WO2024009949A1 - Float and gas pressure control method - Google Patents

Float and gas pressure control method Download PDF

Info

Publication number
WO2024009949A1
WO2024009949A1 PCT/JP2023/024613 JP2023024613W WO2024009949A1 WO 2024009949 A1 WO2024009949 A1 WO 2024009949A1 JP 2023024613 W JP2023024613 W JP 2023024613W WO 2024009949 A1 WO2024009949 A1 WO 2024009949A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
carbon dioxide
tank
line
dioxide gas
Prior art date
Application number
PCT/JP2023/024613
Other languages
French (fr)
Japanese (ja)
Inventor
和也 安部
俊夫 小形
晋介 森本
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2024009949A1 publication Critical patent/WO2024009949A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17CVESSELS FOR CONTAINING OR STORING COMPRESSED, LIQUEFIED OR SOLIDIFIED GASES; FIXED-CAPACITY GAS-HOLDERS; FILLING VESSELS WITH, OR DISCHARGING FROM VESSELS, COMPRESSED, LIQUEFIED, OR SOLIDIFIED GASES
    • F17C13/00Details of vessels or of the filling or discharging of vessels
    • F17C13/02Special adaptations of indicating, measuring, or monitoring equipment

Definitions

  • the present disclosure relates to a floating body and a gas pressure control method.
  • This application claims priority to Japanese Patent Application No. 2022-108305 filed in Japan on July 5, 2022, the contents of which are incorporated herein.
  • Patent Document 1 discloses the configuration of a gas processing system that supplies liquefied gas from a storage tank of a bunkering vessel to a fuel tank of a gas-propelled vessel.
  • This gas processing system includes a bunkering line, an evaporated gas return line, and a reliquefaction device (bunkering management section).
  • the bunkering line supplies the liquefied gas from the storage tank to the fuel tank.
  • the evaporative gas return line transmits evaporative gas generated in the fuel tank to the bunkering vessel during bunkering via the bunkering line.
  • the reliquefaction device reliquefies and returns evaporated water from the storage tank to adjust the internal pressure of the storage tank.
  • a compressor is provided upstream of the reliquefaction device. The compressor compresses the evaporated gas in the storage tank and sends it to the reliquefaction device.
  • ships equipped with tanks capable of storing liquefied carbon dioxide may also be equipped with a compressor.
  • a tank capable of storing liquefied carbon dioxide the liquefied carbon dioxide evaporates within the tank and carbon dioxide gas is generated.
  • the compressor compresses the generated carbon dioxide gas.
  • compressors are used to manage the pressure inside the tanks through which carbon dioxide gas flows and the piping connected to the tanks.
  • the carbon dioxide gas may solidify and dry ice may be produced for the following reasons. That is, when the compressor is in operation, the flow rate of carbon dioxide gas increases, for example, on the inlet side of the compressor. An increase in the flow rate of carbon dioxide gas results in a decrease in the local static pressure of carbon dioxide gas. When a local static pressure drop in carbon dioxide gas occurs, the likelihood of dry ice formation increases.
  • the present disclosure has been made to solve the above problems, and aims to provide a floating body and a gas pressure control method that can suppress the generation of dry ice.
  • a floating body includes a floating body main body, a tank, a supply line, a discharge line, a gas line, a compressor, and a heating section.
  • the tank is provided in the floating body.
  • the tank can store liquefied carbon dioxide.
  • the supply line supplies the liquefied carbon dioxide into the tank.
  • the discharge line discharges the liquefied carbon dioxide in the tank to the outside of the tank.
  • the gas line is connected to the tank so that carbon dioxide gas can flow therethrough.
  • the compressor is provided in the gas line.
  • the compressor compresses the carbon dioxide gas flowing through the gas line.
  • the heating section is provided upstream of the compressor in the gas line. The heating section can heat the carbon dioxide gas flowing through the gas line.
  • a gas pressure control method is a gas pressure control method in a floating body as described above, which includes the step of detecting the temperature of carbon dioxide gas, and the temperature of the carbon dioxide gas being equal to or lower than a predetermined lower limit threshold. and heating the carbon dioxide gas.
  • the step of detecting the temperature of the carbon dioxide gas the temperature of the carbon dioxide gas flowing through the gas line is detected.
  • the step of determining whether the temperature of the carbon dioxide gas is below a predetermined lower limit threshold the step of determining whether the detected temperature of the carbon dioxide gas is below a predetermined lower limit threshold. judge.
  • the step of heating the carbon dioxide gas if it is determined that the temperature of the carbon dioxide gas is equal to or lower than the lower limit threshold, the carbon dioxide gas is caused to flow through the gas line in the heating section.
  • FIG. 1 is a plan view showing a schematic configuration of a floating body according to an embodiment of the present disclosure. It is a sectional side view showing a tank and a gas line provided in a floating body concerning an embodiment of the present disclosure.
  • the floating body according to the embodiment of the present disclosure it is a diagram showing the flow of carbon dioxide gas when carbon dioxide gas is supplied into the tank.
  • the floating body according to the embodiment of the present disclosure it is a diagram showing the flow of carbon dioxide gas when the carbon dioxide gas is discharged to the outside of the tank.
  • FIG. 3 is a diagram showing the flow of carbon dioxide gas when circulating carbon dioxide gas in a tank in a floating body according to an embodiment of the present disclosure.
  • FIG. 2 is a functional block diagram of a control device provided in a floating body according to an embodiment of the present disclosure. It is a flowchart which shows the procedure of the gas pressure management method in a floating body concerning an embodiment of this indication.
  • FIG. 1 is a plan view showing a schematic configuration of a floating body according to an embodiment of the present disclosure.
  • a ship (floating body) 1 that is a floating body transports liquefied carbon dioxide. As shown in FIG. 1, this ship 1 includes at least a hull 2 as a floating body body and tank equipment 10.
  • the hull 2 has a pair of sides 3A and 3B forming its outer shell, a bottom (not shown), and an upper deck 5.
  • the sides 3A and 3B have a pair of side skins forming port and starboard sides, respectively.
  • the bottom (not shown) has a bottom skin that connects these sides 3A, 3B.
  • the outer shell of the hull 2 has a U-shape in a cross section perpendicular to the bow and stern direction Da due to the pair of sides 3A, 3B and the bottom (not shown).
  • the upper deck 5 illustrated in this embodiment is a full deck exposed to the outside.
  • an upper structure 7 having a living area is formed, for example, on an upper deck 5 on the stern 2b side. Note that the position and size of the upper structure 7 can be changed as appropriate.
  • a cargo loading compartment (hold) 8 is formed in the hull 2 closer to the bow 2a than the superstructure 7.
  • the cargo loading compartment 8 is recessed from the upper deck 5 toward the bottom of the ship and opens upward.
  • a plurality of tank facilities 10 are arranged in the cargo loading compartment 8 in a line in the bow-stern direction Da.
  • two tank facilities 10 are arranged at intervals in the bow and stern direction Da.
  • FIG. 2 is a side sectional view showing a tank and gas line provided in a floating body according to an embodiment of the present disclosure.
  • the tank equipment 10 includes at least a tank 11, a supply line 15, a discharge line 16, a gas line 20, a compressor 30, a heating section 40, and a control device 50.
  • the tank 11 is arranged on the hull 2 and has, for example, a cylindrical shape extending in the bow and aft direction Da.
  • the tank 11 can store liquefied carbon dioxide L therein.
  • the tank 11 includes a cylindrical portion 12 and an end plate portion 13.
  • the cylindrical portion 12 extends in the bow and aft direction Da as its longitudinal direction.
  • the cylindrical portion 12 is formed in a cylindrical shape, and has a circular cross-sectional shape perpendicular to its longitudinal direction.
  • the end plate portions 13 are arranged at both ends of the cylindrical portion 12 in the longitudinal direction.
  • Each end plate portion 13 has a hemispherical shape and closes openings at both ends of the cylindrical portion 12 in the longitudinal direction.
  • the tank 11 is not limited to a cylindrical shape, and may have other shapes such as a spherical shape or a rectangular shape.
  • the supply line 15 loads liquefied carbon dioxide L supplied from outside the ship, such as a land-based liquefied carbon dioxide supply facility or another ship storing liquefied carbon dioxide, into the tank 11.
  • the supply line 15 passes from the outside of the tank 11 through the top of the tank 11 and reaches the bottom of the tank 11 .
  • the tip 15a of the supply line 15 (in other words, the lower end in the vertical direction Dv) is open at the lower part of the tank 11 and faces downward.
  • the discharge line 16 discharges the liquefied carbon dioxide L in the tank 11 to a land-based liquefied carbon dioxide storage facility or the like outside the ship.
  • the distal end 16a of the discharge line 16 is connected to a pump 18 disposed at the lower part of the tank 11.
  • the discharge line 16 extends upward from the tip 16a, passes through the top of the tank 11, and reaches the outside of the tank 11.
  • the pump 18 connected to the tip 16a sucks in the liquefied carbon dioxide L in the tank 11 and discharges the sucked liquefied carbon dioxide L to the outside of the tank 11 via the discharge line 16.
  • the gas line 20 is configured to allow at least the carbon dioxide gas G in the tank 11 to flow therethrough.
  • the carbon dioxide gas G in the tank 11 is lower than 0° C. and higher than the triple point temperature of carbon dioxide.
  • the carbon dioxide gas G in the tank 11 is mainly a so-called boil-off gas obtained by evaporating the liquefied carbon dioxide L stored in the tank 11, and has a temperature of, for example, -56°C to -10°C.
  • the gas line 20 includes a first pipe section 21, a second pipe section 22, a third pipe section 23, a fourth pipe section 24, a fifth pipe section 25, and a sixth pipe section 26. There is.
  • the first pipe part 21 is used when sending carbon dioxide gas G supplied from outside the ship into the tank 11.
  • One end 21a of the first pipe portion 21 is configured to be connectable to a supply pipe (not shown) for supplying carbon dioxide gas G from equipment outside the ship.
  • the carbon dioxide gas G supplied from outside the ship has a temperature of, for example, -56°C to -10°C, similar to the boil-off gas described above.
  • the other end 21b of the first tube section 21 is connected to one end 25a of a fifth tube section 25, which will be described later.
  • the first pipe portion 21 is provided with an on-off valve 21v.
  • the second pipe part 22 is used when discharging the carbon dioxide gas G in the tank 11 to the outside of the ship.
  • One end 22a of the second pipe portion 22 is configured to be connectable to an exhaust pipe (not shown) for discharging carbon dioxide gas G to equipment outside the ship.
  • the other end 22b of the second tube section 22 is connected to the other end 26b of the sixth tube section 26, which will be described later.
  • the second pipe portion 22 is provided with an on-off valve 22v.
  • the third pipe section 23 is used when sending carbon dioxide gas G into the tank 11.
  • One end 23a of the third pipe portion 23 is connected to the top portion 11t of the tank 11.
  • the other end 23b of the third tube section 23 is connected to the other end 26b of the sixth tube section 26, which will be described later.
  • the third pipe portion 23 is provided with an on-off valve 23v.
  • the fourth pipe part 24 is used when discharging the carbon dioxide gas G in the tank 11 to the outside of the tank 11.
  • One end 24a of the fourth pipe portion 24 is connected to the top portion 11t of the tank 11.
  • the other end 24b of the fourth tube section 24 is connected to one end 25a of a fifth tube section 25, which will be described later.
  • the fourth pipe portion 24 is provided with an on-off valve 24v.
  • the fifth tube section 25 is provided between the other end 21b of the first tube section 21 and the other end 24b of the fourth tube section 24, and the heating section 40.
  • One end 25a of the fifth tube section 25 is connected to the other end 21b of the first tube section 21 and the other end 24b of the fourth tube section 24.
  • the other end 25b of the fifth tube section 25 is connected to the inlet of the heating section 40.
  • the fifth pipe portion 25 is provided with an on-off valve 25v.
  • the on-off valve 25v is provided on the upstream side in the direction in which carbon dioxide gas flows with respect to the heating section 40, which will be described later.
  • the sixth tube section 26 is provided between the heating section 40 and the other end 22b of the second tube section 22 and the other end 23b of the third tube section 23.
  • One end 26a of the sixth tube section 26 is connected to the outlet of the heating section 40.
  • the other end 26b of the sixth tube section 26 is connected to the other end 22b of the second tube section 22 and the other end 23b of the third tube section 23.
  • the sixth pipe portion 26 is provided with a compressor 30 and an on-off valve 25w in the middle thereof.
  • the on-off valve 25w is provided closer to the other end 26b than the compressor 30.
  • the compressor 30 compresses the carbon dioxide gas G that has flowed in through the fifth pipe section 25 and the sixth pipe section 26.
  • the compressor 30 compresses the carbon dioxide gas G sucked in from the inlet side and discharges it to the other end 26b side of the sixth pipe portion 26. Therefore, the carbon dioxide gas G flows through the sixth pipe portion 26 from the one end 26a side to the other end 26b side.
  • the heating section 40 is arranged between the fifth tube section 25 and the sixth tube section 26. That is, the heating unit 40 is arranged upstream of the compressor 30.
  • the heating section 40 heats the carbon dioxide gas G flowing through the fifth pipe section 25 .
  • a heat exchanger is used as the heating section 40.
  • the heating section 40 heats the carbon dioxide gas G flowing through the fifth pipe section 25 .
  • the heating unit 40 for example, heats the carbon dioxide gas G at -56°C to -10°C flowing through the fifth tube part 25 at a temperature higher than -10°C and at the upper limit temperature of the design conditions (for example, about 80°C). You may heat it so that it becomes below.
  • a sensor 45 is provided in the fifth tube section 25.
  • the sensor 45 detects the temperature of the carbon dioxide gas G flowing through the fifth pipe section 25.
  • the sensor 45 outputs a signal of the detected temperature value to the control device 50.
  • the gas line 20 as described above has functional configurations as a gas supply line 20F, a gas discharge line 20E, and a gas circulation line 20R, respectively.
  • the gas line 20 can be used by selectively selecting one of the gas supply line 20F, the gas discharge line 20E, and the gas circulation line 20R by switching the opening and closing of the on-off valves 21v to 25v and 25w.
  • FIG. 3 is a diagram showing the flow of carbon dioxide gas when carbon dioxide gas is supplied into the tank in the floating body according to the embodiment of the present disclosure.
  • the gas supply line 20F is configured by closing the on-off valve 22v and the on-off valve 24v, and opening the on-off valve 21v, the on-off valves 25v, 25w, and the on-off valve 23v.
  • the gas supply line 20F is used to supply carbon dioxide gas G from outside the tank 11 into the tank 11.
  • carbon dioxide gas G supplied from outside the tank 11 is supplied into the tank 11 via the first pipe section 21, the fifth pipe section 25, the sixth pipe section 26, and the third pipe section 23.
  • the gas supply line 20F includes the first pipe section 21, the fifth pipe section 25, the sixth pipe section 26, and the third pipe section 23.
  • the gas supply line 20F is used for the purpose of cooling the inside of the tank 11 and increasing the pressure inside the tank 11, for example, before supplying the liquefied carbon dioxide L to the tank 11. Furthermore, when the gas supply line 20F discharges the liquefied carbon dioxide L in the tank 11 to the outside of the tank 11 through the discharge line 16, the pressure in the tank 11 decreases as the liquefied carbon dioxide L in the tank 11 decreases. It is used for the purpose of suppressing the decline. Note that the gas supply line 20F may be used in a manner other than that described above.
  • FIG. 4 is a diagram showing the flow of carbon dioxide gas when the carbon dioxide gas is discharged outside the tank in the floating body according to the embodiment of the present disclosure.
  • the gas exhaust line 20E is configured by closing the on-off valve 21v and the on-off valve 23v, and opening the on-off valve 24v, the on-off valves 25v, 25w, and the on-off valve 22v.
  • the gas discharge line 20E is used to discharge carbon dioxide gas G from inside the tank 11 to outside the tank 11.
  • the carbon dioxide gas G in the tank 11 is discharged to the outside of the tank 11 through the fourth pipe section 24, the fifth pipe section 25, the sixth pipe section 26, and the second pipe section 22.
  • the gas exhaust line 20E includes the fourth pipe section 24, the fifth pipe section 25, the sixth pipe section 26, and the second pipe section 22.
  • the purpose of the gas discharge line 20E is, for example, to suppress the pressure in the tank 11 from increasing as the liquefied carbon dioxide L in the tank 11 increases when the liquefied carbon dioxide L is supplied into the tank 11 through the supply line 15.
  • the gas exhaust line 20E may be used in a manner other than that described above.
  • FIG. 5 is a diagram showing the flow of carbon dioxide gas when circulating the carbon dioxide gas in the tank in the floating body according to the embodiment of the present disclosure.
  • the gas circulation line 20R is configured by closing an on-off valve 21v and an on-off valve 22v, and opening an on-off valve 24v, on-off valves 25v, 25w, and an on-off valve 23v.
  • the carbon dioxide gas G in the tank 11 is circulated into the tank 11 via the fourth pipe section 24, the fifth pipe section 25, the sixth pipe section 26, and the third pipe section 23. That is, the gas circulation line 20R includes the fourth pipe section 24, the fifth pipe section 25, the sixth pipe section 26, and the third pipe section 23.
  • the gas circulation line 20R is used when pressurizing the carbon dioxide gas G in the tank 11.
  • the compressor 30 by operating the compressor 30, the carbon dioxide gas G taken out from inside the tank 11 to the gas circulation line 20R outside the tank 11 is compressed. This increases the pressure of carbon dioxide gas G.
  • the gas circulation line 20R may be used in a manner other than that described above.
  • a reliquefaction device (not shown) that reliquefies carbon dioxide gas G (so-called boil-off gas) generated by evaporation in the tank 11 is provided independently from the gas line 20. ing.
  • the carbon dioxide gas G flowing through the fifth pipe section 25 is on the upstream side of the compressor 30. It can be heated by the heating section 40.
  • the heating unit 40 may heat the carbon dioxide gas G at all times, but in this embodiment, the heating unit 40 performs heating according to the temperature of the carbon dioxide gas G on the upstream side of the compressor 30.
  • the operation of the heating section 40 is controlled by a control device 50.
  • FIG. 6 is a diagram showing a hardware configuration of a control device provided in a floating body according to an embodiment of the present disclosure.
  • the control device 50 includes a CPU 51 (Central Processing Unit), a ROM 52 (Read Only Memory), a RAM 53 (Random Access Memory), a storage 54 such as an HDD (Hard Disk Drive), and a signal transmission/reception module 55. It's a computer.
  • the signal transmitting/receiving module 55 receives a detected value signal from the sensor 45.
  • FIG. 7 is a functional block diagram of a control device provided in a floating body according to an embodiment of the present disclosure.
  • the CPU 51 executes a program stored in a storage 54 such as an HDD, thereby realizing the functional configurations of a signal receiving section 71, a heating control section 72, and an output section 73.
  • the signal receiving section 71 receives a detected value signal from the sensor 45 via the signal transmitting/receiving module 55 .
  • the heating control section 72 controls the operation of the heating section 40 based on the detected value of the sensor 45.
  • the heating control section 72 controls the operation and stopping of the heating section 40 .
  • the heating control section 72 operates the heating section 40 when the temperature of the carbon dioxide gas G flowing through the fifth pipe section 25, which is detected by the sensor 45, is lower than a predetermined lower limit threshold.
  • the heating control section 72 stops the operation of the heating section 40 when the temperature of the carbon dioxide gas G flowing through the fifth pipe section 25 detected by the sensor 45 is higher than a predetermined upper limit threshold.
  • the heating control section 72 generates a control signal for controlling starting and stopping of the heating section 40 .
  • the output section 73 outputs the control signal generated by the heating control section 72 to the heating section 40 via the signal transmission/reception module 55.
  • control device 50 may control the opening and closing of the on-off valves 21v to 25v and 25w and the operation of the compressor 30.
  • the opening and closing of the on-off valves 21v to 25v and 25w and the operation and stopping of the compressor 30 may be performed manually by remote control by an operator or the like.
  • FIG. 8 is a flowchart illustrating the procedure of a method for managing gas pressure in a floating body according to an embodiment of the present disclosure.
  • the gas pressure management method S10 in this embodiment includes a step S11 of detecting the temperature of the carbon dioxide gas G, and a step of determining whether the temperature of the carbon dioxide gas G is below the lower limit threshold.
  • S12, a step S13 of heating the carbon dioxide gas G, a step S14 of determining whether the temperature of the carbon dioxide gas G is equal to or higher than the upper limit threshold, and a step S15 of stopping the heating of the carbon dioxide gas G. include.
  • step S11 of detecting the temperature of the carbon dioxide gas G the sensor 45 detects the temperature of the carbon dioxide gas G flowing through the fifth pipe section 25 of the gas line 20 in a preset cycle, and calculates the detected value.
  • the signal is output to the control device 50.
  • the detected value signal output from this sensor 45 is received by the signal receiving section 71 of the control device 50.
  • step S12 of determining whether the temperature of the carbon dioxide gas G is equal to or lower than the lower limit threshold the heating control unit 72 determines whether the temperature of the carbon dioxide gas G indicated by the detected value of the sensor 45 is equal to or lower than a predetermined lower limit threshold. Determine whether the following is true. As a result of this determination, if the temperature of the carbon dioxide gas G is equal to or lower than the lower limit threshold, the process proceeds to step S13 of heating the carbon dioxide gas G. On the other hand, if the temperature of the carbon dioxide gas G is not below the lower limit threshold, the process proceeds to step S14 in which it is determined whether the temperature of the carbon dioxide gas G is above the upper limit threshold.
  • step S13 of heating the carbon dioxide gas G the heating control section 72 operates the heating section 40. Thereby, the carbon dioxide gas G that has flowed into the heating section 40 from the fifth pipe section 25 is heated and flows out to the sixth pipe section 26 on the upstream side (in other words, the inlet side) of the compressor 30.
  • step S14 of determining whether the temperature of carbon dioxide gas G is equal to or higher than the upper limit threshold it is determined whether the temperature of carbon dioxide gas G is equal to or higher than a predetermined upper limit threshold. As a result of this determination, if the temperature of the carbon dioxide gas G is equal to or higher than the upper limit threshold, the process proceeds to step S15 in which heating of the carbon dioxide gas G is stopped. On the other hand, if the temperature of the carbon dioxide gas G is not equal to or higher than the upper limit threshold, the process returns to step S11 of detecting the temperature of the carbon dioxide gas G described above, and the series of processes described above are repeated.
  • step S15 of stopping the heating of the carbon dioxide gas G the heating control unit 72 stops the operation of the heating unit 40. Thereby, heating of the carbon dioxide gas G by the heating unit 40 is stopped on the upstream side of the compressor 30.
  • the gas line 20 is provided with the heating section 40 and the compressor 30.
  • the carbon dioxide gas G passing through the gas line 20 is heated by the heating unit 40 and then compressed by the compressor 30.
  • the temperature of the carbon dioxide gas G introduced into the compressor 30 has increased, it is possible to suppress the generation of dry ice at the inlet of the compressor 30 of the gas line 20 and the like.
  • the piping constituting the gas line 20 is not a piping with a low temperature specification, but a pipe with a higher temperature.
  • Piping that is used under high conditions for example, piping that is designed for room temperature
  • the parts on the downstream side of the heating section 40, the sixth pipe part 26, the second pipe part 22, and the third pipe part 23, can be formed of piping used under higher temperature conditions. . Thereby, the cost of the gas line 20 can be reduced.
  • the compressor 30 and the heating section 40 are provided in the gas exhaust line 20E.
  • the compressor 30 and the heating section 40 are provided in the gas exhaust line 20E.
  • the compressor 30 and the heating section 40 are provided in the gas supply line 20F.
  • the carbon dioxide gas G can be heated upstream of the compressor 30. Therefore, it is possible to suppress the generation of dry ice at the inlet of the compressor 30 and the like.
  • the compressor 30 and the heating section 40 are provided in the gas circulation line 20R.
  • the carbon dioxide gas G in the tank 11 is taken out of the tank 11 through the gas circulation line 20R and then circulated into the tank 11, the carbon dioxide gas G is heated on the upstream side of the compressor 30. be able to. Therefore, it is possible to suppress the generation of dry ice at the inlet of the compressor 30 and the like.
  • the compressor 30 and the heating section 40 are provided between the fifth pipe section 25 and the sixth pipe section 26, which are shared by the gas discharge line 20E, the gas supply line 20F, and the gas circulation line 20R. Therefore, compared to the case where the compressor 30 and the heating section 40 are individually provided in the gas discharge line 20E, the gas supply line 20F, and the gas circulation line 20R, the number of the compressor 30 and the heating section 40 can be reduced. . As a result, it is possible to suppress an increase in the number of parts and improve the degree of freedom in arrangement.
  • the ship 1 of the embodiment described above includes a sensor 45 and a heating control section 72. Thereby, the temperature of the carbon dioxide gas G on the inlet side of the compressor 30 can be detected. Then, when the temperature detected by the sensor 45 is below a predetermined lower limit threshold, the carbon dioxide gas G can be heated. generation can be effectively suppressed.
  • the gas pressure management method S10 of the above embodiment when the temperature of the carbon dioxide gas G at the inlet side of the compressor 30 is below a predetermined lower limit threshold, the carbon dioxide gas G is heated. There is. As a result, the temperature of the carbon dioxide gas G introduced into the compressor 30 can be raised above the lower limit threshold, thereby effectively suppressing the formation of dry ice on the inlet side of the compressor 30 of the gas line 20, etc. Can be done.
  • the ship 1 is used as an example of the floating body, but it may be a floating body such as a floating storage unit (FSU) or a floating storage and regasification unit (FSRU).
  • FSU floating storage unit
  • FSRU floating storage and regasification unit
  • the carbon dioxide gas G is heated when the temperature of the carbon dioxide gas G on the inlet side of the compressor 30 is below the lower limit threshold, but the present invention is not limited to this.
  • the heating unit 40 may always heat the carbon dioxide gas G when the compressor 30 compresses the carbon dioxide gas G.
  • the gas line 20 is configured to include the gas exhaust line 20E, the gas supply line 20F, and the gas circulation line 20R, but the configuration is not limited to this.
  • the gas discharge line 20E, the gas supply line 20F, and the gas circulation line 20R may be provided individually.
  • the compressor 30 and the heating section 40 may be provided in each of the gas discharge line 20E, the gas supply line 20F, and the gas circulation line 20R. Further, the compressor 30 and the heating section 40 may be provided only in part of the gas discharge line 20E, the gas supply line 20F, and the gas circulation line 20R.
  • the carbon dioxide gas G when the carbon dioxide gas G is passed through the gas line 20, the carbon dioxide gas G always passes through the heating section 40 and the compressor 30, but the configuration is not limited thereto.
  • a bypass line that bypasses the heating unit 40 and the compressor 30 may be provided, and when the compressor 30 does not compress the carbon dioxide gas G, the carbon dioxide gas G may be passed through the bypass line.
  • the floating body 1 includes a floating body body 2, a tank 11 provided in the floating body body 2 and capable of storing liquefied carbon dioxide L, and a tank 11 that stores the liquefied carbon dioxide L in the tank 11.
  • a supply line 15 that can be supplied, a discharge line 16 that discharges the liquefied carbon dioxide L in the tank 11 to the outside of the tank 11, and a gas line 20 that is connected to the tank 11 and allows carbon dioxide gas G to flow therethrough.
  • a compressor 30 provided in the gas line 20
  • a heating unit 40 provided upstream of the compressor 30 in the gas line 20 and capable of heating the carbon dioxide gas G flowing through the gas line 20.
  • Examples of the floating body 1 include a ship and offshore floating equipment.
  • Examples of the floating body 2 include a ship hull and a floating body of offshore floating equipment.
  • the liquefied carbon dioxide L is supplied into the tank 11 through the supply line 15.
  • carbon dioxide gas G forming a gas phase within tank 11 is pushed out of tank 11 through gas line 20 .
  • liquid carbon dioxide in the tank 11 can be discharged to the outside of the tank 11 through the discharge line 16.
  • carbon dioxide gas G is introduced into the tank 11 from outside the tank 11 through the gas line 20.
  • the gas line 20 is provided with a heating section 40 and a compressor 30. Carbon dioxide gas G passing through the gas line 20 is heated by the heating unit 40 and then compressed by the compressor 30.
  • the temperature of the carbon dioxide gas G introduced into the compressor 30 has increased, it is possible to suppress the generation of dry ice at the inlet of the compressor 30 of the gas line 20 and the like.
  • the piping constituting the gas line 20 is not a pipe with a low temperature specification, but a pipe with a normal temperature specification, etc. can be adopted.
  • the portions on the downstream side of the heating section 40, the sixth tube section 26, the second tube section 22, and the third tube section 23, can be formed by pipes rated at room temperature. Thereby, the cost of the gas line 20 can be reduced.
  • the floating body 1 according to the second aspect is the floating body 1 of (1), wherein the gas line 20 is a gas discharge line that discharges the carbon dioxide gas G in the tank 11 to the outside of the tank 11. 20E, the compressor 30 and the heating section 40 are provided in the gas discharge line 20E.
  • the gas line 20 is a gas discharge line that discharges the carbon dioxide gas G in the tank 11 to the outside of the tank 11. 20E, the compressor 30 and the heating section 40 are provided in the gas discharge line 20E.
  • the floating body 1 according to the third aspect is the floating body 1 of (1) or (2), in which the gas line 20 supplies the carbon dioxide gas G from outside the tank 11 into the tank 11.
  • the compressor 30 and the heating section 40 are provided in the gas supply line 20F.
  • the carbon dioxide gas G when discharging the carbon dioxide gas G into the tank 11, the carbon dioxide gas G can be heated upstream of the compressor 30. Therefore, it is possible to suppress the generation of dry ice at the inlet of the compressor 30 and the like.
  • the floating body 1 according to the fourth aspect is the floating body 1 according to any one of (1) to (3), in which the gas line 20 connects the carbon dioxide gas G in the tank 11 to the tank 1.
  • the heating section 40 and the compressor 30 are provided in the gas circulation line 20R.
  • the floating body 1 according to the fifth aspect is the floating body 1 according to any one of (1) to (4), and is a sensor that detects the temperature of the carbon dioxide gas G on the inlet side of the compressor 30. 45, and a heating control unit 72 that heats the carbon dioxide gas G when the detected temperature is below a predetermined lower limit threshold.
  • the carbon dioxide gas G can be heated, so that the inlet of the compressor 30 of the gas line 20 It is possible to effectively suppress the formation of dry ice on the sides and the like.
  • the gas pressure management method S10 is a gas pressure management method S10 in the floating body 1 according to any one of (1) to (5), and includes carbon dioxide flowing through the gas line 20.
  • a step S11 of detecting the temperature of the carbon dioxide gas G, a step S12 of determining whether the detected temperature of the carbon dioxide gas G is below a predetermined lower limit threshold, and a step S12 of determining whether the temperature of the carbon dioxide gas G If it is determined that the carbon dioxide gas G flowing through the gas line 20 is heated by the heating section 40, the step S13 is included.
  • the carbon dioxide gas G at the inlet side of the compressor 30 when the temperature of the carbon dioxide gas G at the inlet side of the compressor 30 is below a predetermined lower limit threshold, the carbon dioxide gas G can be heated.
  • the temperature of the carbon dioxide gas G introduced into the carbon dioxide gas can be raised above the lower limit threshold. Therefore, the generation of dry ice can be effectively suppressed on the inlet side of the compressor 30 of the gas line 20 and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Ocean & Marine Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

This float comprises: a floating body; a tank which is provided to the floating body and which can store liquid carbon dioxide; a supply line for supplying liquid carbon dioxide into the tank; a discharge line for discharging the liquid carbon dioxide in the tank to the outside of the tank; a gas line which is connected to the tank and in which carbon dioxide gas can flow; a compressor which is provided to the gas line, and which compresses the carbon dioxide gas flowing in the gas line; and a heating unit which is disposed on the gas line on the upstream side of the compressor, and which can heat the carbon dioxide gas flowing in the gas line.

Description

浮体、ガス圧力制御方法Floating body, gas pressure control method
 本開示は、浮体、ガス圧力制御方法に関する。
 本願は、2022年7月5日に日本に出願された特願2022-108305号について優先権を主張し、その内容をここに援用する。
The present disclosure relates to a floating body and a gas pressure control method.
This application claims priority to Japanese Patent Application No. 2022-108305 filed in Japan on July 5, 2022, the contents of which are incorporated herein.
 特許文献1には、バンカリング船舶の貯蔵タンクからガス推進船舶の燃料タンクに液化ガスを供給するガス処理システムの構成が開示されている。このガス処理システムは、バンカリングラインと、蒸発ガスリターンラインと、再液化装置(バンカリング管理部)と、を備えている。バンカリングラインは、貯蔵タンクの液化ガスを燃料タンクに供給する。蒸発ガスリターンラインは、バンカリングラインを介したバンカリング時に、燃料タンクで発生する蒸発ガスをバンカリング船舶に伝達する。再液化装置は、貯蔵タンクの蒸発を再液化してリターンして貯蔵タンクの内圧を調整する。このような構成において、再液化装置の上流に、圧縮機が備えられている。圧縮機は、貯留タンクの蒸発ガスを圧縮して再液化装置に送り込む。 Patent Document 1 discloses the configuration of a gas processing system that supplies liquefied gas from a storage tank of a bunkering vessel to a fuel tank of a gas-propelled vessel. This gas processing system includes a bunkering line, an evaporated gas return line, and a reliquefaction device (bunkering management section). The bunkering line supplies the liquefied gas from the storage tank to the fuel tank. The evaporative gas return line transmits evaporative gas generated in the fuel tank to the bunkering vessel during bunkering via the bunkering line. The reliquefaction device reliquefies and returns evaporated water from the storage tank to adjust the internal pressure of the storage tank. In such a configuration, a compressor is provided upstream of the reliquefaction device. The compressor compresses the evaporated gas in the storage tank and sends it to the reliquefaction device.
 ところで、液化二酸化炭素を貯留可能なタンクを備えた船舶においても、圧縮機を備えることがある。液化二酸化炭素を貯留可能なタンクでは、タンク内で液化二酸化炭素が蒸発し、二酸化炭素ガスが生成される。圧縮機は、生成された二酸化炭素ガスを圧縮する。このような船舶の場合、圧縮機は、二酸化炭素ガスが流れるタンク、タンクに接続された配管の内部における圧力を管理するために用いられる。 By the way, ships equipped with tanks capable of storing liquefied carbon dioxide may also be equipped with a compressor. In a tank capable of storing liquefied carbon dioxide, the liquefied carbon dioxide evaporates within the tank and carbon dioxide gas is generated. The compressor compresses the generated carbon dioxide gas. In the case of such ships, compressors are used to manage the pressure inside the tanks through which carbon dioxide gas flows and the piping connected to the tanks.
特表2021-517878号公報Special Publication No. 2021-517878
 ところで、二酸化炭素ガスを圧縮する圧縮機を備える場合、以下のような理由により、二酸化炭素ガスが凝固してドライアイスが生成されることがある。すなわち、圧縮機の作動時、例えば圧縮機の入口側では、二酸化炭素ガスの流速が高まる。二酸化炭素ガスの流速が高まると、二酸化炭素ガスの局所的な静圧の低下が生じる。二酸化炭素ガスの局所的な静圧の低下が生じると、ドライアイスが生成される可能性が高まる。 By the way, when a compressor for compressing carbon dioxide gas is provided, the carbon dioxide gas may solidify and dry ice may be produced for the following reasons. That is, when the compressor is in operation, the flow rate of carbon dioxide gas increases, for example, on the inlet side of the compressor. An increase in the flow rate of carbon dioxide gas results in a decrease in the local static pressure of carbon dioxide gas. When a local static pressure drop in carbon dioxide gas occurs, the likelihood of dry ice formation increases.
 本開示は、上記課題を解決するためになされたものであって、ドライアイスの生成を抑えることができる浮体、ガス圧力制御方法を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a floating body and a gas pressure control method that can suppress the generation of dry ice.
 上記課題を解決するために、本開示に係る浮体は、浮体本体と、タンクと、供給ラインと、排出ラインと、ガスラインと、圧縮機と、加熱部と、を備える。前記タンクは、前記浮体本体に設けられている。前記タンクは、液化二酸化炭素を貯留可能である。前記供給ラインは、前記タンク内に前記液化二酸化炭素を供給する。前記排出ラインは、前記タンク内の前記液化二酸化炭素を前記タンク外に排出する。前記ガスラインは、前記タンクに接続されて二酸化炭素ガスが流通可能である。前記圧縮機は、前記ガスラインに設けられている。前記圧縮機は、前記ガスラインを流通する前記二酸化炭素ガスを圧縮する。前記加熱部は、前記ガスラインにおける前記圧縮機の上流側に設けられている。前記加熱部は、前記ガスラインを流通する前記二酸化炭素ガスを加熱可能である。 In order to solve the above problems, a floating body according to the present disclosure includes a floating body main body, a tank, a supply line, a discharge line, a gas line, a compressor, and a heating section. The tank is provided in the floating body. The tank can store liquefied carbon dioxide. The supply line supplies the liquefied carbon dioxide into the tank. The discharge line discharges the liquefied carbon dioxide in the tank to the outside of the tank. The gas line is connected to the tank so that carbon dioxide gas can flow therethrough. The compressor is provided in the gas line. The compressor compresses the carbon dioxide gas flowing through the gas line. The heating section is provided upstream of the compressor in the gas line. The heating section can heat the carbon dioxide gas flowing through the gas line.
 本開示に係るガス圧力制御方法は、上記したような浮体におけるガス圧力管理方法であって、二酸化炭素ガスの温度を検出する工程と、前記二酸化炭素ガスの温度が、予め定められた下限閾値以下であるか否かを判定する工程と、前記二酸化炭素ガスを加熱する工程と、を含む。前記二酸化炭素ガスの温度を検出する工程では、前記ガスラインに流通される二酸化炭素ガスの温度を検出する。前記二酸化炭素ガスの温度が、予め定められた下限閾値以下であるか否かを判定する工程では、検出された前記二酸化炭素ガスの温度が、予め定められた下限閾値以下であるか否かを判定する。前記二酸化炭素ガスを加熱する工程では、前記二酸化炭素ガスの温度が前記下限閾値以下であると判定された場合、前記加熱部で前記ガスラインを流通する。 A gas pressure control method according to the present disclosure is a gas pressure control method in a floating body as described above, which includes the step of detecting the temperature of carbon dioxide gas, and the temperature of the carbon dioxide gas being equal to or lower than a predetermined lower limit threshold. and heating the carbon dioxide gas. In the step of detecting the temperature of the carbon dioxide gas, the temperature of the carbon dioxide gas flowing through the gas line is detected. In the step of determining whether the temperature of the carbon dioxide gas is below a predetermined lower limit threshold, the step of determining whether the detected temperature of the carbon dioxide gas is below a predetermined lower limit threshold. judge. In the step of heating the carbon dioxide gas, if it is determined that the temperature of the carbon dioxide gas is equal to or lower than the lower limit threshold, the carbon dioxide gas is caused to flow through the gas line in the heating section.
 本開示の浮体、ガス圧力制御方法によれば、ドライアイスの生成を抑えることができる。 According to the floating body and gas pressure control method of the present disclosure, generation of dry ice can be suppressed.
本開示の実施形態に係る浮体の概略構成を示す平面図である。FIG. 1 is a plan view showing a schematic configuration of a floating body according to an embodiment of the present disclosure. 本開示の実施形態に係る浮体に設けられたタンク及びガスラインを示す側断面図である。It is a sectional side view showing a tank and a gas line provided in a floating body concerning an embodiment of the present disclosure. 本開示の実施形態に係る浮体において、タンク内に二酸化炭素ガスを供給する場合における二酸化炭素ガスの流れを示す図である。In the floating body according to the embodiment of the present disclosure, it is a diagram showing the flow of carbon dioxide gas when carbon dioxide gas is supplied into the tank. 本開示の実施形態に係る浮体において、二酸化炭素ガスをタンク外に排出する場合における二酸化炭素ガスの流れを示す図である。In the floating body according to the embodiment of the present disclosure, it is a diagram showing the flow of carbon dioxide gas when the carbon dioxide gas is discharged to the outside of the tank. 本開示の実施形態に係る浮体において、タンク内の二酸化炭素ガスを循環させる場合における二酸化炭素ガスの流れを示す図である。FIG. 3 is a diagram showing the flow of carbon dioxide gas when circulating carbon dioxide gas in a tank in a floating body according to an embodiment of the present disclosure. 本開示の実施形態に係る浮体に設けられた制御装置のハードウェア構成を示す図である。It is a diagram showing a hardware configuration of a control device provided in a floating body according to an embodiment of the present disclosure. 本開示の実施形態に係る浮体に設けられた制御装置の機能ブロック図である。FIG. 2 is a functional block diagram of a control device provided in a floating body according to an embodiment of the present disclosure. 本開示の実施形態に係る浮体におけるガス圧力管理方法の手順を示すフローチャートである。It is a flowchart which shows the procedure of the gas pressure management method in a floating body concerning an embodiment of this indication.
 以下、本開示の実施形態に係る浮体、ガス圧力制御方法について、図1~図8を参照して説明する。
(船舶の構成)
 図1は、本開示の実施形態に係る浮体の概略構成を示す平面図である。
 本開示の実施形態において、浮体である船舶(浮体)1は、液化二酸化炭素を運搬する。図1に示すように、この船舶1は、浮体本体としての船体2と、タンク設備10と、を少なくとも備えている。
A floating body and a gas pressure control method according to an embodiment of the present disclosure will be described below with reference to FIGS. 1 to 8.
(Ship configuration)
FIG. 1 is a plan view showing a schematic configuration of a floating body according to an embodiment of the present disclosure.
In the embodiment of the present disclosure, a ship (floating body) 1 that is a floating body transports liquefied carbon dioxide. As shown in FIG. 1, this ship 1 includes at least a hull 2 as a floating body body and tank equipment 10.
(船体の構成)
 船体2は、その外殻をなす、一対の舷側3A,3Bと、船底(図示せず)と、上甲板5と、を有している。舷側3A,3Bは、左右舷側をそれぞれ形成する一対の舷側外板を有する。船底(図示せず)は、これら舷側3A,3Bを接続する船底外板を有する。これら一対の舷側3A,3B及び船底(図示せず)により、船体2の外殻は、船首尾方向Daに直交する断面において、U字状を成している。この実施形態で例示する上甲板5は、外部に露出する全通甲板である。船体2には、例えば船尾2b側の上甲板5上に、居住区を有する上部構造7が形成されている。なお、上部構造7の位置や大きさは、適宜変更可能である。
(hull configuration)
The hull 2 has a pair of sides 3A and 3B forming its outer shell, a bottom (not shown), and an upper deck 5. The sides 3A and 3B have a pair of side skins forming port and starboard sides, respectively. The bottom (not shown) has a bottom skin that connects these sides 3A, 3B. The outer shell of the hull 2 has a U-shape in a cross section perpendicular to the bow and stern direction Da due to the pair of sides 3A, 3B and the bottom (not shown). The upper deck 5 illustrated in this embodiment is a full deck exposed to the outside. In the hull 2, an upper structure 7 having a living area is formed, for example, on an upper deck 5 on the stern 2b side. Note that the position and size of the upper structure 7 can be changed as appropriate.
 船体2内には、上部構造7よりも船首2a側に、貨物搭載区画(ホールド)8が形成されている。貨物搭載区画8は、上甲板5に対して下方の船底に向けて凹み、上方に開口している。 A cargo loading compartment (hold) 8 is formed in the hull 2 closer to the bow 2a than the superstructure 7. The cargo loading compartment 8 is recessed from the upper deck 5 toward the bottom of the ship and opens upward.
(タンク設備の構成)
 タンク設備10は、貨物搭載区画8内に、船首尾方向Daに並んで、複数が配置されている。本開示の実施形態において、タンク設備10は、例えば、船首尾方向Daに間隔を空けて二つ配置されている。
(Configuration of tank equipment)
A plurality of tank facilities 10 are arranged in the cargo loading compartment 8 in a line in the bow-stern direction Da. In the embodiment of the present disclosure, for example, two tank facilities 10 are arranged at intervals in the bow and stern direction Da.
 図2は、本開示の実施形態に係る浮体に設けられたタンク及びガスラインを示す側断面図である。
 図2に示すように、タンク設備10は、タンク11と、供給ライン15と、排出ライン16と、ガスライン20と、圧縮機30と、加熱部40と、制御装置50と、を少なくとも備えている。
 この実施形態において、タンク11は、船体2に配置され、例えば、船首尾方向Daに延びる円筒状をなしている。タンク11は、その内部に液化二酸化炭素Lを貯留可能である。タンク11は、筒状部12と、鏡板部13と、を備えている。筒状部12は、船首尾方向Daを長手方向として延びている。この実施形態において、筒状部12は、円筒状に形成され、その長手方向に直交する断面形状が円形をなしている。鏡板部13は、筒状部12の長手方向の両端部にそれぞれ配置されている。各鏡板部13は、半球状で、筒状部12の長手方向両端の開口を閉塞している。なお、タンク11は、円筒状に限られるものではなく、球形、方形等、他の形状であってもよい。
FIG. 2 is a side sectional view showing a tank and gas line provided in a floating body according to an embodiment of the present disclosure.
As shown in FIG. 2, the tank equipment 10 includes at least a tank 11, a supply line 15, a discharge line 16, a gas line 20, a compressor 30, a heating section 40, and a control device 50. There is.
In this embodiment, the tank 11 is arranged on the hull 2 and has, for example, a cylindrical shape extending in the bow and aft direction Da. The tank 11 can store liquefied carbon dioxide L therein. The tank 11 includes a cylindrical portion 12 and an end plate portion 13. The cylindrical portion 12 extends in the bow and aft direction Da as its longitudinal direction. In this embodiment, the cylindrical portion 12 is formed in a cylindrical shape, and has a circular cross-sectional shape perpendicular to its longitudinal direction. The end plate portions 13 are arranged at both ends of the cylindrical portion 12 in the longitudinal direction. Each end plate portion 13 has a hemispherical shape and closes openings at both ends of the cylindrical portion 12 in the longitudinal direction. Note that the tank 11 is not limited to a cylindrical shape, and may have other shapes such as a spherical shape or a rectangular shape.
 供給ライン15は、陸上の液化二酸化炭素供給施設、液化二酸化炭素を貯留した他の船舶等、船外から供給される液化二酸化炭素Lをタンク11内に積み込む。供給ライン15は、タンク11の外部からタンク11の頂部を貫通して、タンク11の下部に至っている。供給ライン15の先端15a(言い換えれば、上下方向Dvにおける下端)は、タンク11内の下部で下方を向いて開口している。 The supply line 15 loads liquefied carbon dioxide L supplied from outside the ship, such as a land-based liquefied carbon dioxide supply facility or another ship storing liquefied carbon dioxide, into the tank 11. The supply line 15 passes from the outside of the tank 11 through the top of the tank 11 and reaches the bottom of the tank 11 . The tip 15a of the supply line 15 (in other words, the lower end in the vertical direction Dv) is open at the lower part of the tank 11 and faces downward.
 排出ライン16は、タンク11内の液化二酸化炭素Lを、陸上の液化二酸化炭素貯蔵施設等、船外に排出する。排出ライン16の先端16aは、タンク11内の下部に配置されたポンプ18に接続されている。排出ライン16は、先端16aから上方に向かって延びてタンク11の頂部を貫通し、タンク11の外部に至っている。先端16aに接続されたポンプ18は、タンク11内の液化二酸化炭素Lを吸い込んで、この吸い込んだ液化二酸化炭素Lを、排出ライン16を介してタンク11の外部に払い出させる。 The discharge line 16 discharges the liquefied carbon dioxide L in the tank 11 to a land-based liquefied carbon dioxide storage facility or the like outside the ship. The distal end 16a of the discharge line 16 is connected to a pump 18 disposed at the lower part of the tank 11. The discharge line 16 extends upward from the tip 16a, passes through the top of the tank 11, and reaches the outside of the tank 11. The pump 18 connected to the tip 16a sucks in the liquefied carbon dioxide L in the tank 11 and discharges the sucked liquefied carbon dioxide L to the outside of the tank 11 via the discharge line 16.
 ガスライン20は、少なくともタンク11内の二酸化炭素ガスGを流通可能とされている。タンク11内の二酸化炭素ガスGは、0℃よりも低く、二酸化炭素の三重点温度よりも高温である。タンク11内の二酸化炭素ガスGは、主に、タンク11内に貯留されている液化二酸化炭素Lが蒸発した、いわゆるボイルオフガスであり、例えば-56℃~-10℃である。 The gas line 20 is configured to allow at least the carbon dioxide gas G in the tank 11 to flow therethrough. The carbon dioxide gas G in the tank 11 is lower than 0° C. and higher than the triple point temperature of carbon dioxide. The carbon dioxide gas G in the tank 11 is mainly a so-called boil-off gas obtained by evaporating the liquefied carbon dioxide L stored in the tank 11, and has a temperature of, for example, -56°C to -10°C.
 ガスライン20は、第一管部21と、第二管部22と、第三管部23と、第四管部24と、第五管部25と、第六管部26と、を備えている。 The gas line 20 includes a first pipe section 21, a second pipe section 22, a third pipe section 23, a fourth pipe section 24, a fifth pipe section 25, and a sixth pipe section 26. There is.
 第一管部21は、船外から供給される二酸化炭素ガスGをタンク11内に送り込む際に用いられる。第一管部21の一端21aは、船外の設備から二酸化炭素ガスGを供給するための供給管(図示無し)が接続可能に構成されている。船外から供給される二酸化炭素ガスGは、上記ボイルオフガスと同様に、例えば-56℃~-10℃である。第一管部21の他端21bは、後述する第五管部25の一端25aに接続されている。第一管部21には、開閉弁21vが設けられている。 The first pipe part 21 is used when sending carbon dioxide gas G supplied from outside the ship into the tank 11. One end 21a of the first pipe portion 21 is configured to be connectable to a supply pipe (not shown) for supplying carbon dioxide gas G from equipment outside the ship. The carbon dioxide gas G supplied from outside the ship has a temperature of, for example, -56°C to -10°C, similar to the boil-off gas described above. The other end 21b of the first tube section 21 is connected to one end 25a of a fifth tube section 25, which will be described later. The first pipe portion 21 is provided with an on-off valve 21v.
 第二管部22は、タンク11内の二酸化炭素ガスGを船外に排出する際に用いられる。第二管部22の一端22aは、船外の設備に二酸化炭素ガスGを排出するための排出管(図示無し)が接続可能に構成されている。第二管部22の他端22bは、後述する第六管部26の他端26bに接続されている。第二管部22には、開閉弁22vが設けられている。 The second pipe part 22 is used when discharging the carbon dioxide gas G in the tank 11 to the outside of the ship. One end 22a of the second pipe portion 22 is configured to be connectable to an exhaust pipe (not shown) for discharging carbon dioxide gas G to equipment outside the ship. The other end 22b of the second tube section 22 is connected to the other end 26b of the sixth tube section 26, which will be described later. The second pipe portion 22 is provided with an on-off valve 22v.
 第三管部23は、二酸化炭素ガスGをタンク11内に送り込む際に用いられる。第三管部23の一端23aは、タンク11の頂部11tに接続されている。第三管部23の他端23bは、後述する第六管部26の他端26bに接続されている。第三管部23には、開閉弁23vが設けられている。 The third pipe section 23 is used when sending carbon dioxide gas G into the tank 11. One end 23a of the third pipe portion 23 is connected to the top portion 11t of the tank 11. The other end 23b of the third tube section 23 is connected to the other end 26b of the sixth tube section 26, which will be described later. The third pipe portion 23 is provided with an on-off valve 23v.
 第四管部24は、タンク11内の二酸化炭素ガスGをタンク11外に排出する際に用いられる。第四管部24の一端24aは、タンク11の頂部11tに接続されている。第四管部24の他端24bは、後述する第五管部25の一端25aに接続されている。第四管部24には、開閉弁24vが設けられている。 The fourth pipe part 24 is used when discharging the carbon dioxide gas G in the tank 11 to the outside of the tank 11. One end 24a of the fourth pipe portion 24 is connected to the top portion 11t of the tank 11. The other end 24b of the fourth tube section 24 is connected to one end 25a of a fifth tube section 25, which will be described later. The fourth pipe portion 24 is provided with an on-off valve 24v.
 第五管部25は、第一管部21の他端21b及び第四管部24の他端24bと、加熱部40と、の間に設けられている。第五管部25の一端25aは、第一管部21の他端21b及び第四管部24の他端24bに接続されている。第五管部25の他端25bは、加熱部40の入口に接続されている。第五管部25には、開閉弁25vが設けられている。開閉弁25vは、後述する加熱部40に対して二酸化炭素ガスの流通する方向における上流側に設けられている。 The fifth tube section 25 is provided between the other end 21b of the first tube section 21 and the other end 24b of the fourth tube section 24, and the heating section 40. One end 25a of the fifth tube section 25 is connected to the other end 21b of the first tube section 21 and the other end 24b of the fourth tube section 24. The other end 25b of the fifth tube section 25 is connected to the inlet of the heating section 40. The fifth pipe portion 25 is provided with an on-off valve 25v. The on-off valve 25v is provided on the upstream side in the direction in which carbon dioxide gas flows with respect to the heating section 40, which will be described later.
 第六管部26は、加熱部40と、第二管部22の他端22b及び第三管部23の他端23bと、の間に設けられている。第六管部26の一端26aは、加熱部40の出口に接続されている。第六管部26の他端26bは、第二管部22の他端22b及び第三管部23の他端23bに接続されている。第六管部26には、その途中に圧縮機30と開閉弁25wとが設けられている。開閉弁25wは、圧縮機30よりも他端26b側に設けられている。 The sixth tube section 26 is provided between the heating section 40 and the other end 22b of the second tube section 22 and the other end 23b of the third tube section 23. One end 26a of the sixth tube section 26 is connected to the outlet of the heating section 40. The other end 26b of the sixth tube section 26 is connected to the other end 22b of the second tube section 22 and the other end 23b of the third tube section 23. The sixth pipe portion 26 is provided with a compressor 30 and an on-off valve 25w in the middle thereof. The on-off valve 25w is provided closer to the other end 26b than the compressor 30.
 圧縮機30は、第五管部25及び第六管部26を介して流入した二酸化炭素ガスGを圧縮する。圧縮機30は、入口側から吸い込んだ二酸化炭素ガスGを圧縮し、第六管部26の他端26b側に吐出する。したがって、二酸化炭素ガスGは、第六管部26を一端26a側から他端26b側に流通する。 The compressor 30 compresses the carbon dioxide gas G that has flowed in through the fifth pipe section 25 and the sixth pipe section 26. The compressor 30 compresses the carbon dioxide gas G sucked in from the inlet side and discharges it to the other end 26b side of the sixth pipe portion 26. Therefore, the carbon dioxide gas G flows through the sixth pipe portion 26 from the one end 26a side to the other end 26b side.
 加熱部40は、第五管部25と第六管部26との間に配置されている。つまり、加熱部40は、圧縮機30に対し、上流側に配置されている。加熱部40は、第五管部25を流通する二酸化炭素ガスGを加熱する。加熱部40としては、例えば、熱交換器が用いられる。加熱部40は、第五管部25を流通する二酸化炭素ガスGを、加熱する。加熱部40は、例えば、第五管部25を流通する-56℃~-10℃の二酸化炭素ガスGを、-10℃よりも高温で、且つ設計条件の上限温度(例えば、80℃程度)以下になるように加熱するようにしてもよい。 The heating section 40 is arranged between the fifth tube section 25 and the sixth tube section 26. That is, the heating unit 40 is arranged upstream of the compressor 30. The heating section 40 heats the carbon dioxide gas G flowing through the fifth pipe section 25 . As the heating section 40, for example, a heat exchanger is used. The heating section 40 heats the carbon dioxide gas G flowing through the fifth pipe section 25 . The heating unit 40, for example, heats the carbon dioxide gas G at -56°C to -10°C flowing through the fifth tube part 25 at a temperature higher than -10°C and at the upper limit temperature of the design conditions (for example, about 80°C). You may heat it so that it becomes below.
 第五管部25には、センサー45が設けられている。センサー45は、第五管部25を流通する二酸化炭素ガスGの温度を検出する。センサー45は、検出した温度の検出値の信号を、制御装置50に出力する。 A sensor 45 is provided in the fifth tube section 25. The sensor 45 detects the temperature of the carbon dioxide gas G flowing through the fifth pipe section 25. The sensor 45 outputs a signal of the detected temperature value to the control device 50.
(ガスラインの運用)
 上記したようなガスライン20は、ガス供給ライン20F、ガス排出ライン20E、ガス循環ライン20Rとしての機能構成をそれぞれ有する。ガスライン20は、開閉弁21v~25v、25wの開閉を切り替えることで、ガス供給ライン20F、ガス排出ライン20E、ガス循環ライン20Rの何れかを択一的に選択して使用可能である。
(Gas line operation)
The gas line 20 as described above has functional configurations as a gas supply line 20F, a gas discharge line 20E, and a gas circulation line 20R, respectively. The gas line 20 can be used by selectively selecting one of the gas supply line 20F, the gas discharge line 20E, and the gas circulation line 20R by switching the opening and closing of the on-off valves 21v to 25v and 25w.
 図3は、本開示の実施形態に係る浮体において、タンク内に二酸化炭素ガスを供給する場合における二酸化炭素ガスの流れを示す図である。
 図3に示すように、ガス供給ライン20Fは、開閉弁22v、及び開閉弁24vを閉じ、開閉弁21v、開閉弁25v、25w、及び開閉弁23vを開くことで構成される。ガス供給ライン20Fは、二酸化炭素ガスGをタンク11外からタンク11内に供給する際に用いられる。この場合、タンク11の外部から供給される二酸化炭素ガスGは、第一管部21、第五管部25、第六管部26、第三管部23を経て、タンク11内に供給される。つまり、ガス供給ライン20Fは、第一管部21と、第五管部25と、第六管部26と、第三管部23とにより構成される。
FIG. 3 is a diagram showing the flow of carbon dioxide gas when carbon dioxide gas is supplied into the tank in the floating body according to the embodiment of the present disclosure.
As shown in FIG. 3, the gas supply line 20F is configured by closing the on-off valve 22v and the on-off valve 24v, and opening the on-off valve 21v, the on-off valves 25v, 25w, and the on-off valve 23v. The gas supply line 20F is used to supply carbon dioxide gas G from outside the tank 11 into the tank 11. In this case, carbon dioxide gas G supplied from outside the tank 11 is supplied into the tank 11 via the first pipe section 21, the fifth pipe section 25, the sixth pipe section 26, and the third pipe section 23. . In other words, the gas supply line 20F includes the first pipe section 21, the fifth pipe section 25, the sixth pipe section 26, and the third pipe section 23.
 ガス供給ライン20Fは、例えば、タンク11に液化二酸化炭素Lを供給するに先立ち、タンク11内を冷却するとともに、タンク11内の圧力を高めることを目的として用いられる。また、ガス供給ライン20Fは、例えば、排出ライン16を通してタンク11内の液化二酸化炭素Lをタンク11外に排出する際、タンク11内の液化二酸化炭素Lの減少にともなってタンク11内の圧力が低下することを抑えることを目的として用いられる。なお、ガス供給ライン20Fの使用形態は、上記したもの以外であってもよい。 The gas supply line 20F is used for the purpose of cooling the inside of the tank 11 and increasing the pressure inside the tank 11, for example, before supplying the liquefied carbon dioxide L to the tank 11. Furthermore, when the gas supply line 20F discharges the liquefied carbon dioxide L in the tank 11 to the outside of the tank 11 through the discharge line 16, the pressure in the tank 11 decreases as the liquefied carbon dioxide L in the tank 11 decreases. It is used for the purpose of suppressing the decline. Note that the gas supply line 20F may be used in a manner other than that described above.
 ガス供給ライン20Fを通してタンク11内に二酸化炭素ガスGを供給する場合、圧縮機30を作動させることにより、タンク11に送り込む二酸化炭素ガスGが圧縮される。これにより、タンク11内の気相の圧力を、予め設定した目標圧力に合わせて高めることができる。 When carbon dioxide gas G is supplied into the tank 11 through the gas supply line 20F, the carbon dioxide gas G sent into the tank 11 is compressed by operating the compressor 30. Thereby, the pressure of the gas phase within the tank 11 can be increased to match the preset target pressure.
 図4は、本開示の実施形態に係る浮体において、二酸化炭素ガスをタンク外に排出する場合における二酸化炭素ガスの流れを示す図である。
 図4に示すように、ガス排出ライン20Eは、開閉弁21v、及び開閉弁23vを閉じ、開閉弁24v、開閉弁25v、25w、及び開閉弁22vを開くことで構成される。ガス排出ライン20Eは、二酸化炭素ガスGをタンク11内からタンク11外に排出する際に用いられる。この場合、タンク11内の二酸化炭素ガスGは、第四管部24、第五管部25、第六管部26、第二管部22を経て、タンク11外に排出される。つまり、ガス排出ライン20Eは、第四管部24と、第五管部25と、第六管部26と、第二管部22と、により構成される。
FIG. 4 is a diagram showing the flow of carbon dioxide gas when the carbon dioxide gas is discharged outside the tank in the floating body according to the embodiment of the present disclosure.
As shown in FIG. 4, the gas exhaust line 20E is configured by closing the on-off valve 21v and the on-off valve 23v, and opening the on-off valve 24v, the on-off valves 25v, 25w, and the on-off valve 22v. The gas discharge line 20E is used to discharge carbon dioxide gas G from inside the tank 11 to outside the tank 11. In this case, the carbon dioxide gas G in the tank 11 is discharged to the outside of the tank 11 through the fourth pipe section 24, the fifth pipe section 25, the sixth pipe section 26, and the second pipe section 22. In other words, the gas exhaust line 20E includes the fourth pipe section 24, the fifth pipe section 25, the sixth pipe section 26, and the second pipe section 22.
 ガス排出ライン20Eは、例えば、供給ライン15を通してタンク11内に液化二酸化炭素Lを供給する際、タンク11内の液化二酸化炭素Lの増加にともなって、タンク11内の圧力が高まることを抑える目的で用いられる。なお、ガス排出ライン20Eの使用形態は、上記したもの以外であってもよい。 The purpose of the gas discharge line 20E is, for example, to suppress the pressure in the tank 11 from increasing as the liquefied carbon dioxide L in the tank 11 increases when the liquefied carbon dioxide L is supplied into the tank 11 through the supply line 15. used in Note that the gas exhaust line 20E may be used in a manner other than that described above.
 ガス排出ライン20Eを通して二酸化炭素ガスGをタンク11外に排出する場合、圧縮機30を作動させることにより、タンク11外に排出する二酸化炭素ガスGが圧縮される。これにより、二酸化炭素ガスGの排出を効率良く行うことができる。したがって、タンク11内の気相の圧力を、予め設定した目標圧力に合わせて効率良く管理することができる。 When the carbon dioxide gas G is discharged to the outside of the tank 11 through the gas discharge line 20E, the carbon dioxide gas G to be discharged to the outside of the tank 11 is compressed by operating the compressor 30. Thereby, carbon dioxide gas G can be efficiently discharged. Therefore, the pressure of the gas phase within the tank 11 can be efficiently managed in accordance with a preset target pressure.
 図5は、本開示の実施形態に係る浮体において、タンク内の二酸化炭素ガスを循環させる場合における二酸化炭素ガスの流れを示す図である。
 図5に示すように、ガス循環ライン20Rは、開閉弁21v、及び開閉弁22vを閉じ、開閉弁24v、開閉弁25v、25w、及び開閉弁23vを開くことで構成される。この場合、タンク11内の二酸化炭素ガスGは、第四管部24、第五管部25、第六管部26、第三管部23を経て、タンク11内に循環される。つまり、ガス循環ライン20Rは、第四管部24と、第五管部25と、第六管部26と、第三管部23と、により構成される。
FIG. 5 is a diagram showing the flow of carbon dioxide gas when circulating the carbon dioxide gas in the tank in the floating body according to the embodiment of the present disclosure.
As shown in FIG. 5, the gas circulation line 20R is configured by closing an on-off valve 21v and an on-off valve 22v, and opening an on-off valve 24v, on-off valves 25v, 25w, and an on-off valve 23v. In this case, the carbon dioxide gas G in the tank 11 is circulated into the tank 11 via the fourth pipe section 24, the fifth pipe section 25, the sixth pipe section 26, and the third pipe section 23. That is, the gas circulation line 20R includes the fourth pipe section 24, the fifth pipe section 25, the sixth pipe section 26, and the third pipe section 23.
 ガス循環ライン20Rは、タンク11内の二酸化炭素ガスGを加圧する際に用いられる。この場合、圧縮機30を作動させることにより、タンク11内からタンク11外のガス循環ライン20Rに取り出された二酸化炭素ガスGが圧縮される。これにより、二酸化炭素ガスGの圧力が高まる。圧力が高められた二酸化炭素ガスGを、タンク11内に戻すことで、タンク11内の気相の圧力が高まる。したがって、タンク11内の気相の圧力を、予め設定した目標圧力に合わせて効率良く管理することができる。なお、ガス循環ライン20Rの使用形態は、上記したもの以外であってもよい。また、本実施形態において、タンク11内で蒸発して生成された二酸化炭素ガスG(いわゆるボイルオフガス)を再液化する再液化装置(図示無し)は、ガスライン20とは別に独立して設けられている。 The gas circulation line 20R is used when pressurizing the carbon dioxide gas G in the tank 11. In this case, by operating the compressor 30, the carbon dioxide gas G taken out from inside the tank 11 to the gas circulation line 20R outside the tank 11 is compressed. This increases the pressure of carbon dioxide gas G. By returning the carbon dioxide gas G whose pressure has been increased into the tank 11, the pressure of the gas phase within the tank 11 is increased. Therefore, the pressure of the gas phase within the tank 11 can be efficiently managed in accordance with a preset target pressure. Note that the gas circulation line 20R may be used in a manner other than that described above. In the present embodiment, a reliquefaction device (not shown) that reliquefies carbon dioxide gas G (so-called boil-off gas) generated by evaporation in the tank 11 is provided independently from the gas line 20. ing.
 上記のように、ガスライン20を、ガス供給ライン20F、ガス排出ライン20E、ガス循環ライン20Rとして用いる際、第五管部25を流通する二酸化炭素ガスGは、圧縮機30の上流側で、加熱部40によって加熱可能である。加熱部40による二酸化炭素ガスGの加熱は、常時行ってもよいが、本実施形態では、圧縮機30の上流側における、二酸化炭素ガスGの温度に応じて、加熱部40による加熱を行う。加熱部40の動作は、制御装置50によって制御される。 As mentioned above, when the gas line 20 is used as the gas supply line 20F, the gas discharge line 20E, and the gas circulation line 20R, the carbon dioxide gas G flowing through the fifth pipe section 25 is on the upstream side of the compressor 30. It can be heated by the heating section 40. The heating unit 40 may heat the carbon dioxide gas G at all times, but in this embodiment, the heating unit 40 performs heating according to the temperature of the carbon dioxide gas G on the upstream side of the compressor 30. The operation of the heating section 40 is controlled by a control device 50.
(ハードウェア構成図)
 図6は、本開示の実施形態に係る浮体に設けられた制御装置のハードウェア構成を示す図である。
 図6に示すように、制御装置50は、CPU51(Central Processing Unit)、ROM52(Read Only Memory)、RAM53(Random Access Memory)、HDD(Hard Disk Drive)等のストレージ54、信号送受信モジュール55を備えるコンピュータである。信号送受信モジュール55は、センサー45からの検出値の信号を受信する。
(Hardware configuration diagram)
FIG. 6 is a diagram showing a hardware configuration of a control device provided in a floating body according to an embodiment of the present disclosure.
As shown in FIG. 6, the control device 50 includes a CPU 51 (Central Processing Unit), a ROM 52 (Read Only Memory), a RAM 53 (Random Access Memory), a storage 54 such as an HDD (Hard Disk Drive), and a signal transmission/reception module 55. It's a computer. The signal transmitting/receiving module 55 receives a detected value signal from the sensor 45.
(機能ブロック図)
 図7は、本開示の実施形態に係る浮体に設けられた制御装置の機能ブロック図である。
 図7に示すように、制御装置50は、CPU51がHDD等のストレージ54に記憶されたプログラムを実行することにより、信号受信部71、加熱制御部72、出力部73の各機能構成を実現する。
 信号受信部71は、信号送受信モジュール55を介して、センサー45からの検出値の信号を受信する。
(Functional block diagram)
FIG. 7 is a functional block diagram of a control device provided in a floating body according to an embodiment of the present disclosure.
As shown in FIG. 7, in the control device 50, the CPU 51 executes a program stored in a storage 54 such as an HDD, thereby realizing the functional configurations of a signal receiving section 71, a heating control section 72, and an output section 73. .
The signal receiving section 71 receives a detected value signal from the sensor 45 via the signal transmitting/receiving module 55 .
 加熱制御部72は、センサー45の検出値に基づいて加熱部40の動作を制御する。加熱制御部72は、加熱部40の作動、及び停止を制御する。加熱制御部72は、センサー45で検出される、第五管部25を流通する二酸化炭素ガスGの温度が、予め定められた下限閾値より低い場合に、加熱部40を作動させる。加熱制御部72は、センサー45で検出される、第五管部25を流通する二酸化炭素ガスGの温度が、予め定められた上限閾値より高い場合に、加熱部40の作動を停止させる。加熱制御部72は、加熱部40の起動、及び停止を制御するための制御信号を生成する。
 出力部73は、信号送受信モジュール55を介して、加熱制御部72で生成された制御信号を、加熱部40に出力する。
The heating control section 72 controls the operation of the heating section 40 based on the detected value of the sensor 45. The heating control section 72 controls the operation and stopping of the heating section 40 . The heating control section 72 operates the heating section 40 when the temperature of the carbon dioxide gas G flowing through the fifth pipe section 25, which is detected by the sensor 45, is lower than a predetermined lower limit threshold. The heating control section 72 stops the operation of the heating section 40 when the temperature of the carbon dioxide gas G flowing through the fifth pipe section 25 detected by the sensor 45 is higher than a predetermined upper limit threshold. The heating control section 72 generates a control signal for controlling starting and stopping of the heating section 40 .
The output section 73 outputs the control signal generated by the heating control section 72 to the heating section 40 via the signal transmission/reception module 55.
 また、制御装置50は、開閉弁21v~25v、25wの開閉、圧縮機30の動作を制御するようにしてもよい。一方、開閉弁21v~25v、25wの開閉、圧縮機30の作動、及び停止は、オペレータによる遠隔操作等により、手動で行うようにしてもよい。 Furthermore, the control device 50 may control the opening and closing of the on-off valves 21v to 25v and 25w and the operation of the compressor 30. On the other hand, the opening and closing of the on-off valves 21v to 25v and 25w and the operation and stopping of the compressor 30 may be performed manually by remote control by an operator or the like.
(ガス圧力管理方法の手順)
 次に、上記したような船舶1における、ガス圧力管理方法S10について説明する。
 図8は、本開示の実施形態に係る浮体におけるガス圧力管理方法の手順を示すフローチャートである。
 図8に示すように、本実施形態におけるガス圧力管理方法S10は、二酸化炭素ガスGの温度を検出する工程S11と、二酸化炭素ガスGの温度が下限閾値以下であるか否かを判定する工程S12と、二酸化炭素ガスGを加熱する工程S13と、二酸化炭素ガスGの温度が上限閾値以上であるか否かを判定する工程S14と、二酸化炭素ガスGの加熱を停止する工程S15と、を含む。
(Steps for gas pressure control method)
Next, a gas pressure management method S10 in the ship 1 as described above will be explained.
FIG. 8 is a flowchart illustrating the procedure of a method for managing gas pressure in a floating body according to an embodiment of the present disclosure.
As shown in FIG. 8, the gas pressure management method S10 in this embodiment includes a step S11 of detecting the temperature of the carbon dioxide gas G, and a step of determining whether the temperature of the carbon dioxide gas G is below the lower limit threshold. S12, a step S13 of heating the carbon dioxide gas G, a step S14 of determining whether the temperature of the carbon dioxide gas G is equal to or higher than the upper limit threshold, and a step S15 of stopping the heating of the carbon dioxide gas G. include.
 二酸化炭素ガスGの温度を検出する工程S11では、予め設定されたサイクルで、センサー45が、ガスライン20の第五管部25を流通する二酸化炭素ガスGの温度を検出し、その検出値の信号を、制御装置50に出力する。このセンサー45から出力された検出値の信号は、制御装置50の信号受信部71によって受信される。 In step S11 of detecting the temperature of the carbon dioxide gas G, the sensor 45 detects the temperature of the carbon dioxide gas G flowing through the fifth pipe section 25 of the gas line 20 in a preset cycle, and calculates the detected value. The signal is output to the control device 50. The detected value signal output from this sensor 45 is received by the signal receiving section 71 of the control device 50.
 二酸化炭素ガスGの温度が下限閾値以下であるか否かを判定する工程S12では、加熱制御部72が、センサー45の検出値によって示される二酸化炭素ガスGの温度が、予め定められた下限閾値以下であるか否かを判定する。
 この判定の結果、二酸化炭素ガスGの温度が下限閾値以下であれば、二酸化炭素ガスGを加熱する工程S13に進む。一方で、二酸化炭素ガスGの温度が下限閾値以下でなければ、二酸化炭素ガスGの温度が上限閾値以上であるか否かを判定する工程S14に進む。
In step S12 of determining whether the temperature of the carbon dioxide gas G is equal to or lower than the lower limit threshold, the heating control unit 72 determines whether the temperature of the carbon dioxide gas G indicated by the detected value of the sensor 45 is equal to or lower than a predetermined lower limit threshold. Determine whether the following is true.
As a result of this determination, if the temperature of the carbon dioxide gas G is equal to or lower than the lower limit threshold, the process proceeds to step S13 of heating the carbon dioxide gas G. On the other hand, if the temperature of the carbon dioxide gas G is not below the lower limit threshold, the process proceeds to step S14 in which it is determined whether the temperature of the carbon dioxide gas G is above the upper limit threshold.
 二酸化炭素ガスGを加熱する工程S13では、加熱制御部72で、加熱部40を作動させる。これにより、第五管部25から加熱部40に流入した二酸化炭素ガスGが加熱されて、圧縮機30の上流側(言い換えれば、入口側)の第六管部26に流出する。 In step S13 of heating the carbon dioxide gas G, the heating control section 72 operates the heating section 40. Thereby, the carbon dioxide gas G that has flowed into the heating section 40 from the fifth pipe section 25 is heated and flows out to the sixth pipe section 26 on the upstream side (in other words, the inlet side) of the compressor 30.
 二酸化炭素ガスGの温度が上限閾値以上であるか否かを判定する工程S14では、二酸化炭素ガスGの温度が、予め定められた上限閾値以上であるか否かを判定する。
 この判定の結果、二酸化炭素ガスGの温度が上限閾値以上であれば、二酸化炭素ガスGの加熱を停止する工程S15に進む。一方で、二酸化炭素ガスGの温度が上限閾値以上でなければ、上述した二酸化炭素ガスGの温度を検出する工程S11に戻り、上述した一連の処理を繰り返し行う。
In step S14 of determining whether the temperature of carbon dioxide gas G is equal to or higher than the upper limit threshold, it is determined whether the temperature of carbon dioxide gas G is equal to or higher than a predetermined upper limit threshold.
As a result of this determination, if the temperature of the carbon dioxide gas G is equal to or higher than the upper limit threshold, the process proceeds to step S15 in which heating of the carbon dioxide gas G is stopped. On the other hand, if the temperature of the carbon dioxide gas G is not equal to or higher than the upper limit threshold, the process returns to step S11 of detecting the temperature of the carbon dioxide gas G described above, and the series of processes described above are repeated.
 二酸化炭素ガスGの加熱を停止する工程S15では、加熱制御部72により、加熱部40の作動を停止させる。これにより、圧縮機30の上流側で、加熱部40による二酸化炭素ガスGの加熱が停止される。 In step S15 of stopping the heating of the carbon dioxide gas G, the heating control unit 72 stops the operation of the heating unit 40. Thereby, heating of the carbon dioxide gas G by the heating unit 40 is stopped on the upstream side of the compressor 30.
(作用効果)
 上記実施形態の船舶1では、ガスライン20に、加熱部40と圧縮機30とが設けられている。これにより、ガスライン20を通る二酸化炭素ガスGは、加熱部40で加熱された後、圧縮機30で圧縮される。このように、圧縮機30に導入される二酸化炭素ガスGの温度が上昇しているので、ガスライン20の圧縮機30の入口等において、ドライアイスの生成を抑えることができる。
 また、加熱部40で二酸化炭素ガスGを加熱することにより、ガスライン20において、加熱部40よりも下流側においては、ガスライン20を構成する配管として、低温仕様の配管ではなく、より温度の高い条件で使用する配管、例えば常温仕様の配管等を採用することができる。具体的には、加熱部40よりも下流側の部分、第六管部26、第二管部22、及び第三管部23を、より温度の高い条件で使用する配管により形成することができる。これにより、ガスライン20の低コスト化を図ることができる。
(effect)
In the ship 1 of the embodiment described above, the gas line 20 is provided with the heating section 40 and the compressor 30. Thereby, the carbon dioxide gas G passing through the gas line 20 is heated by the heating unit 40 and then compressed by the compressor 30. In this way, since the temperature of the carbon dioxide gas G introduced into the compressor 30 has increased, it is possible to suppress the generation of dry ice at the inlet of the compressor 30 of the gas line 20 and the like.
In addition, by heating the carbon dioxide gas G in the heating section 40, in the gas line 20, on the downstream side of the heating section 40, the piping constituting the gas line 20 is not a piping with a low temperature specification, but a pipe with a higher temperature. Piping that is used under high conditions, for example, piping that is designed for room temperature, can be used. Specifically, the parts on the downstream side of the heating section 40, the sixth pipe part 26, the second pipe part 22, and the third pipe part 23, can be formed of piping used under higher temperature conditions. . Thereby, the cost of the gas line 20 can be reduced.
 また上記実施形態では、ガス排出ライン20Eに、圧縮機30及び加熱部40が設けられている。これにより、タンク11内の二酸化炭素ガスGをタンク11外に排出する際に、圧縮機30の上流側で二酸化炭素ガスGを加熱することによって、圧縮機30の入口等において、ドライアイスの生成を抑えることができる。 Furthermore, in the embodiment described above, the compressor 30 and the heating section 40 are provided in the gas exhaust line 20E. As a result, when the carbon dioxide gas G in the tank 11 is discharged to the outside of the tank 11, dry ice is generated at the inlet of the compressor 30 by heating the carbon dioxide gas G on the upstream side of the compressor 30. can be suppressed.
 同様に上記実施形態では、ガス供給ライン20Fに、圧縮機30及び加熱部40が設けられている。これにより、二酸化炭素ガスGをタンク11内に排出する際に、圧縮機30の上流側で二酸化炭素ガスGを加熱することができる。したがって、圧縮機30の入口等において、ドライアイスの生成を抑えることができる。 Similarly, in the above embodiment, the compressor 30 and the heating section 40 are provided in the gas supply line 20F. Thereby, when discharging the carbon dioxide gas G into the tank 11, the carbon dioxide gas G can be heated upstream of the compressor 30. Therefore, it is possible to suppress the generation of dry ice at the inlet of the compressor 30 and the like.
 さらに上記実施形態では、ガス循環ライン20Rに、圧縮機30及び加熱部40が設けられている。これにより、タンク11内の二酸化炭素ガスGを、ガス循環ライン20Rを通してタンク11外に取り出した後、タンク11内へと循環させる際に、圧縮機30の上流側で二酸化炭素ガスGを加熱することができる。したがって、圧縮機30の入口等において、ドライアイスの生成を抑えることができる。 Furthermore, in the embodiment described above, the compressor 30 and the heating section 40 are provided in the gas circulation line 20R. Thereby, when the carbon dioxide gas G in the tank 11 is taken out of the tank 11 through the gas circulation line 20R and then circulated into the tank 11, the carbon dioxide gas G is heated on the upstream side of the compressor 30. be able to. Therefore, it is possible to suppress the generation of dry ice at the inlet of the compressor 30 and the like.
 そして上記実施形態では、圧縮機30及び加熱部40が、ガス排出ライン20E、ガス供給ライン20F、ガス循環ライン20Rで共用する第五管部25と第六管部26との間に設けられているため、圧縮機30及び加熱部40を、ガス排出ライン20E、ガス供給ライン20F、ガス循環ライン20Rに個別に設ける場合と比較して、圧縮機30及び加熱部40の数量を抑えることができる。その結果、部品点数の増加を抑制し、配置自由度を向上できる。 In the above embodiment, the compressor 30 and the heating section 40 are provided between the fifth pipe section 25 and the sixth pipe section 26, which are shared by the gas discharge line 20E, the gas supply line 20F, and the gas circulation line 20R. Therefore, compared to the case where the compressor 30 and the heating section 40 are individually provided in the gas discharge line 20E, the gas supply line 20F, and the gas circulation line 20R, the number of the compressor 30 and the heating section 40 can be reduced. . As a result, it is possible to suppress an increase in the number of parts and improve the degree of freedom in arrangement.
 また、上記実施形態の船舶1は、センサー45と、加熱制御部72と、を備えている。
 これにより、圧縮機30の入口側における二酸化炭素ガスGの温度を検出することができる。そして、センサー45で検出された温度が、予め定められた下限閾値以下である場合に、二酸化炭素ガスGを加熱することができるため、ガスライン20の圧縮機30の入口側等において、ドライアイスの生成を有効に抑えることができる。
Further, the ship 1 of the embodiment described above includes a sensor 45 and a heating control section 72.
Thereby, the temperature of the carbon dioxide gas G on the inlet side of the compressor 30 can be detected. Then, when the temperature detected by the sensor 45 is below a predetermined lower limit threshold, the carbon dioxide gas G can be heated. generation can be effectively suppressed.
 また、上記実施形態のガス圧力管理方法S10によれば、圧縮機30の入口側における二酸化炭素ガスGの温度が、予め定められた下限閾値以下である場合に、二酸化炭素ガスGを加熱している。これにより、圧縮機30に導入される二酸化炭素ガスGの温度を下限閾値よりも上昇させることができるため、ガスライン20の圧縮機30の入口側等において、ドライアイスの生成を有効に抑えることができる。 Further, according to the gas pressure management method S10 of the above embodiment, when the temperature of the carbon dioxide gas G at the inlet side of the compressor 30 is below a predetermined lower limit threshold, the carbon dioxide gas G is heated. There is. As a result, the temperature of the carbon dioxide gas G introduced into the compressor 30 can be raised above the lower limit threshold, thereby effectively suppressing the formation of dry ice on the inlet side of the compressor 30 of the gas line 20, etc. Can be done.
(他の実施形態)
 以上、本開示の実施の形態について図面を参照して詳述したが、具体的な構成はこの実施の形態に限られるものではなく、本開示の要旨を逸脱しない範囲の設計変更等も含まれる。
 例えば、上述した実施形態では、浮体として船舶1を一例にして説明したが、例えば、FSU(Floating Storage Unit)、FSRU(Floating Storage and Regasification Unit)等の浮体であってもよい。
(Other embodiments)
Although the embodiment of the present disclosure has been described above in detail with reference to the drawings, the specific configuration is not limited to this embodiment, and includes design changes within the scope of the gist of the present disclosure. .
For example, in the above-described embodiment, the ship 1 is used as an example of the floating body, but it may be a floating body such as a floating storage unit (FSU) or a floating storage and regasification unit (FSRU).
 さらに上記実施形態では、圧縮機30の入口側における二酸化炭素ガスGの温度が下限閾値以下である場合に、二酸化炭素ガスGを加熱するようにしたが、これに限られない。例えば、加熱部40による二酸化炭素ガスGの加熱は、圧縮機30で二酸化炭素ガスGを圧縮する際に、常時行うようにしてもよい。 Further, in the above embodiment, the carbon dioxide gas G is heated when the temperature of the carbon dioxide gas G on the inlet side of the compressor 30 is below the lower limit threshold, but the present invention is not limited to this. For example, the heating unit 40 may always heat the carbon dioxide gas G when the compressor 30 compresses the carbon dioxide gas G.
 また、上記実施形態では、ガスライン20が、ガス排出ライン20E、ガス供給ライン20F、ガス循環ライン20Rを兼ね備える構成としたが、これに限られない。ガス排出ライン20E、ガス供給ライン20F、ガス循環ライン20Rは、それぞれ個別に設けるようにしてもよい。その場合、圧縮機30、及び加熱部40は、ガス排出ライン20E、ガス供給ライン20F、ガス循環ライン20Rのそれぞれに設けてもよい。また、圧縮機30、及び加熱部40は、ガス排出ライン20E、ガス供給ライン20F、ガス循環ライン20Rのうちの一部にのみ備えるようにしてもよい。 Furthermore, in the above embodiment, the gas line 20 is configured to include the gas exhaust line 20E, the gas supply line 20F, and the gas circulation line 20R, but the configuration is not limited to this. The gas discharge line 20E, the gas supply line 20F, and the gas circulation line 20R may be provided individually. In that case, the compressor 30 and the heating section 40 may be provided in each of the gas discharge line 20E, the gas supply line 20F, and the gas circulation line 20R. Further, the compressor 30 and the heating section 40 may be provided only in part of the gas discharge line 20E, the gas supply line 20F, and the gas circulation line 20R.
 さらに、上記実施形態では、二酸化炭素ガスGをガスライン20に流通させる際、二酸化炭素ガスGが、加熱部40及び圧縮機30を必ず通る構成となっているが、これに限られない。例えば、加熱部40及び圧縮機30を迂回するバイパスラインを設けて、圧縮機30で二酸化炭素ガスGを圧縮しない場合に、二酸化炭素ガスGをバイパスラインに通すようにしてもよい。 Furthermore, in the above embodiment, when the carbon dioxide gas G is passed through the gas line 20, the carbon dioxide gas G always passes through the heating section 40 and the compressor 30, but the configuration is not limited thereto. For example, a bypass line that bypasses the heating unit 40 and the compressor 30 may be provided, and when the compressor 30 does not compress the carbon dioxide gas G, the carbon dioxide gas G may be passed through the bypass line.
<付記>
 実施形態に記載の浮体1、ガス圧力管理方法S10は、例えば以下のように把握される。
<Additional notes>
The floating body 1 and gas pressure management method S10 described in the embodiment can be understood, for example, as follows.
(1)第1の態様に係る浮体1は、浮体本体2と、前記浮体本体2に設けられて、液化二酸化炭素Lを貯留可能なタンク11と、前記タンク11内に前記液化二酸化炭素Lを供給可能な供給ライン15と、前記タンク11内の前記液化二酸化炭素Lを前記タンク11外に排出する排出ライン16と、前記タンク11に接続されて二酸化炭素ガスGが流通可能なガスライン20と、前記ガスライン20に設けられた圧縮機30と、前記ガスライン20における前記圧縮機30の上流側に設けられて、前記ガスライン20を流通する前記二酸化炭素ガスGを加熱可能な加熱部40と、を備える。
 浮体1の例としては、船舶や洋上浮体設備が挙げられる。浮体本体2の例としては、船体や洋上浮体設備の浮体本体が挙げられる。
(1) The floating body 1 according to the first aspect includes a floating body body 2, a tank 11 provided in the floating body body 2 and capable of storing liquefied carbon dioxide L, and a tank 11 that stores the liquefied carbon dioxide L in the tank 11. A supply line 15 that can be supplied, a discharge line 16 that discharges the liquefied carbon dioxide L in the tank 11 to the outside of the tank 11, and a gas line 20 that is connected to the tank 11 and allows carbon dioxide gas G to flow therethrough. , a compressor 30 provided in the gas line 20, and a heating unit 40 provided upstream of the compressor 30 in the gas line 20 and capable of heating the carbon dioxide gas G flowing through the gas line 20. and.
Examples of the floating body 1 include a ship and offshore floating equipment. Examples of the floating body 2 include a ship hull and a floating body of offshore floating equipment.
 このような構成の浮体1は、液化二酸化炭素Lは、供給ライン15を通してタンク11内に供給される。タンク11内に液化二酸化炭素Lを供給するにともなって、タンク11内の気相を形成する二酸化炭素ガスGが、ガスライン20を通してタンク11の外部に押し出される。
 また、タンク11内の液体二酸化炭素は、排出ライン16を通してタンク11外に排出することができる。タンク11内の液体二酸化炭素が排出されるにともなって、ガスライン20を通して、タンク11外から二酸化炭素ガスGがタンク11内に導入される。
 ガスライン20には、加熱部40と圧縮機30とが設けられている。ガスライン20を通る二酸化炭素ガスGは、加熱部40で加熱された後、圧縮機30で圧縮される。このように、圧縮機30に導入される二酸化炭素ガスGの温度が上昇しているので、ガスライン20の圧縮機30の入口等において、ドライアイスの生成を抑えることができる。
 また、加熱部40で二酸化炭素ガスGを加熱することにより、ガスライン20の加熱部40よりも下流側では、ガスライン20を構成する配管として、低温仕様の配管ではなく、常温仕様等の配管を採用することができる。具体的には、加熱部40よりも下流側の部分、第六管部26、第二管部22、及び第三管部23を、常温仕様の配管により形成することができる。これにより、ガスライン20の低コスト化を図ることができる。
In the floating body 1 having such a configuration, the liquefied carbon dioxide L is supplied into the tank 11 through the supply line 15. As liquefied carbon dioxide L is supplied into tank 11 , carbon dioxide gas G forming a gas phase within tank 11 is pushed out of tank 11 through gas line 20 .
Further, liquid carbon dioxide in the tank 11 can be discharged to the outside of the tank 11 through the discharge line 16. As the liquid carbon dioxide in the tank 11 is discharged, carbon dioxide gas G is introduced into the tank 11 from outside the tank 11 through the gas line 20.
The gas line 20 is provided with a heating section 40 and a compressor 30. Carbon dioxide gas G passing through the gas line 20 is heated by the heating unit 40 and then compressed by the compressor 30. In this way, since the temperature of the carbon dioxide gas G introduced into the compressor 30 has increased, it is possible to suppress the generation of dry ice at the inlet of the compressor 30 of the gas line 20 and the like.
In addition, by heating the carbon dioxide gas G in the heating section 40, on the downstream side of the heating section 40 of the gas line 20, the piping constituting the gas line 20 is not a pipe with a low temperature specification, but a pipe with a normal temperature specification, etc. can be adopted. Specifically, the portions on the downstream side of the heating section 40, the sixth tube section 26, the second tube section 22, and the third tube section 23, can be formed by pipes rated at room temperature. Thereby, the cost of the gas line 20 can be reduced.
(2)第2の態様に係る浮体1は、(1)の浮体1であって、前記ガスライン20は、前記タンク11内の前記二酸化炭素ガスGを前記タンク11外に排出するガス排出ライン20Eを含み、前記圧縮機30及び前記加熱部40が、前記ガス排出ライン20Eに設けられている。 (2) The floating body 1 according to the second aspect is the floating body 1 of (1), wherein the gas line 20 is a gas discharge line that discharges the carbon dioxide gas G in the tank 11 to the outside of the tank 11. 20E, the compressor 30 and the heating section 40 are provided in the gas discharge line 20E.
 これにより、タンク11内の二酸化炭素ガスGをタンク11外に排出する際に、圧縮機30の上流側で二酸化炭素ガスGを加熱することによって、圧縮機30の入口等において、ドライアイスの生成を抑えることができる。 As a result, when the carbon dioxide gas G in the tank 11 is discharged to the outside of the tank 11, dry ice is generated at the inlet of the compressor 30 by heating the carbon dioxide gas G on the upstream side of the compressor 30. can be suppressed.
(3)第3の態様に係る浮体1は、(1)又は(2)の浮体1であって、前記ガスライン20は、前記二酸化炭素ガスGを前記タンク11外から前記タンク11内に供給するガス供給ライン20Fを含み、前記圧縮機30及び前記加熱部40が、前記ガス供給ライン20Fに設けられている。 (3) The floating body 1 according to the third aspect is the floating body 1 of (1) or (2), in which the gas line 20 supplies the carbon dioxide gas G from outside the tank 11 into the tank 11. The compressor 30 and the heating section 40 are provided in the gas supply line 20F.
 これにより、二酸化炭素ガスGをタンク11内に排出する際に、圧縮機30の上流側で二酸化炭素ガスGを加熱することができる。したがって、圧縮機30の入口等において、ドライアイスの生成を抑えることができる。 Thereby, when discharging the carbon dioxide gas G into the tank 11, the carbon dioxide gas G can be heated upstream of the compressor 30. Therefore, it is possible to suppress the generation of dry ice at the inlet of the compressor 30 and the like.
(4)第4の態様に係る浮体1は、(1)から(3)の何れか一つの浮体1であって、前記ガスライン20は、前記タンク11内の前記二酸化炭素ガスGを前記タンク11外に取り出し、前記タンク11内に戻すガス循環ライン20Rを含み、前記加熱部40及び前記圧縮機30が、前記ガス循環ライン20Rに設けられている。 (4) The floating body 1 according to the fourth aspect is the floating body 1 according to any one of (1) to (3), in which the gas line 20 connects the carbon dioxide gas G in the tank 11 to the tank 1. The heating section 40 and the compressor 30 are provided in the gas circulation line 20R.
 これにより、タンク11内の二酸化炭素ガスGを、ガス循環ライン20Rを通してタンク11外に取り出した後、タンク11内へと循環させる際に、圧縮機30の上流側で二酸化炭素ガスGを加熱することができる。したがって、圧縮機30の入口等において、ドライアイスの生成を抑えることができる。 Thereby, when the carbon dioxide gas G in the tank 11 is taken out of the tank 11 through the gas circulation line 20R and then circulated into the tank 11, the carbon dioxide gas G is heated on the upstream side of the compressor 30. be able to. Therefore, it is possible to suppress the generation of dry ice at the inlet of the compressor 30 and the like.
(5)第5の態様に係る浮体1は、(1)から(4)の何れか一つの浮体1であって、前記圧縮機30の入口側における前記二酸化炭素ガスGの温度を検出するセンサー45と、検出された前記温度が予め定められた下限閾値以下である場合に、前記二酸化炭素ガスGを加熱する加熱制御部72と、を備える。 (5) The floating body 1 according to the fifth aspect is the floating body 1 according to any one of (1) to (4), and is a sensor that detects the temperature of the carbon dioxide gas G on the inlet side of the compressor 30. 45, and a heating control unit 72 that heats the carbon dioxide gas G when the detected temperature is below a predetermined lower limit threshold.
 このような構成によれば、センサー45で検出された温度が、予め定められた下限閾値以下である場合に、二酸化炭素ガスGを加熱することができるため、ガスライン20の圧縮機30の入口側等において、ドライアイスの生成を有効に抑えることができる。 According to such a configuration, when the temperature detected by the sensor 45 is below a predetermined lower limit threshold, the carbon dioxide gas G can be heated, so that the inlet of the compressor 30 of the gas line 20 It is possible to effectively suppress the formation of dry ice on the sides and the like.
(6)第6の態様に係るガス圧力管理方法S10は、(1)から(5)の何れか一つの浮体1におけるガス圧力管理方法S10であって、前記ガスライン20に流通される二酸化炭素ガスGの温度を検出する工程S11と、検出された前記二酸化炭素ガスGの温度が、予め定められた下限閾値以下であるか否かを判定する工程S12と、前記二酸化炭素ガスGの温度が前記下限閾値以下であると判定された場合、前記加熱部40で前記ガスライン20を流通する前記二酸化炭素ガスGを加熱する工程S13と、を含む。 (6) The gas pressure management method S10 according to the sixth aspect is a gas pressure management method S10 in the floating body 1 according to any one of (1) to (5), and includes carbon dioxide flowing through the gas line 20. A step S11 of detecting the temperature of the carbon dioxide gas G, a step S12 of determining whether the detected temperature of the carbon dioxide gas G is below a predetermined lower limit threshold, and a step S12 of determining whether the temperature of the carbon dioxide gas G If it is determined that the carbon dioxide gas G flowing through the gas line 20 is heated by the heating section 40, the step S13 is included.
 このような構成によれば、圧縮機30の入口側における二酸化炭素ガスGの温度が、予め定められた下限閾値以下である場合に、二酸化炭素ガスGを加熱することができるため、圧縮機30に導入される二酸化炭素ガスGの温度を下限閾値よりも上昇させることができる。したがって、ガスライン20の圧縮機30の入口側等において、ドライアイスの生成を有効に抑えることができる。 According to such a configuration, when the temperature of the carbon dioxide gas G at the inlet side of the compressor 30 is below a predetermined lower limit threshold, the carbon dioxide gas G can be heated. The temperature of the carbon dioxide gas G introduced into the carbon dioxide gas can be raised above the lower limit threshold. Therefore, the generation of dry ice can be effectively suppressed on the inlet side of the compressor 30 of the gas line 20 and the like.
 本開示の浮体、ガス圧力制御方法によれば、ドライアイスの生成を抑えることができる。 According to the floating body and gas pressure control method of the present disclosure, generation of dry ice can be suppressed.
1…船舶(浮体) 2…船体(浮体本体) 2a…船首 2b…船尾 3A、3B…舷側 5…上甲板 7…上部構造 8…貨物搭載区画 10…タンク設備 11…タンク 11t…頂部 12…筒状部 13…鏡板部 15…供給ライン 15a…先端 16…排出ライン 16a…先端 18…ポンプ 20…ガスライン 20E…ガス排出ライン 20F…ガス供給ライン 20R…ガス循環ライン 21…第一管部 21a…一端 21b…他端 21v…開閉弁 22…第二管部 22a…一端 22b…他端 22v…開閉弁 23…第三管部 23a…一端 23b…他端 23v…開閉弁 24…第四管部 24a…一端 24b…他端 24v…開閉弁 25…第五管部 25a…一端 25b…他端 25v、25w…開閉弁 30…圧縮機 40…加熱部 45…センサー 50…制御装置 51…CPU 52…ROM 53…RAM 54…ストレージ 55…信号送受信モジュール 71…信号受信部 72…加熱制御部 73…出力部 Da…船首尾方向 Dv…上下方向 Dx…長手方向 G…二酸化炭素ガス L…液化二酸化炭素 S10…ガス圧力管理方法 S11…二酸化炭素ガスの温度を検出する工程 S12…二酸化炭素ガスの温度が下限閾値以下であるか否かを判定する工程 S13…二酸化炭素ガスを加熱する工程 S14…二酸化炭素ガスの温度が上限閾値以上であるか否かを判定する工程 S15…二酸化炭素ガスの加熱を停止する工程 1... Vessel (floating body) 2... Hull (floating body body) 2a... Bow 2b... Stern 3A, 3B... Broad side 5... Upper deck 7... Upper structure 8... Cargo loading compartment 10... Tank equipment 11... Tank 11t... Top 12... Cylinder Shape portion 13...End plate part 15...Supply line 15a...Tip 16...Discharge line 16a...Tip 18...Pump 20...Gas line 20E...Gas discharge line 20F...Gas supply line 20R...Gas circulation line 21...First pipe part 21a... One end 21b...Other end 21v...On-off valve 22...Second pipe section 22a...One end 22b...Other end 22v...On-off valve 23...Third pipe section 23a...One end 23b...Other end 23v...On-off valve 24...Fourth pipe section 24a ...One end 24b...Other end 24v...On-off valve 25...Fifth pipe section 25a...One end 25b... Other end 25v, 25w...On-off valve 30...Compressor 40...Heating part 45...Sensor 50...Control device 51...CPU 52...ROM 53...RAM 54...Storage 55...Signal transmission/reception module 71...Signal receiving unit 72...Heating control unit 73...Output unit Da...Fore and aft direction Dv...Vertical direction Dx...Longitudinal direction G...Carbon dioxide gas L...Liquefied carbon dioxide S10... Gas pressure management method S11... Step of detecting the temperature of carbon dioxide gas S12... Step of determining whether the temperature of carbon dioxide gas is below the lower limit threshold S13... Step of heating carbon dioxide gas S14... Step of heating carbon dioxide gas Step of determining whether the temperature is equal to or higher than the upper limit threshold S15...Step of stopping heating of carbon dioxide gas

Claims (6)

  1.  浮体本体と、
     前記浮体本体に設けられて、液化二酸化炭素を貯留可能なタンクと、
     前記タンク内に前記液化二酸化炭素を供給する供給ラインと、
     前記タンク内の前記液化二酸化炭素を前記タンク外に排出する排出ラインと、
     前記タンクに接続されて二酸化炭素ガスが流通可能なガスラインと、
     前記ガスラインに設けられ、前記ガスラインを流通する前記二酸化炭素ガスを圧縮する圧縮機と、
     前記ガスラインにおける前記圧縮機の上流側に設けられて、前記ガスラインを流通する前記二酸化炭素ガスを加熱可能な加熱部と、
    を備える浮体。
    A floating body,
    a tank provided on the floating body body and capable of storing liquefied carbon dioxide;
    a supply line that supplies the liquefied carbon dioxide into the tank;
    a discharge line for discharging the liquefied carbon dioxide in the tank to the outside of the tank;
    a gas line connected to the tank and through which carbon dioxide gas can flow;
    a compressor that is provided in the gas line and compresses the carbon dioxide gas flowing through the gas line;
    a heating section that is provided upstream of the compressor in the gas line and is capable of heating the carbon dioxide gas flowing through the gas line;
    A floating body equipped with
  2.  前記ガスラインは、前記タンク内の前記二酸化炭素ガスを前記タンク外に排出するガス排出ラインを含み、
     前記圧縮機及び前記加熱部が、前記ガス排出ラインに設けられている
    請求項1に記載の浮体。
    The gas line includes a gas discharge line that discharges the carbon dioxide gas in the tank to the outside of the tank,
    The floating body according to claim 1, wherein the compressor and the heating section are provided in the gas discharge line.
  3.  前記ガスラインは、前記二酸化炭素ガスを前記タンク外から前記タンク内に供給するガス供給ラインを含み、
     前記圧縮機及び前記加熱部が、前記ガス供給ラインに設けられている
    請求項1又は2に記載の浮体。
    The gas line includes a gas supply line that supplies the carbon dioxide gas from outside the tank into the tank,
    The floating body according to claim 1 or 2, wherein the compressor and the heating section are provided in the gas supply line.
  4.  前記ガスラインは、前記タンク内の前記二酸化炭素ガスを前記タンク外に取り出し、前記タンク内に戻すガス循環ラインを含み、
     前記加熱部及び前記圧縮機が、前記ガス循環ラインに設けられている
    請求項1又は2に記載の浮体。
    The gas line includes a gas circulation line that takes the carbon dioxide gas in the tank out of the tank and returns it into the tank,
    The floating body according to claim 1 or 2, wherein the heating section and the compressor are provided in the gas circulation line.
  5.  前記圧縮機の入口側における前記二酸化炭素ガスの温度を検出するセンサーと、
     検出された前記温度が予め定められた下限閾値以下である場合に、前記二酸化炭素ガスを加熱する加熱制御部と、を備える
    請求項1又は2に記載の浮体。
    a sensor that detects the temperature of the carbon dioxide gas on the inlet side of the compressor;
    The floating body according to claim 1 or 2, further comprising a heating control unit that heats the carbon dioxide gas when the detected temperature is below a predetermined lower limit threshold.
  6.  請求項1又は2に記載の浮体におけるガス圧力管理方法であって、
     前記ガスラインに流通される二酸化炭素ガスの温度を検出する工程と、
     検出された前記二酸化炭素ガスの温度が、予め定められた下限閾値以下であるか否かを判定する工程と、
     前記二酸化炭素ガスの温度が前記下限閾値以下であると判定された場合、前記加熱部で前記ガスラインを流通する前記二酸化炭素ガスを加熱する工程と、を含む
    ガス圧力管理方法。
    A gas pressure management method in a floating body according to claim 1 or 2, comprising:
    detecting the temperature of carbon dioxide gas flowing through the gas line;
    determining whether the temperature of the detected carbon dioxide gas is below a predetermined lower threshold;
    A gas pressure management method including the step of heating the carbon dioxide gas flowing through the gas line in the heating section when it is determined that the temperature of the carbon dioxide gas is equal to or lower than the lower limit threshold.
PCT/JP2023/024613 2022-07-05 2023-07-03 Float and gas pressure control method WO2024009949A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022108305A JP2024007094A (en) 2022-07-05 2022-07-05 Floating body and gas pressure control method
JP2022-108305 2022-07-05

Publications (1)

Publication Number Publication Date
WO2024009949A1 true WO2024009949A1 (en) 2024-01-11

Family

ID=89453321

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024613 WO2024009949A1 (en) 2022-07-05 2023-07-03 Float and gas pressure control method

Country Status (2)

Country Link
JP (1) JP2024007094A (en)
WO (1) WO2024009949A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140017800A (en) * 2012-08-01 2014-02-12 대우조선해양 주식회사 Unloading system for carbon dioxide carrier
JP2021176728A (en) * 2020-05-08 2021-11-11 三菱造船株式会社 Ship
JP2022036417A (en) * 2020-08-24 2022-03-08 三菱造船株式会社 Tank system and vessel
JP2022073892A (en) * 2020-10-30 2022-05-17 三菱造船株式会社 Floating body

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20140017800A (en) * 2012-08-01 2014-02-12 대우조선해양 주식회사 Unloading system for carbon dioxide carrier
JP2021176728A (en) * 2020-05-08 2021-11-11 三菱造船株式会社 Ship
JP2022036417A (en) * 2020-08-24 2022-03-08 三菱造船株式会社 Tank system and vessel
JP2022073892A (en) * 2020-10-30 2022-05-17 三菱造船株式会社 Floating body

Also Published As

Publication number Publication date
JP2024007094A (en) 2024-01-18

Similar Documents

Publication Publication Date Title
US10584830B2 (en) Apparatus, system and method for the capture, utilization and sendout of latent heat in boil off gas onboard a cryogenic storage vessel
JP5752804B2 (en) Fuel supply system and method of operating fuel supply system
JP6982439B2 (en) Ship
KR102189715B1 (en) Fuel supply system
JP7429155B2 (en) ship
KR101505796B1 (en) Venting apparatus for engine and fuel gas supply system in ships
KR101571417B1 (en) Venting apparatus for ships
KR102338967B1 (en) floating body
WO2024009949A1 (en) Float and gas pressure control method
KR101584566B1 (en) Gas filling system and method for lng storage tank
JP2018177013A (en) Ship
JP2018103954A (en) Ship
JP6959804B2 (en) Vessel and LPG temperature / pressure control method
KR20190068875A (en) Liquefied Gas Regasification System and Method of a Ship
WO2019049790A1 (en) Ship
KR101751857B1 (en) BOG Treatment Method for Vessel
JP2024503496A (en) Gas supply systems for high-pressure and low-pressure gas consumers
JP6722074B2 (en) Ship
JP6959805B2 (en) Ship
KR102561802B1 (en) High pressure pump system and vessel including the same, and control method of high pressure pump system
JP2018103955A (en) Ship
WO2024018768A1 (en) Floating structure
WO2023079638A1 (en) Ship
KR102384713B1 (en) System and method for treating boil-off gas of ship
JP2018048607A (en) Vessel

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835481

Country of ref document: EP

Kind code of ref document: A1