WO2023063771A1 - Molybdenum oxide-based sintered body, sputtering target comprising same, and oxide thin film - Google Patents

Molybdenum oxide-based sintered body, sputtering target comprising same, and oxide thin film Download PDF

Info

Publication number
WO2023063771A1
WO2023063771A1 PCT/KR2022/015584 KR2022015584W WO2023063771A1 WO 2023063771 A1 WO2023063771 A1 WO 2023063771A1 KR 2022015584 W KR2022015584 W KR 2022015584W WO 2023063771 A1 WO2023063771 A1 WO 2023063771A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
sintered body
weight
thin film
molybdenum
Prior art date
Application number
PCT/KR2022/015584
Other languages
French (fr)
Korean (ko)
Inventor
황병진
이승이
이효원
장봉중
전봉준
진승현
박재성
양승호
Original Assignee
엘티메탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티메탈 주식회사 filed Critical 엘티메탈 주식회사
Publication of WO2023063771A1 publication Critical patent/WO2023063771A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3275Cobalt oxides, cobaltates or cobaltites or oxide forming salts thereof, e.g. bismuth cobaltate, zinc cobaltite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates

Definitions

  • the present invention relates to an oxide sintered body containing molybdenum oxide as a main component, a sputtering target including the sintered body, and an oxide thin film formed therefrom, and more particularly, to manufacturing a sputtering target used in TFT structures of LCD and OLED. It relates to a molybdenum oxide-based sintered body with improved sinterability and density characteristics by adding a specific (semi)metal oxide in a predetermined range, a sputtering target, and an oxide thin film formed therefrom.
  • FPD flat panel displays
  • LEDs light emitting diodes
  • OLEDs organic light emitting diodes
  • ITO indium oxide-tin oxide
  • ITO composition is used to form a conductive thin film having high visible light transmittance and electrical conductivity.
  • ITO compositions have excellent low-reflectance performance, they are not economically viable, so research on materials that replace all or part of indium oxide continues.
  • molybdenum oxide is a difficult-to-sinter material that is difficult to sinter itself.
  • a molybdenum oxide-based ceramic material that is difficult to sinter and has a low density
  • foreign matter is generated due to the generation of nodules, which inevitably leads to deterioration of physical properties of the thin film.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2020-0069314
  • the present invention has been made to solve the above problems, and by adding a specific (semi)metal oxide in a predetermined range to difficult-to-sinterable molybdenum oxide, which is a main raw material, sinterability is improved and high density can be secured even when sintered in a non-pressurized state. It is a technical task to provide a novel molybdenum oxide-based sintered body that can be used, a sputtering target including the sintered body, and an oxide thin film formed therefrom.
  • the present invention MoO 2 And MoO 3 Molybdenum oxide containing at least one of (M1); niobium oxide (M2); And a metal oxide (M3) containing at least one metal selected from the group consisting of Co, Si, Y, and Ga; containing at least 70% by weight of molybdenum oxide (M1) based on the total weight of the sintered body.
  • An oxide sintered body is provided.
  • the metal oxide M3 may include at least one selected from the group consisting of Co 3 O 4 , SiO 2 , Y 2 O 3 , and Ga 2 O 3 .
  • the metal oxide (M3) may further include at least one selected from the group consisting of CaCO 3 and MgO.
  • the metal oxide (M3) may be included in an amount greater than 0 wt% and less than 10.0 wt% based on 100 wt% of the sintered body.
  • the molybdenum oxide (M1) and the niobium oxide (M2) are included in 90.0% by weight or more and less than 100% by weight based on 100% by weight of the oxide sintered body, and the molybdenum oxide (M1 ) and the niobium oxide (M2) may be in a weight ratio of 50:50 to 90:10.
  • the oxide sintered body molybdenum oxide (M1); niobium oxide (M2); And the metal oxide (M3) may be mixed and molded, and then non-pressure sintered.
  • the oxide sintered body may have a specific resistance of 1 ⁇ 10 -2 ⁇ cm or less and a relative density of 80% or more.
  • the present invention provides a sputtering target comprising the above-mentioned pressure-free sintered body.
  • the present invention provides an oxide thin film formed from the sputtering target.
  • the molybdenum oxide-based sintered body and sputtering target according to the present invention can be usefully applied to forming electrodes or wires used in TFT structures of LCDs and OLEDs.
  • Example 1 is a photograph showing the structure change of a sintered body according to the heat treatment temperature using the molded body of Example 3 to which a metal oxide (M3) is added.
  • Example 2 is a photograph showing the structure change of the sintered body according to the heat treatment temperature using the molded body of Example 4 to which the metal oxide (M3) is added.
  • Figure 3 is a photograph showing the change in the structure of the sintered body according to the heat treatment temperature using the molded body of Example 6 to which the metal oxide (M3) is added.
  • Example 4 is a photograph showing the structure change of the sintered body according to the heat treatment temperature using the molded body of Example 7 to which the metal oxide (M3) is added.
  • Example 5 is a photograph showing the change in structure of the sintered body according to the heat treatment temperature using the molded body of Example 8 to which the metal oxide (M3) is added.
  • Figure 6 is a photograph showing the change in the structure of the sintered body according to the heat treatment temperature using the molded body of Comparative Example 1 to which no metal oxide (M3) was added.
  • Example 7 is a SEM photograph showing the fractured surface of the powder structure of the mixed raw materials, the structure of the non-pressurized sintered body prepared in Example 6, and the structure of the pressed sintered body prepared in Comparative Example 5, respectively.
  • Example 8 is a SEM photograph showing the polished surface of the structure of the non-pressurized sintered body prepared in Example 7 and the structure of the pressurized sintered body prepared in Comparative Example 5, respectively.
  • 11 is a graph showing the relative density according to the sintering temperature of the sintered bodies prepared in Comparative Examples 1 to 4.
  • FIG 13 is a graph showing the change in shrinkage according to the sintering temperature of the non-pressurized sintered body prepared in Examples 5 to 8.
  • MoO 2 -Nb 2 O 5 material used as a conventional n-type semiconductor thin film is generally manufactured through a pressure sintering method.
  • the pressure sintering method it is not suitable in terms of mass productivity as the manufacturing process cost increases according to the equipment value.
  • the present invention can improve sinterability and secure high density at the same time by using a small amount of a specific (semi)metal oxide-based dopant (M3) that assists sinterability in a difficult-to-sinterable material having molybdenum oxide and niobium oxide as a basic composition. It is possible to provide a molybdenum oxide-based sintered body and a sputtering target using the same.
  • M3 specific (semi)metal oxide-based dopant
  • the specific (semi)metal oxide-based dopant (M3) used in the present invention assists in securing the sintering driving force of MoO 2 /MoO 3 -Nb 2 O 5 , which is a sintering-resistant material, even when pressure-free sintering is performed. It is possible to improve the sintered density according to the drop effect.
  • the molybdenum oxide sintered body according to the present invention may have excellent density and resistivity characteristics compared to a sintered body that does not contain a specific metal oxide (M3), and in particular, constitutes a pressureless sintered body only with heat treatment without pressurization Even if it is, it is possible to secure density characteristics and resistivity characteristics equal to or higher than those of the oxide sintered body subjected to conventional pressure sintering (eg, HP, HIP, etc.).
  • conventional pressure sintering eg, HP, HIP, etc.
  • the particle size of the crystal grains constituting the oxide sintered body of the present invention is larger than the grain size of the molybdenum oxide sintered body pressure-sintered by simultaneously applying a predetermined pressure and heat treatment, it is more advantageous in terms of reaction.
  • the pressurized sintered body is in the form of forcibly aggregating the initial raw materials by high pressure, so the size of the particles hardly increases, whereas the sintered body according to the present invention increases the size of the particles by the reaction.
  • the molybdenum oxide target according to the present invention secures sinterability by adding a dopant, and can provide a high-density sintered target capable of sputtering even by non-pressure sintering.
  • An example of the present invention is a metal oxide sintered body for producing a target for sputtering containing molybdenum oxide as a main component.
  • This sintered body is distinguished from conventional sintered bodies in that it contains a metal oxide (M3) containing at least one metal selected from the group consisting of Co, Si, Y, and Ga as an essential component.
  • M3 metal oxide
  • the oxide sintered body MoO 2 And MoO 3 Molybdenum oxide containing at least one of (M1); niobium oxide (M2); and a metal oxide (M3) containing at least one metal selected from the group consisting of Co, Si, Y, and Ga; and at least 70% by weight of molybdenum oxide (M1) based on the total weight of the sintered body.
  • the formed thin film has low reflection characteristics and at the same time, heat resistance and chemical resistance are improved through optimization of the ratio and composition of molybdenum oxide.
  • the density is improved by adding a small amount of a specific dopant (M3), pressure sintering is not required, and a Mo-Nb-O-based sputtering target, which is a difficult-to-sinter material, can be manufactured.
  • Molybdenum oxide contained in the oxide sintered body according to the present invention is a main component constituting the sintered body.
  • Molybdenum oxide (M1) is a component having a form in which oxygen is bonded to molybdenum, such as MoO 2 , MoO 3 , and MoO 4 .
  • molybdenum oxide (M1) MoO 2 , MoO 3 , or MoO 2 and Mixtures of MoO 3 may be used.
  • MoO 2 and MoO 3 as molybdenum oxide, the mixing ratio between them is not particularly limited and can be properly adjusted within a conventional content range known in the art.
  • MoO 3 has a melting point of about 800°C, it volatilizes at a high temperature of 1000°C or higher. Accordingly, in the present invention, it is preferable to use MoO 2 as the molybdenum oxide.
  • One of the additive components included in the oxide sintered body according to the present invention is niobium oxide (M2).
  • Niobium oxide (M2) is an oxide dopant that improves chemical resistance and heat resistance, and chemical resistance and heat resistance of molybdenum oxide can be improved by adding the metal oxide.
  • the niobium oxide is not particularly limited as long as it has a form in which oxygen is bonded to niobium, and may be, for example, Nb 2 O 5 . In the following description, the niobium oxide component is symbolized and expressed as M2.
  • Another of the additive components included in the oxide sintered body according to the present invention is a metal oxide (M3) containing at least one metal (A) among Co, Si, Y and Ga.
  • the metal oxide (M3) serves as a dopant to show a density increasing effect by assisting the sinterability of the difficult to sinterable molybdenum oxide. By adding such a metal oxide, the chemical resistance and heat resistance characteristics of molybdenum oxide can be improved.
  • the metal oxide (M3) is not particularly limited as long as it has a form in which oxygen is bonded to at least one element (A) of Co, Si, Y, and Ga.
  • Co 3 O 4 , SiO 2 , Y 2 O 3 , and Ga 2 O 3 It may include one or more selected from the group consisting of.
  • the metal oxide M3 may further include a metal oxide containing at least one alkaline earth metal selected from the group consisting of CaCO 3 and MgO.
  • the metal oxide (M3) when a metal oxide containing at least one of Co, Si, Y, and Ga is mixed with an alkaline earth metal oxide, the mixing ratio thereof is not particularly limited, and for example, 1: 0.3 to 2.5 weight ratio. And, more specifically, it may be 1: 0.5 to 2.0 weight ratio.
  • the metal oxide sintered body including the above-described molybdenum oxide (M1), niobium oxide (M2), and (semi)metal oxide (M3) contains molybdenum oxide (M1) and niobium oxide (M2) based on 100% by weight of the sintered body. 90% by weight or more and less than 100% by weight, and (semi)metal oxide (M3) may be included in more than 0% by weight and less than 10% by weight. More specifically, 95.0 to 99.5% by weight of molybdenum oxide (M1) and niobium oxide (M2); and 0.5 to 5.0 wt% of (semi)metal oxide (M3).
  • the content ratio of molybdenum oxide (M1) and niobium oxide (M2) is 50:50 to 90:10 weight ratio, specifically 70:30 to 90:10 weight ratio, more specifically 75:25 to 90:10 weight ratio can be configured.
  • the ratio of molybdenum oxide occupies 70% by weight or more in the entire metal oxide sintered body, it may have low reflection characteristics when deposited as a thin film.
  • the oxide sintered body according to the present invention configured as described above has a relative density of 80% or more, even when pressure-free sintering is performed, and specifically may be 90% or more.
  • the upper limit is not particularly limited.
  • the specific resistance of the oxide sintered body is 1 ⁇ 10 -2 ⁇ cm or less, and the lower limit thereof is not particularly limited.
  • the size (D50) of crystal grains included in the oxide sintered body is not particularly limited, and may be, for example, 1 to 50 ⁇ m.
  • the grain size of the sintered body prepared under pressurized conditions may be 1 to 3 ⁇ m, and the grain size of the sintered body prepared under non-pressurized conditions may be 3 to 50 ⁇ m.
  • the particle size of the crystal grains constituting the oxide sintered body of the present invention is larger than the particles of the molybdenum oxide sintered body artificially pressurized by pressing the powder by HP or HIP. Accordingly, there is an advantage that it is more advantageous in terms of reaction.
  • the average grain diameter (D 50 ) constituting the non-pressurized sintered body of the present invention may satisfy the condition of Equation 1 below.
  • G N is the average grain diameter (D 50 ) of the oxide sintered body subjected to non-pressure heat treatment at 1,400 ⁇ 200 ° C. for 2 hours,
  • G P is the average grain diameter (D 50 ) of the oxide sintered body subjected to pressure heat treatment at 30 MPa and 830° C. for 2 hours.
  • the average grain diameter (D 50 ) constituting the unpressurized sintered body according to Equation 1 may be 10.0 or more, specifically 15.0 or more, and more specifically 20.0 or more.
  • the average grain diameter (D 50 ) of the oxide sintered body subjected to the non-pressure heat treatment is 3 to 50 ⁇ m
  • the average grain diameter (D 50 ) of the oxide sintered body subjected to the pressure heat treatment may be 1 to 3 ⁇ m.
  • the sputtering target according to another embodiment of the present invention an oxide sintered body containing the above-described molybdenum oxide as a main component; and a backing plate bonded to one surface of the sintered body to support the sintered body.
  • the backing plate is a substrate for supporting the sintered body for the sputtering target, and a conventional backing plate known in the art may be used without limitation.
  • the material constituting the backing plate and its shape are not particularly limited.
  • step S10 raw material powder including molybdenum oxide (M1), niobium oxide (M2), and (semi)metal oxide (M3) containing at least one kind of alkaline earth metal (A) is prepared.
  • M3 powder selected from the group consisting of molybdenum oxide (M1), niobium oxide (M2), Co 3 O 4 , SiO 2 , Y 2 O 3 , and Ga 2 O 3 is prepared for the purpose composition. After weighing according to the formula, each powder is put into a mixer, ground and mixed to prepare a mixture.
  • additives known in the art such as a binder, a dispersing agent, and an antifoaming agent, may be further included as needed.
  • the amount of the additive can be properly adjusted within a conventional range known in the art, and for example, 0.01 to 10% by weight relative to the total weight of the powder in the slurry (eg, 100% by weight) may be used.
  • Mixing and grinding of the raw material powder is not particularly limited, and may be performed using a conventional ball mill, attrition mill, bead mill, or the like known in the art.
  • the mixed raw material powder may be subjected to a dry ball mill process using zirconia balls.
  • the zirconia balls can be weighed 1 to 3 times the amount of powder, and the ball mill can be performed at a speed of 100 to 300 rpm for 10 to 36 hours.
  • step S10 in order to mix and pulverize the raw material powder through a wet ball mill, pre-measured elemental powder is introduced using a prepared PE cylinder, and about 2 to 4 times the amount of the raw material, preferably A zirconia ball of 3 times the weight is added. After that, distilled water or pure water is added at a level of about 1.5 times the raw material to proceed with the ball mill.
  • the wet pulverized mixture is dried in a dry oven, and ball milling is performed again to obtain a dried raw material powder.
  • the drying conditions are not particularly limited, and for example, drying may be performed at about 90 to 110 ° C. for about 10 to 15 hours in a dry oven.
  • the dried mixture is subjected to a ball mill again to obtain dry raw material powder. If necessary, the zirconia balls and powder are separated by filtering through a mesh of about 90 to 110 mesh, specifically, 100 mesh.
  • a molded body is manufactured from the prepared raw material powder, and more specifically, a molded body having a predetermined standard is manufactured through a process of putting the raw material powder into a molding machine and molding it.
  • the molding process may be carried out twice.
  • the primary molding process may use a uniaxial molding machine
  • the secondary molding process may use an isostatic pressure molding machine.
  • Conditions in the primary molding and secondary molding processes are not particularly limited and may be appropriately adjusted within common conditions known in the art.
  • the pressure at the time of primary molding after inputting the raw material powder into the uniaxial molding machine is not particularly limited, and may specifically be 10 MPa or more per unit area.
  • the pressure at the time of secondary molding after the primary molded body is put into the isostatic pressure molding machine is not particularly limited, and may be, for example, 200 MPa or more per unit area, and preferably 200 to 300 MPa.
  • a primary molded body is manufactured using a 20 ⁇ standard STS mold according to the weight of the determined powder.
  • the pressure may proceed under the minimum pressure condition constituting the shape, for example, about 10 MPa, and the time may proceed at a level of holding for 1 minute.
  • the secondary molding was carried out for several hours under the condition of 200 MPa using hydrostatic pressure molding (CIP).
  • CIP hydrostatic pressure molding
  • the second hydrostatic pressure proceeds with an organic solvent including water, it can proceed in a state in which it is put into an acrylic-based sealing material (eg, a bag).
  • step S30 a sintered body is prepared by sintering the manufactured molded body under predetermined conditions.
  • the sintering conditions are not particularly limited and may be appropriately adjusted within common conditions known in the art.
  • it may be pressure-free sintering at 1,200 to 1,600 ° C. for 1 to 20 hours, and specifically for 1 to 4 hours.
  • the sintering may be performed under an oxygen atmosphere or under inert conditions.
  • the prepared molded body is put into an alumina crucible of a certain standard and sintering is performed.
  • the weight, diameter, height, etc. of the molded body and the sintered body were measured and each physical property was compared (see Table 2 and FIGS. 12 to 14 below).
  • the pressure-free sintered body manufactured through this process may have a relative density of 80% or more, specifically 90% or more.
  • the upper limit is not particularly limited.
  • each upper and lower portion of the target may be processed by 1 mm or more.
  • a productized sputtering target is manufactured through diffusion bonding and final processing commonly known in the art.
  • the sintered body obtained in step S30 is bonded to a backing plate.
  • indium can be used as an adhesive, and it is preferable to have a bonding rate of 95% or more.
  • a final sputtering target may be obtained by processing to a final target thickness using processing equipment and performing bead and/or arc spray treatment on the surface of the backing plate.
  • a metal oxide target may be manufactured through the above process.
  • the target density of the prepared target is 90% or more, and specifically, it is preferable to be 95% or more.
  • Another example of the present invention is a metal oxide thin film deposited using the molybdenum oxide-based target described above.
  • a metal oxide thin film may be formed by performing sputtering using the above-described sintered body as a target material.
  • the oxide thin film is manufactured by sputtering the above-described oxide target, and thus has substantially the same composition as the target. Accordingly, an oxide thin film having a relative density of 90% or more and excellent resistivity of 1 ⁇ 10 -2 ⁇ cm or less can be formed.
  • specific metal oxides and metals are added in a predetermined range to molybdenum oxide, which is the main raw material, but chemical resistance and heat resistance characteristics can be improved through optimization of the molybdenum oxide ratio and composition.
  • the metal oxide thin film according to the present invention may be formed (deposited) using a conventional sputtering method known in the art.
  • a conventional sputtering method known in the art.
  • the manufacturing method after mounting the above-mentioned molybdenum oxide pressure-free sintered sputtering target, it includes depositing at room temperature under an oxygen and / or argon atmosphere in a vacuum chamber. At this time, sputtering may be performed using DC sputter.
  • the substrate and sputtering device used conventional ones known in the art may be used without limitation. Specifically, it can be formed while supplying oxygen or oxygen and high-purity argon gas into a vacuum chamber at a rate of 80 to 110 sccm (standard cubic centimeters per minute), specifically supplying at a rate of 95 to 105 sccm, forming a film It can be deposited at room temperature (RT) without applying temperature to the substrate.
  • the power density of the DC sputter may be 1.0 to 2.0 W/cm 2
  • the thickness of the metal oxide thin film may be 300 to 500 ⁇ , but is not particularly limited thereto.
  • the oxide thin film obtained as described above can be used in various ways in the manufacture of semiconductor devices, and for example, it can be applied for forming wires or electrodes in the manufacture of semiconductors.
  • the metal oxide thin film may be used as at least one of a gate layer, a source layer, and a drain layer of a thin film transistor (TFT).
  • TFT thin film transistor
  • the molybdenum oxide-based sputtering target and the oxide thin film formed therefrom according to the present invention described above have high density and excellent resistivity characteristics even under no pressure, they are connected to TFT structures of LCDs and OLEDs or electron injection layers of organic electroluminescent devices. resistance can be kept low. Accordingly, the oxide thin film described above may be used in various display devices such as liquid crystal display devices or organic light emitting display devices, information transmission devices such as flat panel displays such as LCD, PDP, OLED, and LED; surface light source lighting devices such as OLED and LED touch panels; It can also be applied without limitation to mobile phones, tablets and/or information delivery devices using the same.
  • display devices such as liquid crystal display devices or organic light emitting display devices, information transmission devices such as flat panel displays such as LCD, PDP, OLED, and LED; surface light source lighting devices such as OLED and LED touch panels; It can also be applied without limitation to mobile phones, tablets and/or information delivery devices using the same.
  • the oxide sintered bodies of Examples 1 to 8 were produced by heat treatment without pressure at about 1,200 to 1,600 ° C. for 2 hours using a heat treatment facility.
  • a molded body was manufactured in the same manner as in the above embodiment. Thereafter, heat treatment was performed at about 1200 to 1600 ° C. for 2 hours using a heat treatment facility to produce sintered bodies of Comparative Examples 1 to 4, respectively.
  • Molybdenum oxide (M1) and niobium oxide (M2) were weighed in the ratio of the composition shown in Table 1 above.
  • the weighed powder was put into a 1L plastic container, and alumina balls were added in an amount three times the amount of the powder. A 3-10 mm ball was used as the alumina ball.
  • dry mixing was performed for 8 hours at a speed of 170 to 230 rpm in a ball mill machine. The obtained dry powder was pressurized and sintered by a hot press.
  • the sintered body of Comparative Example 5 was prepared through the process as described above.
  • the structure change of the sintered body according to heat treatment was evaluated using the molded body to which metal oxide was added and not added.
  • FIG. 1 to 5 are photographs showing the structure change of the sintered body according to the heat treatment temperature using the molded bodies of Examples 3 to 8 to which metal oxide (M3) is added, respectively, and FIG. 6 is a comparison to which metal oxide (M3) is not added. It is a photograph showing the structure change of the sintered body according to the heat treatment temperature using the molded body of Example 1.
  • the sintered bodies of Examples 6 and 7 prepared under no pressure and Comparative Example 5 prepared under pressure were used as samples. These two types of samples were cut in a size of 10X10X10mm using a metal blade, polished for several minutes using a polishing machine from SiC paper #100 to #2000, and finally prepared using a 1 ⁇ m paste slurry and a microfiber cloth. Thereafter, the sample was immersed at about 200 ° C. for 1 minute using hydrogen peroxide solution so that the surface of the tissue was exposed and heat treated.
  • D average particle diameter
  • C total length of the line
  • M magnification
  • N number of particles on the line.
  • the diameter (D) and height (T) of each molded body were measured using a vernier caliper, and the weight (Mass) was weighed using a scale.
  • the relative density was converted into a percentage of the theoretical density by converting the input amount of each weight into volume%, and the results are shown in Table 2 below.
  • the density of the measured sample was calculated by weight/volume, and was expressed as an average value when several identical samples were produced.
  • each sample had a low relative density because sintering was not applied, and the relative density of each sintered body after sintering (heat treatment) was approximately 80 to 96%.
  • the density evaluation of the sintered body after heat treatment was measured in the same manner as in Experimental Example 3 described above.
  • the results of the relative density calculated by measuring the diameter, height and weight of the heat-treated sintered body are shown in FIGS. 9 to 11, respectively.
  • the shrinkage rate was calculated by measuring the diameter and height of the molded body before heat treatment and the sintered body after heat treatment, respectively.
  • the calculated shrinkage results are shown in Figures 12 to 14, respectively.
  • Resistivity characteristics were evaluated for each sintered body sample prepared in Examples 1 to 8 and Comparative Examples 1 to 5.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Physical Vapour Deposition (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

The present invention provides an oxide sintered body comprising molybdenum oxide as a main component, a sputtering target comprising the sintered body, and an oxide thin film formed therefrom. According to the present invention, by adding a predetermined range of a specific (semi)metal oxide to difficult-to-sinter molybdenum oxide and niobium oxide, sinterability improvement and high-density characteristics can be obtained at the same time even when pressure-free sintering is performed.

Description

몰리브덴 산화물계 소결체, 이를 포함하는 스퍼터링 타겟 및 산화물 박막Molybdenum oxide-based sintered body, sputtering target and oxide thin film including the same
본 발명은 몰리브덴 산화물을 주(主)성분으로 하는 산화물 소결체, 상기 소결체를 포함하는 스퍼터링 타겟 및 이로부터 형성된 산화물 박막에 관한 것으로, 보다 상세하게는 LCD 및 OLED의 TFT 구조에 사용되는 스퍼터링용 타겟 제작시, 특정 (준)금속산화물을 소정 범위로 첨가하여 소결성 및 밀도 특성이 동반 개선된 몰리브덴 산화물계 소결체, 스퍼터링 타겟 및 이로부터 형성된 산화물 박막에 관한 것이다.The present invention relates to an oxide sintered body containing molybdenum oxide as a main component, a sputtering target including the sintered body, and an oxide thin film formed therefrom, and more particularly, to manufacturing a sputtering target used in TFT structures of LCD and OLED. It relates to a molybdenum oxide-based sintered body with improved sinterability and density characteristics by adding a specific (semi)metal oxide in a predetermined range, a sputtering target, and an oxide thin film formed therefrom.
일반적으로 평판 디스플레이(flat panel display; "FPD"), 터치 스크린 패널, 태양 전지, 발광 다이오드(light emitting diode; "LED"), 유기 발광다이오드(organic light emitting diode; "OLED")에 저반사율의 도전성 박막이 사용되고 있다.In general, flat panel displays (“FPD”), touch screen panels, solar cells, light emitting diodes (“LEDs”), and organic light emitting diodes (“OLEDs”) have low reflectivity. A conductive thin film is used.
이에 대한 소재로서 산화인듐-산화주석(In2O3-SnO2)("ITO")이 대표적이며 ITO 조성물은 가시광선 투과도와 전기 전도율이 높은 도전성 박막을 형성하는 데 사용된다. 이러한 ITO 조성물은 우수한 저반사율 성능을 가지기는 하지만, 경제성이 떨어지기 때문에 산화인듐의 전부 또는 일부를 대체하는 소재들에 대한 연구가 계속되고 있다.As a material for this, indium oxide-tin oxide (In 2 O 3 -SnO 2 ) (“ITO”) is representative, and the ITO composition is used to form a conductive thin film having high visible light transmittance and electrical conductivity. Although these ITO compositions have excellent low-reflectance performance, they are not economically viable, so research on materials that replace all or part of indium oxide continues.
하지만 이러한 연구들에서 관심이 있는 부분은 타겟 재료를 통해 형성된 박막의 저반사율로서, 장시간 사용에 대한 박막의 신뢰도를 높일 수 있는 내화학성, 내열성의 특성에 대한 고려가 필요하다.However, the area of interest in these studies is the low reflectivity of thin films formed through target materials, and it is necessary to consider the characteristics of chemical resistance and heat resistance that can increase the reliability of thin films for long-term use.
한편 몰리브덴 산화물은 소결 자체가 어려운 난소결(難燒結)성 물질이다. 이와 같이 소결이 어렵고 밀도가 낮은 몰리브덴 산화물계 세라믹 재료를 이용할 경우 고밀도(예, 90% 이상의 상대밀도) 타겟을 구성하기가 어려울 뿐만 아니라, 제조된 타겟을 이용하여 스퍼터링을 진행할 경우 back depo. 및 노듈(nodule) 발생 등으로 인해 이물이 발생하여 박막의 물성 저하가 필수적으로 초래된다. On the other hand, molybdenum oxide is a difficult-to-sinter material that is difficult to sinter itself. In this way, when using a molybdenum oxide-based ceramic material that is difficult to sinter and has a low density, it is difficult to construct a high-density (eg, 90% or more relative density) target, and back depo. And foreign matter is generated due to the generation of nodules, which inevitably leads to deterioration of physical properties of the thin film.
[선행기술문헌][Prior art literature]
(특허문헌 1) 대한민국 공개특허 제10-2020-0069314호(Patent Document 1) Republic of Korea Patent Publication No. 10-2020-0069314
본 발명은 전술한 문제점을 해결하기 위해 안출된 것으로서, 주원료인 난(難) 소결성 몰리브덴 산화물에 특정 (준)금속산화물을 소정 범위로 첨가함으로써 무가압 상태에서 소결하더라도 소결성이 개선되고 고밀도를 확보할 수 있는 신규 몰리브덴 산화물계 소결체, 상기 소결체를 포함하는 스퍼터링 타겟 및 이로부터 형성된 산화물 박막을 제공하는 것을 기술적 과제로 한다. The present invention has been made to solve the above problems, and by adding a specific (semi)metal oxide in a predetermined range to difficult-to-sinterable molybdenum oxide, which is a main raw material, sinterability is improved and high density can be secured even when sintered in a non-pressurized state. It is a technical task to provide a novel molybdenum oxide-based sintered body that can be used, a sputtering target including the sintered body, and an oxide thin film formed therefrom.
본 발명의 다른 목적 및 이점은 하기 발명의 상세한 설명 및 청구범위에 의해 보다 명확하게 설명될 수 있다.Other objects and advantages of the present invention can be more clearly described by the following detailed description and claims.
상기한 기술적 과제를 달성하기 위해, 본 발명은 MoO2 및 MoO3 중 적어도 하나를 포함하는 몰리브덴 산화물(M1); 니오븀 산화물(M2); 및 Co, Si, Y 및 Ga으로 구성된 군에서 선택되는 1종 이상의 금속을 함유하는 금속산화물(M3);을 포함하며, 당해 소결체의 총 중량 대비 적어도 70 중량% 이상의 몰리브덴 산화물(M1)을 함유하는 산화물 소결체를 제공한다. In order to achieve the above technical problem, the present invention MoO 2 And MoO 3 Molybdenum oxide containing at least one of (M1); niobium oxide (M2); And a metal oxide (M3) containing at least one metal selected from the group consisting of Co, Si, Y, and Ga; containing at least 70% by weight of molybdenum oxide (M1) based on the total weight of the sintered body. An oxide sintered body is provided.
본 발명의 일 실시예를 들면, 상기 금속산화물(M3)은 Co3O4, SiO2, Y2O3, 및 Ga2O3로 구성된 군에서 선택된 1종 이상을 포함할 수 있다. For example, the metal oxide M3 may include at least one selected from the group consisting of Co 3 O 4 , SiO 2 , Y 2 O 3 , and Ga 2 O 3 .
본 발명의 일 실시예를 들면, 상기 금속산화물(M3)은 CaCO3, 및 MgO로 구성된 군에서 선택된 1종 이상을 더 포함할 수 있다. For one embodiment of the present invention, the metal oxide (M3) may further include at least one selected from the group consisting of CaCO 3 and MgO.
본 발명의 일 실시예를 들면, 상기 금속산화물(M3)은 당해 소결체 100 중량%를 기준으로 0 중량% 초과, 10.0 중량% 이하로 포함될 수 있다. For one embodiment of the present invention, the metal oxide (M3) may be included in an amount greater than 0 wt% and less than 10.0 wt% based on 100 wt% of the sintered body.
본 발명의 일 실시예를 들면, 상기 몰리브덴 산화물(M1)과 상기 니오븀 산화물(M2)은 당해 산화물 소결체 100 중량%를 기준으로 90.0 중량% 이상, 100 중량% 미만으로 포함되며, 상기 몰리브덴 산화물(M1)과 상기 니오븀 산화물(M2)의 함량 비율은 50 : 50 내지 90 : 10 중량비일 수 있다. In one embodiment of the present invention, the molybdenum oxide (M1) and the niobium oxide (M2) are included in 90.0% by weight or more and less than 100% by weight based on 100% by weight of the oxide sintered body, and the molybdenum oxide (M1 ) and the niobium oxide (M2) may be in a weight ratio of 50:50 to 90:10.
본 발명의 일 실시예를 들면, 상기 산화물 소결체는, 몰리브덴 산화물(M1); 니오븀 산화물(M2); 및 금속산화물(M3)을 혼합하여 성형한 후 무가압 소결된 것일 수 있다. For one embodiment of the present invention, the oxide sintered body, molybdenum oxide (M1); niobium oxide (M2); And the metal oxide (M3) may be mixed and molded, and then non-pressure sintered.
본 발명의 일 실시예를 들면, 상기 산화물 소결체는 비저항이 1×10-2 Ωcm 이하이며, 상대밀도가 80% 이상일 수 있다. For one embodiment of the present invention, the oxide sintered body may have a specific resistance of 1×10 -2 Ωcm or less and a relative density of 80% or more.
또한 본 발명은 전술한 무가압 소결체를 포함하는 스퍼터링 타겟을 제공한다. In addition, the present invention provides a sputtering target comprising the above-mentioned pressure-free sintered body.
아울러 본 발명은 상기 스퍼터링 타겟으로부터 형성된 산화물 박막을 제공한다. In addition, the present invention provides an oxide thin film formed from the sputtering target.
본 발명의 일 실시예에 따르면, 난(難) 소결성 몰리브덴 산화물에 특정 원소를 함유하는 (준)금속산화물을 소정 범위로 첨가함으로써, 무가압 하에서도 몰리브덴 산화물 소결체의 소결성을 개선하고 고밀도를 확보할 수 있다.According to an embodiment of the present invention, by adding a (semi)metal oxide containing a specific element to a difficult-to-sinterable molybdenum oxide in a predetermined range, it is possible to improve the sinterability of the molybdenum oxide sintered body and secure high density even under no pressure. can
이에 따라, 본 발명에 따른 몰리브덴 산화물계 소결체 및 스퍼터링 타겟은 LCD 및 OLED의 TFT 구조에 사용되는 전극 또는 배선 형성에 유용하게 적용될 수 있다.Accordingly, the molybdenum oxide-based sintered body and sputtering target according to the present invention can be usefully applied to forming electrodes or wires used in TFT structures of LCDs and OLEDs.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 보다 다양한 효과들이 본 명세서 내에 포함되어 있다. Effects according to the present invention are not limited by the contents exemplified above, and more diverse effects are included in the present specification.
도 1은 금속산화물(M3)이 첨가된 실시예 3의 성형체를 이용하여 열처리 온도에 따른 소결체의 조직 변화를 나타내는 사진이다. 1 is a photograph showing the structure change of a sintered body according to the heat treatment temperature using the molded body of Example 3 to which a metal oxide (M3) is added.
도 2는 금속산화물(M3)이 첨가된 실시예 4의 성형체를 이용하여 열처리 온도에 따른 소결체의 조직 변화를 나타내는 사진이다. 2 is a photograph showing the structure change of the sintered body according to the heat treatment temperature using the molded body of Example 4 to which the metal oxide (M3) is added.
도 3는 금속산화물(M3)이 첨가된 실시예 6의 성형체를 이용하여 열처리 온도에 따른 소결체의 조직 변화를 나타내는 사진이다. Figure 3 is a photograph showing the change in the structure of the sintered body according to the heat treatment temperature using the molded body of Example 6 to which the metal oxide (M3) is added.
도 4는 금속산화물(M3)이 첨가된 실시예 7의 성형체를 이용하여 열처리 온도에 따른 소결체의 조직 변화를 나타내는 사진이다. 4 is a photograph showing the structure change of the sintered body according to the heat treatment temperature using the molded body of Example 7 to which the metal oxide (M3) is added.
도 5는 금속산화물(M3)이 첨가된 실시예 8의 성형체를 이용하여 열처리 온도에 따른 소결체의 조직 변화를 나타내는 사진이다. 5 is a photograph showing the change in structure of the sintered body according to the heat treatment temperature using the molded body of Example 8 to which the metal oxide (M3) is added.
도 6는 금속산화물(M3)이 비첨가된 비교예 1의 성형체를 이용하여 열처리 온도에 따른 소결체의 조직 변화를 나타내는 사진이다. Figure 6 is a photograph showing the change in the structure of the sintered body according to the heat treatment temperature using the molded body of Comparative Example 1 to which no metal oxide (M3) was added.
도 7은 혼합된 원재료의 분말 조직, 실시예 6에서 제조된 무가압 소결체의 조직, 및 비교예 5에서 제조된 가압 소결체의 조직의 파단된 면을 각각 나타내는 SEM 사진이다.7 is a SEM photograph showing the fractured surface of the powder structure of the mixed raw materials, the structure of the non-pressurized sintered body prepared in Example 6, and the structure of the pressed sintered body prepared in Comparative Example 5, respectively.
도 8는 실시예 7에서 제조된 무가압 소결체의 조직, 및 비교예 5에서 제조된 가압 소결체의 조직의 폴리싱된 면을 각각 나타내는 SEM 사진이다.8 is a SEM photograph showing the polished surface of the structure of the non-pressurized sintered body prepared in Example 7 and the structure of the pressurized sintered body prepared in Comparative Example 5, respectively.
도 9는 실시예 1 내지 4에서 제조된 무가압 소결체의 소결온도에 따른 상대밀도를 나타내는 그래프이다. 9 is a graph showing the relative density according to the sintering temperature of the non-pressurized sintered body prepared in Examples 1 to 4.
도 10는 실시예 5 내지 8에서 제조된 무가압 소결체의 소결온도에 따른 상대밀도를 나타내는 그래프이다. 10 is a graph showing the relative density according to the sintering temperature of the non-pressurized sintered body prepared in Examples 5 to 8.
도 11은 비교예 1 내지 4에서 제조된 소결체의 소결온도에 따른 상대밀도를 나타내는 그래프이다. 11 is a graph showing the relative density according to the sintering temperature of the sintered bodies prepared in Comparative Examples 1 to 4.
도 12는 실시예 1 내지 4에서 제조된 무가압 소결체의 소결온도에 따른 수축률 변화를 나타내는 그래프이다. 12 is a graph showing the change in shrinkage according to the sintering temperature of the non-pressurized sintered body prepared in Examples 1 to 4.
도 13은 실시예 5 내지 8에서 제조된 무가압 소결체의 소결온도에 따른 수축률 변화를 나타내는 그래프이다. 13 is a graph showing the change in shrinkage according to the sintering temperature of the non-pressurized sintered body prepared in Examples 5 to 8.
도 14은 비교예 1 내지 4에서 제조된 소결체의 소결온도에 따른 수축률 변화를 나타내는 그래프이다. 14 is a graph showing the change in shrinkage according to the sintering temperature of the sintered bodies prepared in Comparative Examples 1 to 4.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.All terms (including technical and scientific terms) used in this specification may be used in a meaning that can be commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in commonly used dictionaries are not interpreted ideally or excessively unless explicitly specifically defined.
또한 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서, "위에" 또는 "상에"라 함은 대상 부분의 위 또는 아래에 위치하는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함함을 의미하는 것이며, 반드시 중력 방향을 기준으로 위쪽에 위치하는 것을 의미하는 것은 아니다. 그리고, 본원 명세서에서 "제1", "제2" 등의 용어는 임의의 순서 또는 중요도를 나타내는 것이 아니라 구성요소들을 서로 구별하고자 사용된 것이다.In addition, throughout the specification, when a certain component is said to "include", it means that it may further include other components, not excluding other components, unless otherwise stated. In addition, throughout the specification, "above" or "on" means not only the case of being located above or below the target part, but also the case of another part in the middle thereof, and must necessarily specify the direction of gravity It does not mean that it is located above the standard. Also, terms such as "first" and "second" in the present specification do not indicate any order or importance, but are used to distinguish components from each other.
종래 n-type 반도체 박막으로 사용되는 MoO2-Nb2O5 재료는 가압 소결법을 통해 제조되는 것이 일반적이다. 그러나 가압 소결법을 적용할 경우, 설비 가액에 따른 제조 공정 비용이 상승함에 따라 양산성 면에서 적합하지 못하다. 또한 고압을 인가하는 제조공정 상 소결체의 크기를 대형화하는데 한계가 있었다.MoO 2 -Nb 2 O 5 material used as a conventional n-type semiconductor thin film is generally manufactured through a pressure sintering method. However, when the pressure sintering method is applied, it is not suitable in terms of mass productivity as the manufacturing process cost increases according to the equipment value. In addition, there was a limit to enlarging the size of the sintered body in the manufacturing process of applying high pressure.
전술한 문제점을 해결하고자, MoO2-Nb2O5 재료를 무가압 소결할 경우 소결 밀도의 상승에 한계가 있어 적용하기 어려웠으며, 또한 소결온도를 상승할 경우 용융 및 휘발되는 양이 증가하여 오히려 밀도가 떨어지는 현상이 발생된다. 즉, 소결시 구동력으로 열이 필요하게 되는데, 일반적으로는 열이 높을수록 소결성 확보(치밀화) 면에서 유리한 반면, 일부 원소재의 경우 오히려 휘발 등의 문제가 발생하여 밀도가 낮아지게 된다. In order to solve the above problems, it was difficult to apply the MoO 2 -Nb 2 O 5 material to sintering without pressure because there is a limit to the increase in sintering density, and when the sintering temperature is increased, the amount of melting and volatilization increases, rather A decrease in density occurs. That is, heat is required as a driving force during sintering. In general, the higher the heat, the more advantageous it is in securing sinterability (densification), but in the case of some raw materials, problems such as volatilization occur, resulting in a lower density.
이에, 본 발명은 몰리브덴 산화물과 니오븀 산화물을 기본 조성으로 하는 난(難)소결성 재료에, 소결성을 보조하는 특정 (준)금속산화물계 도펀트(M3)를 소량 사용함으로써 소결성 개선 및 고밀도 확보를 동시에 구현할 수 있는 몰리브덴 산화물계 소결체 및 이를 이용하는 스퍼터링 타겟을 제공할 수 있다. Therefore, the present invention can improve sinterability and secure high density at the same time by using a small amount of a specific (semi)metal oxide-based dopant (M3) that assists sinterability in a difficult-to-sinterable material having molybdenum oxide and niobium oxide as a basic composition. It is possible to provide a molybdenum oxide-based sintered body and a sputtering target using the same.
구체적으로, 본 발명에서 사용하는 특정 (준)금속산화물계 도펀트(M3)는 난소결성 재료인 MoO2/MoO3-Nb2O5의 소결 구동력을 확보하도록 보조함으로써, 무가압 소결을 실시하더라도 온도 강하 효과에 따른 소결 밀도를 향상시킬 수 있다. 일례로, 본 발명에 따른 몰리브덴 산화물 소결체는 특정 금속산화물(M3)을 비포함하는 소결체에 비해, 우수한 밀도 및 비저항 특성을 가질 수 있으며, 특히 가압 없이 열처리만으로 무가압 소결체(pressureless sintered body)를 구성하더라도, 종래 가압소결(예, HP, HIP 등)을 거친 산화물 소결체 대비 동등 수준 이상의 밀도 특성 및 비저항 특성을 확보할 수 있다. 그리고 가압소결된 산화물 소결체에 비하여, 소결체의 대형화 및 대량 생산 면에서 매우 우수하며, 설비 단가도 낮다는 장점이 있다. Specifically, the specific (semi)metal oxide-based dopant (M3) used in the present invention assists in securing the sintering driving force of MoO 2 /MoO 3 -Nb 2 O 5 , which is a sintering-resistant material, even when pressure-free sintering is performed. It is possible to improve the sintered density according to the drop effect. For example, the molybdenum oxide sintered body according to the present invention may have excellent density and resistivity characteristics compared to a sintered body that does not contain a specific metal oxide (M3), and in particular, constitutes a pressureless sintered body only with heat treatment without pressurization Even if it is, it is possible to secure density characteristics and resistivity characteristics equal to or higher than those of the oxide sintered body subjected to conventional pressure sintering (eg, HP, HIP, etc.). In addition, compared to the pressure-sintered oxide sintered body, there is an advantage in that it is very excellent in terms of size and mass production of the sintered body, and the unit cost of equipment is also low.
또한 본 발명의 산화물 소결체를 구성하는 결정립의 입자 크기는, 소정의 압력과 열처리를 동시에 인가하여 가압소결된 몰리브덴 산화물 소결체의 입자보다 더 크기 때문에, 반응 측면에서 보다 유리하다. 일례로 도 3~4에서 볼 수 있듯이, 가압 소결체는 고압에 의해 초기 원재료를 강제로 뭉쳐 놓은 형태이므로 입자들의 크기가 거의 증가하지 않은 것에 비해, 본 발명에 따른 소결체는 반응에 의해 입자의 크기가 증가한 것을 볼 수 있으며, 특히 이종(異種) 원소 간의 상호 반응에 있어서 입자가 복합화하여 합쳐진 형태이므로 반응 측면에서 유리하다는 것을 알 수 있다. In addition, since the particle size of the crystal grains constituting the oxide sintered body of the present invention is larger than the grain size of the molybdenum oxide sintered body pressure-sintered by simultaneously applying a predetermined pressure and heat treatment, it is more advantageous in terms of reaction. As an example, as can be seen in FIGS. 3 and 4, the pressurized sintered body is in the form of forcibly aggregating the initial raw materials by high pressure, so the size of the particles hardly increases, whereas the sintered body according to the present invention increases the size of the particles by the reaction In particular, it can be seen that in the mutual reaction between different elements, it is advantageous in terms of reaction because it is a form in which particles are combined and combined.
또한 첨가되는 원소가 없을 경우 몰리브덴 산화물 타겟의 밀도가 매우 낮고, 비저항은 높게 된다. 이와 같이 타겟의 저항이 높을 경우 DC 스퍼터링 진행시 플라즈마가 형성되지 않는 문제가 초래된다. 이에 비해, 본 발명에 따른 몰리브덴 산화물 타겟은 도펀트(Dopant) 첨가에 의한 소결성을 확보하여, 무가압 소결에 의해서도 스퍼터링이 가능한 수준의 고밀도 소결체 타겟을 제공할 수 있다. In addition, when there is no added element, the density of the molybdenum oxide target is very low and the specific resistance is high. In this way, when the resistance of the target is high, a problem in that plasma is not formed during DC sputtering is caused. In contrast, the molybdenum oxide target according to the present invention secures sinterability by adding a dopant, and can provide a high-density sintered target capable of sputtering even by non-pressure sintering.
<산화물 소결체 및 스퍼터링 타겟><Oxide sintered body and sputtering target>
본 발명의 일 예는, 몰리브덴 산화물을 주(主)성분으로 하는 스퍼터링용 타겟을 제작하기 위한 금속산화물 소결체이다. 이러한 소결체는 Co, Si, Y 및 Ga으로 구성된 군에서 선택되는 1종 이상의 금속을 함유하는 금속산화물(M3)을 필수성분으로 포함한다는 점에서, 종래 소결체와 구별된다. An example of the present invention is a metal oxide sintered body for producing a target for sputtering containing molybdenum oxide as a main component. This sintered body is distinguished from conventional sintered bodies in that it contains a metal oxide (M3) containing at least one metal selected from the group consisting of Co, Si, Y, and Ga as an essential component.
일 구체예를 들면, 상기 산화물 소결체는 MoO2 및 MoO3 중 적어도 하나를 포함하는 몰리브덴 산화물(M1); 니오븀 산화물(M2); 및 Co, Si, Y 및 Ga으로 구성된 군에서 선택된 적어도 1종의 금속을 함유하는 금속산화물(M3);을 포함하며, 당해 소결체의 총 중량 대비 적어도 70 중량% 이상의 몰리브덴 산화물(M1)을 포함한다. For one specific example, the oxide sintered body MoO 2 And MoO 3 Molybdenum oxide containing at least one of (M1); niobium oxide (M2); and a metal oxide (M3) containing at least one metal selected from the group consisting of Co, Si, Y, and Ga; and at least 70% by weight of molybdenum oxide (M1) based on the total weight of the sintered body. .
전술한 조성으로 이루어진 금속산화물 소결체를 타겟 재료로 사용하여 박막을 형성하는 경우, 형성된 박막은 저반사 특성을 가지는 것과 동시에 몰리브덴 산화물의 비율과 조성의 최적화를 통해 내열성 및 내화학성이 향상된다. 또한 소량의 특정 도펀트(dopant, M3) 첨가에 의한 밀도 향상이 구현되므로 가압소결을 사용하지 않아도 되며, 또한 난소결 물질인 Mo-Nb-O계 스퍼터링 타겟을 제작 가능하다. When a thin film is formed using the metal oxide sintered body having the above composition as a target material, the formed thin film has low reflection characteristics and at the same time, heat resistance and chemical resistance are improved through optimization of the ratio and composition of molybdenum oxide. In addition, since the density is improved by adding a small amount of a specific dopant (M3), pressure sintering is not required, and a Mo-Nb-O-based sputtering target, which is a difficult-to-sinter material, can be manufactured.
이하, 각 성분에 대하여 상세하게 설명한다.Hereinafter, each component is explained in detail.
본 발명에 따른 산화물 소결체에 포함되는 몰리브덴 산화물은, 소결체를 구성하는 주(主) 성분이다. Molybdenum oxide contained in the oxide sintered body according to the present invention is a main component constituting the sintered body.
몰리브덴 산화물(M1)은 예를 들면 MoO2, MoO3, MoO4와 같이 몰리브덴에 산소가 결합된 형태를 가지는 성분이다. 본 발명에서는 몰리브덴 산화물(M1)로서 MoO2, MoO3, 또는 MoO2 MoO3의 혼합물을 사용할 수 있다. 이때 몰리브덴 산화물로서 MoO2 및 MoO3의 혼합물을 사용할 경우, 이들 간의 혼합 비율은 특별히 제한되지 않으며 당 분야에 공지된 통상의 함량 범위 내에서 적절히 조절할 수 있다. 한편 MoO3의 융점은 약 800℃이므로, 1000℃ 이상의 고온에서는 휘발하게 된다. 이에 따라, 본 발명에서는 몰리브덴 산화물로서 MoO2를 사용하는 것이 바람직하다. Molybdenum oxide (M1) is a component having a form in which oxygen is bonded to molybdenum, such as MoO 2 , MoO 3 , and MoO 4 . In the present invention, as molybdenum oxide (M1), MoO 2 , MoO 3 , or MoO 2 and Mixtures of MoO 3 may be used. At this time, when using a mixture of MoO 2 and MoO 3 as molybdenum oxide, the mixing ratio between them is not particularly limited and can be properly adjusted within a conventional content range known in the art. Meanwhile, since MoO 3 has a melting point of about 800°C, it volatilizes at a high temperature of 1000°C or higher. Accordingly, in the present invention, it is preferable to use MoO 2 as the molybdenum oxide.
본 발명에 따른 산화물 소결체에 포함되는 첨가성분 중 하나는 니오븀 산화물(M2)이다. One of the additive components included in the oxide sintered body according to the present invention is niobium oxide (M2).
이러한 니오븀 산화물(M2)은 내화학성 및 내열성 특성을 개선하는 산화물 도펀트로서, 상기 금속산화물 첨가에 의해 몰리브덴 산화물의 내화학성 및 내열성 특성을 높일 수 있다. 상기 니오븀 산화물은 니오븀에 산소가 결합된 형태를 가지는 성분이라면 특별히 제한되지 않으며, 일례로 Nb2O5일 수 있다. 이하의 설명에서는 니오븀 산화물 성분을 기호화 하여 M2로 표시한다.Niobium oxide (M2) is an oxide dopant that improves chemical resistance and heat resistance, and chemical resistance and heat resistance of molybdenum oxide can be improved by adding the metal oxide. The niobium oxide is not particularly limited as long as it has a form in which oxygen is bonded to niobium, and may be, for example, Nb 2 O 5 . In the following description, the niobium oxide component is symbolized and expressed as M2.
본 발명에 따른 산화물 소결체에 포함되는 첨가성분 중 다른 하나는 Co, Si, Y 및 Ga 중 적어도 1종의 금속(A)을 함유하는 금속산화물(M3)이다. Another of the additive components included in the oxide sintered body according to the present invention is a metal oxide (M3) containing at least one metal (A) among Co, Si, Y and Ga.
상기 금속산화물(M3)은 난(難)소결성 몰리브덴 산화물의 소결성을 보조하여 밀도 상승 효과를 나타내는 도펀트 역할을 한다. 이러한 금속산화물 첨가에 의해 몰리브덴 산화물의 내화학성 및 내열성 특성을 높일 수 있다. 본 발명에서, 상기 금속산화물(M3)은 Co, Si, Y 및 Ga 중 적어도 하나의 원소(A)에 산소가 결합된 형태를 가지는 성분이라면 특별히 제한되지 않으며, 일례로 Co3O4, SiO2, Y2O3, 및 Ga2O3로 구성된 군에서 선택된 1종 이상을 포함할 수 있다.The metal oxide (M3) serves as a dopant to show a density increasing effect by assisting the sinterability of the difficult to sinterable molybdenum oxide. By adding such a metal oxide, the chemical resistance and heat resistance characteristics of molybdenum oxide can be improved. In the present invention, the metal oxide (M3) is not particularly limited as long as it has a form in which oxygen is bonded to at least one element (A) of Co, Si, Y, and Ga. For example, Co 3 O 4 , SiO 2 , Y 2 O 3 , and Ga 2 O 3 It may include one or more selected from the group consisting of.
필요에 따라, 상기 금속산화물(M3)은 CaCO3, 및 MgO로 구성된 군에서 선택된 1종 이상의 알칼리토금속을 함유하는 금속산화물을 더 포함할 수 있다. 이때 금속산화물(M3)로서, Co, Si, Y 및 Ga 중 적어도 1종을 함유하는 금속산화물과 알칼리토금속 산화물을 혼용하는 경우 이들의 혼합 비율은 특별히 제한되지 않으며, 일례로 1 : 0.3 ~ 2.5 중량비이며, 보다 구체적으로 1 : 0.5 ~ 2.0 중량비일 수 있다.If necessary, the metal oxide M3 may further include a metal oxide containing at least one alkaline earth metal selected from the group consisting of CaCO 3 and MgO. At this time, as the metal oxide (M3), when a metal oxide containing at least one of Co, Si, Y, and Ga is mixed with an alkaline earth metal oxide, the mixing ratio thereof is not particularly limited, and for example, 1: 0.3 to 2.5 weight ratio. And, more specifically, it may be 1: 0.5 to 2.0 weight ratio.
전술한 몰리브덴 산화물(M1), 니오븀 산화물(M2), 및 (준)금속산화물(M3)을 포함하는 금속산화물 소결체는, 당해 소결체 100 중량%를 기준으로 몰리브덴 산화물(M1)과 니오븀 산화물(M2)을 90 중량% 이상, 100 중량% 미만으로 포함하며, (준)금속산화물(M3)을 0 중량% 초과, 10 중량% 이하로 포함할 수 있다. 보다 구체적으로, 몰리브덴 산화물(M1)과 니오븀 산화물(M2) 95.0 내지 99.5 중량%; 및 (준)금속산화물(M3) 0.5 내지 5.0 중량%로 이루어진 조성을 가질 수 있다. 여기서, 몰리브덴 산화물(M1)과 니오븀 산화물(M2)의 함량 비율은 50 : 50 내지 90 : 10 중량비이며, 구체적으로 70 : 30 내지 90 : 10 중량비, 보다 구체적으로 75 : 25 내지 90 : 10 중량비로 구성될 수 있다. 본 발명에서 몰리브덴 산화물의 비율이 당해 금속산화물 소결체 전체에서 70 중량% 이상을 차지할 경우 박막으로 증착시 저반사 특성을 가질 수 있다.The metal oxide sintered body including the above-described molybdenum oxide (M1), niobium oxide (M2), and (semi)metal oxide (M3) contains molybdenum oxide (M1) and niobium oxide (M2) based on 100% by weight of the sintered body. 90% by weight or more and less than 100% by weight, and (semi)metal oxide (M3) may be included in more than 0% by weight and less than 10% by weight. More specifically, 95.0 to 99.5% by weight of molybdenum oxide (M1) and niobium oxide (M2); and 0.5 to 5.0 wt% of (semi)metal oxide (M3). Here, the content ratio of molybdenum oxide (M1) and niobium oxide (M2) is 50:50 to 90:10 weight ratio, specifically 70:30 to 90:10 weight ratio, more specifically 75:25 to 90:10 weight ratio can be configured. In the present invention, when the ratio of molybdenum oxide occupies 70% by weight or more in the entire metal oxide sintered body, it may have low reflection characteristics when deposited as a thin film.
상술한 바와 같이 구성되는 본 발명에 따른 산화물 소결체는, 무가압 소결을 하더라도 상대밀도가 80% 이상이며, 구체적으로 90% 이상일 수 있다. 이때 그 상한치는 특별히 제한되지 않는다. 또한 산화물 소결체의 비저항이 1×10-2 Ωcm 이하이며, 그 하한치는 특별히 제한되지 않는다. The oxide sintered body according to the present invention configured as described above has a relative density of 80% or more, even when pressure-free sintering is performed, and specifically may be 90% or more. In this case, the upper limit is not particularly limited. In addition, the specific resistance of the oxide sintered body is 1×10 -2 Ωcm or less, and the lower limit thereof is not particularly limited.
그리고 산화물 소결체에 포함된 결정립의 크기(D50)는 특별히 제한되지 않으며, 일례로 1 내지 50 ㎛일 수 있다. 구체적으로, 가압 조건 하에서 제조된 소결체의 결정립 크기는 1 내지 3 ㎛일 수 있으며, 무가압 조건 하에서 제조된 소결체의 결정립 크기는 3 내지 50 ㎛일 수 있다. 특히 본 발명의 산화물 소결체를 구성하는 결정립의 입자 크기는, HP 또는 HIP 등에 의해 인위적으로 분말을 눌러 가압소결된 몰리브덴 산화물 소결체의 입자보다 더 크다. 이에 따라, 반응 측면에서 보다 유리하다는 장점이 있다. And the size (D50) of crystal grains included in the oxide sintered body is not particularly limited, and may be, for example, 1 to 50 μm. Specifically, the grain size of the sintered body prepared under pressurized conditions may be 1 to 3 μm, and the grain size of the sintered body prepared under non-pressurized conditions may be 3 to 50 μm. Particularly, the particle size of the crystal grains constituting the oxide sintered body of the present invention is larger than the particles of the molybdenum oxide sintered body artificially pressurized by pressing the powder by HP or HIP. Accordingly, there is an advantage that it is more advantageous in terms of reaction.
일 구체예를 들면, 본 발명의 무가압 소결체를 구성하는 평균 그레인 입경(D50)은 하기 식 1의 조건을 만족할 수 있다. For one specific example, the average grain diameter (D 50 ) constituting the non-pressurized sintered body of the present invention may satisfy the condition of Equation 1 below.
[식 1][Equation 1]
GN / GP ≥ 7.0G N / G P ≥ 7.0
상기 식에서, In the above formula,
GN은 1,400±200℃에서 2시간 동안 무가압 열처리된 산화물 소결체의 평균 그레인 입경(D50)이며, G N is the average grain diameter (D 50 ) of the oxide sintered body subjected to non-pressure heat treatment at 1,400±200 ° C. for 2 hours,
GP는 30 MPa 및 830℃의 조건 하에서 2시간 동안 가압 열처리된 산화물 소결체의 평균 그레인 입경(D50)이다. G P is the average grain diameter (D 50 ) of the oxide sintered body subjected to pressure heat treatment at 30 MPa and 830° C. for 2 hours.
구체적으로, 상기 식 1에 따른 무가압 소결체를 구성하는 평균 그레인 입경(D50)은 10.0 이상, 구체적으로 15.0 이상, 보다 구체적으로 20.0 이상일 수 있다. 일례로, 무가압 열처리된 산화물 소결체의 평균 그레인 입경(D50)는 3 내지 50 ㎛이며, 가압 열처리된 산화물 소결체의 평균 그레인 입경(D50)은 1 내지 3 ㎛일 수 있다. Specifically, the average grain diameter (D 50 ) constituting the unpressurized sintered body according to Equation 1 may be 10.0 or more, specifically 15.0 or more, and more specifically 20.0 or more. For example, the average grain diameter (D 50 ) of the oxide sintered body subjected to the non-pressure heat treatment is 3 to 50 μm, and the average grain diameter (D 50 ) of the oxide sintered body subjected to the pressure heat treatment may be 1 to 3 μm.
또한 본 발명의 다른 일 실시예에 따른 스퍼터링 타겟은, 전술한 몰리브덴 산화물을 주(主)성분으로 하는 산화물 소결체; 및 상기 소결체의 일면에 접합되어 상기 소결체를 지지하는 백킹 플레이트를 포함한다. In addition, the sputtering target according to another embodiment of the present invention, an oxide sintered body containing the above-described molybdenum oxide as a main component; and a backing plate bonded to one surface of the sintered body to support the sintered body.
여기서, 백킹 플레이트는 스퍼터링 타겟용 소결체를 지지하는 기판으로서, 당 분야에 알려진 통상적인 백킹 플레이트를 제한 없이 사용할 수 있다. 이때 백킹 플레이트를 구성하는 재료 및 이의 형상은 특별히 제한되지 않는다.Here, the backing plate is a substrate for supporting the sintered body for the sputtering target, and a conventional backing plate known in the art may be used without limitation. At this time, the material constituting the backing plate and its shape are not particularly limited.
<산화물 소결체 및 스퍼터링 타겟의 제조방법><Method for producing oxide sintered body and sputtering target>
이하, 본 발명의 일 실시형태에 따른 산화물 소결체 및 스퍼터링 타겟의 제조방법에 대해 설명한다. 그러나 하기 제조방법에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다. Hereinafter, a method for manufacturing an oxide sintered body and a sputtering target according to an embodiment of the present invention will be described. However, it is not limited only by the following manufacturing method, and each process step may be modified or selectively used in combination as needed.
상기 제조방법의 일 실시예를 들면, (i) 몰리브덴 산화물(M1); 니오븀 산화물(M2); Co, Si, Y 및 Ga으로 구성된 군에서 선택되는 1종 이상의 금속(A)을 함유하는 금속산화물(M3);을 포함하는 원료분말을 준비하는 단계; (ii) 상기 원료 분말을 이용하여 성형체를 제조하는 단계('S20 단계'); (iii) 상기 성형체를 1,200 내지 1,600℃에서 1 내지 20 시간 동안 무가압 소결하여 소결체를 제조하는 단계('S30 단계');를 포함하여 구성될 수 있다. For one embodiment of the manufacturing method, (i) molybdenum oxide (M1); niobium oxide (M2); Preparing a raw material powder containing a metal oxide (M3) containing at least one metal (A) selected from the group consisting of Co, Si, Y, and Ga; (ii) preparing a molded body using the raw material powder ('step S20'); (iii) preparing a sintered body by sintering the molded body at 1,200 to 1,600 ° C. for 1 to 20 hours without pressure ('S30 step'); may be configured to include.
이하, 상기 제조방법을 각 공정 단계별로 나누어 설명하면 다음과 같다.Hereinafter, the manufacturing method will be described by dividing each process step.
(i) 원료분말 준비('S10 단계')(i) Raw material powder preparation ('S10 step')
상기 S10 단계에서는, 몰리브덴 산화물(M1), 니오븀 산화물(M2), 적어도 1종의 알칼리토금속(A)을 함유하는 (준)금속산화물(M3)을 포함하는 원료 분말을 준비하는 단계이다. 구체적으로, 몰리브덴 산화물(M1), 니오븀 산화물(M2), Co3O4, SiO2, Y2O3, 및 Ga2O3로 구성된 군에서 선택된 1종 이상의 금속산화물(M3) 분말을 목적 조성에 맞게 칭량한 후, 각 분말을 혼합기에 투입하고 분쇄 및 혼합하여 혼합물을 제조한다. In step S10, raw material powder including molybdenum oxide (M1), niobium oxide (M2), and (semi)metal oxide (M3) containing at least one kind of alkaline earth metal (A) is prepared. Specifically, at least one metal oxide (M3) powder selected from the group consisting of molybdenum oxide (M1), niobium oxide (M2), Co 3 O 4 , SiO 2 , Y 2 O 3 , and Ga 2 O 3 is prepared for the purpose composition. After weighing according to the formula, each powder is put into a mixer, ground and mixed to prepare a mixture.
전술한 원료 분말들을 혼합시, 필요에 따라 당 업계에 알려진 통상적인 첨가제, 예컨대 바인더, 분산제, 소포제 등을 추가로 포함할 수 있다. 이때 첨가제의 사용량은 당 분야에 알려진 통상적인 범위 내에서 적절히 조절할 수 있으며, 일례로 슬러리 내 분말 전체중량(예, 100 중량%) 대비 0.01 내지 10 중량% 사용될 수 있다. When mixing the above-described raw material powders, conventional additives known in the art, such as a binder, a dispersing agent, and an antifoaming agent, may be further included as needed. At this time, the amount of the additive can be properly adjusted within a conventional range known in the art, and for example, 0.01 to 10% by weight relative to the total weight of the powder in the slurry (eg, 100% by weight) may be used.
원료분말의 혼합 및 분쇄는 특별히 제한되지 않으며, 당 분야에 공지된 통상의 볼밀, 어트릭션밀, 비즈밀 등을 사용하여 실시될 수 있다. 일례로, 혼합된 원료분말은 지르코니아 볼을 이용하여 건식 볼밀 공정을 수행할 수 있다. 여기서, 지르코니아 볼은 분말량의 1~3배로 칭량할 수 있고, 볼밀은 100~300 rpm의 속도로 10 ~ 36 시간 동안 수행할 수 있다. Mixing and grinding of the raw material powder is not particularly limited, and may be performed using a conventional ball mill, attrition mill, bead mill, or the like known in the art. For example, the mixed raw material powder may be subjected to a dry ball mill process using zirconia balls. Here, the zirconia balls can be weighed 1 to 3 times the amount of powder, and the ball mill can be performed at a speed of 100 to 300 rpm for 10 to 36 hours.
상기 S10 단계의 구체적인 일례를 들면, 습식 볼밀을 통하여 원료분말의 혼합 및 분쇄를 진행하고자, 준비된 PE통을 이용하여 사전에 계측된 원소 분말을 투입하고 원소재의 약 2 내지 4배, 바람직하게는 3배에 해당되는 중량의 지르코니아볼을 투입한다 이후 증류수 또는 순수를 원소재의 대략 1.5배 수준으로 투입하여 볼밀을 진행한다.As a specific example of the step S10, in order to mix and pulverize the raw material powder through a wet ball mill, pre-measured elemental powder is introduced using a prepared PE cylinder, and about 2 to 4 times the amount of the raw material, preferably A zirconia ball of 3 times the weight is added. After that, distilled water or pure water is added at a level of about 1.5 times the raw material to proceed with the ball mill.
이후 습식 분쇄된 혼합물을 드라이 오븐에서 건조하고, 다시 볼밀을 진행하여 건식된 원료분말을 습득한다. 이때 건조 조건은 특별히 제한되지 않으며, 일례로 드라이 오븐에서 대략 90 내지 110℃에서 약 10 내지 15시간 건조를 실시할 수 있다. Thereafter, the wet pulverized mixture is dried in a dry oven, and ball milling is performed again to obtain a dried raw material powder. At this time, the drying conditions are not particularly limited, and for example, drying may be performed at about 90 to 110 ° C. for about 10 to 15 hours in a dry oven.
이어서, 건조된 혼합물은 다시 볼밀을 진행하여 건식 원료분말을 수득하게 된다. 필요에 따라 대략 90 내지 110 메쉬, 구체적으로 100 메쉬의 망으로 걸러내어 지르코니아볼과 분말을 분리한다. Subsequently, the dried mixture is subjected to a ball mill again to obtain dry raw material powder. If necessary, the zirconia balls and powder are separated by filtering through a mesh of about 90 to 110 mesh, specifically, 100 mesh.
(ii) 성형체 제조('S20 단계')(ii) Manufacture of molded body ('S20 step')
상기 S0 단계에서는 준비된 원료 분말로 성형체를 제조하는 단계로서, 보다 구체적으로 원료 분말을 성형기에 투입하고 성형하는 과정을 거쳐 소정 규격의 성형체를 제조한다. In the S0 step, a molded body is manufactured from the prepared raw material powder, and more specifically, a molded body having a predetermined standard is manufactured through a process of putting the raw material powder into a molding machine and molding it.
성형체의 밀도를 높이기 위해, 성형 과정은 2차에 걸쳐 이루어질 수 있다. 일례로, 1차 성형과정은 일축 성형기를 이용하고, 2차 성형과정은 등방압 성형기를 이용할 수 있다. In order to increase the density of the molded body, the molding process may be carried out twice. For example, the primary molding process may use a uniaxial molding machine, and the secondary molding process may use an isostatic pressure molding machine.
상기 1차 성형 및 2차 성형과정에서의 조건은 특별히 제한되지 않으며, 당 분야에 공지된 통상의 조건 내에서 적절히 조절할 수 있다. 일례로, 원료분말을 일축 성형기에 투입한 후 1차 성형 시 압력은 특별히 한정되지 않으며, 구체적으로 단위 면적당 10 MPa 이상일 수 있다. 또한 1차 성형된 성형체를 등방압 성형기에 투입한 후 2차 성형시 압력은 특별히 한정되지 않으며, 일례로 단위 면적당 200 MPa 이상일 수 있으며, 바람직하게는 200 내지 300 MPa 범위일 수 있다.Conditions in the primary molding and secondary molding processes are not particularly limited and may be appropriately adjusted within common conditions known in the art. For example, the pressure at the time of primary molding after inputting the raw material powder into the uniaxial molding machine is not particularly limited, and may specifically be 10 MPa or more per unit area. In addition, the pressure at the time of secondary molding after the primary molded body is put into the isostatic pressure molding machine is not particularly limited, and may be, for example, 200 MPa or more per unit area, and preferably 200 to 300 MPa.
상기 S20 단계의 구체적인 일례를 들면, 정해진 분말의 중량에 따라 20Φ 규격의 STS재 금형을 이용하여 1차 성형체를 제조한다. 이때 압력은 형상을 구성할 있는 최소한의 압력 조건 하에서 진행될 수 있으며, 일례로 약 10MPa, 시간은 1분 유지 수준으로 진행할 수 있다. 이후 2차 성형은 정수압 성형 (CIP)을 이용하여 200 MPa 조건 하에서 유지시간은 수 시간으로 진행하였다. 이때 2차 정수압 진행시 물을 포함한 유기용매와 함께 진행하므로, 아크릴 계열의 밀봉재(예, 봉투)에 투입한 상태에서 진행할 수 있다.For a specific example of the step S20, a primary molded body is manufactured using a 20Φ standard STS mold according to the weight of the determined powder. At this time, the pressure may proceed under the minimum pressure condition constituting the shape, for example, about 10 MPa, and the time may proceed at a level of holding for 1 minute. After that, the secondary molding was carried out for several hours under the condition of 200 MPa using hydrostatic pressure molding (CIP). At this time, since the second hydrostatic pressure proceeds with an organic solvent including water, it can proceed in a state in which it is put into an acrylic-based sealing material (eg, a bag).
(iii) 소결체 제조('S30 단계')(iii) Manufacturing a sintered body ('S30 step')
상기 S30 단계에서는, 제조된 성형체를 소정 조건 하에서 소결하여 소결체를 제조한다. In step S30, a sintered body is prepared by sintering the manufactured molded body under predetermined conditions.
이때 소결 조건은 특별히 제한되지 않으며, 당 분야에 공지된 통상의 조건 내에서 적절히 조절할 수 있다. 일례로, 1,200 내지 1,600℃에서 1 내지 20 시간 동안 무가압 소결할 수 있으며, 구체적으로 1 내지 4시간 일 수 있다. 상기 소결은 산소 분위기 하에 이루어지거나, 또는 비활성 조건 하에서 실시될 수 있다. At this time, the sintering conditions are not particularly limited and may be appropriately adjusted within common conditions known in the art. For example, it may be pressure-free sintering at 1,200 to 1,600 ° C. for 1 to 20 hours, and specifically for 1 to 4 hours. The sintering may be performed under an oxygen atmosphere or under inert conditions.
상기 S30 단계의 구체적인 일례를 들면, 준비된 성형체를 일정 규격의 알루미나 도가니에 넣고 소결을 진행한다. 본 실험에서는 열처리 전의 성형체와 열처리 후의 무가압 소결체 간의 특성 차이를 확인하기 위하여 해당 성형체와 소결체의 중량 및 직경, 높이 등을 측정하여 각 물성을 비교하였다(하기 표 2 및 도 12 내지 14 참조). For a specific example of the step S30, the prepared molded body is put into an alumina crucible of a certain standard and sintering is performed. In this experiment, in order to confirm the difference in characteristics between the molded body before heat treatment and the unpressurized sintered body after heat treatment, the weight, diameter, height, etc. of the molded body and the sintered body were measured and each physical property was compared (see Table 2 and FIGS. 12 to 14 below).
이러한 과정을 거쳐 제조된 무가압 소결체는 상대 밀도가 80% 이상일 수 있으며, 구체적으로 90% 이상일 수 있다. 이때 상한치는 특별히 제한되지 않는다.The pressure-free sintered body manufactured through this process may have a relative density of 80% or more, specifically 90% or more. In this case, the upper limit is not particularly limited.
(iv) 스퍼터링 타겟 제조(iv) Sputtering target manufacturing
다음으로 소결이 완료된 소결체를 취출하여 가공한다. 일례로, 소결체를 꺼낸 후에 타겟의 표면을 연마가공하기 위해, 타겟 상하부에 각 1mm 이상 가공할 수 있다.Next, the sintered compact is taken out and processed. For example, in order to polish the surface of the target after taking out the sintered body, each upper and lower portion of the target may be processed by 1 mm or more.
이후 당 업계에 통상적으로 알려진 확산본딩 및 최종가공을 통해 제품화된 스퍼터링 타겟을 제조한다. After that, a productized sputtering target is manufactured through diffusion bonding and final processing commonly known in the art.
구체적으로, 상기 S30 단계에서 수득된 소결체를 백킹 플레이트(Backing Plate)에 본딩한다. 이때 접착제로는 인듐을 사용할 수 있고, 본딩율은 95% 이상이 되도록 하는 것이 바람직하다. 이어서, 가공 장비를 이용하여 최종 목적 두께까지 가공을 실시하고, 백킹 플레이트 면에 비드 및/또는 아크 스프레이(Arc spray) 처리를 실시함으로써 최종 스퍼터팅 타겟을 얻을 수 있다.Specifically, the sintered body obtained in step S30 is bonded to a backing plate. At this time, indium can be used as an adhesive, and it is preferable to have a bonding rate of 95% or more. Subsequently, a final sputtering target may be obtained by processing to a final target thickness using processing equipment and performing bead and/or arc spray treatment on the surface of the backing plate.
전술한 과정을 통해 금속 산화물 타겟을 제조할 수 있다. 제조된 타겟의 타겟밀도는 90% 이상이고, 구체적으로 95% 이상이 되도록 하는 것이 바람직하다.A metal oxide target may be manufactured through the above process. The target density of the prepared target is 90% or more, and specifically, it is preferable to be 95% or more.
<산화물 박막><Oxide thin film>
본 발명의 다른 일 예는, 전술한 몰리브덴 산화물계 타겟을 사용하여 증착된 금속산화물 박막이다. 이러한 금속산화물 박막은 전술한 소결체를 타겟 재료로 하여 스퍼터링을 수행함으로써 형성될 수 있다.Another example of the present invention is a metal oxide thin film deposited using the molybdenum oxide-based target described above. Such a metal oxide thin film may be formed by performing sputtering using the above-described sintered body as a target material.
상기 산화물 박막은 증착 분위기에 따라 성분의 미차가 발생할 수는 있으나, 전술한 산화물 타겟을 스퍼터링하여 제조된 것이므로, 상기 타겟과 조성이 실질적으로 동일하다. 이에 따라, 상대밀도 90% 이상의 밀도 특성과 1×10-2 Ωcm 이하의 우수한 비저항 특성을 갖는 산화물 박막이 형성될 수 있다. 또한 주(主)원료인 몰리브덴 산화물에 특정 금속 산화물과 금속을 소정 범위로 첨가하되, 몰리브덴 산화물 비율과 조성 최적화를 통해 내화학성, 및 내열성 특성이 향상될 수 있다.Although slight differences in components may occur depending on the deposition atmosphere, the oxide thin film is manufactured by sputtering the above-described oxide target, and thus has substantially the same composition as the target. Accordingly, an oxide thin film having a relative density of 90% or more and excellent resistivity of 1×10 -2 Ωcm or less can be formed. In addition, specific metal oxides and metals are added in a predetermined range to molybdenum oxide, which is the main raw material, but chemical resistance and heat resistance characteristics can be improved through optimization of the molybdenum oxide ratio and composition.
본 발명에 따른 금속산화물 박막은, 당 분야에 알려진 통상적인 스퍼터링법을 이용하여 형성(증착)될 수 있다. 상기 제조방법의 일 실시예를 들면, 전술한 몰리브덴 산화물 무가압 소결체 스퍼터링 타겟을 장착한 후, 진공조 내에서 산소 및/또는 아르곤 분위기 하에서 상온으로 증착하는 단계를 포함한다. 이때 스퍼터링은 DC 스퍼터(Sputter)를 이용하여 수행할 수 있다.The metal oxide thin film according to the present invention may be formed (deposited) using a conventional sputtering method known in the art. For one embodiment of the manufacturing method, after mounting the above-mentioned molybdenum oxide pressure-free sintered sputtering target, it includes depositing at room temperature under an oxygen and / or argon atmosphere in a vacuum chamber. At this time, sputtering may be performed using DC sputter.
사용되는 기판 및 스퍼터링 장치는 당 업계에 알려진 통상적인 것을 제한 없이 사용할 수 있다. 구체적으로, 진공조 내에 산소 또는 산소와 고순도 아르곤 가스를 80~110 sccm(standard cubic centimeters per minute)의 속도로 공급하면서 형성할 수 있으며, 구체적으로 95~105 sccm의 속도로 공급하며, 막을 형성하는 기판에 온도를 가하지 않고 상온(RT)에서 증착할 수 있다. 또한 DC 스퍼터의 전력밀도(Power density)를 1.0 ~ 2.0 W/cm2 일 수 있으며, 금속 산화물 박막의 두께는 300 내지 500Å으로 할 수 있으나, 이에 특별히 제한되지 않는다. As the substrate and sputtering device used, conventional ones known in the art may be used without limitation. Specifically, it can be formed while supplying oxygen or oxygen and high-purity argon gas into a vacuum chamber at a rate of 80 to 110 sccm (standard cubic centimeters per minute), specifically supplying at a rate of 95 to 105 sccm, forming a film It can be deposited at room temperature (RT) without applying temperature to the substrate. In addition, the power density of the DC sputter may be 1.0 to 2.0 W/cm 2 , and the thickness of the metal oxide thin film may be 300 to 500 Å, but is not particularly limited thereto.
상기와 같이 수득되는 산화물 박막은 반도체 소자 제조시 다양하게 사용될 수 있으며, 일례로 반도체 제조시 배선 형성용 또는 전극 형성용으로 적용될 수 있다. 특히 상기 금속산화물 박막은 박막 트랜지스터(TFT)의 게이트층, 소스층 및 드레인층 중 적어도 하나로 이용될 수 있다. 이와 같이 본 발명의 박막을 박막 트랜지스터에 포함되는 소스 및 드레인 전극의 베리어층에 사용할 경우 접촉저항을 낮출 수 있으며, 투명성이 우수하고 낮은 굴절률을 가져 박막 트랜지스터의 물성을 향상시킬 수 있다.The oxide thin film obtained as described above can be used in various ways in the manufacture of semiconductor devices, and for example, it can be applied for forming wires or electrodes in the manufacture of semiconductors. In particular, the metal oxide thin film may be used as at least one of a gate layer, a source layer, and a drain layer of a thin film transistor (TFT). As described above, when the thin film of the present invention is used in the barrier layer of the source and drain electrodes included in the thin film transistor, the contact resistance can be reduced, and the thin film transistor has excellent transparency and a low refractive index, so that the physical properties of the thin film transistor can be improved.
전술한 본 발명에 따른 몰리브덴 산화물계 스퍼터링 타겟 및 이로부터 형성된 산화물 박막은 무가압 하에서도 높은 밀도와 우수한 비저항 특성을 가지므로, LCD 및 OLED의 TFT 구조나, 유기전기발광소자의 전자 주입층과 접속 저항을 낮게 억제할 수 있다. 이에 따라, 전술한 산화물 박막은 액정 표시소자 또는 유기전기 발광표시소자 등의 각종 표시장치, LCD, PDP, OLED, LED 등의 평판디스플레이 등의 정보전달 장치; OLED, LED 등의 면광원 조명장치 터치패널; 모바일폰, 태블릿 및/또는 이를 이용하는 정보전달 장치에도 제한없이 적용될 수 있다.Since the molybdenum oxide-based sputtering target and the oxide thin film formed therefrom according to the present invention described above have high density and excellent resistivity characteristics even under no pressure, they are connected to TFT structures of LCDs and OLEDs or electron injection layers of organic electroluminescent devices. resistance can be kept low. Accordingly, the oxide thin film described above may be used in various display devices such as liquid crystal display devices or organic light emitting display devices, information transmission devices such as flat panel displays such as LCD, PDP, OLED, and LED; surface light source lighting devices such as OLED and LED touch panels; It can also be applied without limitation to mobile phones, tablets and/or information delivery devices using the same.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are only to illustrate the present invention, and the present invention is not limited by the following examples.
[실시예 1 - 8: MoO2-Nb2O5-α 소결체의 제조][Examples 1 - 8: Preparation of MoO 2 -Nb 2 O 5 -α sintered body]
하기 표 1과 같은 조성의 비율로 몰리브덴 산화물(M1), 니오븀 산화물(M2) 및 (준)금속산화물(M3)을 혼합한 후 성형체를 제작하였다.After mixing molybdenum oxide (M1), niobium oxide (M2), and (semi)metal oxide (M3) in the composition ratio shown in Table 1 below, a molded body was manufactured.
성형체 제작 시 대다수 샘플은 20Φ의 디스크(disc)로 제작하였으나 일부 조성의 경우 50Φ로도 제작하였다. 이후 열처리 설비를 이용하여 약 1,200~1,600℃에서 2시간 동안 무가압 열처리하여 실시예 1~8의 산화물 소결체를 제작하였다.When manufacturing the molded body, most of the samples were made with 20Φ discs, but some compositions were also made with 50Φ. Thereafter, the oxide sintered bodies of Examples 1 to 8 were produced by heat treatment without pressure at about 1,200 to 1,600 ° C. for 2 hours using a heat treatment facility.
구분division 전체Wt%Total wt% MoO2(M1)MoO 2 (M1) Nb2O5(M2)Nb 2 O 5 (M2) 기타 도펀트Other dopants 금속산화물(M3)Metal oxide (M3)
GeO2 GeO 2 CuOCuO TiO2 TiO 2 Co3O4 Co 3 O 4 SiO2 SiO 2 Y2O3 Y 2 O 3 Ga2O3 Ga 2 O 3 CaCO3 CaCO 3 MgOMgO
α조성단독첨가α composition added alone 비교예 1Comparative Example 1 100100 75.075.0 25.025.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0
비교예 2Comparative Example 2 100100 73.573.5 24.524.5 2.02.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0
비교예 3Comparative Example 3 100100 73.573.5 24.524.5 0.00.0 2.02.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0
비교예 4Comparative Example 4 100100 73.573.5 24.524.5 0.00.0 0.00.0 2.02.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0
비교예 5Comparative Example 5 100100 75.075.0 25.025.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0
실시예 1Example 1 100100 74.374.3 24.824.8 0.00.0 0.00.0 0.00.0 1.01.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0
실시예 2Example 2 100100 73.573.5 24.524.5 0.00.0 0.00.0 0.00.0 2.02.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0
실시예 3Example 3 100100 71.371.3 23.823.8 0.00.0 0.00.0 0.00.0 5.05.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0
실시예 4Example 4 100100 73.573.5 24.524.5 0.00.0 0.00.0 0.00.0 0.00.0 2.02.0 0.00.0 0.00.0 0.00.0 0.00.0
실시예 5Example 5 100100 73.573.5 24.524.5 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 2.02.0 0.00.0 0.00.0 0.00.0
실시예 6Example 6 100100 73.573.5 24.524.5 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 0.00.0 2.02.0 0.00.0 0.00.0
α조성복합첨가α composition complex addition 실시예 7Example 7 100100 72.872.8 24.324.3 0.00.0 0.00.0 0.00.0 1.01.0 0.00.0 0.00.0 0.00.0 0.00.0 2.02.0
실시예 8Example 8 100100 72.872.8 24.324.3 0.00.0 0.00.0 0.00.0 2.02.0 0.00.0 0.00.0 0.00.0 1.01.0 0.00.0
[비교예 1 - 4: MoO2-Nb2O5 및 α첨가 소결체의 제조][Comparative Examples 1-4: Preparation of MoO 2 -Nb 2 O 5 and α-added sintered body]
상기 표 1과 같이 투입되는 산화물의 조성을 변경한 것을 제외하고는, 상기 실시예와 동일하게 수행하여 성형체를 제작하였다. 이후 열처리 설비를 이용하여 약 1200~1600℃에서 2시간 동안 열처리하여 비교예 1~4의 소결체를 각각 제작하였다.Except for changing the composition of the input oxide as shown in Table 1, a molded body was manufactured in the same manner as in the above embodiment. Thereafter, heat treatment was performed at about 1200 to 1600 ° C. for 2 hours using a heat treatment facility to produce sintered bodies of Comparative Examples 1 to 4, respectively.
[비교예 5: 소결체의 제조][Comparative Example 5: Preparation of sintered body]
상기 표 1과 같은 조성의 비율로 몰리브덴 산화물(M1) 및 니오븀 산화물(M2)을 계량하였다. 계량된 분말을 1L 플라스틱 통에 넣고, 알루미나 볼을 상기 분말량의 3배수로 투입하였다. 알루미나 볼은 3~10mm 볼을 사용하였다. 계량된 분말과 볼의 투입이 완료되면, 볼밀 기계에서 170~230 rpm의 속도로 8시간 동안 건식 혼합을 실시하였다. 수득한 건식 분말을 핫프레스(Hot Press)로 가압 소결을 하였다. 이때 핫프레스의 내부 진공 조건은 30 Mpa에서 실시하며, 승온 속도는 3~7℃, 최고 온도는 830℃, 유지시간은 2시간 정도로 유지하여 소결을 진행한 후 노냉을 수행하였다. 상기와 같이 과정을 거쳐 비교예 5의 소결체를 제조하였다. Molybdenum oxide (M1) and niobium oxide (M2) were weighed in the ratio of the composition shown in Table 1 above. The weighed powder was put into a 1L plastic container, and alumina balls were added in an amount three times the amount of the powder. A 3-10 mm ball was used as the alumina ball. After the input of the measured powder and balls was completed, dry mixing was performed for 8 hours at a speed of 170 to 230 rpm in a ball mill machine. The obtained dry powder was pressurized and sintered by a hot press. At this time, the internal vacuum condition of the hot press was performed at 30 Mpa, the heating rate was 3 to 7 ° C, the maximum temperature was 830 ° C, and the holding time was maintained for about 2 hours to perform sintering and then furnace cooling. The sintered body of Comparative Example 5 was prepared through the process as described above.
[실험예 1: 성형체의 열처리에 따른 조직변화 평가][Experimental Example 1: Evaluation of Tissue Change by Heat Treatment of Molded Body]
금속산화물이 첨가 및 비첨가된 성형체를 이용하여 열처리에 따른 소결체의 조직변화를 평가하였다. The structure change of the sintered body according to heat treatment was evaluated using the molded body to which metal oxide was added and not added.
도 1 내지 5는 각각 금속산화물(M3)이 첨가된 실시예 3 내지 8의 성형체를 이용하여 열처리 온도에 따른 소결체의 조직 변화를 나타내는 사진이며, 도 6은 금속산화물(M3)이 비첨가된 비교예 1의 성형체를 이용하여 열처리 온도에 따른 소결체의 조직 변화를 나타내는 사진이다.1 to 5 are photographs showing the structure change of the sintered body according to the heat treatment temperature using the molded bodies of Examples 3 to 8 to which metal oxide (M3) is added, respectively, and FIG. 6 is a comparison to which metal oxide (M3) is not added. It is a photograph showing the structure change of the sintered body according to the heat treatment temperature using the molded body of Example 1.
실험 결과, 소정의 금속산화물(M3)이 첨가된 본 발명의 성형체는 금속산화물이 비(非)첨가된 비교예 1의 성형체에 비해 열처리 온도에 따른 소결체의 조직 변화가 상대적으로 크다는 것을 확인할 수 있었다(하기 도 1 ~ 6 참조).As a result of the experiment, it was confirmed that the molded body of the present invention to which a predetermined metal oxide (M3) was added had a relatively large change in the structure of the sintered body according to the heat treatment temperature compared to the molded body of Comparative Example 1 to which no metal oxide was added. (See Figures 1 to 6 below).
[실험예 2: 소결체의 평균 입경 평가][Experimental Example 2: Average Particle Diameter Evaluation of Sintered Body]
가압 및 무가압 공정 조건 하에서 열처리된 소결체를 이용하여 이들의 조직 변화 및 평균 입경을 각각 평가하였다. Using the sintered bodies heat-treated under pressurized and non-pressurized process conditions, their structure change and average particle diameter were evaluated, respectively.
구체적으로, 시료로는 무가압 하에서 제조된 실시예 6 및 7의 소결체와 가압 하에서 제조된 비교예 5를 사용하였다. 이러한 두 종류의 시료를 10X10X10mm 규격으로 금속 재질의 블레이드를 이용하여 절단 후 폴리싱기를 이용하여 SiC paper #100부터 #2000까지 수 분간 연마한 후 최종적으로 1㎛ 페이스트 슬러리와 극세사 천을 이용하여 준비하였다. 이후 조직의 표면이 드러날 수 있도록 과산화수소수를 이용하여 약 200℃에서 1분간 시료를 담그고 열처리하였다. Specifically, as samples, the sintered bodies of Examples 6 and 7 prepared under no pressure and Comparative Example 5 prepared under pressure were used. These two types of samples were cut in a size of 10X10X10mm using a metal blade, polished for several minutes using a polishing machine from SiC paper #100 to #2000, and finally prepared using a 1 μm paste slurry and a microfiber cloth. Thereafter, the sample was immersed at about 200 ° C. for 1 minute using hydrogen peroxide solution so that the surface of the tissue was exposed and heat treated.
또한 소결체의 평균 입경 측정은 FE-SEM (Hitachi, S-4800)을 이용하여 각 시료에 대해 동일한 1,000 배율에서 관찰하였으며, 측정된 사진에 무작위로 5개의 선을 긋고 약 100개의 입자에 대해 하기 수학식 2에 따른 단선분석 (Linear intercept method) 방법을 이용하여 산출하였다.In addition, the measurement of the average particle diameter of the sintered body was observed at the same magnification of 1,000 for each sample using FE-SEM (Hitachi, S-4800), and 5 lines were drawn randomly on the measured picture, and the following math for about 100 particles It was calculated using the linear intercept method according to Equation 2.
[수학식 2][Equation 2]
D = 1.56 × C/MN D = 1.56 × C/MN
상기 식에서, D = 평균 입경, C = 선의 전체 길이, M = 배율, N = 선 위의 입자 개수이다. In the above formula, D = average particle diameter, C = total length of the line, M = magnification, and N = number of particles on the line.
도 7 및 8은 혼합된 원재료의 분말 조직, 실시예 6-7에서 제조된 무가압 소결체의 조직, 및 비교예 5에서 제조된 가압 소결체의 조직의 파단 면과 폴리싱 면을 각각 나타내는 SEM 사진이다. 7 and 8 are SEM photographs showing fractured and polished surfaces of the powder structure of the mixed raw materials, the structure of the non-pressurized sintered body prepared in Examples 6-7, and the structure of the pressed sintered body prepared in Comparative Example 5, respectively.
하기 도 7~8에서 볼 수 있듯이, 비교예 5의 가압소결체는 초기 원재료를 고압에 의해 강제로 뭉쳐 놓은 형태이므로 입자들의 크기가 거의 증가하지 않은 것을 볼 수 있다. 이에 비해, 실시예 6-7의 무가압 소결체는 반응에 의해 입자의 크기(grain size)가 증가한 것을 볼 수 있으며, 특히 이종(異種) 원소 간의 상호 반응에 있어서 입자가 합쳐진 형태이므로 반응 측면에서 유리하다는 것을 알 수 있다. As can be seen in FIGS. 7 and 8, since the pressurized sintered body of Comparative Example 5 is in the form of forcibly aggregating the initial raw materials by high pressure, it can be seen that the size of the particles hardly increases. In contrast, the non-pressurized sintered body of Examples 6-7 can be seen that the grain size increased by the reaction, and especially in the interaction between different elements, since the particles are combined, it is advantageous in terms of reaction. it can be seen that
[실험예 3: 성형체의 물성 평가][Experimental Example 3: Evaluation of physical properties of molded article]
실시예 1 내지 8 및 비교예 1 내지 4에서 제조된 각 성형체의 물성을 하기와 같이 평가하였다. The physical properties of each molded article prepared in Examples 1 to 8 and Comparative Examples 1 to 4 were evaluated as follows.
구체적으로, 각 성형체에 대해 직경(D) 및 높이(T)를 버니어캘리퍼스를 이용하여 측정하였고, 중량(Mass)은 저울을 이용하여 칭량하였다. 또한 상대밀도는 각중량의 투입량을 부피%로 환산하여 이론밀도 대비 수준을 백분율로 환산하였으며, 그 결과를 하기 표 2에 나타내었다. 측정된 시료의 밀도는 중량/부피로 계산하였으며, 동일 시료를 여러 개 제작하였을 경우 평균값으로 나타내었다. Specifically, the diameter (D) and height (T) of each molded body were measured using a vernier caliper, and the weight (Mass) was weighed using a scale. In addition, the relative density was converted into a percentage of the theoretical density by converting the input amount of each weight into volume%, and the results are shown in Table 2 below. The density of the measured sample was calculated by weight/volume, and was expressed as an average value when several identical samples were produced.
참고로, 하기 표 2에서 각 시료는 소결을 미적용하여 상대밀도가 낮은 상태이며, 소결(열처리) 후 각 소결체의 상대밀도는 대략 80 ~ 96% 수준을 나타냈다. For reference, in Table 2 below, each sample had a low relative density because sintering was not applied, and the relative density of each sintered body after sintering (heat treatment) was approximately 80 to 96%.
구분division 첨가제(M3)Additive (M3) D (㎜)D (mm) T (㎜)T (mm) Mass (g)Mass (g) 상대밀도 (%)Relative Density (%)
α조성단독첨가α composition added alone 비교예 1Comparative Example 1 -- 19.5619.56 6.636.63 6.976.97 59.659.6
비교예 2Comparative Example 2 GeO2GeO2 19.6019.60 6.136.13 7.167.16 66.566.5
비교예 3Comparative Example 3 CuOCuO 19.6019.60 5.875.87 6.996.99 67.167.1
비교예 4Comparative Example 4 TiO2TiO2 19.7919.79 5.985.98 7.037.03 65.665.6
비교예 5Comparative Example 5 -- -- -- -- --
실시예 1Example 1 Co3O4Co3O4 19.9619.96 5.645.64 7.137.13 68.868.8
실시예 2Example 2 Co3O4Co3O4 19.6619.66 5.945.94 7.067.06 66.766.7
실시예 3Example 3 Co3O4Co3O4 19.8319.83 5.795.79 6.986.98 66.466.4
실시예 4Example 4 SiO2SiO2 19.9419.94 5.685.68 7.077.07 69.569.5
실시예 5Example 5 Y2O3Y2O3 19.9119.91 5.505.50 7.107.10 70.970.9
실시예 6Example 6 Ga2O3Ga2O3 19.9419.94 5.375.37 7.107.10 72.072.0
α조성복합첨가α composition complex addition 실시예 7Example 7 Co3O4 : MgOCo3O4 : MgO 19.9019.90 5.845.84 7.177.17 68.168.1
실시예 8Example 8 Co3O4 : CaCO3Co3O4: CaCO3 19.8919.89 5.915.91 7.307.30 68.068.0
[실험예 4: 소결체의 밀도 및 수축률 평가][Experimental Example 4: Evaluation of Density and Shrinkage Rate of Sintered Body]
실시예 1 내지 8 및 비교예 1 내지 4에서 제조된 각 시료에 대해 열처리를 실시한 후, 각 소결체의 물성 변화를 측정하였다. After heat treatment was performed on each sample prepared in Examples 1 to 8 and Comparative Examples 1 to 4, the change in physical properties of each sintered body was measured.
(1) 열처리 후 밀도 평가(1) Density evaluation after heat treatment
열처리 후 소결체의 밀도 평가는 전술한 실험예 3과 동일하게 측정되었다. 일례로, 열처리된 소결체의 직경, 높이 및 중량을 측정하여 계산된 상대밀도의 결과를 하기 도 9 내지 11에 각각 나타내었다. The density evaluation of the sintered body after heat treatment was measured in the same manner as in Experimental Example 3 described above. As an example, the results of the relative density calculated by measuring the diameter, height and weight of the heat-treated sintered body are shown in FIGS. 9 to 11, respectively.
실험 결과, 실시예 1 내지 8에서는 1200℃에서 1600℃로 소결온도를 승온시킴에 따라 상대밀도 또한 유의적으로 상승한다는 것을 알 수 있었다(도 9 및 10 참조). 이에 비해, 비교예 1 내지 4의 경우 소결온도에 따라 성형체의 상대밀도보다 낮거나 이와 유사하다는 것을 알 수 있었다. 게다가 온도 상승에 따른 기울기가 낮으며, 비교예 1의 경우 온도를 더 높여도 상대밀도가 더 이상 상승하지 않는 것을 알 수 있었다(도 11 참조).As a result of the experiment, in Examples 1 to 8, it was found that the relative density also increased significantly as the sintering temperature was raised from 1200 ° C to 1600 ° C (see FIGS. 9 and 10). In contrast, in the case of Comparative Examples 1 to 4, it was found that the relative density of the molded body was lower than or similar to this depending on the sintering temperature. In addition, the slope according to the temperature rise was low, and in the case of Comparative Example 1, it was found that the relative density did not increase any more even if the temperature was further increased (see FIG. 11).
(2) 열처리 전후의 수축률 평가(2) Evaluation of shrinkage before and after heat treatment
열처리 전 성형체와 열처리 후 소결체의 직경 및 높이를 각각 측정하여 그 수축률을 계산하였다. 산출된 수축률 결과를 하기 도 12 내지 14에 각각 나타내었다. The shrinkage rate was calculated by measuring the diameter and height of the molded body before heat treatment and the sintered body after heat treatment, respectively. The calculated shrinkage results are shown in Figures 12 to 14, respectively.
실험 결과, 비교예 1 내지 4의 경우 열처리에 따른 수축률 변화율이 크지 않았다(도 14 참조). 이에 비해, 실시예 1 내지 8의 경우 열처리에 따른 소결체의 수축률 변화율이 상대적으로 높다는 것을 알 수 있었다(도 12 내지 13 참조). As a result of the experiment, in the case of Comparative Examples 1 to 4, the shrinkage rate change due to heat treatment was not large (see FIG. 14). In contrast, in the case of Examples 1 to 8, it was found that the change rate of shrinkage of the sintered body according to heat treatment was relatively high (see FIGS. 12 to 13).
[실험예 5: 소결체 비저항 평가] [Experimental Example 5: Evaluation of Resistivity of Sintered Body]
실시예 1 내지 8 및 비교예 1 내지 5에서 제조된 각 소결체 시료에 대해 비저항 특성을 평가하였다.Resistivity characteristics were evaluated for each sintered body sample prepared in Examples 1 to 8 and Comparative Examples 1 to 5.
구체적으로, 소결체 시료로는 중간 온도대역인 1500℃ 시료를 이용하였다. Loresta-GX MCP-T700 제품 (Mitsubishi chemical社)을 이용하여 시료의 비저항을 측정한 후 그 결과를 하기 표 3에 나타내었다.Specifically, as a sample of the sintered body, a sample of 1500 ° C, which is an intermediate temperature range, was used. After measuring the specific resistance of the sample using Loresta-GX MCP-T700 product (Mitsubishi chemical Co.), the results are shown in Table 3 below.
구분division 첨가제(M3)Additive (M3) 함량(wt%)Content (wt%) 비저항 (10^-3 Ω㎝)Resistivity (10^-3 Ω㎝)
award under 평균average
α조성단독첨가α composition added alone 비교예 1Comparative Example 1 -- 0.00.0 9.2569.256 8.2648.264 8.7608.760
비교예 2Comparative Example 2 GeO2GeO2 2.02.0 8.5268.526 7.8637.863 8.1958.195
비교예 3Comparative Example 3 CuOCuO 2.02.0 8.5478.547 7.8617.861 8.2048.204
비교예 4Comparative Example 4 TiO2TiO2 2.02.0 6.2586.258 6.7546.754 6.5066.506
비교예 5Comparative Example 5 -- 0.00.0 2.1892.189 1.9851.985 2.0872.087
실시예 1Example 1 Co3O4Co3O4 1.01.0 3.2563.256 3.0123.012 3.1343.134
실시예 2Example 2 Co3O4Co3O4 2.02.0 2.8642.864 2.9852.985 2.9252.925
실시예 3Example 3 Co3O4Co3O4 5.05.0 2.9562.956 2.7562.756 2.8562.856
실시예 4Example 4 SiO2SiO2 2.02.0 4.2564.256 4.5684.568 4.4124.412
실시예 5Example 5 Y2O3Y2O3 2.02.0 5.3265.326 5.3215.321 5.3245.324
실시예 6Example 6 Ga2O3Ga2O3 2.02.0 3.6993.699 3.2663.266 3.4833.483
α조성복합첨가α composition complex addition 실시예 7Example 7 Co3O4 : MgOCo3O4 : MgO 1.0 : 2.01.0 : 2.0 2.4842.484 2.0942.094 2.2892.289
실시예 8Example 8 Co3O4 : CaCO3Co3O4: CaCO3 2.0 : 1.02.0 : 1.0 3.3933.393 2.0482.048 2.7212.721
상기 표 3에 나타난 바와 같이, 소정의 금속산화물을 첨가제로 포함하는 실시예 1 내지 8의 소결체는 상술한 첨가제를 비포함하는 비교예 1~5의 소결체에 비해 우수한 비저항 특성을 갖는다는 것을 확인할 수 있었다. As shown in Table 3, it can be confirmed that the sintered bodies of Examples 1 to 8 including a predetermined metal oxide as an additive have excellent resistivity characteristics compared to the sintered bodies of Comparative Examples 1 to 5 without the above additive. there was.

Claims (13)

  1. MoO2 및 MoO3 중 적어도 하나를 포함하는 몰리브덴 산화물(M1);Molybdenum oxide (M1) containing at least one of MoO 2 and MoO 3 ;
    니오븀 산화물(M2); 및niobium oxide (M2); and
    Co, Si, Y 및 Ga으로 구성된 군에서 선택되는 1종 이상의 금속을 함유하는 금속산화물(M3);을 포함하며,A metal oxide (M3) containing at least one metal selected from the group consisting of Co, Si, Y, and Ga;
    당해 소결체의 총 중량 대비 적어도 70 중량% 이상의 몰리브덴 산화물(M1)을 함유하는, 산화물 소결체. An oxide sintered body containing at least 70% by weight or more of molybdenum oxide (M1) based on the total weight of the sintered body.
  2. 제1항에 있어서, According to claim 1,
    상기 금속산화물(M3)은 Co3O4, SiO2, Y2O3, 및 Ga2O3로 구성된 군에서 선택된 1종 이상을 포함하는, 산화물 소결체. The metal oxide (M3) includes at least one selected from the group consisting of Co 3 O 4 , SiO 2 , Y 2 O 3 , and Ga 2 O 3 , oxide sintered body.
  3. 제1항에 있어서,According to claim 1,
    상기 금속산화물(M3)은 CaCO3, 및 MgO로 구성된 군에서 선택된 1종 이상을 더 포함하는, 산화물 소결체. The metal oxide (M3) further comprises at least one selected from the group consisting of CaCO 3 , and MgO, the oxide sintered body.
  4. 제1항에 있어서,According to claim 1,
    상기 금속산화물(M3)은 당해 소결체 100 중량%를 기준으로 0 중량% 초과, 10.0 중량% 이하로 포함되는, 산화물 소결체. The metal oxide (M3) is contained in more than 0% by weight and less than 10.0% by weight based on 100% by weight of the sintered body.
  5. 제1항에 있어서, According to claim 1,
    상기 몰리브덴 산화물(M1)과 상기 니오븀 산화물(M2)은 당해 산화물 소결체 100 중량%를 기준으로 90.0 중량% 이상, 100 중량% 미만으로 포함되며, The molybdenum oxide (M1) and the niobium oxide (M2) are included in 90.0% by weight or more and less than 100% by weight based on 100% by weight of the oxide sintered body,
    상기 몰리브덴 산화물(M1)과 상기 니오븀 산화물(M2)의 함량 비율은 50 : 50 내지 90 : 10 중량비인, 산화물 소결체.The content ratio of the molybdenum oxide (M1) and the niobium oxide (M2) is 50: 50 to 90: 10 weight ratio, the oxide sintered body.
  6. 제1항에 있어서,According to claim 1,
    상기 산화물 소결체는, The oxide sintered body,
    몰리브덴 산화물(M1); 니오븀 산화물(M2); 및 금속산화물(M3)을 혼합하여 성형한 후 무가압 소결된 것인, 산화물 소결체. molybdenum oxide (M1); niobium oxide (M2); And a metal oxide (M3) that is mixed and molded and then non-pressure sintered, an oxide sintered body.
  7. 제6항에 있어서,According to claim 6,
    상기 무가압 소결된 산화물 소결체를 구성하는 평균 그레인 입경(D50)은 하기 식 1의 조건을 만족하는, 산화물 소결체:The average grain diameter (D 50 ) constituting the pressure-free sintered oxide sintered body satisfies the condition of Equation 1 below:
    [식 1][Equation 1]
    GN / GP ≥ 7.0G N / G P ≥ 7.0
    상기 식에서, In the above formula,
    GN은 1,400±200℃에서 2시간 동안 무가압 열처리된 산화물 소결체의 평균 그레인 입경(D50)이며, G N is the average grain diameter (D 50 ) of the oxide sintered body subjected to non-pressure heat treatment at 1,400±200 ° C. for 2 hours,
    GP는 30 MPa 및 830℃의 조건 하에서 2시간 동안 가압 열처리된 산화물 소결체의 평균 그레인 입경(D50)이다.G P is the average grain diameter (D 50 ) of the oxide sintered body subjected to pressure heat treatment at 30 MPa and 830° C. for 2 hours.
  8. 제1항에 있어서,According to claim 1,
    비저항이 1×10-2 Ωcm 이하이며, The resistivity is less than 1×10 -2 Ωcm,
    상대밀도가 80% 이상인, 산화물 소결체.An oxide sintered body having a relative density of 80% or more.
  9. 제1항 내지 제8항 중 어느 한 항에 기재된 산화물 소결체를 포함하는 스퍼터링 타겟.A sputtering target comprising the oxide sintered body according to any one of claims 1 to 8.
  10. 제9항의 스퍼터링 타겟으로부터 형성된 산화물 박막.An oxide thin film formed from the sputtering target of claim 9.
  11. 제10항의 박막이 게이트층, 소스층 및 드레인층 중 어느 하나로 이용되는 박막 트랜지스터.A thin film transistor in which the thin film of claim 10 is used as one of a gate layer, a source layer, and a drain layer.
  12. 제10항의 산화물 박막을 포함하는 디스플레이 장치. A display device comprising the oxide thin film of claim 10 .
  13. (i) 몰리브덴 산화물(M1); 니오븀 산화물(M2); Co, Si, Y 및 Ga으로 구성된 군에서 선택되는 1종 이상의 금속을 함유하는 금속산화물(M3);을 포함하는 원료 분말을 준비하는 단계; (i) molybdenum oxide (M1); niobium oxide (M2); preparing a raw material powder containing; a metal oxide (M3) containing at least one metal selected from the group consisting of Co, Si, Y, and Ga;
    (ii) 상기 원료 분말을 이용하여 성형체를 제조하는 단계; 및 (ii) preparing a molded body using the raw material powder; and
    (iii) 상기 성형체를 1,200~1,600℃에서 1~20 시간 동안 무가압으로 열처리하여 소결체를 제조하는 단계;(iii) preparing a sintered body by heat-treating the molded body at 1,200 to 1,600° C. for 1 to 20 hours without pressure;
    를 포함하는 제1항의 산화물 소결체의 제조방법. A method for producing an oxide sintered body of claim 1 comprising a.
PCT/KR2022/015584 2021-10-14 2022-10-14 Molybdenum oxide-based sintered body, sputtering target comprising same, and oxide thin film WO2023063771A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0136631 2021-10-14
KR1020210136631A KR20230053774A (en) 2021-10-14 2021-10-14 Molybdenum oxide sintered body, sputtering target and oxide thin film

Publications (1)

Publication Number Publication Date
WO2023063771A1 true WO2023063771A1 (en) 2023-04-20

Family

ID=85987557

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015584 WO2023063771A1 (en) 2021-10-14 2022-10-14 Molybdenum oxide-based sintered body, sputtering target comprising same, and oxide thin film

Country Status (2)

Country Link
KR (1) KR20230053774A (en)
WO (1) WO2023063771A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256175A (en) * 2005-04-27 2005-09-22 Asahi Glass Ceramics Co Ltd Target and method of producing high refractive index film by the target
KR20200069314A (en) * 2017-10-06 2020-06-16 플란제 에스이 Target material for the deposition of molybdenum oxide layer
WO2020200605A1 (en) * 2019-03-29 2020-10-08 Plansee Se Sputtering target for producing layers containing molybdenum oxide
KR102192713B1 (en) * 2018-09-08 2020-12-17 바짐테크놀로지 주식회사 Composition for Sputtering Target for Thin Film and Method for Making Sputtering Target

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256175A (en) * 2005-04-27 2005-09-22 Asahi Glass Ceramics Co Ltd Target and method of producing high refractive index film by the target
KR20200069314A (en) * 2017-10-06 2020-06-16 플란제 에스이 Target material for the deposition of molybdenum oxide layer
KR102192713B1 (en) * 2018-09-08 2020-12-17 바짐테크놀로지 주식회사 Composition for Sputtering Target for Thin Film and Method for Making Sputtering Target
WO2020200605A1 (en) * 2019-03-29 2020-10-08 Plansee Se Sputtering target for producing layers containing molybdenum oxide

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
USHA N.; SIVAKUMAR R.; SANJEEVIRAJA C.; KUROKI Y.: "Effect of substrate temperature on the properties of Nb2O5:MoO3(90:10) thin films prepared by rf magnetron sputtering technique", JOURNAL OF ALLOYS AND COMPOUNDS, ELSEVIER SEQUOIA, LAUSANNE., CH, vol. 649, 13 July 2015 (2015-07-13), CH , pages 112 - 121, XP029266870, ISSN: 0925-8388, DOI: 10.1016/j.jallcom.2015.07.097 *

Also Published As

Publication number Publication date
KR20230053774A (en) 2023-04-24

Similar Documents

Publication Publication Date Title
KR101627491B1 (en) Oxide sinter, process for producing the same, target, and transparent conductive film and transparent conductive substrate both obtained from the target
US9214519B2 (en) In2O3—SnO2—ZnO sputtering target
JP2007224386A (en) Sintered target for manufacturing transparent conductive film, transparent conductive film manufactured by using the same, and transparent conductive base material
CN110330332A (en) A kind of no sintering aid low-temperature melt piezoelectric ceramic material and preparation method thereof
CN106187100B (en) Sputtering target and preparation method thereof
WO2023063771A1 (en) Molybdenum oxide-based sintered body, sputtering target comprising same, and oxide thin film
TW201706230A (en) Sputtering target, oxide semiconducting film, and method for making the same
JP5381844B2 (en) In-Ga-Zn-based composite oxide sintered body and method for producing the same
WO2023063774A1 (en) Molybdenum oxide-based sintered body, and sputtering target and oxide thin film comprising same
KR20160133429A (en) Sintered oxide and transparent conductive oxide film
WO2013073802A1 (en) Transparent conductive film having superior thermal stability, target for transparent conductive film, and method for manufacturing transparent conductive film
WO2017034119A1 (en) Method for preparing transparent yttria through hot-press sintering
WO2018034422A1 (en) Vacuum chuck composite and preparation method therefor
TWI805567B (en) Oxide semiconductor film, thin film transistor, oxide sintered body, and sputtering target
TW201706229A (en) Sputtering target, oxide semiconducting film, and method for making the same
JP2011195409A (en) In-Ga-Zn BASED COMPOSITE OXIDE SINTERED COMPACT, AND METHOD FOR PRODUCING THE SAME
KR20230054290A (en) Molybdenum oxide sintered body, sputtering target and oxide thin film
WO2023059071A1 (en) Molybdenum oxide sintered compact, thin film using sintered compact, thin film transistor comprising thin film, and display device
JP6326560B1 (en) Oxide sintered body and sputtering target
KR20230095476A (en) Molybdenum oxide sintered body, sputtering target and oxide thin film
WO2022197145A1 (en) Electrostatic chuck, electrostatic chuck heater comprising same, and semiconductor maintaining device
WO2019093781A1 (en) High thermal conductive magnesia composition and magnesia ceramics
KR20220081691A (en) Tungsten oxide sintered body, sputtering target and oxide thin film
WO2023277559A1 (en) Electrostatic chuck, electrostatic chuck heater comprising same, and semiconductor holding device
CN118119574A (en) Molybdenum oxide-based sintered body, sputtering target material comprising same, and oxide thin film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22881398

Country of ref document: EP

Kind code of ref document: A1