connection between each other shown or discussed may be through some communication interfaces, and the indirect coupling or communication connection of the devices or units may be in electrical, mechanical or other forms.
  • units described as separate components may or may not be physically separated, and components shown as units may or may not be physical units, that is, they may be located in one place, or they may be distributed to multiple network units. Some or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional module in each embodiment of the present application can be integrated together to form an independent part, each module can exist alone, or two or more modules can be integrated to form an independent part.
  • relational terms such as first, second, etc. are used merely to distinguish one entity or operation from another entity or operation and do not necessarily require or imply the existence of any such entity or operation between these entities or operations. Actual relationship or sequence.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种电池模组尺寸确定方法、装置、电子设备及存储介质。该方法包括:采集电池模组的无上盖模组的第一高度和电池模组的模组上盖的第二高度(201);将模组上盖的第二高度输入高度补偿模型,获得高度补偿模型输出的补偿高度(202);其中,该高度补偿模型为根据测试模组预先生成的;根据第一高度和补偿高度获得电池模组的目标高度(203)。该方法通过利用高度补偿模型计算获得将模组上盖安装到无上盖模组上后的补偿高度,从而可以根据无上盖模组的第一高度和补偿高度获得电池模组的目标高度,实现了对无上盖模组进行测量,获得电池模组的目标高度的目的。

Description

电池模组尺寸确定方法、装置、电子设备及存储介质 技术领域
本申请涉及电池生产制造技术领域,具体而言,涉及一种电池模组尺寸确定方法、装置、电子设备及存储介质。
背景技术
电池模组可以理解为电芯经串联和/或并联的方式组合,加装单体电池监控与管理装置后形成的电芯与电池包(pack)的中间产品,其结构能够对电芯起到支撑、固定和保护作用。
由于生产工艺流程的优化,需要将对电池模组尺寸测量的工序提前到在安装上盖之前。但是,在后续生产工序中,需要使用电池模组的全尺寸,目前并没有根据模组本体的测量尺寸获得电池模组全尺寸的方法。
发明内容
本申请实施例的目的在于提供一种电池模组尺寸测量方法、装置、电子设备及存储介质,用以提供根据模组本体的测量尺寸获得电池模组全尺寸的方法。
第一方面,本申请实施例提供一种电池模组尺寸确定方法,电池模组包括无上盖模组以及模组上盖,该方法包括:采集无上盖模组的第一高度和模组上盖的第二高度;将模组上盖的第二高度输入高度补偿模型,获得高度补偿模型输出的补偿高度;其中,该高度补偿模型为根据测试模组预先生成的;根据第一高度和补偿高度获得电池模组的目标高度。
本申请实施例通过利用高度补偿模型计算获得将模组上盖安装到无上盖模组上后的补偿高度,从而可以根据无上盖模组的第一高度和补偿高度获得电池模组的目标高度,实现了对无上盖模组进行测量,获得电池模组的目标高度的目的。
在任一实施例中,根据第一高度和补偿高度获得电池模组的目标高度,包括:生成随机误差高度;根据第一高度、补偿高度和随机误差高度获得目标高度。
本申请实施例中,考虑了上盖在装配到无上盖模组过程中产生了细微形变,在根据第一高度和补偿高度确定目标高度时,加入随机误差高度,从而提高了目标高度计算的准确性。
在任一实施例中,在具体确定目标高度时,可以将第一高度、补偿高度和随机误差高度之和确定为目标高度。
本申请实施例中,考虑了上盖在装配到无上盖模组过程中产生了细微形变,在根据第一高度和补偿高度确定目标高度时,加入随机误差高度,从而提高了目标高度计算的准确性。
在任一实施例中,该方法还包括:获取测试上盖的第一测试高度、带上盖测试模组的第二测试高度和无上盖测试模组的第三测试高度;根据第一测试高度、第二测试高度和第三测试高度构建高度补偿模型。
本申请实施例预先根据测试上盖的第一测试高度、带上盖测试模组的第二测试高度和无上盖测试模组的第三测试高度构建高度补偿模型,通过该高度补偿模型可以计算获得补偿高度,进而根据补偿高度可以对无上盖模组的高度补偿,获得电池模组的目标高度。
在任一实施例中,根据第一测试高度、第二测试高度和第三测试高度构建所述高度补偿模型,包括:根据第二测试高度和第三测试高度确定测试补偿高度;对第一测试高度和测试补偿高度进行相关性分析,若第一测试高度和测试补偿高度之间具备相关性,则确定第一测试高度和测试补偿高度之间的相关系数;根据相关系数对第一测试高度和测试补偿高度进行回归分析,获得高度补偿模型。
本申请实施例对第一测试高度和测试补偿高度进行相关性分析,从而判断第一测试高度和测试补偿高度之间是否具备相关性,在具备相关性的前提下,计算二者之间的相关系数,进而根据 相关系数进行回归分析,获得高度补偿模型,提高了模型构建的效率。
在任一实施例中,对第一测试高度和测试补偿高度进行相关性分析,包括:计算第一测试高度和测试补偿高度的协方差;根据协方差分析第一测试高度和测试补偿高度之间是否具备相关性。
本申请实施例通过计算第一测试高度和测试补偿高度之间的协方差来准确地判断二者之间是否具备相关性。
在任一实施例中,确定第一测试高度和测试补偿高度之间的相关系数,包括:根据协方差计算第一测试高度和测试补偿高度之间的相关系数。
本申请实施例通过协方差可以计算获得第一测试高度和测试补偿高度之前的相关系数,从而可以根据相关系数确定回归的类型,以提高模型构建的准确性及效率。
在任一实施例中,根据相关系数对第一测试高度和测试补偿高度进行回归分析,包括:若相关系数表征第一测试高度和测试补偿高度之间为线性相关关系,则利用最小二乘法对第一测试高度和测试补偿高度进行线性回归分析。
本申请实施例通过先判断第一测试高度与测试补偿高度之间的相关关系,再根据判断结果确定回归方法,可以提高构建获得的模型的准确性及效率。
在任一实施例中,测试上盖、带上盖测试模组和无上盖测试模组分别对应的生产批次与无上盖模组的生产批次相同。
本申请实施例通过采用与无上盖模组相同生产批次的测试模组进行高度补偿模型的构建,从而提高了利用高度补偿模型进行补偿高度计算的准确性,进而提高了对电池模组的高度计算的准确性。
在任一实施例中,通过如下方法采集无上盖模组的第一高度:采集无上盖模组在高度方向上的上表面中多个位置点到无上盖模组底部的测量高度,根据多个测量高度确定第一高度。
本申请实施例通过采集无上盖模组在高度方向上的上表面中多个位置点的测量高度,提高了对无上盖模组高度测量的准确性。
在任一实施例中,采集无上盖模组在高度方向上的上表面中多个位置点到无上盖模组底部的测量高度,包括:采集上表面中多个巴片位置点到无上盖模组底部的测量高度。
本申请实施例通过采集多个巴片位置到无上盖模组底部的测量高度,可以提高对无上盖模组高度测量的准确性。
在任一实施例中,采集无上盖模组在高度方向上的上表面中多个位置点到无上盖模组底部的测量高度,包括:采集上表面中多个铆钉孔位置点到无上盖模组底部的测量高度。
本申请实施例通过采集多个铆钉位置点到无上盖模组底部的测量高度,可以提高对无上盖模组高度测量的准确性。
在任一实施例中,根据多个测量高度确定第一高度,包括:将多个测量高度中的最大值作为第一高度,或将多个测量高度的平均值作为第一高度。
本申请实施例根据实际需求可以将测量高度的最大值作为第一高度,或将测量高度的平均值作为第一高度,提高了无上盖模组的高度的准确性。
第二方面,本申请实施例提供一种电池模组尺寸确定装置,电池模组包括无上盖模组以及模组上盖,该装置包括:高度采集模块,用于采集无上盖模组的第一高度和模组上盖的第二高度;高度补偿模块,用于将第二高度输入高度补偿模型,获得高度补偿模型输出的补偿高度;其中,高度补偿模型为根据测试模组预先生成;尺寸确定模块,用于根据第一高度和补偿高度获得电池模组的目标高度。
第三方面,本申请实施例提供一种电子设备,包括:处理器、存储器和总线,其中,处理器和存储器通过总线完成相互间的通信;存储器存储有可被处理器执行的程序指令,处理器调用程 序指令能够执行第一方面的方法。
第四方面,本申请实施例提供一种非暂态计算机可读存储介质,包括:非暂态计算机可读存储介质存储计算机指令,计算机指令使计算机执行第一方面的方法。
本申请的其他特征和优点将在随后的说明书阐述,并且,部分地从说明书中变得显而易见,或者通过实施本申请实施例了解。本申请的目的和其他优点可通过在所写的说明书、权利要求书、以及附图中所特别指出的结构来实现和获得。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本申请的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为一种电池模组结构示意图;
图2为本申请实施例提供的一种电池模组尺寸确定方法流程示意图;
图3为本申请实施例提供的一种无上盖模组结构示意图;
图4为本申请实施例提供的另一种无上盖模组结构示意图;
图5为本申请实施例提供的一种电池模组高度组成示意图;
图6为本申请实施例提供个电池模组的真实高度示意图;
图7为本申请实施例提供的一种电池模组尺寸确定装置结构示意图;
图8为本申请实施例提供的电子设备实体结构示意图。
具体实施方式
下面将结合附图对本申请技术方案的实施例进行详细的描述。以下实施例仅用于更加清楚地说明本申请的技术方案,因此只作为示例,而不能以此来限制本申请的保护范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同;本文中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。
在本申请实施例的描述中,技术术语“第一”“第二”等仅用于区别不同对象,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量、特定顺序或主次关系。在本申请实施例的描述中,“多个”的含义是两个以上,除非另有明确具体的限定。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
在本申请实施例的描述中,术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
在本申请实施例的描述中,术语“多个”指的是两个以上(包括两个),同理,“多组”指的是两组以上(包括两组),“多片”指的是两片以上(包括两片)。
在本申请实施例的描述中,技术术语“中心”“纵向”“横向”“长度”“宽度”“厚度”“上”“下”“前”“后”“左”“右”“竖直”“水平”“顶”“底”“内”“外”“顺时针”“逆时针”“轴向”“径向”“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请实施例和简 化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请实施例的限制。
在本申请实施例的描述中,除非另有明确的规定和限定,技术术语“安装”“相连”“连接”“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;也可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
目前,电池模组在完成生产后,需要对其尺寸进行测量,以确保电池模组整体尺寸在出厂后能够满足后续使用需求。现有的电池模组生产工艺中,是将上盖安装在模组本体上后,再进入电池模组整体的尺寸测量。现由于生产工艺流程的优化,需要将对电池模组测量的工序提前到安装上盖之前。即,通过对不带上盖的模组本体进行测量,从而获得带上盖的电池模组的尺寸。图1为一种电池模组结构示意图,如图1所示,电池模组主要包括电芯和模组框架,该模组框架包括模组上盖、侧板、端板和底板。可以理解的是,图1中的电池模组的形状、构造只是一种示例,不同类型的电池模组,其形状、构造有所不同,本申请实施例对此不作具体限定。模组框架的主要功能有:(1)为电芯成组提供框架防护与机械强度保证;(2)提供模组与其他结构件的连接界面;(3)实现模组与pack的安装与固定;(4)通常含有端部防护、侧面防护和底部防护的作用。通过图1也可以看出,模组上盖是有一定高度的,因此,无上盖模组与电池模组的高度不同,如果将测量获得的无上盖模组的高度作为电池模组的高度,则会导致电池模组的高度不准确的问题。并且,目前并没有利用测量获得到无上盖模组的高度确定电池模组的高度的方法。
为了解决上述技术问题,本申请发明人经过长期研究发现,电池模组与无上盖模组之间的高度差与上盖自身的高度之间存在关联关系,因此,根据该关联关系构建高度补偿模型,并利用该高度补偿模型计算获得模组上盖对应的补偿高度,进而获得电池模组的目标高度。
本申请实施例可以应用于所有带上盖的电池模组的高度测量计算,另外。还可以应用于在安装底板之前,便对电池模组进行测量,并计算电池模组的整体高度尺寸的场景。还可以应用于安装侧板之前,便对电池模组进行测量,并计算电池模组的整体宽度尺寸的场景。还可以应用于在安装端板之前,便对电池模组进行测量,并计算电池模组的整体长度尺寸的场景。
图2为本申请实施例提供的一种电池模组尺寸确定方法流程示意图,如图2所示,电池模组包括无上盖模组以及模组上盖。该方法可以应用于电子设备,该电子设备可以为终端以及服务器;其中终端设备具体可以为智能手机、平板电脑、计算机、个人数字助理(Personal Digital Assitant,PDA)等;服务器具体可以为应用服务器,也可以为Web服务器。当执行主体为终端时,该终端可以理解为是电池模组尺寸测量装置,其设置在电池模组生产装置中,也可以是与电池模组生产装置为一体的设备。当执行主体为服务器时,该服务器能够与电池模组生产装置通信连接。该方法包括如下步骤:
步骤201:采集无上盖模组的第一高度和模组上盖的第二高度;
步骤202:将第二高度输入高度补偿模型,获得高度补偿模型输出的补偿高度;其中,高度补偿模型为根据测试模组预先生成;
步骤203:在获得补偿高度后,根据第一高度和补偿高度获得电池模组的目标高度。
在步骤201中,无上盖模组是指在电池模组生产工艺中,未安装模组上盖的模组本体,以图1为例,侧板、底板、端板,以及内部的电芯构成了无上盖模组。模组上盖也如图1所示,在实际的生产工艺中,模组上盖为单独生产的,并且在完成生产后,将其安装在模组本体上。
若本申请实施例的执行主体为电池模组尺寸测量装置,那么该电池模组尺寸测量装置中包括图像采集器,该图像采集器包括CCD相机,用于采集无上盖模组的第一图像和采集模组上盖的第二图像。通过第一图像可以获得无上盖模组的第一高度,通过第二图像可以获得模组上盖的第二图像。可以理解的是,可以预先对CCD相机进行标定,即确定CCD相机采集获得的图像中,一个像素点对应的实际物理尺寸。利用CCD相机在标定过程中对应的采集参数对无上盖模组进行图像采集,并根据第一图像中无上盖模组的高度方向所占像素点的个数确定第一高度。利用上述方法可以采集获得模组上盖的第二高度,本申请实施例对此不作具体限定。
若本申请实施例的执行主体为服务器,则服务器接收电池模组生产装置发送的无上盖模组的第一高度和模组上盖的第二高度。其中,电池模组生产装置中设置有图像采集器,也可以为CCD相机。可以理解的是,电池模组生产装置获得无上盖模组的第一高度和模组上盖的第二高度的方法参见上述实施例,此处不再赘述。
在步骤202中,高度补偿模型为预先根据测试模组构建的,其中,测试模组包括测试上盖、带上盖测试模组和无上盖测试模组。在构建高度补偿模型时,根据测试上盖的测试高度和带上盖测试模组与无上盖测试模组之间的测试补偿高度生成。测试补偿高度可以为带上盖测试模组与无上盖测试模组之间的差值。分析多个测试补偿高度与测试上盖的测试高度之间的关联关系,根据该关联关系构建高度补偿模型。
终端或服务器在获得第二高度后,将第二高度输入该高度补偿模型中,该高度补偿模型根据第二高度进行运算,输出补偿高度。可以理解的是,该补偿高度是指无上盖模组与电池模组之间的高度差。通过高度补偿模型计算获得的是经过多个测试模组统计获得的普遍的高度差。相比只采用一个电池模组与无上盖模组之间的差值,本申请实施例的高度补偿模型计算获得的补偿高度更加准确。
在步骤203中,在获得第一高度和补偿高度后,可以根据第一高度和补偿高度获得电池模组的目标高度,例如:可以将第一高度与补偿高度之和作为目标高度。
本申请实施例通过利用高度补偿模型计算获得将模组上盖安装到无上盖模组上后的补偿高度,从而可以根据无上盖模组的第一高度和补偿高度获得电池模组的目标高度,实现了对无上盖模组进行测量,获得电池模组的目标高度的目的。
在上述实施例的基础上,在根据第一高度和补偿高度确定目标高度时,可以生成随机误差高度,并根据第一高度、补偿高度和随机误差高度获得目标高度。
在具体的实施过程中,在将模组上盖装配到模组本体上时,可能会发生细微形变,另外,图像采集器在采集无上盖模组的第一高度和模组上盖的第二高度时,由于图像采集器的设备误差,可能导致采集获得的第一高度和第二高度会有一定的误差,为了消除此误差,可以根据配装时发生的细微形变和图像采集器的设备误差确定随机误差高度的取值范围。例如:可以在量产之前,利用高度补偿模型计算出补偿高度,然后确定电池模组的目标高度,再测量装配好的电池模组的实际高度,从而确定计算出来的目标盖度与实际高度之间的最大误差范围,即为随机误差高度的取值范围。可以理解的是,随机误差高度的取值范围为一个区间,例如可以是[-1.5mm,1.5mm],还可以是其他数值范围,本申请实施例对此不作具体限定。由此可知,随机误差高度可能为正数,可能为负数,也可能为0。
在生成随机误差高度时,可以采用随机数生成器随机生成一个在上述取值范围内的随机误差高度。
在生成随机误差高度后,便可根据第一高度、补偿高度和随机误差高度确定目标高度。
本申请实施例中,考虑了上盖在装配到无上盖模组过程中产生了细微形变,在根据第一高度和补偿高度确定目标高度时,加入随机误差高度,从而提高了目标高度计算的准确性。
在上述实施例的基础上,在获得随机误差高度后,将第一高度、补偿高度和随机误差高度之和确定为目标高度。
在具体的实施过程中,终端或服务器在生成随机误差高度后,计算第一高度、补偿高度和随机误差高度的和,并将计算获得的结果作为电池模组对应的目标高度。
本申请实施例中,考虑了上盖在装配到无上盖模组过程中产生了细微形变,在根据第一高度和补偿高度确定目标高度时,加入随机误差高度,从而提高了目标高度计算的准确性。
在上述实施例的基础上,本申请实施例还提供一种高度补偿模型构建方法,该方法包括:
获取测试上盖的第一测试高度、带上盖测试模组的第二测试高度和无上盖测试模组的第三测试高度;
根据第一测试高度、第二测试高度和第三测试高度构建高度补偿模型。
在具体的实施过程中,在进行量产电池模组之前,可以预先生产出一批测试模组,即包括测试上盖和无上盖测试模组,测量测试上盖的第一测试高度以及无上盖测试模组的第三测试高度。然后将测试上盖装配到无上盖测试模组中,获得带上盖测试模组,并测量获得带上盖测试模组的第二测试高度。可以理解的是,第一测试高度、第二测试高度和第三测试高度均为实际的物理尺寸,且第一测试高度、第二测试高度和第三测试高度的测量方法可以采用上述实施例中第一高度和第二高度的测量方法,也可以采用其他测量工具,例如:三坐标测量仪、三维激光扫描系统等。本申请实施例不对第一测试高度、第二测试高度和第三测试高度的测量方法进行具体限定。
可以理解的是,对于执行主体为终端的情况,可利用终端上自带的相机、三坐标测量仪、三维激光扫描系统对测试上盖、无上盖测试模组和带上盖测试模组分别对应的高度进行测量,当然,也可以利用终端之外的相机、三坐标测量仪、三维激光扫描系统对测试上盖、无上盖测试模组和带上盖测试模组分别对应的高度进行测量,并将测量获得的第一测试高度、第二测试高度和第三测试高度发送给终端。对于执行主体为服务器的情况,其可通过设置在电池模组生产装置中的相机、三坐标测量仪、三维激光扫描系统对测试上盖、无上盖测试模组和带上盖测试模组分别对应的高度进行测量,并将测量获得的第一测试高度、第二测试高度和第三测试高度发送给该服务器。
另外,为了保证高度补偿模型的准确性,可以获取多个测试上盖和多个无上盖测试模组进行测量,从而可以获得多个第一测试高度、多个第二测试高度和多个第三测试高度。
终端或服务器在获得第一测试高度、第二测试高度和第三测试高度后,可以对第一测试高度、第二测试高度和第三测试高度进行分析,以构建高度补偿模型。可以理解的是,一个测试上盖对应一个无上盖模组,在将测试上盖装配到无上盖模组后,获得对应的电池模组。因此,第一测试高度、第二测试高度和第三测试高度之间的一一对应的关系。
本申请实施例预先根据测试上盖的第一测试高度、带上盖测试模组的第二测试高度和无上盖测试模组的第三测试高度构建高度补偿模型,通过该高度补偿模型可以计算获得补偿高度,进而根据补偿高度可以对无上盖模组的高度补偿,获得电池模组的目标高度。
在上述实施例的基础上,具体可通过如下方法步骤构建高度补偿模型:
根据第二测试高度和第三测试高度确定测试补偿高度;
对第一测试高度和测试补偿高度进行相关性分析,若第一测试高度和测试补偿高度之间具备相关性,则确定第一测试高度和测试补偿高度之间的相关系数;
根据相关系数对第一测试高度和测试补偿高度进行回归分析,获得高度补偿模型。
在具体的实施过程中,在测量获得第二测试高度和第三测试高度后,将第二测试高度与第三测试高度之间的差值作为测试补偿高度。可以理解的是,由于第一测试高度、第二测试高度和第三测试高度为一一对应的,那么第一测量高度和测试补偿高度也是一一对应的,利用多个具备对应关系的第一测试高度和测试补偿高度进行相关性分析,从而确定第一测试高度与测试补偿高度之间是否具备相关性。应当说明的是,判断第一测试高度和测试补偿高度之间是否具备相关性的目的是为了判断二者之间是否具备一定的规律,以确定是否能够继续进行构建高度补偿模型。若二者具备相关性,则说明可以继续构建高度补偿模型;反之,如果二者不具备相关性,则说明本申请发明人的研究方向有问题,无法继续构建高度补偿模型。因此,在构建高度补偿模型中,先判断第一测试高度与测试补偿高度之间是否具备相关性,从而可以确定当前的研发方向是否正确,避免做大量的无用功。
在经过对第一测试高度和测试补偿高度进行相关性分析后,如果确定第一测试高度和测试补偿高度之间具备相关性,则进一步确定第一测试高度与测试补偿高度之间的相关系数。可以理解的是,确定第一测试高度和测试补偿高度之间的相关系数的目的是用来确定后续步骤中采用何种回归方法进行回归分析。例如:若第一测试高度和测试补偿高度之间的相关系数为1,则表示二者线性相关,可以采用线性回归方法进行回归。
因此,在确定了相关系数后,可以根据相关系数选择对应的回归方法,对第一测试高度和测试补偿高度进行回归分析,从而获得高度补偿模型。可以理解的是,回归方法包括:线性回归, 逻辑回归、多项式回归、逐步回归、岭回归、套索回归和Elastic Net回归。具体的回归分析方法可根据相关系数确定。
本申请实施例对第一测试高度和测试补偿高度进行相关性分析,从而判断第一测试高度和测试补偿高度之间是否具备相关性,在具备相关性的前提下,计算二者之间的相关系数,进而根据相关系数进行回归分析,获得高度补偿模型,提高了模型构建的效率。
在上述实施例的基础上,可通过如下方法对第一测试高度和测试补偿高度进行相关性分析:
计算第一测试高度和测试补偿高度的协方差;
根据协方差分析第一测试高度和测试补偿高度之间是否具备相关性。
在具体的实施过程中,协方差用于衡量两个变量(即第一测试高度和测试补偿高度)的总体误差。协方差的计算公式如下:
COV(X,Y)=E[(X-E(X))(Y-E(Y))]=E[XY]-E[X]E[Y]
其中,X为第一测试高度,Y为测试补偿高度,COV(X,Y)为第一测试高度和测试补偿高度的协方差,E[XY]为第一测试高度和测试补偿高度的期望值,E(X)为第一测试高度的期望值,E(Y)为测试补偿高度的期望值。
通过上述公式可以得出,如果两个变量的变化趋势一致,也就是说如果其中一个大于自身的期望值,另外一个也大于自身的期望值,那么两个变量之间的协方差就是正值;相反地,如果两个变量的变化趋势相反,即其中一个大于自身的期望值,另外一个却小于自身的期望值,那么两个变量之间的协方差就是负值。如果X与Y是统计独立的,也就是说第一测试高度与测试补偿高度之间不存在相关性,那么二者之间的协方差就是0。
因此,可以根据协方差确定第一测试高度和测试补偿高度之间是否具备相关性。
本申请实施例通过计算第一测试高度和测试补偿高度之间的协方差来准确地判断二者之间是否具备相关性。
在上述实施例的基础上,可通过如下方法计算第一测试高度和测试补偿高度之间的相关系数:
根据协方差计算第一测试高度和测试补偿高度之间的相关系数。
在具体的实施过程中,协方差作为描述第一测试高度和测试补偿高度相关程度的量,在同一物理量纲之下有一定的作用,但同样的两个量采用不同的量纲使它们的协方差在数值上表现出很大的差异。因此,可以通过协方差计算第一测试高度和测试补偿高度之间相关系数,具体公式如下:
Figure PCTCN2022105805-appb-000001
其中,ρXY为第一测试高度和测试补偿高度之间的相关系数,E[XY]为第一测试高度和测试补偿高度的期望值,E(X)为第一测试高度的期望值,E(Y)为测试补偿高度的期望值。
相关系数ρXY是反映第一测试高度和测试补偿高度之间关系密切度的统计指标,相关系数取值区间在1至-1之间。1表示两个变量线性相关,-1表示两个变量完全负相关,0表示两个变量不相关;此时计算出的相关系数接近1,可以近似等效为线性相关,可采用线性回归方法对第一测试高度和测试补偿高度进行回归分析,以获得高度补偿模型。
本申请实施例通过协方差可以计算获得第一测试高度和测试补偿高度之前的相关系数,从而可以根据相关系数确定回归的类型,以提高模型构建的准确性及效率。
在上述实施例的基础上,在根据相关系数对第一测试高度和测试补偿高度进行回归分析,包括:
若相关系数表征第一测试高度和测试补偿高度之间为线性相关关系,则利用最小二乘法对第一测试高度和测试补偿高度进行线性回归分析。
在具体的实施过程中,线性相关关系是指第一测试高度与测试补偿高度之间的变化趋势相同,且二者之间的相关系数为1。针对这种情况,本申请实施例可采用最小二乘法对第一测试高度和测试补偿高度进行线性回归分析,获得高度补偿模型。其中,最小二乘法又称最小平方法,通过最小化误差的平方和寻找数据的最佳函数匹配。利用最小二乘法可以简便地求得未知的数据,并使得这些求得的数据与实际数据之间误差的平方和为最小。因此,最小二乘法可用于曲线拟合。通过最小二乘法获得的高度补偿模型对应的函数为:
f(x)=kx+b;
其中,k表示测试上盖在安装铆钉孔后由装配引发的形变量,b表示对将测试上盖安装到无上盖模组上后,测试上盖与无上盖模组之间的间隙及装配引发的高度偏移量,k和b为通过最小二乘法将多个第一测试高度和测试补偿高度进行拟合获得,x表示测试上盖的高度,f(x)为计算获得的补偿高度。
本申请实施例通过先判断第一测试高度与测试补偿高度之间的相关关系,再根据判断结果确定回归方法,可以提高构建获得的模型的准确性及效率。
在上述实施例的基础上,为保证构建的高度补偿模型能够准确地输出无上盖模组的补偿高度,在构建高度补偿模型时,选择与无上盖模组的生产批次相同的测试上盖、带上盖测试模组和无上盖测试模组。
在具体的实施过程中,电池模组是按照项目批次进行生产的,例如:一个项目的电池模组可以由一个批次进行生产,也可以分为多个批次进行生产。属于同一个批次的模组上盖及无上盖模组可以认为其分别对应的尺寸是相同的。不同项目、不同生产批次其生产出的模组上盖及无上盖模组分别对应的高度不同。因此,为了保证构建的高度补偿模型能够准确地输出无上盖模组的补偿高度,可以针对每一批次的电池模组,在对该批次电池模组进行批量生产之前,先抽样该批次对应的测试上盖和无上盖测试模组,并测量测试上盖对应的第一测试高度、无上盖测试模组的第三测试高度,以及将测试上盖安装到无上盖测试模组上之后获得的带上盖测试模组的第二测试高度。然后根据第一测试高度、第二测试高度和第三测试高度够将该批次对应的高度补偿模型。
当然,也可以多个批次共用同一个高度补偿模型,只是其效果没有一个批次对应一个高度补偿模型的效果好。
本申请实施例通过采用与无上盖模组相同生产批次的测试模组进行高度补偿模型的构建,从而提高了利用高度补偿模型进行补偿高度计算的准确性,进而提高了对电池模组的高度计算的准确性。
在具体的实施过程中,可通过如下方式采集无上盖模组的第一高度:
采集无上盖模组在高度方向上的上表面中多个位置点到无上盖模组底部的测量高度,根据多个测量高度确定第一高度。
在具体的实施过程中,由于无上盖模组在高度方向上的上表面可能不会完全平整的,其可能是凹凸不平的。若随机在无上盖模组的上表面选择一个位置点,测量该位置点到无上盖模组底部的高度,则可能误差较大,并不能反映无上盖模组的真实高度。因此,为了能够获得准确的无上盖模组的高度,可以在无上盖模组的上表面选择多个位置点,并分别测量多个位置点分别到无上盖模组底部的测量高度,从而可以获得多个测量高度。综合多个测量高度确定无上盖模组的第一高度。
本申请实施例通过采集无上盖模组在高度方向上的上表面中多个位置点的测量高度,提高了对无上盖模组高度测量的准确性。
在上述实施例的基础上,可通过如下方式采集无上盖模组在高度方向上的上表面中多个位 置点到无上盖模组底部的测量高度:
采集上表面中多个巴片位置点到无上盖模组底部的测量高度。
在具体的实施过程中,图3为本申请实施例提供的一种无上盖模组结构示意图,如图3所示,在无上盖模组的上表面上的多个位置处设置有巴片,可以理解的是,巴片又称汇流部件、汇流构件,用于实现电池单体之间的电连接。巴片可放置在电池单体的上面,与电池单体的电极端子焊接,通常情况下,一个巴片可与两个电池单体连接。可以将无上盖模组的上表面中巴片所处的位置作为采集的位置点,测量巴片位置点到无上盖模组底部的测量高度。具体可以采用三维激光扫描系统在巴片位置进行激光打点,以获得测量高度。
本申请实施例通过采集多个巴片位置到无上盖模组底部的测量高度,可以提高对无上盖模组高度测量的准确性。
在上述实施例的基础上,可通过如下方式采集无上盖模组在高度方向上的上表面中多个位置点到无上盖模组底部的测量高度:
采集上表面中多个铆钉孔位置点到无上盖模组底部的测量高度。
在具体的实施过程中,为了能够将模组上盖与无上盖模组进行装配,需要预先在无上盖模组的上表面开设多个铆钉孔。图4为本申请实施例提供的另一种无上盖模组结构示意图,如图4所示,由于在开设铆钉孔时,可能导致无上盖模组上表面发生微小形变,因此,可以将铆钉孔所在位置作为采集点。采集上表面中多个铆钉孔位置点到无上盖模组底部的测量高度。具体可以采用三维激光扫描系统在铆钉孔位置进行激光打点,以获得测量高度。
本申请实施例通过采集多个铆钉位置点到无上盖模组底部的测量高度,可以提高对无上盖模组高度测量的准确性。
在上述实施例的基础上,在获得多个测量高度后,可以将多个测量高度中的最大值作为第一高度,或将多个测量高度的平均值作为第一高度。
在具体的实施过程中,根据工艺需求不同,有些需要将无上盖模组的最高的高度作为无上盖模组的第一高度,针对这种情况,可以将多个测量高度中的最大值作为第一高度。有些需要将无上盖模组的平均高度作为第一高度,因此,可以将多个测量高度中的平均值作为第一高度。在实际应用过程中,可以根据具体情况选择第一高度的确定方法。
本申请实施例根据实际需求可以将测量高度的最大值作为第一高度,或将测量高度的平均值作为第一高度,提高了无上盖模组的高度的准确性。
本申请实施例提供另一种电池模组尺寸确定方法,其应用场景包括但不限于如下两种:
场景一:电池模组尺寸测量与电池模组电性能合并测试,将两个完全独立的测试工位合并以一台测试设备,节省了测试设备的布局空间,以及降低了设备成本。因为将电池模组尺寸测量提前到电性能测试工位,此时模组处于未安装上盖状态;通过测试无上盖模组的高度,使用上盖补偿算法得到电池模组的整体高度;电池模组尺寸测量除高度尺寸外其余测试项无影响;在完成全尺寸测试后,流入下一个工位,通断测试。
场景二:在对电池模组进行通断测试时,电池模组还未安装上盖,通断测试后安装上盖;本申请实施例将电池模组的全尺寸测量与通断测试合并,或者将全尺寸、电性能、通断测试全部合并,由一台测试设备测量,节省设备的布局空间以及降低设备成本;将全尺寸测试提前,此时模组处于未安装上盖状态;通过测试无上盖模组的高度,使用上盖补偿算法得到模组整体高度;全尺寸测试除高度尺寸外其余测试项无影响;完成全尺寸测试,流入下一个工位安装上盖,模组最终检查下线。
图5为本申请实施例提供的一种电池模组高度组成示意图,如图5所示,底部绝缘膜的高度为H1,电芯高度为H2,巴片高度为H3,上盖自身平面高度为H4。对无上盖模组的高度尺寸测量补偿方法主要包括如下步骤:
步骤1:测量无上盖测试模组的底部到上表面的高度,记为x1;
步骤2:测量测试上盖自身的高度,记为x2;
步骤3:测量带上盖测试模组的高度,记为x3;
步骤4:将带上盖测试模组的高度与无上盖测试模组的高度做差值,即x3-x2,记为x4;图6为本申请实施例提供个电池模组的真实高度示意图,如图6所示;
步骤5:对测试上盖自身高度x2、带上盖测试模组与无上盖测试模组的高度差值x4做相关分析,计算协方差;
步骤6:计算x2与x4两个变量的相关系数;
步骤7;对x2与x4做回归分析,确定因变量(x4)和自变量(x2)的相互依赖的定量关系;
步骤8:完成回归分析后可以得到因变量和自变量的定量关系,便是为具体的函数f(x)=kx+b;
步骤9:将测量获得的模组上盖的第二高度代入上述函数可以计算获得无上盖模组的补偿高度;
步骤10:根据无上盖模组的第一高度和补偿高度获得该无上盖模组在安装上模组上盖后获得的电池模组的目标高度。
图7为本申请实施例提供的一种电池模组尺寸确定装置结构示意图,该装置可以是电子设备上的模块、程序段或代码。应理解,该装置与上述图2方法实施例对应,能够执行图2方法实施例涉及的各个步骤,该装置具体的功能可以参见上文中的描述,为避免重复,此处适当省略详细描述。所述装置包括:高度采集模块701、高度补偿模块702和尺寸确定模块703,其中:
高度采集模块701用于采集无上盖模组的第一高度和模组上盖的第二高度;高度补偿模块702用于将第二高度输入高度补偿模型,获得高度补偿模型输出的补偿高度;其中,高度补偿模型为根据测试模组预先生成;尺寸确定模块703用于根据第一高度和补偿高度获得电池模组的目标高度。
在上述实施例的基础上,尺寸确定模块703具体用于:
生成随机误差高度;根据第一高度、补偿高度和随机误差高度获得目标高度。
在上述实施例的基础上,尺寸确定模块703具体用于:
将第一高度、补偿高度和随机误差高度之和确定为目标高度。
在上述实施例的基础上,该装置还包括模型构建模块,用于:
获取测试上盖的第一测试高度、带上盖测试模组的第二测试高度和无上盖测试模组的第三测试高度;
根据第一测试高度、第二测试高度和第三测试高度构建高度补偿模型。
在上述实施例的基础上,模型构建模块具体用于:
根据第二测试高度和第三测试高度确定测试补偿高度;
对第一测试高度和测试补偿高度进行相关性分析,若第一测试高度和测试补偿高度之间具备相关性,则确定第一测试高度和测试补偿高度之间的相关系数;
根据相关系数对第一测试高度和测试补偿高度进行回归分析,获得高度补偿模型。
在上述实施例的基础上,该模型构建模块具体用于:
计算第一测试高度和测试补偿高度的协方差;
根据协方差分析第一测试高度和测试补偿高度之间是否具备相关性。
在上述实施例的基础上,该模型构建模块具体用于:
根据协方差计算第一测试高度和测试补偿高度之间的相关系数。
在上述实施例的基础上,该模型构建模块具体用于:
若相关系数表征第一测试高度和测试补偿高度之间为线性相关关系,则利用最小二乘法对第一测试高度和测试补偿高度进行线性回归分析。
在上述实施例的基础上,测试上盖、带上盖测试模组和无上盖测试模组分别对应的生产批次与无上盖模组的生产批次相同。
在上述实施例的基础上,高度采集模块701具体用于:
采集无上盖模组在高度方向上的上表面中多个位置点到无上盖模组底部的测量高度,根据多个测量高度确定第一高度。
在上述实施例的基础上,高度采集模块701具体用于:
采集上表面中多个巴片位置点到无上盖模组底部的测量高度。
在上述实施例的基础上,高度采集模块701具体用于:
采集上表面中多个铆钉孔位置点到无上盖模组底部的测量高度。
在上述实施例的基础上,高度采集模块701具体用于:
将多个测量高度中的最大值作为第一高度,或将多个测量高度的平均值作为第一高度。
图8为本申请实施例提供的电子设备实体结构示意图,如图8所示,所述电子设备,包括:处理器(processor)801、存储器(memory)802和总线803;其中,
所述处理器801和存储器802通过所述总线803完成相互间的通信;
所述处理器801用于调用所述存储器802中的程序指令,以执行上述各方法实施例所提供的方法,例如包括:采集无上盖模组的第一高度和模组上盖的第二高度;将第二高度输入高度补偿模型,获得高度补偿模型输出的补偿高度;其中,高度补偿模型为根据测试模组预先生成;根据第一高度和补偿高度获得电池模组的目标高度。
处理器801可以是一种集成电路芯片,具有信号处理能力。上述处理器801可以是通用处理器,包括中央处理器(Central Processing Unit,CPU)、网络处理器(Network Processor,NP)等;还可以是数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。其可以实现或者执行本申请实施例中公开的各种方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器802可以包括但不限于随机存取存储器(Random Access Memory,RAM),只读存储器(Read Only Memory,ROM),可编程只读存储器(Programmable Read-Only Memory,PROM),可擦除只读存储器(Erasable Programmable Read-Only Memory,EPROM),电可擦除只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)等。
本实施例公开一种计算机程序产品,所述计算机程序产品包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行上述各方法实施例所提供的方法,例如包括:采集无上盖模组的第一高度和模组上盖的第二高度;将第二高度输入高度补偿模型,获得高度补偿模型输出的补偿高度;其中,高度补偿模型为根据测试模组预先生成;根据第一高度和补偿高度获得电池模组的目标高度。
本实施例提供一种非暂态计算机可读存储介质,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令使所述计算机执行上述各方法实施例所提供的方法,例如包括:采集无上盖模组的第一高度和模组上盖的第二高度;将第二高度输入高度补偿模型,获得高度补偿模型输出的补偿高度;其中,高度补偿模型为根据测试模组预先生成;根据第一高度和补偿高度获得电池模组的目标高度。
在本申请所提供的实施例中,应该理解到,所揭露装置和方法,可以通过其它的方式实 现。以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,又例如,多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些通信接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
另外,作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
再者,在本申请各个实施例中的各功能模块可以集成在一起形成一个独立的部分,也可以是各个模块单独存在,也可以两个或两个以上模块集成形成一个独立的部分。
在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。
以上所述仅为本申请的实施例而已,并不用于限制本申请的保护范围,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (17)

  1. 一种电池模组尺寸确定方法,其特征在于,所述电池模组包括无上盖模组以及模组上盖;所述方法包括:
    采集所述无上盖模组的第一高度和所述模组上盖的第二高度;
    将所述第二高度输入高度补偿模型,获得所述高度补偿模型输出的补偿高度;其中,所述高度补偿模型为根据测试模组预先生成;
    根据所述第一高度和所述补偿高度获得所述电池模组的目标高度。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一高度和所述补偿高度获得所述电池模组的目标高度,包括:
    生成随机误差高度;
    根据所述第一高度、所述补偿高度和所述随机误差高度获得所述目标高度。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述第一高度、所述补偿高度和所述随机误差高度获得所述目标高度,包括:
    将所述第一高度、所述补偿高度和所述随机误差高度之和确定为所述目标高度。
  4. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    获取测试上盖的第一测试高度、带上盖测试模组的第二测试高度和无上盖测试模组的第三测试高度;
    根据所述第一测试高度、所述第二测试高度和所述第三测试高度构建所述高度补偿模型。
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一测试高度、所述第二测试高度和所述第三测试高度构建所述高度补偿模型,包括:
    根据所述第二测试高度和所述第三测试高度确定测试补偿高度;
    对所述第一测试高度和所述测试补偿高度进行相关性分析,若所述第一测试高度和所述测试补偿高度之间具备相关性,则确定所述第一测试高度和所述测试补偿高度之间的相关系数;
    根据所述相关系数对所述第一测试高度和所述测试补偿高度进行回归分析,获得所述高度补偿模型。
  6. 根据权利要求5所述的方法,其特征在于,所述对所述第一测试高度和所述测试补偿高度进行相关性分析,包括:
    计算所述第一测试高度和所述测试补偿高度的协方差;
    根据所述协方差分析所述第一测试高度和所述测试补偿高度之间是否具备相关性。
  7. 根据权利要求6所述的方法,其特征在于,所述确定所述第一测试高度和所述测试补偿高度之间的相关系数,包括:
    根据所述协方差计算所述第一测试高度和所述测试补偿高度之间的相关系数。
  8. 根据权利要求5所述的方法,其特征在于,所述根据所述相关系数对所述第一测试高度和所述测试补偿高度进行回归分析,包括:
    若所述相关系数表征所述第一测试高度和所述测试补偿高度之间为线性相关关系,则利用最小二乘法对所述第一测试高度和所述测试补偿高度进行线性回归分析。
  9. 根据权利要求4-8任一项所述的方法,其特征在于,其中,所述测试上盖、所述带上盖测试模组和所述无上盖测试模组分别对应的生产批次与所述无上盖模组的生产批次相同。
  10. 根据权利要求1所述的方法,其特征在于,所述采集所述无上盖模组的第一高度,包括:
    采集所述无上盖模组在高度方向上的上表面中多个位置点到所述无上盖模组底部的测量高度,根据多个所述测量高度确定所述第一高度。
  11. 根据权利要求10所述的方法,其特征在于,所述采集所述无上盖模组在高度方向上的上表面中多个位置点到所述无上盖模组底部的测量高度,包括:
    采集所述上表面中多个巴片位置点到所述无上盖模组底部的测量高度。
  12. 根据权利要求10所述的方法,其特征在于,所述采集所述无上盖模组在高度方向上的上表面中多个位置点到所述无上盖模组底部的测量高度,包括:
    采集所述上表面中多个铆钉孔位置点到所述无上盖模组底部的测量高度。
  13. 根据权利要求10-12任一项所述的方法,其特征在于,所述根据所述多个测量高度确定所述第一高度,包括:
    将所述多个测量高度中的最大值作为所述第一高度,或将所述多个测量高度的平均值作为所述第一高度。
  14. 一种电池模组尺寸确定装置,其特征在于,所述电池模组包括无上盖模组以及模组上盖;包括:
    高度采集模块,用于采集所述无上盖模组的第一高度和所述模组上盖的第二高度;
    高度补偿模块,用于将所述第二高度输入高度补偿模型,获得所述高度补偿模型输出的补偿高度;其中,所述高度补偿模型为根据测试模组预先生成;
    尺寸确定模块,用于根据所述第一高度和所述补偿高度获得所述电池模组的目标高度。
  15. 一种电子设备,其特征在于,包括:处理器、存储器和总线,其中,
    所述处理器和所述存储器通过所述总线完成相互间的通信;
    所述存储器存储有可被所述处理器执行的程序指令,所述处理器调用所述程序指令能够执行如权利要求1-13任一项所述的方法。
  16. 一种非暂态计算机可读存储介质,其特征在于,所述非暂态计算机可读存储介质存储计算机指令,所述计算机指令被计算机运行时,使所述计算机执行如权利要求1-13任一项所述的方法。
  17. 一种计算机程序产品,其特征在于,包括存储在非暂态计算机可读存储介质上的计算机程序,所述计算机程序包括程序指令,当所述程序指令被计算机执行时,计算机能够执行如权利要求1-13任一项所述的方法。
PCT/CN2022/105805 2022-07-14 2022-07-14 电池模组尺寸确定方法、装置、电子设备及存储介质 WO2024011534A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105805 WO2024011534A1 (zh) 2022-07-14 2022-07-14 电池模组尺寸确定方法、装置、电子设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/105805 WO2024011534A1 (zh) 2022-07-14 2022-07-14 电池模组尺寸确定方法、装置、电子设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024011534A1 true WO2024011534A1 (zh) 2024-01-18

Family

ID=89535141

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/105805 WO2024011534A1 (zh) 2022-07-14 2022-07-14 电池模组尺寸确定方法、装置、电子设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024011534A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209166383U (zh) * 2018-12-29 2019-07-26 蜂巢能源科技有限公司 用于测量电池尺寸的测量装置
CN112304272A (zh) * 2019-07-23 2021-02-02 华晨宝马汽车有限公司 用于测量电池模组的平面度和高度的测量设备和方法
CN114543686A (zh) * 2021-08-17 2022-05-27 万向一二三股份公司 一种软包电池厚度测量装置
WO2022106858A2 (en) * 2020-11-23 2022-05-27 Botsandus Ltd A method for measuring and analysing packages for storage
CN216846119U (zh) * 2022-03-17 2022-06-28 江西省通讯终端产业技术研究院有限公司 一种双工位平板电池盖组件高度检测机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209166383U (zh) * 2018-12-29 2019-07-26 蜂巢能源科技有限公司 用于测量电池尺寸的测量装置
CN112304272A (zh) * 2019-07-23 2021-02-02 华晨宝马汽车有限公司 用于测量电池模组的平面度和高度的测量设备和方法
WO2022106858A2 (en) * 2020-11-23 2022-05-27 Botsandus Ltd A method for measuring and analysing packages for storage
CN114543686A (zh) * 2021-08-17 2022-05-27 万向一二三股份公司 一种软包电池厚度测量装置
CN216846119U (zh) * 2022-03-17 2022-06-28 江西省通讯终端产业技术研究院有限公司 一种双工位平板电池盖组件高度检测机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LU, HENGFEI; XU, XINGWU; LING, SHENGBIN; SHEN, YONGKUAN: "Development and Application of a LFP Pouch Cell Module", ENERGY STORAGE SCIENCE AND TECHNOLOGY, vol. 11, no. 5, 31 May 2022 (2022-05-31), CN , pages 1468 - 1474, XP009552592, ISSN: 2095-4239, DOI: 10.19799/j.cnki.2095-4239.2021.0557 *

Similar Documents

Publication Publication Date Title
US20230025958A1 (en) Battery internal temperature information processing method, computer device, and storage medium
TW200849345A (en) Dual-phase virtual metrology method
WO2024011534A1 (zh) 电池模组尺寸确定方法、装置、电子设备及存储介质
WO2023070552A1 (zh) 一种电池卷芯卷绕覆盖检测方法、装置及设备
CN113820615B (zh) 一种电池健康度检测方法与装置
CN115188485A (zh) 基于智慧医疗大数据的用户需求分析方法及系统
CN113221402B (zh) 一种冲压件回弹预测及监控方法、系统及存储介质
CN109840353B (zh) 锂离子电池双因素不一致性预测方法及装置
CN112836178B (zh) 一种用于传输天然气能量计量数据的方法和系统
CN106550447B (zh) 一种终端定位方法、装置及系统
CN118043627A (zh) 电池模组尺寸确定方法、装置、电子设备及存储介质
WO2023168542A1 (zh) 电池连接件的接触电阻的标定方法、装置及用电装置
CN115664368A (zh) 电容匹配方法、装置、设备及可读存储介质
TWI461871B (zh) 多機台之監控方法
CN110518989B (zh) 校准无线保真模块射频功率的方法、装置、设备及介质
CN115128465A (zh) 电池热仿真系统、方法及电子设备
CN109425815B (zh) 用于预测半导体装置的特性的设备和方法
KR20190026491A (ko) 전지 성능 추정 장치 및 방법
CN117517979B (zh) 电池参数更新方法、装置、电子设备及存储介质
CN116883398B (zh) 基于电堆装配生产线的检测方法、系统、终端设备及介质
CN117129956B (zh) 定位校正方法、装置、探测设备、计算机设备及存储介质
CN113310715B (zh) 一种风机非额定频率下空冷凝汽器的性能测算方法及装置
CN113242102B (zh) 射频测试方法及装置、设备及可读存储介质
CN115810009B (zh) 基于硬件信号同步的电芯极片对齐和宽度检测系统及方法
Zhang et al. Research on Calibration Method of Electricity Data Based on GA_SVM-KF

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950655

Country of ref document: EP

Kind code of ref document: A1