WO2024009872A1 - Load drive circuit - Google Patents

Load drive circuit Download PDF

Info

Publication number
WO2024009872A1
WO2024009872A1 PCT/JP2023/024050 JP2023024050W WO2024009872A1 WO 2024009872 A1 WO2024009872 A1 WO 2024009872A1 JP 2023024050 W JP2023024050 W JP 2023024050W WO 2024009872 A1 WO2024009872 A1 WO 2024009872A1
Authority
WO
WIPO (PCT)
Prior art keywords
drive circuit
pmos transistor
load drive
load
nmos transistor
Prior art date
Application number
PCT/JP2023/024050
Other languages
French (fr)
Japanese (ja)
Inventor
望 古謝
晃裕 小野
Original Assignee
ローム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ローム株式会社 filed Critical ローム株式会社
Publication of WO2024009872A1 publication Critical patent/WO2024009872A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0175Coupling arrangements; Interface arrangements
    • H03K19/0185Coupling arrangements; Interface arrangements using field effect transistors only

Definitions

  • the present disclosure relates to a load drive circuit that drives an externally attached load circuit.
  • An open drain circuit is used as a load drive circuit that drives a load externally attached to a semiconductor integrated circuit (external load).
  • the open drain circuit includes a MOS transistor. When the gate-source voltage of the MOS transistor is zero, the MOS transistor is off and the power supply path for the external load is cut off. When a drive voltage exceeding a threshold voltage is applied to the gate-source voltage of the MOS transistor, the MOS transistor is turned on and the power supply path for the external load is made conductive.
  • the load will malfunction.
  • the present disclosure has been made in such a situation, and one exemplary objective of a certain aspect thereof is to provide a load drive circuit that can suppress malfunction of a load.
  • a certain aspect of the present disclosure relates to a load drive circuit.
  • the load drive circuit includes a power supply terminal, a ground terminal, a first output terminal to which one end of the external load is to be connected, a second output terminal to which the other end of the external load is to be connected, a power supply terminal and the first output.
  • a PMOS transistor connected between the terminals, an NMOS transistor connected between the second output terminal and the ground terminal, and a controller that controls turning on and off of the PMOS transistor and the NMOS transistor according to a control signal. Be prepared.
  • FIG. 1 is a circuit diagram of a load drive circuit according to comparative technique 1.
  • FIG. 2 is a time chart illustrating the operation of the load drive circuit of FIG. 1 at startup.
  • FIG. 3 is a circuit diagram of a load drive circuit according to comparative technique 2.
  • FIG. 4 is a diagram illustrating an abnormal state of the load drive circuit of FIG. 3.
  • FIG. 5 is a circuit diagram of the load drive circuit according to the embodiment.
  • FIG. 6 is an equivalent circuit diagram of the load drive circuit in an abnormal state where the second output terminal is shorted to the ground line.
  • FIG. 7 is an equivalent circuit diagram of the load drive circuit in an abnormal state where the first output terminal is shorted to the power supply line.
  • FIG. 8 is a time chart illustrating the operation of the load drive circuit at startup.
  • FIG. 9 is a circuit diagram showing a configuration example of a controller of a load drive circuit.
  • FIG. 10 is a circuit diagram showing another configuration example of the controller of the load drive circuit.
  • the load driving circuit includes a power supply terminal, a ground terminal, a first output terminal to which one end of the external load is to be connected, a second output terminal to which the other end of the external load is to be connected, and a power supply terminal.
  • a PMOS transistor connected between the terminal and the first output terminal, an NMOS transistor connected between the second output terminal and the ground terminal, and turning on and off of the PMOS transistor and the NMOS transistor according to the control signal is controlled. and a controller.
  • the controller may first turn on the NMOS transistor and then turn on the PMOS transistor in response to assertion of the control signal.
  • the controller may turn on the NMOS transistor and the PMOS transistor simultaneously in response to assertion of the control signal.
  • the controller may include a first driver with a push-pull configuration that drives a PMOS transistor, and a second driver with a push-pull configuration that drives an NMOS transistor.
  • the controller may include a first driver that drives a PMOS transistor and a second driver that drives an NMOS transistor.
  • the external load may be a fuse.
  • the external load may be a resistor
  • the external load may be a light emitting device.
  • the external load may be a one-time programmable (OTP) memory cell.
  • OTP one-time programmable
  • a state in which member A is connected to member B refers to not only a case where member A and member B are physically directly connected, but also a state in which member A and member B are electrically connected. This also includes cases in which they are indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects achieved by their combination.
  • a state in which member C is connected (provided) between member A and member B refers to a state in which member A and member C or member B and member C are directly connected. In addition, it also includes cases where they are indirectly connected via other members that do not substantially affect their electrical connection state or impair the functions and effects achieved by their combination.
  • FIG. 1 is a circuit diagram of a load drive circuit 10 according to comparative technique 1.
  • the load drive circuit 10 supplies the drive current IDRV to the external load 2 when the control signal EN is asserted (on level).
  • the load drive circuit 10 is an open drain circuit including a PMOS transistor MP1.
  • a power supply voltage V DD is supplied to a power supply terminal V DD of the load drive circuit 10 .
  • External load 2 is connected between output terminal OUT and ground.
  • the external load 2 is shown by a simple resistance symbol, but its type is not particularly limited, and examples thereof include a fuse, a light emitting element, an OTP memory cell, and the like.
  • the PMOS transistor MP1 is connected between the power supply terminal VDD and the output terminal OUT.
  • a resistor R1 is connected between the gate and source of the PMOS transistor MP1.
  • Capacitor C1 represents the gate capacitance of PMOS transistor MP1.
  • the driver 12 drives the PMOS transistor MP1 according to the control signal EN. Specifically, when the control signal EN is asserted (eg, high), the driver 12 applies a low voltage to the gate of the PMOS transistor MP1 to turn on the PMOS transistor MP1. When the control signal EN is negated (for example, low), the driver 12 applies a high voltage to the gate of the PMOS transistor MP1 to turn off the PMOS transistor MP1.
  • FIG. 2 is a time chart illustrating the operation of the load drive circuit 10 of FIG. 1 at startup.
  • Control signal EN is negated (low).
  • the source voltage VDD of the PMOS transistor MP1 also rises. Since the gate of the PMOS transistor MP1 is pulled up by the resistor R1, when the power supply voltage VCC rises, the gate voltage VG of the PMOS transistor MP1 also rises accordingly.
  • the PMOS transistor MP1 is bypassed and current flows to the external load 2.
  • FIG. 3 is a circuit diagram of the load drive circuit 20 according to Comparative Technique 2.
  • the load drive circuit 20 is an open drain circuit including an NMOS transistor MP1, and includes an NMOS transistor MN1 and a driver 22.
  • the source of the NMOS transistor MN1 is connected to the ground terminal GND, and the drain thereof is connected to the output terminal OUT.
  • External load 2 is connected between output terminal OUT and power supply line VCC .
  • the driver 22 drives the NMOS transistor MN1 according to the control signal EN. Specifically, when the control signal EN is asserted (eg, high), the driver 22 applies a high voltage to the gate of the NMOS transistor MN1 to turn on the NMOS transistor MN1. When the control signal EN is negated (for example, low), the driver 22 applies a low voltage to the gate of the NMOS transistor MN1 to turn off the NMOS transistor MN1.
  • FIG. 4 is a diagram illustrating an abnormal state of the load drive circuit 20 of FIG. 3. Specifically, an abnormality has occurred in which the output terminal OUT is shorted to the ground line. In this case, even if the NMOS transistor MN1 is off, the current ILEAK flows to the external load 2 via the short path P1. As a result, the external load 2 malfunctions.
  • FIG. 5 is a circuit diagram of the load drive circuit 100 according to the embodiment.
  • the load drive circuit 100 has a power supply terminal VDD, a first output terminal OUT1, a second output terminal OUT2, and a ground terminal GND.
  • Power supply terminal VDD is connected to a power supply line and supplied with power supply voltage VCC .
  • the ground terminal GND is grounded.
  • External load 2 is connected between first output terminal OUT1 and second output terminal OUT2.
  • the load drive circuit 100 includes a PMOS transistor MP1, an NMOS transistor MN1, and a controller 110.
  • the source of the PMOS transistor MP1 is connected to the power supply terminal VDD, and the drain of the PMOS transistor MP1 is connected to the first output terminal OUT1.
  • the gate of PMOS transistor MP1 is pulled up by resistor R1.
  • the drain of the NMOS transistor MN1 is connected to the second output terminal OUT2, and the source of the NMOS transistor MN1 is connected to the ground terminal GND.
  • the gate of NMOS transistor MN1 is pulled down by resistor R2.
  • Controller 110 controls turning on and off of PMOS transistor MP1 and NMOS transistor MN1 according to control signal EN. Specifically, when the control signal EN is asserted (eg, high), the controller 110 applies a low voltage (eg, 0V) to the gate of the PMOS transistor MP1, and applies a high voltage (eg, power supply voltage V) to the gate of the NMOS transistor MN1. DD ) is applied to turn on both the PMOS transistor MP1 and the NMOS transistor MN1.
  • the controller 110 applies a high voltage (V DD ) to the gate of the PMOS transistor MP1, a low voltage (0V) to the gate of the NMOS transistor MN1, and Both transistor MP1 and NMOS transistor MN1 are turned off.
  • the controller 110 includes a first driver DR1, a second driver DR2, and a logic circuit 112.
  • FIG. 6 is an equivalent circuit diagram of the load drive circuit 100 in an abnormal state where the second output terminal OUT2 is shorted to the ground line.
  • the control signal EN is negated, and both the PMOS transistor MP1 and the NMOS transistor MN1 are in an off state.
  • the NMOS transistor MN1 When the second output terminal OUT2 is connected to the ground line via the path P1, the NMOS transistor MN1 is bypassed, but at this time, the PMOS transistor MP1 remains off, so the external load 2 separated from the line. Therefore, according to the load drive circuit 100, it is possible to prevent the external load 2 from malfunctioning when the second output terminal OUT2 is grounded.
  • FIG. 7 is an equivalent circuit diagram of the load drive circuit 100 in an abnormal state where the first output terminal OUT1 is shorted to the power supply line.
  • the control signal EN is negated, and both the PMOS transistor MP1 and the NMOS transistor MN1 are in an off state.
  • the PMOS transistor MP1 When the first output terminal OUT1 is connected to the power supply line via the path P2, the PMOS transistor MP1 is bypassed, but at this time, the off state of the NMOS transistor MN1 is maintained, so the external load 2 is connected to the ground. separated from the line. Therefore, according to the load drive circuit 100, it is possible to prevent the external load 2 from malfunctioning when the first output terminal OUT1 is shorted to power.
  • FIG. 8 is a time chart illustrating the operation of the load drive circuit 100 at startup.
  • Control signal EN is negated (low).
  • the source voltage VDD of the PMOS transistor MP1 also rises. Since the gate of the PMOS transistor MP1 is pulled up by the resistor R1, when the power supply voltage VCC rises, the gate voltage VG of the PMOS transistor MP1 also rises accordingly.
  • NMOS transistor MN1 when the power supply voltage V CC rises, the gate of the NMOS transistor MN1 maintains 0V because it is not affected by fluctuations in the power supply voltage V CC . Therefore, NMOS transistor MN1 can maintain an off state. Thereby, leakage current ILEAK can be prevented from flowing into the external load 2, and malfunction of the external load 2 can be prevented.
  • FIG. 9 is a circuit diagram showing a configuration example (110A) of the controller 110 of the load drive circuit 100.
  • the first driver DR1 and the second driver DR2 of the controller 110A are CMOS inverters having a push-pull configuration.
  • the control signal EN is supplied to the first driver DR1 in its original logic, and the control signal ⁇ EN inverted by the inverter 114 is supplied to the second driver DR2.
  • the PMOS transistor of the first driver DR1 may be omitted.
  • the NMOS transistor of the second driver DR2 may be omitted.
  • FIG. 10 is a circuit diagram showing another configuration example (110B) of the controller 110 of the load drive circuit 100.
  • the first driver DR1 and second driver DR2 of the controller 110B are composed of current sources CS1 and CS2.
  • the control signal EN is supplied to the current sources CS1 and CS2 with its logic unchanged. In other words, the logic circuit 112 is just a wire.
  • the respective gate voltages of the PMOS transistor MP1 and the NMOS transistor MN1 begin to change simultaneously, and can be turned on substantially simultaneously.
  • the controller 110 may turn on the PMOS transistor MP1 and the NMOS transistor MN1 with a time difference. Specifically, in response to the assertion of the control signal EN, the controller 110 first increases the gate voltage V G1 of the NMOS transistor MN1 to turn it on, and then decreases the gate voltage V G2 of the PMOS transistor MP1. You can also turn it on.
  • a load drive circuit comprising:
  • the controller includes: a first driver with a push-pull configuration that drives the PMOS transistor; a second driver with a push-pull configuration that drives the NMOS transistor;
  • the load drive circuit according to any one of items 1 to 3, comprising:
  • the controller includes: a first driver that drives the PMOS transistor; a second driver that drives the NMOS transistor;
  • the load drive circuit according to any one of items 1 to 3, comprising:
  • the present disclosure relates to a load drive circuit that drives an externally attached load circuit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Electronic Switches (AREA)

Abstract

One end of an external load 2 is connected to a first output terminal OUT1, and the other end of the external load 2 is connected to a second output terminal OUT2. A PMOS transistor MP1 is connected between a power terminal VDD and the first output terminal OUT1, and an NMOS transistor MN1 is connected between a ground terminal GND and the second output terminal OUT2. A controller 110 performs ON/OFF control of the PMOS transistor MP1 and the NMOS transistor MN1 according to a control signal EN.

Description

負荷駆動回路load drive circuit
 本開示は、外付けされる負荷回路を駆動する負荷駆動回路に関する。 The present disclosure relates to a load drive circuit that drives an externally attached load circuit.
 半導体集積回路に外付けされる負荷(外部負荷)を駆動する負荷駆動回路として、オープンドレイン回路が利用される。オープンドレイン回路は、MOSトランジスタを含む。MOSトランジスタのゲートソース間電圧がゼロであるとき、MOSトランジスタはオフであり、外部負荷の給電経路が遮断される。MOSトランジスタのゲートソース間電圧にしきい値電圧を超える駆動電圧が印加されると、MOSトランジスタはオンとなり、外部負荷の給電経路が導通する。 An open drain circuit is used as a load drive circuit that drives a load externally attached to a semiconductor integrated circuit (external load). The open drain circuit includes a MOS transistor. When the gate-source voltage of the MOS transistor is zero, the MOS transistor is off and the power supply path for the external load is cut off. When a drive voltage exceeding a threshold voltage is applied to the gate-source voltage of the MOS transistor, the MOS transistor is turned on and the power supply path for the external load is made conductive.
特許7082902号公報Patent No. 7082902
 このような負荷駆動回路において、電源電圧の急峻な変動によって、MOSトランジスタのゲートソース間にしきい値電圧を超える電圧が発生すると、負荷が誤動作する。 In such a load drive circuit, if a voltage exceeding a threshold voltage is generated between the gate and source of the MOS transistor due to a sudden change in the power supply voltage, the load will malfunction.
 あるいは、MOSトランジスタのドレイン端子が、電源ラインあるいは接地ラインに対してショート(地絡)すると、負荷が誤動作する。 Alternatively, if the drain terminal of the MOS transistor is short-circuited (ground fault) to the power supply line or the ground line, the load will malfunction.
 本開示は係る状況においてなされたものであり、そのある態様の例示的な目的のひとつは、負荷の誤動作を抑制可能な負荷駆動回路の提供にある。 The present disclosure has been made in such a situation, and one exemplary objective of a certain aspect thereof is to provide a load drive circuit that can suppress malfunction of a load.
 本開示のある態様は、負荷駆動回路に関する。負荷駆動回路は、電源端子と、接地端子と、外部負荷の一端が接続されるべき第1出力端子と、外部負荷の他端が接続されるべき第2出力端子と、電源端子と第1出力端子の間に接続されたPMOSトランジスタと、第2出力端子と接地端子の間に接続されたNMOSトランジスタと、制御信号に応じて、PMOSトランジスタおよびNMOSトランジスタのオン、オフを制御するコントローラと、を備える。 A certain aspect of the present disclosure relates to a load drive circuit. The load drive circuit includes a power supply terminal, a ground terminal, a first output terminal to which one end of the external load is to be connected, a second output terminal to which the other end of the external load is to be connected, a power supply terminal and the first output. A PMOS transistor connected between the terminals, an NMOS transistor connected between the second output terminal and the ground terminal, and a controller that controls turning on and off of the PMOS transistor and the NMOS transistor according to a control signal. Be prepared.
 なお、以上の構成要素を任意に組み合わせたもの、構成要素や表現を、方法、装置、システムなどの間で相互に置換したものもまた、本発明あるいは本開示の態様として有効である。さらに、この項目(課題を解決するための手段)の記載は、本発明の欠くべからざるすべての特徴を説明するものではなく、したがって、記載されるこれらの特徴のサブコンビネーションも、本発明たり得る。 Note that arbitrary combinations of the above components, and mutual substitution of components and expressions among methods, devices, systems, etc., are also effective as aspects of the present invention or the present disclosure. Furthermore, the description in this section (Means for Solving the Problems) does not describe all essential features of the present invention, and therefore, subcombinations of the described features may also constitute the present invention. .
 本開示のある態様によれば、負荷の誤動作を抑制できる。 According to an aspect of the present disclosure, malfunction of the load can be suppressed.
図1は、比較技術1に係る負荷駆動回路の回路図である。FIG. 1 is a circuit diagram of a load drive circuit according to comparative technique 1. 図2は、図1の負荷駆動回路の起動時の動作を説明するタイムチャートである。FIG. 2 is a time chart illustrating the operation of the load drive circuit of FIG. 1 at startup. 図3は、比較技術2に係る負荷駆動回路の回路図である。FIG. 3 is a circuit diagram of a load drive circuit according to comparative technique 2. 図4は、図3の負荷駆動回路の異常状態を説明する図である。FIG. 4 is a diagram illustrating an abnormal state of the load drive circuit of FIG. 3. 図5は、実施形態に係る負荷駆動回路の回路図である。FIG. 5 is a circuit diagram of the load drive circuit according to the embodiment. 図6は、第2出力端子が接地ラインとショートした異常状態における負荷駆動回路の等価回路図である。FIG. 6 is an equivalent circuit diagram of the load drive circuit in an abnormal state where the second output terminal is shorted to the ground line. 図7は、第1出力端子が電源ラインとショートした異常状態における負荷駆動回路の等価回路図である。FIG. 7 is an equivalent circuit diagram of the load drive circuit in an abnormal state where the first output terminal is shorted to the power supply line. 図8は、負荷駆動回路の起動時の動作を説明するタイムチャートである。FIG. 8 is a time chart illustrating the operation of the load drive circuit at startup. 図9は、負荷駆動回路のコントローラの構成例を示す回路図である。FIG. 9 is a circuit diagram showing a configuration example of a controller of a load drive circuit. 図10は、負荷駆動回路のコントローラの別の構成例を示す回路図である。FIG. 10 is a circuit diagram showing another configuration example of the controller of the load drive circuit.
(実施形態の概要)
 本開示のいくつかの例示的な実施形態の概要を説明する。この概要は、後述する詳細な説明の前置きとして、実施形態の基本的な理解を目的として、1つまたは複数の実施形態のいくつかの概念を簡略化して説明するものであり、発明あるいは開示の広さを限定するものではない。この概要は、考えられるすべての実施形態の包括的な概要ではなく、すべての実施形態の重要な要素を特定することも、一部またはすべての態様の範囲を線引きすることも意図していない。便宜上、「一実施形態」は、本明細書に開示するひとつの実施形態(実施例や変形例)または複数の実施形態(実施例や変形例)を指すものとして用いる場合がある。
(Summary of embodiment)
1 provides an overview of some exemplary embodiments of the present disclosure. This Summary is intended to provide a simplified description of some concepts of one or more embodiments in order to provide a basic understanding of the embodiments and as a prelude to the more detailed description that is presented later. It does not limit the size. This summary is not a comprehensive overview of all possible embodiments and does not intend to identify key elements of all embodiments or to delineate the scope of any or all aspects. For convenience, "one embodiment" may be used to refer to one embodiment (example or modification) or multiple embodiments (examples or modifications) disclosed in this specification.
 一実施形態に係る負荷駆動回路は、電源端子と、接地端子と、外部負荷の一端が接続されるべき第1出力端子と、外部負荷の他端が接続されるべき第2出力端子と、電源端子と第1出力端子の間に接続されたPMOSトランジスタと、第2出力端子と接地端子の間に接続されたNMOSトランジスタと、制御信号に応じて、PMOSトランジスタおよびNMOSトランジスタのオン、オフを制御するコントローラと、を備える。 The load driving circuit according to one embodiment includes a power supply terminal, a ground terminal, a first output terminal to which one end of the external load is to be connected, a second output terminal to which the other end of the external load is to be connected, and a power supply terminal. A PMOS transistor connected between the terminal and the first output terminal, an NMOS transistor connected between the second output terminal and the ground terminal, and turning on and off of the PMOS transistor and the NMOS transistor according to the control signal is controlled. and a controller.
 この構成によると、制御信号がオフレベルであるときに、第1出力端子が電源ラインとショート(天絡)し、PMOSトランジスタがバイパスされたとしても、NMOSトランジスタによって電流が遮断されるため、外部負荷が誤動作するのを防止できる。また制御信号がオフレベルであるときに、第2出力端子が接地ラインとショート(地絡)し、NMOSトランジスタがバイパスされたとしても、PMOSトランジスタによって電流が遮断されるため、外部負荷が誤動作するのを防止できる。またシステムの起動時に、電源ラインの電圧が上昇する際に、PMOSトランジスタのゲート電圧の上昇が遅れて、PMOSトランジスタが一時的にオン状態となったとしても、NMOSトランジスタによって電流が遮断されるため、外部負荷が誤動作するのを防止できる。 According to this configuration, even if the first output terminal is short-circuited to the power supply line and the PMOS transistor is bypassed when the control signal is at the off level, the current is cut off by the NMOS transistor, so the external It can prevent the load from malfunctioning. Furthermore, even if the second output terminal is shorted to the ground line (ground fault) and the NMOS transistor is bypassed when the control signal is at the off level, the current is cut off by the PMOS transistor, causing the external load to malfunction. can be prevented. Furthermore, when the voltage on the power supply line increases at system startup, even if the gate voltage of the PMOS transistor is delayed and the PMOS transistor is temporarily turned on, the current is cut off by the NMOS transistor. , it is possible to prevent external loads from malfunctioning.
 一実施形態において、コントローラは、制御信号のアサートに応答して、NMOSトランジスタを先行してオンし、続いてPMOSトランジスタをオンしてもよい。 In one embodiment, the controller may first turn on the NMOS transistor and then turn on the PMOS transistor in response to assertion of the control signal.
 一実施形態において、コントローラは、制御信号のアサートに応答して、NMOSトランジスタとPMOSトランジスタを同時にオンしてもよい。 In one embodiment, the controller may turn on the NMOS transistor and the PMOS transistor simultaneously in response to assertion of the control signal.
 一実施形態において、コントローラは、PMOSトランジスタを駆動するプッシュプル構成の第1ドライバと、NMOSトランジスタを駆動するプッシュプル構成の第2ドライバと、を含んでもよい。 In one embodiment, the controller may include a first driver with a push-pull configuration that drives a PMOS transistor, and a second driver with a push-pull configuration that drives an NMOS transistor.
 一実施形態において、コントローラは、PMOSトランジスタを駆動する第1ドライバと、NMOSトランジスタを駆動する第2ドライバと、を含んでもよい。 In one embodiment, the controller may include a first driver that drives a PMOS transistor and a second driver that drives an NMOS transistor.
 一実施形態において、外部負荷はヒューズであってもよい。 In one embodiment, the external load may be a fuse.
 一実施形態において、外部負荷は抵抗であってもよい。 In one embodiment, the external load may be a resistor.
 一実施形態において、外部負荷は発光素子であってもよい。 In one embodiment, the external load may be a light emitting device.
 一実施形態において、外部負荷はOTP(One-Time Programmable)メモリのセルであってもよい。 In one embodiment, the external load may be a one-time programmable (OTP) memory cell.
(実施形態)
 以下、好適な実施形態について、図面を参照しながら説明する。各図面に示される同一または同等の構成要素、部材、処理には、同一の符号を付するものとし、適宜重複した説明は省略する。また、実施形態は、開示および発明を限定するものではなく例示であって、実施形態に記述されるすべての特徴やその組み合わせは、必ずしも開示および発明の本質的なものであるとは限らない。
(Embodiment)
Hereinafter, preferred embodiments will be described with reference to the drawings. Identical or equivalent components, members, and processes shown in each drawing are designated by the same reference numerals, and redundant explanations will be omitted as appropriate. Furthermore, the embodiments are illustrative rather than limiting the disclosure and invention, and all features and combinations thereof described in the embodiments are not necessarily essential to the disclosure and invention.
 本明細書において、「部材Aが、部材Bと接続された状態」とは、部材Aと部材Bが物理的に直接的に接続される場合のほか、部材Aと部材Bが、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 In this specification, "a state in which member A is connected to member B" refers to not only a case where member A and member B are physically directly connected, but also a state in which member A and member B are electrically connected. This also includes cases in which they are indirectly connected via other members that do not substantially affect the connection state or impair the functions and effects achieved by their combination.
 同様に、「部材Cが、部材Aと部材Bの間に接続された(設けられた)状態」とは、部材Aと部材C、あるいは部材Bと部材Cが直接的に接続される場合のほか、それらの電気的な接続状態に実質的な影響を及ぼさない、あるいはそれらの結合により奏される機能や効果を損なわせない、その他の部材を介して間接的に接続される場合も含む。 Similarly, "a state in which member C is connected (provided) between member A and member B" refers to a state in which member A and member C or member B and member C are directly connected. In addition, it also includes cases where they are indirectly connected via other members that do not substantially affect their electrical connection state or impair the functions and effects achieved by their combination.
 実施形態に係る負荷駆動回路を説明する前に、本発明者が検討した比較技術に係る負荷駆動回路について説明する。 Before explaining the load drive circuit according to the embodiment, a load drive circuit according to a comparative technique studied by the present inventor will be explained.
(比較技術1)
 図1は、比較技術1に係る負荷駆動回路10の回路図である。負荷駆動回路10は、制御信号ENがアサート(オンレベル)であるとき、外部負荷2に駆動電流IDRVを供給する。負荷駆動回路10は、PMOSトランジスタMP1を含むオープンドレイン回路である。負荷駆動回路10の電源端子VDDには電源電圧VDDが供給される。外部負荷2は、出力端子OUTと接地の間に接続される。図1では、外部負荷2を、簡単な抵抗のシンボルで示しているが、その種類は特に限定されず、ヒューズ、発光素子、OTPメモリのセルなどが例示される。
(Comparative technology 1)
FIG. 1 is a circuit diagram of a load drive circuit 10 according to comparative technique 1. The load drive circuit 10 supplies the drive current IDRV to the external load 2 when the control signal EN is asserted (on level). The load drive circuit 10 is an open drain circuit including a PMOS transistor MP1. A power supply voltage V DD is supplied to a power supply terminal V DD of the load drive circuit 10 . External load 2 is connected between output terminal OUT and ground. In FIG. 1, the external load 2 is shown by a simple resistance symbol, but its type is not particularly limited, and examples thereof include a fuse, a light emitting element, an OTP memory cell, and the like.
 PMOSトランジスタMP1は、電源端子VDDと出力端子OUTの間に接続される。PMOSトランジスタMP1のゲートソース間には、抵抗R1が接続される。キャパシタC1は、PMOSトランジスタMP1のゲート容量を表す。 The PMOS transistor MP1 is connected between the power supply terminal VDD and the output terminal OUT. A resistor R1 is connected between the gate and source of the PMOS transistor MP1. Capacitor C1 represents the gate capacitance of PMOS transistor MP1.
 ドライバ12は、制御信号ENに応じて、PMOSトランジスタMP1を駆動する。具体的には、ドライバ12は、制御信号ENがアサート(たとえばハイ)のとき、PMOSトランジスタMP1のゲートに、ロー電圧を印加し、PMOSトランジスタMP1をオンする。ドライバ12は、制御信号ENがネゲート(たとえばロー)のとき、PMOSトランジスタMP1のゲートに、ハイ電圧を印加し、PMOSトランジスタMP1をオフする。 The driver 12 drives the PMOS transistor MP1 according to the control signal EN. Specifically, when the control signal EN is asserted (eg, high), the driver 12 applies a low voltage to the gate of the PMOS transistor MP1 to turn on the PMOS transistor MP1. When the control signal EN is negated (for example, low), the driver 12 applies a high voltage to the gate of the PMOS transistor MP1 to turn off the PMOS transistor MP1.
 図1の負荷駆動回路10において生ずる問題を説明する。 A problem that occurs in the load drive circuit 10 of FIG. 1 will be explained.
 図2は、図1の負荷駆動回路10の起動時の動作を説明するタイムチャートである。制御信号ENは、ネゲート(ロー)である。時刻tに、電源電圧VCCが上昇すると、PMOSトランジスタMP1のソース電圧VDDも上昇する。PMOSトランジスタMP1のゲートは、抵抗R1によってプルアップされているため、電源電圧VCCが上昇すると、それに追従して、PMOSトランジスタMP1のゲート電圧Vも上昇する。 FIG. 2 is a time chart illustrating the operation of the load drive circuit 10 of FIG. 1 at startup. Control signal EN is negated (low). At time t1 , when the power supply voltage VCC rises, the source voltage VDD of the PMOS transistor MP1 also rises. Since the gate of the PMOS transistor MP1 is pulled up by the resistor R1, when the power supply voltage VCC rises, the gate voltage VG of the PMOS transistor MP1 also rises accordingly.
 電源電圧VCCの上昇が急峻である場合、PMOSトランジスタMP1のゲート容量の影響によってゲート電圧Vの上昇は、ソース電圧VDDの上昇に対して遅れる。その結果、PMOSトランジスタMP1のゲートソース間電圧VGSが、起動直後、大きくなる。ゲートソース間電圧VGSが、MOSFETのしきい値電圧VTHを超える期間t~t、制御信号ENがネゲートであるにもかかわらず、PMOSトランジスタMP1が導通し、リーク電流ILEAKが流れてしまう。その結果、外部負荷2が誤動作する。 When the power supply voltage V CC rises steeply, the rise of the gate voltage V G lags behind the rise of the source voltage V DD due to the influence of the gate capacitance of the PMOS transistor MP1. As a result, the gate-source voltage VGS of the PMOS transistor MP1 increases immediately after startup. During the period t 2 to t 3 in which the gate-source voltage V GS exceeds the threshold voltage V TH of the MOSFET, the PMOS transistor MP1 conducts even though the control signal EN is negated, and the leakage current I LEAK flows. I end up. As a result, the external load 2 malfunctions.
 また、電源電圧VCCが立ち上がった後、出力端子OUTが、電源ラインに対してショートすると、PMOSトランジスタMP1がバイパスされて、外部負荷2に電流が流れてしまう。 Furthermore, if the output terminal OUT is short-circuited to the power supply line after the power supply voltage VCC rises, the PMOS transistor MP1 is bypassed and current flows to the external load 2.
(比較技術2)
 図3は、比較技術2に係る負荷駆動回路20の回路図である。負荷駆動回路20は、NMOSトランジスタMP1を含むオープンドレイン回路であり、NMOSトランジスタMN1およびドライバ22を備える。NMOSトランジスタMN1のソースは、接地端子GNDと接続され、そのドレインは、出力端子OUTと接続される。外部負荷2は、出力端子OUTと電源ラインVCCの間に接続される。
(Comparative technology 2)
FIG. 3 is a circuit diagram of the load drive circuit 20 according to Comparative Technique 2. The load drive circuit 20 is an open drain circuit including an NMOS transistor MP1, and includes an NMOS transistor MN1 and a driver 22. The source of the NMOS transistor MN1 is connected to the ground terminal GND, and the drain thereof is connected to the output terminal OUT. External load 2 is connected between output terminal OUT and power supply line VCC .
 ドライバ22は、制御信号ENに応じて、NMOSトランジスタMN1を駆動する。具体的には、ドライバ22は、制御信号ENがアサート(たとえばハイ)のとき、NMOSトランジスタMN1のゲートに、ハイ電圧を印加し、NMOSトランジスタMN1をオンする。ドライバ22は、制御信号ENがネゲート(たとえばロー)のとき、NMOSトランジスタMN1のゲートに、ロー電圧を印加し、NMOSトランジスタMN1をオフする。 The driver 22 drives the NMOS transistor MN1 according to the control signal EN. Specifically, when the control signal EN is asserted (eg, high), the driver 22 applies a high voltage to the gate of the NMOS transistor MN1 to turn on the NMOS transistor MN1. When the control signal EN is negated (for example, low), the driver 22 applies a low voltage to the gate of the NMOS transistor MN1 to turn off the NMOS transistor MN1.
 図3の負荷駆動回路20において生ずる問題を説明する。 A problem that occurs in the load drive circuit 20 of FIG. 3 will be explained.
 図4は、図3の負荷駆動回路20の異常状態を説明する図である。具体的には、出力端子OUTが接地ラインとショートする異常が生じている。この場合、NMOSトランジスタMN1がオフしていても、ショート経路P1を介して、外部負荷2に電流ILEAKが流れてしまう。その結果、外部負荷2が誤動作する。 FIG. 4 is a diagram illustrating an abnormal state of the load drive circuit 20 of FIG. 3. Specifically, an abnormality has occurred in which the output terminal OUT is shorted to the ground line. In this case, even if the NMOS transistor MN1 is off, the current ILEAK flows to the external load 2 via the short path P1. As a result, the external load 2 malfunctions.
 続いて、実施形態に係る負荷駆動回路100について説明する。 Next, the load drive circuit 100 according to the embodiment will be explained.
 図5は、実施形態に係る負荷駆動回路100の回路図である。負荷駆動回路100は、電源端子VDD、第1出力端子OUT1、第2出力端子OUT2、接地端子GNDを有する。電源端子VDDは、電源ラインと接続され、電源電圧VCCが供給される。接地端子GNDは、接地される。外部負荷2は、第1出力端子OUT1と第2出力端子OUT2の間に接続される。 FIG. 5 is a circuit diagram of the load drive circuit 100 according to the embodiment. The load drive circuit 100 has a power supply terminal VDD, a first output terminal OUT1, a second output terminal OUT2, and a ground terminal GND. Power supply terminal VDD is connected to a power supply line and supplied with power supply voltage VCC . The ground terminal GND is grounded. External load 2 is connected between first output terminal OUT1 and second output terminal OUT2.
 負荷駆動回路100は、PMOSトランジスタMP1、NMOSトランジスタMN1およびコントローラ110を備える。PMOSトランジスタMP1のソースは、電源端子VDDと接続され、PMOSトランジスタMP1のドレインは、第1出力端子OUT1と接続される。PMOSトランジスタMP1のゲートは、抵抗R1によってプルアップされている。 The load drive circuit 100 includes a PMOS transistor MP1, an NMOS transistor MN1, and a controller 110. The source of the PMOS transistor MP1 is connected to the power supply terminal VDD, and the drain of the PMOS transistor MP1 is connected to the first output terminal OUT1. The gate of PMOS transistor MP1 is pulled up by resistor R1.
 NMOSトランジスタMN1のドレインは、第2出力端子OUT2と接続され、NMOSトランジスタMN1のソースは、接地端子GNDと接続される。NMOSトランジスタMN1のゲートは、抵抗R2によってプルダウンされている。 The drain of the NMOS transistor MN1 is connected to the second output terminal OUT2, and the source of the NMOS transistor MN1 is connected to the ground terminal GND. The gate of NMOS transistor MN1 is pulled down by resistor R2.
 コントローラ110は、制御信号ENに応じて、PMOSトランジスタMP1およびNMOSトランジスタMN1のオン、オフを制御する。具体的には、制御信号ENがアサート(たとえばハイ)のとき、コントローラ110は、PMOSトランジスタMP1のゲートにロー電圧(たとえば0V)を印加し、NMOSトランジスタMN1のゲートにハイ電圧(たとえば電源電圧VDD)を印加し、PMOSトランジスタMP1、NMOSトランジスタMN1を両方、オン状態とする。 Controller 110 controls turning on and off of PMOS transistor MP1 and NMOS transistor MN1 according to control signal EN. Specifically, when the control signal EN is asserted (eg, high), the controller 110 applies a low voltage (eg, 0V) to the gate of the PMOS transistor MP1, and applies a high voltage (eg, power supply voltage V) to the gate of the NMOS transistor MN1. DD ) is applied to turn on both the PMOS transistor MP1 and the NMOS transistor MN1.
 反対に制御信号ENがネゲート(たとえばロー)のとき、コントローラ110は、PMOSトランジスタMP1のゲートにハイ電圧(VDD)を印加し、NMOSトランジスタMN1のゲートにロー電圧(0V)を印加し、PMOSトランジスタMP1、NMOSトランジスタMN1を両方、オフ状態とする。 Conversely, when the control signal EN is negated (for example, low), the controller 110 applies a high voltage (V DD ) to the gate of the PMOS transistor MP1, a low voltage (0V) to the gate of the NMOS transistor MN1, and Both transistor MP1 and NMOS transistor MN1 are turned off.
 たとえばコントローラ110は、第1ドライバDR1、第2ドライバDR2、ロジック回路112を備える。 For example, the controller 110 includes a first driver DR1, a second driver DR2, and a logic circuit 112.
 以上が負荷駆動回路100の構成である。続いてその動作を説明する。 The above is the configuration of the load drive circuit 100. Next, its operation will be explained.
 図6は、第2出力端子OUT2が接地ラインとショートした異常状態における負荷駆動回路100の等価回路図である。制御信号ENはネゲートであり、PMOSトランジスタMP1、NMOSトランジスタMN1は両方オフ状態である。 FIG. 6 is an equivalent circuit diagram of the load drive circuit 100 in an abnormal state where the second output terminal OUT2 is shorted to the ground line. The control signal EN is negated, and both the PMOS transistor MP1 and the NMOS transistor MN1 are in an off state.
 第2出力端子OUT2が、経路P1を介して接地ラインと接続されると、NMOSトランジスタMN1がバイパスされるが、このとき、PMOSトランジスタMP1のオフ状態は維持されるため、外部負荷2は、電源ラインと切り離される。したがって負荷駆動回路100によれば、第2出力端子OUT2が地絡した場合に、外部負荷2が誤動作するのを防止できる。 When the second output terminal OUT2 is connected to the ground line via the path P1, the NMOS transistor MN1 is bypassed, but at this time, the PMOS transistor MP1 remains off, so the external load 2 separated from the line. Therefore, according to the load drive circuit 100, it is possible to prevent the external load 2 from malfunctioning when the second output terminal OUT2 is grounded.
 図7は、第1出力端子OUT1が電源ラインとショートした異常状態における負荷駆動回路100の等価回路図である。制御信号ENはネゲートであり、PMOSトランジスタMP1、NMOSトランジスタMN1は両方オフ状態である。 FIG. 7 is an equivalent circuit diagram of the load drive circuit 100 in an abnormal state where the first output terminal OUT1 is shorted to the power supply line. The control signal EN is negated, and both the PMOS transistor MP1 and the NMOS transistor MN1 are in an off state.
 第1出力端子OUT1が、経路P2を介して電源ラインと接続されると、PMOSトランジスタMP1がバイパスされるが、このとき、NMOSトランジスタMN1のオフ状態は維持されるため、外部負荷2は、接地ラインと切り離される。したがって負荷駆動回路100によれば、第1出力端子OUT1が天絡した場合に、外部負荷2が誤動作するのを防止できる。 When the first output terminal OUT1 is connected to the power supply line via the path P2, the PMOS transistor MP1 is bypassed, but at this time, the off state of the NMOS transistor MN1 is maintained, so the external load 2 is connected to the ground. separated from the line. Therefore, according to the load drive circuit 100, it is possible to prevent the external load 2 from malfunctioning when the first output terminal OUT1 is shorted to power.
 図8は、負荷駆動回路100の起動時の動作を説明するタイムチャートである。制御信号ENは、ネゲート(ロー)である。時刻tに、電源電圧VCCが上昇すると、PMOSトランジスタMP1のソース電圧VDDも上昇する。PMOSトランジスタMP1のゲートは、抵抗R1によってプルアップされているため、電源電圧VCCが上昇すると、それに追従して、PMOSトランジスタMP1のゲート電圧Vも上昇する。 FIG. 8 is a time chart illustrating the operation of the load drive circuit 100 at startup. Control signal EN is negated (low). At time t1 , when the power supply voltage VCC rises, the source voltage VDD of the PMOS transistor MP1 also rises. Since the gate of the PMOS transistor MP1 is pulled up by the resistor R1, when the power supply voltage VCC rises, the gate voltage VG of the PMOS transistor MP1 also rises accordingly.
 電源電圧VCCの上昇が急峻である場合、PMOSトランジスタMP1のゲート容量の影響によってゲート電圧Vの上昇は、ソース電圧VDDの上昇に対して遅れる。その結果、PMOSトランジスタMP1のゲートソース間電圧VGSが、起動直後、大きくなる。ゲートソース間電圧VGSが、MOSFETのしきい値電圧VTHを超える期間t~t、制御信号ENがネゲートであるにもかかわらず、PMOSトランジスタMP1が導通する。 When the power supply voltage V CC rises steeply, the rise of the gate voltage V G lags behind the rise of the source voltage V DD due to the influence of the gate capacitance of the PMOS transistor MP1. As a result, the gate-source voltage VGS of the PMOS transistor MP1 increases immediately after startup. During the period t 2 to t 3 during which the gate-source voltage V GS exceeds the threshold voltage V TH of the MOSFET, the PMOS transistor MP1 becomes conductive even though the control signal EN is negated.
 一方、電源電圧VCCが上昇する際に、NMOSトランジスタMN1のゲートは、電源電圧VCCの変動の影響を受けないため、0Vを維持する。したがってNMOSトランジスタMN1はオフ状態を維持することができる。これにより、外部負荷2にリーク電流ILEAKが流れるのを防止でき、外部負荷2の誤動作を防止できる。 On the other hand, when the power supply voltage V CC rises, the gate of the NMOS transistor MN1 maintains 0V because it is not affected by fluctuations in the power supply voltage V CC . Therefore, NMOS transistor MN1 can maintain an off state. Thereby, leakage current ILEAK can be prevented from flowing into the external load 2, and malfunction of the external load 2 can be prevented.
 続いて、コントローラ110の具体的な構成あるいは制御について説明する。 Next, the specific configuration or control of the controller 110 will be explained.
 図9は、負荷駆動回路100のコントローラ110の構成例(110A)を示す回路図である。コントローラ110Aの第1ドライバDR1、第2ドライバDR2は、プッシュプル構成を有するCMOSインバータである。制御信号ENは、そのままの論理で、第1ドライバDR1に供給され、インバータ114によって反転された制御信号\ENは、第2ドライバDR2に供給される。 FIG. 9 is a circuit diagram showing a configuration example (110A) of the controller 110 of the load drive circuit 100. The first driver DR1 and the second driver DR2 of the controller 110A are CMOS inverters having a push-pull configuration. The control signal EN is supplied to the first driver DR1 in its original logic, and the control signal \EN inverted by the inverter 114 is supplied to the second driver DR2.
 なお、第1ドライバDR1のPMOSトランジスタは省略してもよい。同様に、第2ドライバDR2のNMOSトランジスタを省略してもよい。 Note that the PMOS transistor of the first driver DR1 may be omitted. Similarly, the NMOS transistor of the second driver DR2 may be omitted.
 図10は、負荷駆動回路100のコントローラ110の別の構成例(110B)を示す回路図である。コントローラ110Bの第1ドライバDR1、第2ドライバDR2は、電流源CS1,CS2で構成される。制御信号ENは、そのままの論理で、電流源CS1,CS2に供給される。つまり、ロジック回路112は単なる配線である。 FIG. 10 is a circuit diagram showing another configuration example (110B) of the controller 110 of the load drive circuit 100. The first driver DR1 and second driver DR2 of the controller 110B are composed of current sources CS1 and CS2. The control signal EN is supplied to the current sources CS1 and CS2 with its logic unchanged. In other words, the logic circuit 112 is just a wire.
 図9および図10のコントローラ110A,110Bによれば、制御信号ENがアサートされると、PMOSトランジスタMP1とNMOSトランジスタMN1それぞれのゲート電圧が、同時に変化し始め、実質的に同時にターンオンさせることができる。 According to the controllers 110A and 110B of FIGS. 9 and 10, when the control signal EN is asserted, the respective gate voltages of the PMOS transistor MP1 and the NMOS transistor MN1 begin to change simultaneously, and can be turned on substantially simultaneously. .
 コントローラ110は、PMOSトランジスタMP1とNMOSトランジスタMN1を、時間差を付けてターンオンしてもよい。具体的には、コントローラ110は、制御信号ENのアサートに応答して、NMOSトランジスタMN1のゲート電圧VG1を先行して上昇させてオンし、続いてPMOSトランジスタMP1のゲート電圧VG2を低下させて、オンしてもよい。 The controller 110 may turn on the PMOS transistor MP1 and the NMOS transistor MN1 with a time difference. Specifically, in response to the assertion of the control signal EN, the controller 110 first increases the gate voltage V G1 of the NMOS transistor MN1 to turn it on, and then decreases the gate voltage V G2 of the PMOS transistor MP1. You can also turn it on.
(付記)
 本明細書に開示される技術は、一側面において以下のように把握される。
(Additional note)
One aspect of the technology disclosed in this specification can be understood as follows.
(項目1)
 電源端子と、
 接地端子と、
 外部負荷の一端が接続されるべき第1出力端子と、
 前記外部負荷の他端が接続されるべき第2出力端子と、
 前記電源端子と前記第1出力端子の間に接続されたPMOSトランジスタと、
 前記第2出力端子と前記接地端子の間に接続されたNMOSトランジスタと、
 制御信号に応じて、前記PMOSトランジスタおよび前記NMOSトランジスタのオン、オフを制御するコントローラと、
 を備える負荷駆動回路。
(Item 1)
power terminal and
a ground terminal;
a first output terminal to which one end of an external load is connected;
a second output terminal to which the other end of the external load is connected;
a PMOS transistor connected between the power supply terminal and the first output terminal;
an NMOS transistor connected between the second output terminal and the ground terminal;
a controller that controls turning on and off of the PMOS transistor and the NMOS transistor according to a control signal;
A load drive circuit comprising:
(項目2)
 前記コントローラは、前記制御信号のアサートに応答して、前記NMOSトランジスタを先行してオンし、続いて前記PMOSトランジスタをオンする、項目1に記載の負荷駆動回路。
(Item 2)
The load drive circuit according to item 1, wherein the controller first turns on the NMOS transistor and then turns on the PMOS transistor in response to assertion of the control signal.
(項目3)
 前記コントローラは、前記制御信号のアサートに応答して、前記NMOSトランジスタと前記PMOSトランジスタを同時にオンする、項目1に記載の負荷駆動回路。
(Item 3)
The load drive circuit according to item 1, wherein the controller turns on the NMOS transistor and the PMOS transistor simultaneously in response to assertion of the control signal.
(項目4)
 前記コントローラは、
 前記PMOSトランジスタを駆動するプッシュプル構成の第1ドライバと、
 前記NMOSトランジスタを駆動するプッシュプル構成の第2ドライバと、
 を含む、項目1から3のいずれかに記載の負荷駆動回路。
(Item 4)
The controller includes:
a first driver with a push-pull configuration that drives the PMOS transistor;
a second driver with a push-pull configuration that drives the NMOS transistor;
The load drive circuit according to any one of items 1 to 3, comprising:
(項目5)
 前記コントローラは、
 前記PMOSトランジスタを駆動する第1ドライバと、
 前記NMOSトランジスタを駆動する第2ドライバと、
 を含む、項目1から3のいずれかに記載の負荷駆動回路。
(Item 5)
The controller includes:
a first driver that drives the PMOS transistor;
a second driver that drives the NMOS transistor;
The load drive circuit according to any one of items 1 to 3, comprising:
(項目6)
 前記外部負荷はヒューズである、項目1から5のいずれかに記載の負荷駆動回路。
(Item 6)
6. The load drive circuit according to any one of items 1 to 5, wherein the external load is a fuse.
(項目7)
 前記外部負荷は抵抗である、項目1から5のいずれかに記載の負荷駆動回路。
(Item 7)
6. The load drive circuit according to any one of items 1 to 5, wherein the external load is a resistor.
(項目8)
 前記外部負荷は発光素子である、項目1から5のいずれかに記載の負荷駆動回路。
(Item 8)
6. The load drive circuit according to any one of items 1 to 5, wherein the external load is a light emitting element.
 本開示に係る実施形態について、具体的な用語を用いて説明したが、この説明は、理解を助けるための例示に過ぎず、本開示あるいは請求の範囲を限定するものではない。本発明の範囲は、請求の範囲によって規定されるものであり、したがって、ここでは説明しない実施形態、実施例、変形例も、本発明の範囲に含まれる。 Although the embodiments of the present disclosure have been described using specific terms, this description is merely an example to aid understanding, and does not limit the scope of the present disclosure or claims. The scope of the present invention is defined by the claims, and therefore embodiments, examples, and modifications not described here are also included within the scope of the present invention.
 本開示は、外付けされる負荷回路を駆動する負荷駆動回路に関する。 The present disclosure relates to a load drive circuit that drives an externally attached load circuit.
 100 負荷駆動回路
 MP1 PMOSトランジスタ
 MN1 NMOSトランジスタ
 2 外部負荷
 VDD 電源端子
 OUT1 第1出力端子
 OUT2 第2出力端子,
 GND 接地端子
 110 コントローラ
 DR1 第1ドライバ
 DR2 第2ドライバ
 112 ロジック回路
100 Load drive circuit MP1 PMOS transistor MN1 NMOS transistor 2 External load VDD Power supply terminal OUT1 First output terminal OUT2 Second output terminal,
GND Grounding terminal 110 Controller DR1 1st driver DR2 2nd driver 112 Logic circuit

Claims (8)

  1.  電源端子と、
     接地端子と、
     外部負荷の一端が接続されるべき第1出力端子と、
     前記外部負荷の他端が接続されるべき第2出力端子と、
     前記電源端子と前記第1出力端子の間に接続されたPMOSトランジスタと、
     前記第2出力端子と前記接地端子の間に接続されたNMOSトランジスタと、
     制御信号に応じて、前記PMOSトランジスタおよび前記NMOSトランジスタのオン、オフを制御するコントローラと、
     を備える、負荷駆動回路。
    power terminal and
    a ground terminal;
    a first output terminal to which one end of an external load is connected;
    a second output terminal to which the other end of the external load is connected;
    a PMOS transistor connected between the power supply terminal and the first output terminal;
    an NMOS transistor connected between the second output terminal and the ground terminal;
    a controller that controls turning on and off of the PMOS transistor and the NMOS transistor according to a control signal;
    A load drive circuit comprising:
  2.  前記コントローラは、前記制御信号のアサートに応答して、前記NMOSトランジスタを先行してオンし、続いて前記PMOSトランジスタをオンする、請求項1に記載の負荷駆動回路。 The load drive circuit according to claim 1, wherein the controller turns on the NMOS transistor first and then turns on the PMOS transistor in response to assertion of the control signal.
  3.  前記コントローラは、前記制御信号のアサートに応答して、前記NMOSトランジスタと前記PMOSトランジスタを同時にオンする、請求項1に記載の負荷駆動回路。 The load drive circuit according to claim 1, wherein the controller turns on the NMOS transistor and the PMOS transistor simultaneously in response to assertion of the control signal.
  4.  前記コントローラは、
     前記PMOSトランジスタを駆動するプッシュプル構成の第1ドライバと、
     前記NMOSトランジスタを駆動するプッシュプル構成の第2ドライバと、
     を含む、請求項1から3のいずれかに記載の負荷駆動回路。
    The controller includes:
    a first driver with a push-pull configuration that drives the PMOS transistor;
    a second driver with a push-pull configuration that drives the NMOS transistor;
    The load drive circuit according to any one of claims 1 to 3, comprising:
  5.  前記コントローラは、
     前記PMOSトランジスタを駆動する第1ドライバと、
     前記NMOSトランジスタを駆動する第2ドライバと、
     を含む、請求項1から3のいずれかに記載の負荷駆動回路。
    The controller includes:
    a first driver that drives the PMOS transistor;
    a second driver that drives the NMOS transistor;
    The load drive circuit according to any one of claims 1 to 3, comprising:
  6.  前記外部負荷はヒューズである、請求項1から3のいずれかに記載の負荷駆動回路。 The load drive circuit according to claim 1, wherein the external load is a fuse.
  7.  前記外部負荷は抵抗である、請求項1から3のいずれかに記載の負荷駆動回路。 The load drive circuit according to any one of claims 1 to 3, wherein the external load is a resistor.
  8.  前記外部負荷は発光素子である、請求項1から3のいずれかに記載の負荷駆動回路。 The load drive circuit according to any one of claims 1 to 3, wherein the external load is a light emitting element.
PCT/JP2023/024050 2022-07-04 2023-06-28 Load drive circuit WO2024009872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022108013 2022-07-04
JP2022-108013 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024009872A1 true WO2024009872A1 (en) 2024-01-11

Family

ID=89453509

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/024050 WO2024009872A1 (en) 2022-07-04 2023-06-28 Load drive circuit

Country Status (1)

Country Link
WO (1) WO2024009872A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333278A (en) * 2005-05-30 2006-12-07 Denso Corp Driving device of on-vehicle electric load
JP2009278159A (en) * 2008-05-12 2009-11-26 Denso Corp Load driver

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006333278A (en) * 2005-05-30 2006-12-07 Denso Corp Driving device of on-vehicle electric load
JP2009278159A (en) * 2008-05-12 2009-11-26 Denso Corp Load driver

Similar Documents

Publication Publication Date Title
US8450942B2 (en) Light emitting diode driving apparatus
KR100206870B1 (en) Circuit for preventing electrostatic discharge and latch up
JP6237952B2 (en) Internal power supply circuit and semiconductor device
WO2013128997A1 (en) Switch circuit
JP2010003982A (en) Electrical circuit
US11916376B2 (en) Overdrive electrostatic discharge clamp
US6211709B1 (en) Pulse generating apparatus
US8143812B2 (en) Clamp to enable low voltage switching for high voltage terminal applications
WO2024009872A1 (en) Load drive circuit
US7619864B1 (en) Regulator short-circuit protection circuit and method
JP2009159121A (en) Electronic circuit device, circuit system, integrated circuit device, and electronic apparatus
WO2013161483A1 (en) Output driver circuit
US20230246640A1 (en) Wide voltage gate driver using low gate oxide transistors
US8373457B2 (en) Power-up signal generation circuit in semiconductor integrated circuit
US20070146023A1 (en) Reset signal generating circuit and semiconductor integrated circuit device
JP2006086477A (en) Semiconductor device
US9722579B1 (en) Semiconductor device
JP7345975B2 (en) Motor drivers and motor drive systems
US7969212B2 (en) Circuit for generating power-up signal of semiconductor memory apparatus
KR20220021638A (en) High speed level shifter
JP2008134687A (en) Voltage generating circuit
KR20090055164A (en) Anti-fuse repair control circuit
US9755632B2 (en) Cascode voltage generating circuit and method
JP2015136003A (en) Power-on reset circuit
JP4025286B2 (en) Semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835404

Country of ref document: EP

Kind code of ref document: A1