WO2024010395A1 - Impurity removal device, 3d printer comprising same, and internal gas control method using same - Google Patents

Impurity removal device, 3d printer comprising same, and internal gas control method using same Download PDF

Info

Publication number
WO2024010395A1
WO2024010395A1 PCT/KR2023/009581 KR2023009581W WO2024010395A1 WO 2024010395 A1 WO2024010395 A1 WO 2024010395A1 KR 2023009581 W KR2023009581 W KR 2023009581W WO 2024010395 A1 WO2024010395 A1 WO 2024010395A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
unit
removal
removal device
clause
Prior art date
Application number
PCT/KR2023/009581
Other languages
French (fr)
Korean (ko)
Inventor
최준필
이필호
하태호
허세곤
정민교
송여울
김용래
이창우
Original Assignee
한국기계연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원 filed Critical 한국기계연구원
Publication of WO2024010395A1 publication Critical patent/WO2024010395A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D46/00Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
    • B01D46/42Auxiliary equipment or operation thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/30Process control
    • B22F10/32Process control of the atmosphere, e.g. composition or pressure in a building chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/77Recycling of gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/10Auxiliary heating means
    • B22F12/13Auxiliary heating means to preheat the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/50Means for feeding of material, e.g. heads
    • B22F12/53Nozzles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to an impurity removal device for a 3D printer, a 3D printer including the same, and an internal gas control method using the same.
  • the present invention relates to an impurity removal device capable of reducing the oxygen content in an inert gas supplied to a 3D printer, an impurity removal device for a 3D printer, a 3D printer including the same, and an internal gas control method using the same. .
  • 3D printers can be customized based on a high degree of freedom and precision in the manufacturing shape, so they are used to produce small quantities of customized products.
  • There are various types of 3D printers for manufacturing small quantity customized products but metal 3D printers such as PBF (powder bed fusion) and DED (direct energy deposition) are recognized as the most preferred printers for small quantity customized manufacturing. .
  • the PBF method and the DED method are printing methods using metal powder.
  • spherical powder with a size of 10 to 50 ⁇ m is used, and in the DED method, spherical powder with a size of 50 to 150 ⁇ m is used. It is utilized.
  • Metal powders are manufactured from various materials such as titanium, aluminum, stainless steel, nickel, and chrome, depending on the field of application.
  • 3D printers are designed to operate in an inert gas (eg, argon, nitrogen) atmosphere with a very low oxygen concentration.
  • an inert gas eg, argon, nitrogen
  • the present invention solves the above-mentioned problem, and includes an impurity removal device for a 3D printer that can prevent defective products from being printed by removing an insignificant amount of oxygen, a 3D printer including the same, and internal gas control using the same.
  • the purpose is to provide a method.
  • An impurity removal device for a 3D printer includes a gas supply unit that supplies gas, and a removal body that receives the gas from the gas supply unit and removes impurities, and applies a set temperature to the removal body to remove the gas. It may include a removal unit that removes impurities contained in the gas.
  • the remover may contain any one pure metal selected from titanium, magnesium, aluminum, and calcium.
  • the set temperature may range from 200 degrees to 1200 degrees.
  • the removal body may include an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon.
  • the set temperature may range from 500 degrees to 1000 degrees.
  • a filter unit that removes impurities may be disposed between the gas supply unit and the removal unit.
  • the filter unit is composed of a plurality of filter units, and each filter unit may include a flow path connected to each other.
  • the filter unit can remove moisture or carbon dioxide when the gas passes through it.
  • the mixing unit may include a supply hopper unit that supplies powder in one direction, a main unit that has one side connected to the supply hopper unit and the other side connected to a removal unit, and a rotating shaft disposed therein to mix the powder and gas.
  • the rotation axis may include an extension part extending from one side of the main part to the other side, and a mixed axis part connected to the extension part and disposed along an inner wall of the main part.
  • the mixing shaft portion may be connected to the extension portion so as to be able to rotate.
  • Blades may be disposed along the longitudinal direction of the mixing shaft portion.
  • the diameter of the main part decreases toward one side, and the rotating body may be arranged to move along the inner wall of the main part.
  • An emission line for discharging gas may be formed on one side of the main part.
  • An internal gas control method for supplying a gas from which impurities have been removed to a 3D printer includes a first supply step of supplying gas to a removal unit where a remover is located, and removing impurities by heating the removal unit to a set temperature. It may include a removal step and a second supply step of supplying the gas from which impurities have been removed in the removal unit to the printing unit.
  • the remover may contain any one pure metal selected from titanium, magnesium, aluminum, and calcium.
  • the set temperature may range from 200 degrees to 1200 degrees.
  • the removal body may include an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon.
  • the set temperature may range from 500 degrees to 1000 degrees.
  • a pretreatment step of removing impurities using a filter unit that removes impurities from the gas may be included.
  • the filter unit may remove moisture or carbon dioxide in the gas.
  • a powder pretreatment step may be included in which the gas and powder are mixed using a mixing unit for mixing the gas and powder and then supplied to the printing unit.
  • the mixing unit may include a supply hopper unit that supplies powder in one direction, a main unit that has one side connected to the supply hopper unit and the other side connected to a removal unit, and a rotating shaft disposed therein, to mix the powder and gas.
  • the rotation axis is disposed along the inner wall of the main part, and can mix the gas and powder by rotating and revolving around.
  • the main part may be heated to a set temperature.
  • a 3D printer includes a gas supply unit that supplies gas, a chamber that receives the gas, a laser output unit disposed on an upper side of the chamber, a bed disposed below the laser output portion where powder is located, and the gas. It may include a removal body located between the supply unit and the chamber to remove impurities, and a removal unit for removing impurities contained in the gas by applying a set temperature to the removal body.
  • the remover may contain any one pure metal selected from titanium, magnesium, aluminum, and calcium.
  • the set temperature may range from 200 degrees to 1200 degrees.
  • the removal body may include an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon.
  • the set temperature may range from 500 degrees to 1000 degrees.
  • a small amount of oxygen is removed by the removal unit before gas is supplied to the printing unit, so defective products may not be printed.
  • the impurity removal device of the present invention includes a filter unit to remove impurities in the gas, thereby preventing defective products from being printed.
  • the impurity removal device of the present invention includes a mixing section, and supplies a mixture of powder and gas, so that the powder can be homogenized and dried, and impurities in the form of moisture and other organic substances can be removed, thereby preventing defective products. Printing may not occur.
  • the internal gas control method of the present invention supplies gas using the above-described impurity removal device, thereby supplying gas from which impurities have been removed, so defective products may not be printed.
  • FIG. 1 is a schematic diagram of an impurity removal device according to an embodiment.
  • Figure 2 shows a 3D printer including an impurity removal device according to an embodiment.
  • Figure 3 is a schematic diagram showing an impurity removal device according to another embodiment.
  • Figure 4 shows a specific example of a filter unit of an impurity removal device according to another embodiment.
  • Figure 5 shows a 3D printer including an impurity removal device according to another embodiment.
  • Figures 6a, 6b, and 6c show a filter unit of a foreign matter removal device according to an additional embodiment.
  • Figure 7 shows a removal portion of an impurity removal device according to an embodiment.
  • Figure 8 shows a removal unit of an impurity removal device according to a specific embodiment.
  • Figure 9 shows a removal unit of an impurity removal device according to another specific embodiment.
  • Figure 10 shows a modified example of the removal unit according to one embodiment.
  • Figure 11 shows another modified example of the removal unit according to one embodiment.
  • Figure 12 shows another modified example of the removal unit according to one embodiment.
  • Figure 13 shows an impurity removal device according to another embodiment.
  • Figure 14 specifically shows the mixing section of an impurity removal device according to another embodiment.
  • Figure 15 is a block diagram of an internal gas control method using an impurity removal device according to an embodiment.
  • FIG. 1 is a schematic diagram of an impurity removal device according to an embodiment.
  • the impurity removal device of one embodiment removes and supplies impurities (gases other than inert gases or similar types of substances), and thus can eliminate defects caused by impurities during printing.
  • the impurity removal device may include a gas supply unit 10, a recycling unit 30, and a removal unit 100.
  • the impurity removal device of the present invention is for a 3D printer. Therefore, the printing unit 20 may not be included. However, in Figure 1, for clarity of explanation, each component of the 3D printer will be described as the printing unit 20.
  • the gas supply unit 10 is a space where inert gas (argon, nitrogen, etc. - hereinafter referred to as 'gas') is stored.
  • the inert gas stored in the gas supply unit 10 may be supplied to the printing unit 20.
  • the printing unit (20 - a simplified representation of the 3D printer in FIG. 2) is where various devices for 3D printing are arranged, for example, a chamber (21 - see FIG. 2), a laser output unit (22 - see FIG. 2), It may refer to the whole in which various components consisting of a bed (23 - see FIG. 2), a blade (24 - see FIG. 2), etc. are arranged.
  • the bed (23 - see FIG. 2) is located on the lower side and the laser output unit (22 - see FIG. 2) is located on the upper side to extract the powder located in the bed (23 - see FIG. 2).
  • the blade (24 - see FIG. 2) supplies powder to the bed (23 - see FIG. 2), etc. can be repeatedly performed.
  • the printing unit 20 (a simplified representation of the 3D printer in FIG. 2) receives gas from the gas supply unit 10 and can maintain the internal atmosphere filled with inert gas.
  • the recycling unit 30 receives gas from the printing unit (20 - a simplified representation of the 3D printer in FIG. 2) and circulates it.
  • a removal unit 100 is located between the gas supply unit 10 and the printing unit 20 (a simplified representation of the 3D printer in FIG. 2), so that gas from which impurities have been removed can be supplied to the gas supply unit 10. . That is, the removal unit 100 can remove trace amounts of impurities contained in the gas.
  • the 3D printer including the gas impurity removal device of the present invention can perform a printing operation after receiving gas from which impurities have been removed by the removal unit 100.
  • Figure 2 shows a 3D printer including an impurity removal device according to an embodiment.
  • the 3D printer of one embodiment may include a chamber 21, a laser output unit 22 located within the chamber, a bed 23, and a blade 24.
  • the chamber 21 serves to block the inside and the outside.
  • One side of the chamber 21 may be connected to the removal unit 100 and the other side may be connected to the recycling unit 30.
  • the chamber 21 may be connected to the removal unit 100 and the recycling unit 30 by a valve. Therefore, the 3D printer of the present invention can remove impurities from the internal gas.
  • the laser output unit 22 is located at the top of the chamber and can output laser in a set direction.
  • the laser output unit 22 can directly irradiate laser, but can also apply laser through a dynamic mirror so that the laser is irradiated in a desired direction due to reflection of the mirror.
  • the bed 23 may be located below the laser output unit 22 in the chamber 21. Powder that is the subject of printing may be placed in the bed 23. Therefore, the powder in the bed 23 can be plastically deformed by the laser output unit 22 and formed into a set shape.
  • the bed 23 may be movable up and down. Therefore, powder can be placed in the bed 23.
  • the blade 24 moves flat on the upper side of the bed 23 and serves to supply powder to the bed. That is, after the powder in the bed 23 is plastically deformed by the laser output unit, when the bed 23 descends, the blade 24 operates to supply the powder in the bed 23.
  • the above operation can be performed in a chamber filled with gas from which impurities have been removed by the removal unit 100.
  • the 3D printer in one embodiment may be equipped with an oxygen sensor 25.
  • the oxygen sensor 25 can sense the oxygen concentration of the gas in the chamber. When the oxygen concentration in the chamber 21 of the 3D printer exceeds a set concentration, the recycling unit 30 may be operated.
  • the operation of the laser output unit 22, bed 23, and blade 24 is stopped, and the removal unit 100 and recycling unit 30 )
  • the valve is operated so that the gas in the chamber 21 can be exchanged.
  • the recycling unit 30 may supply the air in the chamber 21 back to the removal unit 100 to remove impurities in the gas.
  • FIG. 3 is a schematic diagram showing an impurity removal device according to another embodiment
  • FIG. 4 shows a specific example of a filter unit of the impurity removal device according to another embodiment
  • FIG. 5 is a schematic diagram showing an impurity removal device according to another embodiment. It shows a 3D printer including:
  • the present invention may additionally include a filter unit 150.
  • the filter unit 150 can remove impurities contained in the gas 01 from the gas supply unit 10 before it is moved to the removal unit 100.
  • the filter unit 150 can remove moisture or carbon dioxide in the gas.
  • the filter unit 150 may include silica gel 151, ascarite 152, and magnesium perchlorate 153. That is, the filter unit 150 may include at least one of silica gel 151, ascarite 152, and magnesium perchlorate 153.
  • the filter unit 150 may be composed of only silica gel 151, or may be composed of silica gel 151 and ascarite 152.
  • each component of the filter unit 150 when present as one, they can be mixed together and placed in one location or in mutually partitioned spaces, with only the flow paths connected to each other.
  • the filter unit 150 primarily serves to remove impurities before the gas is supplied to the removal unit 100.
  • the specific type of the filter unit 150 may not be a problem as long as it can remove foreign substances (moisture, carbon dioxide, etc.) other than oxygen.
  • the 3D printer of one embodiment additionally includes a filter unit 150, so that impurities such as moisture and carbon dioxide in addition to oxygen can be removed. Therefore, more precise printing operations may be possible.
  • Figures 6a, 6b, and 6c show a filter unit of a foreign matter removal device according to an additional embodiment.
  • the filter unit 150 may be configured in various ways as shown in FIG. 6A. That is, the filter unit 150 may be composed of a first filter unit 150a, a second filter unit 150b, and a third filter unit 150c. These may be arranged in parallel with each other as can be seen in FIG. 6A, or as can be seen in FIG. 6B, the first filter unit 150a and the second filter unit 150b are in series, and the third filter unit 150c ) can be connected in parallel with these.
  • the first filter unit 150a, the second filter unit 150b, and the third filter unit 150c may be connected to channels that bypass each other so that the channels are opened and closed by valves.
  • a foreign matter sensor may be disposed between the first filter unit 150a, the second filter unit 150b, the third filter unit 150c, and the removal unit 100. Therefore, when a foreign substance is measured, each valve can be operated to open the bypassed passage.
  • the valve is operated to block the flow path between the first filter unit (150a) and the removal unit (100),
  • the flow path between the first filter unit 150a and the second filter unit 150b may be opened.
  • Gas passes through the second filter unit 150b and foreign substances can be removed.
  • the flow path between the second filter unit 150b and the removal unit 100 is closed as described above, and the second filter unit 150b
  • the flow path between and the third filter unit 150c may be opened.
  • the 3D printer including the impurity removal device including the filter units 150 shown in FIGS. 6A, 6B, and 6C is similar to the one described above, and will not be described here through separate drawings.
  • FIG. 7 illustrates a removal portion of an impurity removal device according to an embodiment
  • FIG. 8 illustrates a removal portion of an impurity removal device according to a specific embodiment
  • FIG. 9 illustrates an impurity removal device according to another specific embodiment. This shows the removal part.
  • the removal unit 100 may remove impurities in the gas by allowing the gas to pass through the removal body 110.
  • the removal unit 100 can remove impurities in the gas by placing the removal body 110 and the gas and then heating it.
  • the removal unit 100 of one embodiment may include an oxygen sensor 25 capable of measuring oxygen concentration, and may have a bypass passage connected to a location before passing through the removal unit. Therefore, when the gas that has passed through the removal unit contains more than a set amount of oxygen, a valve (not shown) is operated to open the bypass passage, and the passage connected to the removal unit 100 is closed to allow the gas to return to its original position. It can be allowed to pass through the removal unit 100 again.
  • the removal body 110 of the removal unit 100 of one embodiment may include any one pure metal among titanium, magnesium, aluminum, and calcium. At this time, the removal unit 100 may be heated to a set temperature, and the set temperature may be in the range of 200 degrees to 1200 degrees.
  • the set temperature may be in the range of 200 degrees to 1200 degrees.
  • the removal body 110 is exemplarily made of titanium wire (Ti wire), magnesium wire (Mg wire), aluminum wire (Al wire), and calcium wire (Ca wire).
  • Ti wire titanium wire
  • Mg wire magnesium wire
  • Al wire aluminum wire
  • Ca wire calcium wire
  • the removal unit 100 can be heated to a set temperature.
  • the temperature set here may range from 200 degrees to 1200 degrees. More specifically, the titanium wire may range from 700 degrees to 1200 degrees, the magnesium wire and aluminum wire may range from 400 degrees to 600 degrees, and the calcium wire may range from 200 degrees to 400 degrees.
  • the preferred temperature setting may be 500 degrees.
  • the inside of the removal unit 100 is maintained at at least 500 degrees, and the magnesium wire may be positioned inside the removal unit 100. Therefore, the gas passes through a magnesium wire heated to a set temperature and oxygen in the gas can be removed.
  • the removal body 110 may be in a bulk form rather than a wire form. In the case of bulk, it can be heated to the same temperature range as in the case of the wire described above.
  • the removal body 110 may be made of sponge titanium (Sponge Ti). That is, the sponge titanium may be disposed in a passage through which gas can move within the removal unit 100. And the removal unit 100 can be heated to a set temperature.
  • the temperature set here may range from 700 degrees to 1200 degrees. A preferably set temperature may be 900 degrees.
  • the inside of the removal unit 100 is maintained at at least 900 degrees, and the sponge titanium can be placed inside it. Therefore, the gas passes through a titanium sponge heated to a set temperature and the oxygen in the gas can be removed.
  • the removal body 110 of the removal unit 100 may include an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon. At this time, the removal unit 100 may be heated to a set temperature, and the set temperature may be in the range of 500 degrees to 1000 degrees.
  • the set temperature may be in the range of 500 degrees to 1000 degrees.
  • the removal body 110 may be an alloy containing aluminum-calcium-iron (wire or bulk, respectively).
  • the content (by weight) may be aluminum (35-45%), calcium (25-40%), and iron (25-35%).
  • the set temperature may range from 500 degrees to 900 degrees.
  • the removal body 100 may be an alloy containing magnesium-silicon-iron (wire or bulk, respectively).
  • the content may be magnesium (30-80%), silicon (10%), and iron (Balance).
  • the set temperature may range from 500 degrees to 900 degrees.
  • the removal body 100 may be an alloy containing calcium-silicon (wire or bulk, respectively).
  • the content may be calcium (20-40%) and silicon (50-70%).
  • the set temperature may range from 600 degrees to 1000 degrees.
  • Figure 10 shows a modified example of the removal unit according to an embodiment
  • Figure 11 shows another modified example of the removal unit according to an embodiment
  • Figure 12 shows another modification of the removal unit according to an embodiment. A modified example is shown.
  • the removal unit 100 may be composed of a first removal unit 101 and a second removal unit 102.
  • the first removal unit 101 and the second removal unit 102 may be provided with a first removal body 111 and a second removal body 112, respectively.
  • the first removal body 111 may be a magnesium wire (Mg wire).
  • the second removal body 112 may be sponge titanium (sponge Ti).
  • the first removal body 111 and the second removal body 112 may each include any one pure metal among titanium, magnesium, aluminum, and calcium.
  • the first removal body 111 and the second removal body 112 may each include an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon.
  • the case where the first removal body 111 is a magnesium wire (Mg wire) and the second removal body 112 is a sponge titanium (sponge Ti) will be described as an example.
  • the first removal unit 101 may be heated to a first temperature
  • the second removal unit 102 may be heated to a second temperature
  • the first temperature may be in the range of 400 degrees to 600 degrees, and preferably 500 degrees.
  • the second temperature may range from 700 degrees to 1200 degrees, and is preferably 900 degrees.
  • the gas passes through the first removal unit 101 and the second removal unit 102.
  • the set temperature of the first removal unit 101 is lower than the set temperature of the second removal unit 102. Therefore, since the temperature of the gas passing through the second removal unit 102 is higher than the temperature within the first removal unit 101, it is preferable that the gas is designed to pass through the first removal unit 101 first.
  • the removal unit 100 may include a first removal unit 101 and a second removal unit 102 connected in parallel. That is, the gas can be supplied to the first removal unit 101 and the second removal unit 102, and the gas can be supplied to a place where the flow path is opened and closed by the valve.
  • the removal unit 100 is composed of a first removal unit 101 and a second removal unit 102, which are connected in parallel and include a flow path branched by a valve. can do.
  • an oxygen sensor 25 may be disposed between each of the removal units 101 and 102 and the printing unit 20 (see FIG. 1).
  • the gas passes through the first removal unit 101 to remove impurities, but when the oxygen sensor detects that it contains more than a set amount of oxygen, the valve is operated to open the flow path between the printing unit 20 (see FIG. 1). may be closed, and the flow path between the first removal unit 101 and the second removal unit 102 may be opened. Therefore, foreign substances can be removed from the gas again by the second removal unit 102.
  • Figure 13 shows an impurity removal device according to another embodiment.
  • the impurity removal device may further include a mixing unit 200.
  • the mixing unit 200 may store powder and supply the powder to the printing unit 20.
  • the mixing unit 200 is connected to the removal unit 100, so the powder and gas can be mixed and then supplied. Therefore, the mixing unit 200 can maintain the inside of the printing unit 20 in a gaseous atmosphere from which impurities have been removed, and can supply the powder into the printing unit 20 after removing impurities (moisture, organic substances, etc.) in the powder.
  • Figure 14 specifically shows the mixing section of an impurity removal device according to another embodiment.
  • the mixing unit 200 includes a supply hopper unit 210 and a main unit 240.
  • the supply hopper unit 210 stores powder and may be connected to the main unit 240 at the upper side of the main unit 240. Therefore, the powder stored in the supply hopper unit 210 can be supplied to the main unit 240.
  • a supply valve 220 may be disposed between the supply hopper part 210 and the main part 240.
  • the supply valve 220 may open or close the flow path between the supply hopper unit 210 and the main unit 240 depending on the power supply. Therefore, a set amount of powder can be stored in the main unit 240.
  • the main part 240 is located above the supply hopper part 210, and the connection part 230 may be formed in a position that does not interfere with the connection with the supply hopper part 210.
  • the connection part 230 may be located on one side of the supply valve 220.
  • the connection part 230 may be connected to the removal part 100. Therefore, when the supply valve 220 opens the flow path, gas along with the powder can be supplied to the main part 240.
  • main part 240 in FIG. 14 is formed in a cone shape, it will be obvious that it is not limited to this shape.
  • the main part 240 may have a rotation axis 245 disposed therein.
  • the rotating shaft 245 can stir the powder so that the powder and gas are mixed.
  • the rotation shaft 245 may be composed of an extension portion 245-1 and a mixed shaft portion 245-2.
  • the extension part 245-1 may extend radially from the center of the main part 240.
  • the mixing shaft portion 245-2 may extend from an end of the extension portion 245-1 along the inner wall of the main portion 240 in a direction intersecting the extension portion 245-1.
  • the extension part 245-1 is rotatably connected to the main part 240 around the center of the main part 240, and the mixed shaft part 245-2 is rotatable to the extension part 245-1. is formed Therefore, the mixed shaft portion 245-2 is formed to be capable of rotation and revolution. Therefore, the mixing shaft portion 245-2 can smoothly mix powder and gas.
  • blades 245-3 may be disposed along the longitudinal direction of the mixing shaft portion 245-2. Therefore, when the mixing shaft portion 245-2 rotates, the powder can be more easily stirred due to the blade 245-3, and the powder and gas can be mixed.
  • a heating unit 250 may be disposed outside the main unit 240. When power is supplied, the heating unit 250 can apply heat to the main unit 240 to maintain the temperature inside the main unit 240 at a set temperature.
  • the temperature set here may be 50 degrees or more and 300 degrees or less. The temperature set here is preferably maintained around 100 to 200 degrees.
  • a discharge valve 260 may be connected to the lower side of the main part 240.
  • the discharge valve 260 serves to open or close the flow path depending on the power supply. Therefore, the powder mixed with gas in the main unit 240 can be supplied to the printing unit 20.
  • the main part 240 may have a discharge line 270 formed therein to control pressure.
  • the discharge line 270 opens and closes the flow path according to the power supply, and only gas can be discharged to the outside from the main part 240.
  • Figure 15 is a block diagram of an internal gas control method using an impurity removal device according to an embodiment.
  • the internal gas control method supplies gas from which impurities have been removed using the impurity supply device described above.
  • the internal gas control method may include a first supply step (S10), a pretreatment step (S20), a removal step (S30), and a second supply step (S40). Additionally, one embodiment may further include a powder pretreatment step (S35).
  • the first supply step (S10) is a step of supplying gas from the gas supply unit 10 to the removal unit 100 where the removal body 110 is located.
  • the pretreatment step (S20) refers to a step of initially removing impurities by supplying gas to the filter unit 150 before supplying gas to the removal unit 100.
  • the filter unit 150 is as described above in FIG. 2. Therefore, the filter unit 150 may include at least one of silica gel 151, magnesium perchlorate 153, or ascarite 152 (Ascarite).
  • impurities such as moisture or carbon dioxide can be removed from the gas before it is supplied to the removal unit 100.
  • the removal step (S30) is a step of removing impurities in the gas using the removal unit 100.
  • the removal unit 100 includes a removal body 110 (where the removal body may include any one pure metal of titanium, magnesium, aluminum, and calcium, or the removal body may include at least one of magnesium, aluminum, calcium, iron, and silicon). (which may include an alloy containing either one) is disposed and heated to a set temperature (200 to 1200 degrees for a pure metal, or 500 to 1000 degrees for an alloy).
  • a set temperature 200 to 1200 degrees for a pure metal, or 500 to 1000 degrees for an alloy.
  • the removal unit 100 may be heated to 400 degrees to 600 degrees or 700 degrees to 1200 degrees, and preferably, the removal unit 100 is heated to The temperature may be 500 degrees or 900 degrees respectively.
  • the gas moves through the heated removal body 110 and impurities in the gas can be removed.
  • the second supply step (S40) is a step of supplying gas from which impurities have been removed to the printing unit 20.
  • the printing unit 20 can manage the arrangement of various components within the chamber, as described with reference to FIG. 1 .
  • the present invention can prevent printing of defective products by maintaining the printing unit 20 in an inert gas atmosphere.
  • the powder pretreatment step (S35) is a step in which the gas from which impurities have been removed in the removal unit 100 is moved to the mixing unit 200, mixed with powder, and supplied to the printing unit 20.
  • the mixing unit 200 is as described above. That is, the mixing section 200 includes a supply hopper section 210 and a main section 240, and a supply valve 220 is disposed between the main section 240 and the supply hopper section 210, and the supply valve ( A connection part 230 is disposed in 220, and the discharge valve 260 may also be connected to the main part 240.
  • a rotating shaft 245 is disposed inside the main portion 240, and the rotating shaft 245 may include a mixed shaft portion 245-2 in which an extension portion 245-1 and a blade 245-3 are formed. . Therefore, the mixing shaft portion 245-2 can mix gas and powder while rotating and revolving.
  • the heating unit 250 is disposed on the outside of the main part 240 so that the inside of the main part 240 can be maintained at a temperature ranging from 50 degrees to 300 degrees, preferably in the range of 100 degrees to 200 degrees.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Automation & Control Theory (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)

Abstract

An impurity removal device and an internal gas control method using same are disclosed. An embodiment of the present invention can remove traces of impurities contained in inert gas and supply the gas to a printing unit. Accordingly, the printing unit can be prevented from printing a defective product due to the traces of impurities.

Description

불순물 제거 장치, 이를 포함하는 3차원 프린터 및 이를 활용한 내부 기체 제어 방법Impurity removal device, 3D printer including same, and internal gas control method using the same
본 발명은 3차원 프린터용 불순물 제거 장치, 이를 포함하는 3차원 프린터 및 이를 활용한 내부 기체 제어 방법에 관한 것이다. 특히 본 발명은 3차원 프린터에 공급되는 비활성 기체 내 산소의 함량을 저감할 수 있는 불순물 제거 장치, 3차원 프린터용 불순물 제거 장치, 이를 포함하는 3차원 프린터 및 이를 활용한 내부 기체 제어 방법에 관한 것이다.The present invention relates to an impurity removal device for a 3D printer, a 3D printer including the same, and an internal gas control method using the same. In particular, the present invention relates to an impurity removal device capable of reducing the oxygen content in an inert gas supplied to a 3D printer, an impurity removal device for a 3D printer, a 3D printer including the same, and an internal gas control method using the same. .
3차원 프린터는 제조 형상의 높은 자유도와 정밀도를 바탕으로 맞춤 제작이 가능하여 소량 맞춤형 제품 제작 시 활용되고 있다. 소량 맞춤형 제품을 제조하기 위한 3차원 프린터로 다양한 종류의 프린터가 있으나, PBF (powder bed fusion), DED (direct energy deposition)와 같은 금속 3차원 프린터가 소량 맞춤형 제작 시 가장 선호되는 프린터로 인식되고 있다.3D printers can be customized based on a high degree of freedom and precision in the manufacturing shape, so they are used to produce small quantities of customized products. There are various types of 3D printers for manufacturing small quantity customized products, but metal 3D printers such as PBF (powder bed fusion) and DED (direct energy deposition) are recognized as the most preferred printers for small quantity customized manufacturing. .
PBF방식과 DED방식은 금속분말을 이용하여 프린팅하는 방식으로, 일반적으로 PBF에서는 10이상 ~ 50이하㎛ 크기의 구형의 분말이 활용되고, DED방식에서는 50이상 ~ 150이하㎛ 크기의 구형의 분말이 활용된다. 금속분말은 적용 분야에 따라 티타늄, 알루미늄, 스테인리스스틸, 니켈, 크롬과 같은 다양한 소재로 제조된다.The PBF method and the DED method are printing methods using metal powder. Generally, in PBF, spherical powder with a size of 10 to 50 ㎛ is used, and in the DED method, spherical powder with a size of 50 to 150 ㎛ is used. It is utilized. Metal powders are manufactured from various materials such as titanium, aluminum, stainless steel, nickel, and chrome, depending on the field of application.
그러나 이처럼 활용되고 있는 3차원 프린터도 현재 해결하여야 하는 문제점이 있는데, 그 중 하나는 산소 농도를 저감시키는 것이다.However, the 3D printers currently being used in this way also have problems that must be solved, one of which is reducing oxygen concentration.
현재 3차원 프린터는 산소 농도가 매우 미비한 불활성 기체(예를 들면 아르곤, 질소) 분위기 내에서 동작되도록 설계되고 있다. 그러나 제품이 발달됨에 따라, 또는 정밀한 작업을 필요로 하는 분야가 증가됨에 따라 이 미비한 양의 산소도 문제되고 있다. Currently, 3D printers are designed to operate in an inert gas (eg, argon, nitrogen) atmosphere with a very low oxygen concentration. However, as products develop or the number of fields requiring precise work increases, even this small amount of oxygen becomes a problem.
특히 이 미비한 산소는 친환경자동차, 발전, 로봇, 전기·전자기기, 의료 등의 분야와 같이 첨단 제품을 제조하는 분야에서 문제가 되고 있다. 이 분야에서는 대부분 알루미늄, 마그네슘, 티타늄, 크롬, 희토류 등과 같이 산소 친화도가 높은 금속분말을 활용하여 제품을 프린팅하는데, 이때 비활성 기체 내 포함된 미세한 산소로 인하여 잔류응력, 뒤틀림, 균열, 표면 불량 등이 발생되고 있는 실정이다.In particular, this insufficient amount of oxygen is becoming a problem in fields that manufacture high-tech products such as eco-friendly automobiles, power generation, robots, electrical/electronic devices, and medical fields. In this field, products are mostly printed using metal powders with high oxygen affinity, such as aluminum, magnesium, titanium, chromium, and rare earth elements. At this time, residual stress, distortion, cracks, surface defects, etc. are caused by the minute oxygen contained in the inert gas. This is happening.
3차원 프린터는 많은 시간을 소요하여 제품을 인쇄하므로, 이러한 몇개의 제품의 결함은 양산 제품의 다수 불량품 제조와 비슷한 또는 더 큰 손해를 불러일으키고 있다.Since 3D printers take a lot of time to print products, defects in a few of these products cause similar or greater damage than manufacturing multiple defective products in mass-produced products.
이에 최근 이러한 문제를 해결한 3차원 프린터를 요구하는 목소리가 높아지고 있는 실정이다.Accordingly, calls for a 3D printer that solves these problems are increasing recently.
일 실시예에 의한 본 발명은 전술한 문제점을 해결한 것으로 미비한 양의 산소를 제거하여 불량품이 프린팅 되지 않을 수 있는 3차원 프린터용 불순물 제거 장치, 이를 포함하는 3차원 프린터 및 이를 활용한 내부 기체 제어 방법을 제공하는 데 목적이 있다.The present invention according to one embodiment solves the above-mentioned problem, and includes an impurity removal device for a 3D printer that can prevent defective products from being printed by removing an insignificant amount of oxygen, a 3D printer including the same, and internal gas control using the same. The purpose is to provide a method.
일 실시예에 의한 3차원 프린터용 불순물 제거 장치는 기체를 공급하는 기체공급부 및 상기 기체공급부로부터 상기 기체를 공급받으며, 불순물을 제거하는 제거체를 포함하며, 상기 제거체에 설정된 온도를 인가하여 상기 기체에 포함된 불순물을 제거하는 제거부를 포함할 수 있다.An impurity removal device for a 3D printer according to an embodiment includes a gas supply unit that supplies gas, and a removal body that receives the gas from the gas supply unit and removes impurities, and applies a set temperature to the removal body to remove the gas. It may include a removal unit that removes impurities contained in the gas.
상기 제거체는 티타늄, 마그네슘, 알루미늄 및 칼슘 중 어느 하나의 순금속을 포함할 수 있다.The remover may contain any one pure metal selected from titanium, magnesium, aluminum, and calcium.
상기 설정된 온도는 200도 내지 1200도 범위일 수 있다.The set temperature may range from 200 degrees to 1200 degrees.
상기 제거체는 마그네슘, 알루미늄, 칼슘, 철 및 실리콘 중 적어도 어느 하나가 함유된 합금을 포함할 수 있다.The removal body may include an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon.
상기 설정된 온도는 500도 내지 1000도 범위일 수 있다.The set temperature may range from 500 degrees to 1000 degrees.
상기 기체공급부와 상기 제거부 사이에는 불순물을 제거하는 필터부가 배치될 수 있다.A filter unit that removes impurities may be disposed between the gas supply unit and the removal unit.
상기 필터부는 복수개로 구성되며, 각각의 필터부는 상호 연결되는 유로를 포함할 수 있다.The filter unit is composed of a plurality of filter units, and each filter unit may include a flow path connected to each other.
상기 필터부는 상기 기체가 관통되면 수분 또는 이산화탄소를 제거할 수 있다.The filter unit can remove moisture or carbon dioxide when the gas passes through it.
분말과 기체를 혼합하는 혼합부를 더 포함할 수 있다.It may further include a mixing section for mixing powder and gas.
상기 혼합부는 분말을 일방향으로 공급하는 공급호퍼부와, 일측은 상기 공급호퍼부와 연결되고 타측은 제거부와 연결되며 내부에는 회전축이 배치되어 분말과 기체를 혼합하는 메인부를 포함할 수 있다.The mixing unit may include a supply hopper unit that supplies powder in one direction, a main unit that has one side connected to the supply hopper unit and the other side connected to a removal unit, and a rotating shaft disposed therein to mix the powder and gas.
상기 회전축은 상기 메인부의 일측에서 타측으로 연장되는 연장부와 상기 연장부에 연결되며 상기 메인부의 내벽을 따라 배치되는 혼합축부를 포함할 수 있다.The rotation axis may include an extension part extending from one side of the main part to the other side, and a mixed axis part connected to the extension part and disposed along an inner wall of the main part.
상기 혼합축부는 자전 가능하도록 상기 연장부에 연결될 수 있다. The mixing shaft portion may be connected to the extension portion so as to be able to rotate.
상기 혼합축부에는 길이방향을 따라 블레이드가 배치될 수 있다.Blades may be disposed along the longitudinal direction of the mixing shaft portion.
상기 메인부는 일측으로 갈수록 직경이 작아지고, 상기 회전체는 상기 메인부의 내벽을 따라 이동되도록 배치될 수 있다.The diameter of the main part decreases toward one side, and the rotating body may be arranged to move along the inner wall of the main part.
상기 메인부의 일측에는 기체를 방출하는 방출라인이 형성될 수 있다.An emission line for discharging gas may be formed on one side of the main part.
일 실시예에 의한 3차원 프린터에 불순물이 제거된 기체를 공급하는 내부 기체 제어 방법은 기체를 제거체가 위치된 제거부로 공급하는 제1공급단계, 상기 제거부를 설정된 온도로 가열하여 불순물을 제거하는 제거단계 및 상기 제거부에서 불순물이 제거된 기체를 프린팅부로 공급하는 제2공급단계를 포함할 수 있다.An internal gas control method for supplying a gas from which impurities have been removed to a 3D printer according to an embodiment includes a first supply step of supplying gas to a removal unit where a remover is located, and removing impurities by heating the removal unit to a set temperature. It may include a removal step and a second supply step of supplying the gas from which impurities have been removed in the removal unit to the printing unit.
상기 제거체는 티타늄, 마그네슘, 알루미늄 및 칼슘 중 어느 하나의 순금속을 포함할 수 있다.The remover may contain any one pure metal selected from titanium, magnesium, aluminum, and calcium.
상기 설정된 온도는 200도 내지 1200도 범위일 수 있다.The set temperature may range from 200 degrees to 1200 degrees.
상기 제거체는 마그네슘, 알루미늄, 칼슘, 철 및 실리콘 중 적어도 어느 하나가 함유된 합금을 포함할 수 있다.The removal body may include an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon.
상기 설정된 온도는 500도 내지 1000도 범위일 수 있다.The set temperature may range from 500 degrees to 1000 degrees.
상기 제거단계 이전에 상기 기체의 불순물을 제거하는 필터부를 이용하여 불순물을 제거하는 전처리단계를 포함할 수 있다.Before the removal step, a pretreatment step of removing impurities using a filter unit that removes impurities from the gas may be included.
상기 필터부는 상기 기체 내 수분 또는 이산화탄소를 제거할 수 있다.The filter unit may remove moisture or carbon dioxide in the gas.
상기 제2공급단계 이전에 상기 기체와 분말을 혼합하는 혼합부를 이용하여 기체와 분말을 혼합하여 상기 프린팅부로 공급하는 분말전처리단계를 포함할 수 있다.Before the second supply step, a powder pretreatment step may be included in which the gas and powder are mixed using a mixing unit for mixing the gas and powder and then supplied to the printing unit.
상기 혼합부는 분말을 일방향으로 공급하는 공급호퍼부와, 일측은 상기 공급호퍼부와 연결되고 타측은 제거부와 연결되며 내부에는 회전축이 배치되어, 분말과 기체를 혼합하는 메인부를 포함할 수 있다.The mixing unit may include a supply hopper unit that supplies powder in one direction, a main unit that has one side connected to the supply hopper unit and the other side connected to a removal unit, and a rotating shaft disposed therein, to mix the powder and gas.
상기 회전축은 상기 메인부의 내측벽을 따라서 배치되며, 자전과 공전을 하며 상기 기체와 분말을 혼합할 수 있다.The rotation axis is disposed along the inner wall of the main part, and can mix the gas and powder by rotating and revolving around.
상기 분말전처리단계에서 메인부는 설정된 온도로 가열될 수 있다.In the powder pretreatment step, the main part may be heated to a set temperature.
일 실시예에 의한 3차원 프린터는 기체를 공급하는 기체공급부, 상기 기체를 공급받는 챔버, 상기 챔버의 상측에 배치되는 레이저 출력부, 상기 레이저 출력부의 하측에 배치되어 분말이 위치되는 베드 및 상기 기체공급부와 상기 챔버 사이에 위치되어 불순물을 제거하는 제거체를 포함하며, 상기 제거체에 설정된 온도를 인가하여 상기 기체에 포함된 불순물을 제거하는 제거부를 포함할 수 있다.A 3D printer according to one embodiment includes a gas supply unit that supplies gas, a chamber that receives the gas, a laser output unit disposed on an upper side of the chamber, a bed disposed below the laser output portion where powder is located, and the gas. It may include a removal body located between the supply unit and the chamber to remove impurities, and a removal unit for removing impurities contained in the gas by applying a set temperature to the removal body.
상기 제거체는 티타늄, 마그네슘, 알루미늄 및 칼슘 중 어느 하나의 순금속을 포함할 수 있다.The remover may contain any one pure metal selected from titanium, magnesium, aluminum, and calcium.
상기 설정된 온도는 200도 내지 1200도 범위일 수 있다.The set temperature may range from 200 degrees to 1200 degrees.
상기 제거체는 마그네슘, 알루미늄, 칼슘, 철 및 실리콘 중 적어도 어느 하나가 함유된 합금을 포함할 수 있다The removal body may include an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon.
상기 설정된 온도는 500도 내지 1000도 범위일 수 있다.The set temperature may range from 500 degrees to 1000 degrees.
일 실시예에 의한 본 발명인 불순물 제거 장치는 기체가 프린팅부로 공급되기 전 제거부에 의하여 미세한 양의 산소가 제거되므로, 불량품이 프린팅되지 않을 수 있다.In the impurity removal device of the present invention according to one embodiment, a small amount of oxygen is removed by the removal unit before gas is supplied to the printing unit, so defective products may not be printed.
또한, 일 실시예에 의한 본 발명인 불순물 제거 장치는 필터부를 포함하여 기체 내 불순물을 제거하여 불량품이 프린팅되지 않을 수 있다.In addition, the impurity removal device of the present invention according to one embodiment includes a filter unit to remove impurities in the gas, thereby preventing defective products from being printed.
또한, 일 실시예에 의한 본 발명인 불순물 제거 장치는 혼합부를 포함하여, 분말과 기체를 혼합하여 공급하므로, 분말을 균질화 및 건조할 수 있으며, 수분 및 기타 유기물 형태의 불순물을 제거할 수 있으므로 불량품이 프린팅되지 않을 수 있다.In addition, the impurity removal device of the present invention according to one embodiment includes a mixing section, and supplies a mixture of powder and gas, so that the powder can be homogenized and dried, and impurities in the form of moisture and other organic substances can be removed, thereby preventing defective products. Printing may not occur.
또한, 일 실시예에 의한 본 발명인 내부 기체 제어 방법은 전술한 불순물 제거 장치를 활용하여 기체를 공급하므로 불순물이 제거된 기체를 공급하므로, 불량품이 프린팅되지 않을 수 있다.In addition, the internal gas control method of the present invention according to one embodiment supplies gas using the above-described impurity removal device, thereby supplying gas from which impurities have been removed, so defective products may not be printed.
도 1은 일 실시예에 의한 불순물 제거 장치의 개략도이다. 1 is a schematic diagram of an impurity removal device according to an embodiment.
도 2는 일 실시예에 의한 불순물 제거 장치를 포함하는 3차원 프린터를 도시한 것이다.Figure 2 shows a 3D printer including an impurity removal device according to an embodiment.
도 3은 다른 실시예에 의한 불순물 제거 장치를 도시한 개략도이다. Figure 3 is a schematic diagram showing an impurity removal device according to another embodiment.
도 4는 다른 실시예에 의한 불순물 제거 장치의 필터부의 구체적인 일례를 도시한 것이다. Figure 4 shows a specific example of a filter unit of an impurity removal device according to another embodiment.
도 5는 다른 실시예에 의한 불순물 제거 장치를 포함한 3차원 프린터를 도시한 것이다.Figure 5 shows a 3D printer including an impurity removal device according to another embodiment.
도 6a, 6b, 6c는 추가적인 실시예에 의한 이물질 제거 장치의 필터부를 도시한 것이다.Figures 6a, 6b, and 6c show a filter unit of a foreign matter removal device according to an additional embodiment.
도 7은 일 실시예에 의한 불순물 제거 장치의 제거부를 도시한 것이다. Figure 7 shows a removal portion of an impurity removal device according to an embodiment.
도 8은 구체적인 일 실시예에 의한 불순물 제거 장치의 제거부를 도시한 것이다. Figure 8 shows a removal unit of an impurity removal device according to a specific embodiment.
도 9는 구체적인 다른 실시예에 의한 불순물 제거 장치의 제거부를 도시한 것이다.Figure 9 shows a removal unit of an impurity removal device according to another specific embodiment.
도 10은 일 실시예에 의한 제거부의 변형예를 도시한 것이다. Figure 10 shows a modified example of the removal unit according to one embodiment.
도 11은 일 실시예에 의한 제거부의 다른 변형예를 도시한 것이다.Figure 11 shows another modified example of the removal unit according to one embodiment.
도 12는 일 실시예에 의한 제거부의 또 다른 변형예를 도시한 것이다. Figure 12 shows another modified example of the removal unit according to one embodiment.
도 13은 또 다른 실시예에 의한 불순물 제거 장치를 도시한 것이다.Figure 13 shows an impurity removal device according to another embodiment.
도 14는 또 다른 실시예에 의한 불순물 제거 장치의 혼합부를 구체적으로 도시한 것이다.Figure 14 specifically shows the mixing section of an impurity removal device according to another embodiment.
도 15은 일 실시예에 의한 불순물 제거 장치를 활용한 내부 기체 제어 방법의 블록도이다.Figure 15 is a block diagram of an internal gas control method using an impurity removal device according to an embodiment.
이하, 본 발명의 일실시예를 예시적인 도면을 통해 상세하게 설명한다. 그러나 이는 본 발명의 범위를 한정하려고 의도된 것은 아니다.Hereinafter, an embodiment of the present invention will be described in detail through exemplary drawings. However, this is not intended to limit the scope of the present invention.
각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.When adding reference numerals to components in each drawing, it should be noted that identical components are given the same reference numerals as much as possible even if they are shown in different drawings. Additionally, in describing the present invention, if it is determined that a detailed description of a related known configuration or function may obscure the gist of the present invention, the detailed description will be omitted.
또한, 도면에 도시된 구성요소의 크기나 형상 등은 설명의 명료성과 편의상 과장되게 도시될 수 있다. 또한, 본 발명의 구성 및 작용을 고려하여 특별히 정의된 용어들은 본 발명의 실시예를 설명하기 위한 것일 뿐이고, 본 발명의 범위를 한정하는 것이 아니다.Additionally, the size or shape of components shown in the drawings may be exaggerated for clarity and convenience of explanation. In addition, terms specifically defined in consideration of the configuration and operation of the present invention are only for describing embodiments of the present invention and do not limit the scope of the present invention.
도 1은 일 실시예에 의한 불순물 제거 장치의 개략도이다. 1 is a schematic diagram of an impurity removal device according to an embodiment.
일 실시예의 불순물 제거 장치는 불순물(비활성 기체를 제외한 나머지 기체 또는 그와 유사한 종류의 물질)을 제거하여 공급하므로, 프린팅 시 불순물로 인하여 발생되는 불량을 제거할 수 있다.The impurity removal device of one embodiment removes and supplies impurities (gases other than inert gases or similar types of substances), and thus can eliminate defects caused by impurities during printing.
도 1을 참고하여 일 실시예에 의한 불순물 제거 장치를 살펴보면 불순물 제거 장치는 기체공급부(10), 리사이클부(30), 제거부(100)를 포함할 수 있다. 여기서 본 발명인 불순물 제거 장치는 3차원 프린터를 위한 것이다. 그러므로 프린팅부(20)는 포함되지 않을 수 있다. 다만, 도 1에서는 설명의 명확화를 위하여 3차원 프린터의 각 구성요소들을 프린팅부(20)라고 하여 설명하도록 하겠다.Looking at an impurity removal device according to an embodiment with reference to FIG. 1, the impurity removal device may include a gas supply unit 10, a recycling unit 30, and a removal unit 100. Here, the impurity removal device of the present invention is for a 3D printer. Therefore, the printing unit 20 may not be included. However, in Figure 1, for clarity of explanation, each component of the 3D printer will be described as the printing unit 20.
기체공급부(10)는 비활성 기체(아르곤, 질소 등 - 이하 '기체'라고 함)이 저장되어 있는 공간이다. 기체공급부(10)에 저장된 비활성 기체는 프린팅부(20)로 공급될 수 있다.The gas supply unit 10 is a space where inert gas (argon, nitrogen, etc. - hereinafter referred to as 'gas') is stored. The inert gas stored in the gas supply unit 10 may be supplied to the printing unit 20.
프린팅부(20 - 도 2의 3차원 프린터를 간략히 표현한 것)는 3차원 프린팅을 위한 각종 장치들이 배치된 것으로 일례로 챔버(21 - 도 2 참조), 레이저 출력부(22 - 도 2 참조), 베드(23 - 도 2 참조), 블레이드(24 - 도 2 참조) 등으로 구성된 다양한 구성들이 배치된 전체를 지칭할 수 있다. The printing unit (20 - a simplified representation of the 3D printer in FIG. 2) is where various devices for 3D printing are arranged, for example, a chamber (21 - see FIG. 2), a laser output unit (22 - see FIG. 2), It may refer to the whole in which various components consisting of a bed (23 - see FIG. 2), a blade (24 - see FIG. 2), etc. are arranged.
즉, 챔버(21 - 도 2 참조) 내에 하측에는 베드(23 - 도 2 참조)가 상측에는 레이저 출력부(22 - 도 2 참조)가 위치되어 베드(23 - 도 2 참조)에 위치된 분말을 소결하고, 베드(23 - 도 2 참조)가 실린더에 의하여 하측으로 이동 시 블레이드(24 - 도 2 참조)가 분말을 베드(23 - 도 2 참조)로 공급하는 등의 동작을 반복 수행할 수 있다. 프린팅부(20 - 도 2의 3차원 프린터를 간략히 표현한 것)는 기체공급부(10)로부터 기체를 공급받아 내부 분위기를 비활성 기체가 채워진 상태로 유지할 수 있다.That is, within the chamber (21 - see FIG. 2), the bed (23 - see FIG. 2) is located on the lower side and the laser output unit (22 - see FIG. 2) is located on the upper side to extract the powder located in the bed (23 - see FIG. 2). After sintering, when the bed (23 - see FIG. 2) moves downward by the cylinder, the blade (24 - see FIG. 2) supplies powder to the bed (23 - see FIG. 2), etc. can be repeatedly performed. . The printing unit 20 (a simplified representation of the 3D printer in FIG. 2) receives gas from the gas supply unit 10 and can maintain the internal atmosphere filled with inert gas.
리사이클부(30)는 프린팅부(20 - 도 2의 3차원 프린터를 간략히 표현한 것)로부터 기체를 공급받아 순환시키는 역할을 한다.The recycling unit 30 receives gas from the printing unit (20 - a simplified representation of the 3D printer in FIG. 2) and circulates it.
한편, 기체공급부(10)와 프린팅부(20 - 도 2의 3차원 프린터를 간략히 표현한 것) 사이에는 제거부(100)가 위치되어 기체공급부(10)에 불순물이 제거된 기체가 공급될 수 있다. 즉, 제거부(100)는 기체 내 미량 포함된 불순물을 제거할 수 있다.Meanwhile, a removal unit 100 is located between the gas supply unit 10 and the printing unit 20 (a simplified representation of the 3D printer in FIG. 2), so that gas from which impurities have been removed can be supplied to the gas supply unit 10. . That is, the removal unit 100 can remove trace amounts of impurities contained in the gas.
위와 같은 일 실시예에 의한 본 발명인 기체 불순물 제거장치를 포함하는 3차원 프린터는 제거부(100)에 의하여 불순물이 제거된 기체를 공급받은 후 프린팅 동작을 수행할 수 있다. The 3D printer including the gas impurity removal device of the present invention according to the above-described embodiment can perform a printing operation after receiving gas from which impurities have been removed by the removal unit 100.
도 2는 일 실시예에 의한 불순물 제거 장치를 포함하는 3차원 프린터를 도시한 것이다.Figure 2 shows a 3D printer including an impurity removal device according to an embodiment.
일 실시예의 3차원 프린터는 챔버(21), 챔버 내 위치된 레이저 출력부(22), 베드(23), 블레이드(24) 등을 포함할 수 있다. 챔버(21)는 내부와 외부를 차단하는 역할을 한다. 챔버(21)는 일측은 제거부(100)와 연결되고, 타측은 리사이클부(30)와 연결될 수 있다. 여기서 챔버(21)는 밸브에 의하여 제거부(100), 리사이클부(30)와 연결될 수 있다. 그러므로 본 발명인 3차원 프린터는 내부 기체에 불순물이 제거될 수 있다. The 3D printer of one embodiment may include a chamber 21, a laser output unit 22 located within the chamber, a bed 23, and a blade 24. The chamber 21 serves to block the inside and the outside. One side of the chamber 21 may be connected to the removal unit 100 and the other side may be connected to the recycling unit 30. Here, the chamber 21 may be connected to the removal unit 100 and the recycling unit 30 by a valve. Therefore, the 3D printer of the present invention can remove impurities from the internal gas.
레이저 출력부(22)는 챔버 내 상측에 위치되어 설정된 방향으로 레이저를 출력할 수 있다. 레이저 출력부(22)는 레이저를 직접 조사할 수 있으나, 다이나믹 미러로 레이저를 인가하여 미러의 반사로 인하여 원하는 방향으로 레이저가 조사되도록 할 수 있다.The laser output unit 22 is located at the top of the chamber and can output laser in a set direction. The laser output unit 22 can directly irradiate laser, but can also apply laser through a dynamic mirror so that the laser is irradiated in a desired direction due to reflection of the mirror.
베드(23)는 챔버(21) 내 레이저 출력부(22) 하측에 위치될 수 있다. 베드(23)에는 프린팅의 대상이 되는 분말이 배치되어 있을 수 있다. 그러므로 레이저 출력부(22)에 의하여 베드(23) 내 분말은 소성 변형되어 설정된 형상으로 형성될 수 있다. 베드(23)는 상, 하로 이동 가능할 수 있다. 그러므로 베드(23)는 분말이 배치될 수 있다. 블레이드(24)는 베드(23)의 상측에서 평평하게 이동하며, 분말을 베드로 공급하는 역할을 한다. 즉, 베드(23)의 분말이 레이저 출력부에 의하여 소성 변형된 후, 베드(23)가 하강하면 블레이드(24)는 동작되어 베드(23) 내 분말을 공급할 수 있다.The bed 23 may be located below the laser output unit 22 in the chamber 21. Powder that is the subject of printing may be placed in the bed 23. Therefore, the powder in the bed 23 can be plastically deformed by the laser output unit 22 and formed into a set shape. The bed 23 may be movable up and down. Therefore, powder can be placed in the bed 23. The blade 24 moves flat on the upper side of the bed 23 and serves to supply powder to the bed. That is, after the powder in the bed 23 is plastically deformed by the laser output unit, when the bed 23 descends, the blade 24 operates to supply the powder in the bed 23.
한편, 위와 같은 동작은 제거부(100)로 인하여 불순물이 제거된 기체가 채워진 챔버 내에서 수행될 수 있다.Meanwhile, the above operation can be performed in a chamber filled with gas from which impurities have been removed by the removal unit 100.
또한, 추가로 일 실시예의 3차원 프린터는 산소 센서(25)가 배치될 수 있다. 산소 센서(25)는 챔버 내 기체의 산소 농도를 센싱할 수 있다. 3차원 프린터의 챔버(21) 내 산소 농도가 설정된 농도 이상이 되는 경우 리사이클부(30)가 동작될 수 있다.Additionally, the 3D printer in one embodiment may be equipped with an oxygen sensor 25. The oxygen sensor 25 can sense the oxygen concentration of the gas in the chamber. When the oxygen concentration in the chamber 21 of the 3D printer exceeds a set concentration, the recycling unit 30 may be operated.
즉, 3차원 프린터의 챔버(21) 내 산소 농도가 높은 경우, 레이저 출력부(22), 베드(23), 블레이드(24) 등의 동작이 중단되고, 제거부(100)와 리사이클부(30)의 밸브가 동작되어 챔버(21) 내 기체가 교환될 수 있다. 여기서 리사이클부(30)는 챔버(21) 내 공기를 다시 제거부(100)로 공급하여 기체 내 불순물이 제거되도록 할 수 있다.That is, when the oxygen concentration in the chamber 21 of the 3D printer is high, the operation of the laser output unit 22, bed 23, and blade 24 is stopped, and the removal unit 100 and recycling unit 30 ) The valve is operated so that the gas in the chamber 21 can be exchanged. Here, the recycling unit 30 may supply the air in the chamber 21 back to the removal unit 100 to remove impurities in the gas.
도 3은 다른 실시예에 의한 불순물 제거 장치를 도시한 개략도이며, 도 4는 다른 실시예에 의한 불순물 제거 장치의 필터부의 구체적인 일례를 도시한 것이고, 도 5는 다른 실시예에 의한 불순물 제거 장치를 포함한 3차원 프린터를 도시한 것이다.FIG. 3 is a schematic diagram showing an impurity removal device according to another embodiment, FIG. 4 shows a specific example of a filter unit of the impurity removal device according to another embodiment, and FIG. 5 is a schematic diagram showing an impurity removal device according to another embodiment. It shows a 3D printer including:
또한, 본 발명은 필터부(150)를 추가로 포함할 수 있다. 도 3을 참고하면 확인할 수 있듯이 필터부(150)는 기체공급부(10)에서 기체01가 제거부(100)로 이동되기 전 기체 내 포함된 불순물을 제거할 수 있다. 여기서 필터부(150)는 기체 내 수분 또는 이산화탄소를 제거할 수 있다.Additionally, the present invention may additionally include a filter unit 150. As can be seen with reference to FIG. 3, the filter unit 150 can remove impurities contained in the gas 01 from the gas supply unit 10 before it is moved to the removal unit 100. Here, the filter unit 150 can remove moisture or carbon dioxide in the gas.
도 4를 참고하여 필터부(150)를 더욱 상세하게 살펴보면, 필터부(150)는 실리카겔(151), 아스카라이트(152)(Ascarite), 과염소산마그네슘(153)을 포함할 수 있다. 즉, 필터부(150)는 실리카겔(151), 아스카라이트(152)(Ascarite), 과염소산마그네슘(153) 중 적어도 어느 하나 이상을 포함할 수 있다.Looking at the filter unit 150 in more detail with reference to FIG. 4, the filter unit 150 may include silica gel 151, ascarite 152, and magnesium perchlorate 153. That is, the filter unit 150 may include at least one of silica gel 151, ascarite 152, and magnesium perchlorate 153.
즉, 필터부(150)는 실리카겔(151)만으로 구성될 수 있고, 또는 실리카겔(151)과 아스카라이트(152)로 구성될 수 있다. 또한, 필터부(150)의 각 구성들이 하나로 있는 경우 이들은 상호 섞여서 한 위치에 또는 상호 구획된 공간에 위치된 채 상호 유로만 연결되며 배치될 수 있다. That is, the filter unit 150 may be composed of only silica gel 151, or may be composed of silica gel 151 and ascarite 152. In addition, when each component of the filter unit 150 is present as one, they can be mixed together and placed in one location or in mutually partitioned spaces, with only the flow paths connected to each other.
이처럼 필터부(150)는 제거부(100)로 기체가 공급되기 전 1차적으로 불순물을 제거하는 역할을 한다.In this way, the filter unit 150 primarily serves to remove impurities before the gas is supplied to the removal unit 100.
다만, 필터부(150)는 산소 이외에 다른 이물질(수분, 이산화탄소 등)을 제거할 수 있는 어떠한 것이면 그 구체적인 종류는 문제되지 않을 수 있다.However, the specific type of the filter unit 150 may not be a problem as long as it can remove foreign substances (moisture, carbon dioxide, etc.) other than oxygen.
도 5를 살펴보면 일 실시예의 3차원 프린터는 필터부(150)가 추가로 포함되어, 산소 이외에 수분, 이산화탄소 등의 불순물이 제거될 수 있다. 그러므로 더욱 정밀하게 프린팅 동작이 가능할 수 있다.Looking at Figure 5, the 3D printer of one embodiment additionally includes a filter unit 150, so that impurities such as moisture and carbon dioxide in addition to oxygen can be removed. Therefore, more precise printing operations may be possible.
도 6a, 6b, 6c는 추가적인 실시예에 의한 이물질 제거 장치의 필터부를 도시한 것이다.Figures 6a, 6b, and 6c show a filter unit of a foreign matter removal device according to an additional embodiment.
필터부(150)는 도 6a에서 도시된 바와 같이 다양하게 구성될 수 있다. 즉, 필터부(150)는 제1필터부(150a) 제2필터부(150b), 제3필터부(150c)로 구성될 수 있다. 이들은 도 6a에서 확인될 수 있듯이 상호 병렬되어 배치될 수 있으며, 또는 도 6b에서 확인될 수 있듯이 제1필터부(150a)와 제2필터부(150b)는 직렬로, 그리고 제3필터부(150c)는 이것들과 병렬로 연결될 수 있다.The filter unit 150 may be configured in various ways as shown in FIG. 6A. That is, the filter unit 150 may be composed of a first filter unit 150a, a second filter unit 150b, and a third filter unit 150c. These may be arranged in parallel with each other as can be seen in FIG. 6A, or as can be seen in FIG. 6B, the first filter unit 150a and the second filter unit 150b are in series, and the third filter unit 150c ) can be connected in parallel with these.
그렇지 않으면 도 6c에서 도시된 바와 같이 제1필터부(150a) 제2필터부(150b), 제3필터부(150c)는 밸브에 의하여 유로가 개폐되도록 상호 바이패스되는 유로들이 연결되어 있을 수 있고, 제1필터부(150a) 제2필터부(150b), 제3필터부(150c)와 제거부(100) 사이에는 이물질센서가 배치될 수 있다. 그러므로 이물질이 측정되는 경우 각각의 밸브가 동작되어 바이패스되는 유로를 개방할 수 있다. Otherwise, as shown in FIG. 6C, the first filter unit 150a, the second filter unit 150b, and the third filter unit 150c may be connected to channels that bypass each other so that the channels are opened and closed by valves. , a foreign matter sensor may be disposed between the first filter unit 150a, the second filter unit 150b, the third filter unit 150c, and the removal unit 100. Therefore, when a foreign substance is measured, each valve can be operated to open the bypassed passage.
일례로 제1필터부(150a)를 기체가 통과하였으나, 설정된 양 이상의 이물질이 기체에 포함된 경우, 밸브가 동작되어 제1필터부(150a)와 제거부(100) 사이의 유로는 차단되고, 제1필터부(150a)와 제2필터부(150b) 사이의 유로가 개방될 수 있다. 기체는 제2필터부(150b)를 통과하여 이물질이 제거될 수 있다. 여기서 만약 제2필터부(150b)를 통과한 기체 내 이물질이 존재하면 전술한 바와 동일하게 제2필터부(150b)와 제거부(100) 사이의 유로는 폐쇄되고, 제2필터부(150b)와 제3필터부(150c) 사이의 유로가 개방될 수 있다.For example, if the gas passes through the first filter unit (150a), but the gas contains more than a set amount of foreign matter, the valve is operated to block the flow path between the first filter unit (150a) and the removal unit (100), The flow path between the first filter unit 150a and the second filter unit 150b may be opened. Gas passes through the second filter unit 150b and foreign substances can be removed. Here, if there is a foreign substance in the gas that has passed through the second filter unit 150b, the flow path between the second filter unit 150b and the removal unit 100 is closed as described above, and the second filter unit 150b The flow path between and the third filter unit 150c may be opened.
한편, 도 6a, 6b, 6c에 도시된 필터부(150)들이 포함된 불순물 제거 장치를 포함하는 3차원 프린터는 전술한 바와 유사한바, 여기서는 별도의 도면을 통하여 설명하지 않도록 하겠다. Meanwhile, the 3D printer including the impurity removal device including the filter units 150 shown in FIGS. 6A, 6B, and 6C is similar to the one described above, and will not be described here through separate drawings.
도 7은 일 실시예에 의한 불순물 제거 장치의 제거부를 도시한 것이고, 도 8은 구체적인 일 실시예에 의한 불순물 제거 장치의 제거부를 도시한 것이고, 도 9는 구체적인 다른 실시예에 의한 불순물 제거 장치의 제거부를 도시한 것이다.FIG. 7 illustrates a removal portion of an impurity removal device according to an embodiment, FIG. 8 illustrates a removal portion of an impurity removal device according to a specific embodiment, and FIG. 9 illustrates an impurity removal device according to another specific embodiment. This shows the removal part.
도 7을 참고하여 일 실시예의 제거부(100)를 살펴보면, 제거부(100)는 제거체(110)에 기체가 통과하도록 하여 기체 내 불순물을 제거할 수 있다. 여기서 제거부(100)는 제거체(110)와 기체를 위치시킨 후 가열을 하여 기체 내 불순물을 제거할 수 있다. Looking at the removal unit 100 of one embodiment with reference to FIG. 7, the removal unit 100 may remove impurities in the gas by allowing the gas to pass through the removal body 110. Here, the removal unit 100 can remove impurities in the gas by placing the removal body 110 and the gas and then heating it.
한편, 일 실시예의 제거부(100)는 산소 농도를 측정할 수 있는 산소 센서(25)를 포함하고, 제거부를 통과하기 전 위치와 연결된 바이패스 유로가 형성되어 있을 수 있다. 그러므로 제거부를 통과한 기체가 설정된 양 이상의 산소를 포함하는 경우 미도시된 밸브가 동작되어 바이패스 유로를 개방하고, 제거부(100)에서 연결된 유로를 폐쇄하여 기체가 다시 원래의 위치로 돌아가게 하여 제거부(100)를 다시 통과하게 할 수 있다.Meanwhile, the removal unit 100 of one embodiment may include an oxygen sensor 25 capable of measuring oxygen concentration, and may have a bypass passage connected to a location before passing through the removal unit. Therefore, when the gas that has passed through the removal unit contains more than a set amount of oxygen, a valve (not shown) is operated to open the bypass passage, and the passage connected to the removal unit 100 is closed to allow the gas to return to its original position. It can be allowed to pass through the removal unit 100 again.
일 실시예의 제거부(100)의 제거체(110)는 티타늄, 마그네슘, 알루미늄 및 칼슘 중 어느 하나의 순금속을 포함할 수 있다. 이 때, 제거부(100)는 설정된 온도로 가열될 수 있는데, 설정된 온도는 200도 내지 1200도 범위일 수 있다. 이하 제거체(110)의 다양한 실시예를 설명한다.The removal body 110 of the removal unit 100 of one embodiment may include any one pure metal among titanium, magnesium, aluminum, and calcium. At this time, the removal unit 100 may be heated to a set temperature, and the set temperature may be in the range of 200 degrees to 1200 degrees. Hereinafter, various embodiments of the removal body 110 will be described.
도 8을 통하여 일 실시예의 제거부(100)를 살펴보면, 예시적으로 제거체(110)는 티타늄 와이어(Ti wire), 마그네슘 와이어(Mg wire), 알루미늄 와이어(Al wire), 칼슘 와이어(Ca wire) 중 어느 하나일 수 있다. 즉, 제거부(100) 내에 기체가 이동될 수 있는 유로 내에 티타늄 와이어, 마그네슘 와이어, 알루미늄 와이어, 칼슘 와이어 중 어느 하나가 배치될 수 있다. 그리고 제거부(100)는 설정된 온도로 가열될 수 있다. 여기서 설정된 온도는 200도 내지 1200도 범위일 수 있다. 보다 상세하게는, 티타늄 와이어는 700도 내지 1200도 범위일 수 있고, 마그네슘 와이어 및 알루미늄 와이어는 400도 내지 600도 범위일 수 있고, 칼슘 와이어는 200도 내지 400도 범위일 수 있다. 예를 들어, 마그네슘 와이어의 경우 바람직하게 설정된 온도는 500도 일 수 있다.Looking at the removal unit 100 of an embodiment through FIG. 8, the removal body 110 is exemplarily made of titanium wire (Ti wire), magnesium wire (Mg wire), aluminum wire (Al wire), and calcium wire (Ca wire). ) may be any one of the following. That is, any one of titanium wire, magnesium wire, aluminum wire, and calcium wire may be disposed in the passage through which gas can move within the removal unit 100. And the removal unit 100 can be heated to a set temperature. The temperature set here may range from 200 degrees to 1200 degrees. More specifically, the titanium wire may range from 700 degrees to 1200 degrees, the magnesium wire and aluminum wire may range from 400 degrees to 600 degrees, and the calcium wire may range from 200 degrees to 400 degrees. For example, for magnesium wire, the preferred temperature setting may be 500 degrees.
즉, 제거체(110)가 마그네슘 와이어인 경우를 예로 들면, 제거부(100)는 적어도 내부가 500도로 유지되고, 그 내부에 마그네슘 와이어가 위치될 수 있다. 그러므로 기체는 설정된 온도로 가열된 마그네슘 와이어를 통과하며 기체 내 산소가 제거될 수 있다.That is, for example, in the case where the removal member 110 is a magnesium wire, the inside of the removal unit 100 is maintained at at least 500 degrees, and the magnesium wire may be positioned inside the removal unit 100. Therefore, the gas passes through a magnesium wire heated to a set temperature and oxygen in the gas can be removed.
다른 예시로, 제거체(110)는 와이어 형태가 아닌 벌크(bulk) 형태일 수도 있다. 벌크의 경우 전술한 와이어의 경우와 동일한 온도 범위로 가열될 수 있다.As another example, the removal body 110 may be in a bulk form rather than a wire form. In the case of bulk, it can be heated to the same temperature range as in the case of the wire described above.
도 9에 의하여 일 실시예의 제거부(100)를 살펴보면 제거체(110)는 스폰지 티타늄(Sponge Ti)일 수 있다. 즉, 제거부(100) 내에 기체가 이동될 수 있는 통로 내 스폰지 티타늄이 배치될 수 있다. 그리고 제거부(100)는 설정된 온도로 가열될 수 있다. 여기서 설정된 온도는 700도 내지 1200도 범위일 수 있다. 바람직하게 설정된 온도는 900도 일 수 있다.Looking at the removal unit 100 of one embodiment with reference to FIG. 9, the removal body 110 may be made of sponge titanium (Sponge Ti). That is, the sponge titanium may be disposed in a passage through which gas can move within the removal unit 100. And the removal unit 100 can be heated to a set temperature. The temperature set here may range from 700 degrees to 1200 degrees. A preferably set temperature may be 900 degrees.
즉, 제거부(100)는 적어도 내부가 900도로 유지되고, 그 내부에 스폰지 티타늄이 위치될 수 있다. 그러므로 기체는 설정된 온도로 가열된 스폰지 티타늄을 통과하며 기체 내 산소가 제거될 수 있다.That is, the inside of the removal unit 100 is maintained at at least 900 degrees, and the sponge titanium can be placed inside it. Therefore, the gas passes through a titanium sponge heated to a set temperature and the oxygen in the gas can be removed.
다른 실시예로서, 제거부(100)의 제거체(110)는 마그네슘, 알루미늄, 칼슘, 철 및 실리콘 중 적어도 어느 하나가 함유된 합금을 포함할 수 있다. 이 때, 제거부(100)는 설정된 온도로 가열될 수 있는데, 설정된 온도는 500도 내지 1000도 범위일 수 있다. 이하 다양한 형태의 합금을 예시적으로 설명한다.As another example, the removal body 110 of the removal unit 100 may include an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon. At this time, the removal unit 100 may be heated to a set temperature, and the set temperature may be in the range of 500 degrees to 1000 degrees. Hereinafter, various types of alloys will be described by way of example.
제거체(110)는 알루미늄-칼슘-철(각각 와이어 또는 벌크)을 함유하는 합금일 수 있다. 함량(중량 기준)은 알루미늄 (35~45%), 칼슘 (25~40%), 철 (25~35%)일 수 있다. 설정된 온도는 500도 내지 900도 범위일 수 있다.The removal body 110 may be an alloy containing aluminum-calcium-iron (wire or bulk, respectively). The content (by weight) may be aluminum (35-45%), calcium (25-40%), and iron (25-35%). The set temperature may range from 500 degrees to 900 degrees.
제거체(100)는 마그네슘-실리콘-철(각각 와이어 또는 벌크)을 함유하는 합금일 수 있다. 함량은 마그네슘 (30~80%), 실리콘 (10%), 철 (Balance)일 수 있다. 설정된 온도는 500도 내지 900도 범위일 수 있다.The removal body 100 may be an alloy containing magnesium-silicon-iron (wire or bulk, respectively). The content may be magnesium (30-80%), silicon (10%), and iron (Balance). The set temperature may range from 500 degrees to 900 degrees.
제거체(100)는 칼슘-실리콘(각각 와이어 또는 벌크)을 함유하는 합금일 수 있다. 함량은 칼슘 (20~40%), 실리콘 (50~70%)일 수 있다. 설정된 온도는 600도 내지 1000도 범위일 수 있다.The removal body 100 may be an alloy containing calcium-silicon (wire or bulk, respectively). The content may be calcium (20-40%) and silicon (50-70%). The set temperature may range from 600 degrees to 1000 degrees.
도 10은 일 실시예에 의한 제거부의 변형예를 도시한 것이고, 도 11은 일 실시예에 의한 제거부의 다른 변형예를 도시한 것이며, 도 12는 일 실시예에 의한 제거부의 또 다른 변형예를 도시한 것이다. Figure 10 shows a modified example of the removal unit according to an embodiment, Figure 11 shows another modified example of the removal unit according to an embodiment, and Figure 12 shows another modification of the removal unit according to an embodiment. A modified example is shown.
도 10을 참고하여 또 다른 실시예에 의한 제거부(100)를 살펴보면, 제거부(100)는 제1제거부(101)와 제2제거부(102)로 구성될 수 있다.Looking at the removal unit 100 according to another embodiment with reference to FIG. 10, the removal unit 100 may be composed of a first removal unit 101 and a second removal unit 102.
제1제거부(101)와 제2제거부(102)는 각각 제1제거체(111), 제2제거체(112)가 배치될 수 있다.The first removal unit 101 and the second removal unit 102 may be provided with a first removal body 111 and a second removal body 112, respectively.
여기서 제1제거체(111)는 마그네슘 와이어(Mg wire)일 수 있다. 제2제거체(112)는 스폰지 티타늄(sponge Ti)일 수 있다. 다만, 이는 예시적인 것이며, 제1제거체(111) 및 제2제거체(112)는 각각 티타늄, 마그네슘, 알루미늄 및 칼슘 중 어느 하나의 순금속을 포함할 수 있다. 또는, 제1제거체(111) 및 제2제거체(112)는 각각 마그네슘, 알루미늄, 칼슘, 철 및 실리콘 중 적어도 어느 하나가 함유된 합금을 포함할 수도 있다. 이하, 제1제거체(111)는 마그네슘 와이어(Mg wire)이고 제2제거체(112)는 스폰지 티타늄(sponge Ti)인 경우를 예시적으로 설명한다.Here, the first removal body 111 may be a magnesium wire (Mg wire). The second removal body 112 may be sponge titanium (sponge Ti). However, this is an example, and the first removal body 111 and the second removal body 112 may each include any one pure metal among titanium, magnesium, aluminum, and calcium. Alternatively, the first removal body 111 and the second removal body 112 may each include an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon. Hereinafter, the case where the first removal body 111 is a magnesium wire (Mg wire) and the second removal body 112 is a sponge titanium (sponge Ti) will be described as an example.
제1제거부(101)는 제1온도로 가열되고, 제2제거부(102)는 제2온도로 가열될 수 있다.The first removal unit 101 may be heated to a first temperature, and the second removal unit 102 may be heated to a second temperature.
여기서, 제1온도는 400도 내지 600도 범위일 수 있고, 바람직하게는 500도일 수 있다. 제2온도는 700도 내지 1200도 범위일 수 있고, 바람직하게는 900도일 수 있다. Here, the first temperature may be in the range of 400 degrees to 600 degrees, and preferably 500 degrees. The second temperature may range from 700 degrees to 1200 degrees, and is preferably 900 degrees.
그러므로 기체는 제1제거부(101)와 제2제거부(102)를 이동하면서 각각 불순물이 제거될 수 있다. 다만 여기서 기체는 제1제거부(101)를 통과하고, 제2제거부(102)를 통과하도록 형성됨이 바람직하다. 그 이유는 제1제거부(101)의 설정된 온도가 제2제거부(102)의 설정된 온도보다 낮기 때문이다. 따라서 제2제거부(102)를 통과한 기체의 온도가 제1제거부(101) 내의 온도보다 높은바 기체는 제1제거부(101)를 먼저 통과하도록 설계됨이 바람직하다.Therefore, impurities can be removed from the gas while moving through the first removal unit 101 and the second removal unit 102. However, here, it is preferable that the gas passes through the first removal unit 101 and the second removal unit 102. The reason is that the set temperature of the first removal unit 101 is lower than the set temperature of the second removal unit 102. Therefore, since the temperature of the gas passing through the second removal unit 102 is higher than the temperature within the first removal unit 101, it is preferable that the gas is designed to pass through the first removal unit 101 first.
도 11를 통하여 다른 변형예를 살펴보면, 제거부(100)는 제1제거부(101) 및 제2제거부(102)가 병렬로 연결될 수 있다. 즉, 기체는 제1제거부(101), 제2제거부(102)로 공급될 수 있으며, 기체는 밸브에 의하여 유로가 개폐되는 곳으로 공급될 수 있다.Looking at another modified example through FIG. 11, the removal unit 100 may include a first removal unit 101 and a second removal unit 102 connected in parallel. That is, the gas can be supplied to the first removal unit 101 and the second removal unit 102, and the gas can be supplied to a place where the flow path is opened and closed by the valve.
도 12을 통하여 또 다른 변형예를 살펴보면, 제거부(100)는 제1제거부(101), 제2제거부(102)로 구성되고, 이들은 병렬로 연결되며, 밸브에 의하여 분기되는 유로를 포함할 수 있다.Looking at another modified example through FIG. 12, the removal unit 100 is composed of a first removal unit 101 and a second removal unit 102, which are connected in parallel and include a flow path branched by a valve. can do.
그리고 각각의 제거부(101, 102)와 프린팅부(20 - 도 1 참조) 사이에는 산소센서(25)가 배치될 수 있다. 일례로 기체는 제1제거부(101)를 관통하여 불순물이 제거되었으나, 산소센서에 의하여 설정된 양 이상의 산소가 포함된 것으로 측정되면, 밸브가 동작되어 프린팅부(20 - 도 1 참조) 사이의 유로를 폐쇄하고, 제1제거부(101)와 제2제거부(102) 사이의 유로가 개방될 수 있다. 그러므로 기체는 다시 제2제거부(102)에 의하여 이물질이 제거될 수 있다.Additionally, an oxygen sensor 25 may be disposed between each of the removal units 101 and 102 and the printing unit 20 (see FIG. 1). For example, the gas passes through the first removal unit 101 to remove impurities, but when the oxygen sensor detects that it contains more than a set amount of oxygen, the valve is operated to open the flow path between the printing unit 20 (see FIG. 1). may be closed, and the flow path between the first removal unit 101 and the second removal unit 102 may be opened. Therefore, foreign substances can be removed from the gas again by the second removal unit 102.
도 13은 또 다른 실시예에 의한 불순물 제거 장치를 도시한 것이다.Figure 13 shows an impurity removal device according to another embodiment.
일 실시예에 의한 불순물 제거 장치는 혼합부(200)를 추가로 포함할 수 있다.The impurity removal device according to one embodiment may further include a mixing unit 200.
혼합부(200)는 분말을 저장하고, 프린팅부(20)로 분말을 공급할 수 있다. 여기서 혼합부(200)는 제거부(100)와 연결되어 있어서, 분말과 기체를 혼합한 후 공급할 수 있다. 그러므로 혼합부(200)는 프린팅부(20) 내부를 불순물이 제거된 기체 분위기로 유지할 수 있으며 분말 내 불순물(수분, 유기물 등)을 제거한 후 프린팅부(20) 내부로 분말을 공급할 수 있다.The mixing unit 200 may store powder and supply the powder to the printing unit 20. Here, the mixing unit 200 is connected to the removal unit 100, so the powder and gas can be mixed and then supplied. Therefore, the mixing unit 200 can maintain the inside of the printing unit 20 in a gaseous atmosphere from which impurities have been removed, and can supply the powder into the printing unit 20 after removing impurities (moisture, organic substances, etc.) in the powder.
도 14는 또 다른 실시예에 의한 불순물 제거 장치의 혼합부를 구체적으로 도시한 것이다.Figure 14 specifically shows the mixing section of an impurity removal device according to another embodiment.
도 14를 통하여 혼합부(200)를 살펴보면, 혼합부(200)는 공급호퍼부(210), 메인부(240)를 포함한다.Looking at the mixing unit 200 through FIG. 14, the mixing unit 200 includes a supply hopper unit 210 and a main unit 240.
공급호퍼부(210)는 분말이 저장되어 있으며, 메인부(240)의 상측에서 메인부(240)와 연결될 수 있다. 그러므로 공급호퍼부(210)에 저장된 분말은 메인부(240)로 공급될 수 있다. 여기서 공급호퍼부(210)와 메인부(240) 사이에는 공급밸브(220)가 배치되어 있을 수 있다.The supply hopper unit 210 stores powder and may be connected to the main unit 240 at the upper side of the main unit 240. Therefore, the powder stored in the supply hopper unit 210 can be supplied to the main unit 240. Here, a supply valve 220 may be disposed between the supply hopper part 210 and the main part 240.
공급밸브(220)는 전원 공급에 따라 공급호퍼부(210)와 메인부(240) 사이의 유로를 개방하거나 폐쇄할 수 있다. 그러므로 설정된 양의 분말이 메인부(240)로 저장될 수 있다.The supply valve 220 may open or close the flow path between the supply hopper unit 210 and the main unit 240 depending on the power supply. Therefore, a set amount of powder can be stored in the main unit 240.
메인부(240)는 전술한 바와 같이 공급호퍼부(210)가 상측에 위치되고, 공급호퍼부(210)와 연결을 방해하지 않는 위치에 연결부(230)가 형성될 수 있다. 여기서 연결부(230)는 공급밸브(220)의 일측에 위치될 수 있다. 연결부(230)는 제거부(100)와 연결되어 있을 수 있다. 그러므로 공급밸브(220)가 유로를 개방하는 경우 분말과 함께 기체는 메인부(240)로 공급될 수 있다. As described above, the main part 240 is located above the supply hopper part 210, and the connection part 230 may be formed in a position that does not interfere with the connection with the supply hopper part 210. Here, the connection part 230 may be located on one side of the supply valve 220. The connection part 230 may be connected to the removal part 100. Therefore, when the supply valve 220 opens the flow path, gas along with the powder can be supplied to the main part 240.
다만, 도 14에서 메인부(240)는 원추 형상으로 형성되어 있으나, 이 형상으로 한정되어 형성되는 것이 아님은 자명할 것이다.However, although the main part 240 in FIG. 14 is formed in a cone shape, it will be obvious that it is not limited to this shape.
메인부(240)는 회전축(245)이 내부에 배치되어 있을 수 있다. 회전축(245)은 분말을 교반시켜 분말과 기체가 혼합되도록 할 수 있다. 회전축(245)은 연장부(245-1)와 혼합축부(245-2)로 구성될 수 있다. 연장부(245-1)는 메인부(240)의 중심에서 반경방향으로 연장될 수 있다. 혼합축부(245-2)는 연장부(245-1)의 단부에서 메인부(240)의 내측벽을 따라서 연장부(245-1)와 교차되는 방향으로 연장될 수 있다.The main part 240 may have a rotation axis 245 disposed therein. The rotating shaft 245 can stir the powder so that the powder and gas are mixed. The rotation shaft 245 may be composed of an extension portion 245-1 and a mixed shaft portion 245-2. The extension part 245-1 may extend radially from the center of the main part 240. The mixing shaft portion 245-2 may extend from an end of the extension portion 245-1 along the inner wall of the main portion 240 in a direction intersecting the extension portion 245-1.
연장부(245-1)는 메인부(240)의 중심을 축으로 하여 회전 가능하게 메인부(240)에 연결되고, 혼합축부(245-2)는 연장부(245-1)에 회전 가능하게 형성된다. 그러므로 혼합축부(245-2)는 자전이 가능하며 공전이 가능하도록 형성된다. 따라서 혼합축부(245-2)는 분말과 기체를 원활하게 혼합할 수 있다. The extension part 245-1 is rotatably connected to the main part 240 around the center of the main part 240, and the mixed shaft part 245-2 is rotatable to the extension part 245-1. is formed Therefore, the mixed shaft portion 245-2 is formed to be capable of rotation and revolution. Therefore, the mixing shaft portion 245-2 can smoothly mix powder and gas.
여기서 혼합축부(245-2)에는 길이방향을 따라서 블레이드(245-3)가 배치되어 있을 수 있다. 그러므로 혼합축부(245-2)의 회전 시 블레이드(245-3)로 인하여 분말은 더욱 교반이 용이하게 되어 분말과 기체가 혼합될 수 있다.Here, blades 245-3 may be disposed along the longitudinal direction of the mixing shaft portion 245-2. Therefore, when the mixing shaft portion 245-2 rotates, the powder can be more easily stirred due to the blade 245-3, and the powder and gas can be mixed.
한편, 메인부(240)의 외측에는 가열부(250)가 배치될 수 있다. 가열부(250)는 전원이 공급되면 열을 메인부(240)에 인가하여 메인부(240) 내부의 온도가 설정된 온도로 유지되도록 할 수 있다. 여기서 설정된 온도는 50도 이상 300도 이하일 수 있다. 여기서 설정된 온도는 100도 내지 200도 근방으로 유지되는 것이 바람직하다.Meanwhile, a heating unit 250 may be disposed outside the main unit 240. When power is supplied, the heating unit 250 can apply heat to the main unit 240 to maintain the temperature inside the main unit 240 at a set temperature. The temperature set here may be 50 degrees or more and 300 degrees or less. The temperature set here is preferably maintained around 100 to 200 degrees.
메인부(240)의 하측에서는 배출밸브(260)가 연결될 수 있다. 배출밸브(260)는 전원공급에 따라 유로를 개방하거나 폐쇄하는 역할을 한다. 따라서 메인부(240) 내에서 기체와 혼합된 분말은 프린팅부(20)로 공급될 수 있다. A discharge valve 260 may be connected to the lower side of the main part 240. The discharge valve 260 serves to open or close the flow path depending on the power supply. Therefore, the powder mixed with gas in the main unit 240 can be supplied to the printing unit 20.
또한, 메인부(240)는 압력을 조절하기 위하여 방출라인(270)이 형성되어 있을 수 있다. 방출라인(270)은 전원 공급에 따라 유로를 개폐하며 메인부(240)에서 기체만 외부로 방출할 수 있다.Additionally, the main part 240 may have a discharge line 270 formed therein to control pressure. The discharge line 270 opens and closes the flow path according to the power supply, and only gas can be discharged to the outside from the main part 240.
도 15은 일 실시예에 의한 불순물 제거 장치를 활용한 내부 기체 제어 방법의 블록도이다.Figure 15 is a block diagram of an internal gas control method using an impurity removal device according to an embodiment.
일 실시예에 의한 내부 기체 제어 방법은 전술한 불순물 공급 장치를 이용하여 불순물이 제거된 기체를 공급한다.The internal gas control method according to one embodiment supplies gas from which impurities have been removed using the impurity supply device described above.
일 실시예에 의한 내부 기체 제어 방법은 제1공급단계(S10), 전처리단계(S20), 제거단계(S30), 제2공급단계(S40)를 포함할 수 있다. 또한, 일 실시예는 분말전처리단계(S35)를 더 포함할 수 있다.The internal gas control method according to one embodiment may include a first supply step (S10), a pretreatment step (S20), a removal step (S30), and a second supply step (S40). Additionally, one embodiment may further include a powder pretreatment step (S35).
제1공급단계(S10)는 기체공급부(10)에서 기체를 제거체(110)가 위치된 제거부(100)로 공급하는 단계이다. The first supply step (S10) is a step of supplying gas from the gas supply unit 10 to the removal unit 100 where the removal body 110 is located.
전처리단계(S20)는 제거부(100)로 기체를 공급하기 전 필터부(150)로 기체를 공급하여 1차적으로 불순물을 제거하는 단계를 의미한다. 필터부(150)는 전술한 도 2에서 설명한 바와 같다. 그러므로 필터부(150)는 실리카겔(151), 과염소산마그네슘(153) 또는 아스카라이트(152)(Ascarite) 중 적어도 어느 하나 이상을 포함할 수 있다.The pretreatment step (S20) refers to a step of initially removing impurities by supplying gas to the filter unit 150 before supplying gas to the removal unit 100. The filter unit 150 is as described above in FIG. 2. Therefore, the filter unit 150 may include at least one of silica gel 151, magnesium perchlorate 153, or ascarite 152 (Ascarite).
그러므로 기체는 제거부(100)로 공급되기 전 수분 또는 이산화탄소 등의 불순물이 제거될 수 있다.Therefore, impurities such as moisture or carbon dioxide can be removed from the gas before it is supplied to the removal unit 100.
제거단계(S30)는 제거부(100)를 이용하여 기체 내 불순물을 제거하는 단계이다. The removal step (S30) is a step of removing impurities in the gas using the removal unit 100.
여기서 제거부(100)는 전술하여 설명한 바와 같다. 그러므로 제거부(100)는 제거체(110)(여기서 제거체는 티타늄, 마그네슘, 알루미늄 및 칼슘 중 어느 하나의 순금속을 포함할 수 있고, 또는 제거체는 마그네슘, 알루미늄, 칼슘, 철 및 실리콘 중 적어도 어느 하나가 함유된 합금을 포함할 수 있음)가 배치되어 있으며 설정된 온도(순금속인 경우 200도 내지 1200도, 또는 합금인 경우 500도 내지 1000도)로 가열될 수 있다. 예시적으로, 제거체가 마그네슘 와이어 또는 스폰지 티타늄 중 적어도 어느 하나인 경우, 제거부(100)는 400도 내지 600도 또는 700도 내지 1200도로 가열될 수 있으며, 바람직하게 제거부(100)를 가열하는 온도는 각각 500도 또는 900도일 수 있다.Here, the removal unit 100 is as described above. Therefore, the removal unit 100 includes a removal body 110 (where the removal body may include any one pure metal of titanium, magnesium, aluminum, and calcium, or the removal body may include at least one of magnesium, aluminum, calcium, iron, and silicon). (which may include an alloy containing either one) is disposed and heated to a set temperature (200 to 1200 degrees for a pure metal, or 500 to 1000 degrees for an alloy). Illustratively, when the removal body is at least one of magnesium wire or titanium sponge, the removal unit 100 may be heated to 400 degrees to 600 degrees or 700 degrees to 1200 degrees, and preferably, the removal unit 100 is heated to The temperature may be 500 degrees or 900 degrees respectively.
즉, 가열된 제거체(110)를 기체가 관통 이동하여 기체의 불순물은 제거될 수 있다.That is, the gas moves through the heated removal body 110 and impurities in the gas can be removed.
제2공급단계(S40)는 불순물이 제거된 기체를 프린팅부(20)로 공급하는 단계이다. 여기서 프린팅부(20)는 도 1을 통하여 설명한 바와 같이 챔버 내 다양한 구성들이 배치된 구성을 총괄할 수 있다. The second supply step (S40) is a step of supplying gas from which impurities have been removed to the printing unit 20. Here, the printing unit 20 can manage the arrangement of various components within the chamber, as described with reference to FIG. 1 .
이처럼 본 발명은 프린팅부(20)를 비활성 기체 분위기로 유지하여 불량품 인쇄를 방지할 수 있다.In this way, the present invention can prevent printing of defective products by maintaining the printing unit 20 in an inert gas atmosphere.
한편, 분말전처리단계(S35)는 제거부(100)에서 불순물이 제거된 기체를 혼합부(200)로 이동시켜 분말과 혼합하여 프린팅부(20)로 공급하는 단계이다. 여기서 혼합부(200)는 전술하여 설명한 바와 같다. 즉, 혼합부(200)는 공급호퍼부(210)와 메인부(240)를 포함하고, 메인부(240)와 공급호퍼부(210) 사이는 공급밸브(220)가 배치되고, 공급밸브(220)에는 연결부(230)가 배치되며, 배출밸브(260) 역시 메인부(240)에 연결될 수 있다.Meanwhile, the powder pretreatment step (S35) is a step in which the gas from which impurities have been removed in the removal unit 100 is moved to the mixing unit 200, mixed with powder, and supplied to the printing unit 20. Here, the mixing unit 200 is as described above. That is, the mixing section 200 includes a supply hopper section 210 and a main section 240, and a supply valve 220 is disposed between the main section 240 and the supply hopper section 210, and the supply valve ( A connection part 230 is disposed in 220, and the discharge valve 260 may also be connected to the main part 240.
여기서 메인부(240)의 내부에는 회전축(245)이 배치되고, 회전축(245)은 연장부(245-1)와 블레이드(245-3)가 형성된 혼합축부(245-2)를 포함할 수 있다. 그러므로 혼합축부(245-2)는 자전과 공전을 하며 기체와 분말을 혼합할 수 있다.Here, a rotating shaft 245 is disposed inside the main portion 240, and the rotating shaft 245 may include a mixed shaft portion 245-2 in which an extension portion 245-1 and a blade 245-3 are formed. . Therefore, the mixing shaft portion 245-2 can mix gas and powder while rotating and revolving.
한편, 메인부(240)의 외측에는 가열부(250)가 배치되어 메인부(240)의 내부는 50도 이상 300도 이하, 바람직하게 100도 내지 200도 범위로 유지될 수 있다.Meanwhile, the heating unit 250 is disposed on the outside of the main part 240 so that the inside of the main part 240 can be maintained at a temperature ranging from 50 degrees to 300 degrees, preferably in the range of 100 degrees to 200 degrees.
본 발명은 특정한 실시 예에 관련하여 도시하고 설명하였지만, 이하의 특허청구범위에 의해 제공되는 본 발명의 기술적 사상을 벗어나지 않는 한도 내에서, 본 발명이 다양하게 개량 및 변화될 수 있다는 것은 당 업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.Although the present invention has been shown and described in relation to specific embodiments, it is known in the art that various improvements and changes can be made to the present invention without departing from the technical spirit of the present invention as provided by the following claims. This will be self-evident to those with ordinary knowledge.
(부호의 설명)(Explanation of symbols)
10 : 기체공급부10: Gas supply unit
20 : 프린팅부20: Printing department
21 : 챔버21: chamber
22 : 레이저 출력부22: Laser output unit
23 : 베드23: Bed
24 : 블레이드24: blade
25 : 산소센서25: Oxygen sensor
30 : 리사이클부30: recycling unit
100 : 제거부100: removal part
101 : 제1제거부101: first removal section
102 : 제2제거부102: second removal unit
110 : 제거체110: removal body
111 : 제1제거체111: first removal body
112 : 제2제거체112: Second removal body
150 : 필터부150: filter part
151 : 실리카겔151: Silica gel
152 : 아스카라이트152: Ascarite
153 : 과염소산마그네슘153: Magnesium perchlorate
200 : 혼합부200: mixing section
210 : 공급호퍼부210: Supply hopper part
220 : 공급밸브220: Supply valve
230 : 연결부230: connection part
240 : 메인부240: main part
245 : 회전축245: rotation axis
245-1 : 연장부245-1: Extension part
245-2 : 혼합축부245-2: Mixed shaft section
245-3 : 블레이드245-3: Blade
250 : 가열부250: heating unit
260 : 배출밸브260: discharge valve
270 : 방출라인270: discharge line

Claims (27)

  1. 3차원 프린터용 불순물 제거 장치에 있어서,In the impurity removal device for a 3D printer,
    기체를 공급하는 기체공급부; 및A gas supply unit that supplies gas; and
    상기 기체공급부로부터 상기 기체를 공급받으며, 불순물을 제거하는 제거체를 포함하며, 상기 제거체에 설정된 온도를 인가하여 상기 기체에 포함된 불순물을 제거하는 제거부A removal unit that receives the gas from the gas supply unit and includes a removal body that removes impurities, and removes impurities contained in the gas by applying a set temperature to the removal body.
    를 포함하는 불순물 제거 장치.An impurity removal device comprising:
  2. 제1항에 있어서,According to paragraph 1,
    상기 제거체는 티타늄, 마그네슘, 알루미늄 및 칼슘 중 어느 하나의 순금속을 포함하는 불순물 제거 장치.An impurity removal device wherein the remover contains any one pure metal of titanium, magnesium, aluminum, and calcium.
  3. 제2항에 있어서,According to paragraph 2,
    상기 설정된 온도는 200도 내지 1200도 범위인 불순물 제거 장치.The set temperature is an impurity removal device in the range of 200 degrees to 1200 degrees.
  4. 제1항에 있어서,According to paragraph 1,
    상기 제거체는 마그네슘, 알루미늄, 칼슘, 철 및 실리콘 중 적어도 어느 하나가 함유된 합금을 포함하는 불순물 제거 장치.The impurity removal device includes an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon.
  5. 제4항에 있어서,According to paragraph 4,
    상기 설정된 온도는 500도 내지 1000도 범위인 불순물 제거 장치.The set temperature is an impurity removal device in the range of 500 degrees to 1000 degrees.
  6. 제1항에 있어서,According to paragraph 1,
    상기 기체공급부와 상기 제거부 사이에는 불순물을 제거하는 필터부가 배치되는 불순물 제거 장치.An impurity removal device in which a filter for removing impurities is disposed between the gas supply unit and the removal unit.
  7. 제6항에 있어서,According to clause 6,
    상기 필터부는The filter part
    복수개로 구성되며, 각각의 필터부는 상호 연결되는 유로를 포함하는 불순물 제거 장치.An impurity removal device consisting of a plurality of filter units, each of which includes a flow path connected to each other.
  8. 제6항에 있어서,According to clause 6,
    상기 필터부는 상기 기체가 관통되면 수분 또는 이산화탄소를 제거할 수 있는 불순물 제거 장치.The filter unit is an impurity removal device capable of removing moisture or carbon dioxide when the gas penetrates.
  9. 제1항에 있어서In paragraph 1
    분말과 기체를 혼합하는 혼합부를 더 포함하는 불순물 제거 장치.An impurity removal device further comprising a mixing section for mixing powder and gas.
  10. 제9항에 있어서In paragraph 9
    상기 혼합부는The mixing part
    분말을 일방향으로 공급하는 공급호퍼부와, 일측은 상기 공급호퍼부와 연결되고 타측은 제거부와 연결되며 내부에는 회전축이 배치되어 분말과 기체를 혼합하는 메인부를 포함하는 불순물 제거 장치.An impurity removal device comprising a supply hopper unit that supplies powder in one direction, a main unit that has one side connected to the supply hopper unit and the other side connected to the removal unit and a rotating shaft disposed therein to mix the powder and gas.
  11. 제10항에 있어서,According to clause 10,
    상기 회전축은The rotation axis is
    상기 메인부의 일측에서 타측으로 연장되는 연장부와 상기 연장부에 연결되며 상기 메인부의 내벽을 따라 배치되는 혼합축부를 포함하는 불순물 제거 장치.An impurity removal device comprising an extension part extending from one side of the main part to the other side and a mixing shaft part connected to the extension part and disposed along an inner wall of the main part.
  12. 제11항에 있어서,According to clause 11,
    상기 혼합축부는 자전 가능하도록 상기 연장부에 연결되는 불순물 제거 장치.An impurity removal device in which the mixing shaft portion is connected to the extension portion so as to be able to rotate.
  13. 제11항에 있어서,According to clause 11,
    상기 혼합축부에는 길이방향을 따라 블레이드가 배치되는 불순물 제거 장치.An impurity removal device in which blades are disposed along the longitudinal direction of the mixing shaft.
  14. 제10항에 있어서,According to clause 10,
    상기 메인부는 일측으로 갈수록 직경이 작아지고, 상기 회전축은 상기 메인부의 내벽을 따라 이동되도록 배치되는 불순물 제거 장치.An impurity removal device in which the diameter of the main part becomes smaller toward one side, and the rotation axis is arranged to move along the inner wall of the main part.
  15. 제10항에 있어서,According to clause 10,
    상기 메인부의 일측에는 기체를 방출하는 방출라인이 형성된 불순물 제거 장치.An impurity removal device in which a discharge line for releasing gas is formed on one side of the main portion.
  16. 3차원 프린터에 불순물이 제거된 기체를 공급하는 내부 기체 제어 방법에 있어서In the internal gas control method of supplying gas from which impurities have been removed to a 3D printer
    기체를 제거체가 위치된 제거부로 공급하는 제1공급단계;A first supply step of supplying gas to the removal unit where the removal body is located;
    상기 제거부를 설정된 온도로 가열하여 불순물을 제거하는 제거단계; 및A removal step of removing impurities by heating the removal unit to a set temperature; and
    상기 제거부에서 불순물이 제거된 기체를 프린팅부로 공급하는 제2공급단계를 포함하는 내부 기체 제어 방법.An internal gas control method comprising a second supply step of supplying the gas from which impurities have been removed in the removal unit to the printing unit.
  17. 제16항에 있어서,According to clause 16,
    상기 제거체는 티타늄, 마그네슘, 알루미늄 및 칼슘 중 어느 하나의 순금속을 포함하고, The remover contains any one pure metal of titanium, magnesium, aluminum, and calcium,
    상기 설정된 온도는 200도 내지 1200도 범위인내부 기체 제어 방법.The set temperature is in the range of 200 degrees to 1200 degrees.
  18. 제16항에 있어서,According to clause 16,
    상기 제거체는 마그네슘, 알루미늄, 칼슘, 철 및 실리콘 중 적어도 어느 하나가 함유된 합금을 포함하고,The removal body includes an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon,
    상기 설정된 온도는 500도 내지 1000도 범위인 내부 기체 제어 방법.An internal gas control method wherein the set temperature is in the range of 500 to 1000 degrees.
  19. 제16항에 있어서,According to clause 16,
    상기 제거단계 이전에Before the removal step
    상기 기체의 불순물을 제거하는 필터부를 이용하여 불순물을 제거하는 전처리단계를 포함하는 내부 기체 제어 방법.An internal gas control method comprising a pretreatment step of removing impurities from the gas using a filter unit that removes impurities from the gas.
  20. 제19항에 있어서,According to clause 19,
    상기 필터부는 상기 기체 내 수분 또는 이산화탄소를 제거할 수 있는 내부 기체 제어 방법.An internal gas control method in which the filter unit can remove moisture or carbon dioxide in the gas.
  21. 제16항에 있어서,According to clause 16,
    상기 제2공급단계 이전에Before the second supply stage
    상기 기체와 분말을 혼합하는 혼합부를 이용하여 기체와 분말을 혼합하여 상기 프린팅부로 공급하는 분말전처리단계를 포함하는 내부 기체 제어 방법.An internal gas control method comprising a powder pretreatment step of mixing gas and powder using a mixing unit for mixing the gas and powder and supplying the mixture to the printing unit.
  22. 제21항에 있어서,According to clause 21,
    상기 혼합부는 The mixing part
    분말을 일방향으로 공급하는 공급호퍼부와, 일측은 상기 공급호퍼부와 연결되고 타측은 제거부와 연결되며 내부에는 회전축이 배치되어, 분말과 기체를 혼합하는 메인부를 포함하는 내부 기체 제어 방법.An internal gas control method comprising a supply hopper part that supplies powder in one direction, a main part that has one side connected to the supply hopper part and the other side connected to the removal part, and a rotating shaft disposed therein, to mix the powder and gas.
  23. 제22항에 있어서,According to clause 22,
    상기 회전축은 상기 메인부의 내측벽을 따라서 배치되며, 자전과 공전을 하며 상기 기체와 분말을 혼합하는 내부 기체 제어 방법.The rotation axis is disposed along the inner wall of the main part, and rotates and rotates to mix the gas and powder.
  24. 제21항에 있어서,According to clause 21,
    상기 분말전처리단계에서In the powder pretreatment step
    메인부는 설정된 온도로 가열되는 내부 기체 제어 방법.An internal gas control method in which the main part is heated to a set temperature.
  25. 기체를 공급하는 기체공급부;A gas supply unit that supplies gas;
    상기 기체를 공급받는 챔버; a chamber supplied with the gas;
    상기 챔버의 상측에 배치되는 레이저 출력부; a laser output unit disposed on the upper side of the chamber;
    상기 레이저 출력부의 하측에 배치되어 분말이 위치되는 베드; 및 a bed disposed below the laser output unit where powder is located; and
    상기 기체공급부와 상기 챔버 사이에 위치되어 불순물을 제거하는 제거체를 포함하며, 상기 제거체에 설정된 온도를 인가하여 상기 기체에 포함된 불순물을 제거하는 제거부It includes a removal body located between the gas supply unit and the chamber to remove impurities, and a removal unit removing impurities contained in the gas by applying a set temperature to the removal body.
    를 포함하는 3차원 프린터.A 3D printer including.
  26. 제25항에 있어서,According to clause 25,
    상기 제거체는 티타늄, 마그네슘, 알루미늄 및 칼슘 중 어느 하나의 순금속을 포함하고, The remover contains any one pure metal of titanium, magnesium, aluminum, and calcium,
    상기 설정된 온도는 200도 내지 1200도 범위인 3차원 프린터.A 3D printer where the set temperature is in the range of 200 degrees to 1200 degrees.
  27. 제25항에 있어서,According to clause 25,
    상기 제거체는 마그네슘, 알루미늄, 칼슘, 철 및 실리콘 중 적어도 어느 하나가 함유된 합금을 포함하고,The removal body includes an alloy containing at least one of magnesium, aluminum, calcium, iron, and silicon,
    상기 설정된 온도는 500도 내지 1000도 범위인 3차원 프린터.A 3D printer where the set temperature is in the range of 500 to 1000 degrees.
PCT/KR2023/009581 2022-07-06 2023-07-06 Impurity removal device, 3d printer comprising same, and internal gas control method using same WO2024010395A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0083252 2022-07-06
KR1020220083252A KR20240006327A (en) 2022-07-06 2022-07-06 Impurity removal apparatus in gas, three dimension printer having them and gas control method using them

Publications (1)

Publication Number Publication Date
WO2024010395A1 true WO2024010395A1 (en) 2024-01-11

Family

ID=89453815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/009581 WO2024010395A1 (en) 2022-07-06 2023-07-06 Impurity removal device, 3d printer comprising same, and internal gas control method using same

Country Status (2)

Country Link
KR (1) KR20240006327A (en)
WO (1) WO2024010395A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160207147A1 (en) * 2015-01-16 2016-07-21 United Technologies Corporation Additive processing apparatus and method
KR20170133682A (en) * 2016-05-26 2017-12-06 부산대학교 산학협력단 Apparatus for Printing 3D Porous Polymer Structure And Method for Printing 3D Porous Polymer Structure Using the Same
KR20200071844A (en) * 2018-12-03 2020-06-22 해양기계 주식회사 3D Printer Filament In/Out Tools
JP2021094503A (en) * 2019-12-13 2021-06-24 三菱重工業株式会社 Gas supply device for production devices, atomization device, 3d lamination molding device, lamination molding system, and molding, and gas supply method for production devices
KR20220012885A (en) * 2019-05-24 2022-02-04 이퀴스피어스 인코포레이티드 Method and system for manufacturing metal powder in gas atmosphere with few impurities

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101982328B1 (en) 2015-08-31 2019-05-24 셀링크 에이비 Clean chamber technology for 3d printers and bioprinters
KR20180003312A (en) 2016-06-30 2018-01-09 (주)센트롤 Three-dimensional object
KR101773062B1 (en) 2017-01-17 2017-08-31 (주)센트롤 Three-dimensional object

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160207147A1 (en) * 2015-01-16 2016-07-21 United Technologies Corporation Additive processing apparatus and method
KR20170133682A (en) * 2016-05-26 2017-12-06 부산대학교 산학협력단 Apparatus for Printing 3D Porous Polymer Structure And Method for Printing 3D Porous Polymer Structure Using the Same
KR20200071844A (en) * 2018-12-03 2020-06-22 해양기계 주식회사 3D Printer Filament In/Out Tools
KR20220012885A (en) * 2019-05-24 2022-02-04 이퀴스피어스 인코포레이티드 Method and system for manufacturing metal powder in gas atmosphere with few impurities
JP2021094503A (en) * 2019-12-13 2021-06-24 三菱重工業株式会社 Gas supply device for production devices, atomization device, 3d lamination molding device, lamination molding system, and molding, and gas supply method for production devices

Also Published As

Publication number Publication date
KR20240006327A (en) 2024-01-15

Similar Documents

Publication Publication Date Title
WO2024010395A1 (en) Impurity removal device, 3d printer comprising same, and internal gas control method using same
WO2011021824A2 (en) Electrostatic chuck and method for manufacturing same
WO2016099023A1 (en) Gear-coupling type steering apparatus and steering method using same
WO2015041454A1 (en) Device for inspecting canister for vehicle
WO2017159960A1 (en) Insulating oil reloading device and insulating oil reloading method of x-ray tube module
WO2021071340A1 (en) Pressurizing module and device handler having same
WO2021242084A1 (en) Internally rotatable sewing device including crescent hook
WO2018034422A1 (en) Vacuum chuck composite and preparation method therefor
WO2018070838A1 (en) Aluminum powder coated with fluorine-based hydrocarbon polymer layer and preparation method therefor
WO2017003058A1 (en) Frictional resistance-reducing device and ship including same
WO2018143581A1 (en) Chamfering device and chamfering method
WO2022108197A1 (en) Combustor including heat exchange structure and rocket comprising same
WO2021230535A1 (en) Method for evaluating efficacy of uv blocking ingredient for hair
WO2019054728A1 (en) Rotating device for supplying shielding gas and removing fumes
WO2020116804A1 (en) Substrate treatment device and method for cleaning o-ring of substrate treatment device
WO2023008637A1 (en) Round-battery inspection device
WO2014175519A1 (en) Ceramic ink composition for inkjet printing and preparation method therefor
WO2010024545A2 (en) A method for the autothermal manufacture of fired material using a vertical furnace
WO2015034318A1 (en) Thermoelectric material
WO2020116771A1 (en) Substrate treatment device
WO2023191573A1 (en) Temperature sensing reaction type safety valve for pressure container
WO2024071633A1 (en) Method for manufacturing steel
WO2018088625A1 (en) Conductive paste and flat heating element
WO2024043400A1 (en) Substrate treatment device and gas supply method
WO2010087664A2 (en) Gas regulating valve for torch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835861

Country of ref document: EP

Kind code of ref document: A1