WO2024010061A1 - Composite particle and light control laminate - Google Patents

Composite particle and light control laminate Download PDF

Info

Publication number
WO2024010061A1
WO2024010061A1 PCT/JP2023/025105 JP2023025105W WO2024010061A1 WO 2024010061 A1 WO2024010061 A1 WO 2024010061A1 JP 2023025105 W JP2023025105 W JP 2023025105W WO 2024010061 A1 WO2024010061 A1 WO 2024010061A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
particles
meth
reactive functional
adhesive
Prior art date
Application number
PCT/JP2023/025105
Other languages
French (fr)
Japanese (ja)
Inventor
滉生 大倉
恭幸 山田
武司 脇屋
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Publication of WO2024010061A1 publication Critical patent/WO2024010061A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/28Esters containing oxygen in addition to the carboxy oxygen containing no aromatic rings in the alcohol moiety
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1339Gaskets; Spacers; Sealing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/19Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on variable-reflection or variable-refraction elements not provided for in groups G02F1/015 - G02F1/169

Definitions

  • the present invention relates to composite particles having good adhesive properties.
  • the present invention also relates to a light control laminate using the above composite particles.
  • Light control materials such as light control glass and light control films have the property of being able to change states between transparent and opaque states depending on whether or not a voltage is applied, and are objects that can adjust the amount of incident light, haze, etc. It is. Further, depending on the mechanism of change in state between a transparent state and an opaque state, light control materials are broadly classified into SPD (Suspended Particle Device) type and PDLC (Polymer Dispersed Liquid Crystal) type.
  • SPD Small Particle Device
  • PDLC Polymer Dispersed Liquid Crystal
  • a light control material is formed by, for example, placing a light control layer containing liquid crystal or the like between two base materials such as glass or film.
  • a light control layer containing liquid crystal or the like between two base materials such as glass or film.
  • an adhesive and a spacer as a gap control material may be used in order to control the distance between the two base materials and maintain an appropriate thickness of the light control layer.
  • particles having adhesive properties may be used to further enhance the adhesive properties between two base materials.
  • Patent Document 1 listed below describes an adhesive spacer for a liquid crystal display panel that includes a particle body and an adhesive layer disposed on the surface of the particle body.
  • the adhesive layer is composed of fine particles of a thermoplastic resin, and the fine particles of the thermoplastic resin have an ionic charge opposite to that of the main particles, and the fine particles of the thermoplastic resin are caused by heteroaggregation. is attached to the surface of the particle body.
  • thermoplastic resin in the adhesive layer may dissolve into the liquid crystal, and the liquid crystal may be contaminated.
  • various problems such as abnormal alignment of the liquid crystal and abnormal display occur.
  • An object of the present invention is to provide composite particles that can improve adhesiveness and prevent contamination of liquid crystals. Another object of the present invention is to provide a light control laminate using the above composite particles.
  • the present invention comprises a base particle and an adhesive substance disposed on the surface of the base particle, the adhesive substance containing a polymer of a polymerizable component, and the adhesive substance comprising a polymerizable component.
  • the components include a first (meth)acrylate monomer having a first reactive functional group other than a (meth)acryloyl group, and a second (meth)acrylate monomer having a second reactive functional group other than a (meth)acryloyl group. ) an acrylate monomer, wherein the first reactive functional group and the second reactive functional group are different from each other.
  • the polymerizable component further includes a polymerizable compound different from both the first (meth)acrylate monomer and the second (meth)acrylate monomer, and the The total content of the first (meth)acrylate monomer and the second (meth)acrylate monomer in 100% by weight of the polymerizable component is 5% by weight or more and 30% by weight or less.
  • the glass transition temperature of the polymer is -15°C or more and 20°C or less.
  • the polymer has the first reactive functional group and the second reactive functional group, and the first reactive functional group and Each of the second reactive functional groups has a property of being able to react upon stimulation.
  • the stimulus is heating or light irradiation.
  • the combination of the first reactive functional group and the second reactive functional group is a cyclic ether group, an isocyanate group, an aldehyde group, a nitrile group, an amide group. , a hydroxyl group, a carboxy group, an imide group, and an amino group.
  • the first reactive functional group is a cyclic ether group, an isocyanate group, an aldehyde group, or a nitrile group.
  • the first reactive functional group is an epoxy group or an oxetanyl group.
  • the second reactive functional group is an amide group, a hydroxyl group, a carboxy group, an imide group, or an amino group.
  • the adhesive substance is a plurality of adhesive particles or an adhesive layer.
  • the adhesive substance is a plurality of adhesive particles, and the adhesive particles have a particle diameter of 300 nm or more and 3000 nm or less.
  • the adhesive substance is an adhesive layer, and the adhesive layer has a thickness of 300 nm or more and 3000 nm or less.
  • the proportion of the surface area where the adhesive substance is arranged is 30% or more and 100% or less of the 100% surface area of the base particle.
  • the adhesive substance is disposed on the surface of the base particle by heteroaggregation, impact in high-speed airflow, or theta-composer.
  • a first transparent base material a second transparent base material, and a light control layer disposed between the first transparent base material and the second transparent base material.
  • a light control laminate wherein the light control layer includes a plurality of spacers, and the spacers are the above-mentioned composite particles.
  • the composite particles according to the present invention include base particles and an adhesive substance disposed on the surface of the base particles.
  • the adhesive substance includes a polymer of a polymerizable component.
  • the polymerizable component includes a first (meth)acrylate monomer having a first reactive functional group other than a (meth)acryloyl group, and a second reactive functional group other than a (meth)acryloyl group. a second (meth)acrylate monomer having a reactive functional group, and the first reactive functional group and the second reactive functional group are different from each other. Since the composite particles according to the present invention have the above configuration, it is possible to improve adhesiveness and prevent contamination of the liquid crystal.
  • FIG. 1 is a cross-sectional view schematically showing a composite particle according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a composite particle according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a PDLC type light control laminate using composite particles according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing an SPD type light control laminate using composite particles according to the first embodiment of the present invention.
  • the composite particle according to the present invention includes a base particle and an adhesive substance disposed on the surface of the base particle.
  • the adhesive substance includes a polymer of a polymerizable component, and the polymerizable component has a first (meth)acryloyl group having a first reactive functional group other than a (meth)acryloyl group.
  • an acrylate monomer and a second (meth)acrylate monomer having a second reactive functional group other than a (meth)acryloyl group the first reactive functional group and the second reactive functional group are different from each other.
  • the second (meth)acrylate monomer has a second reactive functional group different from the first reactive functional group.
  • the composite particles according to the present invention have the above-mentioned configuration, adhesiveness can be improved. Moreover, since the composite particles according to the present invention are provided with the above-mentioned configuration, contamination of the liquid crystal can be prevented. As a result, abnormal alignment of the liquid crystal can be prevented, and display abnormalities can be prevented. Furthermore, when the composite particles according to the present invention are used as a gap material (spacer), the composite particles can be brought into sufficient contact with the base material (adherent), etc., and a sufficient gap control effect can be obtained. .
  • FIG. 1 is a cross-sectional view schematically showing a composite particle according to a first embodiment of the present invention.
  • the composite particle 1 shown in FIG. 1 includes a base particle 2 and an adhesive substance 3 disposed on the surface of the base particle 2.
  • the adhesive substance 3 is a plurality of adhesive particles. Since the composite particles 1 include the adhesive substance 3, they have adhesive properties.
  • the adhesive substance (adhesive particle) 3 covers at least a portion of the surface of the base particle 2.
  • the composite particle 1 is a coated particle in which the surface of a base particle 2 is coated with an adhesive substance (adhesive particle) 3.
  • FIG. 2 is a cross-sectional view schematically showing composite particles according to a second embodiment of the present invention.
  • the composite particle 11 shown in FIG. 2 includes a base particle 2 and an adhesive substance 13 disposed on the surface of the base particle 2.
  • adhesive substance 13 is an adhesive layer. Since the composite particles 11 include the adhesive substance 13, they have adhesive properties.
  • the adhesive substance (adhesive layer) 13 covers the surface of the base particle 2.
  • the composite particles 11 are coated particles in which the surface of the base particle 2 is coated with an adhesive substance (adhesive layer) 13 .
  • the adhesive substance (adhesive layer) 13 is a coating layer.
  • the particle diameter of the composite particles is preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, even more preferably 10 ⁇ m or more, and preferably 200 ⁇ m or less, more preferably 100 ⁇ m or less, and still more preferably 50 ⁇ m or less.
  • adhesiveness can be further improved and the gap control effect can be further enhanced.
  • the particle diameter of the above composite particles means the diameter when the composite particles are true spherical, and when the composite particles have a shape other than true spherical, the diameter when assuming a true sphere equivalent to the volume of the composite particles. means.
  • the particle size of the composite particles is preferably an average particle size, more preferably a number average particle size.
  • the particle diameter of the composite particles is determined by observing 50 arbitrary composite particles with an electron microscope or an optical microscope and calculating the average value, or by performing laser diffraction particle size distribution measurement. In observation using an electron microscope or an optical microscope, the particle diameter of each composite particle is determined as the particle diameter in equivalent circle diameter. In observation using an electron microscope or an optical microscope, the average particle diameter of any 50 composite particles in equivalent circle diameter is approximately equal to the average particle diameter in equivalent sphere diameter. In the laser diffraction particle size distribution measurement, the particle diameter of each composite particle is determined as the particle diameter in equivalent sphere diameter. The particle diameter of the composite particles is preferably calculated by laser diffraction particle size distribution measurement.
  • the coefficient of variation (CV value) of the particle diameter of the composite particles is preferably 10% or less, more preferably 5% or less. When the coefficient of variation of the particle diameter of the composite particles is equal to or less than the above upper limit, the gap control effect can be further enhanced.
  • the lower limit of the coefficient of variation (CV value) of the particle diameter of the composite particles is not particularly limited.
  • the coefficient of variation (CV value) of the particle diameter of the composite particles may be 0% or more, or 1% or more.
  • CV value The above coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ /Dn) x 100 ⁇ : Standard deviation of particle diameter of composite particles Dn: Average value of particle diameter of composite particles
  • the shape of the composite particles is not particularly limited.
  • the shape of the composite particles may be spherical, non-spherical, flat, etc.
  • the 20% K value of the composite particles is preferably 100 N/mm 2 or more, more preferably 700 N/mm 2 or more, even more preferably 1000 N/mm 2 or more, and preferably 5000 N/mm 2 or less, more preferably 4000 N /mm 2 or less, more preferably 3000 N/mm 2 or less.
  • the 20% K value of the composite particles is not less than the lower limit and not more than the upper limit, the gap between the base materials can be controlled with even higher precision and damage to the base materials can be prevented.
  • the 20% K value (compressive elastic modulus when the composite particles are compressed by 20%) of the above composite particles can be measured as follows.
  • one composite particle is compressed with the smooth indenter end face of a cylinder (diameter 50 ⁇ m, made of diamond) under conditions of 25° C., compression speed of 0.3 mN/sec, and maximum test load of 20 mN. At this time, the load value (N) and compression displacement (mm) are measured. From the obtained measured values, the 20% K value (20% compressive elastic modulus) of the composite particles can be determined by the following formula.
  • the micro-compression tester for example, "Micro-compression tester MCT-W200" manufactured by Shimadzu Corporation, "Fisherscope H-100” manufactured by Fisher Corporation, etc. are used.
  • the 20% K value of the composite particles is preferably calculated by arithmetic averaging the 20% K values of 50 arbitrarily selected composite particles.
  • the above K value universally and quantitatively represents the hardness of the composite particles.
  • the hardness of the composite particles can be expressed quantitatively and uniquely.
  • the above composite particles are suitably used as a gap material (spacer).
  • the composite particles are preferably used as a gap material (spacer).
  • the gap material (spacer) include spacers for liquid crystal display elements, spacers for gap control, spacers for stress relaxation, and spacers for light control laminates.
  • the above gap control spacer is used for gap control of laminated chips and electronic component devices to ensure standoff height and flatness, and for optical components to ensure smoothness of glass surfaces and thickness of adhesive layers. It can be used for gap control, etc.
  • the stress-relaxing spacer can be used for stress-relaxing a sensor chip or the like, stress relieving of a connecting portion connecting two connection target members, and the like. Examples of the sensor chip include a semiconductor sensor chip. Further, when the composite particles are used as a gap material (spacer), the composite particles can be brought into sufficient contact with the member to be connected, etc., and a sufficient gap control effect can be obtained.
  • the composite particles described above are preferably used as spacers for liquid crystal display elements, and are preferably used as peripheral sealants for liquid crystal display elements.
  • the composite particles preferably function as spacers.
  • the composite particles do not need to be spacers for liquid crystal display elements, and may be spacers for gap control, stress relaxation spacers, or light control laminate spacers.
  • the composite particles are used in an adhesive for electronic components or as an adhesive for electronic components.
  • the adhesive for electronic components include adhesives for liquid crystal panels, adhesives for laminated substrates, adhesives for circuit boards, adhesives for camera modules, and the like.
  • the laminated substrate include a semiconductor sensor chip.
  • the above-mentioned composite particles can be used alone as an adhesive for electronic parts.
  • the above composite particles can be used as an adhesive for electronic components without using other adhesive components.
  • the above composite particles can also be used as a spacer and an adhesive for electronic components.
  • the physical properties required for the spacer such as gap controllability and stress relaxation properties, are better than when the spacer and adhesive are made of different materials. It is possible to achieve both adhesion and adhesion to an even higher degree.
  • (meth)acrylate means one or both of “acrylate” and “methacrylate”
  • (meth)acrylic means one or both of “acrylic” and “methacrylic”.
  • (meth)acryloyl means one or both of “acryloyl” and “methacryloyl”.
  • the base particles include resin particles, inorganic particles other than metal particles, organic-inorganic hybrid particles, and metal particles.
  • the base particles are preferably base particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles.
  • the base particle may be a core-shell particle including a core and a shell disposed on the surface of the core.
  • the core may be an organic core, and the shell may be an inorganic shell.
  • Materials for the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, and phenol formaldehyde.
  • polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene
  • acrylic resins such as polymethyl methacrylate and polymethyl acrylate
  • polycarbonate polyamide
  • phenol formaldehyde phenol formaldehyde
  • Resin melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, Examples include polyamideimide, polyetheretherketone, polyethersulfone, and divinylbenzene polymer.
  • the divinylbenzene polymer may be a divinylbenzene copolymer.
  • the divinylbenzene copolymer examples include divinylbenzene-styrene copolymer and divinylbenzene-(meth)acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the material of the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having ethylenically unsaturated groups. is preferred.
  • the polymerizable monomer having an ethylenically unsaturated group may be a non-crosslinkable monomer.
  • examples include crosslinkable monomers.
  • non-crosslinkable monomer examples include styrene monomers such as styrene and ⁇ -methylstyrene; carboxyl group-containing monomers such as (meth)acrylic acid, maleic acid, and maleic anhydride; methyl ( meth)acrylate, ethyl(meth)acrylate, propyl(meth)acrylate, butyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, lauryl(meth)acrylate, cetyl(meth)acrylate, stearyl(meth)acrylate, cyclohexyl( Alkyl (meth)acrylate compounds such as meth)acrylate and isobornyl (meth)acrylate; such as 2-hydroxyethyl (meth)acrylate, glycerol (meth)acrylate, polyoxyethylene (meth)acrylate, and glycidyl (meth)acrylate; Oxygen atom-containing (meth)
  • unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene
  • halogens such as trifluoromethyl (meth)acrylate, pentafluoroethyl (meth)acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene. Containing monomers, etc. may be mentioned.
  • crosslinkable monomers examples include tetramethylolmethanetetra(meth)acrylate, tetramethylolmethanetri(meth)acrylate, tetramethylolmethanedi(meth)acrylate, trimethylolpropanetri(meth)acrylate, and dipentaerythritol hexaacrylate.
  • (meth)acrylate dipentaerythritol penta(meth)acrylate, dipentaerythritol poly(meth)acrylate, pentaerythritol tetra(meth)acrylate, glycerol tri(meth)acrylate, glycerol di(meth)acrylate, (poly)ethylene glycol Polyfunctional (meth)acrylate compounds such as di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, (poly)tetramethylene glycol di(meth)acrylate, and 1,4-butanediol di(meth)acrylate ; triallyl(iso)cyanurate, triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, and ⁇ -(meth)acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxys
  • Examples include silane-containing monomers.
  • the crosslinkable monomers are (poly)ethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, penta Erythritol tetra(meth)acrylate or dipentaerythritol poly(meth)acrylate is preferred.
  • the above resin particles can be obtained by polymerizing the above polymerizable monomer having an ethylenically unsaturated group by a known method.
  • this method include a method in which suspension polymerization is carried out in the presence of a radical polymerization initiator, and a method in which monomers are swollen and polymerized together with a radical polymerization initiator using non-crosslinked seed particles.
  • the base particles are inorganic particles excluding metals or organic-inorganic hybrid particles
  • examples of the inorganic substance for forming the base particles include silica, alumina, barium titanate, zirconia, and carbon black.
  • the inorganic substance is not a metal.
  • the particles formed of silica can be obtained, for example, by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, and then firing as necessary.
  • Examples include particles that are Examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed from a crosslinked alkoxysilyl polymer and an acrylic resin.
  • the organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core.
  • the core is an organic core.
  • the shell is an inorganic shell.
  • Examples of the material for the organic core include the materials for the resin particles described above.
  • the material for the inorganic shell examples include the inorganic substances listed as the material for the base particles described above.
  • the material of the inorganic shell is preferably silica.
  • the inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material by a sol-gel method on the surface of the core, and then firing the shell-like material.
  • the metal alkoxide is a silane alkoxide.
  • the inorganic shell is preferably formed of silane alkoxide.
  • the base particles are metal particles
  • examples of the metal that is the material of the metal particles include silver, copper, nickel, silicon, gold, and titanium.
  • the particle diameter of the base particles is preferably 1 ⁇ m or more, more preferably 5 ⁇ m or more, and preferably 40 ⁇ m or less, more preferably 30 ⁇ m or less.
  • the particle diameter of the base particles is not less than the above lower limit and not more than the above upper limit, the adhesiveness of the composite particles can be further improved, and the gap control effect can be further improved.
  • the shape of the base particles is not particularly limited.
  • the shape of the base particle may be spherical, a shape other than spherical, a flat shape, or the like.
  • the particle diameter of the base material particle mentioned above means the diameter when the base material particle is true spherical, and when the base material particle has a shape other than true spherical, it is assumed that the base material particle is a true sphere equivalent to the volume. means the diameter of
  • the particle size of the base particles is preferably an average particle size, more preferably a number average particle size.
  • the particle diameter of the base material particles is determined using a particle size distribution measuring device or the like.
  • the particle diameter of the base particles is preferably determined by observing 50 base particles using an electron microscope or an optical microscope and calculating the average value. When measuring the particle diameter of the base particle in the composite particle, for example, it can be measured as follows.
  • the composite particles are added to "Technovit 4000” manufactured by Kulzer Co., Ltd. so that the content thereof is 30% by weight, and dispersed to prepare an embedded resin body for inspection containing the composite particles.
  • IM4000 manufactured by Hitachi High-Technologies
  • a cross section of the composite particles is cut out so as to pass through the center of the base particle in the composite particles dispersed in the embedded resin body for inspection.
  • FE-SEM field emission scanning electron microscope
  • the image magnification is set to 25,000 times, 50 composite particles are randomly selected, and the base material particles in each composite particle are observed.
  • the particle size of the base material particles in each composite particle is measured, and the arithmetic average of these is determined as the particle size of the base material particle.
  • the 20% K value of the base particles is preferably 100 N/mm 2 or more, more preferably 700 N/mm 2 or more, even more preferably 1000 N/mm 2 or more, and preferably 20000 N/mm 2 or less, more preferably It is 5000 N/mm 2 or less, more preferably 4000 N/mm 2 or less, particularly preferably 3000 N/mm 2 or less.
  • the 20% K value of the base material particles is not less than the above lower limit and not more than the above upper limit, the gap between the base materials can be controlled with even higher precision and damage to the base material can be prevented.
  • the 20% K value (compressive elastic modulus when the base particles are compressed by 20%) of the base particles can be measured as follows.
  • the 20% K value (20% compressive elastic modulus) of the base material particles can be determined by the following formula.
  • the micro-compression tester for example, "Micro-compression tester MCT-W200” manufactured by Shimadzu Corporation, "Fisherscope H-100” manufactured by Fisher Corporation, etc. are used.
  • the 20% K value of the base material particles is preferably calculated by calculating the arithmetic average of the 20% K values of 50 arbitrarily selected base material particles.
  • the above K value universally and quantitatively represents the hardness of the base material particles.
  • the hardness of the base material particles can be expressed quantitatively and uniquely.
  • the content of the base particles in 100% by weight of the composite particles is preferably 75% by weight or more, more preferably 80% by weight or more, even more preferably 85% by weight or more, and preferably 96% by weight or less, more preferably Preferably it is 94% by weight or less, more preferably 93% by weight or less.
  • adhesiveness can be further enhanced and the gap control effect can be further enhanced.
  • the base material particles contain a colorant.
  • the coloring agent include pigments and dyes.
  • the base particles may contain both a pigment and a dye, may contain only a pigment, or may contain only a dye.
  • the pigment or dye is preferably a pigment or dye that can reduce the total light transmittance of the base particles to 20% or less.
  • the pigment may be a black pigment, a dark blue pigment, or a dark brown pigment.
  • the pigment is a black pigment.
  • the dye is a black dye.
  • the base particles may contain both a black pigment and a black dye, may contain only a black pigment, or may contain only a black dye.
  • black pigment examples include carbon black, lamp black, graphite, iron oxide, copper-chromium composite oxide, copper-chromium-zinc composite oxide, and the like. Only one kind of the above-mentioned black pigment may be used, or two or more kinds thereof may be used in combination.
  • dark blue pigment examples include copper phthalocyanine, cobalt phthalocyanine, and cobalt aluminate. Only one type of the above-mentioned dark blue pigment may be used, or two or more types may be used in combination.
  • dark brown pigment examples include zinc ferrite, iron oxide, and the like.
  • the dark brown pigments described above may be used alone or in combination of two or more.
  • the above black dyes include pyrazole azo dyes, anilinoazo dyes, triphenylmethane dyes, anthraquinone dyes, anthrapyridone dyes, benzylidene dyes, oxole dyes, pyrazolotriazole azo dyes, pyridone azo dyes, and cyanine.
  • dyes phenothiazine dyes, pyrrolopyrazole azomethine dyes, xatene dyes, phthalocyanine dyes, benzopyran dyes, indigo dyes, pyrromethene dyes, triarylmethane dyes, azomethine dyes, berylene dyes, perinone dyes , quatarylene dyes, and quinophthalone dyes, and acid dyes, direct dyes, basic dyes, mordant dyes, acid mordant dyes, azoic dyes, disperse dyes, oil-soluble dyes, food dyes, and derivatives thereof. Examples include dyes that are made black by mixing more than one species. Only one kind of the above-mentioned black dye may be used, or two or more kinds may be used in combination.
  • the pigment is preferably carbon black, titanium black, aniline black, or iron oxide.
  • the above pigments may be used alone or in combination of two or more.
  • the pigment is preferably carbon black.
  • the above carbon black is not particularly limited.
  • Examples of the carbon black include channel black, roll black, furnace black, thermal black, Ketjen black, and acetylene black.
  • the above-mentioned carbon black may be used alone or in combination of two or more.
  • the dye is preferably an acidic dye.
  • the above dyes may be used alone or in combination of two or more.
  • the total content of the pigment and the dye in 100% by weight of the base particles is preferably 2% by weight or more, more preferably 3% by weight or more, and preferably 40% by weight or less, more preferably 20% by weight. % or less.
  • the total content of the pigment and the dye is not less than the lower limit and not more than the upper limit, the light leakage can be more effectively prevented in the light control laminate, and color unevenness can be more effectively prevented. can be suppressed.
  • the content of the pigment in 100% by weight of the base particles is preferably 2% by weight or more, more preferably 3% by weight or more, and preferably 10% by weight or less, more preferably 8% by weight or less.
  • the content of the pigment is at least the above lower limit and below the above upper limit, in the light control laminate, the occurrence of light leakage can be even more effectively prevented, and the occurrence of color unevenness can be even more effectively suppressed.
  • the content of the dye in 100% by weight of the base particles is preferably 3% by weight or more, more preferably 5% by weight or more, and preferably 40% by weight or less, more preferably 20% by weight or less.
  • the content of the dye is not less than the above lower limit and not more than the above upper limit, in the light control laminate, the occurrence of light leakage can be more effectively prevented, and the occurrence of color unevenness can be even more effectively suppressed.
  • the adhesive substance has adhesive properties.
  • the adhesive substance includes a polymer of polymerizable components.
  • the polymerizable component includes a first (meth)acrylate monomer having a first reactive functional group other than a (meth)acryloyl group, and a second reactive functional group other than a (meth)acryloyl group. a second (meth)acrylate monomer having a group, and the first reactive functional group and the second reactive functional group are different from each other.
  • the polymerizable component includes a first (meth)acrylate monomer and a second (meth)acrylate monomer.
  • the first (meth)acrylate monomer has a first reactive functional group.
  • the second (meth)acrylate monomer has a second reactive functional group.
  • the first reactive functional group and the second reactive functional group are each different from a (meth)acryloyl group.
  • Each of the first reactive functional group and the second reactive functional group is a reactive functional group other than a (meth)acryloyl group. That is, the first (meth)acrylate monomer has a (meth)acryloyl group and a first reactive functional group other than the (meth)acryloyl group.
  • the second (meth)acrylate monomer has a (meth)acryloyl group and a second reactive functional group other than the (meth)acryloyl group.
  • the first reactive functional group and the second reactive functional group are different.
  • the polymer has the first reactive functional group and the second reactive functional group.
  • the first reactive functional group and the second reactive functional group each have the property of being able to react upon stimulation.
  • the stimulus include heating, light irradiation, pressure, and the like. From the viewpoint of further improving adhesiveness, the stimulus is preferably heating or light irradiation. From the viewpoint of more effectively preventing contamination of the liquid crystal, the first reactive functional group and the second reactive functional group are reactive functional groups that can react by heating or irradiation with light. It is preferable. From the viewpoint of further increasing adhesiveness and more effectively preventing contamination of the liquid crystal, the first reactive functional group and the second reactive functional group can be heated or irradiated with light. Preferably, they react with each other.
  • Examples of the reactive functional groups that can react by heating include cyclic ether groups, amide groups, hydroxyl groups, and carboxy groups.
  • Examples of the reactive functional groups that can react upon irradiation with light include vinyl groups, carbonyl groups, azide groups, and diazirine groups. Note that the vinyl group in the (meth)acryloyl group is excluded as the vinyl group.
  • the first reactive functional group and the second reactive functional group include a cyclic ether group, an isocyanate group, an aldehyde group, a nitrile group, an amide group, a hydroxyl group, a carboxy group, an imide group, an amino group, a vinyl group, Examples include a carbonyl group, an azide group, and a diazirine group. From the viewpoint of further increasing adhesiveness and more effectively preventing contamination of the liquid crystal, the combination of the first reactive functional group and the second reactive functional group is a cyclic ether group, an isocyanate group, etc.
  • the cyclic ether group include an epoxy group and an oxetanyl group.
  • the first reactive functional group and the second reactive functional group may have an epoxy group as a part of the glycidyl group.
  • the vinyl group in the (meth)acryloyl group is excluded as the vinyl group.
  • the combination of the first reactive functional group and the second reactive functional group is a combination of a cyclic ether group and an amide group, a combination of a cyclic ether group and an amino group, or a combination of an isocyanate group and a hydroxyl group. It is preferable that The combination of the first reactive functional group and the second reactive functional group is more preferably a combination of a cyclic ether group and an amide group, and more preferably a combination of an epoxy group and an amide group. More preferred.
  • the first reactive functional group may be a cyclic ether group, an isocyanate group, an aldehyde group, or a nitrile group. It is preferably a cyclic ether group, more preferably an epoxy group or an oxetanyl group.
  • the second reactive functional group is an amide group, a hydroxyl group, a carboxy group, an imide group, or an amino group. is preferable, an amide group or a hydroxyl group is more preferable, and an amide group is even more preferable.
  • first (meth)acrylate monomer may contain the first reactive functional group and a reactive functional group other than the first reactive functional group.
  • the second (meth)acrylate monomer may include the second reactive functional group and a reactive functional group other than the second reactive functional group.
  • the first (meth)acrylate monomer and the second (meth)acrylate monomer may each be a monofunctional (meth)acrylate or a difunctional (meth)acrylate, It may be a trifunctional (meth)acrylate or a tetrafunctional or higher (meth)acrylate.
  • the first (meth)acrylate monomer and the second (meth)acrylate monomer may each have one (meth)acryloyl group, may have two (meth)acryloyl groups, and may have two (meth)acryloyl groups. It may have more than 3 pieces, it may have 3 pieces or more, it may have 4 or more pieces.
  • the first (meth)acrylate monomer and the second (meth)acrylate monomer may each have 100 or less (meth)acryloyl groups, and may have 50 or less, It may have 10 or less.
  • the first (meth)acrylate monomer examples include glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and 2-isocyanylethyl (meth)acrylate. , and 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl (meth)acrylate. From the viewpoint of further improving adhesiveness, the first (meth)acrylate monomer is preferably glycidyl (meth)acrylate.
  • the second (meth)acrylate monomer includes (meth)acrylamide, 2-hydroxypropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and 2-(tert- butylamino)ethyl (meth)acrylate and the like. From the viewpoint of further improving adhesiveness, the second (meth)acrylate monomer is preferably (meth)acrylamide.
  • the polymerizable component may further include a polymerizable compound different from both the first (meth)acrylate monomer and the second (meth)acrylate monomer.
  • the polymerizable compound that is different from both the first (meth)acrylate monomer and the second (meth)acrylate monomer is not particularly limited.
  • the polymerizable compound different from both the first (meth)acrylate monomer and the second (meth)acrylate monomer may be a polymerizable compound having a reactive functional group other than the (meth)acryloyl group, It may be a polymerizable compound that does not have a reactive functional group other than a (meth)acryloyl group.
  • Examples of polymerizable compounds that do not have reactive functional groups other than the above (meth)acryloyl group include (meth)acrylic acid, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, benzyl (meth)acrylate, and methyl Examples include (meth)acrylate.
  • the total content of the first (meth)acrylate monomer and the second (meth)acrylate monomer in 100% by weight of the polymerizable component is preferably 5% by weight or more, more preferably 7% by weight or more. , more preferably 10% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less, still more preferably 20% by weight or less.
  • the total content of the first (meth)acrylate monomer and the second (meth)acrylate monomer is greater than or equal to the lower limit and less than or equal to the upper limit, the effects of the present invention are exhibited even more effectively. be able to.
  • the content of the first (meth)acrylate monomer in 100% by weight of the polymerizable component is preferably 1% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, and preferably It is 20% by weight or less, more preferably 15% by weight or less, even more preferably 13% by weight or less.
  • adhesiveness can be further improved.
  • the content of the second (meth)acrylate monomer in 100% by weight of the polymerizable component is preferably 1% by weight or more, more preferably 3% by weight or more, still more preferably 5% by weight or more, and preferably It is 20% by weight or less, more preferably 17% by weight or less, even more preferably 15% by weight or less.
  • adhesiveness can be further improved.
  • the method of polymerizing the polymer of the above polymerizable component is not particularly limited.
  • the polymerization method known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, condensation polymerization), addition condensation, living polymerization, and living radical polymerization can be used. Examples of this method include suspension polymerization in the presence of a radical polymerization initiator, and seed polymerization in which monomers are polymerized by swelling them together with a radical polymerization initiator using non-crosslinked seed particles. and emulsion polymerization method.
  • the adhesive substance examples include a plurality of adhesive particles and an adhesive layer.
  • the adhesive substance is a plurality of adhesive particles or an adhesive layer.
  • the adhesive substance is preferably a plurality of adhesive particles.
  • the particle diameter of the adhesive particles is preferably 100 nm or more, more preferably 200 nm or more, even more preferably 300 nm or more, preferably 5000 nm or less, more preferably 4000 nm or less, still more preferably 3000 nm or less, particularly preferably 2500 nm or less. It is. When the particle diameter of the adhesive particles is not less than the above lower limit and not more than the above upper limit, the morphology of the composite particles can be further improved.
  • the particle size of the adhesive particles mentioned above means the diameter when the adhesive particles are true spherical, and when the adhesive particles have a shape other than true spherical, it is assumed that the adhesive particles are true spheres equivalent to the volume. means the diameter of
  • the particle size of the adhesive particles is preferably an average particle size, and preferably a number average particle size.
  • the particle size of the above-mentioned adhesive particles can be determined, for example, by observing 50 arbitrary adhesive particles with an electron microscope or an optical microscope and calculating the average value of the particle size of each adhesive particle, or by using laser diffraction particle size distribution. Determined by performing measurements.
  • the coefficient of variation (CV value) of the particle diameter of the adhesive particles is preferably 10% or less, more preferably 5% or less.
  • the lower limit of the coefficient of variation (CV value) of the particle diameter of the adhesive particles is not particularly limited.
  • the coefficient of variation (CV value) of the particle diameter of the adhesive particles may be 0% or more, or 1% or more.
  • CV value The above coefficient of variation (CV value) can be measured as follows.
  • CV value (%) ( ⁇ /Dn) x 100 ⁇ : Standard deviation of particle diameter of adhesive particles Dn: Average value of particle diameter of adhesive particles
  • the shape of the adhesive particles is not particularly limited.
  • the adhesive particles may have a spherical shape, a shape other than a spherical shape, a flat shape, or the like.
  • the adhesive substance is preferably an adhesive layer.
  • the thickness of the adhesive layer is preferably 100 nm or more, more preferably 200 nm or more, even more preferably 300 nm or more, and preferably 5000 nm or less, more preferably 4000 nm or less, still more preferably 3000 nm or less.
  • the thickness of the adhesive layer is not less than the above lower limit and not more than the above upper limit, the morphology of the composite particles can be further improved.
  • the thickness of the adhesive layer can be measured, for example, by observing the cross section of the coated particles using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the ratio of the average particle diameter of the adhesive particles or the thickness of the adhesive layer to the average particle diameter of the composite particles is preferably 0.01 or more, more preferably 0.05 or more, and preferably 0.5 or less, more preferably 0.3 or less.
  • the adhesive layer may be a single adhesive layer or may be a multilayer adhesive layer.
  • the proportion of the surface area where the adhesive substance is arranged is preferably 30% or more, more preferably 40% or more, and still more preferably 50%. or more, preferably 100% or less, more preferably 90% or less. Adhesiveness can be further improved when the proportion of the surface area where the adhesive substance is placed (coverage rate by the adhesive substance) is equal to or higher than the lower limit. When the proportion of the surface area on which the adhesive substance is arranged (coverage rate by the adhesive substance) is below the above upper limit, the morphology of the composite particles can be further improved.
  • the ratio of the surface area where the adhesive substance is placed can be determined, for example, by the following method.
  • the 20 composite particles were observed using a scanning electron microscope (SEM), and the total area (projected area) of the portion covered by the adhesive particles or adhesive layer in 100% of the surface area of the base particle was determined. ).
  • the glass transition temperature of the polymer is preferably -15°C or higher, more preferably -10°C or higher, even more preferably 0°C or higher, and preferably 20°C or lower, more preferably The temperature is preferably 15°C or lower, more preferably 10°C or lower.
  • the glass transition temperature of the adhesive substance is preferably -15°C or higher, more preferably -10°C or higher, even more preferably 0°C or higher, and preferably 20°C or lower, The temperature is more preferably 15°C or lower, even more preferably 10°C or lower.
  • the glass transition temperature of the adhesive substance and the polymer can be calculated from the weight fraction of the polymerizable component using the Fox equation, for example.
  • the glass transition temperature of the adhesive substance and the polymer may be measured using a dynamic viscoelasticity measuring device.
  • the dynamic viscoelasticity measuring device include "ARES-G2" manufactured by TA Instruments.
  • Examples of methods for disposing the adhesive substance on the surface of the base particles include a heterocoagulation method, a high-speed air impact method, and a method using a theta composer. From the viewpoint of exhibiting the effects of the present invention even more effectively, in the composite particles, the adhesive substance is arranged on the surface of the base particle by heteroaggregation, impact in high-speed airflow, or theta composer. It is preferable that the In the composite particle, the adhesive substance may be placed on the surface of the base particle by a hybridizer.
  • the content of the polymer of the polymerizable component in 100% by weight of the adhesive substance is preferably 50% by weight or more, more preferably 60% by weight or more, and still more preferably 80% by weight or more. When the content of the polymer of the polymerizable component is equal to or higher than the lower limit, the adhesiveness can be further improved.
  • the upper limit of the content of the polymer of the polymerizable component in 100% by weight of the adhesive substance is not particularly limited.
  • the content of the polymer of the polymerizable component in 100% by weight of the adhesive substance may be 100% by weight (total amount) or 100% by weight or less.
  • the adhesive substance may contain components other than the polymer of the polymerizable component.
  • Components other than the polymer of the above-mentioned polymerizable components include dispersants, surfactants, inorganic oxides, liquid crystal molecules, and the like.
  • the light control laminate according to the present invention includes a first transparent base material, a second transparent base material, and a light control layer disposed between the first transparent base material and the second transparent base material. and a layer.
  • the light control layer includes a plurality of spacers, and the spacers are the composite particles.
  • the light control laminate is preferably different from a liquid crystal display element (liquid crystal display device).
  • the light control laminate according to the present invention has the above configuration, it is possible to improve the adhesiveness between the base materials and prevent contamination of the liquid crystal. Further, in the light control laminate according to the present invention, the gap between the base materials can be controlled with high precision.
  • FIG. 3 is a cross-sectional view schematically showing a PDLC type light control laminate using composite particles according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view schematically showing an SPD type light control laminate using composite particles according to the first embodiment of the present invention.
  • the size, thickness, shape, addition amount, etc. of the light control layer and the spacer (composite particles) are appropriately changed from the actual size and shape for convenience of illustration.
  • a PDLC type light control laminate 51 shown in FIG. 3 includes a first transparent base material 6, a second transparent base material 7, and a light control layer 4.
  • the light control layer 4 is sandwiched between a first transparent base material 6 and a second transparent base material 7.
  • the light control layer 4 is arranged between the first transparent base material 6 and the second transparent base material 7.
  • a sealant may be placed around the light control layer 4 between the first transparent base material 6 and the second transparent base material 7.
  • the light control layer 4 includes a liquid crystal capsule 4A, a binder 4B, and a plurality of spacers 8.
  • the liquid crystal capsule 4A is made of liquid crystal material. Liquid crystal capsules 4A are dispersed in binder 4B. The liquid crystal capsule 4A is held in a capsule shape in a binder 4B.
  • the liquid crystal material may be dispersed in the binder in the form of capsules, or the liquid crystal material may be dispersed in the binder as a continuous phase.
  • the spacer 8 is a spherical spacer.
  • the spacer may be spherical or columnar.
  • Spacer 8 is the composite particle described above.
  • the spacer 8 is in contact with the first transparent base material 6 and the second transparent base material 7.
  • the spacer 8 controls the gap between the first transparent base material 6 and the second transparent base material 7.
  • Transparent electrodes are formed on the surface of the first transparent base material 6 and the surface of the second transparent base material 7 (not shown).
  • Examples of the material for the transparent electrode include indium tin oxide (ITO).
  • the orientation of the liquid crystal molecules in the liquid crystal capsule 4A is not uniform, so the difference in refractive index between the binder 4B and the liquid crystal material causes the incident light to It is scattered in the binder and becomes opaque.
  • the liquid crystal molecules within the liquid crystal capsule 4A are aligned in a direction parallel to the electric field.
  • the binder 4B and the liquid crystal material have the same refractive index, allowing light to pass through, resulting in a transparent state.
  • the SPD type light control laminate 52 shown in FIG. 4 includes a first transparent base material 6, a second transparent base material 7, and a light control layer 5.
  • the light control layer 5 is sandwiched between a first transparent base material 6 and a second transparent base material 7.
  • the light control layer 5 is arranged between the first transparent base material 6 and the second transparent base material 7.
  • the light control layer 5 includes droplets 5A of light control suspension, a resin matrix 5B, and a plurality of spacers 8. Droplets 5A of light-modulating suspension are dispersed in a resin matrix 5B. The droplets 5A of the light conditioning suspension are held in droplet form in the resin matrix 5B.
  • the droplet 5A of the light adjustment suspension includes a dispersion medium 5Aa and light adjustment particles 5Ab.
  • the light adjustment particles 5Ab are dispersed in the dispersion medium 5Aa.
  • the spacer 8 is a spherical spacer.
  • the spacer may be spherical or columnar.
  • Spacer 8 is the composite particle described above.
  • the spacer 8 is in contact with the first transparent base material 6 and the second transparent base material 7.
  • the spacer 8 controls the gap between the first transparent base material 6 and the second transparent base material 7.
  • Transparent electrodes are formed on the surface of the first transparent base material 6 and the surface of the second transparent base material 7 (not shown).
  • Examples of the material for the transparent electrode include indium tin oxide (ITO).
  • the Brownian motion of the light adjusting particles 5Ab dispersed in the dispersion medium 5Aa constituting the droplets 5A of the light adjusting suspension causes the incident light to change. is absorbed, scattered, or reflected by the light adjustment particles 5Ab, and the incident light cannot pass through the light adjustment layer 5.
  • the light control particles 5Ab are arranged in a direction parallel to the electric field. Therefore, the incident light can pass between the arranged light adjustment particles 5Ab and can be transmitted through the light adjustment layer 5.
  • the light control layer has light control properties.
  • the above-mentioned dimming property is a property in which the visible light transmittance changes depending on whether or not an electric field is applied, and the amount of incident light can be adjusted.
  • the material of the light control layer is not particularly limited, and may be any material as long as it has light control properties.
  • the light control layer further includes a binder and a liquid crystal material dispersed in the binder.
  • the liquid crystal material has the property that its orientation changes upon application of an electric field.
  • the liquid crystal material may be dispersed in the binder as a continuous phase, or may be dispersed in the binder in the form of liquid crystal drops or liquid crystal capsules.
  • Examples of the liquid crystal material include nematic liquid crystal and cholesteric liquid crystal.
  • Materials for the cholesteric liquid crystal include steroidal cholesterol derivatives, Schiff bases, azos, azoxys, benzoates, biphenyls, terphenyls, cyclohexylcarboxylic esters, phenylcyclohexane, biphenylcyclohexane, and pyrimidine.
  • Schiff base type and azo Examples include materials to which a chiral component, which is an optically active material such as a type, ester type, or biphenyl type, is added.
  • a chiral component which is an optically active material such as a type, ester type, or biphenyl type, is added.
  • cholesteric liquid crystal materials only one type may be used, or two or more types may be used in combination.
  • the binder holds the liquid crystal material and suppresses the flow of the liquid crystal material.
  • the binder does not dissolve in the liquid crystal material, has strength enough to withstand external forces, and has high transparency to reflected light and incident light.
  • Materials for the binder include water-soluble polymer materials such as gelatin, polyvinyl alcohol, cellulose derivatives, polyacrylic acid polymers, ethyleneimine, polyethylene oxide, polyacrylamide, polystyrene sulfonate, polyamidine, isoprene sulfonic acid polymers, and materials that can be made into aqueous emulsions, such as fluororesins, silicone resins, acrylic resins, urethane resins, and epoxy resins. Only one type of the above-mentioned binder material may be used, or two or more types may be used in combination.
  • the binder is crosslinked with a crosslinking agent.
  • the crosslinking agent is not particularly limited as long as it forms a crosslink between the binders and makes the binder harden, hardly soluble, or insolubilized.
  • examples of the crosslinking agent include acetaldehyde, glutaraldehyde, glyoxal, polyvalent metal salt compound potassium alum hydrate, adipic acid dihydrazide, melamine formalin oligomer, ethylene glycol diglycidyl ether, polyamide epichlorohydrin, and polycarbodiimide. Can be mentioned. Only one kind of the above-mentioned crosslinking agent may be used, or two or more kinds thereof may be used in combination.
  • the light control layer further includes a resin matrix and a light control suspension dispersed in the resin matrix.
  • the light regulating suspension includes a dispersion medium and light regulating particles dispersed in the dispersion medium.
  • the light regulating particles include carbon materials such as polyiodide and carbon black, metal materials such as copper, nickel, iron, cobalt, chromium, titanium, and aluminum, and inorganic compound materials such as silicon nitride, titanium nitride, and aluminum oxide. etc. Alternatively, these materials may be particles coated with a polymer. Only one type of the above-mentioned light adjustment particles may be used, or two or more types may be used in combination.
  • the dispersion medium disperses the light adjustment particles in a flowable state.
  • the dispersion medium selectively adheres to and coats the light regulating particles, so that upon phase separation from the resin matrix, the light regulating particles move to the phase-separated droplet phase.
  • the material is functional, non-conductive, and has no affinity for the resin matrix.
  • the dispersion medium is preferably a liquid copolymer having a refractive index similar to that of the resin matrix when formed into a light control laminate.
  • the liquid copolymer is preferably a (meth)acrylic ester oligomer having a fluoro group or a hydroxyl group, more preferably a (meth)acrylic ester oligomer having a fluoro group and a hydroxyl group.
  • the fluoro or hydroxyl monomer units are directed toward the light-modulating particles, and the remaining monomer units stabilize the droplets of the light-modulating suspension in the resin matrix. For this reason, the light regulating particles are easily dispersed within the light regulating suspension, and upon phase separation from the resin matrix, the light regulating particles are likely to be guided into the droplets that are phase separated.
  • Examples of the (meth)acrylic acid ester oligomer having a fluoro group or a hydroxyl group include 2,2,2-trifluoroethyl methacrylate/butyl acrylate/2-hydroxyethyl acrylate copolymer, 3,5,5-acrylic acid - Trimethylhexyl/2-hydroxypropyl acrylate/fumaric acid copolymer, butyl acrylate/2-hydroxyethyl acrylate copolymer, 2,2,3,3-tetrafluoropropyl acrylate/butyl acrylate/acrylic 2-hydroxyethyl acrylate copolymer, 1H,1H,5H-octafluoropentyl acrylate/butyl acrylate/2-hydroxyethyl acrylate copolymer, 1H,1H,2H,2H-heptadecafluorodecyl acrylate/ Butyl acrylate/2-hydroxyethyl acrylate cop
  • the weight average molecular weight of the (meth)acrylic acid ester oligomer is preferably 1,000 or more, more preferably 2,000 or more, and preferably 20,000 or less, more preferably 10,000 or less.
  • the light control layer can be produced using the resin material for forming the resin matrix and the light adjustment suspension.
  • the resin material is preferably a resin material that is cured by irradiation with energy rays.
  • resin materials that can be cured by irradiation with energy rays include polymer compositions containing a photopolymerization initiator and a polymer compound that can be cured by energy rays such as ultraviolet rays, visible light, and electron beams.
  • the polymer composition include a polymer composition containing a polymerizable monomer having an ethylenically unsaturated group and a photopolymerization initiator.
  • the polymerizable monomer having an ethylenically unsaturated group include non-crosslinkable monomers and crosslinkable monomers.
  • non-crosslinkable monomer examples include the above-mentioned non-crosslinkable monomer.
  • crosslinkable monomer examples include the crosslinkable monomers described above.
  • photopolymerization initiator 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-(4-(2-hydroxyethoxy)phenyl)-2-hydroxy-2-methyl-1-propane -1-one, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and (1-hydroxycyclohexyl)phenyl ketone. It will be done.
  • the resin material may include an organic solvent-soluble resin, a thermoplastic resin, poly(meth)acrylic acid, and the like. Further, the resin material may contain various additives such as a coloring inhibitor, an antioxidant, and an adhesion imparting agent, and may also contain a solvent.
  • the transparent base material is, for example, a base material having light transmittance (light transmitting base material). For example, light is transmitted from one side of the transparent base material to the other side through the transparent base material. For example, when the substance on the other side of the transparent base material is visually observed from one side of the transparent base material, the substance can be visually recognized.
  • Transparent also includes, for example, translucent.
  • the transparent base material may be colorless and transparent, or may be colored and transparent.
  • the materials of the first transparent base material and the second transparent base material are not particularly limited.
  • the material of the first transparent base material and the material of the second transparent base material may be the same or different.
  • Examples of the material for the transparent base material include glass and resin film.
  • Examples of the glass include soda lime glass, lead glass, borosilicate glass for general construction, and glasses of various compositions for other uses, as well as functional glasses such as heat reflective glass, heat absorbing glass, and tempered glass.
  • the resin film include polyester films such as polyethylene terephthalate, polyolefin films such as polypropylene, and resin films such as acrylic resin films.
  • the transparent base material is preferably a resin base material, more preferably a resin film, and is preferably a polyethylene terephthalate (PET) film because it has excellent transparency, moldability, adhesiveness, processability, etc. It is even more preferable that there be.
  • PET polyethylene terephthalate
  • the transparent base material preferably includes a base material body and a transparent conductive film formed on the surface of the base material body so that an electric field for dimming can be applied.
  • the transparent conductive film include indium tin oxide (ITO), SnO 2 , and In 2 O 3 .
  • the visible light transmittance of the first transparent base material and the second transparent base material is preferably 75% or more, more preferably 80% or more.
  • the upper limit of the visible light transmittance of the first transparent base material and the second transparent base material is not particularly limited.
  • the visible light transmittance of the first transparent base material and the second transparent base material may be 100% or less, or 95% or less.
  • the visible light transmittance of the transparent base material can be measured by spectrometry or the like in accordance with ISO13837:2008.
  • Base material particles Base particle A (“EZ3P-020” manufactured by Sekisui Chemical Co., Ltd., average particle diameter 20.0 ⁇ m)
  • Base particle B (“EZ3P-015” manufactured by Sekisui Chemical Co., Ltd., average particle diameter 15.0 ⁇ m)
  • Base material particles C polystyrene particles, average particle diameter 15.0 ⁇ m, produced according to Synthesis Example 1 below
  • Base material particles D sica particles, "TMS-15” manufactured by Teika, average particle diameter 15.0 ⁇ m
  • Base material particles E black divinylbenzene particles, “KBN-511” manufactured by Sekisui Chemical Co., Ltd., average particle size 11.0 ⁇ m)
  • Synthesis example 1 Polystyrene particles having an average particle diameter of 5.0 ⁇ m were prepared as seed particles.
  • a mixed solution was prepared by mixing 0.8 parts by weight of the polystyrene particles, 80 parts by weight of ion-exchanged water, and 16 parts by weight of a 5% by weight aqueous solution of polyvinyl alcohol. After the above-mentioned liquid mixture was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly.
  • (Adhesive substance (polymerizable component)) (Meth)acrylate monomer having a reactive functional group other than (meth)acryloyl group: Glycidyl methacrylate (epoxy group (glycidyl group), “Blemmer G” manufactured by NOF Corporation) Methacrylamide (amide group, “Methacrylamide” manufactured by Mitsui Chemicals) 2-Hydroxypropyl methacrylate (hydroxyl group, “HO-250” manufactured by Kyoeisha Chemical Co., Ltd.)
  • (Meth)acrylate monomers that do not have reactive functional groups other than (meth)acryloyl groups 2-Ethylhexyl methacrylate (“2-EHMA” manufactured by Mitsubishi Gas Chemical Co., Ltd.) Benzyl methacrylate (“Light Ester BZ” manufactured by Kyoeisha Chemical Co., Ltd.) Butyl acrylate (“Butyl acrylate” manufactured by Mitsubishi Chemical Corporation) Methyl methacrylate (“Acryester M” manufactured by Mitsubishi Chemical Corporation) Acrylic acid (manufactured by Mitsubishi Chemical Corporation)
  • Example 1 Preparation of composite particles 876.1 parts by weight of ultrapure water, 67.0 parts by weight of 2-ethylhexyl methacrylate, and benzyl methacrylate were placed in a round-bottomed glass separable flask equipped with a corrugated condenser, four inclined blades, and a thermocouple. 19.8 parts by weight, 8.0 parts by weight of glycidyl methacrylate, and 4.8 parts by weight of methacrylamide were weighed and mixed. The resulting mixture was purged with nitrogen at room temperature for 1 hour to remove dissolved oxygen.
  • the flask was heated so that the internal temperature reached 60°C, and 28.9 parts by weight of a 3% by weight aqueous solution of ammonium peroxodisulfate (actual weight of ammonium peroxodisulfate: 0.9 parts by weight) was put into the flask and heated to 60°C.
  • the mixture was stirred for a period of time for polymerization to obtain a dispersion of adhesive particles.
  • a light control film was prepared in which a known PDLC layer was arranged, except that 5% by weight of the obtained composite particles were dispersed between two PET films on which transparent and conductive ITO was vapor-deposited.
  • a PDLC type light control laminate was produced by sandwiching a light control film between two sheets of transparent glass.
  • a light control film was prepared in which a known SPD layer was arranged, except that 5% by weight of the obtained composite particles were dispersed between two PET films on which transparent and conductive ITO was vapor-deposited.
  • An SPD type light control laminate was produced by sandwiching a light control film between two sheets of transparent glass.
  • Example 2 to 12 Composite particles and light control laminates were obtained in the same manner as in Example 1, except that the type of base particles and the composition of the adhesive substance (adhesive particles) were changed as shown in Tables 1 to 3 below. .
  • Adhesive particles were obtained in the same manner as in Example 1, except that the actual weight of ammonium peroxodisulfate was changed as shown in Table 4 below.
  • the obtained adhesive particles were freeze-dried to form a dry powder.
  • 1.8 parts by weight of the obtained dry powder and 60 parts by weight of base material particles A were compounded by a high-speed air impact method using "Nobilta NOB-MINI" manufactured by Hosokawa Micron. Thereafter, the mixture was classified using a 30 ⁇ m metal mesh to obtain composite particles having an adhesive substance (adhesive layer: thickness 300 nm) on the surface.
  • a light control laminate was obtained in the same manner as in Example 1 except that the obtained composite particles were used.
  • Composite particles in which polymer particles were arranged on the surface of base particle A were obtained in the same manner as in Example 1, except that the composition of the polymerizable component was changed as shown in Table 4 below.
  • a light control laminate was obtained in the same manner as in Example 1 except that the obtained composite particles were used.
  • the flask was heated so that the internal temperature reached 70°C, and 64 parts by weight of a 5% by weight aqueous solution of potassium peroxodisulfate (3.2 parts by weight of potassium peroxodisulfate) was put into the flask, and 320 parts by weight of butyl acrylate was added.
  • a mixture of 1.5 parts by weight, 294.4 parts by weight of methyl methacrylate, and 25.6 parts by weight of acrylic acid was added dropwise over 3 hours. Note that during the dropping, nitrogen gas was kept flowing to maintain the temperature inside the flask at 70°C ⁇ 1°C. After completion of the dropwise addition, the temperature was maintained at 70°C for 2 hours, and then the temperature was raised to 80°C and stirred for 1 hour to obtain a dispersion of polymer particles.
  • Composite particles in which polymer particles were arranged on the surface of base particles B were obtained in the same manner as in Example 1, except that the obtained dispersion of polymer particles and base particles B were used. .
  • a light control laminate was obtained in the same manner as in Example 1 except that the obtained composite particles were used.
  • the 20% K value of the base particles and composite particles was measured using a micro compression tester (Fisher Scope H-100). One base particle or composite particle was compressed using a smooth indenter end face of a cylinder (diameter 50 ⁇ m, made of diamond) under conditions of 25° C., compression rate of 0.3 mN/sec, and maximum test load of 20 mN. At this time, the load value (N) and compressive displacement (mm) were measured. From the obtained measured values, the compressive elastic modulus (20% K value) of the base material particles or composite particles was determined using the following formula. The compressive modulus (20% K value) of the base particles and composite particles is the arithmetic average of the compressive modulus (20% K value) of 50 randomly selected base particles or composite particles. It was calculated by
  • Adhesiveness (resin film) A polyimide solution was cast onto a PET film as the first and second transparent substrates, dried, and subjected to a rubbing process to obtain a film with an alignment film. The obtained composite particles are scattered on the surface of the first transparent base material at a rate of 1400 particles/mm 2 , and the second transparent The base materials were laminated. Next, it was heated at 120° C. for 1 hour under a pressure of 8 kgf/cm 2 to obtain a laminate 1 for adhesion testing.
  • the first transparent base material was separated from the second transparent base material using a variable angle peel tester ("VPA-2" manufactured by Kyowa Kaimen Kagaku Co., Ltd.).
  • the transparent base material was peeled off in the 0 degree direction and the maximum stress was measured.
  • Adhesion (resin film) was evaluated based on the following criteria.
  • Adhesiveness As the first and second transparent substrates, a polyimide solution was cast onto glass slides, dried, and subjected to a rubbing process to obtain glass with an alignment film. The obtained composite particles are scattered on the surface of the first transparent base material at a rate of 1400 particles/mm 2 , and the second transparent The base materials were laminated. Next, it was heated at 120° C. for 1 hour under a pressure of 8 kgf/cm 2 to obtain a laminate 2 for adhesion testing. After the obtained laminate 2 for adhesion testing was left at 25° C. for 24 hours, the first transparent substrate was separated from the second one using a variable angle peel tester (“VPA-2” manufactured by Kyowa Kaimen Kagaku Co., Ltd.). The transparent base material was peeled off in the 0 degree direction and the maximum stress was measured. Adhesion (glass) was evaluated based on the following criteria.
  • composition and results of the composite particles are shown in Tables 1 to 4 below.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

Provided is a composite particle that has high adhesion and can prevent contamination of liquid crystal. A composite particle according to the present invention comprises a substrate particle and an adhesive material that is arranged on a surface of the substrate particle, the adhesive material including a polymer of a polymerizable component, the polymerizable component including a first (meth)acrylate monomer having a first reactive functional group other than a (meth)acryloyl group, and a second (meth)acrylate monomer having a second reactive functional group other than a (meth)acryloyl group, and the first reactive functional group and the second reactive functional group being different.

Description

複合粒子及び調光積層体Composite particles and light control laminates
 本発明は、良好な接着性を有する複合粒子に関する。また、本発明は、上記複合粒子を用いた調光積層体に関する。 The present invention relates to composite particles having good adhesive properties. The present invention also relates to a light control laminate using the above composite particles.
 調光ガラスや調光フィルム等の調光材料は、電圧の印加の有無により、透明状態と不透明状態との状態変化が可能である性質を有し、入射光量やヘイズ等の調整が可能な物体である。また、透明状態と不透明状態との状態変化の作用機構によって、調光材料は、SPD(Suspended Particle Device)方式とPDLC(Polymer Dispersed Liquid Crystal)方式とに大別される。 Light control materials such as light control glass and light control films have the property of being able to change states between transparent and opaque states depending on whether or not a voltage is applied, and are objects that can adjust the amount of incident light, haze, etc. It is. Further, depending on the mechanism of change in state between a transparent state and an opaque state, light control materials are broadly classified into SPD (Suspended Particle Device) type and PDLC (Polymer Dispersed Liquid Crystal) type.
 調光材料は、例えば、ガラスやフィルムの2枚の基材間に、液晶等を含む調光層が配置されて形成されている。上記調光材料では、2枚の基材間の間隔を制御し、適切な調光層の厚みを維持するために、接着剤と、ギャップ制御材としてスペーサとが用いられることがある。また、2枚の基材間の接着性をより一層高めるために、接着性を有する粒子が用いられることがある。 A light control material is formed by, for example, placing a light control layer containing liquid crystal or the like between two base materials such as glass or film. In the light control material described above, an adhesive and a spacer as a gap control material may be used in order to control the distance between the two base materials and maintain an appropriate thickness of the light control layer. Furthermore, particles having adhesive properties may be used to further enhance the adhesive properties between two base materials.
 下記の特許文献1には、粒子本体と、該粒子本体の表面上に配置された接着層とを備える液晶表示板用の接着性スペーサが記載されている。上記接着性スペーサでは、上記接着層は熱可塑性樹脂の微粒子で構成されており、上記熱可塑性樹脂の微粒子は、上記粒子本体とは反対のイオン電荷を持ち、ヘテロ凝集により上記熱可塑性樹脂の微粒子が上記粒子本体の表面に付着している。 Patent Document 1 listed below describes an adhesive spacer for a liquid crystal display panel that includes a particle body and an adhesive layer disposed on the surface of the particle body. In the adhesive spacer, the adhesive layer is composed of fine particles of a thermoplastic resin, and the fine particles of the thermoplastic resin have an ionic charge opposite to that of the main particles, and the fine particles of the thermoplastic resin are caused by heteroaggregation. is attached to the surface of the particle body.
特開2006-317975号公報JP2006-317975A
 しかしながら、特許文献1に記載のような従来の粒子では、調光材料が長時間使用された場合に、接着層における熱可塑性樹脂が液晶中に溶出し、液晶が汚染されることがある。液晶が汚染されると、液晶の配向異常や表示異常等の様々な問題が発生する。 However, with conventional particles such as those described in Patent Document 1, when the light control material is used for a long time, the thermoplastic resin in the adhesive layer may dissolve into the liquid crystal, and the liquid crystal may be contaminated. When the liquid crystal is contaminated, various problems such as abnormal alignment of the liquid crystal and abnormal display occur.
 本発明の目的は、接着性を高め、かつ、液晶の汚染を防ぐことができる複合粒子を提供することである。また、本発明の目的は、上記複合粒子を用いた調光積層体を提供することである。 An object of the present invention is to provide composite particles that can improve adhesiveness and prevent contamination of liquid crystals. Another object of the present invention is to provide a light control laminate using the above composite particles.
 本発明の広い局面によれば、基材粒子と、前記基材粒子の表面上に配置された接着性物質とを備え、前記接着性物質が、重合性成分の重合体を含み、前記重合性成分が、(メタ)アクリロイル基以外の第1の反応性官能基を有する第1の(メタ)アクリレートモノマーと、(メタ)アクリロイル基以外の第2の反応性官能基を有する第2の(メタ)アクリレートモノマーとを含み、前記第1の反応性官能基と前記第2の反応性官能基とが互いに異なる、複合粒子が提供される。 According to a broad aspect of the present invention, the present invention comprises a base particle and an adhesive substance disposed on the surface of the base particle, the adhesive substance containing a polymer of a polymerizable component, and the adhesive substance comprising a polymerizable component. The components include a first (meth)acrylate monomer having a first reactive functional group other than a (meth)acryloyl group, and a second (meth)acrylate monomer having a second reactive functional group other than a (meth)acryloyl group. ) an acrylate monomer, wherein the first reactive functional group and the second reactive functional group are different from each other.
 本発明に係る複合粒子のある特定の局面では、前記重合性成分が、前記第1の(メタ)アクリレートモノマー及び前記第2の(メタ)アクリレートモノマーの双方と異なる重合性化合物をさらに含み、前記重合性成分100重量%中、前記第1の(メタ)アクリレートモノマーと前記第2の(メタ)アクリレートモノマーとの合計の含有量が、5重量%以上30重量%以下である。 In a certain aspect of the composite particle according to the present invention, the polymerizable component further includes a polymerizable compound different from both the first (meth)acrylate monomer and the second (meth)acrylate monomer, and the The total content of the first (meth)acrylate monomer and the second (meth)acrylate monomer in 100% by weight of the polymerizable component is 5% by weight or more and 30% by weight or less.
 本発明に係る複合粒子のある特定の局面では、前記重合体のガラス転移温度が、-15℃以上20℃以下である。 In a particular aspect of the composite particles according to the present invention, the glass transition temperature of the polymer is -15°C or more and 20°C or less.
 本発明に係る複合粒子のある特定の局面では、前記重合体が、前記第1の反応性官能基と前記第2の反応性官能基とを有し、前記第1の反応性官能基と、前記第2の反応性官能基とがそれぞれ、刺激により反応可能な性質を有する。 In a certain aspect of the composite particle according to the present invention, the polymer has the first reactive functional group and the second reactive functional group, and the first reactive functional group and Each of the second reactive functional groups has a property of being able to react upon stimulation.
 本発明に係る複合粒子のある特定の局面では、前記刺激が、加熱又は光の照射である。 In a particular aspect of the composite particle according to the present invention, the stimulus is heating or light irradiation.
 本発明に係る複合粒子のある特定の局面では、前記第1の反応性官能基と前記第2の反応性官能基との組み合わせが、環状エーテル基、イソシアネート基、アルデヒド基、ニトリル基、アミド基、水酸基、カルボキシ基、イミド基、及びアミノ基からなる群から選ばれる反応性官能基の組み合わせである。 In a particular aspect of the composite particle according to the present invention, the combination of the first reactive functional group and the second reactive functional group is a cyclic ether group, an isocyanate group, an aldehyde group, a nitrile group, an amide group. , a hydroxyl group, a carboxy group, an imide group, and an amino group.
 本発明に係る複合粒子のある特定の局面では、前記第1の反応性官能基が、環状エーテル基、イソシアネート基、アルデヒド基、又はニトリル基である。 In a particular aspect of the composite particle according to the present invention, the first reactive functional group is a cyclic ether group, an isocyanate group, an aldehyde group, or a nitrile group.
 本発明に係る複合粒子のある特定の局面では、前記第1の反応性官能基が、エポキシ基、又はオキセタニル基である。 In a particular aspect of the composite particle according to the present invention, the first reactive functional group is an epoxy group or an oxetanyl group.
 本発明に係る複合粒子のある特定の局面では、前記第2の反応性官能基が、アミド基、水酸基、カルボキシ基、イミド基、又はアミノ基である。 In a particular aspect of the composite particle according to the present invention, the second reactive functional group is an amide group, a hydroxyl group, a carboxy group, an imide group, or an amino group.
 本発明に係る複合粒子のある特定の局面では、前記接着性物質が、複数の接着性粒子であるか、又は接着性層である。 In a particular aspect of the composite particle according to the present invention, the adhesive substance is a plurality of adhesive particles or an adhesive layer.
 本発明に係る複合粒子のある特定の局面では、前記接着性物質が、複数の接着性粒子であり、前記接着性粒子の粒子径が、300nm以上3000nm以下である。 In a particular aspect of the composite particle according to the present invention, the adhesive substance is a plurality of adhesive particles, and the adhesive particles have a particle diameter of 300 nm or more and 3000 nm or less.
 本発明に係る複合粒子のある特定の局面では、前記接着性物質が、接着性層であり、前記接着性層の厚みが、300nm以上3000nm以下である。 In a particular aspect of the composite particle according to the present invention, the adhesive substance is an adhesive layer, and the adhesive layer has a thickness of 300 nm or more and 3000 nm or less.
 本発明に係る複合粒子のある特定の局面では、前記基材粒子の表面積100%中、前記接着性物質が配置されている表面積の割合が、30%以上100%以下である。 In a particular aspect of the composite particle according to the present invention, the proportion of the surface area where the adhesive substance is arranged is 30% or more and 100% or less of the 100% surface area of the base particle.
 本発明に係る複合粒子のある特定の局面では、ヘテロ凝集、高速気流中での衝撃、又はシータコンポーザーにより、前記接着性物質が前記基材粒子の表面上に配置されている。 In a particular aspect of the composite particle according to the present invention, the adhesive substance is disposed on the surface of the base particle by heteroaggregation, impact in high-speed airflow, or theta-composer.
 本発明の広い局面によれば、第1の透明基材と、第2の透明基材と、前記第1の透明基材と前記第2の透明基材との間に配置された調光層とを備え、前記調光層が、複数のスペーサを含み、前記スペーサが、上述した複合粒子である、調光積層体が提供される。 According to a broad aspect of the present invention, a first transparent base material, a second transparent base material, and a light control layer disposed between the first transparent base material and the second transparent base material. There is provided a light control laminate, wherein the light control layer includes a plurality of spacers, and the spacers are the above-mentioned composite particles.
 本発明に係る複合粒子は、基材粒子と、上記基材粒子の表面上に配置された接着性物質とを備える。本発明に係る複合粒子では、上記接着性物質が、重合性成分の重合体を含む。本発明に係る複合粒子では、上記重合性成分が、(メタ)アクリロイル基以外の第1の反応性官能基を有する第1の(メタ)アクリレートモノマーと、(メタ)アクリロイル基以外の第2の反応性官能基を有する第2の(メタ)アクリレートモノマーとを含み、上記第1の反応性官能基と上記第2の反応性官能基とが互いに異なる。本発明に係る複合粒子では、上記の構成が備えられているので、接着性を高め、かつ、液晶の汚染を防ぐことができる。 The composite particles according to the present invention include base particles and an adhesive substance disposed on the surface of the base particles. In the composite particle according to the present invention, the adhesive substance includes a polymer of a polymerizable component. In the composite particles according to the present invention, the polymerizable component includes a first (meth)acrylate monomer having a first reactive functional group other than a (meth)acryloyl group, and a second reactive functional group other than a (meth)acryloyl group. a second (meth)acrylate monomer having a reactive functional group, and the first reactive functional group and the second reactive functional group are different from each other. Since the composite particles according to the present invention have the above configuration, it is possible to improve adhesiveness and prevent contamination of the liquid crystal.
図1は、本発明の第1の実施形態に係る複合粒子を模式的に示す断面図である。FIG. 1 is a cross-sectional view schematically showing a composite particle according to a first embodiment of the present invention. 図2は、本発明の第2の実施形態に係る複合粒子を模式的に示す断面図である。FIG. 2 is a cross-sectional view schematically showing a composite particle according to a second embodiment of the present invention. 図3は、本発明の第1の実施形態に係る複合粒子を用いたPDLC方式の調光積層体を模式的に示す断面図である。FIG. 3 is a cross-sectional view schematically showing a PDLC type light control laminate using composite particles according to the first embodiment of the present invention. 図4は、本発明の第1の実施形態に係る複合粒子を用いたSPD方式の調光積層体を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an SPD type light control laminate using composite particles according to the first embodiment of the present invention.
 以下、本発明の詳細を説明する。 The details of the present invention will be explained below.
 (複合粒子)
 本発明に係る複合粒子は、基材粒子と、上記基材粒子の表面上に配置された接着性物質とを備える。本発明に係る複合粒子では、上記接着性物質が、重合性成分の重合体を含み、上記重合性成分が、(メタ)アクリロイル基以外の第1の反応性官能基を有する第1の(メタ)アクリレートモノマーと、(メタ)アクリロイル基以外の第2の反応性官能基を有する第2の(メタ)アクリレートモノマーとを含み、上記第1の反応性官能基と上記第2の反応性官能基とが互いに異なる。上記第2の(メタ)アクリレートモノマーは、上記第1の反応性官能基とは異なる第2の反応性官能基を有する。
(composite particles)
The composite particle according to the present invention includes a base particle and an adhesive substance disposed on the surface of the base particle. In the composite particles according to the present invention, the adhesive substance includes a polymer of a polymerizable component, and the polymerizable component has a first (meth)acryloyl group having a first reactive functional group other than a (meth)acryloyl group. ) an acrylate monomer and a second (meth)acrylate monomer having a second reactive functional group other than a (meth)acryloyl group, the first reactive functional group and the second reactive functional group are different from each other. The second (meth)acrylate monomer has a second reactive functional group different from the first reactive functional group.
 本発明に係る複合粒子では、上記の構成が備えられているので、接着性を高めることができる。また、本発明に係る複合粒子では、上記の構成が備えられているので、液晶の汚染を防ぐことができる。結果として、液晶の配向異常を防ぎ、表示異常を防ぐことができる。また、本発明に係る複合粒子をギャップ材(スペーサ)として用いる場合には、複合粒子を基材(被着体)等に十分に接触させることができ、十分なギャップ制御効果を得ることができる。 Since the composite particles according to the present invention have the above-mentioned configuration, adhesiveness can be improved. Moreover, since the composite particles according to the present invention are provided with the above-mentioned configuration, contamination of the liquid crystal can be prevented. As a result, abnormal alignment of the liquid crystal can be prevented, and display abnormalities can be prevented. Furthermore, when the composite particles according to the present invention are used as a gap material (spacer), the composite particles can be brought into sufficient contact with the base material (adherent), etc., and a sufficient gap control effect can be obtained. .
 以下、図面を参照しつつ、本発明を具体的に説明する。 Hereinafter, the present invention will be specifically described with reference to the drawings.
 図1は、本発明の第1の実施形態に係る複合粒子を模式的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a composite particle according to a first embodiment of the present invention.
 図1に示す複合粒子1は、基材粒子2と、基材粒子2の表面上に配置された接着性物質3とを備える。複合粒子1では、接着性物質3は、複数の接着性粒子である。複合粒子1は、接着性物質3を備えるので、接着性を有する。 The composite particle 1 shown in FIG. 1 includes a base particle 2 and an adhesive substance 3 disposed on the surface of the base particle 2. In the composite particle 1, the adhesive substance 3 is a plurality of adhesive particles. Since the composite particles 1 include the adhesive substance 3, they have adhesive properties.
 複合粒子1では、接着性物質(接着性粒子)3は、基材粒子2の表面の少なくとも一部を被覆している。複合粒子1は、基材粒子2の表面が接着性物質(接着性粒子)3により被覆された被覆粒子である。 In the composite particle 1, the adhesive substance (adhesive particle) 3 covers at least a portion of the surface of the base particle 2. The composite particle 1 is a coated particle in which the surface of a base particle 2 is coated with an adhesive substance (adhesive particle) 3.
 図2は、本発明の第2の実施形態に係る複合粒子を模式的に示す断面図である。 FIG. 2 is a cross-sectional view schematically showing composite particles according to a second embodiment of the present invention.
 図2に示す複合粒子11は、基材粒子2と、基材粒子2の表面上に配置された接着性物質13とを備える。複合粒子11では、接着性物質13は、接着性層である。複合粒子11は、接着性物質13を備えるので、接着性を有する。 The composite particle 11 shown in FIG. 2 includes a base particle 2 and an adhesive substance 13 disposed on the surface of the base particle 2. In composite particles 11, adhesive substance 13 is an adhesive layer. Since the composite particles 11 include the adhesive substance 13, they have adhesive properties.
 複合粒子11では、接着性物質(接着性層)13は、基材粒子2の表面を被覆している。複合粒子11は、基材粒子2の表面が接着性物質(接着性層)13により被覆された被覆粒子である。複合粒子11では、接着性物質(接着性層)13は、被覆層である。 In the composite particles 11, the adhesive substance (adhesive layer) 13 covers the surface of the base particle 2. The composite particles 11 are coated particles in which the surface of the base particle 2 is coated with an adhesive substance (adhesive layer) 13 . In the composite particles 11, the adhesive substance (adhesive layer) 13 is a coating layer.
 上記複合粒子の粒子径は、好ましくは0.1μm以上、より好ましくは1μm以上、さらに好ましくは10μm以上であり、好ましくは200μm以下、より好ましくは100μm以下、さらに好ましくは50μm以下である。上記複合粒子の粒子径が、上記下限以上及び上記上限以下であると、接着性をより一層高め、かつ、ギャップ制御効果をより一層高めることができる。 The particle diameter of the composite particles is preferably 0.1 μm or more, more preferably 1 μm or more, even more preferably 10 μm or more, and preferably 200 μm or less, more preferably 100 μm or less, and still more preferably 50 μm or less. When the particle diameter of the composite particles is not less than the above lower limit and not more than the above upper limit, adhesiveness can be further improved and the gap control effect can be further enhanced.
 上記複合粒子の粒子径は、複合粒子が真球状である場合には直径を意味し、複合粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。 The particle diameter of the above composite particles means the diameter when the composite particles are true spherical, and when the composite particles have a shape other than true spherical, the diameter when assuming a true sphere equivalent to the volume of the composite particles. means.
 上記複合粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記複合粒子の粒子径は、任意の複合粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。電子顕微鏡又は光学顕微鏡での観察では、1個当たりの複合粒子の粒子径は、円相当径での粒子径として求められる。電子顕微鏡又は光学顕微鏡での観察において、任意の50個の複合粒子の円相当径での平均粒子径は、球相当径での平均粒子径とほぼ等しくなる。レーザー回折式粒度分布測定では、1個当たりの複合粒子の粒子径は、球相当径での粒子径として求められる。上記複合粒子の粒子径は、レーザー回折式粒度分布測定により算出することが好ましい。 The particle size of the composite particles is preferably an average particle size, more preferably a number average particle size. The particle diameter of the composite particles is determined by observing 50 arbitrary composite particles with an electron microscope or an optical microscope and calculating the average value, or by performing laser diffraction particle size distribution measurement. In observation using an electron microscope or an optical microscope, the particle diameter of each composite particle is determined as the particle diameter in equivalent circle diameter. In observation using an electron microscope or an optical microscope, the average particle diameter of any 50 composite particles in equivalent circle diameter is approximately equal to the average particle diameter in equivalent sphere diameter. In the laser diffraction particle size distribution measurement, the particle diameter of each composite particle is determined as the particle diameter in equivalent sphere diameter. The particle diameter of the composite particles is preferably calculated by laser diffraction particle size distribution measurement.
 上記複合粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。上記複合粒子の粒子径の変動係数が、上記上限以下であると、ギャップ制御効果をより一層高めることができる。上記複合粒子の粒子径の変動係数(CV値)の下限は、特に限定されない。上記複合粒子の粒子径の変動係数(CV値)は、0%以上であってもよく、1%以上であってもよい。 The coefficient of variation (CV value) of the particle diameter of the composite particles is preferably 10% or less, more preferably 5% or less. When the coefficient of variation of the particle diameter of the composite particles is equal to or less than the above upper limit, the gap control effect can be further enhanced. The lower limit of the coefficient of variation (CV value) of the particle diameter of the composite particles is not particularly limited. The coefficient of variation (CV value) of the particle diameter of the composite particles may be 0% or more, or 1% or more.
 上記変動係数(CV値)は、以下のようにして測定できる。 The above coefficient of variation (CV value) can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:複合粒子の粒子径の標準偏差
 Dn:複合粒子の粒子径の平均値
CV value (%) = (ρ/Dn) x 100
ρ: Standard deviation of particle diameter of composite particles Dn: Average value of particle diameter of composite particles
 上記複合粒子の形状は特に限定されない。上記複合粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等であってもよい。 The shape of the composite particles is not particularly limited. The shape of the composite particles may be spherical, non-spherical, flat, etc.
 上記複合粒子の20%K値は、好ましくは100N/mm以上、より好ましくは700N/mm以上、さらに好ましくは1000N/mm以上であり、好ましくは5000N/mm以下、より好ましくは4000N/mm以下、さらに好ましくは3000N/mm以下である。上記複合粒子の20%K値が、上記下限以上及び上記上限以下であると、基材間のギャップをより一層高精度に制御し、基材への傷付きを防止することができる。 The 20% K value of the composite particles is preferably 100 N/mm 2 or more, more preferably 700 N/mm 2 or more, even more preferably 1000 N/mm 2 or more, and preferably 5000 N/mm 2 or less, more preferably 4000 N /mm 2 or less, more preferably 3000 N/mm 2 or less. When the 20% K value of the composite particles is not less than the lower limit and not more than the upper limit, the gap between the base materials can be controlled with even higher precision and damage to the base materials can be prevented.
 上記複合粒子の20%K値(複合粒子を20%圧縮したときの圧縮弾性率)は、以下のようにして測定することができる。 The 20% K value (compressive elastic modulus when the composite particles are compressed by 20%) of the above composite particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で複合粒子1個を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、複合粒子の20%K値(20%圧縮弾性率)を下記式により求めることができる。上記微小圧縮試験機として、例えば、島津製作所社製「微小圧縮試験機MCT-W200」、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記複合粒子の20%K値は、任意に選択された50個の複合粒子の20%K値を算術平均することにより、算出することが好ましい。 Using a micro compression tester, one composite particle is compressed with the smooth indenter end face of a cylinder (diameter 50 μm, made of diamond) under conditions of 25° C., compression speed of 0.3 mN/sec, and maximum test load of 20 mN. At this time, the load value (N) and compression displacement (mm) are measured. From the obtained measured values, the 20% K value (20% compressive elastic modulus) of the composite particles can be determined by the following formula. As the micro-compression tester, for example, "Micro-compression tester MCT-W200" manufactured by Shimadzu Corporation, "Fisherscope H-100" manufactured by Fisher Corporation, etc. are used. The 20% K value of the composite particles is preferably calculated by arithmetic averaging the 20% K values of 50 arbitrarily selected composite particles.
 20%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:複合粒子が20%圧縮変形したときの荷重値(N)
 S:複合粒子が20%圧縮変形したときの圧縮変位(mm)
 R:複合粒子の半径(mm)
20% K value (N/mm 2 ) = (3/2 1/2 )・F・S -3/2・R -1/2
F: Load value (N) when composite particles are compressed and deformed by 20%
S: Compression displacement (mm) when composite particles are compressed and deformed by 20%
R: radius of composite particle (mm)
 上記K値は、複合粒子の硬さを普遍的かつ定量的に表す。上記K値を用いることにより、複合粒子の硬さを定量的かつ一義的に表すことができる。 The above K value universally and quantitatively represents the hardness of the composite particles. By using the above K value, the hardness of the composite particles can be expressed quantitatively and uniquely.
 上記複合粒子は、ギャップ材(スペーサ)として好適に用いられる。上記複合粒子は、ギャップ材(スペーサ)として用いられることが好ましい。上記ギャップ材(スペーサ)としては、液晶表示素子用スペーサ、ギャップ制御用スペーサ、応力緩和用スペーサ、及び調光積層体用スペーサ等が挙げられる。上記ギャップ制御用スペーサは、スタンドオフ高さ及び平坦性を確保するための積層チップや電子部品装置のギャップ制御、並びに、ガラス面の平滑性及び接着剤層の厚みを確保するための光学部品のギャップ制御等に用いることができる。上記応力緩和用スペーサは、センサチップ等の応力緩和、及び2つの接続対象部材を接続している接続部の応力緩和等に用いることができる。上記センサチップとしては、例えば、半導体センサチップ等が挙げられる。また、上記複合粒子をギャップ材(スペーサ)として用いる場合には、上記複合粒子を接続対象部材等に十分に接触させることができ、十分なギャップ制御効果を得ることができる。 The above composite particles are suitably used as a gap material (spacer). The composite particles are preferably used as a gap material (spacer). Examples of the gap material (spacer) include spacers for liquid crystal display elements, spacers for gap control, spacers for stress relaxation, and spacers for light control laminates. The above gap control spacer is used for gap control of laminated chips and electronic component devices to ensure standoff height and flatness, and for optical components to ensure smoothness of glass surfaces and thickness of adhesive layers. It can be used for gap control, etc. The stress-relaxing spacer can be used for stress-relaxing a sensor chip or the like, stress relieving of a connecting portion connecting two connection target members, and the like. Examples of the sensor chip include a semiconductor sensor chip. Further, when the composite particles are used as a gap material (spacer), the composite particles can be brought into sufficient contact with the member to be connected, etc., and a sufficient gap control effect can be obtained.
 上記複合粒子は、液晶表示素子用スペーサとして用いられることが好ましく、液晶表示素子用周辺シール剤に用いられることが好ましい。上記液晶表示素子用周辺シール剤において、上記複合粒子は、スペーサとして機能することが好ましい。上記複合粒子は、液晶表示素子用スペーサではなくてもよく、ギャップ制御用スペーサ、応力緩和用スペーサ、又は調光積層体用スペーサであってもよい。 The composite particles described above are preferably used as spacers for liquid crystal display elements, and are preferably used as peripheral sealants for liquid crystal display elements. In the peripheral sealant for liquid crystal display elements, the composite particles preferably function as spacers. The composite particles do not need to be spacers for liquid crystal display elements, and may be spacers for gap control, stress relaxation spacers, or light control laminate spacers.
 また、上記複合粒子は、電子部品用接着剤に用いられるか又は電子部品用接着剤として用いられることが好ましい。上記電子部品用接着剤としては、液晶パネル用接着剤、積層基板用接着剤、回路基板用接着剤、及びカメラモジュール用接着剤等が挙げられる。上記積層基板としては、例えば、半導体センサチップ等が挙げられる。上記複合粒子は単体で、電子部品用接着剤として用いることができる。他の接着成分を用いずに、上記複合粒子は、電子部品用接着剤として用いることができる。上記複合粒子を電子部品用接着剤に用いる場合、単体で電子部品用接着剤として用いなくてもよく、他の接着成分と共に用いられてもよい。また、上記複合粒子は、スペーサ兼電子部品用接着剤として用いることもできる。上記複合粒子をスペーサ兼電子部品用接着剤として用いる場合、スペーサと接着剤とが別の材料によって構成される場合と比較して、ギャップ制御性や応力緩和性等のスペーサに求められる物性と、接着性との両立をより一層高度に実現することができる。 Furthermore, it is preferable that the composite particles are used in an adhesive for electronic components or as an adhesive for electronic components. Examples of the adhesive for electronic components include adhesives for liquid crystal panels, adhesives for laminated substrates, adhesives for circuit boards, adhesives for camera modules, and the like. Examples of the laminated substrate include a semiconductor sensor chip. The above-mentioned composite particles can be used alone as an adhesive for electronic parts. The above composite particles can be used as an adhesive for electronic components without using other adhesive components. When the above-mentioned composite particles are used in an adhesive for electronic components, they do not need to be used alone as an adhesive for electronic components, and may be used together with other adhesive components. Moreover, the above composite particles can also be used as a spacer and an adhesive for electronic components. When using the above composite particles as a spacer and an adhesive for electronic components, the physical properties required for the spacer, such as gap controllability and stress relaxation properties, are better than when the spacer and adhesive are made of different materials. It is possible to achieve both adhesion and adhesion to an even higher degree.
 以下、複合粒子の他の詳細を説明する。なお、本明細書において、「(メタ)アクリレート」は「アクリレート」と「メタクリレート」との一方又は双方を意味し、「(メタ)アクリル」は「アクリル」と「メタクリル」との一方又は双方を意味し、「(メタ)アクリロイル」は「アクリロイル」と「メタアクリロイル」との一方又は双方を意味する。 Hereinafter, other details of the composite particles will be explained. In addition, in this specification, "(meth)acrylate" means one or both of "acrylate" and "methacrylate", and "(meth)acrylic" means one or both of "acrylic" and "methacrylic". "(meth)acryloyl" means one or both of "acryloyl" and "methacryloyl".
 (基材粒子)
 上記基材粒子としては、樹脂粒子、金属粒子を除く無機粒子、有機無機ハイブリッド粒子及び金属粒子等が挙げられる。上記基材粒子は、金属粒子を除く基材粒子であることが好ましく、樹脂粒子、金属粒子を除く無機粒子又は有機無機ハイブリッド粒子であることがより好ましい。上記基材粒子は、コアと、該コアの表面上に配置されたシェルとを備えるコアシェル粒子であってもよい。上記コアが有機コアであってもよく、上記シェルが無機シェルであってもよい。
(Base material particles)
Examples of the base particles include resin particles, inorganic particles other than metal particles, organic-inorganic hybrid particles, and metal particles. The base particles are preferably base particles excluding metal particles, and more preferably resin particles, inorganic particles excluding metal particles, or organic-inorganic hybrid particles. The base particle may be a core-shell particle including a core and a shell disposed on the surface of the core. The core may be an organic core, and the shell may be an inorganic shell.
 上記樹脂粒子の材料としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリイソブチレン、及びポリブタジエン等のポリオレフィン樹脂;ポリメチルメタクリレート及びポリメチルアクリレート等のアクリル樹脂;ポリカーボネート、ポリアミド、フェノールホルムアルデヒド樹脂、メラミンホルムアルデヒド樹脂、ベンゾグアナミンホルムアルデヒド樹脂、尿素ホルムアルデヒド樹脂、フェノール樹脂、メラミン樹脂、ベンゾグアナミン樹脂、尿素樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、飽和ポリエステル樹脂、ポリエチレンテレフタレート、ポリスルホン、ポリフェニレンオキサイド、ポリアセタール、ポリイミド、ポリアミドイミド、ポリエーテルエーテルケトン、ポリエーテルスルホン、及びジビニルベンゼン重合体等が挙げられる。上記ジビニルベンゼン重合体は、ジビニルベンゼン共重合体であってもよい。上記ジビニルベンゼン共重合体としては、ジビニルベンゼン-スチレン共重合体及びジビニルベンゼン-(メタ)アクリル酸エステル共重合体等が挙げられる。上記樹脂粒子の硬度を好適な範囲に容易に制御できるので、上記樹脂粒子の材料は、エチレン性不飽和基を有する重合性単量体を1種又は2種以上重合させた重合体であることが好ましい。 Materials for the resin particles include polyolefin resins such as polyethylene, polypropylene, polystyrene, polyvinyl chloride, polyvinylidene chloride, polyisobutylene, and polybutadiene; acrylic resins such as polymethyl methacrylate and polymethyl acrylate; polycarbonate, polyamide, and phenol formaldehyde. Resin, melamine formaldehyde resin, benzoguanamine formaldehyde resin, urea formaldehyde resin, phenol resin, melamine resin, benzoguanamine resin, urea resin, epoxy resin, unsaturated polyester resin, saturated polyester resin, polyethylene terephthalate, polysulfone, polyphenylene oxide, polyacetal, polyimide, Examples include polyamideimide, polyetheretherketone, polyethersulfone, and divinylbenzene polymer. The divinylbenzene polymer may be a divinylbenzene copolymer. Examples of the divinylbenzene copolymer include divinylbenzene-styrene copolymer and divinylbenzene-(meth)acrylic acid ester copolymer. Since the hardness of the resin particles can be easily controlled within a suitable range, the material of the resin particles is a polymer obtained by polymerizing one or more polymerizable monomers having ethylenically unsaturated groups. is preferred.
 上記樹脂粒子を、エチレン性不飽和基を有する重合性単量体を重合させて得る場合には、該エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 When the above-mentioned resin particles are obtained by polymerizing a polymerizable monomer having an ethylenically unsaturated group, the polymerizable monomer having an ethylenically unsaturated group may be a non-crosslinkable monomer. Examples include crosslinkable monomers.
 上記非架橋性の単量体としては、スチレン、及びα-メチルスチレン等のスチレン系単量体;(メタ)アクリル酸、マレイン酸、及び無水マレイン酸等のカルボキシル基含有単量体;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、及びイソボルニル(メタ)アクリレート等のアルキル(メタ)アクリレート化合物;2-ヒドロキシエチル(メタ)アクリレート、グリセロール(メタ)アクリレート、ポリオキシエチレン(メタ)アクリレート、及びグリシジル(メタ)アクリレート等の酸素原子含有(メタ)アクリレート化合物;(メタ)アクリロニトリル等のニトリル含有単量体;メチルビニルエーテル、エチルビニルエーテル、及びプロピルビニルエーテル等のビニルエーテル化合物;酢酸ビニル、酪酸ビニル、ラウリン酸ビニル、及びステアリン酸ビニル等の酸ビニルエステル化合物;エチレン、プロピレン、イソプレン、及びブタジエン等の不飽和炭化水素;トリフルオロメチル(メタ)アクリレート、ペンタフルオロエチル(メタ)アクリレート、塩化ビニル、フッ化ビニル、及びクロルスチレン等のハロゲン含有単量体等が挙げられる。 Examples of the non-crosslinkable monomer include styrene monomers such as styrene and α-methylstyrene; carboxyl group-containing monomers such as (meth)acrylic acid, maleic acid, and maleic anhydride; methyl ( meth)acrylate, ethyl(meth)acrylate, propyl(meth)acrylate, butyl(meth)acrylate, 2-ethylhexyl(meth)acrylate, lauryl(meth)acrylate, cetyl(meth)acrylate, stearyl(meth)acrylate, cyclohexyl( Alkyl (meth)acrylate compounds such as meth)acrylate and isobornyl (meth)acrylate; such as 2-hydroxyethyl (meth)acrylate, glycerol (meth)acrylate, polyoxyethylene (meth)acrylate, and glycidyl (meth)acrylate; Oxygen atom-containing (meth)acrylate compounds; nitrile-containing monomers such as (meth)acrylonitrile; vinyl ether compounds such as methyl vinyl ether, ethyl vinyl ether, and propyl vinyl ether; vinyl acetate, vinyl butyrate, vinyl laurate, vinyl stearate, etc. acid vinyl ester compounds; unsaturated hydrocarbons such as ethylene, propylene, isoprene, and butadiene; halogens such as trifluoromethyl (meth)acrylate, pentafluoroethyl (meth)acrylate, vinyl chloride, vinyl fluoride, and chlorostyrene. Containing monomers, etc. may be mentioned.
 上記架橋性の単量体としては、テトラメチロールメタンテトラ(メタ)アクリレート、テトラメチロールメタントリ(メタ)アクリレート、テトラメチロールメタンジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールポリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、グリセロールトリ(メタ)アクリレート、グリセロールジ(メタ)アクリレート、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、(ポリ)テトラメチレングリコールジ(メタ)アクリレート、及び1,4-ブタンジオールジ(メタ)アクリレート等の多官能(メタ)アクリレート化合物;トリアリル(イソ)シアヌレート、トリアリルトリメリテート、ジビニルベンゼン、ジアリルフタレート、ジアリルアクリルアミド、ジアリルエーテル、並びに、γ-(メタ)アクリロキシプロピルトリメトキシシラン、トリメトキシシリルスチレン、及びビニルトリメトキシシラン等のシラン含有単量体等が挙げられる。上記樹脂粒子のガラス転移温度においてもフラックス含有粒子が形状を保つ観点からは、上記架橋性の単量体は、(ポリ)エチレングリコールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、又はジペンタエリスリトールポリ(メタ)アクリレートであることが好ましい。 Examples of the crosslinkable monomers include tetramethylolmethanetetra(meth)acrylate, tetramethylolmethanetri(meth)acrylate, tetramethylolmethanedi(meth)acrylate, trimethylolpropanetri(meth)acrylate, and dipentaerythritol hexaacrylate. (meth)acrylate, dipentaerythritol penta(meth)acrylate, dipentaerythritol poly(meth)acrylate, pentaerythritol tetra(meth)acrylate, glycerol tri(meth)acrylate, glycerol di(meth)acrylate, (poly)ethylene glycol Polyfunctional (meth)acrylate compounds such as di(meth)acrylate, (poly)propylene glycol di(meth)acrylate, (poly)tetramethylene glycol di(meth)acrylate, and 1,4-butanediol di(meth)acrylate ; triallyl(iso)cyanurate, triallyl trimellitate, divinylbenzene, diallyl phthalate, diallylacrylamide, diallyl ether, and γ-(meth)acryloxypropyltrimethoxysilane, trimethoxysilylstyrene, vinyltrimethoxysilane, etc. Examples include silane-containing monomers. From the viewpoint that the flux-containing particles maintain their shape even at the glass transition temperature of the resin particles, the crosslinkable monomers are (poly)ethylene glycol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, penta Erythritol tetra(meth)acrylate or dipentaerythritol poly(meth)acrylate is preferred.
 上記エチレン性不飽和基を有する重合性単量体を、公知の方法により重合させることで、上記樹脂粒子を得ることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法等が挙げられる。 The above resin particles can be obtained by polymerizing the above polymerizable monomer having an ethylenically unsaturated group by a known method. Examples of this method include a method in which suspension polymerization is carried out in the presence of a radical polymerization initiator, and a method in which monomers are swollen and polymerized together with a radical polymerization initiator using non-crosslinked seed particles.
 上記基材粒子が金属を除く無機粒子又は有機無機ハイブリッド粒子である場合には、基材粒子を形成するための無機物としては、シリカ、アルミナ、チタン酸バリウム、ジルコニア及びカーボンブラック等が挙げられる。上記無機物は、金属ではないことが好ましい。上記シリカにより形成された粒子としては、例えば、加水分解性のアルコキシシリル基を2つ以上有するケイ素化合物を加水分解して架橋重合体粒子を形成した後に、必要に応じて焼成を行うことにより得られる粒子が挙げられる。上記有機無機ハイブリッド粒子としては、例えば、架橋したアルコキシシリルポリマーとアクリル樹脂とにより形成された有機無機ハイブリッド粒子等が挙げられる。 When the base particles are inorganic particles excluding metals or organic-inorganic hybrid particles, examples of the inorganic substance for forming the base particles include silica, alumina, barium titanate, zirconia, and carbon black. Preferably, the inorganic substance is not a metal. The particles formed of silica can be obtained, for example, by hydrolyzing a silicon compound having two or more hydrolyzable alkoxysilyl groups to form crosslinked polymer particles, and then firing as necessary. Examples include particles that are Examples of the organic-inorganic hybrid particles include organic-inorganic hybrid particles formed from a crosslinked alkoxysilyl polymer and an acrylic resin.
 上記有機無機ハイブリッド粒子は、コアと、該コアの表面上に配置されたシェルとを有するコアシェル型の有機無機ハイブリッド粒子であることが好ましい。上記コアが有機コアであることが好ましい。上記シェルが無機シェルであることが好ましい。上記基材粒子が、有機コアと上記有機コアの表面上に配置された無機シェルとを有する有機無機ハイブリッド粒子であると、ギャップ制御効果をより一層高めることができる。 The organic-inorganic hybrid particles are preferably core-shell type organic-inorganic hybrid particles having a core and a shell disposed on the surface of the core. Preferably, the core is an organic core. Preferably, the shell is an inorganic shell. When the base particles are organic-inorganic hybrid particles having an organic core and an inorganic shell disposed on the surface of the organic core, the gap control effect can be further enhanced.
 上記有機コアの材料としては、上述した樹脂粒子の材料等が挙げられる。 Examples of the material for the organic core include the materials for the resin particles described above.
 上記無機シェルの材料としては、上述した基材粒子の材料として挙げた無機物が挙げられる。上記無機シェルの材料は、シリカであることが好ましい。上記無機シェルは、上記コアの表面上で、金属アルコキシドをゾルゲル法によりシェル状物とした後、該シェル状物を焼成させることにより形成されていることが好ましい。上記金属アルコキシドはシランアルコキシドであることが好ましい。上記無機シェルはシランアルコキシドにより形成されていることが好ましい。 Examples of the material for the inorganic shell include the inorganic substances listed as the material for the base particles described above. The material of the inorganic shell is preferably silica. The inorganic shell is preferably formed by forming a metal alkoxide into a shell-like material by a sol-gel method on the surface of the core, and then firing the shell-like material. Preferably, the metal alkoxide is a silane alkoxide. The inorganic shell is preferably formed of silane alkoxide.
 上記基材粒子が金属粒子である場合に、該金属粒子の材料である金属としては、銀、銅、ニッケル、ケイ素、金及びチタン等が挙げられる。 When the base particles are metal particles, examples of the metal that is the material of the metal particles include silver, copper, nickel, silicon, gold, and titanium.
 上記基材粒子の粒子径は、好ましくは1μm以上、より好ましくは5μm以上であり、好ましくは40μm以下、より好ましくは30μm以下である。上記基材粒子の粒子径が、上記下限以上及び上記上限以下であると、複合粒子の接着性をより一層高め、かつ、ギャップ制御効果をより一層高めることができる。 The particle diameter of the base particles is preferably 1 μm or more, more preferably 5 μm or more, and preferably 40 μm or less, more preferably 30 μm or less. When the particle diameter of the base particles is not less than the above lower limit and not more than the above upper limit, the adhesiveness of the composite particles can be further improved, and the gap control effect can be further improved.
 上記基材粒子の形状は特に限定されない。上記基材粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等であってもよい。 The shape of the base particles is not particularly limited. The shape of the base particle may be spherical, a shape other than spherical, a flat shape, or the like.
 上記基材粒子の粒子径は、基材粒子が真球状である場合には直径を意味し、基材粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。 The particle diameter of the base material particle mentioned above means the diameter when the base material particle is true spherical, and when the base material particle has a shape other than true spherical, it is assumed that the base material particle is a true sphere equivalent to the volume. means the diameter of
 上記基材粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることがより好ましい。上記基材粒子の粒子径は粒度分布測定装置等を用いて求められる。基材粒子の粒子径は、任意の基材粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、平均値を算出することにより求めることが好ましい。複合粒子において、上記基材粒子の粒子径を測定する場合には、例えば、以下のようにして測定できる。 The particle size of the base particles is preferably an average particle size, more preferably a number average particle size. The particle diameter of the base material particles is determined using a particle size distribution measuring device or the like. The particle diameter of the base particles is preferably determined by observing 50 base particles using an electron microscope or an optical microscope and calculating the average value. When measuring the particle diameter of the base particle in the composite particle, for example, it can be measured as follows.
 複合粒子の含有量が30重量%となるように、Kulzer社製「テクノビット4000」に添加し、分散させて、複合粒子を含む検査用埋め込み樹脂体を作製する。上記検査用埋め込み樹脂体中に分散した複合粒子における基材粒子の中心付近を通るようにイオンミリング装置(日立ハイテクノロジーズ社製「IM4000」)を用いて、複合粒子の断面を切り出す。そして、電界放射型走査型電子顕微鏡(FE-SEM)を用いて、画像倍率を25000倍に設定し、50個の複合粒子を無作為に選択し、各複合粒子における基材粒子を観察する。各複合粒子における基材粒子の粒子径を計測し、それらを算術平均して基材粒子の粒子径とする。 The composite particles are added to "Technovit 4000" manufactured by Kulzer Co., Ltd. so that the content thereof is 30% by weight, and dispersed to prepare an embedded resin body for inspection containing the composite particles. Using an ion milling device ("IM4000" manufactured by Hitachi High-Technologies), a cross section of the composite particles is cut out so as to pass through the center of the base particle in the composite particles dispersed in the embedded resin body for inspection. Then, using a field emission scanning electron microscope (FE-SEM), the image magnification is set to 25,000 times, 50 composite particles are randomly selected, and the base material particles in each composite particle are observed. The particle size of the base material particles in each composite particle is measured, and the arithmetic average of these is determined as the particle size of the base material particle.
 上記基材粒子の20%K値は、好ましくは100N/mm以上、より好ましくは700N/mm以上、さらに好ましくは1000N/mm以上であり、好ましくは20000N/mm以下、より好ましくは5000N/mm以下、さらに好ましくは4000N/mm以下、特に好ましくは3000N/mm以下である。上記基材粒子の20%K値が、上記下限以上及び上記上限以下であると、基材間のギャップをより一層高精度に制御し、基材への傷付きを防止することができる。 The 20% K value of the base particles is preferably 100 N/mm 2 or more, more preferably 700 N/mm 2 or more, even more preferably 1000 N/mm 2 or more, and preferably 20000 N/mm 2 or less, more preferably It is 5000 N/mm 2 or less, more preferably 4000 N/mm 2 or less, particularly preferably 3000 N/mm 2 or less. When the 20% K value of the base material particles is not less than the above lower limit and not more than the above upper limit, the gap between the base materials can be controlled with even higher precision and damage to the base material can be prevented.
 上記基材粒子の20%K値(基材粒子を20%圧縮したときの圧縮弾性率)は、以下のようにして測定することができる。 The 20% K value (compressive elastic modulus when the base particles are compressed by 20%) of the base particles can be measured as follows.
 微小圧縮試験機を用いて、円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で基材粒子1個を圧縮する。このときの荷重値(N)及び圧縮変位(mm)を測定する。得られた測定値から、基材粒子の20%K値(20%圧縮弾性率)を下記式により求めることができる。上記微小圧縮試験機として、例えば、島津製作所社製「微小圧縮試験機MCT-W200」、フィッシャー社製「フィッシャースコープH-100」等が用いられる。上記基材粒子の20%K値は、任意に選択された50個の基材粒子の20%K値を算術平均することにより、算出することが好ましい。 Using a micro compression tester, compress one base material particle with the smooth indenter end face of a cylinder (50 μm in diameter, made of diamond) under conditions of 25 ° C., compression speed of 0.3 mN/sec, and maximum test load of 20 mN. . At this time, the load value (N) and compression displacement (mm) are measured. From the obtained measured values, the 20% K value (20% compressive elastic modulus) of the base material particles can be determined by the following formula. As the micro-compression tester, for example, "Micro-compression tester MCT-W200" manufactured by Shimadzu Corporation, "Fisherscope H-100" manufactured by Fisher Corporation, etc. are used. The 20% K value of the base material particles is preferably calculated by calculating the arithmetic average of the 20% K values of 50 arbitrarily selected base material particles.
 20%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:基材粒子が20%圧縮変形したときの荷重値(N)
 S:基材粒子が20%圧縮変形したときの圧縮変位(mm)
 R:基材粒子の半径(mm)
20% K value (N/mm 2 ) = (3/2 1/2 )・F・S -3/2・R -1/2
F: Load value (N) when base material particles are compressed and deformed by 20%
S: Compression displacement (mm) when base material particles are compressed and deformed by 20%
R: Radius of base material particle (mm)
 上記K値は、基材粒子の硬さを普遍的かつ定量的に表す。上記K値を用いることにより、基材粒子の硬さを定量的かつ一義的に表すことができる。 The above K value universally and quantitatively represents the hardness of the base material particles. By using the above K value, the hardness of the base material particles can be expressed quantitatively and uniquely.
 上記複合粒子100重量%中、上記基材粒子の含有量は、好ましくは75重量%以上、より好ましくは80重量%以上、さらに好ましくは85重量%以上であり、好ましくは96重量%以下、より好ましくは94重量%以下、さらに好ましくは93重量%以下である。上記基材粒子の含有量が、上記下限以上及び上記上限以下であると、接着性をより一層高め、かつ、ギャップ制御効果をより一層高めることができる。 The content of the base particles in 100% by weight of the composite particles is preferably 75% by weight or more, more preferably 80% by weight or more, even more preferably 85% by weight or more, and preferably 96% by weight or less, more preferably Preferably it is 94% by weight or less, more preferably 93% by weight or less. When the content of the base material particles is not less than the above lower limit and not more than the above upper limit, adhesiveness can be further enhanced and the gap control effect can be further enhanced.
 調光積層体において、光漏れの発生を防止し、色むらの発生を抑制する観点からは、上記基材粒子は、着色剤を含むことが好ましい。上記着色剤としては、顔料、及び染料等が挙げられる。上記基材粒子は、顔料と染料との双方を含んでいてもよく、顔料のみを含んでいてもよく、染料のみを含んでいてもよい。上記顔料又は上記染料は、上記基材粒子の全光線透過率を20%以下にすることができる顔料又は染料であることが好ましい。上記顔料は、黒色顔料であってもよく、濃紺色顔料であってもよく、濃褐色顔料であってもよい。調光積層体において、光漏れの発生をより一層効果的に防止する観点、及び色むらの発生をより一層効果的に抑制する観点からは、上記顔料は、黒色顔料であることが好ましい。調光積層体において、光漏れの発生をより一層効果的に防止する観点、及び色むらの発生をより一層効果的に抑制する観点からは、上記染料は、黒色染料であることが好ましい。上記基材粒子は、黒色顔料と黒色染料との双方を含んでいてもよく、黒色顔料のみを含んでいてもよく、黒色染料のみを含んでいてもよい。 In the light control laminate, from the viewpoint of preventing the occurrence of light leakage and suppressing the occurrence of color unevenness, it is preferable that the base material particles contain a colorant. Examples of the coloring agent include pigments and dyes. The base particles may contain both a pigment and a dye, may contain only a pigment, or may contain only a dye. The pigment or dye is preferably a pigment or dye that can reduce the total light transmittance of the base particles to 20% or less. The pigment may be a black pigment, a dark blue pigment, or a dark brown pigment. In the light control laminate, from the viewpoint of more effectively preventing the occurrence of light leakage and from the viewpoint of more effectively suppressing the occurrence of color unevenness, it is preferable that the pigment is a black pigment. In the light control laminate, from the viewpoint of more effectively preventing the occurrence of light leakage and from the viewpoint of more effectively suppressing the occurrence of color unevenness, it is preferable that the dye is a black dye. The base particles may contain both a black pigment and a black dye, may contain only a black pigment, or may contain only a black dye.
 上記黒色顔料としては、カーボンブラック、ランプブラック、グラファイト、酸化鉄、銅-クロムの複合酸化物、及び銅-クロム-亜鉛の複合酸化物等が挙げられる。上記黒色顔料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the black pigment include carbon black, lamp black, graphite, iron oxide, copper-chromium composite oxide, copper-chromium-zinc composite oxide, and the like. Only one kind of the above-mentioned black pigment may be used, or two or more kinds thereof may be used in combination.
 上記濃紺色顔料としては、銅フタロシアニン、コバルトフタロシアニン、及びアルミン酸コバルト等が挙げられる。上記濃紺色顔料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the dark blue pigment include copper phthalocyanine, cobalt phthalocyanine, and cobalt aluminate. Only one type of the above-mentioned dark blue pigment may be used, or two or more types may be used in combination.
 上記濃褐色顔料としては、亜鉛フェライト、及び酸化鉄等が挙げられる。上記濃褐色顔料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the dark brown pigment include zinc ferrite, iron oxide, and the like. The dark brown pigments described above may be used alone or in combination of two or more.
 上記黒色染料としては、ピラゾールアゾ系染料、アニリノアゾ系染料、トリフェニルメタン系染料、アントラキノン系染料、アンスラピリドン系染料、ベンジリデン系染料、オキソール系染料、ピラゾロトリアゾールアゾ系染料、ピリドンアゾ系染料、シアニン系染料、フェノチアジン系染料、ピロロピラゾールアゾメチン系染料、キサテン系染料、フタロシアニン系染料、ベンゾピラン系染料、インジゴ系染料、ピロメテン系染料、トリアリールメタン系染料、アゾメチン系染料、ベリレン系染料、ペリノン系染料、クオタリレン系染料、及びキノフタロン系染料等が挙げられ、また酸性染料、直接染料、塩基性染料、媒染染料、酸性媒染染料、アゾイック染料、分散染料、油溶染料、食品染料及びこれらの誘導体を2種以上混合して黒色にした染料等が挙げられる。上記黒色染料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The above black dyes include pyrazole azo dyes, anilinoazo dyes, triphenylmethane dyes, anthraquinone dyes, anthrapyridone dyes, benzylidene dyes, oxole dyes, pyrazolotriazole azo dyes, pyridone azo dyes, and cyanine. dyes, phenothiazine dyes, pyrrolopyrazole azomethine dyes, xatene dyes, phthalocyanine dyes, benzopyran dyes, indigo dyes, pyrromethene dyes, triarylmethane dyes, azomethine dyes, berylene dyes, perinone dyes , quatarylene dyes, and quinophthalone dyes, and acid dyes, direct dyes, basic dyes, mordant dyes, acid mordant dyes, azoic dyes, disperse dyes, oil-soluble dyes, food dyes, and derivatives thereof. Examples include dyes that are made black by mixing more than one species. Only one kind of the above-mentioned black dye may be used, or two or more kinds may be used in combination.
 上記樹脂粒子が顔料を含む場合には、上記顔料は、カーボンブラック、チタンブラック、アニリンブラック又は酸化鉄であることが好ましい。上記顔料は、1種のみが用いられてもよく、2種以上が併用されてもよい。調光積層体において、光漏れの発生をより一層効果的に防止する観点、及び色むらの発生をより一層効果的に抑制する観点からは、上記樹脂粒子が顔料を含む場合には、上記顔料は、カーボンブラックであることが好ましい。 When the resin particles contain a pigment, the pigment is preferably carbon black, titanium black, aniline black, or iron oxide. The above pigments may be used alone or in combination of two or more. In the light control laminate, from the viewpoint of more effectively preventing the occurrence of light leakage and more effectively suppressing the occurrence of color unevenness, when the resin particles contain a pigment, the pigment is preferably carbon black.
 上記カーボンブラックは特に限定されない。上記カーボンブラックとしては、チャンネルブラック、ロールブラック、ファーネスブラック、サーマルブラック、ケッチェンブラック、及びアセチレンブラック等が挙げられる。上記カーボンブラックは、1種のみが用いられてもよく、2種以上が併用されてもよい。 The above carbon black is not particularly limited. Examples of the carbon black include channel black, roll black, furnace black, thermal black, Ketjen black, and acetylene black. The above-mentioned carbon black may be used alone or in combination of two or more.
 上記基材粒子が染料を含む場合には、上記染料は、酸性染料であることが好ましい。上記染料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 When the base particles contain a dye, the dye is preferably an acidic dye. The above dyes may be used alone or in combination of two or more.
 上記基材粒子100重量%中、上記顔料及び上記染料の合計の含有量は、好ましくは2重量%以上、より好ましくは3重量%以上であり、好ましくは40重量%以下、より好ましくは20重量%以下である。上記顔料及び上記染料の合計の含有量が、上記下限以上及び上記上限以下であると、調光積層体において、光漏れの発生をより一層効果的に防止でき、色むらの発生をより一層効果的に抑制できる。 The total content of the pigment and the dye in 100% by weight of the base particles is preferably 2% by weight or more, more preferably 3% by weight or more, and preferably 40% by weight or less, more preferably 20% by weight. % or less. When the total content of the pigment and the dye is not less than the lower limit and not more than the upper limit, the light leakage can be more effectively prevented in the light control laminate, and color unevenness can be more effectively prevented. can be suppressed.
 上記基材粒子100重量%中、上記顔料の含有量は、好ましくは2重量%以上、より好ましくは3重量%以上であり、好ましくは10重量%以下、より好ましくは8重量%以下である。上記顔料の含有量が、上記下限以上及び上記上限以下であると、調光積層体において、光漏れの発生をより一層効果的に防止でき、色むらの発生をより一層効果的に抑制できる。 The content of the pigment in 100% by weight of the base particles is preferably 2% by weight or more, more preferably 3% by weight or more, and preferably 10% by weight or less, more preferably 8% by weight or less. When the content of the pigment is at least the above lower limit and below the above upper limit, in the light control laminate, the occurrence of light leakage can be even more effectively prevented, and the occurrence of color unevenness can be even more effectively suppressed.
 上記基材粒子100重量%中、上記染料の含有量は、好ましくは3重量%以上、より好ましくは5重量%以上であり、好ましくは40重量%以下、より好ましくは20重量%以下である。上記染料の含有量が、上記下限以上及び上記上限以下であると、調光積層体において、光漏れの発生をより一層効果的に防止でき、色むらの発生をより一層効果的に抑制できる。 The content of the dye in 100% by weight of the base particles is preferably 3% by weight or more, more preferably 5% by weight or more, and preferably 40% by weight or less, more preferably 20% by weight or less. When the content of the dye is not less than the above lower limit and not more than the above upper limit, in the light control laminate, the occurrence of light leakage can be more effectively prevented, and the occurrence of color unevenness can be even more effectively suppressed.
 (接着性物質)
 上記接着性物質は、接着性を有する。上記接着性物質は、重合性成分の重合体を含む。上記複合粒子では、上記重合性成分が、(メタ)アクリロイル基以外の第1の反応性官能基を有する第1の(メタ)アクリレートモノマーと、(メタ)アクリロイル基以外の第2の反応性官能基を有する第2の(メタ)アクリレートモノマーとを含み、上記第1の反応性官能基と上記第2の反応性官能基とが互いに異なる。
(Adhesive substance)
The adhesive substance has adhesive properties. The adhesive substance includes a polymer of polymerizable components. In the composite particles, the polymerizable component includes a first (meth)acrylate monomer having a first reactive functional group other than a (meth)acryloyl group, and a second reactive functional group other than a (meth)acryloyl group. a second (meth)acrylate monomer having a group, and the first reactive functional group and the second reactive functional group are different from each other.
 上記重合性成分は、第1の(メタ)アクリレートモノマーと、第2の(メタ)アクリレートモノマーとを含む。上記第1の(メタ)アクリレートモノマーは、第1の反応性官能基を有する。上記第2の(メタ)アクリレートモノマーは、第2の反応性官能基を有する。上記第1の反応性官能基及び上記第2の反応性官能基はそれぞれ、(メタ)アクリロイル基とは異なる。上記第1の反応性官能基及び上記第2の反応性官能基はそれぞれ、(メタ)アクリロイル基以外の反応性官能基である。すなわち、上記第1の(メタ)アクリレートモノマーは、(メタ)アクリロイル基と、(メタ)アクリロイル基以外の第1の反応性官能基とを有する。上記第2の(メタ)アクリレートモノマーは、(メタ)アクリロイル基と、(メタ)アクリロイル基以外の第2の反応性官能基とを有する。上記第1の反応性官能基と上記第2の反応性官能基とは異なる。 The polymerizable component includes a first (meth)acrylate monomer and a second (meth)acrylate monomer. The first (meth)acrylate monomer has a first reactive functional group. The second (meth)acrylate monomer has a second reactive functional group. The first reactive functional group and the second reactive functional group are each different from a (meth)acryloyl group. Each of the first reactive functional group and the second reactive functional group is a reactive functional group other than a (meth)acryloyl group. That is, the first (meth)acrylate monomer has a (meth)acryloyl group and a first reactive functional group other than the (meth)acryloyl group. The second (meth)acrylate monomer has a (meth)acryloyl group and a second reactive functional group other than the (meth)acryloyl group. The first reactive functional group and the second reactive functional group are different.
 上記重合体は、上記第1の反応性官能基と上記第2の反応性官能基とを有することが好ましい。 It is preferable that the polymer has the first reactive functional group and the second reactive functional group.
 上記第1の反応性官能基と、上記第2の反応性官能基とがそれぞれ、刺激により反応可能な性質を有することが好ましい。上記刺激としては、加熱、光の照射、及び圧力等が挙げられる。接着性をより一層高める観点からは、上記刺激は、加熱又は光の照射であることが好ましい。液晶の汚染をより一層効果的に防ぐ観点からは、上記第1の反応性官能基と上記第2の反応性官能基とがそれぞれ、加熱又は光の照射により反応可能な反応性官能基であることが好ましい。接着性をより一層高め、かつ、液晶の汚染をより一層効果的に防ぐ観点からは、上記第1の反応性官能基と、上記第2の反応性官能基とが、加熱又は光の照射により互いに反応することが好ましい。 It is preferable that the first reactive functional group and the second reactive functional group each have the property of being able to react upon stimulation. Examples of the stimulus include heating, light irradiation, pressure, and the like. From the viewpoint of further improving adhesiveness, the stimulus is preferably heating or light irradiation. From the viewpoint of more effectively preventing contamination of the liquid crystal, the first reactive functional group and the second reactive functional group are reactive functional groups that can react by heating or irradiation with light. It is preferable. From the viewpoint of further increasing adhesiveness and more effectively preventing contamination of the liquid crystal, the first reactive functional group and the second reactive functional group can be heated or irradiated with light. Preferably, they react with each other.
 上記加熱により反応可能な反応性官能基としては、環状エーテル基、アミド基、水酸基、及びカルボキシ基等が挙げられる。 Examples of the reactive functional groups that can react by heating include cyclic ether groups, amide groups, hydroxyl groups, and carboxy groups.
 上記光の照射により反応可能な反応性官能基としては、ビニル基、カルボニル基、アジド基、及びジアジリン基等が挙げられる。なお、上記ビニル基として、(メタ)アクリロイル基中のビニル基は除かれる。 Examples of the reactive functional groups that can react upon irradiation with light include vinyl groups, carbonyl groups, azide groups, and diazirine groups. Note that the vinyl group in the (meth)acryloyl group is excluded as the vinyl group.
 上記第1の反応性官能基及び上記第2の反応性官能基としては、環状エーテル基、イソシアネート基、アルデヒド基、ニトリル基、アミド基、水酸基、カルボキシ基、イミド基、アミノ基、ビニル基、カルボニル基、アジド基、及びジアジリン基等が挙げられる。接着性をより一層高め、かつ液晶の汚染をより一層効果的に防ぐ観点からは、上記第1の反応性官能基と上記第2の反応性官能基との組み合わせは、環状エーテル基、イソシアネート基、アルデヒド基、ニトリル基、アミド基、水酸基、カルボキシ基、イミド基、及びアミノ基からなる群から選ばれる反応性官能基の組み合わせであることが好ましい。上記環状エーテル基としては、エポキシ基、及びオキセタニル基等が挙げられる。なお、上記第1の反応性官能基及び上記第2の反応性官能基は、グリシジル基の一部として、エポキシ基を有していてもよい。なお、上記ビニル基として、(メタ)アクリロイル基中のビニル基は除かれる。 The first reactive functional group and the second reactive functional group include a cyclic ether group, an isocyanate group, an aldehyde group, a nitrile group, an amide group, a hydroxyl group, a carboxy group, an imide group, an amino group, a vinyl group, Examples include a carbonyl group, an azide group, and a diazirine group. From the viewpoint of further increasing adhesiveness and more effectively preventing contamination of the liquid crystal, the combination of the first reactive functional group and the second reactive functional group is a cyclic ether group, an isocyanate group, etc. , an aldehyde group, a nitrile group, an amide group, a hydroxyl group, a carboxy group, an imide group, and an amino group. Examples of the cyclic ether group include an epoxy group and an oxetanyl group. Note that the first reactive functional group and the second reactive functional group may have an epoxy group as a part of the glycidyl group. Note that the vinyl group in the (meth)acryloyl group is excluded as the vinyl group.
 上記第1の反応性官能基と上記第2の反応性官能基との組み合わせは、環状エーテル基とアミド基との組み合わせ、環状エーテル基とアミノ基との組み合わせ、又はイソシアネート基と水酸基との組み合わせであることが好ましい。上記第1の反応性官能基と上記第2の反応性官能基との組み合わせは、環状エーテル基とアミド基との組み合わせであることがより好ましく、エポキシ基とアミド基との組み合わせであることがさらに好ましい。上記の好ましい反応性官能基の組み合わせにより、液晶の汚染をより一層効果的に防ぐことができる。 The combination of the first reactive functional group and the second reactive functional group is a combination of a cyclic ether group and an amide group, a combination of a cyclic ether group and an amino group, or a combination of an isocyanate group and a hydroxyl group. It is preferable that The combination of the first reactive functional group and the second reactive functional group is more preferably a combination of a cyclic ether group and an amide group, and more preferably a combination of an epoxy group and an amide group. More preferred. By combining the above-mentioned preferred reactive functional groups, contamination of the liquid crystal can be more effectively prevented.
 接着性をより一層高め、かつ、液晶の汚染をより一層効果的に防ぐ観点からは、上記第1の反応性官能基は、環状エーテル基、イソシアネート基、アルデヒド基、又はニトリル基であることが好ましく、環状エーテル基であることがより好ましく、エポキシ基、又はオキセタニル基であることがさらに好ましい。 From the viewpoint of further increasing adhesiveness and more effectively preventing contamination of the liquid crystal, the first reactive functional group may be a cyclic ether group, an isocyanate group, an aldehyde group, or a nitrile group. It is preferably a cyclic ether group, more preferably an epoxy group or an oxetanyl group.
 接着性をより一層高め、かつ、液晶の汚染をより一層効果的に防ぐ観点からは、上記第2の反応性官能基は、アミド基、水酸基、カルボキシ基、イミド基、又はアミノ基であることが好ましく、アミド基又は水酸基であることがより好ましく、アミド基であることがさらに好ましい。 From the viewpoint of further increasing adhesiveness and more effectively preventing contamination of the liquid crystal, the second reactive functional group is an amide group, a hydroxyl group, a carboxy group, an imide group, or an amino group. is preferable, an amide group or a hydroxyl group is more preferable, and an amide group is even more preferable.
 なお、上記第1の(メタ)アクリレートモノマーは、上記第1の反応性官能基と、上記第1の反応性官能基以外の反応性官能基とを含んでいてもよい。上記第2の(メタ)アクリレートモノマーは、上記第2の反応性官能基と、上記第2の反応性官能基以外の反応性官能基とを含んでいてもよい。 Note that the first (meth)acrylate monomer may contain the first reactive functional group and a reactive functional group other than the first reactive functional group. The second (meth)acrylate monomer may include the second reactive functional group and a reactive functional group other than the second reactive functional group.
 上記第1の(メタ)アクリレートモノマーと、上記第2の(メタ)アクリレートモノマーとはそれぞれ、単官能の(メタ)アクリレートであってもよく、二官能の(メタ)アクリレートであってもよく、三官能の(メタ)アクリレートであってもよく、四官能以上の(メタ)アクリレートであってもよい。上記第1の(メタ)アクリレートモノマーと、上記第2の(メタ)アクリレートモノマーとはそれぞれ、(メタ)アクリロイル基を1個有していてもよく、2個有していてもよく、2個以上有していてもよく、3個有していてもよく、3個以上有していてもよく、4個以上有していてもよい。上記第1の(メタ)アクリレートモノマーと、上記第2の(メタ)アクリレートモノマーとはそれぞれ、(メタ)アクリロイル基を100個以下有していてもよく、50個以下有していてもよく、10個以下有していてもよい。 The first (meth)acrylate monomer and the second (meth)acrylate monomer may each be a monofunctional (meth)acrylate or a difunctional (meth)acrylate, It may be a trifunctional (meth)acrylate or a tetrafunctional or higher (meth)acrylate. The first (meth)acrylate monomer and the second (meth)acrylate monomer may each have one (meth)acryloyl group, may have two (meth)acryloyl groups, and may have two (meth)acryloyl groups. It may have more than 3 pieces, it may have 3 pieces or more, it may have 4 or more pieces. The first (meth)acrylate monomer and the second (meth)acrylate monomer may each have 100 or less (meth)acryloyl groups, and may have 50 or less, It may have 10 or less.
 上記第1の(メタ)アクリレートモノマーとしては、グリシジル(メタ)アクリレート、3,4-エポキシシクロヘキシルメチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレートグリシジルエーテル、2-イソシアニルエチル(メタ)アクリレート、及び2-[(3,5-ジメチルピラゾリル)カルボニルアミノ]エチル(メタ)アクリレート等が挙げられる。接着性をより一層高める観点からは、上記第1の(メタ)アクリレートモノマーは、グリシジル(メタ)アクリレートであることが好ましい。 Examples of the first (meth)acrylate monomer include glycidyl (meth)acrylate, 3,4-epoxycyclohexylmethyl (meth)acrylate, 4-hydroxybutyl (meth)acrylate glycidyl ether, and 2-isocyanylethyl (meth)acrylate. , and 2-[(3,5-dimethylpyrazolyl)carbonylamino]ethyl (meth)acrylate. From the viewpoint of further improving adhesiveness, the first (meth)acrylate monomer is preferably glycidyl (meth)acrylate.
 上記第2の(メタ)アクリレートモノマーとしては、(メタ)アクリルアミド、2-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、及び2-(tert-ブチルアミノ)エチル(メタ)アクリレート等が挙げられる。接着性をより一層高める観点からは、上記第2の(メタ)アクリレートモノマーは、(メタ)アクリルアミドであることが好ましい。 The second (meth)acrylate monomer includes (meth)acrylamide, 2-hydroxypropyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, and 2-(tert- butylamino)ethyl (meth)acrylate and the like. From the viewpoint of further improving adhesiveness, the second (meth)acrylate monomer is preferably (meth)acrylamide.
 上記重合性成分は、上記第1の(メタ)アクリレートモノマー及び上記第2の(メタ)アクリレートモノマーの双方と異なる重合性化合物をさらに含んでいてもよい。上記第1の(メタ)アクリレートモノマー及び上記第2の(メタ)アクリレートモノマーの双方と異なる重合性化合物は、特に限定されない。上記第1の(メタ)アクリレートモノマー及び上記第2の(メタ)アクリレートモノマーの双方と異なる重合性化合物は、(メタ)アクリロイル基以外の反応性官能基を有する重合性化合物であってもよく、(メタ)アクリロイル基以外の反応性官能基を有さない重合性化合物であってもよい。上記(メタ)アクリロイル基以外の反応性官能基を有さない重合性化合物としては、(メタ)アクリル酸、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、及びメチル(メタ)アクリレート等が挙げられる。 The polymerizable component may further include a polymerizable compound different from both the first (meth)acrylate monomer and the second (meth)acrylate monomer. The polymerizable compound that is different from both the first (meth)acrylate monomer and the second (meth)acrylate monomer is not particularly limited. The polymerizable compound different from both the first (meth)acrylate monomer and the second (meth)acrylate monomer may be a polymerizable compound having a reactive functional group other than the (meth)acryloyl group, It may be a polymerizable compound that does not have a reactive functional group other than a (meth)acryloyl group. Examples of polymerizable compounds that do not have reactive functional groups other than the above (meth)acryloyl group include (meth)acrylic acid, butyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, benzyl (meth)acrylate, and methyl Examples include (meth)acrylate.
 上記重合性成分100重量%中、上記第1の(メタ)アクリレートモノマーと上記第2の(メタ)アクリレートモノマーとの合計の含有量は、好ましくは5重量%以上、より好ましくは7重量%以上、さらに好ましくは10重量%以上であり、好ましくは30重量%以下、より好ましくは25重量%以下、さらに好ましくは20重量%以下である。上記第1の(メタ)アクリレートモノマーと上記第2の(メタ)アクリレートモノマーとの合計の含有量が、上記下限以上及び上記上限以下であると、本発明の効果をより一層効果的に発揮することができる。 The total content of the first (meth)acrylate monomer and the second (meth)acrylate monomer in 100% by weight of the polymerizable component is preferably 5% by weight or more, more preferably 7% by weight or more. , more preferably 10% by weight or more, preferably 30% by weight or less, more preferably 25% by weight or less, still more preferably 20% by weight or less. When the total content of the first (meth)acrylate monomer and the second (meth)acrylate monomer is greater than or equal to the lower limit and less than or equal to the upper limit, the effects of the present invention are exhibited even more effectively. be able to.
 上記重合性成分100重量%中、上記第1の(メタ)アクリレートモノマーの含有量は、好ましくは1重量%以上、より好ましくは5重量%以上、さらに好ましくは10重量%以上であり、好ましくは20重量%以下、より好ましくは15重量%以下、さらに好ましくは13重量%以下である。上記第1の(メタ)アクリレートモノマーの含有量が、上記下限以上及び上記上限以下であると、接着性をより一層高めることができる。 The content of the first (meth)acrylate monomer in 100% by weight of the polymerizable component is preferably 1% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, and preferably It is 20% by weight or less, more preferably 15% by weight or less, even more preferably 13% by weight or less. When the content of the first (meth)acrylate monomer is not less than the above lower limit and not more than the above upper limit, adhesiveness can be further improved.
 上記重合性成分100重量%中、上記第2の(メタ)アクリレートモノマーの含有量は、好ましくは1重量%以上、より好ましくは3重量%以上、さらに好ましくは5重量%以上であり、好ましくは20重量%以下、より好ましくは17重量%以下、さらに好ましくは15重量%以下である。上記第2の(メタ)アクリレートモノマーの含有量が、上記下限以上及び上記上限以下であると、接着性をより一層高めることができる。 The content of the second (meth)acrylate monomer in 100% by weight of the polymerizable component is preferably 1% by weight or more, more preferably 3% by weight or more, still more preferably 5% by weight or more, and preferably It is 20% by weight or less, more preferably 17% by weight or less, even more preferably 15% by weight or less. When the content of the second (meth)acrylate monomer is not less than the above lower limit and not more than the above upper limit, adhesiveness can be further improved.
 上記重合性成分の重合体の重合方法は、特に限定されない。上記重合方法としては、ラジカル重合、イオン重合、重縮合(縮合重合、縮重合)、付加縮合、リビング重合、及びリビングラジカル重合等の公知の方法により重合させることができる。この方法としては、例えば、ラジカル重合開始剤の存在下で懸濁重合する方法、並びに非架橋の種粒子を用いてラジカル重合開始剤とともに単量体を膨潤させて重合する方法であるシード重合法及び乳化重合法等が挙げられる。 The method of polymerizing the polymer of the above polymerizable component is not particularly limited. As the polymerization method, known methods such as radical polymerization, ionic polymerization, polycondensation (condensation polymerization, condensation polymerization), addition condensation, living polymerization, and living radical polymerization can be used. Examples of this method include suspension polymerization in the presence of a radical polymerization initiator, and seed polymerization in which monomers are polymerized by swelling them together with a radical polymerization initiator using non-crosslinked seed particles. and emulsion polymerization method.
 上記接着性物質としては、複数の接着性粒子及び接着性層が挙げられる。上記接着性物質は、複数の接着性粒子であるか、又は接着性層であることが好ましい。 Examples of the adhesive substance include a plurality of adhesive particles and an adhesive layer. Preferably, the adhesive substance is a plurality of adhesive particles or an adhesive layer.
 上記接着性物質は、複数の接着性粒子であることが好ましい。上記接着性粒子の粒子径は、好ましくは100nm以上、より好ましくは200nm以上、さらに好ましくは300nm以上であり、好ましくは5000nm以下、より好ましくは4000nm以下、さらに好ましくは3000nm以下、特に好ましくは2500nm以下である。上記接着性粒子の粒子径が、上記下限以上及び上記上限以下であると、複合粒子の形態をより一層良好にすることができる。 The adhesive substance is preferably a plurality of adhesive particles. The particle diameter of the adhesive particles is preferably 100 nm or more, more preferably 200 nm or more, even more preferably 300 nm or more, preferably 5000 nm or less, more preferably 4000 nm or less, still more preferably 3000 nm or less, particularly preferably 2500 nm or less. It is. When the particle diameter of the adhesive particles is not less than the above lower limit and not more than the above upper limit, the morphology of the composite particles can be further improved.
 上記接着性粒子の粒子径は、接着性粒子が真球状である場合には直径を意味し、接着性粒子が真球状以外の形状である場合には、その体積相当の真球と仮定した際の直径を意味する。 The particle size of the adhesive particles mentioned above means the diameter when the adhesive particles are true spherical, and when the adhesive particles have a shape other than true spherical, it is assumed that the adhesive particles are true spheres equivalent to the volume. means the diameter of
 上記接着性粒子の粒子径は、平均粒子径であることが好ましく、数平均粒子径であることが好ましい。上記接着性粒子の粒子径は、例えば、任意の接着性粒子50個を電子顕微鏡又は光学顕微鏡にて観察し、各接着性粒子の粒子径の平均値を算出することや、レーザー回折式粒度分布測定を行うことにより求められる。 The particle size of the adhesive particles is preferably an average particle size, and preferably a number average particle size. The particle size of the above-mentioned adhesive particles can be determined, for example, by observing 50 arbitrary adhesive particles with an electron microscope or an optical microscope and calculating the average value of the particle size of each adhesive particle, or by using laser diffraction particle size distribution. Determined by performing measurements.
 複合粒子の形態をより一層良好にする観点からは、上記接着性粒子の粒子径の変動係数(CV値)は、好ましくは10%以下、より好ましくは5%以下である。上記接着性粒子の粒子径の変動係数(CV値)の下限は、特に限定されない。上記接着性粒子の粒子径の変動係数(CV値)は、0%以上であってもよく、1%以上であってもよい。 From the viewpoint of further improving the morphology of the composite particles, the coefficient of variation (CV value) of the particle diameter of the adhesive particles is preferably 10% or less, more preferably 5% or less. The lower limit of the coefficient of variation (CV value) of the particle diameter of the adhesive particles is not particularly limited. The coefficient of variation (CV value) of the particle diameter of the adhesive particles may be 0% or more, or 1% or more.
 上記変動係数(CV値)は、以下のようにして測定できる。 The above coefficient of variation (CV value) can be measured as follows.
 CV値(%)=(ρ/Dn)×100
 ρ:接着性粒子の粒子径の標準偏差
 Dn:接着性粒子の粒子径の平均値
CV value (%) = (ρ/Dn) x 100
ρ: Standard deviation of particle diameter of adhesive particles Dn: Average value of particle diameter of adhesive particles
 上記接着性粒子の形状は特に限定されない。上記接着性粒子の形状は、球状であってもよく、球状以外の形状であってもよく、扁平状等であってもよい。 The shape of the adhesive particles is not particularly limited. The adhesive particles may have a spherical shape, a shape other than a spherical shape, a flat shape, or the like.
 上記接着性物質は、接着性層であることが好ましい。上記接着性層の厚みは、好ましくは100nm以上、より好ましくは200nm以上、さらに好ましくは300nm以上であり、好ましくは5000nm以下、より好ましくは4000nm以下、さらに好ましくは3000nm以下である。上記接着性層の厚みが、上記下限以上及び上記上限以下であると、複合粒子の形態をより一層良好にすることができる。 The adhesive substance is preferably an adhesive layer. The thickness of the adhesive layer is preferably 100 nm or more, more preferably 200 nm or more, even more preferably 300 nm or more, and preferably 5000 nm or less, more preferably 4000 nm or less, still more preferably 3000 nm or less. When the thickness of the adhesive layer is not less than the above lower limit and not more than the above upper limit, the morphology of the composite particles can be further improved.
 上記接着性層の厚みは、例えば、透過型電子顕微鏡(TEM)を用いて、被覆粒子の断面を観察することにより測定できる。 The thickness of the adhesive layer can be measured, for example, by observing the cross section of the coated particles using a transmission electron microscope (TEM).
 複合粒子の形態をより一層良好にする観点からは、上記接着性粒子の平均粒子径又は上記接着性層の厚みの、上記複合粒子の平均粒子径に対する比(接着性粒子の平均粒子径又は接着性層の厚み/複合粒子の平均粒子径)は、好ましくは0.01以上、より好ましくは0.05以上であり、好ましくは0.5以下、より好ましくは0.3以下である。 From the viewpoint of improving the morphology of the composite particles, the ratio of the average particle diameter of the adhesive particles or the thickness of the adhesive layer to the average particle diameter of the composite particles (the average particle diameter of the adhesive particles or the adhesive The ratio (thickness of the magnetic layer/average particle diameter of the composite particles) is preferably 0.01 or more, more preferably 0.05 or more, and preferably 0.5 or less, more preferably 0.3 or less.
 上記接着性層は、1層の接着性層であってもよく、多層の接着性層であってもよい。 The adhesive layer may be a single adhesive layer or may be a multilayer adhesive layer.
 上記基材粒子の表面積100%中、上記接着性物質が配置されている表面積の割合(接着性物質による被覆率)は、好ましくは30%以上、より好ましくは40%以上、さらに好ましくは50%以上であり、好ましくは100%以下、より好ましくは90%以下である。上記接着性物質が配置されている表面積の割合(接着性物質による被覆率)が上記下限以上であると、接着性をより一層高めることができる。上記接着性物質が配置されている表面積の割合(接着性物質による被覆率)が上記上限以下であると、複合粒子の形態をより一層良好にすることができる。 Out of 100% of the surface area of the base particles, the proportion of the surface area where the adhesive substance is arranged (coverage rate by the adhesive substance) is preferably 30% or more, more preferably 40% or more, and still more preferably 50%. or more, preferably 100% or less, more preferably 90% or less. Adhesiveness can be further improved when the proportion of the surface area where the adhesive substance is placed (coverage rate by the adhesive substance) is equal to or higher than the lower limit. When the proportion of the surface area on which the adhesive substance is arranged (coverage rate by the adhesive substance) is below the above upper limit, the morphology of the composite particles can be further improved.
 上記接着性物質が配置されている表面積の割合(接着性物質による被覆率)は、例えば、以下の方法で求めることができる。走査型電子顕微鏡(SEM)での観察により、20個の複合粒子を観察し、基材粒子の表面積100%中、接着性粒子又は接着性層により被覆されている部分の合計の面積(投影面積)の割合を計算する。 The ratio of the surface area where the adhesive substance is placed (coverage rate with the adhesive substance) can be determined, for example, by the following method. The 20 composite particles were observed using a scanning electron microscope (SEM), and the total area (projected area) of the portion covered by the adhesive particles or adhesive layer in 100% of the surface area of the base particle was determined. ).
 接着性をより一層高める観点からは、上記重合体のガラス転移温度は、好ましくは-15℃以上、より好ましくは-10℃以上、さらに好ましくは0℃以上であり、好ましくは20℃以下、より好ましくは15℃以下、さらに好ましくは10℃以下である。 From the viewpoint of further improving adhesiveness, the glass transition temperature of the polymer is preferably -15°C or higher, more preferably -10°C or higher, even more preferably 0°C or higher, and preferably 20°C or lower, more preferably The temperature is preferably 15°C or lower, more preferably 10°C or lower.
 接着性をより一層高める観点からは、上記接着性物質のガラス転移温度は、好ましくは-15℃以上、より好ましくは-10℃以上、さらに好ましくは0℃以上であり、好ましくは20℃以下、より好ましくは15℃以下、さらに好ましくは10℃以下である。 From the viewpoint of further improving adhesiveness, the glass transition temperature of the adhesive substance is preferably -15°C or higher, more preferably -10°C or higher, even more preferably 0°C or higher, and preferably 20°C or lower, The temperature is more preferably 15°C or lower, even more preferably 10°C or lower.
 上記接着性物質及び上記重合体のガラス転移温度は、例えば、Foxの式を用いて、重合性成分の重量分率により計算することができる。上記接着性物質及び上記重合体のガラス転移温度は、動的粘弾性測定装置を用いて測定してもよい。動的粘弾性測定装置としては、例えば、TA Instruments社製「ARES-G2」等が挙げられる。 The glass transition temperature of the adhesive substance and the polymer can be calculated from the weight fraction of the polymerizable component using the Fox equation, for example. The glass transition temperature of the adhesive substance and the polymer may be measured using a dynamic viscoelasticity measuring device. Examples of the dynamic viscoelasticity measuring device include "ARES-G2" manufactured by TA Instruments.
 上記接着性物質を上記基材粒子の表面上に配置する方法としては、ヘテロ凝集法、高速気流中衝撃法、及びシータコンポーザーによる方法等が挙げられる。本発明の効果をより一層効果的に発揮する観点からは、上記複合粒子では、ヘテロ凝集、高速気流中での衝撃、又はシータコンポーザーにより、上記接着性物質が上記基材粒子の表面上に配置されていることが好ましい。上記複合粒子では、ハイブリダイザーにより、上記接着性物質が上記基材粒子の表面上に配置されていてもよい。 Examples of methods for disposing the adhesive substance on the surface of the base particles include a heterocoagulation method, a high-speed air impact method, and a method using a theta composer. From the viewpoint of exhibiting the effects of the present invention even more effectively, in the composite particles, the adhesive substance is arranged on the surface of the base particle by heteroaggregation, impact in high-speed airflow, or theta composer. It is preferable that the In the composite particle, the adhesive substance may be placed on the surface of the base particle by a hybridizer.
 上記接着性物質100重量%中、上記重合性成分の重合体の含有量は、好ましくは50重量%以上、より好ましくは60重量%以上、さらに好ましくは80重量%以上である。上記重合性成分の重合体の含有量が、上記下限以上であると、接着性をより一層高めることができる。上記接着性物質100重量%中、上記重合性成分の重合体の含有量の上限は、特に限定されない。上記接着性物質100重量%中、上記重合性成分の重合体の含有量は、100重量%(全量)であってもよく、100重量%以下であってもよい。 The content of the polymer of the polymerizable component in 100% by weight of the adhesive substance is preferably 50% by weight or more, more preferably 60% by weight or more, and still more preferably 80% by weight or more. When the content of the polymer of the polymerizable component is equal to or higher than the lower limit, the adhesiveness can be further improved. The upper limit of the content of the polymer of the polymerizable component in 100% by weight of the adhesive substance is not particularly limited. The content of the polymer of the polymerizable component in 100% by weight of the adhesive substance may be 100% by weight (total amount) or 100% by weight or less.
 上記接着性物質は、上記重合性成分の重合体以外の成分を含んでいてもよい。上記重合性成分の重合体以外の成分としては、分散剤、界面活性剤、無機酸化物、及び液晶分子等が挙げられる。 The adhesive substance may contain components other than the polymer of the polymerizable component. Components other than the polymer of the above-mentioned polymerizable components include dispersants, surfactants, inorganic oxides, liquid crystal molecules, and the like.
 (調光積層体)
 本発明に係る調光積層体は、第1の透明基材と、第2の透明基材と、上記第1の透明基材と上記第2の透明基材との間に配置された調光層とを備える。本発明に係る調光積層体では、上記調光層が、複数のスペーサを含み、上記スペーサが、上記複合粒子である。上記調光積層体は、液晶表示素子(液晶表示装置)とは異なることが好ましい。
(Dimmer laminate)
The light control laminate according to the present invention includes a first transparent base material, a second transparent base material, and a light control layer disposed between the first transparent base material and the second transparent base material. and a layer. In the light control laminate according to the present invention, the light control layer includes a plurality of spacers, and the spacers are the composite particles. The light control laminate is preferably different from a liquid crystal display element (liquid crystal display device).
 本発明に係る調光積層体では、上記の構成が備えられているので、基材間の接着性を高め、かつ、液晶の汚染を防ぐことができる。また、本発明に係る調光積層体では、基材間のギャップを高精度に制御することができる。 Since the light control laminate according to the present invention has the above configuration, it is possible to improve the adhesiveness between the base materials and prevent contamination of the liquid crystal. Further, in the light control laminate according to the present invention, the gap between the base materials can be controlled with high precision.
 図3は、本発明の第1の実施形態に係る複合粒子を用いたPDLC方式の調光積層体を模式的に示す断面図である。図4は、本発明の第1の実施形態に係る複合粒子を用いたSPD方式の調光積層体を模式的に示す断面図である。なお、図3,4において、調光層及びスペーサ(複合粒子)の大きさ、厚み、形状及び添加量等は、図示の便宜上、実際の大きさ及び形状から適宜変更している。 FIG. 3 is a cross-sectional view schematically showing a PDLC type light control laminate using composite particles according to the first embodiment of the present invention. FIG. 4 is a cross-sectional view schematically showing an SPD type light control laminate using composite particles according to the first embodiment of the present invention. In addition, in FIGS. 3 and 4, the size, thickness, shape, addition amount, etc. of the light control layer and the spacer (composite particles) are appropriately changed from the actual size and shape for convenience of illustration.
 図3に示すPDLC方式の調光積層体51は、第1の透明基材6と、第2の透明基材7と、調光層4とを備える。調光層4は、第1の透明基材6と第2の透明基材7との間に挟まれている。調光層4は、第1の透明基材6と第2の透明基材7との間に配置されている。第1の透明基材6と、第2の透明基材7との間において、調光層4の周囲に、シール剤が配置されていてもよい。 A PDLC type light control laminate 51 shown in FIG. 3 includes a first transparent base material 6, a second transparent base material 7, and a light control layer 4. The light control layer 4 is sandwiched between a first transparent base material 6 and a second transparent base material 7. The light control layer 4 is arranged between the first transparent base material 6 and the second transparent base material 7. A sealant may be placed around the light control layer 4 between the first transparent base material 6 and the second transparent base material 7.
 調光層4は、液晶カプセル4Aと、バインダー4Bと、複数のスペーサ8とを含む。液晶カプセル4Aは液晶材料である。液晶カプセル4Aは、バインダー4B中に分散している。液晶カプセル4Aは、バインダー4B中にカプセル状に保持されている。液晶材料は、カプセル状でバインダー中に分散していてもよく、液晶材料が連続相としてバインダー中に分散していてもよい。 The light control layer 4 includes a liquid crystal capsule 4A, a binder 4B, and a plurality of spacers 8. The liquid crystal capsule 4A is made of liquid crystal material. Liquid crystal capsules 4A are dispersed in binder 4B. The liquid crystal capsule 4A is held in a capsule shape in a binder 4B. The liquid crystal material may be dispersed in the binder in the form of capsules, or the liquid crystal material may be dispersed in the binder as a continuous phase.
 スペーサ8は、球状のスペーサである。上記スペーサは、球状であってもよく、柱状であってもよい。スペーサ8は、上述した複合粒子である。スペーサ8は、第1の透明基材6と第2の透明基材7とに接触している。スペーサ8は、第1の透明基材6と第2の透明基材7とのギャップを制御している。 The spacer 8 is a spherical spacer. The spacer may be spherical or columnar. Spacer 8 is the composite particle described above. The spacer 8 is in contact with the first transparent base material 6 and the second transparent base material 7. The spacer 8 controls the gap between the first transparent base material 6 and the second transparent base material 7.
 第1の透明基材6の表面上及び第2の透明基材7の表面上には透明電極が形成されている(図示せず)。透明電極の材料としては、インジウム錫オキサイド(ITO)等が挙げられる。 Transparent electrodes are formed on the surface of the first transparent base material 6 and the surface of the second transparent base material 7 (not shown). Examples of the material for the transparent electrode include indium tin oxide (ITO).
 PDLC方式の調光積層体51に電界が印加されていない状態では、液晶カプセル4A内の液晶分子の配向が均一ではないために、バインダー4Bと液晶材料との屈折率の違いにより、入射光がバインダー中で散乱して、不透明な状態となる。 When no electric field is applied to the PDLC type light control laminate 51, the orientation of the liquid crystal molecules in the liquid crystal capsule 4A is not uniform, so the difference in refractive index between the binder 4B and the liquid crystal material causes the incident light to It is scattered in the binder and becomes opaque.
 PDLC方式の調光積層体51に電界が印加されると、液晶カプセル4A内の液晶分子が電界に対して平行な方向に配列する。この状態でバインダー4Bと液晶材料との屈折率が同等になるため、光が透過することができ、透明な状態となる。 When an electric field is applied to the PDLC dimming laminate 51, the liquid crystal molecules within the liquid crystal capsule 4A are aligned in a direction parallel to the electric field. In this state, the binder 4B and the liquid crystal material have the same refractive index, allowing light to pass through, resulting in a transparent state.
 図4に示すSPD方式の調光積層体52は、第1の透明基材6と、第2の透明基材7と、調光層5とを備える。調光層5は、第1の透明基材6と第2の透明基材7との間に挟まれている。調光層5は、第1の透明基材6と第2の透明基材7との間に配置されている。 The SPD type light control laminate 52 shown in FIG. 4 includes a first transparent base material 6, a second transparent base material 7, and a light control layer 5. The light control layer 5 is sandwiched between a first transparent base material 6 and a second transparent base material 7. The light control layer 5 is arranged between the first transparent base material 6 and the second transparent base material 7.
 調光層5は、光調整懸濁液の液滴5Aと、樹脂マトリックス5Bと、複数のスペーサ8とを含む。光調整懸濁液の液滴5Aは、樹脂マトリックス5B中に分散している。光調整懸濁液の液滴5Aは、樹脂マトリックス5B中に液滴状態で保持されている。 The light control layer 5 includes droplets 5A of light control suspension, a resin matrix 5B, and a plurality of spacers 8. Droplets 5A of light-modulating suspension are dispersed in a resin matrix 5B. The droplets 5A of the light conditioning suspension are held in droplet form in the resin matrix 5B.
 光調整懸濁液の液滴5Aは、分散媒5Aaと光調整粒子5Abとを含む。光調整粒子5Abは、分散媒5Aa中に分散している。 The droplet 5A of the light adjustment suspension includes a dispersion medium 5Aa and light adjustment particles 5Ab. The light adjustment particles 5Ab are dispersed in the dispersion medium 5Aa.
 スペーサ8は、球状のスペーサである。上記スペーサは、球状であってもよく、柱状であってもよい。スペーサ8は、上述した複合粒子である。スペーサ8は、第1の透明基材6と第2の透明基材7とに接触している。スペーサ8は、第1の透明基材6と第2の透明基材7とのギャップを制御している。 The spacer 8 is a spherical spacer. The spacer may be spherical or columnar. Spacer 8 is the composite particle described above. The spacer 8 is in contact with the first transparent base material 6 and the second transparent base material 7. The spacer 8 controls the gap between the first transparent base material 6 and the second transparent base material 7.
 第1の透明基材6の表面上及び第2の透明基材7の表面上には透明電極が形成されている(図示せず)。透明電極の材料としては、インジウム錫オキサイド(ITO)等が挙げられる。 Transparent electrodes are formed on the surface of the first transparent base material 6 and the surface of the second transparent base material 7 (not shown). Examples of the material for the transparent electrode include indium tin oxide (ITO).
 SPD方式の調光積層体52に電界が印加されていない状態では、光調整懸濁液の液滴5Aを構成する分散媒5Aa中に分散している光調整粒子5Abのブラウン運動により、入射光が光調整粒子5Abに吸収、散乱、又は反射され、入射光は調光層5を透過することができない。 When no electric field is applied to the SPD dimming laminate 52, the Brownian motion of the light adjusting particles 5Ab dispersed in the dispersion medium 5Aa constituting the droplets 5A of the light adjusting suspension causes the incident light to change. is absorbed, scattered, or reflected by the light adjustment particles 5Ab, and the incident light cannot pass through the light adjustment layer 5.
 SPD方式の調光積層体52に電界が印加されると、光調整粒子5Abが電界に対して平行な方向に配列する。このため、入射光は、配列した光調整粒子5Ab間を通過することができ、調光層5を透過することできる。 When an electric field is applied to the SPD type light control laminate 52, the light control particles 5Ab are arranged in a direction parallel to the electric field. Therefore, the incident light can pass between the arranged light adjustment particles 5Ab and can be transmitted through the light adjustment layer 5.
 (調光層)
 上記調光層は、調光性を有していることが好ましい。上記調光性とは、電界の印加の有無により可視光透過率が変化し、入射光量を調整することができる性質である。上記調光層の材料は、特に限定されず、調光性を有していれば、どのような材料であってもよい。
(light control layer)
It is preferable that the light control layer has light control properties. The above-mentioned dimming property is a property in which the visible light transmittance changes depending on whether or not an electric field is applied, and the amount of incident light can be adjusted. The material of the light control layer is not particularly limited, and may be any material as long as it has light control properties.
 (PDLC方式)
 上記調光層は、バインダーと、上記バインダー中に分散している液晶材料とをさらに含むことが好ましい。
(PDLC method)
Preferably, the light control layer further includes a binder and a liquid crystal material dispersed in the binder.
 上記液晶材料は、電界の印加によって配向が変化する性質を有することが好ましい。上記液晶材料は、上記バインダー中に連続相として分散していてもよく、上記バインダー中に液晶ドロップ状又は液晶カプセル状で分散していてもよい。上記液晶材料としては、ネマチック液晶、及びコレステリック液晶等が挙げられる。 It is preferable that the liquid crystal material has the property that its orientation changes upon application of an electric field. The liquid crystal material may be dispersed in the binder as a continuous phase, or may be dispersed in the binder in the form of liquid crystal drops or liquid crystal capsules. Examples of the liquid crystal material include nematic liquid crystal and cholesteric liquid crystal.
 上記コレステリック液晶の材料としては、ステロイド系コレステロール誘導体、シッフ塩基系、アゾ系、アゾキシ系、安息香酸エステル系、ビフェニル系、ターフェニル系、シクロヘキシルカルボン酸エステル系、フェニルシクロヘキサン系、ビフェニルシクロヘキサン系、ピリミジン系、ジオキサン系、シクロヘキシルシクロヘキサンエステル系、シクロヘキシルエタン系、シクロヘキサン系、トラン系、アルケニル系、スチルベン系、縮合多環系等のネマチック液晶やスメクチック液晶、及びこれらの混合液晶に、シッフ塩基系、アゾ系、エステル系、ビフェニル系等の光学活性材料であるカイラル成分が添加された材料等が挙げられる。上記コレステリック液晶の材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 Materials for the cholesteric liquid crystal include steroidal cholesterol derivatives, Schiff bases, azos, azoxys, benzoates, biphenyls, terphenyls, cyclohexylcarboxylic esters, phenylcyclohexane, biphenylcyclohexane, and pyrimidine. In addition to nematic and smectic liquid crystals such as dioxane, cyclohexylcyclohexane ester, cyclohexylethane, cyclohexane, tolan, alkenyl, stilbene, and fused polycyclic liquid crystals, and mixed liquid crystals of these, Schiff base type and azo Examples include materials to which a chiral component, which is an optically active material such as a type, ester type, or biphenyl type, is added. As for the above-mentioned cholesteric liquid crystal materials, only one type may be used, or two or more types may be used in combination.
 上記バインダーは、上記液晶材料を保持し、上記液晶材料の流動を抑制する。上記バインダーは、液晶材料に溶解せず、外力に耐えうる強度を持ち、さらに、反射光及び入射光に対して高い透過性を有することが好ましい。上記バインダーの材料としては、ゼラチン、ポリビニルアルコール、セルロース誘導体、ポリアクリル酸系ポリマー、エチレンイミン、ポリエチレンオキサイド、ポリアクリルアミド、ポリスチレンスルホン酸塩、ポリアミジン、イソプレン系スルホン酸ポリマー等の水溶性高分子材料、及びフッ素樹脂、シリコーン樹脂、アクリル樹脂、ウレタン樹脂、エポキシ樹脂等の水性エマルジョン化できる材料等が挙げられる。上記バインダーの材料は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The binder holds the liquid crystal material and suppresses the flow of the liquid crystal material. Preferably, the binder does not dissolve in the liquid crystal material, has strength enough to withstand external forces, and has high transparency to reflected light and incident light. Materials for the binder include water-soluble polymer materials such as gelatin, polyvinyl alcohol, cellulose derivatives, polyacrylic acid polymers, ethyleneimine, polyethylene oxide, polyacrylamide, polystyrene sulfonate, polyamidine, isoprene sulfonic acid polymers, and materials that can be made into aqueous emulsions, such as fluororesins, silicone resins, acrylic resins, urethane resins, and epoxy resins. Only one type of the above-mentioned binder material may be used, or two or more types may be used in combination.
 上記バインダーは、架橋剤によって架橋されていることが好ましい。上記架橋剤は、上記バインダー間で架橋が形成され、上記バインダーを硬膜化、難溶化、又は不溶化するものであれば、特に限定されない。上記架橋剤としては、アセトアルデヒド、グルタルアルデヒド、グリオキサール、多価金属塩化合物のカリミョウバン水和物、アジピン酸ジヒドラジド、メラミンホルマリンオリゴマー、エチレングリコールジグリシジルエーテル、ポリアミドエピクロロヒドリン、及びポリカルボジイミド等が挙げられる。上記架橋剤は、1種のみが用いられてもよく、2種以上が併用されてもよい。 It is preferable that the binder is crosslinked with a crosslinking agent. The crosslinking agent is not particularly limited as long as it forms a crosslink between the binders and makes the binder harden, hardly soluble, or insolubilized. Examples of the crosslinking agent include acetaldehyde, glutaraldehyde, glyoxal, polyvalent metal salt compound potassium alum hydrate, adipic acid dihydrazide, melamine formalin oligomer, ethylene glycol diglycidyl ether, polyamide epichlorohydrin, and polycarbodiimide. Can be mentioned. Only one kind of the above-mentioned crosslinking agent may be used, or two or more kinds thereof may be used in combination.
 (SPD方式)
 上記調光層は、樹脂マトリックスと、上記樹脂マトリックス中に分散している光調整懸濁液とをさらに含むことが好ましい。
(SPD method)
Preferably, the light control layer further includes a resin matrix and a light control suspension dispersed in the resin matrix.
 上記光調整懸濁液は、分散媒と、分散媒中に分散した光調整粒子とを含む。 The light regulating suspension includes a dispersion medium and light regulating particles dispersed in the dispersion medium.
 上記光調整粒子としては、ポリヨウ化物、カーボンブラック等の炭素系材料、銅、ニッケル、鉄、コバルト、クロム、チタン、アルミニウム等の金属材料、及び窒化ケイ素、窒化チタン、酸化アルミニウム等の無機化合物材料等が挙げられる。また、これらの材料がポリマーで被覆された粒子であってもよい。上記光調整粒子は、1種のみが用いられてもよく、2種以上が併用されてもよい。 The light regulating particles include carbon materials such as polyiodide and carbon black, metal materials such as copper, nickel, iron, cobalt, chromium, titanium, and aluminum, and inorganic compound materials such as silicon nitride, titanium nitride, and aluminum oxide. etc. Alternatively, these materials may be particles coated with a polymer. Only one type of the above-mentioned light adjustment particles may be used, or two or more types may be used in combination.
 上記分散媒は、上記光調整粒子を流動可能な状態で分散させる。上記分散媒は、上記光調整粒子に選択的に付着し、上記光調整粒子を被覆し、樹脂マトリックスとの相分離の際に上記光調整粒子が相分離された液滴相に移動するように作用し、電気導電性がなく、樹脂マトリックスとは親和性がない材料であることが好ましい。さらに、上記分散媒は、調光積層体とした際に、樹脂マトリックスとの屈折率が近似した液状共重合体であることが好ましい。上記液状共重合体としては、フルオロ基又は水酸基を有する(メタ)アクリル酸エステルオリゴマーが好ましく、フルオロ基及び水酸基を有する(メタ)アクリル酸エステルオリゴマーがより好ましい。このような共重合体を使用すると、フルオロ基又は水酸基のモノマー単位が光調整粒子に向き、残りのモノマー単位が光調整懸濁液の液滴を樹脂マトリックス中で安定化させる。このため、光調整懸濁液内に光調整粒子が分散しやすく、樹脂マトリックスとの相分離の際に光調整粒子が相分離される液滴内に誘導されやすい。 The dispersion medium disperses the light adjustment particles in a flowable state. The dispersion medium selectively adheres to and coats the light regulating particles, so that upon phase separation from the resin matrix, the light regulating particles move to the phase-separated droplet phase. Preferably, the material is functional, non-conductive, and has no affinity for the resin matrix. Further, the dispersion medium is preferably a liquid copolymer having a refractive index similar to that of the resin matrix when formed into a light control laminate. The liquid copolymer is preferably a (meth)acrylic ester oligomer having a fluoro group or a hydroxyl group, more preferably a (meth)acrylic ester oligomer having a fluoro group and a hydroxyl group. When such a copolymer is used, the fluoro or hydroxyl monomer units are directed toward the light-modulating particles, and the remaining monomer units stabilize the droplets of the light-modulating suspension in the resin matrix. For this reason, the light regulating particles are easily dispersed within the light regulating suspension, and upon phase separation from the resin matrix, the light regulating particles are likely to be guided into the droplets that are phase separated.
 上記フルオロ基又は水酸基を有する(メタ)アクリル酸エステルオリゴマーとしては、メタクリル酸2,2,2-トリフルオロエチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸3,5,5-トリメチルヘキシル/アクリル酸2-ヒドロキシプロピル/フマール酸共重合体、アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸2,2,3,3-テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸1H,1H,5H-オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、アクリル酸1H,1H,2H,2H-ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸2,2,2-トリフルオロエチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸2,2,3,3-テトラフルオロプロピル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、メタクリル酸1H,1H,5H-オクタフルオロペンチル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体、及びメタクリル酸1H,1H,2H,2H-ヘプタデカフルオロデシル/アクリル酸ブチル/アクリル酸2-ヒドロキシエチル共重合体等が挙げられる。また、これらの(メタ)アクリル酸エステルオリゴマーはフルオロ基及び水酸基の両方を有することがより好ましい。 Examples of the (meth)acrylic acid ester oligomer having a fluoro group or a hydroxyl group include 2,2,2-trifluoroethyl methacrylate/butyl acrylate/2-hydroxyethyl acrylate copolymer, 3,5,5-acrylic acid - Trimethylhexyl/2-hydroxypropyl acrylate/fumaric acid copolymer, butyl acrylate/2-hydroxyethyl acrylate copolymer, 2,2,3,3-tetrafluoropropyl acrylate/butyl acrylate/acrylic 2-hydroxyethyl acrylate copolymer, 1H,1H,5H-octafluoropentyl acrylate/butyl acrylate/2-hydroxyethyl acrylate copolymer, 1H,1H,2H,2H-heptadecafluorodecyl acrylate/ Butyl acrylate/2-hydroxyethyl acrylate copolymer, 2,2,2-trifluoroethyl methacrylate/butyl acrylate/2-hydroxyethyl acrylate copolymer, 2,2,3,3-methacrylate Tetrafluoropropyl/butyl acrylate/2-hydroxyethyl acrylate copolymer, 1H,1H,5H-octafluoropentyl methacrylate/butyl acrylate/2-hydroxyethyl acrylate copolymer, and 1H,1H methacrylate , 2H,2H-heptadecafluorodecyl/butyl acrylate/2-hydroxyethyl acrylate copolymer and the like. Moreover, it is more preferable that these (meth)acrylic acid ester oligomers have both a fluoro group and a hydroxyl group.
 上記(メタ)アクリル酸エステルオリゴマーの重量平均分子量は、好ましくは1000以上、より好ましくは2000以上であり、好ましくは20000以下、より好ましくは10000以下である。 The weight average molecular weight of the (meth)acrylic acid ester oligomer is preferably 1,000 or more, more preferably 2,000 or more, and preferably 20,000 or less, more preferably 10,000 or less.
 上記調光層は、上記樹脂マトリックスを形成するための樹脂材料と、上記光調整懸濁液とを用いて、作製することができる。 The light control layer can be produced using the resin material for forming the resin matrix and the light adjustment suspension.
 上記樹脂材料は、エネルギー線を照射することにより硬化する樹脂材料であることが好ましい。エネルギー線を照射することにより硬化する樹脂材料としては、光重合開始剤及び、紫外線、可視光線、電子線等のエネルギー線により硬化する高分子化合物を含む高分子組成物が挙げられる。上記高分子組成物としては、エチレン性不飽和基を有する重合性単量体及び光重合開始剤を含む高分子組成物が挙げられる。上記エチレン性不飽和基を有する重合性単量体としては、非架橋性の単量体と架橋性の単量体とが挙げられる。 The resin material is preferably a resin material that is cured by irradiation with energy rays. Examples of resin materials that can be cured by irradiation with energy rays include polymer compositions containing a photopolymerization initiator and a polymer compound that can be cured by energy rays such as ultraviolet rays, visible light, and electron beams. Examples of the polymer composition include a polymer composition containing a polymerizable monomer having an ethylenically unsaturated group and a photopolymerization initiator. Examples of the polymerizable monomer having an ethylenically unsaturated group include non-crosslinkable monomers and crosslinkable monomers.
 上記非架橋性の単量体としては、上述した非架橋性の単量体が挙げられる。上記架橋性の単量体としては、上述した架橋性の単量体が挙げられる。 Examples of the non-crosslinkable monomer include the above-mentioned non-crosslinkable monomer. Examples of the crosslinkable monomer include the crosslinkable monomers described above.
 上記光重合開始剤としては、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、1-(4-(2-ヒドロキシエトキシ)フェニル)-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(2,4,6-トリメチルベンゾイル)フェニルフォスフィンオキサイド、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、及び(1-ヒドロキシシクロヘキシル)フェニルケトン等が挙げられる。 As the photopolymerization initiator, 2,2-dimethoxy-1,2-diphenylethan-1-one, 1-(4-(2-hydroxyethoxy)phenyl)-2-hydroxy-2-methyl-1-propane -1-one, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-hydroxy-2-methyl-1-phenylpropan-1-one, and (1-hydroxycyclohexyl)phenyl ketone. It will be done.
 上記樹脂材料は、有機溶剤可溶型樹脂、熱可塑性樹脂、及びポリ(メタ)アクリル酸等を含んでいてもよい。また、上記樹脂材料は、着色防止剤、酸化防止剤、及び密着性付与剤等の各種添加剤を含んでいてもよく、溶剤を含んでいてもよい。 The resin material may include an organic solvent-soluble resin, a thermoplastic resin, poly(meth)acrylic acid, and the like. Further, the resin material may contain various additives such as a coloring inhibitor, an antioxidant, and an adhesion imparting agent, and may also contain a solvent.
 (第1の透明基材及び第2の透明基材)
 上記透明基材は、例えば、光透過性を有する基材(光透過性基材)である。例えば、透明基材の一方側から、透明基材を介して他方側に光が透過する。例えば、透明基材の一方側から、透明基材を介して他方側にある物質を目視したときに、物質を視認可能である。透明には、例えば半透明も含まれる。透明基材は、無色透明であってもよく、有色透明であってもよい。
(First transparent base material and second transparent base material)
The transparent base material is, for example, a base material having light transmittance (light transmitting base material). For example, light is transmitted from one side of the transparent base material to the other side through the transparent base material. For example, when the substance on the other side of the transparent base material is visually observed from one side of the transparent base material, the substance can be visually recognized. Transparent also includes, for example, translucent. The transparent base material may be colorless and transparent, or may be colored and transparent.
 上記第1の透明基材及び第2の透明基材の材料は、特に限定されない。上記第1の透明基材の材料と第2の透明基材の材料とは同一であってもよく、異なっていてもよい。上記透明基材の材料としては、ガラス及び樹脂フィルム等が挙げられる。上記ガラスとしては、一般建築用のソーダ石灰ガラス、鉛ガラス、硼珪酸ガラス、及びその他用途における各種組成のガラス等、並びに熱反射ガラス、熱吸収ガラス、及び強化ガラス等の機能ガラスが挙げられる。上記樹脂フィルムとしては、ポリエチレンテレフタレート等のポリエステルフィルム、ポリプロピレン等のポリオレフィンフィルム、アクリル樹脂系フィルム等の樹脂フィルムが挙げられる。透明性、成形性、接着性、加工性等に優れていることから、上記透明基材は、樹脂基材であることが好ましく、樹脂フィルムであることがより好ましく、ポリエチレンテレフタレート(PET)フィルムであることがさらに好ましい。 The materials of the first transparent base material and the second transparent base material are not particularly limited. The material of the first transparent base material and the material of the second transparent base material may be the same or different. Examples of the material for the transparent base material include glass and resin film. Examples of the glass include soda lime glass, lead glass, borosilicate glass for general construction, and glasses of various compositions for other uses, as well as functional glasses such as heat reflective glass, heat absorbing glass, and tempered glass. Examples of the resin film include polyester films such as polyethylene terephthalate, polyolefin films such as polypropylene, and resin films such as acrylic resin films. The transparent base material is preferably a resin base material, more preferably a resin film, and is preferably a polyethylene terephthalate (PET) film because it has excellent transparency, moldability, adhesiveness, processability, etc. It is even more preferable that there be.
 上記透明基材は、調光のための電界を印加可能であるように、基材本体と、基材本体の表面に形成された透明導電膜とを備えることが好ましい。上記透明導電膜としては、インジウム錫オキサイド(ITO)、SnO、及びIn等が挙げられる。 The transparent base material preferably includes a base material body and a transparent conductive film formed on the surface of the base material body so that an electric field for dimming can be applied. Examples of the transparent conductive film include indium tin oxide (ITO), SnO 2 , and In 2 O 3 .
 調光積層体の視認性をより一層高める観点からは、上記第1の透明基材及び第2の透明基材の可視光透過率は、好ましくは75%以上、より好ましくは80%以上である。上記第1の透明基材及び第2の透明基材の可視光透過率の上限は、特に限定されない。上記第1の透明基材及び第2の透明基材の可視光透過率は、100%以下であってもよく、95%以下であってもよい。 From the viewpoint of further increasing the visibility of the light control laminate, the visible light transmittance of the first transparent base material and the second transparent base material is preferably 75% or more, more preferably 80% or more. . The upper limit of the visible light transmittance of the first transparent base material and the second transparent base material is not particularly limited. The visible light transmittance of the first transparent base material and the second transparent base material may be 100% or less, or 95% or less.
 上記透明基材の可視光透過率は、ISO13837:2008に準拠して、分光測定等により測定することができる。 The visible light transmittance of the transparent base material can be measured by spectrometry or the like in accordance with ISO13837:2008.
 以下、実施例及び比較例を挙げて、本発明を具体的に説明する。本発明は、以下の実施例のみに限定されない。 Hereinafter, the present invention will be specifically explained with reference to Examples and Comparative Examples. The invention is not limited only to the following examples.
 以下の材料を用意した。 The following materials were prepared.
 (基材粒子)
 基材粒子A(積水化学工業社製「EZ3P-020」、平均粒子径20.0μm)
 基材粒子B(積水化学工業社製「EZ3P-015」、平均粒子径15.0μm)
 基材粒子C(ポリスチレン粒子、平均粒子径15.0μm、下記の合成例1に従って作製)
 基材粒子D(シリカ粒子、テイカ社製「TMS-15」、平均粒子径15.0μm)
 基材粒子E(黒色ジビニルベンゼン粒子、積水化学工業社製「KBN-511」、平均粒子径11.0μm)
(Base material particles)
Base particle A (“EZ3P-020” manufactured by Sekisui Chemical Co., Ltd., average particle diameter 20.0 μm)
Base particle B (“EZ3P-015” manufactured by Sekisui Chemical Co., Ltd., average particle diameter 15.0 μm)
Base material particles C (polystyrene particles, average particle diameter 15.0 μm, produced according to Synthesis Example 1 below)
Base material particles D (silica particles, "TMS-15" manufactured by Teika, average particle diameter 15.0 μm)
Base material particles E (black divinylbenzene particles, “KBN-511” manufactured by Sekisui Chemical Co., Ltd., average particle size 11.0 μm)
 (合成例1)
 種粒子として平均粒子径5.0μmのポリスチレン粒子を用意した。上記ポリスチレン粒子0.8重量部と、イオン交換水80重量部と、ポリビニルアルコール5重量%水溶液16重量部とを混合し、混合液を調製した。上記混合液を超音波により分散させた後、セパラブルフラスコに入れて、均一に撹拌した。次に、モノマーとしてスチレン78.7重量部と、重合開始剤としてアゾビスイソブチロニトリル2重量部と、ラウリル硫酸トリエタノールアミン1.7重量部と、エタノール55重量部とをイオン交換水550重量部に添加し、乳化液を調製した。セパラブルフラスコ中の上記混合液に、上記乳化液を2回に分けて添加し、8時間撹拌し、種粒子にモノマーを吸収させて、モノマーが膨潤した種粒子を含む懸濁液を得た。その後、ポリビニルアルコール5重量%水溶液275重量部を添加し、加熱して85℃で11時間反応させ粒子を得た。得られた粒子を分級操作により精製して、基材粒子Cとした。
(Synthesis example 1)
Polystyrene particles having an average particle diameter of 5.0 μm were prepared as seed particles. A mixed solution was prepared by mixing 0.8 parts by weight of the polystyrene particles, 80 parts by weight of ion-exchanged water, and 16 parts by weight of a 5% by weight aqueous solution of polyvinyl alcohol. After the above-mentioned liquid mixture was dispersed by ultrasonic waves, it was placed in a separable flask and stirred uniformly. Next, 78.7 parts by weight of styrene as a monomer, 2 parts by weight of azobisisobutyronitrile as a polymerization initiator, 1.7 parts by weight of triethanolamine lauryl sulfate, and 55 parts by weight of ethanol were added to 550 parts by weight of ion-exchanged water. parts by weight to prepare an emulsion. The emulsion was added to the mixed solution in the separable flask in two portions and stirred for 8 hours to allow the seed particles to absorb the monomer to obtain a suspension containing the seed particles in which the monomer was swollen. . Thereafter, 275 parts by weight of a 5% by weight aqueous solution of polyvinyl alcohol was added, and the mixture was heated and reacted at 85° C. for 11 hours to obtain particles. The obtained particles were purified by a classification operation to obtain base material particles C.
 (接着性物質(重合性成分))
 (メタ)アクリロイル基以外の反応性官能基を有する(メタ)アクリレートモノマー:
 グリシジルメタクリレート(エポキシ基(グリシジル基)、日油社製「ブレンマーG」)
 メタクリルアミド(アミド基、三井化学社製「メタクリルアミド」)
 2-ヒドロキシプロピルメタクリレート(水酸基、共栄社化学社製「HO-250」)
(Adhesive substance (polymerizable component))
(Meth)acrylate monomer having a reactive functional group other than (meth)acryloyl group:
Glycidyl methacrylate (epoxy group (glycidyl group), “Blemmer G” manufactured by NOF Corporation)
Methacrylamide (amide group, “Methacrylamide” manufactured by Mitsui Chemicals)
2-Hydroxypropyl methacrylate (hydroxyl group, “HO-250” manufactured by Kyoeisha Chemical Co., Ltd.)
 (メタ)アクリロイル基以外の反応性官能基を有さない(メタ)アクリレートモノマー:
 2-エチルヘキシルメタクリレート(三菱ガス化学社製「2-EHMA」)
 ベンジルメタクリレート(共栄社化学社製「ライトエステルBZ」)
 ブチルアクリレート(三菱ケミカル社製「アクリル酸ブチル」)
 メチルメタクリレート(三菱ケミカル社製「アクリエステルM」)
 アクリル酸(三菱ケミカル社製)
(Meth)acrylate monomers that do not have reactive functional groups other than (meth)acryloyl groups:
2-Ethylhexyl methacrylate (“2-EHMA” manufactured by Mitsubishi Gas Chemical Co., Ltd.)
Benzyl methacrylate (“Light Ester BZ” manufactured by Kyoeisha Chemical Co., Ltd.)
Butyl acrylate (“Butyl acrylate” manufactured by Mitsubishi Chemical Corporation)
Methyl methacrylate (“Acryester M” manufactured by Mitsubishi Chemical Corporation)
Acrylic acid (manufactured by Mitsubishi Chemical Corporation)
 (重合開始剤)
 ペルオキソ二硫酸アンモニウム(富士フイルム和光純薬社製「APS」)
 ペルオキソ二硫酸カリウム(富士フイルム和光純薬社製「KPS」)
(Polymerization initiator)
Ammonium peroxodisulfate (APS, manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
Potassium peroxodisulfate (KPS manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.)
 (実施例1)
 (1)複合粒子の作製
 蛇管冷却器、4枚傾斜羽根及び熱電対を備える丸底のガラスセパラブルフラスコに、超純水876.1重量部、2-エチルヘキシルメタクリレート67.0重量部、ベンジルメタクリレート19.8重量部、グリシジルメタクリレート8.0重量部、及びメタクリルアミド4.8重量部を計量し、混合した。得られた混合物を、室温で1時間、窒素パージを行い溶存酸素の除去を行った。その後、フラスコの内部温度が60℃になるよう加熱し、ペルオキソ二硫酸アンモニウム3重量%水溶液28.9重量部(ペルオキソ二硫酸アンモニウムの実重量0.9重量部)をフラスコ内に入れ、60℃で8時間撹拌して重合させ、接着性粒子の分散液を得た。
(Example 1)
(1) Preparation of composite particles 876.1 parts by weight of ultrapure water, 67.0 parts by weight of 2-ethylhexyl methacrylate, and benzyl methacrylate were placed in a round-bottomed glass separable flask equipped with a corrugated condenser, four inclined blades, and a thermocouple. 19.8 parts by weight, 8.0 parts by weight of glycidyl methacrylate, and 4.8 parts by weight of methacrylamide were weighed and mixed. The resulting mixture was purged with nitrogen at room temperature for 1 hour to remove dissolved oxygen. Thereafter, the flask was heated so that the internal temperature reached 60°C, and 28.9 parts by weight of a 3% by weight aqueous solution of ammonium peroxodisulfate (actual weight of ammonium peroxodisulfate: 0.9 parts by weight) was put into the flask and heated to 60°C. The mixture was stirred for a period of time for polymerization to obtain a dispersion of adhesive particles.
 4枚傾斜羽根を備える丸底のガラスセパラブルフラスコに、超純水162.9重量部、及び基材粒子A15.0重量部を計量し、超音波により10分間撹拌し、基材粒子の分散液を得た。また、得られた接着性粒子の分散液12.2重量部と超純水109.9重量部とを混合して、接着性粒子の希釈液を作製した。基材粒子の分散液に、接着性粒子の希釈液を超音波照射下で8g/分の速度で滴下して混合した。滴下終了後、60分間撹拌し、複合粒子の分散液を得た。得られた複合粒子の分散液を、超純水で洗浄し、凍結乾燥させて、接着性物質(接着性粒子)を表面に有する複合粒子を得た。(ヘテロ凝集法) 162.9 parts by weight of ultrapure water and 15.0 parts by weight of base material particles A were weighed into a round-bottomed glass separable flask equipped with four inclined blades, and stirred for 10 minutes using ultrasonic waves to disperse the base material particles. I got the liquid. Further, 12.2 parts by weight of the obtained adhesive particle dispersion and 109.9 parts by weight of ultrapure water were mixed to prepare a diluted adhesive particle liquid. The diluted solution of the adhesive particles was added dropwise to the dispersion of the base particles at a rate of 8 g/min under ultrasonic irradiation and mixed. After the dropwise addition was completed, the mixture was stirred for 60 minutes to obtain a dispersion of composite particles. The resulting dispersion of composite particles was washed with ultrapure water and freeze-dried to obtain composite particles having adhesive substances (adhesive particles) on their surfaces. (Hetero aggregation method)
 (2)調光積層体
 PDLC方式の調光積層体の作製:
 透明かつ導電性を有するITOが蒸着されたPETフィルム2枚の間に、得られた複合粒子を5重量%分散させたこと以外は公知のPDLC層が配置された調光フィルムを作製した。2枚の透明ガラスに調光フィルムを挟みこむことで、PDLC方式の調光積層体を作製した。
(2) Light control laminate Preparation of PDLC type light control laminate:
A light control film was prepared in which a known PDLC layer was arranged, except that 5% by weight of the obtained composite particles were dispersed between two PET films on which transparent and conductive ITO was vapor-deposited. A PDLC type light control laminate was produced by sandwiching a light control film between two sheets of transparent glass.
 SPD方式の調光積層体の作製:
 透明かつ導電性を有するITOが蒸着されたPETフィルム2枚の間に、得られた複合粒子を5重量%分散させたこと以外は公知のSPD層が配置された調光フィルムを作製した。2枚の透明ガラスに調光フィルムを挟みこむことで、SPD方式の調光積層体を作製した。
Fabrication of SPD type light control laminate:
A light control film was prepared in which a known SPD layer was arranged, except that 5% by weight of the obtained composite particles were dispersed between two PET films on which transparent and conductive ITO was vapor-deposited. An SPD type light control laminate was produced by sandwiching a light control film between two sheets of transparent glass.
 (実施例2~12)
 基材粒子の種類、接着性物質(接着性粒子)の組成を下記の表1~3のように変更したこと以外は、実施例1と同様にして、複合粒子及び調光積層体を得た。
(Examples 2 to 12)
Composite particles and light control laminates were obtained in the same manner as in Example 1, except that the type of base particles and the composition of the adhesive substance (adhesive particles) were changed as shown in Tables 1 to 3 below. .
 (実施例13)
 ペルオキソ二硫酸アンモニウムの実重量を下記の表4のように変更したこと以外は、実施例1と同様にして接着性粒子を得た。得られた接着性粒子を凍結乾燥させ、乾燥粉体とした。得られた乾燥粉体1.8重量部と基材粒子A60重量部とを、ホソカワミクロン社製「ノビルタNOB-MINI」を用いて、高速気流中衝撃法により複合化した。その後、30μmの金属メッシュを用いて分級処理して、接着性物質(接着性層:厚み300nm)を表面に有する複合粒子を得た。得られた複合粒子を用いたこと以外は、実施例1と同様にして、調光積層体を得た。
(Example 13)
Adhesive particles were obtained in the same manner as in Example 1, except that the actual weight of ammonium peroxodisulfate was changed as shown in Table 4 below. The obtained adhesive particles were freeze-dried to form a dry powder. 1.8 parts by weight of the obtained dry powder and 60 parts by weight of base material particles A were compounded by a high-speed air impact method using "Nobilta NOB-MINI" manufactured by Hosokawa Micron. Thereafter, the mixture was classified using a 30 μm metal mesh to obtain composite particles having an adhesive substance (adhesive layer: thickness 300 nm) on the surface. A light control laminate was obtained in the same manner as in Example 1 except that the obtained composite particles were used.
 (比較例1)
 重合性成分の組成を下記の表4のように変更したこと以外は、実施例1と同様にして、基材粒子Aの表面に重合体粒子が配置された複合粒子を得た。得られた複合粒子を用いたこと以外は、実施例1と同様にして、調光積層体を得た。
(Comparative example 1)
Composite particles in which polymer particles were arranged on the surface of base particle A were obtained in the same manner as in Example 1, except that the composition of the polymerizable component was changed as shown in Table 4 below. A light control laminate was obtained in the same manner as in Example 1 except that the obtained composite particles were used.
 (比較例2)
 撹拌機、還流冷却器、窒素導入管および温度計を備えたフラスコに、超純水640重量部及びポリオキシエチレンノニルフェニルエーテル硫酸アンモニウム塩(第一工業製薬社製「ハイテノールN-08」)15重量%水溶液128重量部を混合し、窒素パージを行い溶存酸素の除去を行った。その後、フラスコの内部温度が70℃になるよう加熱し、ペルオキソ二硫酸カリウム5重量%水溶液64重量部(ペルオキソ二硫酸カリウムの実重量3.2重量部)をフラスコ内に入れ、ブチルアクリレート320重量部、メチルメタクリレート294.4重量部、及びアクリル酸25.6重量部の混合物を3時間かけて滴下した。なお、滴下中は窒素ガスを流し続け、フラスコ内の温度を70℃±1℃に保った。滴下終了後、70℃で2時間保持した後、80℃に昇温して1時間撹拌し、重合体粒子の分散液を得た。
(Comparative example 2)
In a flask equipped with a stirrer, a reflux condenser, a nitrogen inlet tube, and a thermometer, 640 parts by weight of ultrapure water and 15 parts of polyoxyethylene nonylphenyl ether ammonium sulfate salt ("Hitenol N-08" manufactured by Daiichi Kogyo Seiyaku Co., Ltd.) were added. 128 parts by weight of a wt% aqueous solution was mixed and nitrogen purging was performed to remove dissolved oxygen. Thereafter, the flask was heated so that the internal temperature reached 70°C, and 64 parts by weight of a 5% by weight aqueous solution of potassium peroxodisulfate (3.2 parts by weight of potassium peroxodisulfate) was put into the flask, and 320 parts by weight of butyl acrylate was added. A mixture of 1.5 parts by weight, 294.4 parts by weight of methyl methacrylate, and 25.6 parts by weight of acrylic acid was added dropwise over 3 hours. Note that during the dropping, nitrogen gas was kept flowing to maintain the temperature inside the flask at 70°C±1°C. After completion of the dropwise addition, the temperature was maintained at 70°C for 2 hours, and then the temperature was raised to 80°C and stirred for 1 hour to obtain a dispersion of polymer particles.
 得られた重合体粒子の分散液と、基材粒子Bとを用いたこと以外は、実施例1と同様にして、基材粒子Bの表面に重合体粒子が配置された複合粒子を得た。得られた複合粒子を用いたこと以外は、実施例1と同様にして、調光積層体を得た。 Composite particles in which polymer particles were arranged on the surface of base particles B were obtained in the same manner as in Example 1, except that the obtained dispersion of polymer particles and base particles B were used. . A light control laminate was obtained in the same manner as in Example 1 except that the obtained composite particles were used.
 (比較例3)
 重合性成分の組成を下記の表4のように変更したこと以外は、実施例1と同様にして、基材粒子Aの表面に重合体粒子が配置された複合粒子を得た。得られた複合粒子を用いたこと以外は、実施例1と同様にして、調光積層体を得た。
(Comparative example 3)
Composite particles in which polymer particles were arranged on the surface of base particle A were obtained in the same manner as in Example 1, except that the composition of the polymerizable component was changed as shown in Table 4 below. A light control laminate was obtained in the same manner as in Example 1 except that the obtained composite particles were used.
 なお、比較例1~3で得られた重合体粒子は、接着性を有さなかったが、表4中では、便宜上「接着性粒子の平均粒子径又は接着性層の厚み」、「接着性粒子の粒子径のCV値」、及び「接着性物質による被覆率」の欄に重合体粒子の結果を記載した。 Although the polymer particles obtained in Comparative Examples 1 to 3 did not have adhesive properties, in Table 4, for convenience, "average particle diameter of adhesive particles or thickness of adhesive layer" and "adhesive properties" The results for the polymer particles are listed in the columns of ``CV value of particle diameter of particles'' and ``coverage rate with adhesive substance.''
 (評価)
 (1)比(接着性粒子の平均粒子径又は接着性層の厚み/複合粒子の平均粒子径)
 得られた複合粒子について、接着性粒子を有する実施例1~12(及び重合体粒子を有する比較例1~3)については比(接着性粒子の平均粒子径/複合粒子の平均粒子径)を算出し、接着性層を有する実施例13については比(接着性層の厚み/複合粒子の平均粒子径)を算出した。
(evaluation)
(1) Ratio (average particle diameter of adhesive particles or thickness of adhesive layer/average particle diameter of composite particles)
Regarding the obtained composite particles, for Examples 1 to 12 having adhesive particles (and Comparative Examples 1 to 3 having polymer particles), the ratio (average particle diameter of adhesive particles/average particle diameter of composite particles) was For Example 13 having an adhesive layer, the ratio (thickness of adhesive layer/average particle diameter of composite particles) was calculated.
 (2)重合体のガラス転移温度
 重合体(接着性物質又は重合体粒子)のガラス転移温度を、Foxの式により計算した。
(2) Glass transition temperature of polymer The glass transition temperature of the polymer (adhesive substance or polymer particles) was calculated using the Fox formula.
 (3)接着性物質による被覆率
 複合粒子について、上述した方法で、接着性物質による被覆率(又は重合体粒子による被覆率)を測定した。
(3) Coverage rate with adhesive substance The coverage rate with adhesive substance (or coverage rate with polymer particles) of the composite particles was measured by the method described above.
 (4)20%K値
 基材粒子及び複合粒子について、微小圧縮試験機(フィッシャー社製「フィッシャースコープH-100」)を用いて、20%K値を測定した。円柱(直径50μm、ダイヤモンド製)の平滑圧子端面で、25℃、圧縮速度0.3mN/秒、及び最大試験荷重20mNの条件下で1個の基材粒子又は複合粒子を圧縮した。このときの荷重値(N)及び圧縮変位(mm)を測定した。得られた測定値から、基材粒子又は複合粒子の圧縮弾性率(20%K値)を下記式により求めた。なお、基材粒子及び複合粒子における上記圧縮弾性率(20%K値)は、任意に選択された50個の基材粒子又は複合粒子の上記圧縮弾性率(20%K値)を算術平均することにより、算出した。
(4) 20% K value The 20% K value of the base particles and composite particles was measured using a micro compression tester (Fisher Scope H-100). One base particle or composite particle was compressed using a smooth indenter end face of a cylinder (diameter 50 μm, made of diamond) under conditions of 25° C., compression rate of 0.3 mN/sec, and maximum test load of 20 mN. At this time, the load value (N) and compressive displacement (mm) were measured. From the obtained measured values, the compressive elastic modulus (20% K value) of the base material particles or composite particles was determined using the following formula. The compressive modulus (20% K value) of the base particles and composite particles is the arithmetic average of the compressive modulus (20% K value) of 50 randomly selected base particles or composite particles. It was calculated by
 20%K値(N/mm)=(3/21/2)・F・S-3/2・R-1/2
 F:基材粒子又は複合粒子が20%圧縮変形したときの荷重値(N)
 S:基材粒子又は複合粒子が20%圧縮変形したときの圧縮変位(mm)
 R:基材粒子又は複合粒子の半径(mm)
20% K value (N/mm 2 ) = (3/2 1/2 )・F・S -3/2・R -1/2
F: Load value (N) when base material particles or composite particles are compressed and deformed by 20%
S: Compressive displacement (mm) when the base material particle or composite particle is compressively deformed by 20%
R: Radius of base particle or composite particle (mm)
 (5)接着性
 (5-1)接着性(樹脂フィルム)
 第1,第2の透明基材として、PETフィルムに、ポリイミド溶液をキャストし、乾燥させ、ラビング工程を行い、配向膜付きフィルムを得た。第1の透明基材の表面上に、得られた複合粒子を1400個/mmとなるように散布し、複合粒子の第1の透明基材とは反対の表面上に、第2の透明基材を積層した。次いで、8kgf/cmの圧力下、120℃で1時間加熱して、接着性試験用積層体1を得た。得られた接着性試験用積層体1を25℃で24時間放置した後、変角剥離試験機(協和界面科学社製「VPA-2」)を用いて、第1の透明基材から第2の透明基材を0度方向に剥離し、最大応力を測定した。接着性(樹脂フィルム)を、以下の基準で判定した。
(5) Adhesiveness (5-1) Adhesiveness (resin film)
A polyimide solution was cast onto a PET film as the first and second transparent substrates, dried, and subjected to a rubbing process to obtain a film with an alignment film. The obtained composite particles are scattered on the surface of the first transparent base material at a rate of 1400 particles/mm 2 , and the second transparent The base materials were laminated. Next, it was heated at 120° C. for 1 hour under a pressure of 8 kgf/cm 2 to obtain a laminate 1 for adhesion testing. After the obtained laminate 1 for adhesion testing was left at 25°C for 24 hours, the first transparent base material was separated from the second transparent base material using a variable angle peel tester ("VPA-2" manufactured by Kyowa Kaimen Kagaku Co., Ltd.). The transparent base material was peeled off in the 0 degree direction and the maximum stress was measured. Adhesion (resin film) was evaluated based on the following criteria.
 [接着性(樹脂フィルム)の判定基準]
 ○○:最大応力が、0.5N以上
 ○:最大応力が、0.5N未満0.2N以上
 ×:最大応力が、0.2N未満又は接着していない
[Judgment criteria for adhesion (resin film)]
○○: Maximum stress is 0.5N or more ○: Maximum stress is less than 0.5N and 0.2N or more ×: Maximum stress is less than 0.2N or not bonded
 (5-2)接着性(ガラス)
 第1,第2の透明基材として、スライドガラスに、ポリイミド溶液をキャストし、乾燥させ、ラビング工程を行い、配向膜付きガラスを得た。第1の透明基材の表面上に、得られた複合粒子を1400個/mmとなるように散布し、複合粒子の第1の透明基材とは反対の表面上に、第2の透明基材を積層した。次いで、8kgf/cmの圧力下、120℃で1時間加熱して、接着性試験用積層体2を得た。得られた接着性試験用積層体2を25℃で24時間放置した後、変角剥離試験機(協和界面科学社製「VPA-2」)を用いて、第1の透明基材から第2の透明基材を0度方向に剥離し、最大応力を測定した。接着性(ガラス)を、以下の基準で判定した。
(5-2) Adhesiveness (glass)
As the first and second transparent substrates, a polyimide solution was cast onto glass slides, dried, and subjected to a rubbing process to obtain glass with an alignment film. The obtained composite particles are scattered on the surface of the first transparent base material at a rate of 1400 particles/mm 2 , and the second transparent The base materials were laminated. Next, it was heated at 120° C. for 1 hour under a pressure of 8 kgf/cm 2 to obtain a laminate 2 for adhesion testing. After the obtained laminate 2 for adhesion testing was left at 25° C. for 24 hours, the first transparent substrate was separated from the second one using a variable angle peel tester (“VPA-2” manufactured by Kyowa Kaimen Kagaku Co., Ltd.). The transparent base material was peeled off in the 0 degree direction and the maximum stress was measured. Adhesion (glass) was evaluated based on the following criteria.
 [接着性(ガラス)の判定基準]
 ○○:最大応力が、0.5N以上
 ○:最大応力が、0.5N未満0.2N以上
 ×:最大応力が、0.2N未満又は接着していない
[Judgment criteria for adhesion (glass)]
○○: Maximum stress is 0.5N or more ○: Maximum stress is less than 0.5N and 0.2N or more ×: Maximum stress is less than 0.2N or not bonded
 (6)液晶の汚染防止性
 得られた複合粒子0.1gと、液晶(東京化成工業社製「4-ペンチル-4-ビフェニルカルボニトリル」)1gとを、サンプル瓶に添加した。オーブンで、サンプル瓶を120℃で1時間加熱し、その後静置して25℃まで冷却して、液晶部分を取り出し、0.2μmフィルターによりろ過して評価用液晶サンプルとした。得られた評価用液晶サンプル10mgをアルミ容器に封入し、示差走査型熱量計(TA Instruments社製「DSC-Q100」)を用いて、昇温速度5℃/分の条件でNI点の測定を行った。また、上記液晶10mgのみをアルミ容器に封入し、昇温速度5℃/分の条件で測定した結果をブランクのNI点とした。液晶の汚染防止性を、以下の基準で判定した。
(6) Anti-staining property of liquid crystal 0.1 g of the obtained composite particles and 1 g of liquid crystal (“4-pentyl-4-biphenylcarbonitrile” manufactured by Tokyo Kasei Kogyo Co., Ltd.) were added to a sample bottle. The sample bottle was heated in an oven at 120° C. for 1 hour, then left to stand and cooled to 25° C. The liquid crystal portion was taken out and filtered through a 0.2 μm filter to obtain a liquid crystal sample for evaluation. 10 mg of the obtained liquid crystal sample for evaluation was sealed in an aluminum container, and the NI point was measured using a differential scanning calorimeter (“DSC-Q100” manufactured by TA Instruments) at a heating rate of 5°C/min. went. In addition, only 10 mg of the above liquid crystal was sealed in an aluminum container, and the result of measurement at a heating rate of 5° C./min was defined as the blank NI point. The anti-staining property of the liquid crystal was evaluated based on the following criteria.
 [液晶の汚染防止性の判定基準]
 ○○○:評価用液晶サンプルのNI点から、ブランクのNI点を引いた値が、-2℃以上
 ○○:評価用液晶サンプルのNI点から、ブランクのNI点を引いた値が、-3℃以上-2℃未満
 ○:評価用液晶サンプルのNI点から、ブランクのNI点を引いた値が、-5℃以上-3℃未満
 ×:評価用液晶サンプルのNI点から、ブランクのNI点を引いた値が、-5℃未満
[Criteria for determining liquid crystal contamination prevention properties]
○○○: The value obtained by subtracting the NI point of the blank from the NI point of the liquid crystal sample for evaluation is -2°C or higher. ○○: The value obtained by subtracting the NI point of the blank from the NI point of the liquid crystal sample for evaluation is - 3°C or more and less than -2°C ○: The value obtained by subtracting the NI point of the blank from the NI point of the liquid crystal sample for evaluation is -5°C or more and less than -3°C ×: The NI point of the blank from the NI point of the liquid crystal sample for evaluation The value after subtracting the points is less than -5℃
 複合粒子の組成及び結果を下記の表1~4に示す。 The composition and results of the composite particles are shown in Tables 1 to 4 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 1,11…複合粒子
 2…基材粒子
 3…接着性物質(接着性粒子)
 4,5…調光層
 4A…液晶カプセル
 4B…バインダー
 5A…光調整懸濁液の液滴
 5Aa…分散媒
 5Ab…光調整粒子
 5B…樹脂マトリックス
 6…第1の透明基材
 7…第2の透明基材
 8…スペーサ
 13…接着性物質(接着性層)
 51…PDLC方式の調光積層体
 52…SPD方式の調光積層体
1, 11... Composite particle 2... Base material particle 3... Adhesive substance (adhesive particle)
4, 5... Light control layer 4A... Liquid crystal capsule 4B... Binder 5A... Droplets of light adjustment suspension 5Aa... Dispersion medium 5Ab... Light adjustment particles 5B... Resin matrix 6... First transparent base material 7... Second Transparent base material 8... Spacer 13... Adhesive substance (adhesive layer)
51...PDLC type light control laminate 52...SPD type light control laminate

Claims (15)

  1.  基材粒子と、前記基材粒子の表面上に配置された接着性物質とを備え、
     前記接着性物質が、重合性成分の重合体を含み、
     前記重合性成分が、(メタ)アクリロイル基以外の第1の反応性官能基を有する第1の(メタ)アクリレートモノマーと、(メタ)アクリロイル基以外の第2の反応性官能基を有する第2の(メタ)アクリレートモノマーとを含み、前記第1の反応性官能基と前記第2の反応性官能基とが異なる、複合粒子。
    comprising base particles and an adhesive substance disposed on the surface of the base particles,
    The adhesive substance includes a polymer of a polymerizable component,
    The polymerizable component includes a first (meth)acrylate monomer having a first reactive functional group other than a (meth)acryloyl group, and a second having a second reactive functional group other than a (meth)acryloyl group. (meth)acrylate monomer, wherein the first reactive functional group and the second reactive functional group are different.
  2.  前記重合性成分が、前記第1の(メタ)アクリレートモノマー及び前記第2の(メタ)アクリレートモノマーの双方と異なる重合性化合物をさらに含み、
     前記重合性成分100重量%中、前記第1の(メタ)アクリレートモノマーと前記第2の(メタ)アクリレートモノマーとの合計の含有量が、5重量%以上30重量%以下である、請求項1に記載の複合粒子。
    The polymerizable component further includes a polymerizable compound different from both the first (meth)acrylate monomer and the second (meth)acrylate monomer,
    Claim 1, wherein the total content of the first (meth)acrylate monomer and the second (meth)acrylate monomer in 100% by weight of the polymerizable component is 5% by weight or more and 30% by weight or less. Composite particles described in.
  3.  前記重合体のガラス転移温度が、-15℃以上20℃以下である、請求項1又は2に記載の複合粒子。 The composite particles according to claim 1 or 2, wherein the glass transition temperature of the polymer is -15°C or more and 20°C or less.
  4.  前記重合体が、前記第1の反応性官能基と前記第2の反応性官能基とを有し、
     前記第1の反応性官能基と、前記第2の反応性官能基とがそれぞれ、刺激により反応可能な性質を有する、請求項1~3のいずれか1項に記載の複合粒子。
    the polymer has the first reactive functional group and the second reactive functional group,
    The composite particle according to any one of claims 1 to 3, wherein the first reactive functional group and the second reactive functional group each have a property of being able to react upon stimulation.
  5.  前記刺激が、加熱又は光の照射である、請求項4に記載の複合粒子。 The composite particle according to claim 4, wherein the stimulus is heating or light irradiation.
  6.  前記第1の反応性官能基と前記第2の反応性官能基との組み合わせが、環状エーテル基、イソシアネート基、アルデヒド基、ニトリル基、アミド基、水酸基、カルボキシ基、イミド基、及びアミノ基からなる群から選ばれる反応性官能基の組み合わせである、請求項1~5のいずれか1項に記載の複合粒子。 The combination of the first reactive functional group and the second reactive functional group is selected from a cyclic ether group, an isocyanate group, an aldehyde group, a nitrile group, an amide group, a hydroxyl group, a carboxy group, an imide group, and an amino group. The composite particle according to any one of claims 1 to 5, which is a combination of reactive functional groups selected from the group consisting of:
  7.  前記第1の反応性官能基が、環状エーテル基、イソシアネート基、アルデヒド基、又はニトリル基である、請求項1~6のいずれか1項に記載の複合粒子。 The composite particle according to any one of claims 1 to 6, wherein the first reactive functional group is a cyclic ether group, an isocyanate group, an aldehyde group, or a nitrile group.
  8.  前記第1の反応性官能基が、エポキシ基、又はオキセタニル基である、請求項1~7のいずれか1項に記載の複合粒子。 The composite particle according to any one of claims 1 to 7, wherein the first reactive functional group is an epoxy group or an oxetanyl group.
  9.  前記第2の反応性官能基が、アミド基、水酸基、カルボキシ基、イミド基、又はアミノ基である、請求項1~8のいずれか1項に記載の複合粒子。 The composite particle according to any one of claims 1 to 8, wherein the second reactive functional group is an amide group, a hydroxyl group, a carboxy group, an imide group, or an amino group.
  10.  前記接着性物質が、複数の接着性粒子であるか、又は接着性層である、請求項1~9のいずれか1項に記載の複合粒子。 The composite particle according to any one of claims 1 to 9, wherein the adhesive substance is a plurality of adhesive particles or an adhesive layer.
  11.  前記接着性物質が、複数の接着性粒子であり、
     前記接着性粒子の粒子径が、300nm以上3000nm以下である、請求項1~10のいずれか1項に記載の複合粒子。
    the adhesive substance is a plurality of adhesive particles,
    The composite particle according to any one of claims 1 to 10, wherein the adhesive particle has a particle size of 300 nm or more and 3000 nm or less.
  12.  前記接着性物質が、接着性層であり、
     前記接着性層の厚みが、300nm以上3000nm以下である、請求項1~10のいずれか1項に記載の複合粒子。
    the adhesive substance is an adhesive layer,
    The composite particle according to any one of claims 1 to 10, wherein the adhesive layer has a thickness of 300 nm or more and 3000 nm or less.
  13.  前記基材粒子の表面積100%中、前記接着性物質が配置されている表面積の割合が、30%以上100%以下である、請求項1~12のいずれか1項に記載の複合粒子。 The composite particle according to any one of claims 1 to 12, wherein the proportion of the surface area on which the adhesive substance is arranged out of 100% of the surface area of the base particle is 30% or more and 100% or less.
  14.  ヘテロ凝集、高速気流中での衝撃、又はシータコンポーザーにより、前記接着性物質が前記基材粒子の表面上に配置されている、請求項1~13のいずれか1項に記載の複合粒子。 The composite particle according to any one of claims 1 to 13, wherein the adhesive substance is disposed on the surface of the base particle by heteroaggregation, impact in high-speed airflow, or theta-composer.
  15.  第1の透明基材と、第2の透明基材と、前記第1の透明基材と前記第2の透明基材との間に配置された調光層とを備え、
     前記調光層が、複数のスペーサを含み、
     前記スペーサが、請求項1~14のいずれか1項に記載の複合粒子である、調光積層体。
    comprising a first transparent base material, a second transparent base material, and a light control layer disposed between the first transparent base material and the second transparent base material,
    the light control layer includes a plurality of spacers,
    A light control laminate, wherein the spacer is the composite particle according to any one of claims 1 to 14.
PCT/JP2023/025105 2022-07-08 2023-07-06 Composite particle and light control laminate WO2024010061A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-110460 2022-07-08
JP2022110460 2022-07-08

Publications (1)

Publication Number Publication Date
WO2024010061A1 true WO2024010061A1 (en) 2024-01-11

Family

ID=89453571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/025105 WO2024010061A1 (en) 2022-07-08 2023-07-06 Composite particle and light control laminate

Country Status (1)

Country Link
WO (1) WO2024010061A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179703A (en) * 1992-12-11 1994-06-28 Hayakawa Rubber Co Ltd Fine particle, its production and electro-optical panel
JPH11326915A (en) * 1998-05-07 1999-11-26 Soken Chem & Eng Co Ltd Adhesive resin particle for spacer of liquid crystal element and spacer composition of liquid crystal element
JP2000250048A (en) * 1999-03-02 2000-09-14 Sekisui Chem Co Ltd Spacer for liquid crystal display device
WO2020071371A1 (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Transparent substrate and light adjustment member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06179703A (en) * 1992-12-11 1994-06-28 Hayakawa Rubber Co Ltd Fine particle, its production and electro-optical panel
JPH11326915A (en) * 1998-05-07 1999-11-26 Soken Chem & Eng Co Ltd Adhesive resin particle for spacer of liquid crystal element and spacer composition of liquid crystal element
JP2000250048A (en) * 1999-03-02 2000-09-14 Sekisui Chem Co Ltd Spacer for liquid crystal display device
WO2020071371A1 (en) * 2018-10-01 2020-04-09 大日本印刷株式会社 Transparent substrate and light adjustment member

Similar Documents

Publication Publication Date Title
WO2018016378A1 (en) Light control laminate and resin spacer for light control laminates
US12072583B2 (en) Dimming laminate and resin spacer for dimming laminate
WO2023095747A1 (en) Colored resin particles and dimming laminate
WO2024010061A1 (en) Composite particle and light control laminate
WO2022131319A1 (en) Adhesive particles, adhesive and light-modulating laminate
JP7534909B2 (en) Light-control laminate
WO2024143370A1 (en) Composite particle and light control laminated body
WO2023095748A1 (en) Colored resin particle and dimmer laminate
JP7198668B2 (en) Composite Particles, Composite Particle Powders and Light Modulating Materials
JP7573012B2 (en) Composite particles, composite particle powders and light-adjusting materials
WO2022131318A1 (en) Adhesive particles, adhesive and light-modulating laminate
WO2023090457A1 (en) Adhesive particles and laminate
WO2023090456A1 (en) Adhesive particles and laminate
JP2017058677A (en) Light-blocking particles for optical component, light-blocking adhesive for optical component, and optical component

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023544327

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835592

Country of ref document: EP

Kind code of ref document: A1