WO2018034422A1 - Vacuum chuck composite and preparation method therefor - Google Patents

Vacuum chuck composite and preparation method therefor Download PDF

Info

Publication number
WO2018034422A1
WO2018034422A1 PCT/KR2017/006616 KR2017006616W WO2018034422A1 WO 2018034422 A1 WO2018034422 A1 WO 2018034422A1 KR 2017006616 W KR2017006616 W KR 2017006616W WO 2018034422 A1 WO2018034422 A1 WO 2018034422A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
parts
asf
alumina
composite
Prior art date
Application number
PCT/KR2017/006616
Other languages
French (fr)
Korean (ko)
Inventor
김종영
조우석
최광민
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Publication of WO2018034422A1 publication Critical patent/WO2018034422A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0038Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by superficial sintering or bonding of particulate matter

Definitions

  • the present invention relates to a vacuum chuck composite and a method for manufacturing the same, more specifically Al 2 O 3 , SiO 2 Since the carbon-based material is dispersed in the ceramic material, the electrical resistance is reduced, and thus it has an antistatic function, excellent mechanical properties, porosity, simple manufacturing process without complicated manufacturing process, and low manufacturing vacuum
  • the present invention relates to a chuck complex and a method of manufacturing the same.
  • the manufacturing process of a semiconductor device includes a process of forming or stacking a pattern on dozens of different kinds of layers.
  • the patterns formed on each layer should be formed as designed and perform the intended electrical operation.
  • a small amount of triboelectric static electricity is generated when the wafer or glass that has been adsorbed and fixed on a fixing chuck of a semiconductor wafer or liquid crystal display (LCD) glass is separated.
  • LCD liquid crystal display
  • Patterns printed on semiconductor wafers and display substrates are being miniaturized, so that static electricity generated in the process of mounting and separating semiconductor wafers and display substrates onto porous ceramic substrates is charged to electronic components such as semiconductor devices integrated on semiconductor wafers and display substrates.
  • defects such as a short circuit of the printed pattern or a process of separating the wafer and the display substrate from the chuck frequently cause cracks in the wafer due to static electricity.
  • the antistatic work stage is coated with a carbon nanotube coating on the stage of the metal material to minimize the generation of static electricity on the surface meeting the substrate of the stage.
  • Carbon nanotube coating stage is to prevent the antistatic by applying a conductive carbon nanotube coating film on the stage body through a separate coating process of a metal material such as aluminum rather than a porous ceramic.
  • Korean Patent Laid-Open Publication No. 10-2010-0121895 'Substrate having an antistatic function and a manufacturing method thereof' has an antistatic function by crystallizing a titanium dioxide (TiO 2 ) doped with impurities in a base layer made of a glass material. It is characterized by one.
  • Korean Patent Application Publication No. 10-2010-0121895 discloses a glass material base, which is similar to an antistatic work stage described above, in which the base body is a glass material and undergoes a separate deposition and heat treatment process. An antistatic layer is formed on the layer.
  • the antistatic coating stage on the carbon nanotube coating and the glass material is complicated in manufacturing process and takes a lot of manufacturing cost, and if the carbon nanotube coating film coated on the stage body is damaged, the entire stage needs to be replaced.
  • the carbon nanotube coating and the antistatic coating stage on the glass material have a limitation in adsorbing a large area of thin wafer or display glass since a sealed coating film is formed on the upper surface of the main body.
  • the problem to be solved by the present invention Al 2 O 3 , SiO 2 Since the carbon-based material is dispersed in the ceramic material, the electrical resistance is reduced, and thus it has an antistatic function, excellent mechanical properties, porosity, simple manufacturing process without complicated manufacturing process, and low manufacturing vacuum
  • the present invention provides a chuck complex and a method of manufacturing the same.
  • the present invention provides a vacuum chuck composite comprising 75 to 93% by weight of alumina, 7 to 25% by weight of silica, and 0.01 to 5 parts by weight of carbonaceous material based on 100 parts by weight of the total content of the alumina and the silica.
  • the vacuum chuck composite may further include 0.5 to 6.5 parts by weight of Fe ⁇ Co-based oxide based on 100 parts by weight of the total content of the alumina and the silica.
  • the Fe ⁇ Co-based oxide may include Fe 2 O 3 , Co 3 O 4, and Mn-based compounds as chemical components.
  • the Fe-Co oxide may include 24 to 34% by weight of Fe 2 O 3, 10 to 18% by weight of Co 3 O 4, and 50 to 64% by weight of Mn-based compound.
  • the vacuum chuck composite may further include 0.01 to 5 parts by weight of frit based on 100 parts by weight of the total content of the alumina and the silica.
  • the carbon-based material may include at least one material selected from graphene oxide, graphene, and graphite.
  • the present invention (a) 75 to 93% by weight of alumina powder and 7 to 25% by weight of silica powder to form a first slurry, (b) drying the first slurry to alumina-silica powder Forming a second slurry by mixing a carbonaceous material with the alumina-silica powder, (d) drying the second slurry to form a composite powder, and (e) ) (F) sintering the molded product, and (c) mixing 0.01 to 5 parts by weight of the carbonaceous material with respect to 100 parts by weight of the alumina-silica powder. It provides a method for producing a composite for vacuum chuck, characterized in that.
  • 0.5 to 6.5 parts by weight of Fe ⁇ Co-based oxide may be further mixed with respect to 100 parts by weight of the total content of the alumina powder and the silica powder.
  • the Fe ⁇ Co-based oxide may include Fe 2 O 3 , Co 3 O 4, and Mn-based compounds as chemical components.
  • the Fe-Co oxide may include 24 to 34% by weight of Fe 2 O 3, 10 to 18% by weight of Co 3 O 4, and 50 to 64% by weight of Mn-based compound.
  • frit 0.01 to 5 parts by weight of frit may be further mixed with respect to 100 parts by weight of the alumina-silica powder.
  • the carbon-based material may include at least one material selected from graphene oxide, graphene, and graphite.
  • the dispersing agent and the binder may be further mixed in the step (a), the dispersing agent is preferably mixed 0.01 to 3 parts by weight based on 100 parts by weight of the total content of the alumina powder and the silica powder, the binder is the alumina It is preferable to mix 3-15 weight part with respect to 100 weight part of total content of a powder and the said silica powder.
  • the dispersant may include polycarboxylate ammonium.
  • the binder may include polyvinyl alcohol.
  • the sintering is preferably carried out at a temperature of 1200 ⁇ 1600 °C by supplying nitrogen or argon gas in a reducing furnace.
  • the carbon-based material is dispersed in the ceramic material, the electrical resistance is reduced, thereby having an antistatic function, excellent mechanical properties, porosity, manufacturing process is not complicated, simple manufacturing, and low manufacturing cost.
  • FIG. 1 is a view showing an X-ray diffraction (XRD) pattern of the sintered body prepared according to the experimental examples.
  • XRD X-ray diffraction
  • FIG. 2 is a scanning electron microscope (SEM) image of an ASF sintered body (in an atmosphere, Ar atmosphere, 1500 ° C.), showing a microstructure magnified 1000 times
  • FIG. 3 is an ASF sintered body (reducing element, N 2 atmosphere, 1500 ° C.). Scanning electron microscopy (SEM) of shows microstructure magnified 5000 times.
  • FIG. 4 is a scanning electron microscope (SEM) image of an ASF sintered body (in an atmosphere, Ar atmosphere, 1250 ° C.) and shows a microstructure magnified 1000 times.
  • FIG. 5 is an ASF sintered body (reducing element, N 2 atmosphere, 1250 ° C.). Scanning electron microscopy (SEM) of shows microstructure magnified 5000 times.
  • FIG. 6 is a scanning electron microscope (SEM) image of an ASF sintered body (reducing furnace, N 2 atmosphere, 1250 ° C.), showing a microstructure magnified 1000 times
  • FIG. 9 is an ASF sintered body (reducing firing furnace, N 2 atmosphere, 1250 ° C.). Scanning electron microscopy (SEM) photograph of) shows the microstructure magnified 5000 times.
  • FIG. 8 is a scanning electron microscope (SEM) image of an ASF sintered body (reducing furnace, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times
  • FIG. 9 is an ASF sintered body (reducing furnace, N 2 atmosphere, 1300 ° C.). Scanning electron microscopy (SEM) photograph of) shows the microstructure magnified 5000 times.
  • FIG. 10 is a graph showing the density of the ASF sintered body according to the sintering conditions.
  • FIG. 11 is a graph showing the surface resistance of the ASF sintered body according to the sintering conditions.
  • FIG. 13 is a graph showing density of ASF / GO and ASF / EG sintered bodies according to sintering conditions.
  • FIG. 14 is a graph showing the surface resistance of the ASF / GO, ASF / EG sintered body according to the sintering conditions.
  • 15 is a graph showing the density of ASF / SC sintered compact according to the sintering conditions.
  • 16 is a graph showing the surface resistance of the ASF / SC sintered body according to the sintering conditions.
  • 17 is a graph showing the strength of the ASF / SC sintered body according to the sintering conditions.
  • FIG. 18 is a scanning electron microscope (SEM) photograph of an ASF / SC (0.5 wt%) / Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times.
  • FIG. 19 is a scanning electron microscope (SEM) photograph of an ASF / SC (0.5 wt%) / Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
  • 20 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times.
  • 21 is a scanning electron microscope (SEM) photograph of an ASF / SC (0.5 wt%) / Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a magnification of 5000 times.
  • FIG. 22 is a scanning electron microscope (SEM) photograph of an ASF / SC (0.5 wt%) / Frit (2.0 wt%) sintered body (reduction element furnace, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times.
  • FIG. 23 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
  • FIG. 24 is a scanning electron microscope (SEM) photograph of an ASF / SC (0.5 wt%) / Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times.
  • FIG. 25 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a magnification of 5000 times.
  • FIG. 26 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times.
  • FIG. 27 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
  • FIG. 28 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times.
  • FIG. 29 shows a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), and shows a magnification of 5000 times.
  • FIG. 30 is a graph showing the density of the ASF / SC (0.5 wt%) / Fri sintered body according to the sintering conditions.
  • FIG. 31 is a graph showing the surface resistance of the ASF / SC (0.5 wt%) / Fri sintered body according to the sintering conditions.
  • 35 is a graph showing the strength of the ASF / SC (3.0 wt%) / Fri sintered body according to the sintering conditions.
  • the vacuum chuck composite according to a preferred embodiment of the present invention includes 75 to 93% by weight of alumina, 7 to 25% by weight of silica, and 0.01 to 5 parts by weight of carbonaceous material based on 100 parts by weight of the total content of the alumina and the silica. .
  • Method for producing a composite for vacuum chuck comprises the steps of (a) mixing 75 to 93% by weight of alumina powder and 7 to 25% by weight of silica powder to form a first slurry, and (b) the Drying the first slurry to form an alumina-silica powder, (c) mixing a carbon-based material with the alumina-silica powder to form a second slurry, and (d) drying the second slurry Forming a composite powder, (e) molding the composite powder, and (f) sintering the molded product, wherein in step (c), 100 parts by weight of the alumina-silica powder is used. 0.01-5 weight part of carbonaceous materials are mixed.
  • the vacuum chuck composite according to a preferred embodiment of the present invention includes 75 to 93% by weight of alumina, 7 to 25% by weight of silica, and 0.01 to 5 parts by weight of carbonaceous material based on 100 parts by weight of the total content of the alumina and the silica. .
  • the vacuum chuck composite may further include 0.5 to 6.5 parts by weight of Fe ⁇ Co-based oxide based on 100 parts by weight of the total content of the alumina and the silica.
  • the Fe ⁇ Co-based oxide may include Fe 2 O 3 , Co 3 O 4, and Mn-based compounds as chemical components.
  • the Fe-Co oxide may include 24 to 34% by weight of Fe 2 O 3, 10 to 18% by weight of Co 3 O 4, and 50 to 64% by weight of Mn-based compound.
  • the vacuum chuck composite may further include 0.01 to 5 parts by weight of frit based on 100 parts by weight of the total content of the alumina and the silica.
  • the carbon-based material may include at least one material selected from graphene oxide, graphene, and graphite.
  • Method for producing a composite for vacuum chuck comprises the steps of (a) mixing 75 to 93% by weight of alumina powder and 7 to 25% by weight of silica powder to form a first slurry, and (b) the Drying the first slurry to form an alumina-silica powder, (c) mixing a carbon-based material with the alumina-silica powder to form a second slurry, and (d) drying the second slurry Forming a composite powder, (e) molding the composite powder, and (f) sintering the molded product, wherein in step (c), 100 parts by weight of the alumina-silica powder is used. 0.01-5 weight part of carbonaceous materials are mixed.
  • 0.5 to 6.5 parts by weight of Fe ⁇ Co-based oxide may be further mixed with respect to 100 parts by weight of the total content of the alumina powder and the silica powder.
  • the Fe ⁇ Co-based oxide may include Fe 2 O 3 , Co 3 O 4, and Mn-based compounds as chemical components.
  • the Fe-Co oxide may include 24 to 34% by weight of Fe 2 O 3, 10 to 18% by weight of Co 3 O 4, and 50 to 64% by weight of Mn-based compound.
  • frit 0.01 to 5 parts by weight of frit may be further mixed with respect to 100 parts by weight of the alumina-silica powder.
  • the carbon-based material may include at least one material selected from graphene oxide, graphene, and graphite.
  • the dispersing agent and the binder may be further mixed in the step (a), the dispersing agent is preferably mixed 0.01 to 3 parts by weight based on 100 parts by weight of the total content of the alumina powder and the silica powder, the binder is the alumina It is preferable to mix 3-15 weight part with respect to 100 weight part of total content of a powder and the said silica powder.
  • the dispersant may include polycarboxylate ammonium.
  • the binder may include polyvinyl alcohol.
  • the sintering is preferably carried out at a temperature of 1200 ⁇ 1600 °C by supplying nitrogen or argon gas in a reducing furnace.
  • Alumina (Alumina, Al 2 O 3 ) powder and silica (Silica, SiO 2 ) powder are mixed to form a first slurry.
  • the said alumina powder has an average particle diameter of 50 nm-20 micrometers. It is preferable that the said silica powder has an average particle diameter of 50 nm-20 micrometers.
  • the Fe-Co oxide may be an oxide including Fe 2 O 3 , Co 3 O 4, and a Mn-based compound as a chemical component.
  • the Fe-Co oxide may include 24 to 34% by weight of Fe 2 O 3, 10 to 18% by weight of Co 3 O 4, and 50 to 64% by weight of Mn-based compound.
  • the Mn-based compound may be an Mn-based carbonate such as MnCO 3 , an Mn-based oxide such as MnO 2 , an Mn-based acetate such as Mn (CH 3 CO 2 ) 2 , or the like.
  • transition metal oxides such as Fe, Co, and Mn
  • electrical resistance can be reduced to provide an antistatic function.
  • the MnCO 3 , Mn (CH 3 CO 2 ) 2, etc. are changed to Mn-based oxides (eg, MnO 2 , Mn 3 O 4 , MnO, etc.) in the sintering process described later. It is preferable that the said Fe-Co oxide powder has an average particle diameter of 50 nm-20 micrometers.
  • the dispersant and the binder may be further mixed.
  • the dispersing agent is preferably mixed 0.01 to 3 parts by weight based on 100 parts by weight of the total content of the alumina powder and the silica powder
  • the binder is 3 to 15 parts by weight based on 100 parts by weight of the total content of the alumina powder and the silica powder. It is preferable to mix the weight parts.
  • the dispersant may include polycarboxylate ammonium.
  • the binder may include polyvinyl alcohol.
  • the first slurry preferably has a solid content (eg, the alumina powder and the silica powder) of about 50 to 70% in the solvent.
  • the solvent may be methanol, alcohol such as ethanol, distilled water, or the like.
  • the mixing may use a variety of methods such as a ball mill, planetary mill, attrition mill and the like.
  • the mixing process by a ball mill method is demonstrated concretely, for example.
  • the starting material including the alumina powder and the silica powder is charged and mixed with a solvent in a ball milling machine.
  • the starting material is mixed evenly by rotating at a constant speed using a ball mill.
  • the ball used in the ball mill may use a ball made of ceramics such as alumina and zirconia, and the balls may be all the same size or may be used with balls having two or more sizes. Mix by adjusting the size of the ball, milling time, revolution per minute of the ball mill, etc.
  • the size of the ball can be set in the range of about 1 to 50 mm, and the rotational speed of the ball mill can be set in the range of about 100 to 500 rpm.
  • the ball mill is preferably carried out for 1 to 48 hours in consideration of the target particle size and the like.
  • the first slurry is dried to form alumina-silica powder.
  • the drying may use a spray dryer. For example, it drys using a spray dryer on the conditions of 150-210 degreeC of hot air temperatures, 60-100 degreeC of air blowing temperatures, 5000-10000 rpm of disk rotation speeds, and 0.01-2 L / min of 1st slurry input amount.
  • the spray dry process can make alumina-silica powder into a spherical shape, pumping the slurry with a hose and feeding it onto a circular disk that rotates in the chamber, allowing the slurry to scatter towards the edge of the chamber by centrifugal force.
  • the slurry is dried to obtain a granular powder.
  • the dried powder may be classified through a sieve and again subjected to a drying process.
  • the carbon-based material is mixed with the alumina-silica powder to form a second slurry.
  • frit 0.01 to 5 parts by weight of frit may be further mixed with respect to 100 parts by weight of the alumina-silica powder.
  • the carbon-based material may include at least one material selected from graphene oxide, graphene, and graphite.
  • the graphene may be made of a single layer, a double layer or a multi-layered form.
  • the graphene is used to include graphene oxide (rGO) as well as graphene, which generally means.
  • the addition of the carbonaceous material can increase the electrical conductivity of the composite for vacuum chuck.
  • mechanical properties and physical properties of the vacuum chuck composite may be improved. Al 2 O 3 , SiO 2
  • the second slurry preferably has a content of solids in the solvent of about 50 to 70%.
  • the solvent may be methanol, alcohol such as ethanol, distilled water, or the like.
  • the second slurry is dried to form a composite powder.
  • the drying is preferably carried out in an oven at a temperature of 60 to 150 °C for 1 to 48 hours.
  • the composite powder is molded.
  • the molding can be done in a variety of ways.
  • the composite powder may be charged into a mold and subjected to uniaxial press molding.
  • the molded result is sintered.
  • the sintering is preferably performed at a temperature of 1200 to 1600 ° C. by supplying a gas such as nitrogen (N 2 ) or argon (Ar) in a reducing furnace.
  • the sintering is preferably performed for 10 minutes to 48 hours.
  • the water, the dispersant, and the binder inside the molded body (molded product) are burned out and disappeared.
  • pores are formed in the space occupied by the water, the dispersant, and the binder, thereby forming a composite for vacuum chuck showing porosity. .
  • the Mn-based compound may be composed of Mn-based carbonates such as MnCO 3 , Mn-based oxides such as MnO 2 , Mn-based acetates such as Mn (CH 3 CO 2 ) 2, and the like, and MnCO 3 , Mn (CH 3 CO 2 ) 2 and the like are converted to Mn-based oxides (eg, MnO 2 , Mn 3 O 4 , MnO, etc.) during the sintering process.
  • Mn-based carbonates such as MnCO 3
  • Mn-based oxides such as MnO 2
  • Mn-based acetates such as Mn (CH 3 CO 2 ) 2, and the like
  • MnCO 3 , Mn (CH 3 CO 2 ) 2 and the like are converted to Mn-based oxides (eg, MnO 2 , Mn 3 O 4 , MnO, etc.) during the sintering process.
  • the vacuum chuck composite prepared by the above-mentioned method comprises 75 to 93% by weight of alumina, 7 to 25% by weight of silica, and 0.01 to 5 parts by weight of carbonaceous material based on 100 parts by weight of the total content of the alumina and the silica, and Al 2 O 3 , SiO 2 Since the carbon-based material is dispersed in the ceramic material, the electrical resistance is reduced, thereby having an antistatic function, excellent mechanical properties, porosity, manufacturing process is not complicated, simple manufacturing, and low manufacturing cost.
  • alumina powder 99.8%, AES-11, Sumitomo
  • silica powder CA-20, Sibelco Korea
  • Fe ⁇ Co oxide powder MnCO 3 -57%, Fe 2 O 3 -29
  • distilled water % distilled water %
  • Co 3 O 4 -14% distilled water %, Co 3 O 4 -14%
  • the dispersant and the binder were 1 wt each of the solids (alumina powder, silica powder and Fe ⁇ Co oxide powder).
  • %, 10wt% was added and mixed to prepare a slurry.
  • the dispersant was polycarboxylate ammonium (5468-CF, Cerasperce), and the binder was polyvinyl alcohol (PVA-205, Kuraray).
  • Ball milling was carried out using a ⁇ 2 alumina ball at 110 rpm for 6 hours to produce a uniform slurry.
  • the prepared slurry was dried using a spray dryer (HCSY-01, sunny window) under conditions of a hot air temperature of 180 ° C., a back air temperature of 80 ° C., a disk rotation speed of 8500 rpm, and a slurry input amount of 0.3 L / min.
  • the granulated powder prepared after spray drying showed excellent flowability and uniform spherical shape. It was passed through a 154 ⁇ m sieve and completely dried at 100 ° C. for 24 hours to obtain an alumina-silica-Fe.Co-based oxide powder (hereinafter referred to as 'ASF powder').
  • the ASF powder prepared according to Experimental Example 1 was uniaxially press-molded (45 g, 3 ton, 2 min) using a bar metal mold (30 mm x 60 mm) to obtain a molded body.
  • the molded body was degreased at a temperature of 600 * ° C. in an argon (Ar) atmosphere using a melting furnace (Thermal System & technology), and 1250 ° C., 1300 ° C., and 1500 ° C. in an argon (Ar) atmosphere after degreasing using Polynanotech. Sintered at atmospheric pressure.
  • the sintered compact thus manufactured is referred to as an 'ASF sintered compact'.
  • the ASF powder prepared according to Experimental Example 1 was added to distilled water so as to have a solid content of 60 wt%.
  • Graphene oxide hereinafter referred to as 'GO'
  • 'EG' graphene
  • 'EG' Nanostructured Graphite-400, Graphite to increase electrical conductivity supermarket
  • the slurry was placed in an oven and dried at 100 ° C. for 24 hours to evaporate distilled water, and ethanol was sprayed for a predetermined time during the drying process. It was passed through a 154 ⁇ m sieve and completely dried at 100 ° C. for 24 hours to obtain a powder.
  • the powder thus prepared is referred to as an ASF-carbon composite powder.
  • the ASF-carbon composite powder was uniaxially pressed (45 g, 3 ton, 2 min) using a bar-shaped metal mold (30 mm x 60 mm), and compressed into a bar to obtain a molded product.
  • the molded body was degreased at a temperature of 600 ° C. in an argon (Ar) atmosphere using a melting furnace (Thermal System & technology), and after degreasing, at a pressure of 1250 ° C. and 1300 ° C. in a N 2 atmosphere using a reducing firing furnace (Heewoong ENG, Korea), respectively. Sintered.
  • the ASF powder prepared according to Experimental Example 1 was added to distilled water so as to have a solid content of 60 wt%.
  • graphite superiorior carbon, hereinafter referred to as 'SC'
  • Superior Graphite manufactured by Superior Graphite
  • the slurry was placed in an oven and dried at 100 ° C. for 24 hours to evaporate distilled water, and ethanol was sprayed for a predetermined time during the drying process. It was passed through a 154 ⁇ m sieve and completely dried at 100 ° C. for 24 hours to obtain a powder.
  • the powder thus prepared is referred to as an ASF-carbon composite powder.
  • the ASF-carbon composite powder was uniaxially pressed (45 g, 3 ton, 2 min) using a bar-shaped metal mold (30 mm x 60 mm), and compressed into a bar to obtain a molded product.
  • the molded body was degreased at a temperature of 600 ° C. in an argon (Ar) atmosphere using a melting furnace (Thermal System & technology), and after degreasing, at a pressure of 1250 ° C. and 1300 ° C. in a N 2 atmosphere using a reducing firing furnace (Heewoong ENG, Korea), respectively. Sintered.
  • the ASF powder prepared according to Experimental Example 1 was added to distilled water so as to have a solid content of 60 wt%.
  • SC superior carbon, product of Superior Graphite
  • frit 14-3982M, TOMATEC
  • the slurry was placed in an oven and dried at 100 ° C. for 24 hours to evaporate distilled water, and ethanol was sprayed for a predetermined time during the drying process. It was passed through a 154 ⁇ m sieve and completely dried at 100 ° C. for 24 hours to obtain a powder.
  • the powder thus prepared is referred to as an ASF-carbon composite powder.
  • the ASF-carbon composite powder was uniaxially pressed (45 g, 3 ton, 2 min) using a bar-shaped metal mold (30 mm x 60 mm), and compressed into a bar to obtain a molded product.
  • the molded body was degreased at a temperature of 600 ° C. in an argon (Ar) atmosphere using a melting furnace (Thermal System & technology), and after degreasing, at a pressure of 1250 ° C. and 1300 ° C. in a N 2 atmosphere using a reducing firing furnace (Heewoong ENG, Korea), respectively. Sintered.
  • X-ray diffractometer (DAX-2500 / PC, Rigaku, Japan) was used to analyze the crystal phase of the sintered specimen.
  • the X-ray output was measured at a scan rate of 10 ° C / min under the condition that the voltage was 40 kV and 100 mA. For information on each prize, see JCPDS card and literature.
  • FIG. 1 is a view showing an X-ray diffraction (XRD) pattern of the sintered body prepared according to the experimental examples.
  • XRD X-ray diffraction
  • Figure 1 (a) is for the ASF sintered body (reduction element, N 2 atmosphere, 1250 °C), (b) is for the ASF sintered body (reduction element, N 2 atmosphere, 1300 °C), (c) ASF sintered body (In an atmosphere, Ar atmosphere, 1500 ° C.), (d) is for ASF-EG (0.2 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), and (e) is ASF-EG ( 0.5 wt%) for sintered bodies (reduction furnace, N 2 atmosphere, 1300 ° C.), (f) for ASF-EG (1.0 wt%) sintered bodies (reduction furnace, N 2 atmosphere, 1300 ° C.), (g ) Is for the ASF-GO (0.2 wt%) sintered body (reducing furnace, N 2
  • the microstructure of the fractured surface was observed by scanning electron microscopy (SEM (JSM-6710F, Jeol, Japan), and coated with platinum (Pt) on the fractured surface without pretreatment such as cleaning. (SEM) pictures were analyzed and shown in FIGS. 2 to 9.
  • FIG. 2 is a scanning electron microscope (SEM) image of an ASF sintered body (in an atmosphere, Ar atmosphere, 1500 ° C.), showing a microstructure magnified 1000 times
  • FIG. 3 is an ASF sintered body (reducing element, N 2 atmosphere, 1500 ° C.). Scanning electron microscopy (SEM) of shows microstructure magnified 5000 times.
  • FIG. 4 is a scanning electron microscope (SEM) image of an ASF sintered body (in an atmosphere, Ar atmosphere, 1250 ° C.) and shows a microstructure magnified 1000 times.
  • FIG. 5 is an ASF sintered body (reducing element, N 2 atmosphere, 1250 ° C.). Scanning electron microscopy (SEM) of shows microstructure magnified 5000 times.
  • FIG. 6 is a scanning electron microscope (SEM) image of an ASF sintered body (reducing furnace, N 2 atmosphere, 1250 ° C.), showing a microstructure magnified 1000 times
  • FIG. 7 is an ASF sintered body (reducing furnace, N 2 atmosphere, 1250 ° C.). Scanning electron microscopy (SEM) photograph of) shows the microstructure magnified 5000 times.
  • FIG. 8 is a scanning electron microscope (SEM) image of an ASF sintered body (reducing furnace, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times
  • FIG. 9 is an ASF sintered body (reducing furnace, N 2 atmosphere, 1300 ° C.). Scanning electron microscopy (SEM) photograph of) shows the microstructure magnified 5000 times.
  • Table 1 below shows the density, surface resistance and strength of the ASF sintered body according to the sintering conditions.
  • FIG 11 shows the surface resistance of the ASF sintered body according to the sintering conditions.
  • Table 2 below shows the density, surface resistance and strength of the ASF-GO and ASF-EG sintered bodies according to the sintering conditions.
  • FIG. 13 shows the density of ASF-GO and ASF-EG sintered bodies according to the sintering conditions.
  • Figure 14 shows the surface resistance of the ASF-GO, ASF-EG sintered body according to the sintering conditions.
  • Table 3 below shows the density, surface resistance and strength of the ASF-SC sintered body according to the sintering conditions.
  • Figure 16 shows the surface resistance of the ASF-SC sintered body according to the sintering conditions.
  • FIG. 18 is a scanning electron microscope (SEM) image of an ASF-SC (0.5 wt%)-Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times.
  • FIG. 19 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
  • FIG. 20 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times.
  • FIG. 21 is a scanning electron microscope (SEM) image of an ASF-SC (0.5 wt%)-Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a magnification of 5000 times.
  • FIG. 22 is a scanning electron microscope (SEM) image of an ASF-SC (0.5 wt%)-Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times.
  • FIG. 23 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
  • FIG. 24 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times.
  • FIG. 25 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a magnification of 5000 times.
  • FIG. 26 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times.
  • FIG. 27 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
  • FIG. 28 is a scanning electron microscope (SEM) image of an ASF-SC (0.5 wt%)-Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times.
  • FIG. 29 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a magnification of 5000 times.
  • Table 4 shows the density, surface resistance, and strength of the ASF-SC (0.5 wt%)-Frit sintered body according to the sintering conditions.
  • Table 5 shows the density, surface resistance, and strength of the ASF-SC (3.0 wt%)-Frit sintered body according to the sintering conditions.
  • the carbon-based material is dispersed in the ceramic material, the electrical resistance is reduced, so that it has an antistatic function, has excellent mechanical properties, exhibits porosity, and the manufacturing process is not complicated. There is a possibility.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The present invention relates to: a vacuum chuck composite comprising 75-93 wt% of alumina, 7-25 wt% of silica, and 0.01-5 parts by weight of a carbon-based material on the basis of 100 parts by weight of the total amounts of the alumina and the silica; and a preparation method therefor. According to the present invention, a carbon-based material is dispersed in Al2O3 and SiO2 ceramic materials, and thus the present invention has reduced electrical resistance so as to have an antistatic function, has excellent mechanical properties, exhibits porosity, can be prepared easily without a complex preparation process, and has low preparation costs.

Description

진공척용 복합체 및 그 제조방법Composite for vacuum chuck and manufacturing method thereof
본 발명은 진공척용 복합체 및 그 제조방법에 관한 것으로, 더욱 상세하게는 Al2O3, SiO2 세라믹 소재에 탄소계 물질이 분산되어 있으므로 전기저항이 감소되어 대전방지 기능을 가지며, 기계적 특성이 우수하고, 다공성을 나타내며, 제조공정이 복잡하지 않고 간단하게 제조할 수 있으며, 제조비용이 적게 드는 진공척용 복합체 및 그 제조방법에 관한 것이다.The present invention relates to a vacuum chuck composite and a method for manufacturing the same, more specifically Al 2 O 3 , SiO 2 Since the carbon-based material is dispersed in the ceramic material, the electrical resistance is reduced, and thus it has an antistatic function, excellent mechanical properties, porosity, simple manufacturing process without complicated manufacturing process, and low manufacturing vacuum The present invention relates to a chuck complex and a method of manufacturing the same.
반도체소자의 제조공정은 수 십 개의 서로 다른 종류의 막(layer)들에 패턴(Pattern)을 형성하거나, 적층하는 과정을 포함한다. The manufacturing process of a semiconductor device includes a process of forming or stacking a pattern on dozens of different kinds of layers.
반도체소자가 고안된 전기적 사양으로 동작하기 위하여 각 층(layer)에 형성된 패턴들은 설계된 의도대로 형성되어 목적된 전기적 동작을 수행하여야 한다.In order for the semiconductor device to operate to the designed electrical specification, the patterns formed on each layer should be formed as designed and perform the intended electrical operation.
반도체 웨이퍼 또는 LCD(Liquid Crystal Display) 유리(Glass)의 고정용 척 위에 흡착 고정되었던 웨이퍼나 유리가 분리되면서 미량의 마찰 정전기가 발생한다.A small amount of triboelectric static electricity is generated when the wafer or glass that has been adsorbed and fixed on a fixing chuck of a semiconductor wafer or liquid crystal display (LCD) glass is separated.
종래에는 반도체 웨이퍼의 두께가 이러한 정전기의 영향을 거의 받지 않을 정도로 두꺼워 정전기로 인한 불량이 거의 발생하지 않아 크게 문제되지 않았다.Conventionally, since the thickness of a semiconductor wafer is so thick that it is hardly affected by such static electricity, defects caused by static electricity rarely occur, which is not a big problem.
최근 스마트폰, 스마트TV 등 전자제품들이 점점 경량화, 슬림화되는 추세에 따라 그에 사용되는 반도체 웨이퍼와 각종 디스플레이 기판의 두께도 점점 얇아지고 그 크기도 점점 대면적화되고 있다.Recently, as electronic products such as smart phones and smart TVs are becoming lighter and thinner, the thicknesses of semiconductor wafers and various display substrates used are becoming thinner and larger in size.
반도체 웨이퍼와 디스플레이 기판 위에 인쇄되는 패턴이 미세화되고 있어 반도체 웨이퍼와 디스플레이 기판을 다공질 세라믹 기판 위에 안착, 분리시키는 과정에서 발생하는 정전기가 반도체 웨이퍼와 디스플레이 기판 상에 집적된 반도체 소자 등의 전자부품에 대전되어 인쇄패턴이 단락되는 등의 불량을 일으키거나, 웨이퍼와 디스플레이 기판을 척에서 분리시키는 과정에서 정전기로 인해 웨이퍼에 균열이 발생하는 등의 문제가 빈번하게 발생하고 있다.Patterns printed on semiconductor wafers and display substrates are being miniaturized, so that static electricity generated in the process of mounting and separating semiconductor wafers and display substrates onto porous ceramic substrates is charged to electronic components such as semiconductor devices integrated on semiconductor wafers and display substrates. As a result, defects such as a short circuit of the printed pattern or a process of separating the wafer and the display substrate from the chuck frequently cause cracks in the wafer due to static electricity.
이로 인하여 전기저항제어 기능을 가지는 다공질 세라믹 기판의 필요성이 대두되고 있다.Thus, the need for a porous ceramic substrate having an electrical resistance control function has emerged.
기존 반도체 및 LCD 생산장비에서의 척 또는 스테이지에서 발생하는 정전기로 인한 문제를 해결하기 위해 대전방지기능을 가지는 척 또는 스테이지가 개발되었는데, 그 중 대표적인 것이 대한민국 공개특허공보 제10-2010-0109098호 '대전 방지 처리된 작업 스테이지'이다.In order to solve the problems caused by static electricity generated in chucks or stages in existing semiconductor and LCD production equipment, chucks or stages having an antistatic function have been developed. Among them, Korean Patent Application Publication No. 10-2010-0109098 ' Antistatic work stage.
공개특허 제10-2010-0109098호 대전 방지 처리된 작업 스테이지는 스테이지의 기판과 만나는 면에 정전기 발생을 최소화하기 위해 금속재질의 스테이지 위에 탄소나노튜브 코팅막을 입힌다.The antistatic work stage is coated with a carbon nanotube coating on the stage of the metal material to minimize the generation of static electricity on the surface meeting the substrate of the stage.
탄소나노튜브 코팅 스테이지는 본체가 다공질 세라믹이 아니라 알루미늄 등 금속재질로 별도의 코팅공정을 거쳐 스테이지 본체 위에 전도성을 띠는 탄소나노튜브 코팅막을 입혀 대전방지가 되도록 한 것이다.Carbon nanotube coating stage is to prevent the antistatic by applying a conductive carbon nanotube coating film on the stage body through a separate coating process of a metal material such as aluminum rather than a porous ceramic.
대한민국 공개특허공보 제10-2010-0121895호 '대전방지 기능을 갖는 기판 및 그 제조방법'은 유리소재로 이루어지는 베이스층에 불순물이 도핑된 이산화티탄(TiO2)을 결정화 열처리하여 대전방지 기능을 갖도록 한 것이 특징이다.Korean Patent Laid-Open Publication No. 10-2010-0121895 'Substrate having an antistatic function and a manufacturing method thereof' has an antistatic function by crystallizing a titanium dioxide (TiO 2 ) doped with impurities in a base layer made of a glass material. It is characterized by one.
공개특허공보 제10-2010-0121895호는 위에서 설명한 공개특허공보 제10-2010-0109098호 대전 방지 처리된 작업 스테이지와 유사하게 베이스 본체가 유리소재이며, 별도의 증착 및 열처리공정을 거쳐 유리소재 베이스층 위에 대전방지층을 형성한다.Korean Patent Application Publication No. 10-2010-0121895 discloses a glass material base, which is similar to an antistatic work stage described above, in which the base body is a glass material and undergoes a separate deposition and heat treatment process. An antistatic layer is formed on the layer.
탄소나노튜브 코팅 및 유리소재 위 대전방지 코팅 스테이지는 제작공정이 복잡하고 제작비용이 많이 소요되며, 스테이지 본체 위에 코팅된 탄소나노튜브 코팅막이 훼손되면 스테이지 전체를 교체해야 하는 문제점이 발생한다.The antistatic coating stage on the carbon nanotube coating and the glass material is complicated in manufacturing process and takes a lot of manufacturing cost, and if the carbon nanotube coating film coated on the stage body is damaged, the entire stage needs to be replaced.
탄소나노튜브 코팅 및 유리소재 위 대전방지 코팅 스테이지는 본체 상부표면에 밀폐된 코팅막이 형성되므로 대면적의 얇은 웨이퍼나 디스플레이 유리를 전면 흡착하는데 한계점을 지닌다.The carbon nanotube coating and the antistatic coating stage on the glass material have a limitation in adsorbing a large area of thin wafer or display glass since a sealed coating film is formed on the upper surface of the main body.
[선행기술문헌][Preceding technical literature]
[특허문헌][Patent Documents]
대한민국 공개특허공보 제10-2010-0109098호Republic of Korea Patent Publication No. 10-2010-0109098
대한민국 공개특허공보 제10-2010-0121895호Republic of Korea Patent Publication No. 10-2010-0121895
본 발명이 해결하고자 하는 과제는 Al2O3, SiO2 세라믹 소재에 탄소계 물질이 분산되어 있으므로 전기저항이 감소되어 대전방지 기능을 가지며, 기계적 특성이 우수하고, 다공성을 나타내며, 제조공정이 복잡하지 않고 간단하게 제조할 수 있으며, 제조비용이 적게 드는 진공척용 복합체 및 그 제조방법을 제공함에 있다.The problem to be solved by the present invention Al 2 O 3 , SiO 2 Since the carbon-based material is dispersed in the ceramic material, the electrical resistance is reduced, and thus it has an antistatic function, excellent mechanical properties, porosity, simple manufacturing process without complicated manufacturing process, and low manufacturing vacuum The present invention provides a chuck complex and a method of manufacturing the same.
본 발명은, 알루미나 75∼93중량%, 실리카 7∼25중량% 및 상기 알루미나 및 상기 실리카의 전체 함량 100중량부에 대하여 카본계 물질 0.01∼5중량부를 포함하는 진공척용 복합체를 제공한다. The present invention provides a vacuum chuck composite comprising 75 to 93% by weight of alumina, 7 to 25% by weight of silica, and 0.01 to 5 parts by weight of carbonaceous material based on 100 parts by weight of the total content of the alumina and the silica.
상기 진공척용 복합체는 상기 알루미나 및 상기 실리카의 전체 함량 100중량부에 대하여 Fe·Co계 산화물 0.5∼6.5중량부를 더 포함할 수 있다.The vacuum chuck composite may further include 0.5 to 6.5 parts by weight of Fe · Co-based oxide based on 100 parts by weight of the total content of the alumina and the silica.
상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3, Co3O4 및 Mn계 화합물을 포함할 수 있다.The Fe · Co-based oxide may include Fe 2 O 3 , Co 3 O 4, and Mn-based compounds as chemical components.
상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3 24∼34중량%, Co3O4 10∼18중량% 및 Mn계 화합물 50∼64중량%를 포함할 수 있다.The Fe-Co oxide may include 24 to 34% by weight of Fe 2 O 3, 10 to 18% by weight of Co 3 O 4, and 50 to 64% by weight of Mn-based compound.
상기 진공척용 복합체는 상기 알루미나 및 상기 실리카의 전체 함량 100중량부에 대하여 프릿(Frit) 0.01∼5중량부를 더 포함할 수 있다.The vacuum chuck composite may further include 0.01 to 5 parts by weight of frit based on 100 parts by weight of the total content of the alumina and the silica.
상기 카본계 물질은 그래핀옥사이드(graphene oxide), 그래핀(graphene) 및 그라파이트(graphite) 중에서 선택된 1종 이상의 물질을 포함할 수 있다.The carbon-based material may include at least one material selected from graphene oxide, graphene, and graphite.
또한, 본 발명은, (a) 알루미나 분말 75∼93중량% 및 실리카 분말 7∼25중량%를 혼합하여 제1 슬러리를 형성하는 단계와, (b) 상기 제1 슬러리를 건조하여 알루미나-실리카 분말을 형성하는 단계와, (c) 상기 알루미나-실리카 분말에 카본계 물질을 혼합하여 제2 슬러리를 형성하는 단계와, (d) 상기 제2 슬러리를 건조하여 복합분말을 형성하는 단계와, (e) 상기 복합분말을 성형하는 단계 및 (f) 성형된 결과물을 소결하는 단계를 포함하며, 상기 (c) 단계에서 상기 알루미나-실리카 분말 100중량부에 대하여 상기 카본계 물질 0.01∼5중량부를 혼합하는 것을 특징으로 하는 진공척용 복합체의 제조방법을 제공한다. In addition, the present invention, (a) 75 to 93% by weight of alumina powder and 7 to 25% by weight of silica powder to form a first slurry, (b) drying the first slurry to alumina-silica powder Forming a second slurry by mixing a carbonaceous material with the alumina-silica powder, (d) drying the second slurry to form a composite powder, and (e) ) (F) sintering the molded product, and (c) mixing 0.01 to 5 parts by weight of the carbonaceous material with respect to 100 parts by weight of the alumina-silica powder. It provides a method for producing a composite for vacuum chuck, characterized in that.
상기 (a) 단계에서 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 Fe·Co계 산화물 0.5∼6.5중량부를 더 혼합할 수 있다.In the step (a), 0.5 to 6.5 parts by weight of Fe · Co-based oxide may be further mixed with respect to 100 parts by weight of the total content of the alumina powder and the silica powder.
상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3, Co3O4 및 Mn계 화합물을 포함할 수 있다.The Fe · Co-based oxide may include Fe 2 O 3 , Co 3 O 4, and Mn-based compounds as chemical components.
상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3 24∼34중량%, Co3O4 10∼18중량% 및 Mn계 화합물 50∼64중량%를 포함할 수 있다.The Fe-Co oxide may include 24 to 34% by weight of Fe 2 O 3, 10 to 18% by weight of Co 3 O 4, and 50 to 64% by weight of Mn-based compound.
상기 (c) 단계에서 상기 알루미나-실리카 분말 100중량부에 대하여 프릿(Frit) 0.01∼5중량부를 더 혼합할 수 있다.In the step (c), 0.01 to 5 parts by weight of frit may be further mixed with respect to 100 parts by weight of the alumina-silica powder.
상기 카본계 물질은 그래핀옥사이드(graphene oxide), 그래핀(graphene) 및 그라파이트(graphite) 중에서 선택된 1종 이상의 물질을 포함할 수 있다.The carbon-based material may include at least one material selected from graphene oxide, graphene, and graphite.
상기 (a) 단계에서 분산제와 결합제를 더 혼합할 수 있고, 상기 분산제는 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 0.01∼3중량부를 혼합하는 것이 바람직하며, 상기 결합제는 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 3∼15중량부를 혼합하는 것이 바람직하다.The dispersing agent and the binder may be further mixed in the step (a), the dispersing agent is preferably mixed 0.01 to 3 parts by weight based on 100 parts by weight of the total content of the alumina powder and the silica powder, the binder is the alumina It is preferable to mix 3-15 weight part with respect to 100 weight part of total content of a powder and the said silica powder.
상기 분산제는 폴리카르복실레이트 암모늄(polycarboxylate ammonium)을 포함할 수 있다.The dispersant may include polycarboxylate ammonium.
상기 결합제는 폴리비닐알코올(polyvinyl alcohol)을 포함할 수 있다.The binder may include polyvinyl alcohol.
상기 소결은 환원소성로에서 질소 또는 아르곤 가스를 공급하여 1200∼1600℃의 온도에서 수행하는 것이 바람직하다.The sintering is preferably carried out at a temperature of 1200 ~ 1600 ℃ by supplying nitrogen or argon gas in a reducing furnace.
본 발명에 의하면, Al2O3, SiO2 세라믹 소재에 탄소계 물질이 분산되어 있으므로 전기저항이 감소되어 대전방지 기능을 가지며, 기계적 특성이 우수하고, 다공성을 나타내며, 제조공정이 복잡하지 않고 간단하게 제조할 수 있으며, 제조비용이 적게 든다.According to the present invention, Al 2 O 3 , SiO 2 Since the carbon-based material is dispersed in the ceramic material, the electrical resistance is reduced, thereby having an antistatic function, excellent mechanical properties, porosity, manufacturing process is not complicated, simple manufacturing, and low manufacturing cost.
도 1은 실험예들에 따라 제조된 소결체의 X-선회절(X-ray diffraction; XRD) 패턴을 보여주는 도면이다.1 is a view showing an X-ray diffraction (XRD) pattern of the sintered body prepared according to the experimental examples.
도 2는 ASF 소결체(분위기로, Ar 분위기, 1500℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 3은 ASF 소결체(환원소성로, N2 분위기, 1500℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 2 is a scanning electron microscope (SEM) image of an ASF sintered body (in an atmosphere, Ar atmosphere, 1500 ° C.), showing a microstructure magnified 1000 times, and FIG. 3 is an ASF sintered body (reducing element, N 2 atmosphere, 1500 ° C.). Scanning electron microscopy (SEM) of shows microstructure magnified 5000 times.
도 4는 ASF 소결체(분위기로, Ar 분위기, 1250℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 5는 ASF 소결체(환원소성로, N2 분위기, 1250℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. 4 is a scanning electron microscope (SEM) image of an ASF sintered body (in an atmosphere, Ar atmosphere, 1250 ° C.) and shows a microstructure magnified 1000 times. FIG. 5 is an ASF sintered body (reducing element, N 2 atmosphere, 1250 ° C.). Scanning electron microscopy (SEM) of shows microstructure magnified 5000 times.
도 6은 ASF 소결체(환원소성로, N2 분위기, 1250℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 9는 ASF 소결체(환원소성로, N2 분위기, 1250℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 6 is a scanning electron microscope (SEM) image of an ASF sintered body (reducing furnace, N 2 atmosphere, 1250 ° C.), showing a microstructure magnified 1000 times, and FIG. 9 is an ASF sintered body (reducing firing furnace, N 2 atmosphere, 1250 ° C.). Scanning electron microscopy (SEM) photograph of) shows the microstructure magnified 5000 times.
도 8은 ASF 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 9는 ASF 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 8 is a scanning electron microscope (SEM) image of an ASF sintered body (reducing furnace, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times, and FIG. 9 is an ASF sintered body (reducing furnace, N 2 atmosphere, 1300 ° C.). Scanning electron microscopy (SEM) photograph of) shows the microstructure magnified 5000 times.
도 10은 소결조건에 따른 ASF 소결체의 밀도를 나타낸 그래프이다.10 is a graph showing the density of the ASF sintered body according to the sintering conditions.
도 11은 소결조건에 따른 ASF 소결체의 표면저항을 나타낸 그래프이다.11 is a graph showing the surface resistance of the ASF sintered body according to the sintering conditions.
도 12는 소결조건에 따른 ASF 소결체의 강도를 나타낸 그래프이다.12 is a graph showing the strength of the ASF sintered body according to the sintering conditions.
도 13은 소결조건에 따른 ASF/GO, ASF/EG 소결체의 밀도를 나타낸 그래프이다.13 is a graph showing density of ASF / GO and ASF / EG sintered bodies according to sintering conditions.
도 14는 소결조건에 따른 ASF/GO, ASF/EG 소결체의 표면저항을 나타낸 그래프이다.14 is a graph showing the surface resistance of the ASF / GO, ASF / EG sintered body according to the sintering conditions.
도 15는 소결조건에 따른 ASF/SC 소결체의 밀도를 나타낸 그래프이다.15 is a graph showing the density of ASF / SC sintered compact according to the sintering conditions.
도 16은 소결조건에 따른 ASF/SC 소결체의 표면저항을 나타낸 그래프이다.16 is a graph showing the surface resistance of the ASF / SC sintered body according to the sintering conditions.
도 17은 소결조건에 따른 ASF/SC 소결체의 강도를 나타낸 그래프이다.17 is a graph showing the strength of the ASF / SC sintered body according to the sintering conditions.
도 18은 ASF/SC(0.5wt%)/Frit(1.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 19는 ASF/SC(0.5wt%)/Frit(1.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 18 is a scanning electron microscope (SEM) photograph of an ASF / SC (0.5 wt%) / Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times. FIG. 19 is a scanning electron microscope (SEM) photograph of an ASF / SC (0.5 wt%) / Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
도 20은 ASF/SC(0.5wt%)/Frit(1.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 21은 ASF/SC(0.5wt%)/Frit(1.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. 20 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times. 21 is a scanning electron microscope (SEM) photograph of an ASF / SC (0.5 wt%) / Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a magnification of 5000 times.
도 22는 ASF/SC(0.5wt%)/Frit(2.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 23은 ASF/SC(0.5wt%)/Frit(2.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 22 is a scanning electron microscope (SEM) photograph of an ASF / SC (0.5 wt%) / Frit (2.0 wt%) sintered body (reduction element furnace, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times. FIG. 23 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
도 24는 ASF/SC(0.5wt%)/Frit(2.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 25는 ASF/SC(0.5wt%)/Frit(2.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 24 is a scanning electron microscope (SEM) photograph of an ASF / SC (0.5 wt%) / Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times. FIG. 25 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a magnification of 5000 times.
도 26은 ASF/SC(0.5wt%)/Frit(5.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 27은 ASF/SC(0.5wt%)/Frit(5.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 26 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times. FIG. 27 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
도 28은 ASF/SC(0.5wt%)/Frit(5.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 29는 ASF/SC(0.5wt%)/Frit(5.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 28 is a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times. FIG. 29 shows a scanning electron microscope (SEM) image of an ASF / SC (0.5 wt%) / Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), and shows a magnification of 5000 times.
도 30은 소결조건에 따른 ASF/SC(0.5 wt%)/Frit 소결체의 밀도를 나타낸 그래프이다.30 is a graph showing the density of the ASF / SC (0.5 wt%) / Fri sintered body according to the sintering conditions.
도 31은 소결조건에 따른 ASF/SC(0.5 wt%)/Frit 소결체의 표면저항을 나타낸 그래프이다.31 is a graph showing the surface resistance of the ASF / SC (0.5 wt%) / Fri sintered body according to the sintering conditions.
도 32는 소결조건에 따른 ASF/SC(0.5 wt%)/Frit 소결체의 강도를 나타낸 그래프이다.32 is a graph showing the strength of the ASF / SC (0.5 wt%) / Fri sintered body according to the sintering conditions.
도 33은 소결조건에 따른 ASF/SC(3.0 wt%)/Frit 소결체의 밀도를 나타낸 그래프이다.33 is a graph showing the density of the ASF / SC (3.0 wt%) / Fri sintered body according to the sintering conditions.
도 34는 소결조건에 따른 ASF/SC(3.0 wt%)/Frit 소결체의 표면저항을 나타낸 그래프이다.34 is a graph showing the surface resistance of the ASF / SC (3.0 wt%) / Fri sintered body according to the sintering conditions.
도 35는 소결조건에 따른 ASF/SC(3.0 wt%)/Frit 소결체의 강도를 나타낸 그래프이다.35 is a graph showing the strength of the ASF / SC (3.0 wt%) / Fri sintered body according to the sintering conditions.
본 발명의 바람직한 실시예에 따른 진공척용 복합체는, 알루미나 75∼93중량%, 실리카 7∼25중량% 및 상기 알루미나 및 상기 실리카의 전체 함량 100중량부에 대하여 카본계 물질 0.01∼5중량부를 포함한다. The vacuum chuck composite according to a preferred embodiment of the present invention includes 75 to 93% by weight of alumina, 7 to 25% by weight of silica, and 0.01 to 5 parts by weight of carbonaceous material based on 100 parts by weight of the total content of the alumina and the silica. .
본 발명의 바람직한 실시예에 따른 진공척용 복합체의 제조방법은, (a) 알루미나 분말 75∼93중량% 및 실리카 분말 7∼25중량%를 혼합하여 제1 슬러리를 형성하는 단계와, (b) 상기 제1 슬러리를 건조하여 알루미나-실리카 분말을 형성하는 단계와, (c) 상기 알루미나-실리카 분말에 카본계 물질을 혼합하여 제2 슬러리를 형성하는 단계와, (d) 상기 제2 슬러리를 건조하여 복합분말을 형성하는 단계와, (e) 상기 복합분말을 성형하는 단계 및 (f) 성형된 결과물을 소결하는 단계를 포함하며, 상기 (c) 단계에서 상기 알루미나-실리카 분말 100중량부에 대하여 상기 카본계 물질 0.01∼5중량부를 혼합한다. Method for producing a composite for vacuum chuck according to a preferred embodiment of the present invention comprises the steps of (a) mixing 75 to 93% by weight of alumina powder and 7 to 25% by weight of silica powder to form a first slurry, and (b) the Drying the first slurry to form an alumina-silica powder, (c) mixing a carbon-based material with the alumina-silica powder to form a second slurry, and (d) drying the second slurry Forming a composite powder, (e) molding the composite powder, and (f) sintering the molded product, wherein in step (c), 100 parts by weight of the alumina-silica powder is used. 0.01-5 weight part of carbonaceous materials are mixed.
이하, 첨부된 도면을 참조하여 본 발명에 따른 바람직한 실시예를 상세하게 설명한다. 그러나, 이하의 실시예는 이 기술분야에서 통상적인 지식을 가진 자에게 본 발명이 충분히 이해되도록 제공되는 것으로서 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 다음에 기술되는 실시예에 한정되는 것은 아니다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the following embodiments are provided to those skilled in the art to fully understand the present invention, and may be modified in various forms, and the scope of the present invention is limited to the embodiments described below. It doesn't happen.
본 발명의 바람직한 실시예에 따른 진공척용 복합체는, 알루미나 75∼93중량%, 실리카 7∼25중량% 및 상기 알루미나 및 상기 실리카의 전체 함량 100중량부에 대하여 카본계 물질 0.01∼5중량부를 포함한다. The vacuum chuck composite according to a preferred embodiment of the present invention includes 75 to 93% by weight of alumina, 7 to 25% by weight of silica, and 0.01 to 5 parts by weight of carbonaceous material based on 100 parts by weight of the total content of the alumina and the silica. .
상기 진공척용 복합체는 상기 알루미나 및 상기 실리카의 전체 함량 100중량부에 대하여 Fe·Co계 산화물 0.5∼6.5중량부를 더 포함할 수 있다.The vacuum chuck composite may further include 0.5 to 6.5 parts by weight of Fe · Co-based oxide based on 100 parts by weight of the total content of the alumina and the silica.
상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3, Co3O4 및 Mn계 화합물을 포함할 수 있다.The Fe · Co-based oxide may include Fe 2 O 3 , Co 3 O 4, and Mn-based compounds as chemical components.
상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3 24∼34중량%, Co3O4 10∼18중량% 및 Mn계 화합물 50∼64중량%를 포함할 수 있다.The Fe-Co oxide may include 24 to 34% by weight of Fe 2 O 3, 10 to 18% by weight of Co 3 O 4, and 50 to 64% by weight of Mn-based compound.
상기 진공척용 복합체는 상기 알루미나 및 상기 실리카의 전체 함량 100중량부에 대하여 프릿(Frit) 0.01∼5중량부를 더 포함할 수 있다.The vacuum chuck composite may further include 0.01 to 5 parts by weight of frit based on 100 parts by weight of the total content of the alumina and the silica.
상기 카본계 물질은 그래핀옥사이드(graphene oxide), 그래핀(graphene) 및 그라파이트(graphite) 중에서 선택된 1종 이상의 물질을 포함할 수 있다.The carbon-based material may include at least one material selected from graphene oxide, graphene, and graphite.
본 발명의 바람직한 실시예에 따른 진공척용 복합체의 제조방법은, (a) 알루미나 분말 75∼93중량% 및 실리카 분말 7∼25중량%를 혼합하여 제1 슬러리를 형성하는 단계와, (b) 상기 제1 슬러리를 건조하여 알루미나-실리카 분말을 형성하는 단계와, (c) 상기 알루미나-실리카 분말에 카본계 물질을 혼합하여 제2 슬러리를 형성하는 단계와, (d) 상기 제2 슬러리를 건조하여 복합분말을 형성하는 단계와, (e) 상기 복합분말을 성형하는 단계 및 (f) 성형된 결과물을 소결하는 단계를 포함하며, 상기 (c) 단계에서 상기 알루미나-실리카 분말 100중량부에 대하여 상기 카본계 물질 0.01∼5중량부를 혼합한다. Method for producing a composite for vacuum chuck according to a preferred embodiment of the present invention comprises the steps of (a) mixing 75 to 93% by weight of alumina powder and 7 to 25% by weight of silica powder to form a first slurry, and (b) the Drying the first slurry to form an alumina-silica powder, (c) mixing a carbon-based material with the alumina-silica powder to form a second slurry, and (d) drying the second slurry Forming a composite powder, (e) molding the composite powder, and (f) sintering the molded product, wherein in step (c), 100 parts by weight of the alumina-silica powder is used. 0.01-5 weight part of carbonaceous materials are mixed.
상기 (a) 단계에서 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 Fe·Co계 산화물 0.5∼6.5중량부를 더 혼합할 수 있다.In the step (a), 0.5 to 6.5 parts by weight of Fe · Co-based oxide may be further mixed with respect to 100 parts by weight of the total content of the alumina powder and the silica powder.
상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3, Co3O4 및 Mn계 화합물을 포함할 수 있다.The Fe · Co-based oxide may include Fe 2 O 3 , Co 3 O 4, and Mn-based compounds as chemical components.
상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3 24∼34중량%, Co3O4 10∼18중량% 및 Mn계 화합물 50∼64중량%를 포함할 수 있다.The Fe-Co oxide may include 24 to 34% by weight of Fe 2 O 3, 10 to 18% by weight of Co 3 O 4, and 50 to 64% by weight of Mn-based compound.
상기 (c) 단계에서 상기 알루미나-실리카 분말 100중량부에 대하여 프릿(Frit) 0.01∼5중량부를 더 혼합할 수 있다.In the step (c), 0.01 to 5 parts by weight of frit may be further mixed with respect to 100 parts by weight of the alumina-silica powder.
상기 카본계 물질은 그래핀옥사이드(graphene oxide), 그래핀(graphene) 및 그라파이트(graphite) 중에서 선택된 1종 이상의 물질을 포함할 수 있다.The carbon-based material may include at least one material selected from graphene oxide, graphene, and graphite.
상기 (a) 단계에서 분산제와 결합제를 더 혼합할 수 있고, 상기 분산제는 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 0.01∼3중량부를 혼합하는 것이 바람직하며, 상기 결합제는 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 3∼15중량부를 혼합하는 것이 바람직하다.The dispersing agent and the binder may be further mixed in the step (a), the dispersing agent is preferably mixed 0.01 to 3 parts by weight based on 100 parts by weight of the total content of the alumina powder and the silica powder, the binder is the alumina It is preferable to mix 3-15 weight part with respect to 100 weight part of total content of a powder and the said silica powder.
상기 분산제는 폴리카르복실레이트 암모늄(polycarboxylate ammonium)을 포함할 수 있다.The dispersant may include polycarboxylate ammonium.
상기 결합제는 폴리비닐알코올(polyvinyl alcohol)을 포함할 수 있다.The binder may include polyvinyl alcohol.
상기 소결은 환원소성로에서 질소 또는 아르곤 가스를 공급하여 1200∼1600℃의 온도에서 수행하는 것이 바람직하다.The sintering is preferably carried out at a temperature of 1200 ~ 1600 ℃ by supplying nitrogen or argon gas in a reducing furnace.
이하에서, 본 발명의 바람직한 실시예에 따른 진공척용 복합체의 제조방법을 더욱 구체적으로 설명한다. Hereinafter, the manufacturing method of the vacuum chuck composite according to a preferred embodiment of the present invention will be described in more detail.
알루미나(Alumina, Al2O3) 분말 및 실리카(Silica, SiO2) 분말을 혼합하여 제1 슬러리를 형성한다. Alumina (Alumina, Al 2 O 3 ) powder and silica (Silica, SiO 2 ) powder are mixed to form a first slurry.
상기 알루미나 분말 75∼93중량%, 상기 실리카 분말 7∼25중량%를 혼합하는 것이 바람직하다. 상기 알루미나 분말은 50nm∼20㎛의 평균 입경을 갖는 것이 바람직하다. 상기 실리카 분말은 50nm∼20㎛의 평균 입경을 갖는 것이 바람직하다. It is preferable to mix 75-93 weight% of the said alumina powders, and 7-25 weight% of the said silica powders. It is preferable that the said alumina powder has an average particle diameter of 50 nm-20 micrometers. It is preferable that the said silica powder has an average particle diameter of 50 nm-20 micrometers.
이때, 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 Fe·Co계 산화물 0.5∼6.5중량부를 더 혼합할 수 있다. 상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3, Co3O4 및 Mn계 화합물을 포함하는 산화물일 수 있다. 상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3 24∼34중량%, Co3O4 10∼18중량% 및 Mn계 화합물 50∼64중량%를 포함할 수 있다. 상기 Mn계 화합물은 MnCO3와 같은 Mn계 탄산염, MnO2와 같은 Mn계 산화물, Mn(CH3CO2)2와 같은 Mn계 아세트산염 등일 수 있다. Al2O3, SiO2 세라믹 소재에 Fe, Co, Mn 등 전이금속 산화물을 분산함으로써, 전기저항을 감소시켜 대전방지 기능을 부여할 수 있다. 상기 MnCO3, Mn(CH3CO2)2 등은 후술하는 소결 과정에서 Mn계 산화물(예컨대, MnO2, Mn3O4, MnO 등)로 변하게 된다. 상기 Fe·Co계 산화물 분말은 50nm∼20㎛의 평균 입경을 갖는 것이 바람직하다. At this time, 0.5 to 6.5 parts by weight of Fe · Co-based oxide may be further mixed with respect to 100 parts by weight of the total content of the alumina powder and the silica powder. The Fe-Co oxide may be an oxide including Fe 2 O 3 , Co 3 O 4, and a Mn-based compound as a chemical component. The Fe-Co oxide may include 24 to 34% by weight of Fe 2 O 3, 10 to 18% by weight of Co 3 O 4, and 50 to 64% by weight of Mn-based compound. The Mn-based compound may be an Mn-based carbonate such as MnCO 3 , an Mn-based oxide such as MnO 2 , an Mn-based acetate such as Mn (CH 3 CO 2 ) 2 , or the like. Al 2 O 3 , SiO 2 By dispersing transition metal oxides such as Fe, Co, and Mn in a ceramic material, electrical resistance can be reduced to provide an antistatic function. The MnCO 3 , Mn (CH 3 CO 2 ) 2, etc. are changed to Mn-based oxides (eg, MnO 2 , Mn 3 O 4 , MnO, etc.) in the sintering process described later. It is preferable that the said Fe-Co oxide powder has an average particle diameter of 50 nm-20 micrometers.
또한, 이때, 분산제와 결합제를 더 혼합할 수 있다. 상기 분산제는 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 0.01∼3중량부를 혼합하는 것이 바람직하며, 상기 결합제는 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 3∼15중량부를 혼합하는 것이 바람직하다. 상기 분산제는 폴리카르복실레이트 암모늄(polycarboxylate ammonium)을 포함할 수 있다. 상기 결합제는 폴리비닐알코올(polyvinyl alcohol)을 포함할 수 있다.At this time, the dispersant and the binder may be further mixed. The dispersing agent is preferably mixed 0.01 to 3 parts by weight based on 100 parts by weight of the total content of the alumina powder and the silica powder, the binder is 3 to 15 parts by weight based on 100 parts by weight of the total content of the alumina powder and the silica powder. It is preferable to mix the weight parts. The dispersant may include polycarboxylate ammonium. The binder may include polyvinyl alcohol.
상기 제1 슬러리는 용매에 고형분의 함량(예컨대, 상기 알루미나 분말 및 상기 실리카 분말)이 50∼70% 정도인 것이 바람직하다. 상기 용매는 메탄올, 에탄올과 같은 알코올, 증류수 등일 수 있다. The first slurry preferably has a solid content (eg, the alumina powder and the silica powder) of about 50 to 70% in the solvent. The solvent may be methanol, alcohol such as ethanol, distilled water, or the like.
상기 혼합은 볼밀(ball mill), 유성밀(planetary mill), 어트리션밀(attrition mill) 등과 같은 다양한 방법을 사용할 수 있다. The mixing may use a variety of methods such as a ball mill, planetary mill, attrition mill and the like.
이하, 볼밀법에 의한 혼합 공정을 예를 들어 구체적으로 설명한다. 상기 알루미나 분말 및 상기 실리카 분말을 포함하는 출발원료를 용매와 함께 볼밀링기(ball milling machine)에 장입하여 혼합한다. 볼 밀링기를 이용하여 일정 속도로 회전시켜 상기 출발원료를 균일하게 혼합한다. 볼 밀에 사용되는 볼은 알루미나, 지르코니아와 같은 세라믹으로 이루어진 볼을 사용할 수 있으며, 볼은 모두 같은 크기의 것일 수도 있고 2가지 이상의 크기를 갖는 볼을 함께 사용할 수도 있다. 볼의 크기, 밀링 시간, 볼 밀링기의 분당 회전속도 등을 조절하여 혼합한다. 예를 들면, 입자의 크기를 고려하여 볼의 크기는 1∼50㎜ 정도의 범위로 설정하고, 볼 밀링기의 회전속도는 100∼500rpm 정도의 범위로 설정할 수 있다. 볼 밀은 목표하는 입자의 크기 등을 고려하여 1∼48시간 동안 실시하는 것이 바람직하다. Hereinafter, the mixing process by a ball mill method is demonstrated concretely, for example. The starting material including the alumina powder and the silica powder is charged and mixed with a solvent in a ball milling machine. The starting material is mixed evenly by rotating at a constant speed using a ball mill. The ball used in the ball mill may use a ball made of ceramics such as alumina and zirconia, and the balls may be all the same size or may be used with balls having two or more sizes. Mix by adjusting the size of the ball, milling time, revolution per minute of the ball mill, etc. For example, in consideration of the particle size, the size of the ball can be set in the range of about 1 to 50 mm, and the rotational speed of the ball mill can be set in the range of about 100 to 500 rpm. The ball mill is preferably carried out for 1 to 48 hours in consideration of the target particle size and the like.
상기 제1 슬러리를 건조하여 알루미나-실리카 분말을 형성한다. 상기 건조는 스프레이 드라이어를 이용할 수 있다. 예컨대, 열풍온도 150∼210℃, 배풍온도 60∼100℃, 디스크 회전속도 5000∼10000rpm, 제1 슬러리 투입량 0.01∼2L/min의 조건으로 스프레이 드라이어를 이용하여 건조한다. 스프레이 드라이(Spray dry) 공정은 알루미나-실리카 분말을 구형으로 만들 수 있는데, 슬러리를 호스로 펌핑하여 챔버 속에서 회전하는 원형디스크 위에 투입하여 슬러리가 원심력에 의해 챔버의 가장자리 방향으로 비산되도록 하며, 열풍을 분사하여 슬러리를 건조시켜 과립 상태의 분말로 만든다. 스프레이 드라이 공정에 의해 슬러리 상태에서 구형의 과립 형태로 만들어지는데, 이는 다음 공정인 성형 과정에서 입자 간의 유동성을 향상시켜 성형이 용이하게 되도록 하고, 입자 간의 기공이 균일한 형상이 되도록 하는 작용을 한다. 건조된 분말을 체(sieve)를 통과시켜 분급하고 다시 건조 공정을 수행할 수도 있다. The first slurry is dried to form alumina-silica powder. The drying may use a spray dryer. For example, it drys using a spray dryer on the conditions of 150-210 degreeC of hot air temperatures, 60-100 degreeC of air blowing temperatures, 5000-10000 rpm of disk rotation speeds, and 0.01-2 L / min of 1st slurry input amount. The spray dry process can make alumina-silica powder into a spherical shape, pumping the slurry with a hose and feeding it onto a circular disk that rotates in the chamber, allowing the slurry to scatter towards the edge of the chamber by centrifugal force. The slurry is dried to obtain a granular powder. It is made in the form of spherical granules in the slurry state by the spray drying process, which improves the fluidity between particles in the molding process, which is the next process, and facilitates the molding, and serves to make the pores between the particles have a uniform shape. The dried powder may be classified through a sieve and again subjected to a drying process.
상기 알루미나-실리카 분말에 카본계 물질을 혼합하여 제2 슬러리를 형성한다. The carbon-based material is mixed with the alumina-silica powder to form a second slurry.
이때, 상기 알루미나-실리카 분말 100중량부에 대하여 프릿(Frit) 0.01∼5중량부를 더 혼합할 수도 있다.In this case, 0.01 to 5 parts by weight of frit may be further mixed with respect to 100 parts by weight of the alumina-silica powder.
상기 알루미나-실리카 분말 100중량부에 대하여 상기 카본계 물질 0.01∼5중량부를 혼합하는 것이 바람직하다.It is preferable to mix 0.01 to 5 parts by weight of the carbonaceous material with respect to 100 parts by weight of the alumina-silica powder.
상기 카본계 물질은 그래핀옥사이드(graphene oxide), 그래핀(graphene) 및 그라파이트(graphite) 중에서 선택된 1종 이상의 물질을 포함할 수 있다. 상기 그래핀은 단일층, 이중층 또는 다층 형태로 이루어진 것일 수 있다. 상기 그래핀은 일반적으로 의미하는 그래핀뿐만 아니라 환원된 산화그래핀(reduced graphene oxide; rGO)도 포함하는 의미로 사용한다. 상기 탄소계 물질을 첨가하게 되면 진공척용 복합체의 전기전도도를 높일 수가 있다. 또한, 상기 탄소계 물질을 혼합하게 되면 진공척용 복합체의 기계적 특성과 물성이 좋아질 수 있다. Al2O3, SiO2 세라믹 소재에 카본계 물질을 분산함으로써, 전기저항을 감소시켜 대전방지 기능을 부여할 수 있다.The carbon-based material may include at least one material selected from graphene oxide, graphene, and graphite. The graphene may be made of a single layer, a double layer or a multi-layered form. The graphene is used to include graphene oxide (rGO) as well as graphene, which generally means. The addition of the carbonaceous material can increase the electrical conductivity of the composite for vacuum chuck. In addition, when the carbon-based material is mixed, mechanical properties and physical properties of the vacuum chuck composite may be improved. Al 2 O 3 , SiO 2 By dispersing the carbon-based material in the ceramic material, it is possible to reduce the electrical resistance to impart an antistatic function.
상기 제2 슬러리는 용매에 고형분의 함량이 50∼70% 정도인 것이 바람직하다. 상기 용매는 메탄올, 에탄올과 같은 알코올, 증류수 등일 수 있다. The second slurry preferably has a content of solids in the solvent of about 50 to 70%. The solvent may be methanol, alcohol such as ethanol, distilled water, or the like.
상기 제2 슬러리를 건조하여 복합분말을 형성한다. 상기 건조는 오븐(Oven)에서 60∼150℃의 온도에서 1∼48시간 동안 수행하는 것이 바람직하다.The second slurry is dried to form a composite powder. The drying is preferably carried out in an oven at a temperature of 60 to 150 ℃ for 1 to 48 hours.
상기 복합분말을 성형한다. 상기 성형은 다양한 방법으로 이루어질 수 있다. 예컨대, 상기 복합분말을 몰드에 장입하고 일축가압하여 성형하는 과정을 포함할 수 있다.The composite powder is molded. The molding can be done in a variety of ways. For example, the composite powder may be charged into a mold and subjected to uniaxial press molding.
성형된 결과물을 소결한다. 상기 소결은 환원소성로에서 질소(N2) 또는 아르곤(Ar) 등의 가스를 공급하여 1200∼1600℃의 온도에서 수행하는 것이 바람직하다. 상기 소결은 10분∼48시간 동안 수행하는 것이 바람직하다. 소결 과정에서 성형체(성형된 결과물) 내부의 수분, 분산제 및 결합제가 연소되어 없어지게 되며, 이때 성형체에서 수분, 분산제, 결합제가 차지하고 있던 공간에 기공이 형성되어 다공성을 나타내는 진공척용 복합체가 형성되게 된다. 상기 Mn계 화합물은 MnCO3와 같은 Mn계 탄산염, MnO2와 같은 Mn계 산화물, Mn(CH3CO2)2와 같은 Mn계 아세트산염 등으로 이루어질 수 있는데, 상기 MnCO3, Mn(CH3CO2)2 등은 소결 과정에서 Mn계 산화물(예컨대, MnO2, Mn3O4, MnO 등)로 변하게 된다.The molded result is sintered. The sintering is preferably performed at a temperature of 1200 to 1600 ° C. by supplying a gas such as nitrogen (N 2 ) or argon (Ar) in a reducing furnace. The sintering is preferably performed for 10 minutes to 48 hours. During the sintering process, the water, the dispersant, and the binder inside the molded body (molded product) are burned out and disappeared. At this time, pores are formed in the space occupied by the water, the dispersant, and the binder, thereby forming a composite for vacuum chuck showing porosity. . The Mn-based compound may be composed of Mn-based carbonates such as MnCO 3 , Mn-based oxides such as MnO 2 , Mn-based acetates such as Mn (CH 3 CO 2 ) 2, and the like, and MnCO 3 , Mn (CH 3 CO 2 ) 2 and the like are converted to Mn-based oxides (eg, MnO 2 , Mn 3 O 4 , MnO, etc.) during the sintering process.
상술한 방법으로 제조된 진공척용 복합체는, 알루미나 75∼93중량%, 실리카 7∼25중량% 및 상기 알루미나 및 상기 실리카의 전체 함량 100중량부에 대하여 카본계 물질 0.01∼5중량부를 포함하며, Al2O3, SiO2 세라믹 소재에 탄소계 물질이 분산되어 있으므로 전기저항이 감소되어 대전방지 기능을 가지며, 기계적 특성이 우수하고, 다공성을 나타내며, 제조공정이 복잡하지 않고 간단하게 제조할 수 있으며, 제조비용이 적게 든다.The vacuum chuck composite prepared by the above-mentioned method comprises 75 to 93% by weight of alumina, 7 to 25% by weight of silica, and 0.01 to 5 parts by weight of carbonaceous material based on 100 parts by weight of the total content of the alumina and the silica, and Al 2 O 3 , SiO 2 Since the carbon-based material is dispersed in the ceramic material, the electrical resistance is reduced, thereby having an antistatic function, excellent mechanical properties, porosity, manufacturing process is not complicated, simple manufacturing, and low manufacturing cost.
이하에서, 본 발명에 따른 실험예들을 구체적으로 제시하며, 다음에 제시하는 실험예들에 의하여 본 발명이 한정되는 것은 아니다. Hereinafter, experimental examples according to the present invention are specifically presented, and the present invention is not limited by the following experimental examples.
<실험예 1> ASF 분말의 제조Experimental Example 1 Preparation of ASF Powder
슬러리를 제조하기 위해 증류수에 알루미나 분말(99.8%, AES-11, Sumitomo), 실리카 분말(CA-20, Sibelco Korea), Fe·Co계 산화물 분말(MnCO3-57%, Fe2O3-29%, Co3O4-14%)을 질량비로 각각 84wt%, 12.63wt%, 3.37wt%로 첨가하고, 분산제와 결합체를 고형분(알루미나 분말, 실리카 분말 및 Fe·Co계 산화물 분말) 대비 각각 1wt%, 10wt%로 첨가하여 혼합하여 슬러리를 제조하였다. To prepare the slurry, alumina powder (99.8%, AES-11, Sumitomo), silica powder (CA-20, Sibelco Korea), Fe · Co oxide powder (MnCO 3 -57%, Fe 2 O 3 -29) in distilled water %, Co 3 O 4 -14%) were added in a mass ratio of 84 wt%, 12.63 wt% and 3.37 wt%, respectively, and the dispersant and the binder were 1 wt each of the solids (alumina powder, silica powder and Fe · Co oxide powder). %, 10wt% was added and mixed to prepare a slurry.
상기 분산제는 폴리카르복실레이트 암모늄(polycarboxylate ammonium)(5468-CF, Cerasperce)을 사용하였고, 상기 결합제는 폴리비닐알코올(polyvinyl alcohol)(PVA-205, Kuraray)을 사용하였다. The dispersant was polycarboxylate ammonium (5468-CF, Cerasperce), and the binder was polyvinyl alcohol (PVA-205, Kuraray).
균일한 슬러리를 제조하기 위해 Ø2 알루미나 볼을 이용하여 6시간 동안 110 rpm의 회전 조건에서 볼 밀링(ball milling)을 하였다. Ball milling was carried out using a Ø2 alumina ball at 110 rpm for 6 hours to produce a uniform slurry.
제조된 슬러리는 열풍온도 180℃, 배풍온도 80℃, 디스크 회전속도 8500rpm, 슬러리 투입량 0.3L/min의 조건으로 스프레이 드라이어(HCSY-01, 화창기연)를 이용하여 건조하였다. 스프레이 드라이 후 제조된 과립 분말은 유동성이 뛰어나고 균일한 구형상을 나타내었다. 154㎛ 체(sieve)에 통과시키고 100℃에서 24시간 동안 완전 건조하여 알루미나-실리카-Fe·Co계 산화물 분말(이하 'ASF 분말'이라고 함)을 얻었다. The prepared slurry was dried using a spray dryer (HCSY-01, sunny window) under conditions of a hot air temperature of 180 ° C., a back air temperature of 80 ° C., a disk rotation speed of 8500 rpm, and a slurry input amount of 0.3 L / min. The granulated powder prepared after spray drying showed excellent flowability and uniform spherical shape. It was passed through a 154 μm sieve and completely dried at 100 ° C. for 24 hours to obtain an alumina-silica-Fe.Co-based oxide powder (hereinafter referred to as 'ASF powder').
<실험예 2> ASF 소결체의 제조Experimental Example 2 Manufacture of ASF Sintered Body
실험예 1에 따라 제조된 ASF 분말을 바(bar)형 금속몰드(30mm × 60mm)를 이용하여 일축가압성형(45g, 3ton, 2min)하여 바(bar) 형태로 압축하여 성형체를 얻었다. 성형체는 용융로(Thermal System&technology)를 사용하여 아르곤(Ar) 분위기에서 600*℃의 온도에서 탈지하였으며, 탈지 후 분위기로(Polynanotech)를 사용하여 아르곤(Ar) 분위기에서 각각 1250℃, 1300℃, 1500℃에서 상압 소결하였다. 이하에서, 이렇게 제조된 소결체를 'ASF 소결체'라고 칭한다.The ASF powder prepared according to Experimental Example 1 was uniaxially press-molded (45 g, 3 ton, 2 min) using a bar metal mold (30 mm x 60 mm) to obtain a molded body. The molded body was degreased at a temperature of 600 * ° C. in an argon (Ar) atmosphere using a melting furnace (Thermal System & technology), and 1250 ° C., 1300 ° C., and 1500 ° C. in an argon (Ar) atmosphere after degreasing using Polynanotech. Sintered at atmospheric pressure. Hereinafter, the sintered compact thus manufactured is referred to as an 'ASF sintered compact'.
<실험예 3> ASF-카본계 복합체의 제조Experimental Example 3 Preparation of ASF-Carbon Composite
실험예 1에 따라 제조된 ASF 분말을 고형분 60 wt%가 되도록 증류수에 첨가하였다. 전기전도도를 증가시키기 위하여 그래핀 옥사이드(graphene oxide; 이하 'GO'라 함)(GO-V30-100, Standard Graphene), 그래핀(graphene; 이하 'EG'라 함)(Nanostructured Graphite-400, Graphite supermarket)을 각각 고형분 대비 0.2 ~ 5.0 wt%로 첨가하여 슬러리를 형성하였다. 균일한 슬러리를 제조하기 위해 Ø2 알루미나 볼을 이용하여 6시간 동안 110 rpm의 회전조건에서 볼 밀링을 하였다. The ASF powder prepared according to Experimental Example 1 was added to distilled water so as to have a solid content of 60 wt%. Graphene oxide (hereinafter referred to as 'GO') (GO-V30-100, Standard Graphene) and graphene (hereinafter referred to as 'EG') (Nanostructured Graphite-400, Graphite to increase electrical conductivity supermarket) was added to 0.2 to 5.0 wt% of solids, respectively, to form a slurry. To prepare a uniform slurry, ball milling was performed at 110 rpm for 6 hours using a Ø2 alumina ball.
상기 슬러리를 오븐에 넣고 100℃에서 24시간 동안 건조하여 증류수를 증발시켰으며, 건조 과정에서 에탄올을 일정시간 분사하였다. 154㎛ 체(sieve)에 통과시키고, 100℃에서 24시간 동안 완전 건조하여 분말을 얻었다. 이렇게 제조된 분말을 ASF-카본계 복합분말이라고 칭한다. The slurry was placed in an oven and dried at 100 ° C. for 24 hours to evaporate distilled water, and ethanol was sprayed for a predetermined time during the drying process. It was passed through a 154 μm sieve and completely dried at 100 ° C. for 24 hours to obtain a powder. The powder thus prepared is referred to as an ASF-carbon composite powder.
상기 ASF-카본계 복합분말을 바(bar)형 금속몰드(30mm × 60mm)를 이용하여 일축가압성형(45g, 3ton, 2min)하여 바(bar) 형태로 압축하여 성형체를 얻었다. 성형체는 용융로(Thermal System&technology)를 사용하여 아르곤(Ar) 분위기에서 600℃의 온도에서 탈지하였으며, 탈지 후 환원소성로(희웅이엔지, Korea)를 이용하여 N2 분위기에서 각각 1250℃와 1300℃에서 상압 소결하였다. The ASF-carbon composite powder was uniaxially pressed (45 g, 3 ton, 2 min) using a bar-shaped metal mold (30 mm x 60 mm), and compressed into a bar to obtain a molded product. The molded body was degreased at a temperature of 600 ° C. in an argon (Ar) atmosphere using a melting furnace (Thermal System & technology), and after degreasing, at a pressure of 1250 ° C. and 1300 ° C. in a N 2 atmosphere using a reducing firing furnace (Heewoong ENG, Korea), respectively. Sintered.
<실험예 4> ASF-카본계 복합체의 제조Experimental Example 4 Preparation of ASF-Carbon Composite
실험예 1에 따라 제조된 ASF 분말을 고형분 60 wt%가 되도록 증류수에 첨가하였다. 전기전도도를 증가시키기 위해 그라파이트(graphite)인 수페리어 카본(superior carbon; 이하 'SC'라 함)(Superior Graphite사의 제품)을 고형분 대비 0.5 ~ 3.0 wt%로 첨가하여 슬러리를 형성하였다. 균일한 슬러리를 제조하기 위해 Ø2 알루미나 볼을 이용하여 6시간 동안 110 rpm의 회전조건에서 볼 밀링을 하였다. The ASF powder prepared according to Experimental Example 1 was added to distilled water so as to have a solid content of 60 wt%. In order to increase the electrical conductivity, graphite (superior carbon, hereinafter referred to as 'SC') (manufactured by Superior Graphite) was added to 0.5 to 3.0 wt% of solids to form a slurry. To prepare a uniform slurry, ball milling was performed at 110 rpm for 6 hours using a Ø2 alumina ball.
상기 슬러리를 오븐에 넣고 100℃에서 24시간 동안 건조하여 증류수를 증발시켰으며, 건조 과정에서 에탄올을 일정시간 분사하였다. 154㎛ 체(sieve)에 통과시키고, 100℃에서 24시간 동안 완전 건조하여 분말을 얻었다. 이렇게 제조된 분말을 ASF-카본계 복합분말이라고 칭한다. The slurry was placed in an oven and dried at 100 ° C. for 24 hours to evaporate distilled water, and ethanol was sprayed for a predetermined time during the drying process. It was passed through a 154 μm sieve and completely dried at 100 ° C. for 24 hours to obtain a powder. The powder thus prepared is referred to as an ASF-carbon composite powder.
상기 ASF-카본계 복합분말을 바(bar)형 금속몰드(30mm × 60mm)를 이용하여 일축가압성형(45g, 3ton, 2min)하여 바(bar) 형태로 압축하여 성형체를 얻었다. 성형체는 용융로(Thermal System&technology)를 사용하여 아르곤(Ar) 분위기에서 600℃의 온도에서 탈지하였으며, 탈지 후 환원소성로(희웅이엔지, Korea)를 이용하여 N2 분위기에서 각각 1250℃와 1300℃에서 상압 소결하였다. The ASF-carbon composite powder was uniaxially pressed (45 g, 3 ton, 2 min) using a bar-shaped metal mold (30 mm x 60 mm), and compressed into a bar to obtain a molded product. The molded body was degreased at a temperature of 600 ° C. in an argon (Ar) atmosphere using a melting furnace (Thermal System & technology), and after degreasing, at a pressure of 1250 ° C. and 1300 ° C. in a N 2 atmosphere using a reducing firing furnace (Heewoong ENG, Korea), respectively. Sintered.
<실험예 5> ASF-카본계 복합체의 제조Experimental Example 5 Preparation of ASF-Carbon Composite
실험예 1에 따라 제조된 ASF 분말을 고형분 60 wt%가 되도록 증류수에 첨가하였다. 전기전도도를 증가시키기 위한 SC(superior carbon, Superior Graphite사의 제품)과 프릿(Frit)(14-3982M, TOMATEC)을 각각 고형분 대비 0.5 ~ 5.0 wt%로 첨가하여 슬러리를 형성하였다. 균일한 슬러리를 제조하기 위해 Ø2 알루미나 볼을 이용하여 6시간 동안 110 rpm의 회전조건에서 볼 밀링을 하였다. The ASF powder prepared according to Experimental Example 1 was added to distilled water so as to have a solid content of 60 wt%. SC (superior carbon, product of Superior Graphite) and frit (14-3982M, TOMATEC) to increase electrical conductivity were added at 0.5 to 5.0 wt% of solids, respectively, to form a slurry. To prepare a uniform slurry, ball milling was performed at 110 rpm for 6 hours using a Ø2 alumina ball.
상기 슬러리를 오븐에 넣고 100℃에서 24시간 동안 건조하여 증류수를 증발시켰으며, 건조 과정에서 에탄올을 일정시간 분사하였다. 154㎛ 체(sieve)에 통과시키고, 100℃에서 24시간 동안 완전 건조하여 분말을 얻었다. 이렇게 제조된 분말을 ASF-카본계 복합분말이라고 칭한다. The slurry was placed in an oven and dried at 100 ° C. for 24 hours to evaporate distilled water, and ethanol was sprayed for a predetermined time during the drying process. It was passed through a 154 μm sieve and completely dried at 100 ° C. for 24 hours to obtain a powder. The powder thus prepared is referred to as an ASF-carbon composite powder.
상기 ASF-카본계 복합분말을 바(bar)형 금속몰드(30mm × 60mm)를 이용하여 일축가압성형(45g, 3ton, 2min)하여 바(bar) 형태로 압축하여 성형체를 얻었다. 성형체는 용융로(Thermal System&technology)를 사용하여 아르곤(Ar) 분위기에서 600℃의 온도에서 탈지하였으며, 탈지 후 환원소성로(희웅이엔지, Korea)를 이용하여 N2 분위기에서 각각 1250℃와 1300℃에서 상압 소결하였다. The ASF-carbon composite powder was uniaxially pressed (45 g, 3 ton, 2 min) using a bar-shaped metal mold (30 mm x 60 mm), and compressed into a bar to obtain a molded product. The molded body was degreased at a temperature of 600 ° C. in an argon (Ar) atmosphere using a melting furnace (Thermal System & technology), and after degreasing, at a pressure of 1250 ° C. and 1300 ° C. in a N 2 atmosphere using a reducing firing furnace (Heewoong ENG, Korea), respectively. Sintered.
소결된 시편의 결정상을 분석하기 위하여 X-선회절기(X-ray diffractometer)(DAX-2500/PC, Rigaku, Japan)를 사용하였다. X선 출력이 전압 40kV, 100mA인 조건으로 10℃/min의 스캔속도로 측정하였다. 각 상에 대한 정보는 JCPDS 카드(card)와 문헌을 참조하였다. An X-ray diffractometer (DAX-2500 / PC, Rigaku, Japan) was used to analyze the crystal phase of the sintered specimen. The X-ray output was measured at a scan rate of 10 ° C / min under the condition that the voltage was 40 kV and 100 mA. For information on each prize, see JCPDS card and literature.
도 1은 실험예들에 따라 제조된 소결체의 X-선회절(X-ray diffraction; XRD) 패턴을 보여주는 도면이다. 도 1에서 (a)는 ASF 소결체(환원소성로, N2 분위기, 1250℃)에 대한 것이고, (b)는 ASF 소결체(환원소성로, N2 분위기, 1300℃)에 대한 것이며, (c) ASF 소결체(분위기로, Ar 분위기, 1500℃)에 대한 것이고, (d)는 ASF-EG(0.2wt%) 소결체 (환원소성로, N2 분위기, 1300℃)에 대한 것이며, (e)는 ASF-EG(0.5wt%) 소결체(환원소성로, N2 분위기, 1300℃)에 대한 것이고, (f)는 ASF-EG(1.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)에 대한 것이며, (g)는 ASF-GO(0.2wt%) 소결체(환원소성로, N2 분위기, 1250℃)에 대한 것이고, (h)는 ASF-GO(0.2wt%) 소결체(환원소성로, N2 분위기, 1300℃)에 대한 것이며, (i)는 ASF-GO(0.5wt%) 소결체(환원소성로, N2 분위기, 1250℃)에 대한 것이고, (j)는 ASF-GO(0.2wt%) 소결체(환원소성로, N2 분위기, 1300℃)에 대한 것이며, (k)는 ASF-SC(0.5wt%)-Frit(1.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)에 대한 것이고, (l)은 ASF-SC(0.5wt%)-Frit(2.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)에 대한 것이며, (m)은 ASF-SC(0.5 wt%)-Frit(5.0 wt%) 소결체(환원소성로, N2 분위기, 1300℃)에 대한 것이다. 1 is a view showing an X-ray diffraction (XRD) pattern of the sintered body prepared according to the experimental examples. In Figure 1 (a) is for the ASF sintered body (reduction element, N 2 atmosphere, 1250 ℃), (b) is for the ASF sintered body (reduction element, N 2 atmosphere, 1300 ℃), (c) ASF sintered body (In an atmosphere, Ar atmosphere, 1500 ° C.), (d) is for ASF-EG (0.2 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), and (e) is ASF-EG ( 0.5 wt%) for sintered bodies (reduction furnace, N 2 atmosphere, 1300 ° C.), (f) for ASF-EG (1.0 wt%) sintered bodies (reduction furnace, N 2 atmosphere, 1300 ° C.), (g ) Is for the ASF-GO (0.2 wt%) sintered body (reducing furnace, N 2 atmosphere, 1250 ° C.), and (h) is the ASF-GO (0.2 wt%) sintered body (reducing element furnace, N 2 atmosphere, 1300 ° C.) (I) is for ASF-GO (0.5 wt%) sintered body (reducing furnace, N 2 atmosphere, 1250 ° C.), and (j) is for ASF-GO (0.2 wt%) sintered body (reducing element furnace, N 2 atmosphere, are for the 1300 ℃), (k) is ASF-SC (0.5wt%) - Frit (1.0wt%) sintered body (sintering furnace reduction, N 2 atmosphere, 1300 ℃) Is for, (l) is ASF-SC (0.5wt%) - Frit (2.0wt%) sintered body are for the (reduced sintering furnace, N 2 atmosphere, 1300 ℃), (m) is ASF-SC (0.5 wt%) -Frit (5.0 wt%) for sintered bodies (reduction furnace, N 2 atmosphere, 1300 ° C).
주사전자현미경(Scanning Electron Microscopy; SEM(JSM-6710F, Jeol, Japan)으로 파단면(fractured surface)의 미세구조를 관찰하였다. 세척 등의 전처리 없이 파단면에 백금 (Pt)을 코팅해서 주사전자현미경(SEM) 사진을 분석하여 도 2 내지 도 9에 나타내었다. The microstructure of the fractured surface was observed by scanning electron microscopy (SEM (JSM-6710F, Jeol, Japan), and coated with platinum (Pt) on the fractured surface without pretreatment such as cleaning. (SEM) pictures were analyzed and shown in FIGS. 2 to 9.
도 2는 ASF 소결체(분위기로, Ar 분위기, 1500℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 3은 ASF 소결체(환원소성로, N2 분위기, 1500℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 2 is a scanning electron microscope (SEM) image of an ASF sintered body (in an atmosphere, Ar atmosphere, 1500 ° C.), showing a microstructure magnified 1000 times, and FIG. 3 is an ASF sintered body (reducing element, N 2 atmosphere, 1500 ° C.). Scanning electron microscopy (SEM) of shows microstructure magnified 5000 times.
도 4는 ASF 소결체(분위기로, Ar 분위기, 1250℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 5는 ASF 소결체(환원소성로, N2 분위기, 1250℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. 4 is a scanning electron microscope (SEM) image of an ASF sintered body (in an atmosphere, Ar atmosphere, 1250 ° C.) and shows a microstructure magnified 1000 times. FIG. 5 is an ASF sintered body (reducing element, N 2 atmosphere, 1250 ° C.). Scanning electron microscopy (SEM) of shows microstructure magnified 5000 times.
도 6은 ASF 소결체(환원소성로, N2 분위기, 1250℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 7은 ASF 소결체(환원소성로, N2 분위기, 1250℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 6 is a scanning electron microscope (SEM) image of an ASF sintered body (reducing furnace, N 2 atmosphere, 1250 ° C.), showing a microstructure magnified 1000 times, and FIG. 7 is an ASF sintered body (reducing furnace, N 2 atmosphere, 1250 ° C.). Scanning electron microscopy (SEM) photograph of) shows the microstructure magnified 5000 times.
도 8은 ASF 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 9는 ASF 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 8 is a scanning electron microscope (SEM) image of an ASF sintered body (reducing furnace, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times, and FIG. 9 is an ASF sintered body (reducing furnace, N 2 atmosphere, 1300 ° C.). Scanning electron microscopy (SEM) photograph of) shows the microstructure magnified 5000 times.
아래의 표 1에 소결조건에 따른 ASF 소결체의 밀도, 표면저항, 강도를 나타내었다.Table 1 below shows the density, surface resistance and strength of the ASF sintered body according to the sintering conditions.
CompoundCompound 소결 조건Sintering Condition Density (g/cm3) / %Density (g / cm 3 ) /% Surface restance (Ω)Surface restance (Ω) Strengtjh (㎫)Strengtjh (MPa)
ASF ASF 분위기로, 1250℃, ArAtmosphere, 1250 ℃, Ar 2.07 / 522.07 / 52 2.05 E112.05 E11 20.9420.94
ASF ASF 분위기로, 1500℃, ArAtmosphere, 1500 ℃, Ar 2.39 / 602.39 / 60 5.53 E115.53 E11 61.7261.72
ASF ASF 환원소성로, 1250℃, N2 Reduction firing furnace, 1250 ° C, N 2 2.16 / 542.16 / 54 1.05 E61.05 E6 --
ASF ASF 환원소성로, 1300℃, N2 Reduction firing furnace, 1300 ° C, N 2 2.23 / 562.23 / 56 -- --
도 10에 소결조건에 따른 ASF 소결체의 밀도를 나타내었다.10 shows the density of the ASF sintered body according to the sintering conditions.
도 11에 소결조건에 따른 ASF 소결체의 표면저항을 나타내었다.11 shows the surface resistance of the ASF sintered body according to the sintering conditions.
도 12에 소결조건에 따른 ASF 소결체의 강도를 나타내었다.12 shows the strength of the ASF sintered body according to the sintering conditions.
아래의 표 2에 소결조건에 따른 ASF-GO, ASF-EG 소결체의 밀도, 표면저항, 강도를 나타내었다.Table 2 below shows the density, surface resistance and strength of the ASF-GO and ASF-EG sintered bodies according to the sintering conditions.
CompoundCompound 소결 조건Sintering Condition Density(g/cm3)/ %Density (g / cm 3 ) /% Surface resistance (Ω)Surface resistance (Ω)
ASF-GO 0.2 wt% ASF-GO 0.2 wt% 환원소성로, 1250℃, N2 Reduction firing furnace, 1250 ° C, N 2 2.11 / 532.11 / 53 1.65 E111.65 E11
ASF-GO 0.2 wt% ASF-GO 0.2 wt% 환원소성로, 1300℃, N2 Reduction firing furnace, 1300 ° C, N 2 2.24 / 572.24 / 57 2.33 E112.33 E11
ASF-GO 0.5 wt% ASF-GO 0.5 wt% 환원소성로, 1250℃, N2 Reduction firing furnace, 1250 ° C, N 2 2.09 / 532.09 / 53 5.03 E115.03 E11
ASF-GO 0.5 wt% ASF-GO 0.5 wt% 환원소성로, 1300℃, N2 Reduction firing furnace, 1300 ° C, N 2 2.22 / 562.22 / 56 5.71 E115.71 E11
ASF-GO 1.0 wt% ASF-GO 1.0 wt% 분위기로, 1250℃, ArAtmosphere, 1250 ℃, Ar 2.05 / 522.05 / 52 5.14 E45.14 E4
ASF-GO 3.0 wt% ASF-GO 3.0 wt% 분위기로, 1250℃, ArAtmosphere, 1250 ℃, Ar -- 1.05 E61.05 E6
ASF-GO 5.0 wt% ASF-GO 5.0 wt% 분위기로, 1250℃, ArAtmosphere, 1250 ℃, Ar -- 1.05 E61.05 E6
ASF-EG 0.2 wt% ASF-EG 0.2 wt% 환원소성로, 1300℃, N2 Reduction firing furnace, 1300 ° C, N 2 2.33 / 592.33 / 59 6.88 E96.88 E9
ASF-EG 0.5 wt% ASF-EG 0.5 wt% 환원소성로, 1300℃, N2 Reduction firing furnace, 1300 ° C, N 2 2.24 / 572.24 / 57 1.26 E101.26 E10
ASF-EG 1.0 wt%ASF-EG 1.0 wt% 환원소성로, 1300℃, N2 Reduction firing furnace, 1300 ° C, N 2 2.09 / 53 2.09 / 53 1.05 E101.05 E10
도 13에 소결조건에 따른 ASF-GO, ASF-EG 소결체의 밀도를 나타내었다.13 shows the density of ASF-GO and ASF-EG sintered bodies according to the sintering conditions.
도 14에 소결조건에 따른 ASF-GO, ASF-EG 소결체의 표면저항을 나타내었다.Figure 14 shows the surface resistance of the ASF-GO, ASF-EG sintered body according to the sintering conditions.
아래의 표 3에 소결조건에 따른 ASF-SC 소결체의 밀도, 표면저항, 강도를 나타내었다. Table 3 below shows the density, surface resistance and strength of the ASF-SC sintered body according to the sintering conditions.
CompoundCompound 소결 조건Sintering Condition Density(g/cm3)/ %Density (g / cm 3 ) /% Surface resistance (Ω)Surface resistance (Ω) Strength (㎫)Strength (MPa)
ASF-SC 0.2 wt%ASF-SC 0.2 wt% 환원소성로,1300℃, N2, 10℃/minReduction firing furnace, 1300 ℃, N 2, 10 ℃ / min 2.39 / 602.39 / 60 2.86 E102.86 E10 76.5676.56
ASF-SC 0.5 wt%ASF-SC 0.5 wt% 환원소성로,1300℃, N2, 10℃/minReduction firing furnace, 1300 ℃, N 2, 10 ℃ / min 2.34 / 59 2.34 / 59 9.74 E99.74 E9 84.4884.48
도 15에 소결조건에 따른 ASF-SC 소결체의 밀도를 나타내었다.15 shows the density of the ASF-SC sintered compact according to the sintering conditions.
도 16에 소결조건에 따른 ASF-SC 소결체의 표면저항을 나타내었다.Figure 16 shows the surface resistance of the ASF-SC sintered body according to the sintering conditions.
도 17에 소결조건에 따른 ASF-SC 소결체의 강도를 나타내었다.17 shows the strength of the ASF-SC sintered body according to the sintering conditions.
도 18은 ASF-SC(0.5wt%)-Frit(1.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 19는 ASF-SC(0.5wt%)-Frit(1.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 18 is a scanning electron microscope (SEM) image of an ASF-SC (0.5 wt%)-Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times. FIG. 19 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
도 20은 ASF-SC(0.5wt%)-Frit(1.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 21은 ASF-SC(0.5wt%)-Frit(1.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 20 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times. FIG. 21 is a scanning electron microscope (SEM) image of an ASF-SC (0.5 wt%)-Frit (1.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a magnification of 5000 times.
도 22는 ASF-SC(0.5wt%)-Frit(2.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 23은 ASF-SC(0.5wt%)-Frit(2.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 22 is a scanning electron microscope (SEM) image of an ASF-SC (0.5 wt%)-Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times. FIG. 23 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
도 24는 ASF-SC(0.5wt%)-Frit(2.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 25는 ASF-SC(0.5wt%)-Frit(2.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 24 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times. FIG. 25 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (2.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a magnification of 5000 times.
도 26은 ASF-SC(0.5wt%)-Frit(5.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 27은 ASF-SC(0.5wt%)-Frit(5.0wt%) 소결체(환원소성로, N2 분위기, 1200℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 26 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a microstructure magnified 1000 times. FIG. 27 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1200 ° C.), showing a magnification of 5000 times.
도 28은 ASF-SC(0.5wt%)-Frit(5.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 1000배로 확대한 미세구조를 보여주고, 도 29는 ASF-SC(0.5wt%)-Frit(5.0wt%) 소결체(환원소성로, N2 분위기, 1300℃)의 주사전자현미경(SEM) 사진으로서 5000배로 확대한 미세구조를 보여준다. FIG. 28 is a scanning electron microscope (SEM) image of an ASF-SC (0.5 wt%)-Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a microstructure magnified 1000 times. FIG. 29 is a scanning electron microscope (SEM) photograph of an ASF-SC (0.5 wt%)-Frit (5.0 wt%) sintered body (reducing element, N 2 atmosphere, 1300 ° C.), showing a magnification of 5000 times.
아래의 표 4에 소결조건에 따른 ASF-SC(0.5 wt%)-Frit 소결체의 밀도, 표면저항, 강도를 나타내었다.Table 4 below shows the density, surface resistance, and strength of the ASF-SC (0.5 wt%)-Frit sintered body according to the sintering conditions.
CompoundCompound 소결 조건Sintering Condition Density(g/cm3)/ %Density (g / cm 3 ) /% Surface resistance (Ω)Surface resistance (Ω) Strength (㎫)Strength (MPa)
ASF-SC(0.5 wt%)-Frit 1 wt%ASF-SC (0.5 wt%)-Frit 1 wt% 환원소성로,1200℃, N2, 10℃/minReduction firing furnace, 1200 ℃, N 2, 10 ℃ / min 2.26 / 572.26 / 57 1.88 E101.88 E10 --
ASF-SC(0.5 wt%)-Frit 2 wt%ASF-SC (0.5 wt%)-Frit 2 wt% 환원소성로,1200℃, N2, 10℃/minReduction firing furnace, 1200 ℃, N 2, 10 ℃ / min 2.24 / 572.24 / 57 2.44 E102.44 E10 --
ASF-SC(0.5 wt%)-Frit 5 wt%ASF-SC (0.5 wt%)-Frit 5 wt% 환원소성로,1200℃, N2, 10℃/minReduction firing furnace, 1200 ℃, N 2, 10 ℃ / min 2.23 / 562.23 / 56 5.23 E105.23 E10 --
ASF-SC(0.5 wt%)-Frit 1 wt%ASF-SC (0.5 wt%)-Frit 1 wt% 환원소성로,1300℃, N2, 10℃/minReduction firing furnace, 1300 ℃, N 2, 10 ℃ / min 2.63 / 672.63 / 67 3.28 E103.28 E10 106.46106.46
ASF-SC(0.5 wt%)-Frit 2 wt%ASF-SC (0.5 wt%)-Frit 2 wt% 환원소성로,1300℃, N2, 10℃/minReduction firing furnace, 1300 ℃, N 2, 10 ℃ / min 2.57 / 652.57 / 65 4.97 E104.97 E10 106.04106.04
ASF-SC(0.5 wt%)-Frit 5 wt%ASF-SC (0.5 wt%)-Frit 5 wt% 환원소성로,1300℃, N2, 10℃/minReduction firing furnace, 1300 ℃, N 2, 10 ℃ / min 2.96 / 752.96 / 75 5.41 E105.41 E10 163.02163.02
도 30에 소결조건에 따른 ASF-SC(0.5 wt%)-Frit 소결체의 밀도를 나타내었다.30 shows the density of the ASF-SC (0.5 wt%)-Frit sintered body according to the sintering conditions.
도 31에 소결조건에 따른 ASF-SC(0.5 wt%)-Frit 소결체의 표면저항을 나타내었다.31 shows the surface resistance of the ASF-SC (0.5 wt%)-Frit sintered body according to the sintering conditions.
도 32에 소결조건에 따른 ASF-SC(0.5 wt%)-Frit 소결체의 강도를 나타내었다.32 shows the strength of the ASF-SC (0.5 wt%)-Frit sintered body according to the sintering conditions.
아래의 표 5에 소결조건에 따른 ASF-SC(3.0 wt%)-Frit 소결체의 밀도, 표면저항, 강도를 나타내었다.Table 5 below shows the density, surface resistance, and strength of the ASF-SC (3.0 wt%)-Frit sintered body according to the sintering conditions.
CompoundCompound 소결 조건Sintering Condition Density (g/cm3)/ %Density (g / cm 3 ) /% Surface resistance (Ω)Surface resistance (Ω) Strength (㎫)Strength (MPa)
ASF-SC(3.0 wt%)-Frit 1 wt%ASF-SC (3.0 wt%)-Frit 1 wt% 환원소성로,1300℃, N2, 10℃/minReduction firing furnace, 1300 ℃, N 2, 10 ℃ / min 5555 7.75 E87.75 E8 52.5052.50
ASF-SC(3.0 wt%)-Frit 2 wt%ASF-SC (3.0 wt%)-Frit 2 wt% 환원소성로,1300℃, N2, 10℃/minReduction firing furnace, 1300 ℃, N 2, 10 ℃ / min 5454 3.94 E93.94 E9 41.8141.81
ASF-SC(3.0 wt%)-Frit 5 wt%ASF-SC (3.0 wt%)-Frit 5 wt% 환원소성로,1300℃, N2, 10℃/minReduction firing furnace, 1300 ℃, N 2, 10 ℃ / min 5555 3.47 E93.47 E9 56.8856.88
ASF-SC(3.0 wt%)-Frit 10 wt%ASF-SC (3.0 wt%)-Frit 10 wt% 환원소성로,1300℃, N2, 10℃/minReduction firing furnace, 1300 ℃, N 2, 10 ℃ / min 5555 8.14 E98.14 E9 91.7291.72
ASF-SC(3.0 wt%)-Frit 15 wt%ASF-SC (3.0 wt%)-Frit 15 wt% 환원소성로,1300℃, N2, 10℃/minReduction firing furnace, 1300 ℃, N 2, 10 ℃ / min 55%55% 3.29 E93.29 E9 71.9571.95
도 33에 소결조건에 따른 ASF-SC(3.0 wt%)-Frit 소결체의 밀도를 나타내었다.33 shows the density of the ASF-SC (3.0 wt%)-Frit sintered body according to the sintering conditions.
도 34에 소결조건에 따른 ASF-SC(3.0 wt%)-Frit 소결체의 표면저항을 나타내었다.34 shows the surface resistance of the ASF-SC (3.0 wt%)-Frit sintered body according to the sintering conditions.
도 35에 소결조건에 따른 ASF-SC(3.0 wt%)-Frit 소결체의 강도를 나타내었다.35 shows the strength of the ASF-SC (3.0 wt%)-Frit sintered body according to the sintering conditions.
이상, 본 발명의 바람직한 실시예를 들어 상세하게 설명하였으나, 본 발명은 상기 실시예에 한정되는 것은 아니며, 본 발명의 기술적 사상의 범위 내에서 당 분야에서 통상의 지식을 가진 자에 의하여 여러 가지 변형이 가능하다.As mentioned above, although the preferred embodiment of this invention was described in detail, this invention is not limited to the said embodiment, A various deformation | transformation by a person of ordinary skill in the art within the scope of the technical idea of this invention is carried out. This is possible.
Al2O3, SiO2 세라믹 소재에 탄소계 물질이 분산되어 있으므로 전기저항이 감소되어 대전방지 기능을 가지며, 기계적 특성이 우수하고, 다공성을 나타내며, 제조공정이 복잡하지 않고 간단하게 제조할 수 있으므로, 본 발명은 산업상 이용가능성이 있다.Al 2 O 3 , SiO 2 Since the carbon-based material is dispersed in the ceramic material, the electrical resistance is reduced, so that it has an antistatic function, has excellent mechanical properties, exhibits porosity, and the manufacturing process is not complicated. There is a possibility.

Claims (15)

  1. 알루미나 75∼93중량%; 75 to 93% by weight of alumina;
    실리카 7∼25중량%; 및7-25 wt% silica; And
    상기 알루미나 및 상기 실리카의 전체 함량 100중량부에 대하여 카본계 물질 0.01∼5중량부를 포함하는 것을 특징으로 하는 진공척용 복합체.Vacuum chuck composite, characterized in that it comprises 0.01 to 5 parts by weight of the carbon-based material based on 100 parts by weight of the total content of the alumina and the silica.
  2. 제1항에 있어서, 상기 알루미나 및 상기 실리카의 전체 함량 100중량부에 대하여 Fe·Co계 산화물 0.5∼6.5중량부를 더 포함하는 것을 특징으로 하는 진공척용 복합체.The vacuum chuck composite according to claim 1, further comprising 0.5 to 6.5 parts by weight of Fe · Co-based oxide, based on 100 parts by weight of the total content of the alumina and the silica.
  3. 제2항에 있어서, 상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3, Co3O4 및 Mn계 화합물을 포함하는 것을 특징으로 하는 진공척용 복합체.The composite of claim 2, wherein the Fe · Co-based oxide comprises Fe 2 O 3 , Co 3 O 4, and a Mn-based compound as chemical components.
  4. 제2항에 있어서, 상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3 24∼34중량%, Co3O4 10∼18중량% 및 Mn계 화합물 50∼64중량%를 포함하는 것을 특징으로 하는 진공척용 복합체.The method of claim 2, wherein the Fe-Co-based oxide is characterized in that it comprises 24 to 34% by weight Fe 2 O 3, 10 to 18% by weight Co 3 O 4 and 50 to 64% by weight Mn-based compound Composite for vacuum chuck.
  5. 제1항에 있어서, 상기 알루미나 및 상기 실리카의 전체 함량 100중량부에 대하여 프릿(Frit) 0.01∼5중량부를 더 포함하는 것을 특징으로 하는 진공척용 복합체.The composite of claim 1, further comprising 0.01 to 5 parts by weight of frit based on 100 parts by weight of the total amount of the alumina and the silica.
  6. 제1항에 있어서, 상기 카본계 물질은 그래핀옥사이드(graphene oxide), 그래핀(graphene) 및 그라파이트(graphite) 중에서 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 진공척용 복합체.The composite of claim 1, wherein the carbon-based material comprises at least one material selected from graphene oxide, graphene, and graphite.
  7. (a) 알루미나 분말 75∼93중량% 및 실리카 분말 7∼25중량%를 혼합하여 제1 슬러리를 형성하는 단계;(a) mixing 75 to 93% by weight of alumina powder and 7 to 25% by weight of silica powder to form a first slurry;
    (b) 상기 제1 슬러리를 건조하여 알루미나-실리카 분말을 형성하는 단계;(b) drying the first slurry to form an alumina-silica powder;
    (c) 상기 알루미나-실리카 분말에 카본계 물질을 혼합하여 제2 슬러리를 형성하는 단계;(c) mixing a carbonaceous material with the alumina-silica powder to form a second slurry;
    (d) 상기 제2 슬러리를 건조하여 복합분말을 형성하는 단계;(d) drying the second slurry to form a composite powder;
    (e) 상기 복합분말을 성형하는 단계; 및(e) molding the composite powder; And
    (f) 성형된 결과물을 소결하는 단계를 포함하며,(f) sintering the shaped result,
    상기 (c) 단계에서 상기 알루미나-실리카 분말 100중량부에 대하여 상기 카본계 물질 0.01∼5중량부를 혼합하는 것을 특징으로 하는 진공척용 복합체의 제조방법.Method (c) in the step of producing a composite for vacuum chuck composite, characterized in that for mixing 0.01 to 5 parts by weight of the carbon-based material with respect to 100 parts by weight of the alumina-silica powder.
  8. 제7항에 있어서, 상기 (a) 단계에서 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 Fe·Co계 산화물 0.5∼6.5중량부를 더 혼합하는 것을 특징으로 하는 진공척용 복합체의 제조방법.The method of claim 7, wherein in step (a), 0.5 to 6.5 parts by weight of Fe · Co-based oxide is further mixed with respect to 100 parts by weight of the total content of the alumina powder and the silica powder. .
  9. 제8항에 있어서, 상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3, Co3O4 및 Mn계 화합물을 포함하는 것을 특징으로 하는 진공척용 복합체의 제조방법.The method of claim 8, wherein the Fe · Co-based oxide comprises Fe 2 O 3 , Co 3 O 4, and a Mn-based compound as a chemical component.
  10. 제8항에 있어서, 상기 Fe·Co계 산화물은 화학 성분으로 Fe2O3 24∼34중량%, Co3O4 10∼18중량% 및 Mn계 화합물 50∼64중량%를 포함하는 것을 특징으로 하는 진공척용 복합체의 제조방법.The method of claim 8, wherein the Fe-Co-based oxide is characterized in that it comprises 24 to 34% by weight of Fe 2 O 3, 10 to 18% by weight of Co 3 O 4 and 50 to 64% by weight of Mn-based compound Method for producing a composite for vacuum chuck.
  11. 제7항에 있어서, 상기 (c) 단계에서 상기 알루미나-실리카 분말 100중량부에 대하여 프릿(Frit) 0.01∼5중량부를 더 혼합하는 것을 특징으로 하는 진공척용 복합체의 제조방법.The method of claim 7, wherein in step (c), 0.01 to 5 parts by weight of frit is further mixed with respect to 100 parts by weight of the alumina-silica powder.
  12. 제7항에 있어서, 상기 카본계 물질은 그래핀옥사이드(graphene oxide), 그래핀(graphene) 및 그라파이트(graphite) 중에서 선택된 1종 이상의 물질을 포함하는 것을 특징으로 하는 진공척용 복합체의 제조방법.The method of claim 7, wherein the carbon-based material comprises at least one material selected from graphene oxide, graphene, and graphite.
  13. 제7항에 있어서, 상기 (a) 단계에서 분산제와 결합제를 더 혼합하고, The method of claim 7, wherein in step (a) further dispersing agent and binder,
    상기 분산제는 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 0.01∼3중량부를 혼합하며,The dispersant is mixed with 0.01 to 3 parts by weight based on 100 parts by weight of the total content of the alumina powder and the silica powder,
    상기 결합제는 상기 알루미나 분말 및 상기 실리카 분말의 전체 함량 100중량부에 대하여 3∼15중량부를 혼합하는 것을 특징으로 하는 진공척용 복합체의 제조방법.The binder is a method for producing a composite for vacuum chuck, characterized in that for mixing 3 to 15 parts by weight based on 100 parts by weight of the total content of the alumina powder and the silica powder.
  14. 제13항에 있어서, 상기 분산제는 폴리카르복실레이트 암모늄(polycarboxylate ammonium)을 포함하고, The method of claim 13, wherein the dispersant comprises polycarboxylate ammonium,
    상기 결합제는 폴리비닐알코올(polyvinyl alcohol)을 포함하는 것을 특징으로 하는 진공척용 복합체의 제조방법.The binder is polyvinyl alcohol (polyvinyl alcohol) characterized in that the manufacturing method of the composite for vacuum chuck.
  15. 제7항에 있어서, 상기 소결은 환원소성로에서 질소 또는 아르곤 가스를 공급하여 1200∼1600℃의 온도에서 수행하는 것을 특징으로 하는 진공척용 복합체의 제조방법.The method of claim 7, wherein the sintering is performed at a temperature of 1200 to 1600 ° C. by supplying nitrogen or argon gas in a reducing furnace.
PCT/KR2017/006616 2016-08-19 2017-06-22 Vacuum chuck composite and preparation method therefor WO2018034422A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2016-0105182 2016-08-19
KR1020160105182A KR101692219B1 (en) 2016-08-19 2016-08-19 Composite for vacuum-chuck and manufacturing method of the same

Publications (1)

Publication Number Publication Date
WO2018034422A1 true WO2018034422A1 (en) 2018-02-22

Family

ID=57835548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/006616 WO2018034422A1 (en) 2016-08-19 2017-06-22 Vacuum chuck composite and preparation method therefor

Country Status (2)

Country Link
KR (1) KR101692219B1 (en)
WO (1) WO2018034422A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101692219B1 (en) * 2016-08-19 2017-01-05 한국세라믹기술원 Composite for vacuum-chuck and manufacturing method of the same
CN108821752A (en) * 2018-07-24 2018-11-16 合肥岑遥新材料科技有限公司 A kind of refractory ceramics based composites and preparation method thereof
JP7497210B2 (en) 2019-05-30 2024-06-10 京セラ株式会社 Mounting member, inspection device and processing device
KR102690449B1 (en) * 2023-08-04 2024-08-01 주식회사 티에스제이 Black Alumina Ceramic Member Having Improved Anti-static Funtion And Manufacturing Method Thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018354A (en) * 2002-06-20 2004-01-22 Nisshinbo Ind Inc Carbon porous adsorption plate having high porosity, method of producing the same and vacuum chuck equipped therewith
KR20070037831A (en) * 2005-10-04 2007-04-09 송영환 Vacuum chuck
KR20080041090A (en) * 2006-11-06 2008-05-09 가부시키가이샤 단켄시루세코 Adsorptive floating panel
KR20110116244A (en) * 2009-02-23 2011-10-25 가부시키가이샤 소딕 Colored ceramic vacuum chuck and manufacturing method thereof
JP2012171824A (en) * 2011-02-21 2012-09-10 National Institute Of Advanced Industrial Science & Technology Silicon carbide-based heat-resistant ultra-lightweight porous structure material, and method for producing the same
KR101692219B1 (en) * 2016-08-19 2017-01-05 한국세라믹기술원 Composite for vacuum-chuck and manufacturing method of the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101044554B1 (en) 2009-03-31 2011-06-28 (주)탑나노시스 Working stage with antistatic treatment
KR101073878B1 (en) 2009-05-11 2011-10-17 서울대학교산학협력단 Substrate having an Antistatic Function and Method for manufacturing the Same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004018354A (en) * 2002-06-20 2004-01-22 Nisshinbo Ind Inc Carbon porous adsorption plate having high porosity, method of producing the same and vacuum chuck equipped therewith
KR20070037831A (en) * 2005-10-04 2007-04-09 송영환 Vacuum chuck
KR20080041090A (en) * 2006-11-06 2008-05-09 가부시키가이샤 단켄시루세코 Adsorptive floating panel
KR20110116244A (en) * 2009-02-23 2011-10-25 가부시키가이샤 소딕 Colored ceramic vacuum chuck and manufacturing method thereof
JP2012171824A (en) * 2011-02-21 2012-09-10 National Institute Of Advanced Industrial Science & Technology Silicon carbide-based heat-resistant ultra-lightweight porous structure material, and method for producing the same
KR101692219B1 (en) * 2016-08-19 2017-01-05 한국세라믹기술원 Composite for vacuum-chuck and manufacturing method of the same

Also Published As

Publication number Publication date
KR101692219B1 (en) 2017-01-05

Similar Documents

Publication Publication Date Title
WO2018034422A1 (en) Vacuum chuck composite and preparation method therefor
WO2011021824A2 (en) Electrostatic chuck and method for manufacturing same
US20070146961A1 (en) Electrostatic chuck
US6641939B1 (en) Transition metal oxide doped alumina and methods of making and using
WO2020036452A1 (en) Method for manufacturing active metal-brazed nitride ceramic substrate with excellent joining strength
KR20170141340A (en) Sintered ceramics for electrostatic chuck and manufacturing method of the same
CN110330332B (en) Low-temperature sintering piezoelectric ceramic material without sintering aid and preparation method thereof
WO2020096267A1 (en) Electrostatic chuck and manufacturing method therefor
JP2001351966A (en) Suscepter and method for manufacturing the suscepter
WO2018194366A1 (en) Electrostatic chuck sealed with sealant and method for manufacturing same
JP2000290062A (en) MgO VAPOR-DEPOSITED MATERIAL AND ITS PRODUCTION
WO2019013442A1 (en) Electrostatic chuck
WO2020122684A1 (en) Magnesia, method for manufacturing same, highly thermally conductive magnesia composition, and magnesia ceramic using same
WO2013073802A1 (en) Transparent conductive film having superior thermal stability, target for transparent conductive film, and method for manufacturing transparent conductive film
KR20230042679A (en) Composite sintered body and method of manufacturing composite sintered body
JP2006073280A (en) Metalized composition and ceramic wiring board
JP3899379B2 (en) Electrostatic chuck and manufacturing method thereof
WO2019093781A1 (en) High thermal conductive magnesia composition and magnesia ceramics
KR100432639B1 (en) Process for Providing a Glass-Ceramic Dielectric Layer on a Ceramic Substrate and Electrostatic Chuck Made by the Process
WO2020017887A1 (en) Iron oxide magnetic powder and manufacturing method therefor
WO2023063771A1 (en) Molybdenum oxide-based sintered body, sputtering target comprising same, and oxide thin film
WO2021015474A1 (en) Plasma etching apparatus component for manufacturing semiconductor comprising composite sintered body and manufacturing method therefor
WO2018222003A1 (en) Polycrystalline zirconia compound and method for preparing same
WO2023063774A1 (en) Molybdenum oxide-based sintered body, and sputtering target and oxide thin film comprising same
JP2001192271A (en) Production process of nitride ceramic sintered body

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17841606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17841606

Country of ref document: EP

Kind code of ref document: A1