WO2023059071A1 - Molybdenum oxide sintered compact, thin film using sintered compact, thin film transistor comprising thin film, and display device - Google Patents

Molybdenum oxide sintered compact, thin film using sintered compact, thin film transistor comprising thin film, and display device Download PDF

Info

Publication number
WO2023059071A1
WO2023059071A1 PCT/KR2022/015007 KR2022015007W WO2023059071A1 WO 2023059071 A1 WO2023059071 A1 WO 2023059071A1 KR 2022015007 W KR2022015007 W KR 2022015007W WO 2023059071 A1 WO2023059071 A1 WO 2023059071A1
Authority
WO
WIPO (PCT)
Prior art keywords
moo
thin film
oxide
sintered body
weight
Prior art date
Application number
PCT/KR2022/015007
Other languages
French (fr)
Korean (ko)
Inventor
이효원
이승이
황병진
장봉중
전봉준
진승현
윤은섭
박재성
양승호
Original Assignee
엘티메탈 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘티메탈 주식회사 filed Critical 엘티메탈 주식회사
Priority claimed from KR1020220126853A external-priority patent/KR20230049562A/en
Publication of WO2023059071A1 publication Critical patent/WO2023059071A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention relates to a molybdenum oxide-based sintered body having excellent low reflection, chemical resistance and heat resistance, a thin film using the sintered body, a thin film transistor including the thin film, and a display device.
  • FPD flat panel displays
  • LEDs light emitting diodes
  • OLEDs organic light emitting diodes
  • ITO indium oxide-tin oxide
  • ITO composition is used to form a conductive thin film having high visible light transmittance and electrical conductivity.
  • ITO compositions have excellent low-reflectance performance, they are not economically viable, so research on materials that replace all or part of indium oxide continues.
  • Patent Document 1 Korean Patent Publication No. 10-2008-0058390
  • the present inventors noticed that the existing molybdenum oxide target exhibits low reflection characteristics, while heat resistance and chemical resistance are relatively low.
  • the present invention provides low reflection characteristics and heat resistance by adding at least two kinds of dopant oxides (M2, M3) and a specific metal dopant (M4) in a predetermined range to improve chemical resistance to molybdenum oxide, which is the main raw material. And to provide a sintered body for a sputtering target having excellent chemical resistance at the same time, a metal oxide thin film formed therefrom, and a thin film transistor and a display device having the metal oxide thin film formed thereon.
  • M2, M3 dopant oxides
  • M4 specific metal dopant
  • the present invention is a molybdenum oxide (M1) comprising MoO 2 and MoO 3 , the MoO 2 content of which is 50 to 90% by weight of the MoO 2 and MoO 3 ; a first metal oxide (M2) containing at least one first element selected from the group consisting of Nb, Ta, Zr, Ti, Sn, and W; a second metal oxide (M3) containing at least one second element selected from the group consisting of In, Ga, Si, and Zn; and at least one metal (M4) selected from the group consisting of Mo, Ti, Cr, W, and Cu; and an oxide sinter containing at least 60% by weight of molybdenum oxide (M1) based on the total weight of the sintered body.
  • the molybdenum oxide (M1) may be included in 60 to 70% by weight based on 100% by weight of the oxide sintered body.
  • the first metal oxide (M2) is at least one selected from the group consisting of Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , and WO 3 can include
  • the first metal oxide (M2) may be included in an amount of 5% by weight or more based on 100% by weight of the oxide sintered body and the balance satisfying 100% by weight of the sintered body.
  • the second metal oxide M3 may include one or more selected from the group consisting of In 2 O 3 , Ga 2 O 3 , SiO 2 and ZnO.
  • the second metal oxide (M3) may be included in an amount of 3 to 12% by weight based on 100% by weight of the oxide sintered body.
  • the metal (M4) may be included in an amount of 1.0 to 30.0% by weight based on 100% by weight of the oxide sintered body.
  • the oxide sintered body may have a specific resistance of 1 ⁇ 10 -2 ⁇ cm or less and a relative density of 95% or more.
  • the present invention provides a sputtering target comprising the above-described sintered body.
  • the present invention provides an oxide thin film formed from the sputtering target described above.
  • the oxide thin film may be included as any one of a gate layer, a source layer, and a drain layer.
  • the present invention provides a display device including the oxide thin film described above.
  • molybdenum oxide (M1) is used as a main component, and at least two kinds of metal oxide dopants (M2, M3) and a specific metal dopant (M4) are added in a predetermined range for mixed use.
  • M2, M3 and M4 are added in a predetermined range for mixed use.
  • the thin film formed from the sintered body has low reflection characteristics and excellent heat resistance and chemical resistance. Accordingly, operation reliability of a thin film transistor or a display device including such a thin film can be secured.
  • An example of the present invention is a metal oxide sintered body for producing a target for sputtering containing molybdenum oxide as a main component.
  • the sintered body includes (i) MoO 2 and MoO 3 , and the MoO 2 and MoO 3 content of MoO 2 is 50 to 90% by weight of molybdenum oxide (M1), (ii) a first metal oxide (M2) containing at least one first element selected from the group consisting of Nb, Ta, Zr, Ti, Sn, and W; (iii) a second metal oxide (M3) containing at least one second element selected from the group consisting of In, Ga, Si, and Zn; and (iv) at least one metal (M4) selected from the group consisting of Mo, Ti, Cr, W, and Cu, containing at least 60% by weight of molybdenum oxide (M1) based on the total weight of the sintered body.
  • M1 molybdenum oxide
  • M2 molybdenum oxide
  • M2 first metal oxide
  • M3 containing at least one first element selected from the group consisting of Nb, Ta, Zr, Ti, Sn, and W
  • M3 containing at least
  • the formed thin film has low reflection characteristics and at the same time, heat resistance and chemical resistance are improved through optimization of the ratio and composition of molybdenum oxide.
  • Molybdenum oxide (M1) contained in the oxide sintered body according to the present invention is a main component constituting the sintered body.
  • Molybdenum oxide (M1) is a component having a form in which oxygen is bonded to molybdenum, such as MoO 2 , MoO 3 , and MoO 4 .
  • molybdenum oxide MoO 2 and MoO 3 are included as essential components.
  • MoO 2 has a content of 50 to 90% by weight and MoO 3 has a content of 10 to 50% by weight.
  • MoO 2 content is less than 50% by weight, the amount of MoO 3 is relatively large, resulting in low sintering density and poor chemical stability when deposited as a thin film.
  • the content of MoO 2 exceeds 90% by weight, as the content of MoO 2 increases, the sintered density may be high, but the strength of the target may decrease and cracks may occur in the target.
  • MoO 2 /MoO 3 % by weight it becomes 1 to 16, specifically 3 to 16, and more specifically, it may be 5 to 16.
  • the molybdenum oxide (M1) may be included in an amount of 60% by weight or more, specifically 60 to 70% by weight, based on 100% by weight of the oxide sintered body.
  • the ratio of molybdenum oxide occupies 60% by weight or more in the entire metal oxide sintered body it may have low reflection characteristics when deposited as a thin film.
  • One of the additive components included in the oxide sintered body according to the present invention is a first metal oxide (M2) containing at least one first element selected from the group consisting of Nb, Ta, Zr, Ti, Sn, and W.
  • the first metal oxide (M2) is an oxide dopant that improves chemical resistance and heat resistance characteristics, and chemical resistance and heat resistance characteristics of the molybdenum oxide (M1) can be improved by adding the first metal oxide.
  • the first metal oxide (M2) is not particularly limited as long as it has a form in which oxygen is bonded to at least one element (A1) of Nb, Ta, Zr, Ti, Sn, and W.
  • A1 element of Nb, Ta, ZrO 2 , TiO 2 , SnO 2 , and W.
  • Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , and WO 3 may include one or more selected from the group consisting of.
  • the first metal oxide component is symbolized and denoted as M2.
  • the first metal oxide (M2) may be included in an amount of 5% by weight or more based on 100% by weight of the oxide sintered body and the balance satisfying 100% by weight of the sintered body. Specifically, the content of the first metal oxide (M2) may be 7 to 30% by weight, more specifically 15 to 25% by weight based on 100% by weight of the oxide sintered body.
  • Another of the additive components included in the oxide sintered body according to the present invention is a second metal oxide (M3) containing at least one second element selected from the group consisting of In, Ga, Si, and Zn.
  • M3 second metal oxide
  • the second metal oxide (M3) is a dopant for improving chemical resistance, etching characteristics, etc., and chemical resistance, etching characteristics, etc. of the molybdenum oxide (M1) can be improved by adding the second metal oxide (M3). .
  • the second metal oxide (M3) is not particularly limited as long as it has a form in which oxygen is bonded to at least one element (A2) of In, Ga, Si, and Zn.
  • A2 In 2 O 3 and Ga 2 O 3 , SiO 2 and may include one or more selected from the group consisting of ZnO.
  • the second metal oxide component is symbolized and indicated as M3.
  • the second metal oxide (M3) may be included in an amount of 3 to 12 wt% based on 100 wt% of the oxide sintered body. Specifically, the content of the second metal oxide (M3) may be 3 to 10% by weight, more specifically 4 to 10% by weight based on 100% by weight of the oxide sintered body.
  • Another one of the additive components included in the oxide sintered body according to the present invention is at least one metal (M4) selected from the group consisting of Mo, Ti, Cr, W, and Cu.
  • the metal (M4) is a metal dopant that helps sinterability of molybdenum oxide to show a density increasing effect, and chemical resistance and heat resistance characteristics of molybdenum oxide can be improved by adding the metal.
  • Mo molybdenum oxide
  • Cr Cr
  • W vanadium
  • Cu copper
  • the metal (M4) may be included in an amount of 1.0 to 30.0% by weight based on 100% by weight of the oxide sintered body. Specifically, the content of the metal (M4) ranges from 5.0 to 25.0% by weight, and may be more specifically from 7.0 to 20.0% by weight.
  • the above-described metal oxide sintered body including the molybdenum oxide (M1), the first metal oxide (M2), the second metal oxide (M3), and the metal (M4) contains molybdenum oxide (M1) based on 100% by weight of the sintered body. 60.0 to 70.0% by weight; 3.0 to 12.0% by weight of a second metal oxide (M3); 1.0 to 30.0 wt% of metal (M4); and the first metal oxide (M2) may have a composition included in a balance range satisfying 100 wt% of the sintered body.
  • the oxide sintered body according to the present invention constituted as described above has a relative density of 95% or more, and the upper limit thereof is not particularly limited.
  • the specific resistance of the oxide sintered body is 1 ⁇ 10 -2 ⁇ cm or less, and the lower limit thereof is not particularly limited.
  • the size of the crystal grains included in the oxide sintered body is not particularly limited, and may be, for example, 1 to 20 ⁇ m, specifically 1 to 10 ⁇ m.
  • the sputtering target according to another embodiment of the present invention an oxide sintered body containing the above-described molybdenum oxide as a main component; and a backing plate bonded to one surface of the sintered body to support the sintered body.
  • the backing plate is a substrate for supporting the sintered body for the sputtering target, and a conventional backing plate known in the art may be used without limitation.
  • the material constituting the backing plate and its shape are not particularly limited.
  • MoO 2 and MoO 3 Molybdenum oxide powder consisting of; a first metal oxide (M2) powder of at least one of Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , and WO 3 ; a second metal oxide (M3) powder of at least one of In 2 O 3 , Ga 2 O 3 , SiO 2 and ZnO; and Mo, Ti, Cr, W, and Cu at least one metal (M4) is weighed according to a desired chemical composition and then mixed.
  • M1 MoO 2 and MoO 3 Molybdenum oxide powder
  • the raw material powder is 60.0 to 70.0% by weight of molybdenum oxide (M1) based on 100% by weight; 3.0 to 12.0% by weight of a second metal oxide (M3); 1.0 to 30.0% by weight of metal (M4); and a residual amount of the first metal oxide (M2) satisfying 100% by weight of the sintered body.
  • the ratio of MoO 2 in the molybdenum oxide powder may be selected within the range of 50 to 90% by weight.
  • the molybdenum oxide (M1) and the second metal oxide (M3) powders are weighed so that the (MoO 2 +MoO 3 +M3)/(MoO 2 +MoO 3 ) weight percent ratio is 1.01 to 1.14%.
  • metal powder (M4) was added to the mixed raw material powder, and the ratio of (MoO 2 +MoO 3 +M2 +M3 +M4) / (MoO 2 +MoO 3 +M2 +M3) weight% of the metal (M4) powder It is weighed so that it becomes 1.04 to 1.32%.
  • the content of MoO 2 and the content of MoO 3 are the same in the numerator and denominator, respectively.
  • the mixed powder is subjected to a dry ball mill process using zirconia balls.
  • Zirconia balls can be weighed 1 to 3 times the amount of powder, and the ball mill can be performed at a speed of 100 to 300 rpm for 7 to 9 hours. After completing the dry ball mill, sieving may be performed to complete powder mixing.
  • a carbon sheet may be wrapped around the inside of the carbon mold and the lower punch to a thickness of 0.1 to 0.5 mm, and 100 to 300 g of the mixed powder may be charged. After charging the powder, cover the carbon sheet and install the upper punch.
  • the sintering mold When the preparation of the sintering mold is completed through such a process, the sintering mold may be charged into a hot press and a sintering process may be performed.
  • the heating rate is 2 to 10 ° C / min, and the highest heat treatment temperature can be maintained at 800 to 1100 ° C for 1 to 3 hours.
  • the pressure at the temperature rise and maintenance temperature can be maintained at 10 to 30 MPa.
  • the sintered compact is taken out and processed. Specifically, after taking out the sintered body, carbon sheets are removed from the upper and lower portions of the target, and then the surface of the target is polished. In order to remove the carbon sheet, it is possible to process more than 1 mm each at the top and bottom.
  • the processed sintered body is bonded to the backing plate.
  • Indium can be used as an adhesive, and it is preferable to have a bonding rate of 95% or more.
  • a metal oxide target may be manufactured through the above process.
  • the relative density of the prepared target is 95% or more, and specifically preferably 98.0% or more.
  • Another example of the present invention is a metal oxide thin film deposited using the molybdenum oxide-based target described above.
  • a metal oxide thin film may be formed by performing sputtering using the above-described sintered body as a target material.
  • the oxide thin film is manufactured by sputtering the above-described oxide target, and thus has substantially the same composition as the target. Accordingly, an oxide thin film having high density characteristics exceeding 95% relative density and excellent resistivity characteristics of 1 ⁇ 10 -2 ⁇ cm or less can be formed.
  • specific metal oxides and metals are added in a predetermined range to molybdenum oxide, which is the main raw material, but chemical resistance, etching characteristics, and heat resistance characteristics can be improved through optimization of the molybdenum oxide ratio and composition.
  • the oxide thin film has a light reflectance (R 1 ) of 12.0% or less for a wavelength of 550 nm before heat treatment, and a light reflectance (R 2 ) for a wavelength of 550 nm after heat treatment at 350° C. for 30 minutes or more is 12.0% may be below.
  • the light reflectance (R 1 ) for a wavelength of 550 nm before heat treatment of the oxide thin film may be 11.6% or less, and more specifically, 11.0% or less.
  • light reflectance (R 2 ) for a wavelength of 550 nm after heat treatment may be 11.5% or less, and more specifically, 11.0% or less.
  • the difference (R 1 -R 2 ) between the light reflectance after heat treatment at a temperature of 350° C. for 30 minutes or more (R 2 ) and the light reflectance before heat treatment (R 1 ) is less than 0.2%, specifically 0.15 % or less, more specifically may be 0.14% or less.
  • the light reflectance according to the present invention means that measured based on the average wavelength of 360 ⁇ 740 nm and / or 550 nm wavelength, and is not particularly limited thereto.
  • the metal oxide thin film according to the present invention may be formed (deposited) by a conventional sputtering method known in the art. At this time, sputtering may be performed using DC sputter.
  • the metal oxide thin film may be used as at least one of a gate layer, a source layer, and a drain layer of a thin film transistor (TFT).
  • TFT thin film transistor
  • these thin film transistors can be used in display devices such as OLED TVs, mobile phones, and tablets.
  • the metal oxide thin film according to the embodiment of the present invention may be used as a low reflection layer under the gate layer.
  • the thin film for this purpose lowers the reflectance of the substrate and improves the adhesion of the gate electrode.
  • the substrate may be any one of various substrates usable in a typical display device process, such as a glass substrate, a metal substrate, a plastic substrate, and a plastic film.
  • the substrate may be a transparent front panel in an OLED TV, mobile phone, or tablet.
  • the gate electrode may be formed of a general electrode material such as copper or silver.
  • Thin film deposition can be performed at room temperature in an argon gas (Ar Gas) atmosphere with a DC sputter power density of 1.0 to 2.0 w/cm 2 .
  • the thickness of the metal oxide thin film may be 300 to 500 ⁇ , but is not particularly limited thereto.
  • a copper (Cu) thin film may be deposited on the metal oxide thin film. At this time, the copper thin film may be deposited to a thickness of 3000 to 6000 ⁇ .
  • the reflectance may be measured according to a method known in the art. For example, it can be measured on the surface of the substrate on which the metal oxide thin film is formed, and the light reflectance for an average wavelength of 360 to 740 nm and/or a wavelength of 550 nm is measured. At this time, the light reflectance is 12.0% or less, specifically 11.6% or less, preferably 11.0% or less, and the lower limit is not particularly limited.
  • the metal oxide thin film according to the embodiment of the present invention has excellent heat resistance and chemical resistance. Evaluation of heat resistance and chemical resistance may be performed as follows, but is not particularly limited thereto.
  • a method of heat-treating the thin film deposited as described above in an atmosphere of 200 to 400 ° C. for 30 minutes or more may be used.
  • Heat treatment may be performed in a general vacuum heat treatment furnace and/or a hydrogen heat treatment furnace.
  • Heat resistance can be evaluated by observing changes in the properties of the thin film after heat treatment.
  • the difference between the reflectance after heat treatment (R 2 ) and the reflectance before heat treatment (R 1 ) (R 1 -R 2 ) is less than about 0.2%, specifically 0.15% or less, more specifically 0.14% may be below.
  • a method of forming a fine pattern on the formed thin film using a lithography method and observing a cross section of the formed fine pattern may be used. Specifically, 1 to 2 ⁇ m of photoresist (Positive PR Strip) is applied to the thin film formed of the two layers of the metal oxide and copper of the present invention as described above, and then baking is performed at 60 to 80 ° C for about 1 hour. Solidify the register. Then, after aligning the mask (PRMask), exposure is performed to make a pattern with a certain line width. A two-layer fine pattern composed of metal oxide and copper may be formed by etching the pattern thus formed.
  • Photoresist Photoresist
  • the cross section of the metal oxide in the fine pattern can be observed by FIB-SEM.
  • the thin film of the present invention does not generate residue even after etching, and through this, chemical resistance can be evaluated.
  • Powder such that the weight percent ratio of MoO2/MoO3 is 6.67 and the weight percent ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo) / (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.39 was weighed.
  • the weighed powder was put into a 1L plastic container, and zirconia balls were added in an amount three times the amount of the powder. A 3-10 mm zirconia ball was used. After the input of the measured powder and balls was completed, dry mixing was performed for 8 hours at a speed of 170 to 230 rpm in a ball mill machine. The obtained dry powder was pressurized and sintered by a hot press.
  • the internal vacuum condition of the hot press is carried out at 10 -1 torr, the heating rate is 3 to 7 °C, the maximum temperature is 800 to 1100 °C, and the holding time is maintained at about 1 to 3 hours to perform sintering and then furnace cooling did
  • the metal oxide sintered body of Example 1 obtained as described above had a sintered density of 98.8% and a specific resistance of 2.546 ⁇ 10 -3 ⁇ cm.
  • Example 2 As shown in Table 1 below, MoO 2 /MoO 3 Except that the weight ratio is 6.7 and the weight ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.39, A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1.
  • the metal oxide sintered body of Example 2 obtained as described above had a sintered density of 99.0% and a specific resistance of 1.922 ⁇ 10 -3 ⁇ cm.
  • Example 2 As shown in Table 1 below, MoO 2 /MoO 3 of The weight ratio is 6.7, (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1, except that the weight ratio of +ZnO) was 1.43.
  • the metal oxide sintered body of Example 3 obtained as described above had a sintered density of 98.8% and a specific resistance of 2.414 ⁇ 10 -3 ⁇ cm.
  • Example 2 As shown in Table 1 below, MoO 2 /MoO 3 Except that the weight ratio is 6.66 and the weight ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.43, A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1.
  • the metal oxide sintered body of Example 4 obtained as described above had a sintered density of 99.1% and a specific resistance of 1.688 ⁇ 10 -3 ⁇ cm.
  • the internal vacuum condition of the hot press is carried out at 10 -1 torr, the heating rate is 3 to 7 °C, the maximum temperature is 800 to 1200 °C, and the holding time is maintained at about 1 to 3 hours to perform sintering and then furnace cooling did
  • the metal oxide sintered body of Example 5 obtained as described above had a sintered density of 98.7% and a specific resistance of 3.516 ⁇ 10 -3 ⁇ cm.
  • Example 2 As shown in Table 1 below, MoO 2 /MoO 3 Except that the weight ratio is 6.69 and the weight ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.07, A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1.
  • the metal oxide sintered body of Example 6 obtained as described above had a sintered density of 99.1% and a specific resistance of 4.254 ⁇ 10 -3 ⁇ cm.
  • Example 2 As shown in Table 1 below, MoO 2 /MoO 3 Except that the weight ratio is 6.69 and the weight ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.07, A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1.
  • the metal oxide sintered body of Example 7 obtained as described above had a sintered density of 99.3% and a specific resistance of 1.416 ⁇ 10 -3 ⁇ cm.
  • Example 2 As shown in Table 1 below, MoO 2 /MoO 3 Except that the weight ratio is 6.69 and the weight ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.11, A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1.
  • the metal oxide sintered body of Example 8 obtained as described above had a sintered density of 98.6% and a specific resistance of 5.239 ⁇ 10 -3 ⁇ cm.
  • the sintered body of Comparative Example 2 prepared as described above had a sintered density of 98.5% and a specific resistance of 3.225 ⁇ 10 -3 ⁇ cm.
  • the sintered body of Comparative Example 4 prepared as described above had a sintered density of 98.4% and a specific resistance of 1.468 ⁇ 10 -3 ⁇ cm.
  • both the examples and comparative examples satisfied the specific resistance of 1 ⁇ 10 -2 ⁇ cm or less and the target density of 95% or more corresponding to the reference value.
  • Examples 1 to 8 were superior to Comparative Examples 1 to 2 in terms of target density. Accordingly, in the case of Examples 1 to 8 having a high target density, it was found that plasma formation was possible more stably during thin film deposition.
  • a thin film serving as a low-reflection layer under the gate layer was manufactured using each sintered body. This thin film is for improving the adhesion of low reflection and gate electrode on the substrate (glass).
  • the low-reflection thin film is deposited on a transparent glass substrate in an argon gas atmosphere using a target including the sintered bodies of 1 to 8 and Comparative Examples 1 to 2 at a power density of 0.5 to 3.6 w/cm 2 using a DC sputter. to form a thin film, and the thin film thickness was deposited at 350 ⁇ .
  • an electrode was formed on the thin film described above.
  • the electrode was formed in an argon gas atmosphere with a copper target having a power density of 0.5 to 3.6 w/cm 2 using a DC sputter, and a thin film thickness of 6000 ⁇ .

Abstract

The present invention provides a molybdenum oxide sintered compact exhibiting excellent low reflection, chemical resistance and heat resistance, a thin film using the sintered compact, a thin film transistor comprising the thin film, and a display device.

Description

몰리브덴 산화물계 소결체, 상기 소결체를 이용한 박막, 상기 박막을 포함하는 박막트랜지스터 및 디스플레이 장치 Molybdenum oxide-based sintered body, thin film using the sintered body, thin film transistor and display device including the thin film
본 발명은 저반사, 내화학성 및 내열성이 우수한 몰리브덴 산화물계 소결체, 상기 소결체를 이용한 박막, 상기 박막을 포함하는 박막트랜지스터 및 디스플레이 장치에 관한 것이다. The present invention relates to a molybdenum oxide-based sintered body having excellent low reflection, chemical resistance and heat resistance, a thin film using the sintered body, a thin film transistor including the thin film, and a display device.
일반적으로 평판 디스플레이(flat panel display; "FPD"), 터치 스크린 패널, 태양 전지, 발광 다이오드(light emitting diode; "LED"), 유기 발광다이오드(organic light emitting diode; "OLED")에 저반사율의 도전성 박막이 사용되고 있다.In general, flat panel displays (“FPD”), touch screen panels, solar cells, light emitting diodes (“LEDs”), and organic light emitting diodes (“OLEDs”) have low reflectivity. A conductive thin film is used.
이에 대한 소재로서 산화인듐-산화주석(In2O3-SnO2)("ITO")이 대표적이며 ITO 조성물은 가시광선 투과도와 전기 전도율이 높은 도전성 박막을 형성하는 데 사용된다. 이러한 ITO 조성물은 우수한 저반사율 성능을 가지기는 하지만, 경제성이 떨어지기 때문에 산화인듐의 전부 또는 일부를 대체하는 소재들에 대한 연구가 계속되고 있다.As a material for this, indium oxide-tin oxide (In 2 O 3 -SnO 2 ) (“ITO”) is representative, and the ITO composition is used to form a conductive thin film having high visible light transmittance and electrical conductivity. Although these ITO compositions have excellent low-reflectance performance, they are not economically viable, so research on materials that replace all or part of indium oxide continues.
하지만 이러한 연구들에서 관심이 있는 부분은 타겟 재료를 통해 형성된 박막의 저반사율로서, 장시간 사용에 대한 박막의 신뢰도를 높일 수 있는 내화학성, 내열성의 특성에 대한 고려가 필요하다.However, the area of interest in these studies is the low reflectivity of thin films formed through target materials, and it is necessary to consider the characteristics of chemical resistance and heat resistance that can increase the reliability of thin films for long-term use.
[선행기술문헌][Prior art literature]
(특허문헌 1) 대한민국 공개특허 제10-2008-0058390호(Patent Document 1) Korean Patent Publication No. 10-2008-0058390
한편 본 발명자들은 기존 몰리브덴 산화물 타겟이 저반사 특성을 나타내는 반면, 내열성 및 내화학성이 상대적으로 저조하다는 것을 착안하였다.On the other hand, the present inventors noticed that the existing molybdenum oxide target exhibits low reflection characteristics, while heat resistance and chemical resistance are relatively low.
이에, 본 발명은 주(主)원료인 몰리브덴 산화물에 내화학성 향상을 위한 적어도 2종의 도펀트 산화물(M2, M3)과 특정 금속 도펀트(M4)를 소정 범위로 첨가하여 혼용함으로써 저반사 특성, 내열성 및 내화학성이 동시에 우수한 스퍼터링 타겟용 소결체, 이로부터 형성된 금속 산화물 박막, 및 상기 금속 산화물 박막이 형성된 박막트랜지스터와 디스플레이장치를 제공하는 것을 기술적 과제로 한다. Therefore, the present invention provides low reflection characteristics and heat resistance by adding at least two kinds of dopant oxides (M2, M3) and a specific metal dopant (M4) in a predetermined range to improve chemical resistance to molybdenum oxide, which is the main raw material. And to provide a sintered body for a sputtering target having excellent chemical resistance at the same time, a metal oxide thin film formed therefrom, and a thin film transistor and a display device having the metal oxide thin film formed thereon.
본 발명의 다른 목적 및 이점은 하기 발명의 상세한 설명 및 청구범위에 의해 보다 명확하게 설명될 수 있다.Other objects and advantages of the present invention can be more clearly described by the following detailed description and claims.
상기한 기술적 과제를 달성하기 위해, 본 발명은 MoO2와 MoO3을 포함하고, 상기 MoO2 및 MoO3 중 MoO2의 함량이 50~90 중량%로 구성되는 몰리브덴 산화물(M1); Nb, Ta, Zr, Ti, Sn, 및 W으로 구성된 군에서 선택되는 1종 이상의 제1 원소를 포함하는 제1 금속산화물(M2); In, Ga, Si, 및 Zn으로 구성된 군에서 선택되는 1종 이상의 제2 원소를 포함하는 제2 금속산화물(M3); 및 Mo, Ti, Cr, W, 및 Cu으로 구성된 군에서 선택되는 1종 이상의 금속(M4);을 포함하며, 당해 소결체의 총 중량 대비 적어도 60 중량% 이상의 몰리브덴 산화물 (M1)을 함유하는 산화물 소결체를 제공한다. In order to achieve the above technical problem, the present invention is a molybdenum oxide (M1) comprising MoO 2 and MoO 3 , the MoO 2 content of which is 50 to 90% by weight of the MoO 2 and MoO 3 ; a first metal oxide (M2) containing at least one first element selected from the group consisting of Nb, Ta, Zr, Ti, Sn, and W; a second metal oxide (M3) containing at least one second element selected from the group consisting of In, Ga, Si, and Zn; and at least one metal (M4) selected from the group consisting of Mo, Ti, Cr, W, and Cu; and an oxide sinter containing at least 60% by weight of molybdenum oxide (M1) based on the total weight of the sintered body. provides
본 발명의 일 실시예를 들면, 상기 몰리브덴 산화물(M1)은 당해 산화물 소결체 100 중량%를 기준으로 60 내지 70 중량%로 포함될 수 있다. For one embodiment of the present invention, the molybdenum oxide (M1) may be included in 60 to 70% by weight based on 100% by weight of the oxide sintered body.
본 발명의 일 실시예를 들면, 상기 제1 금속산화물(M2)는 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, 및 WO3 로 구성된 군에서 선택되는 1종 이상을 포함할 수 있다. For one embodiment of the present invention, the first metal oxide (M2) is at least one selected from the group consisting of Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , and WO 3 can include
본 발명의 일 실시예를 들면, 상기 제1 금속산화물(M2)는 당해 산화물 소결체 100 중량%를 기준으로 5 중량% 이상, 당해 소결체 100 중량%를 만족하는 잔량 범위로 포함될 수 있다. For one embodiment of the present invention, the first metal oxide (M2) may be included in an amount of 5% by weight or more based on 100% by weight of the oxide sintered body and the balance satisfying 100% by weight of the sintered body.
본 발명의 일 실시예를 들면, 상기 제2 금속산화물(M3)는 In2O3, Ga2O3, SiO2 및 ZnO로 구성된 군에서 선택되는 1종 이상을 포함할 수 있다. For example, the second metal oxide M3 may include one or more selected from the group consisting of In 2 O 3 , Ga 2 O 3 , SiO 2 and ZnO.
본 발명의 일 실시예를 들면, 상기 제2 금속산화물(M3)는 당해 산화물 소결체 100 중량%를 기준으로 3 내지 12 중량%로 포함될 수 있다. For one embodiment of the present invention, the second metal oxide (M3) may be included in an amount of 3 to 12% by weight based on 100% by weight of the oxide sintered body.
본 발명의 일 실시예를 들면, 금속(M4)은 당해 산화물 소결체 100 중량%를 기준으로 1.0 내지 30.0 중량%로 포함될 수 있다. For one embodiment of the present invention, the metal (M4) may be included in an amount of 1.0 to 30.0% by weight based on 100% by weight of the oxide sintered body.
본 발명의 일 실시예를 들면, 상기 산화물 소결체는 비저항이 1×10-2 Ωcm 이하이며, 상대밀도가 95% 이상일 수 있다. For one embodiment of the present invention, the oxide sintered body may have a specific resistance of 1×10 -2 Ωcm or less and a relative density of 95% or more.
또한 본 발명은 전술한 소결체를 포함하는 스퍼터링 타겟을 제공한다.In addition, the present invention provides a sputtering target comprising the above-described sintered body.
또한 본 발명은 전술한 스퍼터링 타겟으로부터 형성된 산화물 박막을 제공한다. In addition, the present invention provides an oxide thin film formed from the sputtering target described above.
본 발명의 일 실시예를 들면, 상기 산화물 박막은 게이트층, 소스층 및 드레인층 중 어느 하나로 포함될 수 있다. For one embodiment of the present invention, the oxide thin film may be included as any one of a gate layer, a source layer, and a drain layer.
아울러 본 발명은 전술한 산화물 박막을 포함하는 디스플레이 장치를 제공한다. In addition, the present invention provides a display device including the oxide thin film described above.
본 발명의 실시예에 따르면, 몰리브덴 산화물(M1)을 주된 성분으로 하고, 여기에 적어도 2종의 금속산화물 도펀트(M2, M3)와 특정 금속 도펀트(M4)를 소정 범위로 첨가하여 혼용(混用)함으로써, 몰리브덴 산화물계 소결체의 소결성을 개선하고 고밀도를 확보할 수 있다.According to an embodiment of the present invention, molybdenum oxide (M1) is used as a main component, and at least two kinds of metal oxide dopants (M2, M3) and a specific metal dopant (M4) are added in a predetermined range for mixed use. By doing so, it is possible to improve the sinterability of the molybdenum oxide-based sintered body and secure high density.
또한 상기 소결체로부터 형성된 박막은 저반사 특성을 가지는 동시에 내열성 및 내화학성이 우수하다. 이에 따라 이러한 박막을 포함하여 이루어지는 박막 트랜지스터 또는 디스플레이장치의 동작 신뢰성을 확보할 수 있다.In addition, the thin film formed from the sintered body has low reflection characteristics and excellent heat resistance and chemical resistance. Accordingly, operation reliability of a thin film transistor or a display device including such a thin film can be secured.
그 외 본 발명의 효과들은 이하에 기재되는 구체적인 내용을 통하여, 또는 본 발명을 실시하는 과정 중에 이 기술분야의 전문가나 연구자에게 자명하게 파악되고 이해될 것이다.Other effects of the present invention will be clearly identified and understood by experts or researchers in the art through the specific details described below or during the course of practicing the present invention.
이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 명세서에서 사용되는 모든 용어(기술 및 과학적 용어를 포함)는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 공통적으로 이해될 수 있는 의미로 사용될 수 있을 것이다. 또 일반적으로 사용되는 사전에 정의되어 있는 용어들은 명백하게 특별히 정의되어 있지 않은 한 이상적으로 또는 과도하게 해석되지 않는다.All terms (including technical and scientific terms) used in this specification may be used in a meaning that can be commonly understood by those of ordinary skill in the art to which the present invention belongs. In addition, terms defined in commonly used dictionaries are not interpreted ideally or excessively unless explicitly specifically defined.
또한 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한, 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다. 또한, 명세서 전체에서, "위에" 또는 "상에"라 함은 대상 부분의 위 또는 아래에 위치하는 경우 뿐만 아니라 그 중간에 또 다른 부분이 있는 경우도 포함함을 의미하는 것이며, 반드시 중력 방향을 기준으로 위쪽에 위치하는 것을 의미하는 것은 아니다. 그리고, 본원 명세서에서 "제1", "제2" 등의 용어는 임의의 순서 또는 중요도를 나타내는 것이 아니라 구성요소들을 서로 구별하고자 사용된 것이다.In addition, throughout the specification, when a certain component is said to "include", it means that it may further include other components, not excluding other components, unless otherwise stated. In addition, throughout the specification, "above" or "on" means not only the case of being located above or below the target part, but also the case of another part in the middle thereof, and must necessarily specify the direction of gravity It does not mean that it is located above the standard. Also, terms such as "first" and "second" in the present specification do not indicate any order or importance, but are used to distinguish components from each other.
<소결체 및 스퍼터링 타겟><Sintered body and sputtering target>
본 발명의 일 예는, 몰리브덴 산화물을 주(主)성분으로 하는 스퍼터링용 타겟을 제작하기 위한 금속산화물 소결체이다. An example of the present invention is a metal oxide sintered body for producing a target for sputtering containing molybdenum oxide as a main component.
일 구체예를 들면, 상기 소결체는 (i) MoO2와 MoO3을 포함하고, 상기 MoO2 및 MoO3 중 MoO2의 함량이 50~90 중량%로 구성되는 몰리브덴 산화물(M1), (ii) Nb, Ta, Zr, Ti, Sn, 및 W으로 구성된 군에서 선택되는 1종 이상의 제1 원소를 포함하는 제1 금속산화물(M2); (iii) In, Ga, Si, 및 Zn으로 구성된 군에서 선택되는 1종 이상의 제2 원소를 포함하는 제2 금속산화물(M3); 및 (iv) Mo, Ti, Cr, W, 및 Cu으로 구성된 군에서 선택되는 1종 이상의 금속(M4);을 포함하며, 당해 소결체의 총 중량 대비 적어도 60 중량% 이상의 몰리브덴 산화물 (M1)을 함유하는 산화물 소결체를 제공한다. For one specific example, the sintered body includes (i) MoO 2 and MoO 3 , and the MoO 2 and MoO 3 content of MoO 2 is 50 to 90% by weight of molybdenum oxide (M1), (ii) a first metal oxide (M2) containing at least one first element selected from the group consisting of Nb, Ta, Zr, Ti, Sn, and W; (iii) a second metal oxide (M3) containing at least one second element selected from the group consisting of In, Ga, Si, and Zn; and (iv) at least one metal (M4) selected from the group consisting of Mo, Ti, Cr, W, and Cu, containing at least 60% by weight of molybdenum oxide (M1) based on the total weight of the sintered body. An oxide sintered body is provided.
전술한 조성으로 이루어진 금속산화물 소결체를 타겟 재료로 사용하여 박막을 형성하는 경우, 형성된 박막은 저반사 특성을 가지는 것과 동시에 몰리브덴 산화물의 비율과 조성의 최적화를 통해 내열성 및 내화학성이 향상된다.When a thin film is formed using the metal oxide sintered body having the above composition as a target material, the formed thin film has low reflection characteristics and at the same time, heat resistance and chemical resistance are improved through optimization of the ratio and composition of molybdenum oxide.
이하, 각 성분에 대하여 상세하게 설명한다.Hereinafter, each component is explained in detail.
본 발명에 따른 산화물 소결체에 포함되는 몰리브덴 산화물(M1)은, 소결체를 구성하는 주(主) 성분이다. Molybdenum oxide (M1) contained in the oxide sintered body according to the present invention is a main component constituting the sintered body.
몰리브덴 산화물(M1)은 예를 들면 MoO2, MoO3, MoO4와 같이 몰리브덴에 산소가 결합된 형태를 가지는 성분이다. 본 발명에서는 몰리브덴 산화물로서 MoO2와 MoO3을 필수 성분으로 포함한다.Molybdenum oxide (M1) is a component having a form in which oxygen is bonded to molybdenum, such as MoO 2 , MoO 3 , and MoO 4 . In the present invention, as molybdenum oxide, MoO 2 and MoO 3 are included as essential components.
상기 몰리브덴 산화물을 이루는 MoO2와 MoO3의 함량에 있어서, MoO2는 50 내지 90 중량%의 함량을 가지고 MoO3는 10 내지 50 중량%의 함량을 가진다. MoO2 함량이 50 중량% 미만일 경우 상대적으로 MoO3의 양이 많아져서 소결밀도가 낮게 나오고 박막으로 증착 시 화학안정성 또한 좋지 않다. 한편 MoO2의 함량이 90 중량%를 초과하는 경우, MoO2 함량이 많아짐에 따라 소결밀도는 높게 나올 수 있지만 타겟 강도가 낮아져서 타겟 내에 균열이 발생할 수 있다. 한편 이를 MoO2/MoO3 중량% 비율로 나타내면 1~16이 되며, 구체적으로 3 내지 16, 보다 구체적으로 5 내지 16일 수 있다. Regarding the content of MoO 2 and MoO 3 constituting the molybdenum oxide, MoO 2 has a content of 50 to 90% by weight and MoO 3 has a content of 10 to 50% by weight. When the MoO 2 content is less than 50% by weight, the amount of MoO 3 is relatively large, resulting in low sintering density and poor chemical stability when deposited as a thin film. On the other hand, when the content of MoO 2 exceeds 90% by weight, as the content of MoO 2 increases, the sintered density may be high, but the strength of the target may decrease and cracks may occur in the target. On the other hand, when it is expressed as MoO 2 /MoO 3 % by weight, it becomes 1 to 16, specifically 3 to 16, and more specifically, it may be 5 to 16.
상기 몰리브덴 산화물(M1) 은 당해 산화물 소결체 100 중량%를 기준으로 60 중량% 이상 포함될 수 있으며, 구체적으로 60 내지 70 중량%로 포함될 수 있다. 본 발명에서 몰리브덴 산화물의 비율이 당해 금속산화물 소결체 전체에서 60 중량% 이상을 차지할 경우 박막으로 증착시 저반사 특성을 가질 수 있다. The molybdenum oxide (M1) may be included in an amount of 60% by weight or more, specifically 60 to 70% by weight, based on 100% by weight of the oxide sintered body. In the present invention, when the ratio of molybdenum oxide occupies 60% by weight or more in the entire metal oxide sintered body, it may have low reflection characteristics when deposited as a thin film.
본 발명에 따른 산화물 소결체에 포함되는 첨가성분 중 하나는 Nb, Ta, Zr, Ti, Sn, 및 W으로 구성된 군에서 선택되는 1종 이상의 제1 원소를 포함하는 제1 금속산화물(M2)이다. One of the additive components included in the oxide sintered body according to the present invention is a first metal oxide (M2) containing at least one first element selected from the group consisting of Nb, Ta, Zr, Ti, Sn, and W.
이러한 제1 금속산화물(M2)은 내화학성 및 내열성 특성을 개선하는 산화물 도펀트로서, 상기 제1 금속산화물 첨가에 의해 몰리브덴 산화물(M1)의 내화학성 및 내열성 특성을 높일 수 있다. 상기 제1 금속산화물(M2)은 Nb, Ta, Zr, Ti, Sn, 및 W 중 적어도 하나의 원소(A1)에 산소가 결합된 형태를 가지는 성분이라면 특별히 제한되지 않으며, 일례로 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, 및 WO3로 구성된 군에서 선택된 1종 이상을 포함할 수 있다. 이하의 설명에서는 제1 금속산화물 성분을 기호화 하여 M2로 표시한다.The first metal oxide (M2) is an oxide dopant that improves chemical resistance and heat resistance characteristics, and chemical resistance and heat resistance characteristics of the molybdenum oxide (M1) can be improved by adding the first metal oxide. The first metal oxide (M2) is not particularly limited as long as it has a form in which oxygen is bonded to at least one element (A1) of Nb, Ta, Zr, Ti, Sn, and W. For example, Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , and WO 3 may include one or more selected from the group consisting of. In the following description, the first metal oxide component is symbolized and denoted as M2.
상기 제1 금속산화물(M2)는 당해 산화물 소결체 100 중량%를 기준으로 5 중량% 이상, 당해 소결체 100 중량%를 만족하는 잔량 범위로 포함될 수 있다. 구체적으로, 제1 금속산화물(M2)의 함량은 당해 산화물 소결체 100 중량%를 기준으로 7 내지 30 중량%일 수 있으며, 보다 구체적으로 15 내지 25 중량%일 수 있다. The first metal oxide (M2) may be included in an amount of 5% by weight or more based on 100% by weight of the oxide sintered body and the balance satisfying 100% by weight of the sintered body. Specifically, the content of the first metal oxide (M2) may be 7 to 30% by weight, more specifically 15 to 25% by weight based on 100% by weight of the oxide sintered body.
본 발명에 따른 산화물 소결체에 포함되는 첨가성분 중 다른 하나는 In, Ga, Si, 및 Zn으로 구성된 군에서 선택되는 1종 이상의 제2 원소를 포함하는 제2 금속산화물(M3)이다. Another of the additive components included in the oxide sintered body according to the present invention is a second metal oxide (M3) containing at least one second element selected from the group consisting of In, Ga, Si, and Zn.
이러한 제2 금속산화물(M3)는 내화학성, 에칭 특성 등을 향상시키기 위한 도펀트로서, 상기 제2 금속산화물(M3) 첨가에 의해 몰리브덴 산화물(M1)의 내화학성, 에칭특성 특성 등을 높일 수 있다. 상기 제2 금속산화물(M3)은 In, Ga, Si, 및 Zn 중 적어도 하나의 원소(A2)에 산소가 결합된 형태를 가지는 성분이라면 특별히 제한되지 않으며, 일례로 In2O3, Ga2O3, SiO2 및 ZnO로 구성된 군에서 선택된 1종 이상을 포함할 수 있다. 이하의 설명에서는 제2 금속산화물 성분을 기호화 하여 M3로 표시한다.The second metal oxide (M3) is a dopant for improving chemical resistance, etching characteristics, etc., and chemical resistance, etching characteristics, etc. of the molybdenum oxide (M1) can be improved by adding the second metal oxide (M3). . The second metal oxide (M3) is not particularly limited as long as it has a form in which oxygen is bonded to at least one element (A2) of In, Ga, Si, and Zn. For example, In 2 O 3 and Ga 2 O 3 , SiO 2 and may include one or more selected from the group consisting of ZnO. In the following description, the second metal oxide component is symbolized and indicated as M3.
상기 제2 금속산화물(M3)는 당해 산화물 소결체 100 중량%를 기준으로 3 내지 12 중량%로 포함될 수 있다. 구체적으로, 제2 금속산화물(M3)의 함량은 당해 산화물 소결체 100 중량%를 기준으로 3 내지 10 중량%일 수 있으며, 보다 구체적으로 4 내지 10 중량%일 수 있다. The second metal oxide (M3) may be included in an amount of 3 to 12 wt% based on 100 wt% of the oxide sintered body. Specifically, the content of the second metal oxide (M3) may be 3 to 10% by weight, more specifically 4 to 10% by weight based on 100% by weight of the oxide sintered body.
본 발명에 따른 산화물 소결체에 포함되는 첨가성분 중 또 다른 하나는 Mo, Ti, Cr, W, 및 Cu으로 구성된 군에서 선택되는 1종 이상의 금속(M4)이다. Another one of the additive components included in the oxide sintered body according to the present invention is at least one metal (M4) selected from the group consisting of Mo, Ti, Cr, W, and Cu.
이러한 금속(M4)은 몰리브덴 산화물의 소결성을 보조하여 밀도 상승 효과를 나타내는 금속 도펀트로서, 상기 금속 첨가에 의해 몰리브덴 산화물의 내화학성 및 내열성 특성을 높일 수 있다. 이하의 설명에서는 Mo, Ti, Cr, W, 및 Cu 중 적어도 하나 이상의 성분을 기호화하여 M4로 표시한다. The metal (M4) is a metal dopant that helps sinterability of molybdenum oxide to show a density increasing effect, and chemical resistance and heat resistance characteristics of molybdenum oxide can be improved by adding the metal. In the following description, at least one component of Mo, Ti, Cr, W, and Cu is symbolized and indicated as M4.
상기 금속(M4)은 당해 산화물 소결체 100 중량%를 기준으로 1.0 내지 30.0 중량%로 포함될 수 있다. 구체적으로, 금속(M4)의 함량은 5.0 내지 25.0 중량% 범위이며, 보다 구체적으로 7.0 내지 20.0 중량%일 수 있다.The metal (M4) may be included in an amount of 1.0 to 30.0% by weight based on 100% by weight of the oxide sintered body. Specifically, the content of the metal (M4) ranges from 5.0 to 25.0% by weight, and may be more specifically from 7.0 to 20.0% by weight.
전술한 몰리브덴 산화물(M1), 제1 금속산화물(M2), 제2 금속산화물(M3), 및 금속(M4)을 포함하는 금속산화물 소결체는, 당해 소결체 100 중량%를 기준으로 몰리브덴 산화물(M1) 60.0 내지 70.0 중량%; 제2 금속산화물(M3) 3.0 내지 12.0 중량%; 금속(M4) 1.0 내지 30.0 중량%;를 포함하고, 상기 제1 금속산화물(M2)는 당해 소결체 100 중량%를 만족하는 잔량 범위로 포함되는 조성을 가질 수 있다. The above-described metal oxide sintered body including the molybdenum oxide (M1), the first metal oxide (M2), the second metal oxide (M3), and the metal (M4) contains molybdenum oxide (M1) based on 100% by weight of the sintered body. 60.0 to 70.0% by weight; 3.0 to 12.0% by weight of a second metal oxide (M3); 1.0 to 30.0 wt% of metal (M4); and the first metal oxide (M2) may have a composition included in a balance range satisfying 100 wt% of the sintered body.
상술한 바와 같이 구성되는 본 발명에 따른 산화물 소결체는, 상대밀도가 95% 이상이며, 그 상한치는 특별히 제한되지 않는다. 또한 산화물 소결체의 비저항이 1×10-2 Ωcm 이하이며, 그 하한치는 특별히 제한되지 않는다. 그리고 산화물 소결체에 포함된 결정립의 크기는 특별히 제한되지 않으며, 일례로 1 내지 20 ㎛일 수 있으며, 구체적으로 1 내지 10 ㎛일 수 있다. The oxide sintered body according to the present invention constituted as described above has a relative density of 95% or more, and the upper limit thereof is not particularly limited. In addition, the specific resistance of the oxide sintered body is 1×10 -2 Ωcm or less, and the lower limit thereof is not particularly limited. And the size of the crystal grains included in the oxide sintered body is not particularly limited, and may be, for example, 1 to 20 μm, specifically 1 to 10 μm.
또한 본 발명의 다른 일 실시예에 따른 스퍼터링 타겟은, 전술한 몰리브덴 산화물을 주(主)성분으로 하는 산화물 소결체; 및 상기 소결체의 일면에 접합되어 상기 소결체를 지지하는 백킹 플레이트를 포함한다. In addition, the sputtering target according to another embodiment of the present invention, an oxide sintered body containing the above-described molybdenum oxide as a main component; and a backing plate bonded to one surface of the sintered body to support the sintered body.
여기서, 백킹 플레이트는 스퍼터링 타겟용 소결체를 지지하는 기판으로서, 당 분야에 알려진 통상적인 백킹 플레이트를 제한 없이 사용할 수 있다. 이때 백킹 플레이트를 구성하는 재료 및 이의 형상은 특별히 제한되지 않는다.Here, the backing plate is a substrate for supporting the sintered body for the sputtering target, and a conventional backing plate known in the art may be used without limitation. At this time, the material constituting the backing plate and its shape are not particularly limited.
<산화물 소결체 및 스퍼터링 타겟의 제조방법><Method for producing oxide sintered body and sputtering target>
이하, 본 발명의 일 실시형태에 따른 산화물 소결체 및 스퍼터링 타겟의 제조방법에 대해 설명한다. 그러나 하기 제조방법에 의해서만 한정되는 것은 아니며, 필요에 따라 각 공정의 단계가 변형되거나 또는 선택적으로 혼용되어 수행될 수 있다. Hereinafter, a method for manufacturing an oxide sintered body and a sputtering target according to an embodiment of the present invention will be described. However, it is not limited only by the following manufacturing method, and each process step may be modified or selectively used in combination as needed.
상기 제조방법의 바람직한 일 실시예를 들면, (i) 몰리브덴 산화물(M1), 제1 금속산화물(M2), 화학안정성(에칭특성) 등의 향상을 위한 제2 금속산화물(M3), 및 적어도 1종의 금속(M4)을 혼합하는 제1 단계; (ii) 혼합된 원료분말을 소결하는 제2 단계; (iii) 재료분말이 소결된 소결체를 가공하는 제3단계; 및 (iv) 소결체를 백킹플레이트에 본딩하여 타겟을 완성하는 제4 단계를 포함하여 이루어질 수 있다.For a preferred embodiment of the manufacturing method, (i) molybdenum oxide (M1), a first metal oxide (M2), a second metal oxide (M3) for improving chemical stability (etching characteristics), and at least one A first step of mixing the species metal (M4); (ii) a second step of sintering the mixed raw material powder; (iii) a third step of processing the sintered body in which the material powder is sintered; and (iv) a fourth step of completing the target by bonding the sintered body to the backing plate.
이하, 상기 제조방법을 각 공정 단계별로 나누어 설명하면 다음과 같다.Hereinafter, the manufacturing method will be described by dividing each process step.
먼저 제1 단계에서는, MoO2와 MoO3로 이루어진 몰리브덴 산화물 분말(M1); Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, 및 WO3 중 적어도 하나 이상의 제1 금속산화물(M2) 분말; In2O3, Ga2O3, SiO2 및 ZnO 중 적어도 하나 이상의 제2 금속산화물(M3) 분말; 및 Mo, Ti, Cr, W, 및 Cu 중 적어도 1종의 금속(M4)을 원하는 화학 조성에 맞게 칭량한 후 혼합한다. First, in the first step, MoO 2 and MoO 3 Molybdenum oxide powder (M1) consisting of; a first metal oxide (M2) powder of at least one of Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , and WO 3 ; a second metal oxide (M3) powder of at least one of In 2 O 3 , Ga 2 O 3 , SiO 2 and ZnO; and Mo, Ti, Cr, W, and Cu at least one metal (M4) is weighed according to a desired chemical composition and then mixed.
구체적으로, 상기 원료분말은 전체 100 중량%를 기준으로 하여, 몰리브덴 산화물(M1) 60.0 내지 70.0 중량%; 제2 금속산화물(M3) 3.0 내지 12.0 중량%; 금속(M4) 1.0 내지 30.0 중량%; 및 당해 소결체 100 중량%를 만족시키는 잔량의 제1 금속산화물(M2)를 포함하는 조성을 가질 수 있다. 이때 몰리브덴 산화물 분말에서 MoO2의 비율은 50~90 중량% 범위 내에서 선택할 수 있다.Specifically, the raw material powder is 60.0 to 70.0% by weight of molybdenum oxide (M1) based on 100% by weight; 3.0 to 12.0% by weight of a second metal oxide (M3); 1.0 to 30.0% by weight of metal (M4); and a residual amount of the first metal oxide (M2) satisfying 100% by weight of the sintered body. At this time, the ratio of MoO 2 in the molybdenum oxide powder may be selected within the range of 50 to 90% by weight.
상기 제1 단계의 일 구체예를 들면, 몰리브덴 산화물(M1 = MoO2+MoO3)과 제1 금속산화물(M2) 분말의 (MoO2+MoO3+M2)/(MoO2+MoO3) 중량% 비율이 1.22 내지 1.44%가 되도록 칭량한다. For one specific example of the first step, (MoO 2 +MoO 3 +M2)/(MoO 2 +MoO 3 ) weight of molybdenum oxide (M1 = MoO 2 +MoO 3 ) and first metal oxide (M2) powder Weigh so that the % ratio is 1.22 to 1.44%.
또한 몰리브덴 산화물(M1)과 제2 금속산화물(M3) 분말의 (MoO2+MoO3+M3)/(MoO2+MoO3) 중량% 비율이 1.01 내지 1.14%가 되도록 칭량한다. In addition, the molybdenum oxide (M1) and the second metal oxide (M3) powders are weighed so that the (MoO 2 +MoO 3 +M3)/(MoO 2 +MoO 3 ) weight percent ratio is 1.01 to 1.14%.
이어서 혼합된 원료분말에 금속 분말(M4)을 첨가하되, 상기 금속(M4) 분말의 (MoO2+MoO3+M2+M3+M4) / (MoO2+MoO3+M2+M3) 중량% 비율이 1.04 내지 1.32%가 되도록 칭량한다. 여기에서 MoO2의 함량과 MoO3의 함량은 분자와 분모에서 각각 동일하다. 혼합된 분말은 지르코니아 볼을 이용하여 건식 볼밀 공정을 수행한다.Subsequently, metal powder (M4) was added to the mixed raw material powder, and the ratio of (MoO 2 +MoO 3 +M2 +M3 +M4) / (MoO 2 +MoO 3 +M2 +M3) weight% of the metal (M4) powder It is weighed so that it becomes 1.04 to 1.32%. Here, the content of MoO 2 and the content of MoO 3 are the same in the numerator and denominator, respectively. The mixed powder is subjected to a dry ball mill process using zirconia balls.
지르코니아 볼은 분말량의 1~3배로 칭량할 수 있고, 볼밀은 100~300 rpm의 속도로 7~9시간 동안 수행할 수 있다. 건식 볼밀을 완료한 후에 체질(Sieve)하여 분말 혼합을 완료할 수 있다.Zirconia balls can be weighed 1 to 3 times the amount of powder, and the ball mill can be performed at a speed of 100 to 300 rpm for 7 to 9 hours. After completing the dry ball mill, sieving may be performed to complete powder mixing.
다음으로 제2 단계에서는, 혼합된 분말을 소결하기 위하여 카본 몰드 내부와 하부 펀치에 카본 시트를 0.1~0.5mm로 감싸고 혼합된 분말을 100~300g을 장입할 수 있다. 분말을 장입한 후에 카본 시트를 덮고 상부 펀치를 설치한다.Next, in the second step, in order to sinter the mixed powder, a carbon sheet may be wrapped around the inside of the carbon mold and the lower punch to a thickness of 0.1 to 0.5 mm, and 100 to 300 g of the mixed powder may be charged. After charging the powder, cover the carbon sheet and install the upper punch.
이와 같은 과정을 통해 소결 몰드의 준비가 완료되면 핫프레스에 소결 몰드를 장입하고 소결 과정을 수행할 수 있다. 소결시 승온속도는 2~10℃/분으로 하고, 최고 열처리 온도는 800 내지 1100℃에서 1 내지 3시간 동안 유지할 수 있다. 승온 및 유지 온도에서의 압력은 10 내지 30 MPa로 유지할 수 있다.When the preparation of the sintering mold is completed through such a process, the sintering mold may be charged into a hot press and a sintering process may be performed. During sintering, the heating rate is 2 to 10 ° C / min, and the highest heat treatment temperature can be maintained at 800 to 1100 ° C for 1 to 3 hours. The pressure at the temperature rise and maintenance temperature can be maintained at 10 to 30 MPa.
다음으로 제3 단계에서는 소결이 완료된 소결체를 취출하여 가공한다. 구체적으로는 소결체를 꺼낸 후에 타겟 상하부에 카본 시트를 제거한 다음 타겟의 표면을 연마가공한다. 카본 시트를 제거하기 위하여 상하부에 각 1mm 이상 가공할 수 있다.Next, in the third step, the sintered compact is taken out and processed. Specifically, after taking out the sintered body, carbon sheets are removed from the upper and lower portions of the target, and then the surface of the target is polished. In order to remove the carbon sheet, it is possible to process more than 1 mm each at the top and bottom.
다음으로 제4 단계에서는 가공된 소결체를 백킹플레이트에 본딩한다.Next, in the fourth step, the processed sintered body is bonded to the backing plate.
접착제로는 인듐을 사용할 수 있고, 본딩율은 95% 이상이 되도록 하는 것이 바람직하다.Indium can be used as an adhesive, and it is preferable to have a bonding rate of 95% or more.
전술한 과정을 통해 금속 산화물 타겟을 제조할 수 있다. 제조된 타겟의 상대밀도는 95% 이상이고, 구체적으로 98.0% 이상이 되도록 하는 것이 바람직하다.A metal oxide target may be manufactured through the above process. The relative density of the prepared target is 95% or more, and specifically preferably 98.0% or more.
<산화물 박막><Oxide thin film>
본 발명의 다른 일 예는, 전술한 몰리브덴 산화물계 타겟을 사용하여 증착된 금속산화물 박막이다. 이러한 금속산화물 박막은 전술한 소결체를 타겟 재료로 하여 스퍼터링을 수행함으로써 형성될 수 있다.Another example of the present invention is a metal oxide thin film deposited using the molybdenum oxide-based target described above. Such a metal oxide thin film may be formed by performing sputtering using the above-described sintered body as a target material.
상기 산화물 박막은 증착 분위기에 따라 성분의 미차가 발생할 수는 있으나, 전술한 산화물 타겟을 스퍼터링하여 제조된 것이므로, 상기 타겟과 조성이 실질적으로 동일하다. 이에 따라, 상대밀도 95%를 초과하는 고밀도 특성과 1×10-2 Ωcm 이하의 우수한 비저항 특성을 갖는 산화물 박막이 형성될 수 있다. 또한 주(主)원료인 몰리브덴 산화물에 특정 금속 산화물과 금속을 소정 범위로 첨가하되, 몰리브덴 산화물 비율과 조성 최적화를 통해 내화학성, 에칭 특성, 및 내열성 특성이 향상될 수 있다.Although slight differences in components may occur depending on the deposition atmosphere, the oxide thin film is manufactured by sputtering the above-described oxide target, and thus has substantially the same composition as the target. Accordingly, an oxide thin film having high density characteristics exceeding 95% relative density and excellent resistivity characteristics of 1×10 -2 Ωcm or less can be formed. In addition, specific metal oxides and metals are added in a predetermined range to molybdenum oxide, which is the main raw material, but chemical resistance, etching characteristics, and heat resistance characteristics can be improved through optimization of the molybdenum oxide ratio and composition.
일 구체예를 들면, 상기 산화물 박막은 열처리 전 550nm 파장에 대한 광 반사율(R1)은 12.0% 이하이며, 350℃ 온도 및 30분 이상의 열처리 후 550nm 파장에 대한 광 반사율(R2)은 12.0% 이하일 수 있다. 구체적으로, 상기 산화물 박막의 열처리 전 550nm 파장에 대한 광 반사율(R1)은 11.6% 이하이고, 보다 구체적으로 11.0% 이하일 수 있다. 또한 열처리 후 550 nm 파장에 대한 광 반사율(R2)은 11.5% 이하이고, 보다 구체적으로 11.0% 이하일 수 있다. In one specific example, the oxide thin film has a light reflectance (R 1 ) of 12.0% or less for a wavelength of 550 nm before heat treatment, and a light reflectance (R 2 ) for a wavelength of 550 nm after heat treatment at 350° C. for 30 minutes or more is 12.0% may be below. Specifically, the light reflectance (R 1 ) for a wavelength of 550 nm before heat treatment of the oxide thin film may be 11.6% or less, and more specifically, 11.0% or less. In addition, light reflectance (R 2 ) for a wavelength of 550 nm after heat treatment may be 11.5% or less, and more specifically, 11.0% or less.
다른 일 구체예를 들면, 350℃의 온도 및 30분 이상의 열처리 후의 광 반사율(R2)과 열처리 전의 광 반사율(R1)의 차이(R1-R2)는 0.2% 미만이고, 구체적으로 0.15% 이하, 보다 구체적으로 0.14% 이하일 수 있다. For another specific example, the difference (R 1 -R 2 ) between the light reflectance after heat treatment at a temperature of 350° C. for 30 minutes or more (R 2 ) and the light reflectance before heat treatment (R 1 ) is less than 0.2%, specifically 0.15 % or less, more specifically may be 0.14% or less.
전술한 광 반사율(R1, R2) 및 광 반사율 변화율(ΔR = R2 - R1)의 하한치는 특별히 제한되지 않는다. 또한 본 발명에 따른 광 반사율은 360~740nm의 평균 파장, 및/또는 550 nm 파장을 기준으로 측정된 것을 의미하며, 이에 특별히 제한되지 않는다. Lower limits of the light reflectances (R 1 , R 2 ) and light reflectance change rates (ΔR = R 2 - R 1 ) are not particularly limited. In addition, the light reflectance according to the present invention means that measured based on the average wavelength of 360 ~ 740 nm and / or 550 nm wavelength, and is not particularly limited thereto.
본 발명에 따른 금속산화물 박막은 당 분야에 공지된 통상의 스퍼터링법에 의해 형성(증착)될 수 있다. 이때 스퍼터링은 DC 스퍼터(Sputter)를 이용하여 수행할 수 있다.The metal oxide thin film according to the present invention may be formed (deposited) by a conventional sputtering method known in the art. At this time, sputtering may be performed using DC sputter.
상기 금속산화물 박막은 박막 트랜지스터(TFT)의 게이트층, 소스층 및 드레인층 중 적어도 하나로 이용될 수 있다. 또한 이러한 박막 트랜지스터는 OLED TV, 모바일폰, 태블릿 등의 디스플레이 장치에 사용될 수 있다.The metal oxide thin film may be used as at least one of a gate layer, a source layer, and a drain layer of a thin film transistor (TFT). In addition, these thin film transistors can be used in display devices such as OLED TVs, mobile phones, and tablets.
구체적인 예로서, 본 발명의 실시예에 따른 금속 산화물 박막은 게이트층 하부의 저반사층으로 사용될 수 있다. 이와 같은 용도의 박막은 기판의 반사율을 낮추고 게이트 전극의 접착성을 향상시킨다.As a specific example, the metal oxide thin film according to the embodiment of the present invention may be used as a low reflection layer under the gate layer. The thin film for this purpose lowers the reflectance of the substrate and improves the adhesion of the gate electrode.
여기에서, 기판은 유리기판, 금속기판, 플라스틱 기판, 플라스틱 필름 등 통상의 디스플레이 소자 공정에서 사용 가능한 다양한 기판 중 어느 하나일 수 있다. 구체적으로 기판은 OLED TV, 모바일폰, 태블릿에 있어서 투명하게 이루어진 전면패널일 수 있다. 한편 게이트 전극은 구리, 은 등의 일반적인 전극 물질로 형성될 수 있다.Here, the substrate may be any one of various substrates usable in a typical display device process, such as a glass substrate, a metal substrate, a plastic substrate, and a plastic film. Specifically, the substrate may be a transparent front panel in an OLED TV, mobile phone, or tablet. Meanwhile, the gate electrode may be formed of a general electrode material such as copper or silver.
박막 증착은 DC 스퍼터의 전력밀도(Power density)를 1.0~2.0w/cm2 로 하고 아르곤 가스(Ar Gas) 분위기에서 상온에서 실시할 수 있다. 이때 금속 산화물 박막의 두께는 300 내지 500Å으로 할 수 있으나, 이에 특별히 제한되지 않는다. 또한 금속 산화물 박막 위에는 구리(Cu) 박막이 증착될 수 있다. 이때 구리 박막은 3000 내지 6000Å의 두께로 증착될 수 있다.Thin film deposition can be performed at room temperature in an argon gas (Ar Gas) atmosphere with a DC sputter power density of 1.0 to 2.0 w/cm 2 . At this time, the thickness of the metal oxide thin film may be 300 to 500 Å, but is not particularly limited thereto. Also, a copper (Cu) thin film may be deposited on the metal oxide thin film. At this time, the copper thin film may be deposited to a thickness of 3000 to 6000 Å.
한편 반사율의 측정은 당 분야에 공지된 방법에 따라 수행될 수 있다. 일례로, 금속산화물 박막이 형성된 기판 면에서 측정할 수 있고, 360~740nm의 평균 파장 및/또는 550nm 파장에 대한 광 반사율을 측정한다. 이때 광 반사율은 12.0% 이하이고, 구체적으로 11.6% 이하, 바람직하게는 11.0% 이하이며, 그 하한치는 특별히 제한되지 않는다. Meanwhile, the reflectance may be measured according to a method known in the art. For example, it can be measured on the surface of the substrate on which the metal oxide thin film is formed, and the light reflectance for an average wavelength of 360 to 740 nm and/or a wavelength of 550 nm is measured. At this time, the light reflectance is 12.0% or less, specifically 11.6% or less, preferably 11.0% or less, and the lower limit is not particularly limited.
본 발명의 실시예에 따른 금속 산화물 박막은 내열성, 내화학성 특성이 우수하다. 내열성, 내화학성 평가는 아래와 같이 수행할 수 있으나, 이에 특별히 제한되지 않는다.The metal oxide thin film according to the embodiment of the present invention has excellent heat resistance and chemical resistance. Evaluation of heat resistance and chemical resistance may be performed as follows, but is not particularly limited thereto.
내열성을 평가하기 위해, 상술한 바와 같이 증착된 박막을 200~400℃의 분위기에서 30분 이상의 열처리를 하는 방법을 사용할 수 있다. 열처리는 일반적인 진공 열처리로 및/또는 수소 열처리로에서 수행할 수 있다. 열처리 후 박막의 특성 변화를 관찰함으로써 내열성을 평가할 수 있다. 내열성 지표의 예를 들면, 열처리 후 반사율(R2)과 열처리 전 반사율(R1)과의 차이(R1-R2)는 대략 0.2% 미만이며, 구체적으로 0.15% 이하, 보다 구체적으로 0.14% 이하일 수 있다. In order to evaluate heat resistance, a method of heat-treating the thin film deposited as described above in an atmosphere of 200 to 400 ° C. for 30 minutes or more may be used. Heat treatment may be performed in a general vacuum heat treatment furnace and/or a hydrogen heat treatment furnace. Heat resistance can be evaluated by observing changes in the properties of the thin film after heat treatment. As an example of the heat resistance index, the difference between the reflectance after heat treatment (R 2 ) and the reflectance before heat treatment (R 1 ) (R 1 -R 2 ) is less than about 0.2%, specifically 0.15% or less, more specifically 0.14% may be below.
또한 내화학성을 평가하기 위해, 형성된 박막에 리소그라피 방법을 이용하여 미세 패턴을 형성하고 형성된 미세 패턴의 단면을 관찰하는 방법을 사용할 수 있다. 구체적으로 위와 같이 본 발명의 금속 산화물과 구리의 2개 층으로 형성된 박막에 포토레지스트(Positive PR Strip)를 1~2㎛ 도포한 후 베이킹(Backing)을 60~80℃에서 1시간 정도 실시하여 포토레지스터를 고형화한다. 이어서 마스크(PRMask)를 정렬한 후 노광을 하여 일정 선폭의 패턴을 만든다. 이렇게 만든 패턴을 에칭(etching)하여 금속 산화물과 구리로 구성된 2층의 미세 패턴을 형성할 수 있다. 이와 같이 미세 패턴이 형성된 기판에서 포토레지스트를 제거한 후 미세 패턴에서 금속 산화물의 단면을 FIB-SEM으로 관찰할 수 있다. 이러한 본 발명의 박막은 에칭 이후에도 잔사가 발생되지 않게 되며, 이를 통해 내화학성을 평가할 수 있다. In addition, in order to evaluate chemical resistance, a method of forming a fine pattern on the formed thin film using a lithography method and observing a cross section of the formed fine pattern may be used. Specifically, 1 to 2 μm of photoresist (Positive PR Strip) is applied to the thin film formed of the two layers of the metal oxide and copper of the present invention as described above, and then baking is performed at 60 to 80 ° C for about 1 hour. Solidify the register. Then, after aligning the mask (PRMask), exposure is performed to make a pattern with a certain line width. A two-layer fine pattern composed of metal oxide and copper may be formed by etching the pattern thus formed. After the photoresist is removed from the substrate on which the fine pattern is formed, the cross section of the metal oxide in the fine pattern can be observed by FIB-SEM. The thin film of the present invention does not generate residue even after etching, and through this, chemical resistance can be evaluated.
이하, 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are only to illustrate the present invention, and the present invention is not limited by the following examples.
[실시예 1 ~ 8][Examples 1 to 8]
[실시예 1] [Example 1]
MoO2/MoO3의 중량% 비율이 6.67고, (MoO2+MoO3+Nb2O5+ZnO+Mo) / (MoO2+MoO3+Nb2O5+ZnO)의 중량% 비율이 1.39 되도록 분말을 계량하였다. 계량된 분말을 1L 플라스틱 통에 넣고, 지르코니아 볼을 상기 분말량의 3배수로 투입하였다. 지르코니아 볼은 3~10mm 볼을 사용하였다. 계량된 분말과 볼의 투입이 완료되면, 볼밀 기계에서 170~230 rpm의 속도로 8시간 동안 건식 혼합을 실시하였다. 수득한 건식 분말을 핫프레스(Hot Press)로 가압 소결을 하였다. 이때 핫프레스의 내부 진공 조건은 10-1 torr에서 실시하며, 승온속도는 3~7℃, 최고 온도는 800~1100℃, 유지시간은 1~3시간 정도로 유지하여 소결을 진행한 후 노냉을 수행하였다. Powder such that the weight percent ratio of MoO2/MoO3 is 6.67 and the weight percent ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo) / (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.39 was weighed. The weighed powder was put into a 1L plastic container, and zirconia balls were added in an amount three times the amount of the powder. A 3-10 mm zirconia ball was used. After the input of the measured powder and balls was completed, dry mixing was performed for 8 hours at a speed of 170 to 230 rpm in a ball mill machine. The obtained dry powder was pressurized and sintered by a hot press. At this time, the internal vacuum condition of the hot press is carried out at 10 -1 torr, the heating rate is 3 to 7 ℃, the maximum temperature is 800 to 1100 ℃, and the holding time is maintained at about 1 to 3 hours to perform sintering and then furnace cooling did
상기와 같이 얻어진 실시예 1의 금속산화물 소결체는 소결 밀도가 98.8%이고, 비저항은 2.546×10-3 Ωcm로 측정되었다. The metal oxide sintered body of Example 1 obtained as described above had a sintered density of 98.8% and a specific resistance of 2.546×10 -3 Ωcm.
[실시예 2] [Example 2]
하기 표 1과 같이, MoO2/MoO3 중량 비율이 6.7이고, (MoO2+MoO3+Nb2O5+ZnO+Mo) /(MoO2+MoO3+Nb2O5+ZnO)의 중량 비율이 1.39가 되도록 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 실시예 2의 금속산화물 소결체를 제조하였다. As shown in Table 1 below, MoO 2 /MoO 3 Except that the weight ratio is 6.7 and the weight ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.39, A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1.
상기와 같이 얻어진 실시예 2의 금속산화물 소결체는 소결 밀도가 99.0%이고, 비저항은 1.922×10-3 Ωcm로 측정되었다. The metal oxide sintered body of Example 2 obtained as described above had a sintered density of 99.0% and a specific resistance of 1.922×10 -3 Ωcm.
[실시예 3] [Example 3]
하기 표 1과 같이, MoO2/MoO3 중량 비율이 6.7이고, (MoO2+MoO3+Nb2O5+ZnO+Mo) /(MoO2+MoO3+Nb2O5+ZnO)의 중량 비율이 1.43이 되도록 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 실시예 2의 금속산화물 소결체를 제조하였다. As shown in Table 1 below, MoO2/MoO3of The weight ratio is 6.7, (MoO2+MoO3+Nb2O5+ZnO+Mo)/(MoO2+MoO3+Nb2O5A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1, except that the weight ratio of +ZnO) was 1.43.
상기와 같이 얻어진 실시예 3의 금속산화물 소결체는 소결 밀도가 98.8%이고, 비저항은 2.414×10-3 Ωcm로 측정되었다. The metal oxide sintered body of Example 3 obtained as described above had a sintered density of 98.8% and a specific resistance of 2.414×10 -3 Ωcm.
[실시예 4] [Example 4]
하기 표 1과 같이, MoO2/MoO3 중량 비율이 6.66이고, (MoO2+MoO3+Nb2O5+ZnO+Mo) /(MoO2+MoO3+Nb2O5+ZnO)의 중량 비율이 1.43이 되도록 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 실시예 2의 금속산화물 소결체를 제조하였다. As shown in Table 1 below, MoO 2 /MoO 3 Except that the weight ratio is 6.66 and the weight ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.43, A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1.
상기와 같이 얻어진 실시예 4의 금속산화물 소결체는 소결 밀도가 99.1%이고, 비저항은 1.688×10-3 Ωcm로 측정되었다. The metal oxide sintered body of Example 4 obtained as described above had a sintered density of 99.1% and a specific resistance of 1.688×10 -3 Ωcm.
[실시예 5] [Example 5]
MoO2/MoO3의 중량% 비율이 6.69고, (MoO2+MoO3+Nb2O5+ZnO+Mo) / (MoO2+MoO3+Nb2O5+ZnO)의 중량% 비율이 1.05 가 되도록 분말을 계량하였다. 계량된 분말을 1L 플라스틱 통에 넣고, 지르코니아 볼을 상기 분말량의 3배수로 투입하였다. 지르코니아 볼은 3~10mm 볼을 사용하였다. 계량된 분말과 볼의 투입이 완료되면, 볼밀 기계에서 170~230 rpm의 속도로 8시간 동안 건식 혼합을 실시하였다. 수득한 건식 분말을 핫프레스(Hot Press)로 가압 소결을 하였다. 이때 핫프레스의 내부 진공 조건은 10-1 torr에서 실시하며, 승온속도는 3~7℃, 최고 온도는 800~1200℃, 유지시간은 1~3시간 정도로 유지하여 소결을 진행한 후 노냉을 수행하였다. So that the weight percent ratio of MoO2/MoO3 is 6.69 and the weight percent ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo) / (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.05. The powder was weighed. The weighed powder was put into a 1L plastic container, and zirconia balls were added in an amount three times the amount of the powder. A 3-10 mm zirconia ball was used. After the input of the measured powder and balls was completed, dry mixing was performed for 8 hours at a speed of 170 to 230 rpm in a ball mill machine. The obtained dry powder was pressurized and sintered by a hot press. At this time, the internal vacuum condition of the hot press is carried out at 10 -1 torr, the heating rate is 3 to 7 ℃, the maximum temperature is 800 to 1200 ℃, and the holding time is maintained at about 1 to 3 hours to perform sintering and then furnace cooling did
상기와 같이 얻어진 실시예 5의 금속산화물 소결체는 소결 밀도가 98.7%이고, 비저항은 3.516×10-3 Ωcm로 측정되었다. The metal oxide sintered body of Example 5 obtained as described above had a sintered density of 98.7% and a specific resistance of 3.516×10 -3 Ωcm.
[실시예 6] [Example 6]
하기 표 1과 같이, MoO2/MoO3 중량 비율이 6.69이고, (MoO2+MoO3+Nb2O5+ZnO+Mo) /(MoO2+MoO3+Nb2O5+ZnO)의 중량 비율이 1.07가 되도록 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 실시예 2의 금속산화물 소결체를 제조하였다. As shown in Table 1 below, MoO 2 /MoO 3 Except that the weight ratio is 6.69 and the weight ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.07, A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1.
상기와 같이 얻어진 실시예 6의 금속산화물 소결체는 소결 밀도가 99.1%이고, 비저항은 4.254×10-3 Ωcm로 측정되었다. The metal oxide sintered body of Example 6 obtained as described above had a sintered density of 99.1% and a specific resistance of 4.254×10 -3 Ωcm.
[실시예 7] [Example 7]
하기 표 1과 같이, MoO2/MoO3 중량 비율이 6.69이고, (MoO2+MoO3+Nb2O5+ZnO+Mo) /(MoO2+MoO3+Nb2O5+ZnO)의 중량 비율이 1.07이 되도록 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 실시예 2의 금속산화물 소결체를 제조하였다. As shown in Table 1 below, MoO 2 /MoO 3 Except that the weight ratio is 6.69 and the weight ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.07, A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1.
상기와 같이 얻어진 실시예 7의 금속산화물 소결체는 소결 밀도가 99.3%이고, 비저항은 1.416×10-3 Ωcm로 측정되었다. The metal oxide sintered body of Example 7 obtained as described above had a sintered density of 99.3% and a specific resistance of 1.416×10 -3 Ωcm.
[실시예 8] [Example 8]
하기 표 1과 같이, MoO2/MoO3 중량 비율이 6.69이고, (MoO2+MoO3+Nb2O5+ZnO+Mo) /(MoO2+MoO3+Nb2O5+ZnO)의 중량 비율이 1.11이 되도록 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 실시예 2의 금속산화물 소결체를 제조하였다. As shown in Table 1 below, MoO 2 /MoO 3 Except that the weight ratio is 6.69 and the weight ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO+Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.11, A metal oxide sintered body of Example 2 was prepared in the same manner as in Example 1.
상기와 같이 얻어진 실시예 8의 금속산화물 소결체는 소결 밀도가 98.6%이고, 비저항은 5.239×10-3 Ωcm로 측정되었다. The metal oxide sintered body of Example 8 obtained as described above had a sintered density of 98.6% and a specific resistance of 5.239×10 -3 Ωcm.
[비교예 1~2][Comparative Examples 1-2]
[비교예 1] [Comparative Example 1]
하기 표 1과 같이, Mo 금속을 사용하지 않고, (MoO2+MoO3+Nb2O5+ZnO) /(MoO2+MoO3+Nb2O5+ZnO)의 중량% 비율을 1.33 이 되도록 계량된 분말을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 비교예 2의 소결체를 제조하였다. As shown in Table 1 below, without using Mo metal, the weight percent ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +ZnO)/(MoO 2 +MoO 3 +Nb 2 O 5 +ZnO) is 1.33. A sintered body of Comparative Example 2 was prepared in the same manner as in Example 1, except that the measured powder was used.
상기와 같이 제조된 비교예 2의 소결체는 소결 밀도가 98.5%이고, 비저항은 3.225×10-3 Ωcm로 측정되었다.The sintered body of Comparative Example 2 prepared as described above had a sintered density of 98.5% and a specific resistance of 3.225×10 -3 Ωcm.
[비교예 2] [Comparative Example 2]
하기 표 1과 같이, 제2 금속산화물인 ZnO을 사용하지 않고, (MoO2+MoO3+Nb2O5+Mo)/(MoO2+MoO3+Nb2O5)의 중량% 비율이 1.43이 되도록 계량된 분말을 사용한 것을 제외하고는, 상기 실시예 1과 동일하게 실시하여 비교예 4의 소결체를 제조하였다. As shown in Table 1 below, without using the second metal oxide, ZnO, the weight percent ratio of (MoO 2 +MoO 3 +Nb 2 O 5 +Mo)/(MoO 2 +MoO 3 +Nb 2 O 5 ) is 1.43 A sintered body of Comparative Example 4 was prepared in the same manner as in Example 1, except for using the powder weighed so as to be.
상기와 같이 제조된 비교예 4의 소결체는 소결 밀도가 98.4%이고, 비저항은 1.468×10-3 Ωcm로 측정되었다.The sintered body of Comparative Example 4 prepared as described above had a sintered density of 98.4% and a specific resistance of 1.468×10 -3 Ωcm.
[실험예 1: 소결체의 물성 평가][Experimental Example 1: Evaluation of Physical Properties of Sintered Body]
실시예 1 내지 8 및 비교예 1 내지 2에서 제조된 각 소결체의 물성 결과를 하기 표 1에 정리하였다.The physical property results of each sintered body prepared in Examples 1 to 8 and Comparative Examples 1 to 2 are summarized in Table 1 below.
성분ingredient 금속
(M4)
metal
(M4)
MoO2/
MoO3
MoO 2 /
MoO 3
(MoO2+MoO3+M2+ M3+M4)/
(MoO2+MoO3+M2+M3)
( MoO2 + MoO3 +M2+M3+M4)/
( MoO2 + MoO3 +M2+M3)
소결
밀도
(%)
sintering
density
(%)
비저항
(Ωcm)
resistivity
(Ωcm)
실시예 1Example 1 MoO2+MoO3+Nb2O5+3ZnO+3MoMoO 2 +MoO 3 +Nb 2 O 5 +3ZnO+3Mo MoMo 6.676.67 1.391.39 98.898.8 2.546Х10-3 2.546Х10 -3
실시예 2Example 2 MoO2+MoO3+Nb2O5+5ZnO+3MoMoO 2 +MoO 3 +Nb 2 O 5 +5ZnO+3Mo MoMo 6.706.70 1.391.39 99.099.0 1.922Х10-3 1.922Х10 -3
실시예 3Example 3 MoO2+MoO3+Nb2O5+3ZnO+5MoMoO 2 +MoO 3 +Nb 2 O 5 +3ZnO+5Mo MoMo 6.706.70 1.431.43 98.898.8 2.414Х10-3 2.414Х10 -3
실시예 4Example 4 MoO2+MoO3+Nb2O5+5ZnO+5MoMoO 2 +MoO 3 +Nb 2 O 5 +5ZnO+5Mo MoMo 6.666.66 1.431.43 99.199.1 1.688Х10-3 1.688Х10 -3
실시예 5Example 5 MoO2+MoO3+Nb2O5+3ZnO+5MoMoO 2 +MoO 3 +Nb 2 O 5 +3ZnO+5Mo MoMo 6.696.69 1.051.05 98.798.7 3.516Х10-3 3.516Х10 -3
실시예 6Example 6 MoO2+MoO3+Nb2O5+3ZnO+7MoMoO 2 +MoO 3 +Nb 2 O 5 +3ZnO+7Mo MoMo 6.696.69 1.071.07 99.199.1 4.254Х10-3 4.254Х10 -3
실시예 7Example 7 MoO2+MoO3+Nb2O5+5ZnO+7MoMoO 2 +MoO 3 +Nb 2 O 5 +5ZnO+7Mo MoMo 6.696.69 1.071.07 99.399.3 1.416Х10-3 1.416Х10 -3
실시예 8Example 8 MoO2+MoO3+Nb2O5+5ZnO+10MoMoO 2 +MoO 3 +Nb 2 O 5 +5ZnO+10Mo MoMo 6.696.69 1.111.11 98.698.6 5.239Х10-3 5.239Х10 -3
비교예 1Comparative Example 1 MoO2+MoO3+Nb2O5+ZnOMoO 2 +MoO 3 +Nb 2 O 5 +ZnO -- 6.696.69 1.331.33 98.598.5 3.225Х10-3 3.225Х10 -3
비교예 2Comparative Example 2 MoO2+MoO3+Nb2O5+MoMoO 2 +MoO 3 +Nb2O5 +Mo MoMo 6.696.69 1.431.43 98.498.4 1.468Х10-3 1.468Х10 -3
상기 표 1에 나타난 바와 같이, 실시예와 비교예 모두에서 기준치에 해당하는 비저항 1×10-2 Ωcm 이하, 타겟 밀도는 95% 이상을 만족하였다. 다만, 타켓 밀도의 측면에서 실시예 1 내지 실시예 8이 비교예 1~2에 비해 보다 우수하다는 것을 확인하였다. 이에 따라 타겟 밀도가 높은 실시예 1 내지 실시예 8의 경우 박막 증착 시 더 안정적으로 플라즈마 형성이 가능하다는 것을 알 수 있었다.As shown in Table 1, both the examples and comparative examples satisfied the specific resistance of 1×10 -2 Ωcm or less and the target density of 95% or more corresponding to the reference value. However, it was confirmed that Examples 1 to 8 were superior to Comparative Examples 1 to 2 in terms of target density. Accordingly, in the case of Examples 1 to 8 having a high target density, it was found that plasma formation was possible more stably during thin film deposition.
[실험예 2: 박막의 물성 평가][Experimental Example 2: Evaluation of physical properties of thin film]
실시예 1 내지 8 및 비교예 1 내지 2에서 제조된 소결체를 타겟 재료로 하여 박막을 형성한 후, 박막의 내열성을 하기와 같이 평가하였다.After forming thin films using the sintered bodies prepared in Examples 1 to 8 and Comparative Examples 1 to 2 as a target material, heat resistance of the thin films was evaluated as follows.
구체적으로, 각 소결체를 이용하여 게이트층 하부의 저반사층으로 하는 박막을 제작하였다. 이러한 박막은 기판(유리) 상에 저반사 및 게이트 전극의 접착성을 향상시키기 위한 것이다.Specifically, a thin film serving as a low-reflection layer under the gate layer was manufactured using each sintered body. This thin film is for improving the adhesion of low reflection and gate electrode on the substrate (glass).
저반사 박막은 1 내지 8 및 비교예 1 내지 2의 소결체를 포함하는 타겟을 DC스퍼터를 이용하여 전력밀도(Power density)는 0.5~3.6w/cm2로 하고 아르곤 가스 분위기 하에서 투명한 글래스 기판 위에 증착하여 박막을 형성하였으며, 박막 두께는 350Å로 증착하였다.The low-reflection thin film is deposited on a transparent glass substrate in an argon gas atmosphere using a target including the sintered bodies of 1 to 8 and Comparative Examples 1 to 2 at a power density of 0.5 to 3.6 w/cm 2 using a DC sputter. to form a thin film, and the thin film thickness was deposited at 350 Å.
추가로 전술한 박막 위에 전극을 형성하였다. 전극은 구리 타겟을 DC스퍼터를 이용하여 전력밀도(Power density)는 0.5~3.6w/cm2로 하고 아르곤 가스분위기에서 형성하였으며, 박막두께는 6000Å으로 하였다.Additionally, an electrode was formed on the thin film described above. The electrode was formed in an argon gas atmosphere with a copper target having a power density of 0.5 to 3.6 w/cm 2 using a DC sputter, and a thin film thickness of 6000 Å.
이러한 상태에서 글래스 기판 면에서 박막의 최초 반사율을 측정한 후 진공열처리로에서 350℃의 온도로 30분 이상 열처리한 후 반사율을 다시 측정하고 양 반사율을 비교하였다. 이들의 결과를 하기 표 2에 기재하였다.In this state, after measuring the initial reflectance of the thin film on the surface of the glass substrate, heat treatment was performed at a temperature of 350 ° C. for more than 30 minutes in a vacuum heat treatment furnace, the reflectance was measured again, and both reflectances were compared. These results are shown in Table 2 below.
저반사/Cu 박막
반사율 (열처리전, R1)
360~740nm 평균 기준
(%)
Low reflection/Cu thin film
Reflectance (before heat treatment, R 1 )
360-740nm average standard
(%)
저반사/Cu 박막
반사율(열처리후, R2)
360~740nm 평균 기준
(%)
Low reflection/Cu thin film
Reflectance (after heat treatment, R 2 )
360-740nm average standard
(%)
열처리 전과 후의 반사율 변화값
(R1-R2) (%)
Reflectance change value before and after heat treatment
(R 1 -R 2 ) (%)
실시예 1Example 1 11.5711.57 11.4311.43 0.140.14
실시예 2Example 2 10.4310.43 10.3510.35 0.080.08
실시예 3Example 3 10.0710.07 10.0110.01 0.060.06
실시예 4Example 4 10.5710.57 10.4810.48 0.090.09
실시예 5Example 5 10.9510.95 10.8310.83 0.120.12
실시예 6Example 6 10.4010.40 10.3010.30 0.100.10
실시예 7Example 7 9.859.85 9.769.76 0.090.09
실시예 8Example 8 10.2510.25 10.1210.12 0.130.13
비교예 1Comparative Example 1 13.513.5 13.313.3 0.20.2
비교예 2Comparative Example 2 12.512.5 12.312.3 0.20.2
상기 표 2에 나타난 바와 같이, 비교예 1 내지 2의 최초 반사율은 양호하였으나, 열처리 후의 반사율은 크게 증가하였음을 알 수 있었다. 이에 비해, 실시예 1~8의 경우 최초 반사율이 모두 양호하였으며, 열처리 후의 반사율 변화도 크지 않음을 확인하였다. 특히 실시예들의 경우 수소열처리로에서 350℃에서 30분 이상 열처리한 후 반사율이 최초 반사율로부터 10% 이내의 변화를 보임으로써, 비교예에 비해 내열성이 더 우수한 박막 특성을 갖는다는 것을 알 수 있었다.As shown in Table 2, it was found that the initial reflectance of Comparative Examples 1 and 2 was good, but the reflectance after heat treatment greatly increased. In contrast, in the case of Examples 1 to 8, the initial reflectance was all good, and it was confirmed that the change in reflectance after heat treatment was not large. In particular, in the case of the examples, after heat treatment at 350 ° C. for more than 30 minutes in a hydrogen heat treatment furnace, the reflectance showed a change of less than 10% from the initial reflectance, so it was found that the heat resistance was better than that of the comparative example.

Claims (14)

  1. MoO2와 MoO3을 포함하고, 상기 MoO2 및 MoO3 중 MoO2의 함량이 50~90 중량%로 구성되는 몰리브덴 산화물(M1); Molybdenum oxide (M1) containing MoO 2 and MoO 3 , wherein the content of MoO 2 is 50 to 90% by weight among the MoO 2 and MoO 3 ;
    Nb, Ta, Zr, Ti, Sn, 및 W으로 구성된 군에서 선택되는 1종 이상의 제1 원소를 포함하는 제1 금속산화물(M2);a first metal oxide (M2) containing at least one first element selected from the group consisting of Nb, Ta, Zr, Ti, Sn, and W;
    In, Ga, Si, 및 Zn으로 구성된 군에서 선택되는 1종 이상의 제2 원소를 포함하는 제2 금속산화물(M3); 및 a second metal oxide (M3) containing at least one second element selected from the group consisting of In, Ga, Si, and Zn; and
    Mo, Ti, Cr, W, 및 Cu으로 구성된 군에서 선택되는 1종 이상의 금속(M4);을 포함하며, At least one metal (M4) selected from the group consisting of Mo, Ti, Cr, W, and Cu;
    당해 소결체의 총 중량 대비 적어도 60 중량% 이상의 몰리브덴 산화물 (M1)을 함유하는, 산화물 소결체.An oxide sinter containing at least 60% by weight or more of molybdenum oxide (M1) relative to the total weight of the sintered body.
  2. 제1항에 있어서, According to claim 1,
    상기 몰리브덴 산화물은 당해 산화물 소결체 100 중량%를 기준으로 60 내지 70 중량%로 포함되는, 산화물 소결체.The molybdenum oxide is contained in 60 to 70% by weight based on 100% by weight of the oxide sintered body, the oxide sintered body.
  3. 제1항에 있어서, According to claim 1,
    상기 제1 금속산화물(M2)는 Nb2O5, Ta2O5, ZrO2, TiO2, SnO2, 및 WO3 로 구성된 군에서 선택되는 1종 이상을 포함하는, 산화물 소결체. The first metal oxide (M2) includes at least one selected from the group consisting of Nb 2 O 5 , Ta 2 O 5 , ZrO 2 , TiO 2 , SnO 2 , and WO 3 , oxide sintered body.
  4. 제1항에 있어서, According to claim 1,
    상기 제1 금속산화물(M2)는 당해 산화물 소결체 100 중량%를 기준으로 5 중량% 이상, 당해 소결체 100 중량%를 만족하는 잔량 범위로 포함되는, 산화물 소결체. The first metal oxide (M2) is included in an amount range of 5% by weight or more based on 100% by weight of the oxide sintered body, and the balance satisfying 100% by weight of the sintered body.
  5. 제1항에 있어서, According to claim 1,
    상기 제2 금속산화물(M3)는 In2O3, Ga2O3, SiO2 및 ZnO로 구성된 군에서 선택되는 1종 이상을 포함하는, 산화물 소결체. The second metal oxide (M3) includes at least one selected from the group consisting of In 2 O 3 , Ga 2 O 3 , SiO 2 and ZnO, the oxide sintered body.
  6. 제1항에 있어서, According to claim 1,
    상기 제2 금속산화물(M3)는 당해 산화물 소결체 100 중량%를 기준으로 3 내지 12 중량%로 포함되는, 산화물 소결체. The second metal oxide (M3) is included in 3 to 12% by weight based on 100% by weight of the oxide sintered body.
  7. 제1항에 있어서, According to claim 1,
    상기 금속(M4)은 당해 산화물 소결체 100 중량%를 기준으로 1.0 내지 30.0 중량%로 포함되는, 산화물 소결체. The metal (M4) is contained in 1.0 to 30.0% by weight based on 100% by weight of the oxide sintered body.
  8. 제1항에 있어서, According to claim 1,
    비저항이 1×10-2 Ωcm 이하이며, The resistivity is less than 1×10 -2 Ωcm,
    상대밀도가 95% 이상인, 산화물 소결체.An oxide sintered body having a relative density of 95% or more.
  9. 제1항 내지 제8항 중 어느 한 항에 기재된 소결체를 포함하는 스퍼터링 타겟.A sputtering target comprising the sintered body according to any one of claims 1 to 8.
  10. 제9항의 스퍼터링 타겟으로부터 형성된 산화물 박막.An oxide thin film formed from the sputtering target of claim 9.
  11. 제10항에 있어서, According to claim 10,
    열처리 전 550nm 파장에 대한 광 반사율(R1)은 12.0% 이하이며, The light reflectance (R 1 ) for a wavelength of 550 nm before heat treatment is 12.0% or less,
    350℃ 온도 및 30분 이상의 열처리 후 550nm 파장에 대한 광 반사율(R2)은 12.0% 이하인, 산화물 박막. After heat treatment at a temperature of 350° C. for 30 minutes or more, the light reflectance (R 2 ) for a wavelength of 550 nm is 12.0% or less, an oxide thin film.
  12. 제10항에 있어서, According to claim 10,
    350℃의 온도 및 30분 이상의 열처리 후의 광 반사율(R2)과 열처리 전의 광 반사율(R1)의 차이(R1-R2)는 0.2% 미만인, 산화물 박막.An oxide thin film, wherein a difference (R 1 -R 2 ) between a light reflectance after heat treatment at a temperature of 350° C. for 30 minutes or more (R 2 ) and a light reflectance before heat treatment ( R 1 ) is less than 0.2%.
  13. 제10항의 박막이 게이트층, 소스층 및 드레인층 중 어느 하나로 이용되는 박막 트랜지스터.A thin film transistor in which the thin film of claim 10 is used as one of a gate layer, a source layer, and a drain layer.
  14. 제10항의 박막을 포함하는 디스플레이 장치. A display device comprising the thin film of claim 10 .
PCT/KR2022/015007 2021-10-06 2022-10-05 Molybdenum oxide sintered compact, thin film using sintered compact, thin film transistor comprising thin film, and display device WO2023059071A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20210132489 2021-10-06
KR10-2021-0132489 2021-10-06
KR10-2022-0126853 2022-10-05
KR1020220126853A KR20230049562A (en) 2021-10-06 2022-10-05 Molybdenum oxide based sintered body, metal oxide thin film using the sintered body, and thin film transistors and displa devices comprising the thin films

Publications (1)

Publication Number Publication Date
WO2023059071A1 true WO2023059071A1 (en) 2023-04-13

Family

ID=85803587

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/015007 WO2023059071A1 (en) 2021-10-06 2022-10-05 Molybdenum oxide sintered compact, thin film using sintered compact, thin film transistor comprising thin film, and display device

Country Status (1)

Country Link
WO (1) WO2023059071A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231054A (en) * 2001-02-01 2002-08-16 Stanley Electric Co Ltd Transparent electrode material and electronic element using the same
KR20080058390A (en) * 2005-09-29 2008-06-25 에이치. 씨. 스타아크 아이앤씨 Sputtering target, low resistivity, transparent conductive film, method for producing such film and composition for use therein
KR20200020855A (en) * 2018-08-09 2020-02-26 제이엑스금속주식회사 Oxide thin film formed using the oxide sputtering target, its manufacturing method, and this oxide sputtering target
KR20200029109A (en) * 2018-09-08 2020-03-18 바짐테크놀로지 주식회사 Composition for Sputtering Target for Thin Film and Method for Making Sputtering Target
KR20200069314A (en) * 2017-10-06 2020-06-16 플란제 에스이 Target material for the deposition of molybdenum oxide layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002231054A (en) * 2001-02-01 2002-08-16 Stanley Electric Co Ltd Transparent electrode material and electronic element using the same
KR20080058390A (en) * 2005-09-29 2008-06-25 에이치. 씨. 스타아크 아이앤씨 Sputtering target, low resistivity, transparent conductive film, method for producing such film and composition for use therein
KR20200069314A (en) * 2017-10-06 2020-06-16 플란제 에스이 Target material for the deposition of molybdenum oxide layer
KR20200020855A (en) * 2018-08-09 2020-02-26 제이엑스금속주식회사 Oxide thin film formed using the oxide sputtering target, its manufacturing method, and this oxide sputtering target
KR20200029109A (en) * 2018-09-08 2020-03-18 바짐테크놀로지 주식회사 Composition for Sputtering Target for Thin Film and Method for Making Sputtering Target

Similar Documents

Publication Publication Date Title
JP5306308B2 (en) Sputtering target, transparent conductive oxide, and method for producing sputtering target
KR101321554B1 (en) An oxide sintered body and an oxide film obtained by using it, and a transparent base material containing it
JP4816137B2 (en) Transparent conductive film and transparent conductive substrate
KR100683585B1 (en) Oxide Sintered Body
KR20080058390A (en) Sputtering target, low resistivity, transparent conductive film, method for producing such film and composition for use therein
WO2011010824A2 (en) Low emissivity glass and method for manufacturing same
WO2017195929A1 (en) Silver alloy composition for forming conductive film, and preparation method therefor
WO2013141478A1 (en) Transparent substrate having antireflective function
JP4539181B2 (en) Transparent conductive film, sintered compact target for manufacturing transparent conductive film, transparent conductive substrate, and display device using the same
JP4770310B2 (en) Transparent conductive film, transparent conductive substrate and oxide sintered body
CN111902561B (en) Shield layer, method for producing shield layer, and oxide sputtering target
WO2023059071A1 (en) Molybdenum oxide sintered compact, thin film using sintered compact, thin film transistor comprising thin film, and display device
WO2013073802A1 (en) Transparent conductive film having superior thermal stability, target for transparent conductive film, and method for manufacturing transparent conductive film
WO2022124460A1 (en) Metal oxide sintered body containing molybdenum oxide as main component and sputtering target comprising same
WO2023063771A1 (en) Molybdenum oxide-based sintered body, sputtering target comprising same, and oxide thin film
KR102646917B1 (en) Molybdenum oxide based sintered body, metal oxide thin film using the sintered body, and thin film transistors and displa devices comprising the thin films
KR20230049562A (en) Molybdenum oxide based sintered body, metal oxide thin film using the sintered body, and thin film transistors and displa devices comprising the thin films
WO2023063774A1 (en) Molybdenum oxide-based sintered body, and sputtering target and oxide thin film comprising same
KR102315283B1 (en) Metal oxide thin film containing molybdenum oxide as the main component, and thin film transistors and display devices in which such thin films are formed
KR102315308B1 (en) Metal oxide sintered body containing molybdenum oxide as the main component and sputtering target comprising the same
JP2011195963A (en) Sintered body target for producing transparent conductive film
TWI839845B (en) Molybdenum oxide based sintered body, sputtering target, oxide thin film using the sintered body, and thin film transistors and display devices including the thin films
EP4332995A1 (en) Layered body having function as transparent electroconductive film and method for producing same, and oxide sputtering target for said layered body production
WO2018131863A1 (en) Coated glass and laminated glass comprising same
WO2017119626A1 (en) Transparent conductive thin film and manufacturing method therefor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22878892

Country of ref document: EP

Kind code of ref document: A1