WO2024009861A1 - Copper-clad laminate, printed wiring board, and semiconductor package - Google Patents

Copper-clad laminate, printed wiring board, and semiconductor package Download PDF

Info

Publication number
WO2024009861A1
WO2024009861A1 PCT/JP2023/023907 JP2023023907W WO2024009861A1 WO 2024009861 A1 WO2024009861 A1 WO 2024009861A1 JP 2023023907 W JP2023023907 W JP 2023023907W WO 2024009861 A1 WO2024009861 A1 WO 2024009861A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
clad laminate
copper foil
group
insulating layer
Prior art date
Application number
PCT/JP2023/023907
Other languages
French (fr)
Japanese (ja)
Inventor
廉 佐々木
成行 八木
真一 鴨志田
稔 垣谷
隆雄 谷川
彩香 竹口
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Publication of WO2024009861A1 publication Critical patent/WO2024009861A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present disclosure relates to a copper-clad laminate, a printed wiring board, and a semiconductor package.
  • Copper-clad laminates are made by laminating an insulating layer and copper foil, and are generally made by laminating prepreg made of glass cloth impregnated with resin and copper foil, and then heating and pressurizing them. Manufactured. The obtained copper-clad laminate is then formed with a circuit, and then subjected to heat treatment such as annealing treatment and reflow treatment to produce a printed wiring board using the copper-clad laminate.
  • an insulating layer such as prepreg and copper foil are laminated and subjected to multiple heat treatments.
  • blisters hereinafter also referred to as "blisters"
  • the blisters may occur, making heat resistance an issue. Since the blisters cause deterioration in the yield of copper-clad laminates, deterioration in reliability of printed wiring boards, etc., it is desired that the blisters have sufficient heat resistance to suppress their occurrence.
  • Patent Document 1 discloses a copper-clad laminate including an insulating layer containing a resin and a copper foil disposed on at least one surface of the insulating layer, the copper foil containing zinc.
  • a copper-clad laminate is disclosed, which is a surface-treated copper foil having a metal treatment layer, and the metal treatment layer has a zinc content of 10 to 2,500 ⁇ g/dm 2 .
  • an object of the present disclosure is to provide a copper-clad laminate that has excellent heat resistance and low transmission loss, and a printed wiring board and semiconductor package that include the copper-clad laminate.
  • a copper-clad laminate including an insulating layer containing a resin and a copper foil disposed on at least one surface of the insulating layer,
  • the copper foil is a surface-treated copper foil having a surface roughness Rz of 0.30 to 0.60 ⁇ m on the surface facing the insulating layer and a metal treatment layer containing 80 to 300 ⁇ g/ dm2 of silicon. , copper clad laminate.
  • the metal treatment layer further contains one or more metals selected from the group consisting of zinc, nickel, cobalt, and molybdenum.
  • Example 2 is a graph showing transmission loss test results in Example 1 and Comparative Example 1.
  • the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples. Further, the lower limit value and upper limit value of the numerical range can be arbitrarily combined with the lower limit value and upper limit value of other numerical ranges, respectively.
  • the numerical values AA and BB at both ends are included in the numerical range as the lower limit value and upper limit value, respectively.
  • the description "10 or more” means 10 and a numerical value exceeding 10, and this applies even if the numerical values are different. Further, for example, the description "10 or less” means a numerical value of 10 and less than 10, and this applies even if the numerical values are different.
  • each component and material illustrated in this disclosure may be used alone, or two or more types may be used in combination, unless otherwise specified.
  • the content of each component in the composition refers to the total amount of the multiple substances present in the composition. means.
  • the term "resin component” refers to all components of the solid content constituting the resin composition, excluding inorganic compounds such as inorganic fillers described below.
  • solid content refers to components other than the organic solvent described below, and components that are liquid at 25° C. are also considered to be solid content.
  • the expression “contains XX” refers to either containing XX in a reacted state when XX can react, or simply containing XX. It means that it is possible. Aspects in which the items described in this disclosure are arbitrarily combined are also included in the present disclosure and embodiments.
  • the present disclosure is a copper-clad laminate including an insulating layer containing a resin (hereinafter also simply referred to as an "insulating layer") and a copper foil disposed on at least one surface of the insulating layer,
  • the copper foil is a surface-treated copper foil having a surface roughness Rz of 0.30 to 0.60 ⁇ m on the surface facing the insulating layer and a metal treatment layer containing 80 to 300 ⁇ g/ dm2 of silicon.
  • the copper-clad laminate of this embodiment has "a surface roughness Rz of 0.30 to 0.60 ⁇ m on the surface facing the insulating layer, and a silicon content of 80 to 300 ⁇ g/dm.
  • a surface-treated copper foil having a metal treatment layer containing 2 is sometimes referred to as a ⁇ surface-treated copper foil (I)''.
  • the surface facing the insulating layer is a roughened surface, and the roughened surface is sometimes referred to as a "matte surface.”
  • the matte surface is present on the metallization layer.
  • the structure of the copper-clad laminate of this embodiment is not particularly limited as long as it includes an insulating layer and a surface-treated copper foil (I) disposed on at least one surface of the insulating layer.
  • the copper-clad laminate of this embodiment includes two or more sheets of copper foil, the two or more sheets of copper foil may be only the surface-treated copper foil (I), or the surface-treated copper foil (I) and the surface A combination with a copper foil other than the treated copper foil (I) may be used.
  • the copper-clad laminate may have a structure in which copper foil is laminated on one or both sides of an insulating layer, and one or more insulating layers and one or more copper foil layers are alternately formed. It may be something that has been done. Alternatively, one or more insulating layers and one or more copper foils may be alternately formed on one or both sides of a core substrate having copper foils on both sides.
  • the number of insulating layers included in the copper-clad laminate of this embodiment may be one or more, and may be appropriately selected from, for example, 2 to 20, depending on the application.
  • the number of copper foils included in the copper-clad laminate of this embodiment is one or more, and may be appropriately selected from, for example, 2 to 20, depending on the application.
  • a circuit may be formed in the copper foil of the copper-clad laminate of this embodiment by a method described later.
  • the term is used as "surface-treated copper foil (I)" in the case where the copper-clad laminate includes only “surface-treated copper foil (I)".
  • the copper-clad laminate includes "surface-treated copper foil (I)” and “copper foil other than surface-treated copper foil (I),""surface-treated copper foil (I)” and “"copper foil other than surface-treated copper foil (I)".
  • the thickness of the copper-clad laminate of this embodiment is not particularly limited, and may be appropriately determined depending on the use of the copper-clad laminate, but is preferably 0.03 to 1.6 mm.
  • the surface-treated copper foil (I) and the insulating layer included in the copper-clad laminate of this embodiment will be explained.
  • the surface-treated copper foil (I) of the copper-clad laminate of this embodiment has a surface roughness Rz of 0.30 to 0.60 ⁇ m on the surface facing the insulating layer (matte surface), and has a silicon content of 80 ⁇ m. It has a metal treatment layer containing ⁇ 300 ⁇ g/dm 2 .
  • the silicon content is a value analyzed by fluorescent X-ray analysis, and in detail, it is measured according to the method described in Examples.
  • the surface roughness is a ten-point average roughness Rz measured using a contact roughness meter in accordance with JIS B0601 (2013), and in detail, as described in Examples.
  • the content of a specific element in the metal treatment layer means the content of the specific element in the metal treatment layer per layer. Therefore, when the surface-treated copper foil (I) has metal-treated layers on both sides, the content of a specific element in the metal-treated layer is defined as the content of a specific element in the metal-treated layer on one side of the metal-treated layers on both sides. Refers to the content of a specific element.
  • the metal treatment layer contains 80 to 300 ⁇ g/dm 2 of silicon, preferably 90 to 250 ⁇ g/dm 2 , and more preferably 100 to 200 ⁇ g/dm 2 of silicon.
  • the silicon content is more preferably 100 to 150 ⁇ g/dm 2 , and particularly preferably 105 to 135 ⁇ g/dm 2 .
  • the method of bringing the silicon content in the metal treatment layer within the predetermined range there is no particular restriction on the method of bringing the silicon content in the metal treatment layer within the predetermined range.
  • the surface facing the insulating layer may be coated with a silane coupling agent while adjusting the amount of the silane coupling agent. Examples include a method of surface treatment.
  • a commercially available copper foil in which the silicon content in the metal treatment layer is within the above-mentioned predetermined range can also be used.
  • Such copper foil can be selected from, for example, copper foil manufactured by Mitsui Kinzoku Co., Ltd.
  • the surface roughness Rz of the surface facing the insulating layer (matte surface) is 0.30 ⁇ m or more, the adhesion between the insulating layer and the copper foil increases, resulting in good heat resistance. By satisfying the following, it is possible to reduce transmission loss. From this point of view, the surface roughness Rz of the surface facing the insulating layer (matte surface) is 0.30 to 0.60 ⁇ m, preferably 0.35 to 0.55 ⁇ m, more preferably 0.40 to 0.55 ⁇ m. , more preferably 0.45 to 0.55 ⁇ m. Examples of a method for producing a copper foil having the surface roughness Rz include a method of roughening the surface of the copper foil that faces the insulating layer.
  • the method and conditions of the roughening treatment are not particularly limited as long as the surface roughness Rz is within the above range, and conventionally known methods and conditions may be adjusted as appropriate.
  • a method of attaching a film having fine irregularities to the surface of copper foil can be mentioned.
  • a pretreatment such as acid washing may be performed as appropriate.
  • the metal treatment layer may further contain one or more metals selected from the group consisting of zinc, nickel, cobalt, and molybdenum.
  • the content of zinc in the metal treatment layer is not particularly limited, but is preferably from 10 to 2,500 ⁇ g/dm 2 , more preferably from 15 to 1,000 ⁇ g/dm 2 , even more preferably from 20 to 1,000 ⁇ g/dm 2 500 ⁇ g/dm 2 , particularly preferably 25-300 ⁇ g/dm 2 , most preferably 30-200 ⁇ g/dm 2 .
  • the method of forming the metal treatment layer containing zinc is not particularly limited, but plating treatment using zinc is preferred.
  • the plating treatment using zinc may be either zinc plating treatment or zinc alloy plating treatment, and preferably zinc alloy plating treatment.
  • the metal that forms an alloy with zinc includes one or more metals selected from the group consisting of nickel, cobalt, and molybdenum.
  • Specific examples of zinc alloys include zinc-nickel alloy, zinc-cobalt alloy, zinc-molybdenum alloy, zinc-cobalt-molybdenum alloy, etc. Among these, zinc-nickel alloy and zinc-cobalt-molybdenum alloy are preferable.
  • the resulting copper-clad laminate has even better blister resistance and further heat resistance. It tends to be better.
  • the metal treatment layer contains zinc, the heat resistance may be insufficient.
  • it contains metal.
  • the total content of one or more metals selected from the group consisting of nickel, cobalt and molybdenum in the metal treatment layer is preferably 10 to 2,500 ⁇ g/dm 2 , more preferably 40 to 1,000 ⁇ g/dm 2 , more preferably 60 to 500 ⁇ g/dm 2 , particularly preferably 100 to 300 ⁇ g/dm 2 , and most preferably 150 to 200 ⁇ g/dm 2 .
  • the metal treatment layer preferably contains nickel from among one or more metals selected from the group consisting of nickel, cobalt, and molybdenum, and contains nickel and does not contain cobalt or molybdenum. Good too.
  • the metal treatment layer may further contain chromium from the viewpoint of rust prevention treatment and improvement of adhesion to the resin.
  • the chromium content is preferably 10 to 200 ⁇ g/dm 2 , more preferably 20 to 150 ⁇ g/dm 2 , even more preferably 30 to 100 ⁇ g/dm 2 , particularly preferably 40 ⁇ g/dm 2 . ⁇ 80 ⁇ g/dm 2 , most preferably 50-80 ⁇ g/dm 2 .
  • the method for forming a metal treatment layer containing chromium is not particularly limited, and examples thereof include chromate treatment (rust prevention treatment) and the like.
  • the chromate treatment can suppress oxidation of the copper foil, and tends to facilitate the formation of fine wiring during circuit formation.
  • the chromate treatment may be either electrolytic chromate treatment or immersion chromate treatment, but electrolytic chromate treatment is preferred from the viewpoint of stability of the amount of adhesion.
  • the copper foil included in the copper-clad laminate of this embodiment is not particularly limited, and may be rolled copper foil or electrolytic copper foil, but electrolytic copper foil is preferable.
  • the thickness of the surface-treated copper foil (I) may be determined as appropriate depending on the use of the copper-clad laminate, but preferably 1 to 120 ⁇ m, more preferably 3 to 60 ⁇ m, even more preferably 5 to 40 ⁇ m, especially Preferably it is 10 to 25 ⁇ m. Further, from the viewpoint of making the semiconductor package thinner, the thickness is preferably 35 ⁇ m or less, more preferably 25 ⁇ m or less, and still more preferably 20 ⁇ m or less.
  • the resin-containing insulating layer of the copper-clad laminate of this embodiment is not particularly limited, and may be appropriately selected from conventionally known insulating resin materials depending on desired characteristics.
  • the insulating layer preferably contains a cured product of a thermosetting resin composition, and may be a cured prepreg formed by impregnating a sheet-like reinforcing base material such as glass cloth with the thermosetting resin composition. It is more preferable that
  • thermosetting resin composition is not particularly limited as long as it contains a thermosetting resin.
  • Thermosetting resins include maleimide compounds, epoxy resins, phenol resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, silicone resins, and triazine resins. , melamine resin, etc. These may be used alone or in combination of two or more.
  • maleimide compounds, epoxy resins, and phenol resins are preferred, and maleimide compounds are more preferred, from the viewpoints of heat resistance, moldability, and low thermal expansion.
  • the thermosetting resin composition contains a polyphenylene ether derivative (A), a curing accelerator, from the viewpoint of further increasing heat resistance and low transmission loss, and from the viewpoint of obtaining excellent copper foil adhesion, low thermal expansion, etc. (B), maleimide compound (C), inorganic filler (D), flame retardant (E), and thermoplastic elastomer (F) [hereinafter referred to as (A) component, (B) component, (C) component, ( They may be referred to as D) component, (E) component, and (F) component. ] It is preferable to contain.
  • An insulating layer containing the thermosetting resin composition tends to have good adhesion to the copper foil, improve heat resistance, and tend to reduce transmission loss.
  • preferred embodiments of each component will be explained.
  • the polyphenylene ether derivative (A) preferably has a structural unit represented by the following general formula (I), and has high frequency properties, high adhesion to conductors, high glass transition temperature, low thermal expansion, and high difficulty. From the viewpoint of flammability, it is more preferable to have an N-substituted maleimide structure-containing group and a structural unit represented by the following general formula (I).
  • each R 1 is independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • x is an integer of 0 to 4.
  • Examples of the aliphatic hydrocarbon group represented by R 1 in the general formula (I) include methyl group, ethyl group, n-propyl group, and isopropyl group.
  • the aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and preferably a methyl group.
  • examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
  • R 1 is preferably an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
  • x is an integer of 0 to 4, preferably an integer of 0 to 2, and preferably 2.
  • R 1 may be substituted at the ortho position on the benzene ring (however, based on the substitution position of the oxygen atom).
  • the plurality of R 1s may be the same or different.
  • the number of the N-substituted maleimide structure-containing groups may be one or more, and is not particularly limited, but may be one or two. It is preferable that there be one, and more preferably one.
  • the N-substituted maleimide structure-containing group is selected from the viewpoints of high frequency properties, adhesion to conductors, heat resistance, glass transition temperature, low thermal expansion, and flame retardancy, in which the nitrogen atoms of two maleimide groups form an organic group. bismaleimide structure (however, structures derived from this structure are also included).
  • the structure derived from this structure means that the carbon-carbon double bond of the maleimide group is connected to a functional group (amino group). etc.) is preferable.
  • the N-substituted maleimide structure-containing group is more preferably a group represented by the following general formula (Z).
  • R 2 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • y is an integer of 0 to 4.
  • a 1 is the general formula (II) described below, (III), (IV) or (V).)
  • y is an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably 0.
  • y is an integer of 2 or more, the plurality of R 2 's may be the same or different.
  • each R 3 is independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • p is an integer of 0 to 4.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 3 are explained in the same manner as in the case of R 1 .
  • p is an integer of 0 to 4, preferably an integer of 0 to 2 from the viewpoint of availability, more preferably 0 or 1, and even more preferably 0.
  • the plurality of R 3 's may be the same or different.
  • R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • a 2 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, group, ether group, sulfide group, sulfonyl group, carbonyloxy group, keto group, single bond, or a group represented by the following general formula (III-1).
  • q and r are each independently an integer of 0 to 4. be.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 4 and R 5 include the same ones as in the case of R 1 .
  • the aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and even more preferably an ethyl group.
  • Examples of the alkylene group having 1 to 5 carbon atoms represented by A 2 include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group, a 1,4-tetramethylene group, a 1,5-pentamethylene group, etc. It will be done.
  • the alkylene group is preferably an alkylene group having 1 to 3 carbon atoms from the viewpoint of high frequency characteristics, adhesion with conductors, heat resistance, glass transition temperature, low thermal expansion and flame retardancy, and methylene groups are preferable. It is more preferable that there be.
  • Examples of the alkylidene group having 2 to 5 carbon atoms represented by A 2 include ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, and isopentylidene group.
  • isopropylidene groups are preferred from the viewpoints of high frequency properties, adhesion to conductors, heat resistance, glass transition temperature, low thermal expansion, and flame retardancy.
  • a 2 is preferably an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms.
  • q and r are each independently an integer of 0 to 4, and from the viewpoint of availability, both are preferably integers of 0 to 2, more preferably 0 or 2.
  • q or r is an integer of 2 or more, the plurality of R 4s or R 5s may be the same or different.
  • the group represented by the general formula (III-1) represented by A 2 is as follows.
  • R 6 and R 7 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom.
  • a 3 is an alkylene group having 1 to 5 carbon atoms, an isopropylidene group, an ether group, A sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, or a single bond.
  • s and t are each independently an integer of 0 to 4.
  • the aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 6 and R 7 are explained in the same manner as in the case of R 4 and R 5 .
  • the alkylene group having 1 to 5 carbon atoms represented by A 3 is the same as the alkylene group having 1 to 5 carbon atoms represented by A 2 .
  • a 3 is preferably an alkylidene group having 2 to 5 carbon atoms.
  • s and t are integers of 0 to 4, and from the viewpoint of availability, both are preferably integers of 0 to 2, more preferably 0 or 1, and even more preferably 0. .
  • s or t is an integer of 2 or more, the plurality of R 6 or R 7 may be the same or different.
  • n is an integer from 0 to 15.
  • n is preferably 0 to 5, more preferably 0 to 3.
  • R 8 and R 9 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. u is an integer of 1 to 8.
  • u is an integer of 1 to 8, preferably an integer of 1 to 3, and preferably 1.
  • the polyphenylene ether derivative (A) is preferably a polyphenylene ether derivative represented by the following general formula (A'). (In the formula, A 1 , R 1 , R 2 , x and y are as defined above. m is an integer of 1 or more.)
  • m is preferably an integer of 1 to 300, more preferably an integer of 10 to 300, even more preferably an integer of 30 to 200, particularly preferably an integer of 50 to 150.
  • polyphenylene ether derivative (A) is more preferably a polyphenylene ether derivative represented by any of the following formulas (A'-1) to (A'-4).
  • polyphenylene ether derivatives of the above formula (A'-1) are preferred, and from the viewpoint of excellent dielectric properties and low water absorption, polyphenylene ether derivatives of the above formula (A'-2) are preferred.
  • Polyphenylene ether derivatives are preferable, and from the viewpoint of excellent adhesion with conductors and mechanical properties (elongation, breaking strength, etc.), polyphenylene ethers of the above formula (A'-3) or the above formula (A'-4) Derivatives are preferred. Therefore, depending on the desired characteristics, one type of polyphenylene ether derivative represented by any of the above formulas (A'-1) to (A'-4) may be used alone, or two or more types may be used in combination. can do.
  • the number average molecular weight of the polyphenylene ether derivative (A) is preferably 4,000 to 14,000, more preferably 5,000 to 12,000, and more preferably 7,000 to 12,000. is more preferable, and particularly preferably 7,000 to 10,000. Further, the number average molecular weight of the polyphenylene ether derivative (A) may be from 4,000 to 8,000, or from 4,000 to 6,500. When the number average molecular weight is 4,000 or more, a better glass transition temperature tends to be obtained in the resin composition of the present invention, prepregs and laminates using the same. Moreover, when the number average molecular weight is 14,000 or less, better moldability tends to be obtained when the resin composition of the present invention is used for a laminate.
  • the number average molecular weight is a value calculated from a calibration curve using standard polystyrene by gel permeation chromatography (GPC), and more specifically, the number average molecular weight measurement method described in Examples. This is the value obtained by GPC.
  • the curing accelerator (B) preferably contains at least one selected from the group consisting of organic peroxides, imidazole curing accelerators, and phosphorus curing accelerators. By containing component (B), heat resistance etc. can be further improved. Component (B) may be used alone or in combination of two or more.
  • organic peroxides include, but are not limited to, t-butylperoxyisopropyl monocarbonate, 1,1-di(t-hexylperoxy)cyclohexane, bis(1-phenyl-1-methylethyl)peroxide, and diisopropylbenzene. It is preferable to contain at least one member selected from the group consisting of hydroperoxide and ⁇ , ⁇ '-bis(t-butylperoxy)diisopropylbenzene.
  • imidazole curing accelerators include, but are not limited to, imidazole compounds such as methylimidazole, phenylimidazole, and 2-undecylimidazole; isocyanate masks such as addition reaction products of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole; Examples include imidazole.
  • Examples of the phosphorus-based curing accelerator include tertiary phosphines such as triphenylphosphine; and quaternary phosphonium compounds such as tri-n-butylphosphine addition reaction products of p-benzoquinone.
  • thermosetting resin (C) is preferably at least one selected from the group consisting of an epoxy resin, a cyanate resin, and a maleimide compound, and more preferably a maleimide compound. Note that the maleimide compound does not include the polyphenylene ether derivative (A).
  • the epoxy resin is preferably an epoxy resin having two or more epoxy groups.
  • the epoxy resin is classified into glycidyl ether type epoxy resin, glycidyl amine type epoxy resin, glycidyl ester type epoxy resin, and the like. Among these, glycidyl ether type epoxy resins may be selected.
  • Epoxy resins are classified into various epoxy resins depending on the main skeleton, and in each of the above types of epoxy resins, there are also bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc.
  • novolak epoxy resin such as phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol A novolak epoxy resin, bisphenol F novolak epoxy resin; phenol aralkyl type epoxy resin; stilbene type epoxy resin; dicyclopenta
  • One type of epoxy resin may be used alone, or two or more types may be used in combination.
  • naphthalene skeleton-containing epoxy resins and biphenylaralkyl epoxy resins are preferred from the viewpoints of high frequency properties, heat resistance, glass transition temperature, low thermal expansion, flame retardance, and the like.
  • Cyanate resins are not particularly limited, but include 2,2-bis(4-cyanatophenyl)propane, bis(4-cyanatophenyl)ethane, and bis(3,5-dimethyl-4-cyanatophenyl). Methane, 2,2-bis(4-cyanatophenyl)-1,1,1,3,3,3-hexafluoropropane, ⁇ , ⁇ '-bis(4-cyanatophenyl)-m-diisopropylbenzene, Examples include cyanate compounds of phenol-added dicyclopentadiene polymers, phenol novolak-type cyanate compounds, and cresol novolac-type cyanate compounds.
  • One type of cyanate resin may be used alone, or two or more types may be used in combination.
  • 2,2-bis(4-cyanatophenyl)propane is preferably used from the viewpoint of production cost and overall balance of high frequency properties and other properties.
  • the maleimide compound is not particularly limited, but at least one of a maleimide compound having at least two N-substituted maleimide structure-containing groups and an amino-modified bismaleimide compound is preferred.
  • the maleimide compound is preferably an amino-modified bismaleimide compound from the viewpoints of solubility in organic solvents, high frequency properties, adhesion to conductors, and prepreg moldability.
  • maleimide compounds include, but are not limited to, bis(4-maleimidophenyl)methane, polyphenylmethanemaleimide, bis(4-maleimidophenyl)ether, bis(4-maleimidophenyl)sulfone, 3,3'-dimethyl-5 , 5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, m-phenylene bismaleimide, 2,2-bis(4-(4-maleimidophenoxy)phenyl)propane , bis(4-maleimidophenyl) sulfide, bis(4-maleimidophenyl)ketone, bis(4-(4-maleimidophenoxy)phenyl)sulfone, 4,4'-bis(3-maleimidophenoxy)biphenyl, 1,6 -bismaleimide-(2,2,4-trimethyl)hexane and
  • Amino-modified bismaleimide compounds are obtained by reacting a bismaleimide compound with an amine compound.
  • the amine compound is not particularly limited, but it has high solubility in organic solvents and a high reaction rate during synthesis.
  • Inorganic filler (D) Inorganic fillers (D) include, but are not limited to, silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, and hydroxide.
  • Component (D) may be used alone or in combination of two or more.
  • the particle diameter refers to the average particle diameter, and refers to the particle diameter at a point corresponding to 50% of the volume when a cumulative frequency distribution curve according to the particle diameter is calculated with the total volume of the particles as 100%. be. It can be measured using a particle size distribution measuring device using a laser diffraction scattering method.
  • a coupling agent in combination for the purpose of improving the dispersibility of component (D) and the adhesion between component (D) and the organic component in the resin composition.
  • the coupling agent is not particularly limited, and for example, various silane coupling agents and titanate coupling agents can be used. These may be used alone or in combination of two or more.
  • flame retardant (E) examples include phosphorus-based flame retardants, metal hydrates, halogen-based flame retardants, and the like.
  • component (E) is preferably at least one selected from the group consisting of phosphorus-based flame retardants and metal hydrates, and it is preferable to use phosphorus-based flame retardants and metal hydrates together. More preferred.
  • the flame retardant (E) may be used alone or in combination of two or more.
  • thermoplastic elastomer (F) examples include styrene elastomers, olefin elastomers, urethane elastomers, polyester elastomers, polyamide elastomers, acrylic elastomers, silicone elastomers, and derivatives thereof. Among these, styrene elastomers are preferred.
  • Component (F) may be used alone or in combination of two or more.
  • the thermoplastic elastomer (F) may or may not have a reactive functional group at the molecular end or in the molecular chain.
  • the reactive functional group include an epoxy group, a hydroxyl group, a carboxy group, an amino group, an amide group, an isocyanate group, an acrylic group, a methacryl group, and a vinyl group.
  • Styrene-based elastomers include styrene-butadiene-styrene block copolymers (SBS), hydrides of styrene-butadiene-styrene block copolymers (e.g., SEBS, SBBS), and styrene-isoprene-styrene block copolymers (SIS).
  • SBS styrene-butadiene-styrene block copolymers
  • SIS styrene-isoprene-styrene block copolymers
  • SEPS styrene-isoprene-styrene block copolymers
  • SEEPS styrene-(isoprene and butadiene)-styrene block copolymers
  • SMA styrene-maleic anhydride copolymers
  • SEBS styrenic thermoplastic elastomers
  • SEPS styrene-maleic anhydride copolymer
  • SMA acid copolymer
  • SEBS is a styrene-butadiene-styrene block copolymer (SBS) in which all butadiene units are hydrogenated, and is named after the initial letters of styrene-ethylene-butylene-styrene.
  • the SBBS is a styrene-butadiene-styrene block copolymer (SBS) in which the 1,2-bond units in the butadiene units are selectively hydrogenated, and the SBBS is a styrene-(1,4-
  • SBS styrene-(1,4-
  • the name is derived from the initial letters of (butadiene), butylene, and styrene.
  • styrene derivatives such as ⁇ -methylstyrene, 3-methylstyrene, 4-propylstyrene, and 4-cyclohexylstyrene can be used as raw material monomers for the styrene-based elastomer.
  • SEBS is preferred as the styrene elastomer.
  • the content of each component in the thermosetting resin composition is not particularly limited, but may be within the ranges described below, for example.
  • the thermosetting resin composition contains component (A)
  • the content thereof is preferably 2 to 40 parts by mass, more preferably 2 to 40 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition.
  • the amount is 5 to 35 parts by weight, more preferably 10 to 30 parts by weight.
  • the content of component (A) is equal to or higher than the lower limit, the dielectric constant tends to be excellent.
  • heat resistance, moldability, and processability tend to be excellent.
  • the content is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition.
  • the amount is preferably 0.3 to 5 parts by weight, more preferably 0.5 to 3 parts by weight.
  • the content of component (B) is within the above range, good heat resistance, storage stability, and moldability tend to be obtained.
  • the thermosetting resin composition contains component (C)
  • the content is preferably 10 to 90 parts by mass, more preferably 10 to 90 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition.
  • the amount is 20 to 85 parts by weight, more preferably 30 to 70 parts by weight.
  • thermosetting resin composition contains component (D)
  • the content thereof is preferably 30 to 200 parts by mass, more preferably 30 to 200 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition.
  • the amount is 40 to 150 parts by weight, more preferably 45 to 120 parts by weight, particularly preferably 60 to 100 parts by weight.
  • the content of component (D) is equal to or higher than the lower limit, low thermal expansion properties tend to be excellent.
  • heat resistance, fluidity and moldability tend to be excellent.
  • thermosetting resin composition contains component (E), the content thereof is preferably 2 to 40 parts by mass, more preferably 2 to 40 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition.
  • the amount is 5 to 35 parts by weight, more preferably 10 to 30 parts by weight.
  • the content of component (E) is at least the lower limit, sufficient flame retardancy tends to be obtained.
  • the thermosetting resin composition contains component (F)
  • the content thereof is preferably 1 to 40 parts by mass, more preferably 1 to 40 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition.
  • the amount is 3 to 30 parts by weight, more preferably 5 to 25 parts by weight.
  • the content of component (F) is equal to or higher than the lower limit, the dielectric constant tends to be excellent.
  • it is below the upper limit good heat resistance, moldability, workability, and flame retardancy tend to be obtained.
  • thermosetting resin composition may further contain colorants, antioxidants, reducing agents, ultraviolet absorbers, optical brighteners, adhesion improvers, organic fillers, etc., within a range that does not impair the effects of the present embodiment. It may also contain other ingredients. Each of these may be used alone or in combination of two or more.
  • organic solvent The resin composition of the present invention preferably contains an organic solvent to adjust the solid content concentration from the viewpoint of dielectric properties, ease of handling, and ease of manufacturing the prepreg described below.
  • organic solvents include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ether solvents such as tetrahydrofuran; toluene,
  • aromatic solvents such as xylene and mesitylene
  • nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone
  • sulfur atom-containing solvents such as dimethyl sulfoxide
  • ester solvents such as ⁇ -butyrolactone.
  • the prepreg is obtained by, for example, impregnating or coating a sheet-like reinforcing base material with the thermosetting resin composition, and semi-curing (B stage) by heating or the like.
  • B-staging refers to making a B-stage state defined in JIS K6900 (1994).
  • the thermosetting resin composition may be in the form of a varnish diluted with an organic solvent such as methyl ethyl ketone.
  • the concentration of nonvolatile matter in the varnish is, for example, 40 to 80% by mass, preferably 50 to 75% by mass.
  • the drying conditions after impregnation are not particularly limited, but the heating temperature is preferably 120 to 200°C, more preferably 140 to 180°C, and the heating time is preferably 30 seconds to 30 minutes, more preferably 1 to 10 minutes. It is a minute.
  • the prepreg sheet-like reinforcing base material well-known materials used in various electrically insulating material laminates can be used.
  • Materials for the sheet-like reinforcing base material include natural fibers such as paper and cotton linters; inorganic fibers such as glass fiber and asbestos; organic fibers such as aramid, polyimide, polyvinyl alcohol, polyester, tetrafluoroethylene, and acrylic; mixtures thereof. Examples include. Among these, glass fiber is preferred from the viewpoint of flame retardancy.
  • the glass fiber base material include glass cloth using E glass, C glass, D glass, S glass, etc.; glass cloth made by bonding short fibers with an organic binder; and a mixture of glass fiber and cellulose fiber. .
  • These sheet-like reinforcing base materials have a shape such as a woven fabric, a non-woven fabric, a raw binder, a chopped strand mat, or a surfacing mat.
  • the material and shape are selected depending on the purpose, performance, etc. of the intended molded product, and one type can be used alone, or two or more types of materials and shapes can be combined as necessary.
  • the thickness of the prepreg is preferably 0.01 to 0.5 mm, more preferably 0.02 to 0.3 mm, and even more preferably 0.05 to 0.2 mm, from the viewpoint of moldability and enabling high-density wiring. It is.
  • the thickness of the insulating layer included in the copper-clad laminate is preferably 0.01 to 0.5 mm, more preferably 0.02 to 0.3 mm, and even more preferably is 0.05 to 0.2 mm.
  • the copper-clad laminate of this embodiment is a laminate containing the prepreg of the present invention and metal foil.
  • the laminate of the present invention can be manufactured, for example, by laminating the prepreg obtained by the prepreg manufacturing method of the present invention and metal foil, and curing the prepreg by heating and pressurizing using a pressing method.
  • the metal of the metal foil is not particularly limited as long as it is used for electrical insulating materials, but from the viewpoint of conductivity copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium , chromium, or an alloy containing at least one of these metal elements, preferably copper or aluminum, and preferably copper.
  • the conditions for heat and pressure molding are not particularly limited, but for example, it may be carried out at a temperature of 100 to 300°C, a pressure of 0.2 to 10.0 MPa, and a time of 0.1 to 5 hours. can. Further, the heating and pressure molding can be carried out by using a vacuum press or the like and maintaining a vacuum state for 0.5 to 5 hours.
  • the printed wiring board of this embodiment is a printed wiring board having the copper-clad laminate of this embodiment.
  • the printed wiring board of this embodiment can be manufactured by performing circuit processing on the copper foil of the copper-clad laminate of this embodiment. For circuit processing, for example, after forming a resist pattern on the surface of the copper foil, removing unnecessary parts of the copper foil by etching, removing the resist pattern, forming the necessary through holes with a drill, forming the resist pattern again, This can be done by applying plating to make the through holes conductive, and finally removing the resist pattern.
  • a multilayer printed wiring board can be obtained by repeating the steps of laminating a copper clad laminate on the surface of the obtained printed wiring board under the same conditions as described above and processing the circuit as many times as necessary.
  • the semiconductor package of this embodiment is a semiconductor package that includes the printed wiring board of this embodiment and a semiconductor element.
  • the semiconductor package of this embodiment can be manufactured by mounting semiconductor elements such as semiconductor chips and memories at predetermined positions on the printed wiring board of this embodiment.
  • the copper-clad laminate, printed wiring board, and semiconductor package of this embodiment have excellent heat resistance and low transmission loss, so they can be suitably used for electronic equipment that handles high-frequency signals of 10 GHz or higher, for example.
  • Copper foil 1 or copper foil 2 listed in Table 1 is installed on both sides of the prepreg produced in Production Example 1 (however, the copper foils installed on both sides of the prepreg are the same. In other words, "Copper foil 1/Prepreg” / copper foil 1" mode or “copper foil 2/prepreg/copper foil 2" mode), and then laminated and integrated at a temperature of 185°C, a pressure of 3.9 MPa, and a time of 60 minutes. By doing so, a double-sided copper-clad laminate (thickness: 0.1 mm) was produced. Next, using a drill with a diameter of 0.15 mm, a through hole was made in the double-sided copper-clad laminate produced above.
  • a double-sided copper-clad laminate with through holes was plated with copper to connect the front and back sides, and then the copper foil on the surface of the double-sided copper-clad laminate was removed by etching to form a desired circuit pattern.
  • a high frequency probe "ACP65-A-GSG250" manufactured by Form Factor
  • a network analyzer "N5227A” connected via a coaxial cable "SUCOFLEX102” (manufactured by HUBER+SUHNER) ” (manufactured by Keysight Technologies, Inc.) and measured the transmission loss when passing through the transmission line.
  • the results are shown in FIG. 1, and the transmission loss at a frequency of 80 GHz is shown in Table 2. Note that the transmission loss is a negative value, and the smaller the absolute value, the smaller the transmission loss.
  • peel strength of copper foil> Using the two-layer copper-clad laminate produced in the example or comparative example, the peel strength of the copper foil (adhesion strength between the copper foil and the insulating layer) was measured in accordance with IPC-TM-650 2.4.8C. did.
  • Production example 1 (preparation of prepreg) In producing the prepreg, first, each component shown below was prepared.
  • Component (A) polyphenylene ether derivative produced by the following method In a reaction vessel equipped with a thermometer, a stirring device, and a moisture meter with a reflux condenser, polyphenylene ether compound "XYRON (registered trademark) S202A" (manufactured by Asahi Kasei Chemicals Co., Ltd.) was placed. ), 1.3 parts by mass of p-aminophenol, 2 parts by mass of t-butylperoxyisopropyl monocarbonate, 1.5 parts by mass of manganese octylate, 530 parts by mass of toluene and 28 parts by mass of propylene glycol monomethyl ether, The reaction was carried out at 90°C for 6 hours.
  • component (A) 100 parts by mass of component (A), 4 parts by mass of each component (B), 310 parts by mass of component (C), 518 parts by mass of component (D), and component (E) (dialkyl phosphinate aluminum salt) and 46 parts by mass of the phosphorus flame retardant 2) and 112 parts by mass of component (F) (13 parts by mass of styrenic elastomer 1 and 99 parts by mass of styrene elastomer 2), and further added toluene.
  • a resin varnish was prepared by adding 206 parts by weight and 36 parts by weight of cyclohexanone.
  • a prepreg was obtained by impregnating glass cloth (thickness: 0.080 mm) of IPC standard #2013 with each of the obtained resin varnishes and drying at 160° C. for about 5 minutes.
  • Example 1 and Comparative Example 1 (Production of copper-clad laminate)
  • a two-layer copper-clad laminate and a four-layer copper-clad laminate were produced by the method shown below.
  • Copper foil shown in Table 1 was layered on both sides of a sheet of prepreg, with the metal treatment layer facing the prepreg side, and heat and pressure molded for 60 minutes at a temperature of 200°C and a pressure of 40 kgf/cm 2 (3.90 MPa). Then, a two-layer copper-clad laminate was produced. Using the two-layer copper-clad laminate, the peel strength of the copper foil was measured. The results are shown in Table 2.
  • one sheet of prepreg was layered on the copper foil on both sides of the double-sided copper-clad laminate as a core material, and then the copper foil shown in Table 1 was placed on each prepreg so that the metal treatment layer was on the prepreg side. I put one on top of the other. Thereafter, a four-layer copper-clad laminate was produced by heating and press-molding at a temperature of 200° C. and a pressure of 30 kgf/cm 2 (2.90 MPa) for 80 minutes. Each evaluation was performed using the four-layer copper-clad laminate. The results are shown in Table 2.
  • Table 2 shows that the copper-clad laminate of Example 1 using the surface-treated copper foil (I) of this embodiment has excellent heat resistance and low transmission loss.
  • the copper-clad laminate of Example 1 has excellent peel strength of the copper foil (adhesion strength between the copper foil and the insulating layer) and peel strength between the prepreg layers (adhesion strength between the inner layer copper foil and the prepreg). There is also a tendency for the strength to improve.

Abstract

Provided are a copper-clad laminate that has excellent heat resistance and lowers transmission loss, a printed wiring board having the copper-clad laminate, and a semiconductor package. Specifically, provided is a copper-clad laminate or the like that includes an insulating layer containing a resin, and copper foil disposed on at least one surface of the insulating layer. The copper foil is surface-treated copper foil that has a surface roughness Rz of 0.30 to 0.60 μm at a surface thereof opposed to the insulating layer, and that has a metal treatment layer containing silicon of 80 to 300 μg/dm2.

Description

銅張積層板、プリント配線板及び半導体パッケージCopper-clad laminates, printed wiring boards, and semiconductor packages
 本開示は、銅張積層板、プリント配線板及び半導体パッケージに関する。 The present disclosure relates to a copper-clad laminate, a printed wiring board, and a semiconductor package.
 近年の電子機器の小型化及び高性能化により、プリント配線板では配線密度の高度化及び高集積化が進展し、これに伴ってプリント配線板用の銅張積層板への信頼性向上の要求が強まっている。
 銅張積層板は絶縁層と銅箔とを積層してなるものであり、一般的には、ガラスクロスに樹脂を含浸してなるプリプレグと銅箔とを積層して、加熱及び加圧することで製造される。得られた銅張積層板は、その後、回路を形成された後、アニール処理、リフロー処理等の加熱処理が施され、該銅張積層板を用いたプリント配線板が製造される。
Due to the miniaturization and higher performance of electronic devices in recent years, the wiring density and integration of printed wiring boards have become higher and higher, and along with this, there has been a demand for improved reliability of copper-clad laminates for printed wiring boards. is getting stronger.
Copper-clad laminates are made by laminating an insulating layer and copper foil, and are generally made by laminating prepreg made of glass cloth impregnated with resin and copper foil, and then heating and pressurizing them. Manufactured. The obtained copper-clad laminate is then formed with a circuit, and then subjected to heat treatment such as annealing treatment and reflow treatment to produce a printed wiring board using the copper-clad laminate.
 前記のように、プリント配線板の製造過程においては、プリプレグ等の絶縁層と銅箔とが積層された状態で複数の加熱処理が施されるが、その際に、絶縁層と銅箔との間に、膨れ(以下、「ブリスター」ともいう)が発生することがあり、耐熱性が課題となっている。当該ブリスターは、銅張積層板の歩留まりの悪化、プリント配線板の信頼性の低下等の原因になるため、その発生が抑制されるほどの耐熱性を有することが望まれている。 As mentioned above, in the manufacturing process of printed wiring boards, an insulating layer such as prepreg and copper foil are laminated and subjected to multiple heat treatments. During this period, blisters (hereinafter also referred to as "blisters") may occur, making heat resistance an issue. Since the blisters cause deterioration in the yield of copper-clad laminates, deterioration in reliability of printed wiring boards, etc., it is desired that the blisters have sufficient heat resistance to suppress their occurrence.
 特に、近年、地球環境保護の観点から、はんだの鉛フリー化が進行しており、プリント配線板への部品実装時及び半導体パッケージ組み立て時におけるリフロー工程の温度が非常に高くなっている。また、生産効率の向上を目的として積層成形時の加熱温度を高くすることもあり、銅張積層板に付与される熱履歴は益々過酷になりつつあり、銅張積層板の耐熱性をさらに高める要求が強まっている。 In particular, in recent years, from the perspective of protecting the global environment, lead-free solder has been promoted, and the temperature of the reflow process when mounting components on printed wiring boards and assembling semiconductor packages has become extremely high. In addition, the heating temperature during lamination molding is sometimes raised to improve production efficiency, and the thermal history imparted to copper-clad laminates is becoming increasingly severe, making it necessary to further improve the heat resistance of copper-clad laminates. Demand is increasing.
 銅張積層板の耐ブリスター性等の耐熱性を向上させることを目的として種々の検討が行われている。例えば、特許文献1には、樹脂を含有する絶縁層と、該絶縁層の少なくとも一方の面に配置された銅箔と、を含む銅張積層板であり、前記銅箔が、亜鉛を含有する金属処理層を有する表面処理銅箔であり、前記金属処理層における亜鉛の含有量が、10~2,500μg/dmの銅張積層板が開示されている。 Various studies have been conducted with the aim of improving the heat resistance, such as the blister resistance, of copper-clad laminates. For example, Patent Document 1 discloses a copper-clad laminate including an insulating layer containing a resin and a copper foil disposed on at least one surface of the insulating layer, the copper foil containing zinc. A copper-clad laminate is disclosed, which is a surface-treated copper foil having a metal treatment layer, and the metal treatment layer has a zinc content of 10 to 2,500 μg/dm 2 .
国際公開第2020/017551号International Publication No. 2020/017551
 特許文献1に記載のプリント基板は、確かに耐ブリスター性が高く、耐熱性に優れている。一方で、同時に、近年の高水準の低伝送損失化の要求にも応えるためには、低伝送損失化について更なる改善の余地がある。
 そこで、本開示の目的は、耐熱性に優れ、且つ、低伝送損失化された銅張積層板、当該銅張積層板を有するプリント配線板及び半導体パッケージを提供することにある。
The printed circuit board described in Patent Document 1 certainly has high blister resistance and excellent heat resistance. On the other hand, at the same time, in order to meet the recent high-level demands for low transmission loss, there is still room for further improvement in low transmission loss.
Therefore, an object of the present disclosure is to provide a copper-clad laminate that has excellent heat resistance and low transmission loss, and a printed wiring board and semiconductor package that include the copper-clad laminate.
 本発明者らは、鋭意研究した結果、本開示によって、前記課題を解決できることを見出した。 As a result of intensive research, the present inventors found that the above-mentioned problems can be solved by the present disclosure.
 本開示は、下記[1]~[6]の実施形態を含む。
[1]樹脂を含有する絶縁層と、該絶縁層の少なくとも一方の面に配置された銅箔と、を含む銅張積層板であり、
 前記銅箔が、絶縁層と対向する面の表面粗さRzが0.30~0.60μmであり、且つ、ケイ素を80~300μg/dm含有する金属処理層を有する表面処理銅箔である、銅張積層板。
[2]前記金属処理層が、さらに、亜鉛、ニッケル、コバルト及びモリブデンからなる群から選択される1種以上の金属を含有する、上記[1]に記載の銅張積層板。
[3]前記金属処理層における、亜鉛の含有量が、10~2,500μg/dmである、上記[2]に記載の銅張積層板。
[4]前記金属処理層における、ニッケル、コバルト及びモリブデンからなる群から選択される1種以上の金属の合計含有量が10~2,500μg/dmである、上記[2]又は[3]に記載の銅張積層板。
[5]上記[1]~[4]のいずれかに記載の銅張積層板を有するプリント配線板。
[6]上記[5]に記載のプリント配線板と、半導体素子と、を有する半導体パッケージ。
The present disclosure includes the embodiments [1] to [6] below.
[1] A copper-clad laminate including an insulating layer containing a resin and a copper foil disposed on at least one surface of the insulating layer,
The copper foil is a surface-treated copper foil having a surface roughness Rz of 0.30 to 0.60 μm on the surface facing the insulating layer and a metal treatment layer containing 80 to 300 μg/ dm2 of silicon. , copper clad laminate.
[2] The copper-clad laminate according to [1] above, wherein the metal treatment layer further contains one or more metals selected from the group consisting of zinc, nickel, cobalt, and molybdenum.
[3] The copper-clad laminate according to [2] above, wherein the metal-treated layer has a zinc content of 10 to 2,500 μg/dm 2 .
[4] [2] or [3] above, wherein the metal treatment layer has a total content of one or more metals selected from the group consisting of nickel, cobalt, and molybdenum of 10 to 2,500 μg/dm 2 Copper-clad laminate described in .
[5] A printed wiring board having the copper-clad laminate according to any one of [1] to [4] above.
[6] A semiconductor package comprising the printed wiring board according to [5] above and a semiconductor element.
 本開示により、耐熱性に優れ、且つ、低伝送損失化された銅張積層板、当該銅張積層板を有するプリント配線板及び半導体パッケージを提供することができる。 According to the present disclosure, it is possible to provide a copper-clad laminate that has excellent heat resistance and low transmission loss, and a printed wiring board and semiconductor package that include the copper-clad laminate.
実施例1及び比較例1における伝送損失の試験結果を示すグラフである。2 is a graph showing transmission loss test results in Example 1 and Comparative Example 1.
 本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。また、数値範囲の下限値及び上限値は、それぞれ他の数値範囲の下限値及び上限値と任意に組み合わせられる。数値範囲「AA~BB」という表記においては、両端の数値AA及びBBがそれぞれ下限値及び上限値として数値範囲に含まれる。
 本開示において、例えば、「10以上」という記載は、10及び10を超える数値を意味し、数値が異なる場合もこれに準ずる。また、例えば、「10以下」という記載は、10及び10未満の数値を意味し、数値が異なる場合もこれに準ずる。
 また、本開示中に例示する各成分及び材料は、特に断らない限り、1種を単独で使用してもよいし、2種以上を併用してもよい。本開示において、組成物中の各成分の含有量は、組成物中に各成分に該当する物質が複数存在する場合、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
In the numerical ranges described in this disclosure, the upper limit or lower limit of the numerical range may be replaced with the values shown in the Examples. Further, the lower limit value and upper limit value of the numerical range can be arbitrarily combined with the lower limit value and upper limit value of other numerical ranges, respectively. In the notation of a numerical range "AA to BB", the numerical values AA and BB at both ends are included in the numerical range as the lower limit value and upper limit value, respectively.
In this disclosure, for example, the description "10 or more" means 10 and a numerical value exceeding 10, and this applies even if the numerical values are different. Further, for example, the description "10 or less" means a numerical value of 10 and less than 10, and this applies even if the numerical values are different.
Moreover, each component and material illustrated in this disclosure may be used alone, or two or more types may be used in combination, unless otherwise specified. In the present disclosure, if there are multiple substances corresponding to each component in the composition, unless otherwise specified, the content of each component in the composition refers to the total amount of the multiple substances present in the composition. means.
 本開示において、「樹脂成分」とは、樹脂組成物を構成する固形分のうち、後述する無機充填材等の無機化合物を除く、すべての成分のことをいう。
 本開示において、「固形分」とは、後述する有機溶媒以外の成分のことを意味し、25℃で液体状の成分も固形分とみなす。
 本開示中に記載されている「XXを含有する」という表現は、XXが反応し得る場合にはXXが反応した状態で含有するか、又は、単にXXを含有すること、のいずれの態様であってもよいことを意味する。
 本開示における記載事項を任意に組み合わせた態様も本開示及び実施形態に含まれる。
In the present disclosure, the term "resin component" refers to all components of the solid content constituting the resin composition, excluding inorganic compounds such as inorganic fillers described below.
In the present disclosure, "solid content" refers to components other than the organic solvent described below, and components that are liquid at 25° C. are also considered to be solid content.
In the present disclosure, the expression "contains XX" refers to either containing XX in a reacted state when XX can react, or simply containing XX. It means that it is possible.
Aspects in which the items described in this disclosure are arbitrarily combined are also included in the present disclosure and embodiments.
[銅張積層板]
 本開示は、樹脂を含有する絶縁層(以下、単に「絶縁層」とも称する。)と、該絶縁層の少なくとも一方の面に配置された銅箔と、を含む銅張積層板であり、前記銅箔が、絶縁層と対向する面の表面粗さRzが0.30~0.60μmであり、且つ、ケイ素を80~300μg/dm含有する金属処理層を有する表面処理銅箔である、銅張積層板を提供する。
 なお、以下の説明において、本実施形態の銅張積層板が有する、「絶縁層と対向する面の表面粗さRzが0.30~0.60μmであり、且つ、ケイ素を80~300μg/dm含有する金属処理層を有する表面処理銅箔」を「表面処理銅箔(I)」と称することがある。当該銅箔において、絶縁層と対向する面は粗化された面となっており、粗化された面を「マット面」と称することがある。当該マット面は、金属処理層上に存在する。
[Copper-clad laminate]
The present disclosure is a copper-clad laminate including an insulating layer containing a resin (hereinafter also simply referred to as an "insulating layer") and a copper foil disposed on at least one surface of the insulating layer, The copper foil is a surface-treated copper foil having a surface roughness Rz of 0.30 to 0.60 μm on the surface facing the insulating layer and a metal treatment layer containing 80 to 300 μg/ dm2 of silicon. Provides copper-clad laminates.
In the following description, the copper-clad laminate of this embodiment has "a surface roughness Rz of 0.30 to 0.60 μm on the surface facing the insulating layer, and a silicon content of 80 to 300 μg/dm. A surface-treated copper foil having a metal treatment layer containing 2 is sometimes referred to as a ``surface-treated copper foil (I)''. In the copper foil, the surface facing the insulating layer is a roughened surface, and the roughened surface is sometimes referred to as a "matte surface." The matte surface is present on the metallization layer.
 本実施形態の銅張積層板は、絶縁層と、該絶縁層の少なくとも一方の面に表面処理銅箔(I)が配置された構成を含むものであれば、その構成は特に限定されない。
 本実施形態の銅張積層板が銅箔を2枚以上含む場合、2枚以上の銅箔は、表面処理銅箔(I)のみであってもよく、表面処理銅箔(I)と、表面処理銅箔(I)以外の銅箔との組み合わせであってもよい。
The structure of the copper-clad laminate of this embodiment is not particularly limited as long as it includes an insulating layer and a surface-treated copper foil (I) disposed on at least one surface of the insulating layer.
When the copper-clad laminate of this embodiment includes two or more sheets of copper foil, the two or more sheets of copper foil may be only the surface-treated copper foil (I), or the surface-treated copper foil (I) and the surface A combination with a copper foil other than the treated copper foil (I) may be used.
 銅張積層板の構成としては、絶縁層の一方の面又は両面に銅箔が積層されたものであってもよく、1層以上の絶縁層と1層以上の銅箔とが交互に層形成されたものであってもよい。また、両面に銅箔を有するコア基板の一方又は両方の面に、1層以上の絶縁層と1層以上の銅箔とが交互に層形成されたものであってもよい。
 本実施形態の銅張積層板に含まれる絶縁層の層数は、1層以上であればよく、その用途に応じて、例えば、2~20枚から適宜選択してもよい。
 本実施形態の銅張積層板に含まれる銅箔の枚数は、1枚以上であり、その用途に応じて、例えば、2~20枚から適宜選択してもよい。
 さらに、本実施形態の銅張積層板が有する銅箔は、後述する方法によって回路が形成されていてもよい。
 なお、前記説明において、単に「銅箔」と記載する場合、該用語は、銅張積層板が「表面処理銅箔(I)」のみを含む態様の場合は「表面処理銅箔(I)」を指し、銅張積層板が「表面処理銅箔(I)」と「表面処理銅箔(I)以外の銅箔」とを含む態様の場合は、「表面処理銅箔(I)」及び「表面処理銅箔(I)以外の銅箔」の両者を指すものとする。
 本実施形態の銅張積層板の厚さは、特に限定されず、銅張積層板の用途に応じて適宜決定すればよいが、好ましくは0.03~1.6mmである。
 次に、本実施形態の銅張積層板が有する表面処理銅箔(I)及び絶縁層について説明する。
The copper-clad laminate may have a structure in which copper foil is laminated on one or both sides of an insulating layer, and one or more insulating layers and one or more copper foil layers are alternately formed. It may be something that has been done. Alternatively, one or more insulating layers and one or more copper foils may be alternately formed on one or both sides of a core substrate having copper foils on both sides.
The number of insulating layers included in the copper-clad laminate of this embodiment may be one or more, and may be appropriately selected from, for example, 2 to 20, depending on the application.
The number of copper foils included in the copper-clad laminate of this embodiment is one or more, and may be appropriately selected from, for example, 2 to 20, depending on the application.
Furthermore, a circuit may be formed in the copper foil of the copper-clad laminate of this embodiment by a method described later.
In addition, in the above description, when simply stating "copper foil", the term is used as "surface-treated copper foil (I)" in the case where the copper-clad laminate includes only "surface-treated copper foil (I)". In the case where the copper-clad laminate includes "surface-treated copper foil (I)" and "copper foil other than surface-treated copper foil (I),""surface-treated copper foil (I)" and ""copper foil other than surface-treated copper foil (I)".
The thickness of the copper-clad laminate of this embodiment is not particularly limited, and may be appropriately determined depending on the use of the copper-clad laminate, but is preferably 0.03 to 1.6 mm.
Next, the surface-treated copper foil (I) and the insulating layer included in the copper-clad laminate of this embodiment will be explained.
<表面処理銅箔(I)>
 本実施形態の銅張積層板が有する表面処理銅箔(I)は、絶縁層と対向する面(マット面)の表面粗さRzが0.30~0.60μmであり、且つ、ケイ素を80~300μg/dm含有する金属処理層を有するものである。ここで、本実施形態において、ケイ素の含有量は蛍光X線分析で分析した値であり、詳細には実施例に記載の方法に従って測定したものである。また、本実施形態において、表面粗さは、JIS B0601(2013年)に準拠して、接触式粗さ計を用いて測定した十点平均粗さRzであり、詳細には実施例に記載の方法に従って測定したものである。
 なお、本開示において、金属処理層中における特定の元素の含有量とは、1層当たりの金属処理層中における前記特定の元素の含有量を意味する。従って、表面処理銅箔(I)が両面に金属処理層を有する場合は、金属処理層中における特定の元素の含有量とは、両面の金属処理層のうち、片面の金属処理層中における前記特定の元素の含有量を意味する。
<Surface treated copper foil (I)>
The surface-treated copper foil (I) of the copper-clad laminate of this embodiment has a surface roughness Rz of 0.30 to 0.60 μm on the surface facing the insulating layer (matte surface), and has a silicon content of 80 μm. It has a metal treatment layer containing ~300 μg/dm 2 . Here, in this embodiment, the silicon content is a value analyzed by fluorescent X-ray analysis, and in detail, it is measured according to the method described in Examples. In addition, in this embodiment, the surface roughness is a ten-point average roughness Rz measured using a contact roughness meter in accordance with JIS B0601 (2013), and in detail, as described in Examples. It was measured according to the method.
Note that in the present disclosure, the content of a specific element in the metal treatment layer means the content of the specific element in the metal treatment layer per layer. Therefore, when the surface-treated copper foil (I) has metal-treated layers on both sides, the content of a specific element in the metal-treated layer is defined as the content of a specific element in the metal-treated layer on one side of the metal-treated layers on both sides. Refers to the content of a specific element.
 前記金属処理層におけるケイ素の含有量が80μg/dm以上であることにより、表面処理銅箔(I)と絶縁層との密着性が高まり、耐熱性のさらなる向上に繋がる。また、前記金属処理層におけるケイ素の含有量が300μg/dm以下であることにより、伝送損失の悪化を抑制できる。当該観点から、前記金属処理層は、ケイ素を80~300μg/dm含有しており、ケイ素を90~250μg/dm含有することが好ましく、ケイ素を100~200μg/dm含有することがより好ましく、ケイ素を100~150μg/dm含有することがさらに好ましく、ケイ素を105~135μg/dm含有することが特に好ましい。
 前記金属処理層におけるケイ素の含有量を前記所定範囲とする方法に特に制限はなく、例えば、銅箔について、絶縁層と対向する面を、シランカップリング剤の量を調整しながらシランカップリング剤で表面処理する方法等が挙げられる。また、金属処理層におけるケイ素の含有量が前記所定範囲内である市販されている銅箔を使用することもできる。そのような銅箔としては、例えば、三井金属株式会社製の銅箔から選択することができる。
When the silicon content in the metal treatment layer is 80 μg/dm 2 or more, the adhesion between the surface treated copper foil (I) and the insulating layer increases, leading to further improvement in heat resistance. Further, by setting the silicon content in the metal treatment layer to 300 μg/dm 2 or less, deterioration of transmission loss can be suppressed. From this point of view, the metal treatment layer contains 80 to 300 μg/dm 2 of silicon, preferably 90 to 250 μg/dm 2 , and more preferably 100 to 200 μg/dm 2 of silicon. Preferably, the silicon content is more preferably 100 to 150 μg/dm 2 , and particularly preferably 105 to 135 μg/dm 2 .
There is no particular restriction on the method of bringing the silicon content in the metal treatment layer within the predetermined range. For example, for copper foil, the surface facing the insulating layer may be coated with a silane coupling agent while adjusting the amount of the silane coupling agent. Examples include a method of surface treatment. Moreover, a commercially available copper foil in which the silicon content in the metal treatment layer is within the above-mentioned predetermined range can also be used. Such copper foil can be selected from, for example, copper foil manufactured by Mitsui Kinzoku Co., Ltd.
 また、絶縁層と対向する面(マット面)の表面粗さRzが0.30μm以上であることにより、絶縁層と銅箔との密着性が高くなることで耐熱性が良好となり、0.60μm以下であることにより、低伝送損失化が可能となる。当該観点から、絶縁層と対向する面(マット面)の表面粗さRzは0.30~0.60μmであり、好ましくは0.35~0.55μm、より好ましくは0.40~0.55μm、さらに好ましくは0.45~0.55μmである。
 当該表面粗さRzを有する銅箔を作製する方法としては、銅箔について、絶縁層と対向する面を粗化処理する方法等が挙げられる。粗化処理の方法及び条件は、表面粗さRzが前記範囲内となる限りにおいて特に制限はされず、従来公知の方法及び条件を適宜調整すればよいが、例えば、銅等の電気めっきによって、銅箔の表面に微細な凹凸を有する皮膜を付着させる方法が挙げられる。粗化処理前には、適宜、酸洗浄等の前処理を行ってもよい。
In addition, since the surface roughness Rz of the surface facing the insulating layer (matte surface) is 0.30 μm or more, the adhesion between the insulating layer and the copper foil increases, resulting in good heat resistance. By satisfying the following, it is possible to reduce transmission loss. From this point of view, the surface roughness Rz of the surface facing the insulating layer (matte surface) is 0.30 to 0.60 μm, preferably 0.35 to 0.55 μm, more preferably 0.40 to 0.55 μm. , more preferably 0.45 to 0.55 μm.
Examples of a method for producing a copper foil having the surface roughness Rz include a method of roughening the surface of the copper foil that faces the insulating layer. The method and conditions of the roughening treatment are not particularly limited as long as the surface roughness Rz is within the above range, and conventionally known methods and conditions may be adjusted as appropriate. For example, by electroplating of copper or the like, A method of attaching a film having fine irregularities to the surface of copper foil can be mentioned. Before the roughening treatment, a pretreatment such as acid washing may be performed as appropriate.
 なお、前記金属処理層は、さらに、亜鉛、ニッケル、コバルト及びモリブデンからなる群から選択される1種以上の金属を含有していてもよい。
 金属処理層中における亜鉛の含有量は、特に制限されるものではないが、好ましくは10~2,500μg/dmであり、より好ましくは15~1,000μg/dm、さらに好ましくは20~500μg/dm、特に好ましくは25~300μg/dm、最も好ましくは30~200μg/dmである。
 金属処理層中における亜鉛の含有量が、前記下限値以上であると、十分な防錆効果が得られ、微細配線性に優れる傾向にあり、前記上限値以下であると、耐ブリスター性に優れる、ひいては耐熱性に優れる傾向がある。
Note that the metal treatment layer may further contain one or more metals selected from the group consisting of zinc, nickel, cobalt, and molybdenum.
The content of zinc in the metal treatment layer is not particularly limited, but is preferably from 10 to 2,500 μg/dm 2 , more preferably from 15 to 1,000 μg/dm 2 , even more preferably from 20 to 1,000 μg/dm 2 500 μg/dm 2 , particularly preferably 25-300 μg/dm 2 , most preferably 30-200 μg/dm 2 .
When the content of zinc in the metal treatment layer is at least the above-mentioned lower limit value, a sufficient rust prevention effect is obtained and tends to be excellent in fine wiring property, and when it is below the above-mentioned upper limit value, excellent blister resistance is obtained. , and thus tend to have excellent heat resistance.
 亜鉛を含有する金属処理層にする方法としては、特に制限されないが、亜鉛を用いためっき処理が好ましい。亜鉛を用いためっき処理は、亜鉛めっき処理又は亜鉛合金めっき処理のいずれであってもよく、亜鉛合金めっき処理であることが好ましい。
 亜鉛合金めっき処理による場合、亜鉛と合金を形成する金属としては、ニッケル、コバルト及びモリブデンからなる群から選択される1種以上の金属が挙げられる。亜鉛合金の具体例としては、亜鉛-ニッケル合金、亜鉛-コバルト合金、亜鉛-モリブデン合金、亜鉛-コバルト-モリブデン合金等が挙げられ、これらの中でも、亜鉛-ニッケル合金、亜鉛-コバルト-モリブデン合金が好ましい。
The method of forming the metal treatment layer containing zinc is not particularly limited, but plating treatment using zinc is preferred. The plating treatment using zinc may be either zinc plating treatment or zinc alloy plating treatment, and preferably zinc alloy plating treatment.
In the case of zinc alloy plating, the metal that forms an alloy with zinc includes one or more metals selected from the group consisting of nickel, cobalt, and molybdenum. Specific examples of zinc alloys include zinc-nickel alloy, zinc-cobalt alloy, zinc-molybdenum alloy, zinc-cobalt-molybdenum alloy, etc. Among these, zinc-nickel alloy and zinc-cobalt-molybdenum alloy are preferable.
 前記金属処理層は、ニッケル、コバルト及びモリブデンからなる群から選択される1種以上の金属を含有することによって、得られる銅張積層板は、より一層、耐ブリスター性に優れる、ひいては耐熱性に優れるものとなる傾向がある。特に、前記金属処理層が亜鉛を含有する場合、耐熱性が不十分となるおそれがあるため、亜鉛を含有した上で、さらに、ニッケル、コバルト及びモリブデンからなる群から選択される1種以上の金属を含有することが好ましい。
 前記金属処理層におけるニッケル、コバルト及びモリブデンからなる群から選択される1種以上の金属の合計含有量は、好ましくは10~2,500μg/dm、より好ましくは40~1,000μg/dm、さらに好ましくは60~500μg/dm、特に好ましくは100~300μg/dm、最も好ましくは150~200μg/dmである。
 前記金属処理層は、ニッケル、コバルト及びモリブデンからなる群から選択される1種以上の金属のうち、ニッケルを含有することが好ましく、ニッケルを含有していて、コバルト及びモリブデンを含有していなくてもよい。
By containing one or more metals selected from the group consisting of nickel, cobalt, and molybdenum in the metal treatment layer, the resulting copper-clad laminate has even better blister resistance and further heat resistance. It tends to be better. In particular, if the metal treatment layer contains zinc, the heat resistance may be insufficient. Preferably, it contains metal.
The total content of one or more metals selected from the group consisting of nickel, cobalt and molybdenum in the metal treatment layer is preferably 10 to 2,500 μg/dm 2 , more preferably 40 to 1,000 μg/dm 2 , more preferably 60 to 500 μg/dm 2 , particularly preferably 100 to 300 μg/dm 2 , and most preferably 150 to 200 μg/dm 2 .
The metal treatment layer preferably contains nickel from among one or more metals selected from the group consisting of nickel, cobalt, and molybdenum, and contains nickel and does not contain cobalt or molybdenum. Good too.
 前記金属処理層は、防錆処理及び樹脂との密着性向上の観点から、さらにクロムを含有していてもよい。前記金属処理層がクロムを含有する場合、クロムの含有量は、好ましくは10~200μg/dm、より好ましくは20~150μg/dm、さらに好ましくは30~100μg/dm、特に好ましくは40~80μg/dm、最も好ましくは50~80μg/dmである。
 クロムを含有する金属処理層にする方法としては、特に制限されないが、例えば、クロメート処理(防錆処理)等が挙げられる。クロメート処理によって、銅箔の酸化を抑制することができ、回路形成時に微細配線を良好に形成できる傾向がある。クロメート処理は、電解クロメート処理又は浸漬クロメート処理のいずれであってもよいが、付着量の安定性等の観点から、電解クロメート処理が好ましい。
The metal treatment layer may further contain chromium from the viewpoint of rust prevention treatment and improvement of adhesion to the resin. When the metal treatment layer contains chromium, the chromium content is preferably 10 to 200 μg/dm 2 , more preferably 20 to 150 μg/dm 2 , even more preferably 30 to 100 μg/dm 2 , particularly preferably 40 μg/dm 2 . ~80 μg/dm 2 , most preferably 50-80 μg/dm 2 .
The method for forming a metal treatment layer containing chromium is not particularly limited, and examples thereof include chromate treatment (rust prevention treatment) and the like. The chromate treatment can suppress oxidation of the copper foil, and tends to facilitate the formation of fine wiring during circuit formation. The chromate treatment may be either electrolytic chromate treatment or immersion chromate treatment, but electrolytic chromate treatment is preferred from the viewpoint of stability of the amount of adhesion.
 本実施形態の銅張積層板に含まれる銅箔は、特に限定されず、圧延銅箔であってもよいし、電解銅箔であってもよいが、電解銅箔であることが好ましい。 The copper foil included in the copper-clad laminate of this embodiment is not particularly limited, and may be rolled copper foil or electrolytic copper foil, but electrolytic copper foil is preferable.
 表面処理銅箔(I)の厚さは、銅張積層板の用途等に応じて適宜決定すればよいが、好ましくは1~120μm、より好ましくは3~60μm、さらに好ましくは5~40μm、特に好ましくは10~25μmである。また、半導体パッケージをより薄型化する観点からは、好ましくは35μm以下、より好ましくは25μm以下、さらに好ましくは20μm以下である。 The thickness of the surface-treated copper foil (I) may be determined as appropriate depending on the use of the copper-clad laminate, but preferably 1 to 120 μm, more preferably 3 to 60 μm, even more preferably 5 to 40 μm, especially Preferably it is 10 to 25 μm. Further, from the viewpoint of making the semiconductor package thinner, the thickness is preferably 35 μm or less, more preferably 25 μm or less, and still more preferably 20 μm or less.
<絶縁層>
 本実施形態の銅張積層板が有する樹脂を含有する絶縁層は、特に限定されず、所望する特性に応じて従来公知の絶縁樹脂材料の中から適宜選択してもよい。
 絶縁層は、熱硬化性樹脂組成物の硬化物を含有するものであることが好ましく、熱硬化性樹脂組成物がガラスクロス等のシート状補強基材に含浸されて形成されたプリプレグの硬化物であることがより好ましい。
<Insulating layer>
The resin-containing insulating layer of the copper-clad laminate of this embodiment is not particularly limited, and may be appropriately selected from conventionally known insulating resin materials depending on desired characteristics.
The insulating layer preferably contains a cured product of a thermosetting resin composition, and may be a cured prepreg formed by impregnating a sheet-like reinforcing base material such as glass cloth with the thermosetting resin composition. It is more preferable that
 前記熱硬化性樹脂組成物は、熱硬化性樹脂を含有するものであれば特に限定されない。
 熱硬化性樹脂としては、マレイミド化合物、エポキシ樹脂、フェノール樹脂、シアネート樹脂、イソシアネート樹脂、ベンゾオキサジン樹脂、オキセタン樹脂、アミノ樹脂、不飽和ポリエステル樹脂、アリル樹脂、ジシクロペンタジエン樹脂、シリコーン樹脂、トリアジン樹脂、メラミン樹脂等が挙げられる。これらは、1種を単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、耐熱性、成形性及び低熱膨張性の観点から、マレイミド化合物、エポキシ樹脂、フェノール樹脂が好ましく、マレイミド化合物がより好ましい。
The thermosetting resin composition is not particularly limited as long as it contains a thermosetting resin.
Thermosetting resins include maleimide compounds, epoxy resins, phenol resins, cyanate resins, isocyanate resins, benzoxazine resins, oxetane resins, amino resins, unsaturated polyester resins, allyl resins, dicyclopentadiene resins, silicone resins, and triazine resins. , melamine resin, etc. These may be used alone or in combination of two or more. Among these, maleimide compounds, epoxy resins, and phenol resins are preferred, and maleimide compounds are more preferred, from the viewpoints of heat resistance, moldability, and low thermal expansion.
 前記熱硬化性樹脂組成物は、より一層の耐熱性及び低伝送損失化を高める観点、並びに優れた銅箔接着性、低熱膨張性等を得る観点から、ポリフェニレンエーテル誘導体(A)、硬化促進剤(B)、マレイミド化合物(C)、無機充填材(D)、難燃剤(E)及び熱可塑性エラストマー(F)[以下、それぞれ、(A)成分、(B)成分、(C)成分、(D)成分、(E)成分、(F)成分と称することがある。]を含有することが好ましい。当該熱硬化性樹脂組成物を含む絶縁層であれば、前記銅箔との密着性が良好となって耐熱性が向上する傾向、及び低伝送損失化される傾向にある。
 以下、各成分の好適な態様について説明する。
The thermosetting resin composition contains a polyphenylene ether derivative (A), a curing accelerator, from the viewpoint of further increasing heat resistance and low transmission loss, and from the viewpoint of obtaining excellent copper foil adhesion, low thermal expansion, etc. (B), maleimide compound (C), inorganic filler (D), flame retardant (E), and thermoplastic elastomer (F) [hereinafter referred to as (A) component, (B) component, (C) component, ( They may be referred to as D) component, (E) component, and (F) component. ] It is preferable to contain. An insulating layer containing the thermosetting resin composition tends to have good adhesion to the copper foil, improve heat resistance, and tend to reduce transmission loss.
Hereinafter, preferred embodiments of each component will be explained.
(ポリフェニレンエーテル誘導体(A))
 ポリフェニレンエーテル誘導体(A)は、下記一般式(I)で表される構造単位を有するものであることが好ましく、高周波特性、導体との高接着性、高ガラス転移温度、低熱膨張性及び高難燃性の観点から、N-置換マレイミド構造含有基及び下記一般式(I)で表される構造単位を有するものであることがより好ましい。
Figure JPOXMLDOC01-appb-C000001

(式中、Rは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。xは0~4の整数である。)
(Polyphenylene ether derivative (A))
The polyphenylene ether derivative (A) preferably has a structural unit represented by the following general formula (I), and has high frequency properties, high adhesion to conductors, high glass transition temperature, low thermal expansion, and high difficulty. From the viewpoint of flammability, it is more preferable to have an N-substituted maleimide structure-containing group and a structural unit represented by the following general formula (I).
Figure JPOXMLDOC01-appb-C000001

(In the formula, each R 1 is independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom. x is an integer of 0 to 4.)
 前記一般式(I)中のRが表す脂肪族炭化水素基としては、メチル基、エチル基、n-プロピル基、イソプロピル基等が挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基であることが好ましく、メチル基であることが好ましい。また、ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 以上の中でも、Rとしては炭素数1~5の脂肪族炭化水素基であることが好ましい。
Examples of the aliphatic hydrocarbon group represented by R 1 in the general formula (I) include methyl group, ethyl group, n-propyl group, and isopropyl group. The aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, and preferably a methyl group. Further, examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, an iodine atom, and the like.
Among the above, R 1 is preferably an aliphatic hydrocarbon group having 1 to 5 carbon atoms.
 xは0~4の整数であり、0~2の整数であることが好ましく、2であることが好ましい。なお、xが1又は2である場合、Rはベンゼン環上のオルト位(但し、酸素原子の置換位置を基準とする。)に置換していてもよい。また、xが2以上である場合、複数のR同士は同一であっても異なっていてもよい。 x is an integer of 0 to 4, preferably an integer of 0 to 2, and preferably 2. In addition, when x is 1 or 2, R 1 may be substituted at the ortho position on the benzene ring (however, based on the substitution position of the oxygen atom). Further, when x is 2 or more, the plurality of R 1s may be the same or different.
 ポリフェニレンエーテル誘導体(A)がN-置換マレイミド構造含有基を有する場合、当該N-置換マレイミド構造含有基の数は、1個以上であればよく、特に制限はないが、1個又は2個であることが好ましく、1個であることがより好ましい。
 前記N-置換マレイミド構造含有基としては、高周波特性、導体との接着性、耐熱性、ガラス転移温度、低熱膨張性及び難燃性の観点から、2つのマレイミド基の窒素原子同士が有機基を介して結合しているビスマレイミド構造(但し、該構造に由来する構造も含まれる。ここで、該構造に由来する構造とは、マレイミド基が有する炭素-炭素二重結合が官能基(アミノ基等)と反応した構造等である。)を含有する基であることが好ましい。前記N-置換マレイミド構造含有基としては、下記一般式(Z)で表される基であることがより好ましい。
Figure JPOXMLDOC01-appb-C000002

(式中、Rは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。yは0~4の整数である。Aは、後述する一般式(II)、(III)、(IV)又は(V)で表される基である。)
When the polyphenylene ether derivative (A) has an N-substituted maleimide structure-containing group, the number of the N-substituted maleimide structure-containing groups may be one or more, and is not particularly limited, but may be one or two. It is preferable that there be one, and more preferably one.
The N-substituted maleimide structure-containing group is selected from the viewpoints of high frequency properties, adhesion to conductors, heat resistance, glass transition temperature, low thermal expansion, and flame retardancy, in which the nitrogen atoms of two maleimide groups form an organic group. bismaleimide structure (however, structures derived from this structure are also included). Here, the structure derived from this structure means that the carbon-carbon double bond of the maleimide group is connected to a functional group (amino group). etc.) is preferable. The N-substituted maleimide structure-containing group is more preferably a group represented by the following general formula (Z).
Figure JPOXMLDOC01-appb-C000002

(In the formula, R 2 is each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom. y is an integer of 0 to 4. A 1 is the general formula (II) described below, (III), (IV) or (V).)
 Rが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。
 yは0~4の整数であり、0~2の整数であることが好ましく、0であることがより好ましい。yが2以上の整数である場合、複数のR同士は同一であっても異なっていてもよい。
The aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 2 are explained in the same manner as in the case of R 1 .
y is an integer of 0 to 4, preferably an integer of 0 to 2, and more preferably 0. When y is an integer of 2 or more, the plurality of R 2 's may be the same or different.
 Aが表す、一般式(II)、(III)、(IV)又は(V)で表される基は、以下のとおりである。
Figure JPOXMLDOC01-appb-C000003
The group represented by general formula (II), (III), (IV) or (V) represented by A 1 is as follows.
Figure JPOXMLDOC01-appb-C000003
(式中、Rは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。pは0~4の整数である。)
 Rが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。
(In the formula, each R 3 is independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom. p is an integer of 0 to 4.)
The aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 3 are explained in the same manner as in the case of R 1 .
 pは0~4の整数であり、入手容易性の観点から、0~2の整数であることが好ましく、0又は1であることがより好ましく、0であることがさらに好ましい。pが2以上の整数である場合、複数のR同士は同一であっても異なっていてもよい。 p is an integer of 0 to 4, preferably an integer of 0 to 2 from the viewpoint of availability, more preferably 0 or 1, and even more preferably 0. When p is an integer of 2 or more, the plurality of R 3 's may be the same or different.
Figure JPOXMLDOC01-appb-C000004

(式中、R及びRは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基、単結合又は下記一般式(III-1)で表される基である。q及びrは各々独立に0~4の整数である。)
Figure JPOXMLDOC01-appb-C000004

(In the formula, R 4 and R 5 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom. A 2 is an alkylene group having 1 to 5 carbon atoms, an alkylidene group having 2 to 5 carbon atoms, group, ether group, sulfide group, sulfonyl group, carbonyloxy group, keto group, single bond, or a group represented by the following general formula (III-1). q and r are each independently an integer of 0 to 4. be.)
 R及びRが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同じものが挙げられる。該脂肪族炭化水素基としては、炭素数1~3の脂肪族炭化水素基であることが好ましく、メチル基、エチル基であることがより好ましく、エチル基であることがさらに好ましい。 The aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 4 and R 5 include the same ones as in the case of R 1 . The aliphatic hydrocarbon group is preferably an aliphatic hydrocarbon group having 1 to 3 carbon atoms, more preferably a methyl group or an ethyl group, and even more preferably an ethyl group.
 Aが表す炭素数1~5のアルキレン基としては、メチレン基、1,2-ジメチレン基、1,3-トリメチレン基、1,4-テトラメチレン基、1,5-ペンタメチレン基等が挙げられる。該アルキレン基としては、高周波特性、導体との接着性、耐熱性、ガラス転移温度、低熱膨張性及び難燃性の観点から、炭素数1~3のアルキレン基であることが好ましく、メチレン基であることがより好ましい。 Examples of the alkylene group having 1 to 5 carbon atoms represented by A 2 include a methylene group, a 1,2-dimethylene group, a 1,3-trimethylene group, a 1,4-tetramethylene group, a 1,5-pentamethylene group, etc. It will be done. The alkylene group is preferably an alkylene group having 1 to 3 carbon atoms from the viewpoint of high frequency characteristics, adhesion with conductors, heat resistance, glass transition temperature, low thermal expansion and flame retardancy, and methylene groups are preferable. It is more preferable that there be.
 Aが表す炭素数2~5のアルキリデン基としては、エチリデン基、プロピリデン基、イソプロピリデン基、ブチリデン基、イソブチリデン基、ペンチリデン基、イソペンチリデン基等が挙げられる。これらの中でも、高周波特性、導体との接着性、耐熱性、ガラス転移温度、低熱膨張性及び難燃性の観点から、イソプロピリデン基であることが好ましい。
 Aとしては、上記選択肢の中でも、炭素数1~5のアルキレン基、炭素数2~5のアルキリデン基であることが好ましい。
Examples of the alkylidene group having 2 to 5 carbon atoms represented by A 2 include ethylidene group, propylidene group, isopropylidene group, butylidene group, isobutylidene group, pentylidene group, and isopentylidene group. Among these, isopropylidene groups are preferred from the viewpoints of high frequency properties, adhesion to conductors, heat resistance, glass transition temperature, low thermal expansion, and flame retardancy.
Among the above options, A 2 is preferably an alkylene group having 1 to 5 carbon atoms or an alkylidene group having 2 to 5 carbon atoms.
 q及びrは各々独立に0~4の整数であり、入手容易性の観点から、いずれも、0~2の整数であることが好ましく、0又は2であることがより好ましい。q又はrが2以上の整数である場合、複数のR同士又はR同士は、それぞれ同一であっても異なっていてもよい。 q and r are each independently an integer of 0 to 4, and from the viewpoint of availability, both are preferably integers of 0 to 2, more preferably 0 or 2. When q or r is an integer of 2 or more, the plurality of R 4s or R 5s may be the same or different.
 なお、Aが表す一般式(III-1)で表される基は以下のとおりである。
Figure JPOXMLDOC01-appb-C000005

(式中、R及びRは各々独立に、炭素数1~5の脂肪族炭化水素基又はハロゲン原子である。Aは炭素数1~5のアルキレン基、イソプロピリデン基、エーテル基、スルフィド基、スルホニル基、カルボニルオキシ基、ケト基又は単結合である。s及びtは各々独立に0~4の整数である。)
In addition, the group represented by the general formula (III-1) represented by A 2 is as follows.
Figure JPOXMLDOC01-appb-C000005

(In the formula, R 6 and R 7 are each independently an aliphatic hydrocarbon group having 1 to 5 carbon atoms or a halogen atom. A 3 is an alkylene group having 1 to 5 carbon atoms, an isopropylidene group, an ether group, A sulfide group, a sulfonyl group, a carbonyloxy group, a keto group, or a single bond. s and t are each independently an integer of 0 to 4.)
 R及びRが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、R及びRの場合と同様に説明される。 The aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 6 and R 7 are explained in the same manner as in the case of R 4 and R 5 .
 Aが表す炭素数1~5のアルキレン基としては、Aが表す炭素数1~5のアルキレン基と同じものが挙げられる。
 Aとしては、上記選択肢の中でも、炭素数2~5のアルキリデン基が好ましい。
 s及びtは0~4の整数であり、入手容易性の観点から、いずれも、0~2の整数であることが好ましく、0又は1であることがより好ましく、0であることがさらに好ましい。s又はtが2以上の整数である場合、複数のR同士又はR同士は、それぞれ同一であっても異なっていてもよい。
Figure JPOXMLDOC01-appb-C000006

(式中、nは0~15の整数である。)
The alkylene group having 1 to 5 carbon atoms represented by A 3 is the same as the alkylene group having 1 to 5 carbon atoms represented by A 2 .
Among the above options, A 3 is preferably an alkylidene group having 2 to 5 carbon atoms.
s and t are integers of 0 to 4, and from the viewpoint of availability, both are preferably integers of 0 to 2, more preferably 0 or 1, and even more preferably 0. . When s or t is an integer of 2 or more, the plurality of R 6 or R 7 may be the same or different.
Figure JPOXMLDOC01-appb-C000006

(In the formula, n is an integer from 0 to 15.)
 nは、入手容易性の観点から、0~5であることが好ましく、0~3であることがより好ましい。 From the viewpoint of availability, n is preferably 0 to 5, more preferably 0 to 3.
Figure JPOXMLDOC01-appb-C000007

(式中、R及びRは各々独立に、水素原子又は炭素数1~5の脂肪族炭化水素基である。uは1~8の整数である。)
Figure JPOXMLDOC01-appb-C000007

(In the formula, R 8 and R 9 are each independently a hydrogen atom or an aliphatic hydrocarbon group having 1 to 5 carbon atoms. u is an integer of 1 to 8.)
 R及びRが表す炭素数1~5の脂肪族炭化水素基、ハロゲン原子としては、Rの場合と同様に説明される。
 uは1~8の整数であり、1~3の整数であることが好ましく、1であることが好ましい。
The aliphatic hydrocarbon group having 1 to 5 carbon atoms and the halogen atom represented by R 8 and R 9 are explained in the same manner as in the case of R 1 .
u is an integer of 1 to 8, preferably an integer of 1 to 3, and preferably 1.
 ポリフェニレンエーテル誘導体(A)は、下記一般式(A’)で表されるポリフェニレンエーテル誘導体であることが好ましい。
Figure JPOXMLDOC01-appb-C000008

(式中、A、R、R、x及びyは前記定義のとおりである。mは1以上の整数である。)
The polyphenylene ether derivative (A) is preferably a polyphenylene ether derivative represented by the following general formula (A').
Figure JPOXMLDOC01-appb-C000008

(In the formula, A 1 , R 1 , R 2 , x and y are as defined above. m is an integer of 1 or more.)
 mは、1~300の整数であることが好ましく、10~300の整数であることがより好ましく、30~200の整数であることがさらに好ましく、50~150の整数であることが特に好ましい。 m is preferably an integer of 1 to 300, more preferably an integer of 10 to 300, even more preferably an integer of 30 to 200, particularly preferably an integer of 50 to 150.
 また、ポリフェニレンエーテル誘導体(A)は、下記式(A’-1)~(A’-4)のいずれかで表されるポリフェニレンエーテル誘導体であることがより好ましい。 Further, the polyphenylene ether derivative (A) is more preferably a polyphenylene ether derivative represented by any of the following formulas (A'-1) to (A'-4).
Figure JPOXMLDOC01-appb-C000009

(式中、mは前記一般式(A’)中のmと同じであり、好ましい範囲も同じである。)
Figure JPOXMLDOC01-appb-C000009

(In the formula, m is the same as m in the general formula (A'), and the preferred range is also the same.)
 原材料が安価であるという観点から、上記式(A’-1)のポリフェニレンエーテル誘導体であることが好ましく、誘電特性に優れ、低吸水性であるという観点から、上記式(A’-2)のポリフェニレンエーテル誘導体であることが好ましく、導体との接着性及び機械特性(伸び、破断強度等)に優れるという観点から、上記式(A'-3)又は上記式(A'-4)のポリフェニレンエーテル誘導体であることが好ましい。従って、目的とする特性に合わせて、上記式(A’-1)~(A’-4)のいずれかで表されるポリフェニレンエーテル誘導体の1種を単独で用いるか、又は2種以上を併用することができる。 From the viewpoint of low cost raw materials, polyphenylene ether derivatives of the above formula (A'-1) are preferred, and from the viewpoint of excellent dielectric properties and low water absorption, polyphenylene ether derivatives of the above formula (A'-2) are preferred. Polyphenylene ether derivatives are preferable, and from the viewpoint of excellent adhesion with conductors and mechanical properties (elongation, breaking strength, etc.), polyphenylene ethers of the above formula (A'-3) or the above formula (A'-4) Derivatives are preferred. Therefore, depending on the desired characteristics, one type of polyphenylene ether derivative represented by any of the above formulas (A'-1) to (A'-4) may be used alone, or two or more types may be used in combination. can do.
 ポリフェニレンエーテル誘導体(A)の数平均分子量としては、4,000~14,000であることが好ましく、5,000~12,000であることがより好ましく、7,000~12,000であることがさらに好ましく、7,000~10,000であることが特に好ましい。また、ポリフェニレンエーテル誘導体(A)の数平均分子量は4,000~8,000であってもよく、4,000~6,500であってもよい。数平均分子量が4,000以上であれば、本発明の樹脂組成物、それを用いたプリプレグ及び積層板において、より良好なガラス転移温度が得られる傾向にある。また、数平均分子量が、14,000以下であれば、本発明の樹脂組成物を積層板に用いた際に、より良好な成形性が得られる傾向にある。
 なお、本開示において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した値であり、より詳細には実施例に記載の数平均分子量の測定方法により求めた値である。
The number average molecular weight of the polyphenylene ether derivative (A) is preferably 4,000 to 14,000, more preferably 5,000 to 12,000, and more preferably 7,000 to 12,000. is more preferable, and particularly preferably 7,000 to 10,000. Further, the number average molecular weight of the polyphenylene ether derivative (A) may be from 4,000 to 8,000, or from 4,000 to 6,500. When the number average molecular weight is 4,000 or more, a better glass transition temperature tends to be obtained in the resin composition of the present invention, prepregs and laminates using the same. Moreover, when the number average molecular weight is 14,000 or less, better moldability tends to be obtained when the resin composition of the present invention is used for a laminate.
In addition, in this disclosure, the number average molecular weight is a value calculated from a calibration curve using standard polystyrene by gel permeation chromatography (GPC), and more specifically, the number average molecular weight measurement method described in Examples. This is the value obtained by
(硬化促進剤(B))
 硬化促進剤(B)は、有機過酸化物、イミダゾール系硬化促進剤、リン系硬化促進剤からなる群より選ばれる少なくとも1種を含有することが好ましい。(B)成分を含有させることで耐熱性等をより一層向上させることができる。(B)成分は1種を単独で使用してもよいし、2種以上を併用してもよい。
(Curing accelerator (B))
The curing accelerator (B) preferably contains at least one selected from the group consisting of organic peroxides, imidazole curing accelerators, and phosphorus curing accelerators. By containing component (B), heat resistance etc. can be further improved. Component (B) may be used alone or in combination of two or more.
 有機過酸化物としては、特に制限されないが、t-ブチルパーオキシイソプロピルモノカーボネート、1,1-ジ(t-ヘキシルパーオキシ)シクロヘキサン、ビス(1-フェニル-1-メチルエチル)ペルオキシド、ジイソプロピルベンゼンヒドロパーオキサイド及びα,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼンからなる群より選ばれる少なくとも1種を含有することが好ましい。 Examples of organic peroxides include, but are not limited to, t-butylperoxyisopropyl monocarbonate, 1,1-di(t-hexylperoxy)cyclohexane, bis(1-phenyl-1-methylethyl)peroxide, and diisopropylbenzene. It is preferable to contain at least one member selected from the group consisting of hydroperoxide and α,α'-bis(t-butylperoxy)diisopropylbenzene.
 イミダゾール系硬化促進剤としては、特に制限されないが、メチルイミダゾール、フェニルイミダゾール、2-ウンデシルイミダゾール等のイミダゾール化合物;ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物等のイソシアネートマスクイミダゾール等が挙げられる。 Examples of imidazole curing accelerators include, but are not limited to, imidazole compounds such as methylimidazole, phenylimidazole, and 2-undecylimidazole; isocyanate masks such as addition reaction products of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole; Examples include imidazole.
 リン系硬化促進剤としては、トリフェニルホスフィン等の第3級ホスフィン;p-ベンゾキノンのトリ-n-ブチルホスフィン付加反応物等の第4級ホスホニウム化合物などが挙げられる。 Examples of the phosphorus-based curing accelerator include tertiary phosphines such as triphenylphosphine; and quaternary phosphonium compounds such as tri-n-butylphosphine addition reaction products of p-benzoquinone.
(熱硬化性樹脂(C))
 熱硬化性樹脂(C)は、エポキシ樹脂、シアネート樹脂及びマレイミド化合物からなる群より選択される少なくとも1種であることが好ましく、マレイミド化合物であることがより好ましい。なお、当該マレイミド化合物は、前記ポリフェニレンエーテル誘導体(A)を包含しない。
(Thermosetting resin (C))
The thermosetting resin (C) is preferably at least one selected from the group consisting of an epoxy resin, a cyanate resin, and a maleimide compound, and more preferably a maleimide compound. Note that the maleimide compound does not include the polyphenylene ether derivative (A).
 エポキシ樹脂としては、2個以上のエポキシ基を有するエポキシ樹脂であることが好ましい。ここで、エポキシ樹脂は、グリシジルエーテルタイプのエポキシ樹脂、グリシジルアミンタイプのエポキシ樹脂、グリシジルエステルタイプのエポキシ樹脂等に分類される。これらの中でも、グリシジルエーテルタイプのエポキシ樹脂を選択してもよい。 The epoxy resin is preferably an epoxy resin having two or more epoxy groups. Here, the epoxy resin is classified into glycidyl ether type epoxy resin, glycidyl amine type epoxy resin, glycidyl ester type epoxy resin, and the like. Among these, glycidyl ether type epoxy resins may be selected.
 エポキシ樹脂は、主骨格の違いによっても種々のエポキシ樹脂に分類され、上記それぞれのタイプのエポキシ樹脂において、さらに、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;脂環式エポキシ樹脂;脂肪族鎖状エポキシ樹脂;フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂;フェノールアラルキル型エポキシ樹脂;スチルベン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂;ナフトールノボラック型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂等のナフタレン骨格含有型エポキシ樹脂;ビフェニル型エポキシ樹脂;ビフェニルアラルキル型エポキシ樹脂;キシリレン型エポキシ樹脂;ジヒドロアントラセン型エポキシ樹脂;ジシクロペンタジエン型エポキシ樹脂などに分類される。 Epoxy resins are classified into various epoxy resins depending on the main skeleton, and in each of the above types of epoxy resins, there are also bisphenol type epoxy resins such as bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol S type epoxy resin, etc. Epoxy resin; alicyclic epoxy resin; aliphatic chain epoxy resin; novolak epoxy resin such as phenol novolak epoxy resin, cresol novolak epoxy resin, bisphenol A novolak epoxy resin, bisphenol F novolak epoxy resin; phenol aralkyl type epoxy resin; stilbene type epoxy resin; dicyclopentadiene type epoxy resin; naphthalene skeleton-containing type epoxy resin such as naphthol novolak type epoxy resin, naphthol aralkyl type epoxy resin; biphenyl type epoxy resin; biphenyl aralkyl type epoxy resin; xylylene type epoxy It is classified into resins; dihydroanthracene type epoxy resins; dicyclopentadiene type epoxy resins, etc.
 エポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、高周波特性、耐熱性、ガラス移転温度、低熱膨張性及び難燃性等の観点から、ナフタレン骨格含有型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂が好ましい。 One type of epoxy resin may be used alone, or two or more types may be used in combination. Among these, naphthalene skeleton-containing epoxy resins and biphenylaralkyl epoxy resins are preferred from the viewpoints of high frequency properties, heat resistance, glass transition temperature, low thermal expansion, flame retardance, and the like.
 シアネート樹脂は特に限定されるものではないが、2,2-ビス(4-シアナトフェニル)プロパン、ビス(4-シアナトフェニル)エタン、ビス(3,5-ジメチル-4-シアナトフェニル)メタン、2,2-ビス(4-シアナトフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン、α,α’-ビス(4-シアナトフェニル)-m-ジイソプロピルベンゼン、フェノール付加ジシクロペンタジエン重合体のシアネート化合物、フェノールノボラック型シアネート化合物、クレゾールノボラック型シアネート化合物等が挙げられる。シアネート樹脂は1種を単独で用いてもよく、2種以上を併用してもよい。これらの中でも、製造コストの観点、並びに高周波特性及びその他特性の総合バランスの観点から、2,2-ビス(4-シアナトフェニル)プロパンを用いることが好ましい。 Cyanate resins are not particularly limited, but include 2,2-bis(4-cyanatophenyl)propane, bis(4-cyanatophenyl)ethane, and bis(3,5-dimethyl-4-cyanatophenyl). Methane, 2,2-bis(4-cyanatophenyl)-1,1,1,3,3,3-hexafluoropropane, α,α'-bis(4-cyanatophenyl)-m-diisopropylbenzene, Examples include cyanate compounds of phenol-added dicyclopentadiene polymers, phenol novolak-type cyanate compounds, and cresol novolac-type cyanate compounds. One type of cyanate resin may be used alone, or two or more types may be used in combination. Among these, 2,2-bis(4-cyanatophenyl)propane is preferably used from the viewpoint of production cost and overall balance of high frequency properties and other properties.
 マレイミド化合物としては特に限定されるものではないが、少なくとも2個のN-置換マレイミド構造含有基を有するマレイミド化合物、及びアミノ変性ビスマレイミド化合物のうちの少なくとも1種が好ましい。有機溶媒への溶解性、高周波特性、導体との接着性及びプリプレグの成形性の観点から、該マレイミド化合物としてはアミノ変性ビスマレイミド化合物であることが好ましい。 The maleimide compound is not particularly limited, but at least one of a maleimide compound having at least two N-substituted maleimide structure-containing groups and an amino-modified bismaleimide compound is preferred. The maleimide compound is preferably an amino-modified bismaleimide compound from the viewpoints of solubility in organic solvents, high frequency properties, adhesion to conductors, and prepreg moldability.
 マレイミド化合物としては、特に限定されないが、ビス(4-マレイミドフェニル)メタン、ポリフェニルメタンマレイミド、ビス(4-マレイミドフェニル)エーテル、ビス(4-マレイミドフェニル)スルホン、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド、4-メチル-1,3-フェニレンビスマレイミド、m-フェニレンビスマレイミド、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン、ビス(4-マレイミドフェニル)スルフィド、ビス(4-マレイミドフェニル)ケトン、ビス(4-(4-マレイミドフェノキシ)フェニル)スルホン、4,4’-ビス(3-マレイミドフェノキシ)ビフェニル、1,6-ビスマレイミド-(2,2,4-トリメチル)ヘキサン等が挙げられる。 Examples of maleimide compounds include, but are not limited to, bis(4-maleimidophenyl)methane, polyphenylmethanemaleimide, bis(4-maleimidophenyl)ether, bis(4-maleimidophenyl)sulfone, 3,3'-dimethyl-5 , 5'-diethyl-4,4'-diphenylmethane bismaleimide, 4-methyl-1,3-phenylene bismaleimide, m-phenylene bismaleimide, 2,2-bis(4-(4-maleimidophenoxy)phenyl)propane , bis(4-maleimidophenyl) sulfide, bis(4-maleimidophenyl)ketone, bis(4-(4-maleimidophenoxy)phenyl)sulfone, 4,4'-bis(3-maleimidophenoxy)biphenyl, 1,6 -bismaleimide-(2,2,4-trimethyl)hexane and the like.
 アミノ変性ビスマレイミド化合物はビスマレイミド化合物にアミン化合物を反応させて得られるがそのアミン化合物としては、特に限定されるものではないが、有機溶媒への溶解性が高く、合成時の反応率が高く、かつ耐熱性を高くできる観点から、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノ-3,3’-ジメチル-ジフェニルメタン、4,4’-ジアミノ-3,3’-ジエチル-ジフェニルメタン、2,2-ビス(4-(4-アミノフェノキシ)フェニル)プロパン、4,4’-[1,3-フェニレンビス(1-メチルエチリデン)]ビスアニリン、4,4’-[1,4-フェニレンビス(1-メチルエチリデン)]ビスアニリン等が挙げられる。 Amino-modified bismaleimide compounds are obtained by reacting a bismaleimide compound with an amine compound.The amine compound is not particularly limited, but it has high solubility in organic solvents and a high reaction rate during synthesis. , and from the viewpoint of increasing heat resistance, 4,4'-diaminodiphenylmethane, 4,4'-diamino-3,3'-dimethyl-diphenylmethane, 4,4'-diamino-3,3'-diethyl-diphenylmethane, 2,2-bis(4-(4-aminophenoxy)phenyl)propane, 4,4'-[1,3-phenylenebis(1-methylethylidene)]bisaniline, 4,4'-[1,4-phenylene Examples include bis(1-methylethylidene)]bisaniline.
(無機充填材(D))
 無機充填材(D)としては、特に制限されるものではないが、シリカ、アルミナ、酸化チタン、マイカ、ベリリア、チタン酸バリウム、チタン酸カリウム、チタン酸ストロンチウム、チタン酸カルシウム、炭酸アルミニウム、水酸化マグネシウム、水酸化アルミニウム、ケイ酸アルミニウム、炭酸カルシウム、ケイ酸カルシウム、ケイ酸マグネシウム、窒化ケイ素、窒化ホウ素、焼成クレー等のクレー、モリブデン酸亜鉛等のモリブデン酸化合物、タルク、ホウ酸アルミニウム、炭化ケイ素などが挙げられる。(D)成分は1種を単独で使用してもよいし、2種以上を併用してもよい。また、無機充填材の形状及び粒子径に特に制限はないが、粒子径0.01~20μm、好ましくは0.1~10μmのものが好適に用いられる。ここで、本開示において粒子径とは、平均粒子径を指し、粒子の全体積を100%として粒子径による累積度数分布曲線を求めた時、体積50%に相当する点の粒子径のことである。レーザ回折散乱法を用いた粒度分布測定装置等で測定することができる。
(Inorganic filler (D))
Inorganic fillers (D) include, but are not limited to, silica, alumina, titanium oxide, mica, beryllia, barium titanate, potassium titanate, strontium titanate, calcium titanate, aluminum carbonate, and hydroxide. Magnesium, aluminum hydroxide, aluminum silicate, calcium carbonate, calcium silicate, magnesium silicate, silicon nitride, boron nitride, clay such as calcined clay, molybdate compounds such as zinc molybdate, talc, aluminum borate, silicon carbide Examples include. Component (D) may be used alone or in combination of two or more. Further, there are no particular restrictions on the shape and particle size of the inorganic filler, but those with a particle size of 0.01 to 20 μm, preferably 0.1 to 10 μm are suitably used. Here, in the present disclosure, the particle diameter refers to the average particle diameter, and refers to the particle diameter at a point corresponding to 50% of the volume when a cumulative frequency distribution curve according to the particle diameter is calculated with the total volume of the particles as 100%. be. It can be measured using a particle size distribution measuring device using a laser diffraction scattering method.
 (D)成分を用いる場合、(D)成分の分散性や(D)成分と樹脂組成物中の有機成分との密着性を向上させる目的でカップリング剤を併用することが好ましい。カップリング剤としては特に限定されるものではなく、例えば、各種のシランカップリング剤やチタネートカップリング剤を用いることができる。これらは1種を単独で用いても、2種以上を併用してもよい。 When using component (D), it is preferable to use a coupling agent in combination for the purpose of improving the dispersibility of component (D) and the adhesion between component (D) and the organic component in the resin composition. The coupling agent is not particularly limited, and for example, various silane coupling agents and titanate coupling agents can be used. These may be used alone or in combination of two or more.
(難燃剤(E))
 難燃剤(E)としては、リン系難燃剤、金属水和物、ハロゲン系難燃剤等が挙げられる。(E)成分は、環境問題の観点から、リン系難燃剤及び金属水和物からなる群より選ばれる少なくとも1種であることが好ましく、リン系難燃剤及び金属水和物を併用することがより好ましい。難燃剤(E)は、1種を単独で用いてもよく、2種以上を併用してもよい。
(Flame retardant (E))
Examples of the flame retardant (E) include phosphorus-based flame retardants, metal hydrates, halogen-based flame retardants, and the like. From the viewpoint of environmental issues, component (E) is preferably at least one selected from the group consisting of phosphorus-based flame retardants and metal hydrates, and it is preferable to use phosphorus-based flame retardants and metal hydrates together. More preferred. The flame retardant (E) may be used alone or in combination of two or more.
(熱可塑性エラストマー(F))
 熱可塑性エラストマー(F)としては、スチレン系エラストマー、オレフィン系エラストマー、ウレタン系エラストマー、ポリエステル系エラストマー、ポリアミド系エラストマー、アクリル系エラストマー、シリコーン系エラストマー、これらの誘導体等が挙げられる。これらの中でも、スチレン系エラストマーが好ましい。
 (F)成分は、1種を単独で使用してもよいし、2種以上を併用してもよい。
(Thermoplastic elastomer (F))
Examples of the thermoplastic elastomer (F) include styrene elastomers, olefin elastomers, urethane elastomers, polyester elastomers, polyamide elastomers, acrylic elastomers, silicone elastomers, and derivatives thereof. Among these, styrene elastomers are preferred.
Component (F) may be used alone or in combination of two or more.
 熱可塑性エラストマー(F)は、分子末端又は分子鎖中に反応性官能基を有していてもよいし、有していなくてもよい。反応性官能基としては、エポキシ基、水酸基、カルボキシ基、アミノ基、アミド基、イソシアナート基、アクリル基、メタクリル基、ビニル基等が挙げられる。熱可塑性エラストマー(F)がこれらの反応性官能基を分子末端又は分子鎖中に有する場合、他の樹脂成分との相溶性が向上し、基板の耐熱性をさらに向上できる傾向にある。 The thermoplastic elastomer (F) may or may not have a reactive functional group at the molecular end or in the molecular chain. Examples of the reactive functional group include an epoxy group, a hydroxyl group, a carboxy group, an amino group, an amide group, an isocyanate group, an acrylic group, a methacryl group, and a vinyl group. When the thermoplastic elastomer (F) has these reactive functional groups at the molecular ends or in the molecular chain, the compatibility with other resin components tends to improve, and the heat resistance of the substrate tends to be further improved.
 スチレン系エラストマーとしては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-ブタジエン-スチレンブロック共重合体の水素化物(例えば、SEBS、SBBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、スチレン-イソプレン-スチレンブロック共重合体の水素化物(SEPS)、スチレン-(イソプレン及びブタジエン)-スチレンブロック共重合体の水素化物(SEEPS)、及びスチレン-無水マレイン酸共重合体(SMA)等のスチレン系熱可塑性エラストマーが挙げられる。これらの中でも、比誘電率(Dk)、プリプレグ同士の非密着性及び耐クラック性等の観点から、SEBS、SEPS、スチレン-無水マレイン酸共重合体(SMA)が好ましく、SEBS、スチレン-無水マレイン酸共重合体(SMA)がより好ましい。ここで、前記SEBSは、スチレン-ブタジエン-スチレンブロック共重合体(SBS)のブタジエン単位全体を水素化したものであって、スチレン-エチレン-ブチレン-スチレンのそれぞれの頭文字をとって命名されたものであり、前記SBBSは、スチレン-ブタジエン-スチレンブロック共重合体(SBS)のブタジエン単位中の1,2-結合単位を選択的に水素化したものであって、スチレン-(1,4-ブタジエン)-ブチレン-スチレンのそれぞれの頭文字をとって命名されたものである。
 なお、スチレン系エラストマーの原料モノマーとしては、スチレンの他に、α-メチルスチレン、3-メチルスチレン、4-プロピルスチレン、4-シクロヘキシルスチレン等のスチレン誘導体を用いることができる。
 以上の中でも、スチレン系エラストマーとしてはSEBSが好ましい。
Styrene-based elastomers include styrene-butadiene-styrene block copolymers (SBS), hydrides of styrene-butadiene-styrene block copolymers (e.g., SEBS, SBBS), and styrene-isoprene-styrene block copolymers (SIS). ), hydrides of styrene-isoprene-styrene block copolymers (SEPS), hydrides of styrene-(isoprene and butadiene)-styrene block copolymers (SEEPS), and styrene-maleic anhydride copolymers (SMA) Examples include styrenic thermoplastic elastomers such as. Among these, SEBS, SEPS, and styrene-maleic anhydride copolymer (SMA) are preferred from the viewpoint of dielectric constant (Dk), non-adhesion between prepregs, and crack resistance. More preferred is an acid copolymer (SMA). Here, SEBS is a styrene-butadiene-styrene block copolymer (SBS) in which all butadiene units are hydrogenated, and is named after the initial letters of styrene-ethylene-butylene-styrene. The SBBS is a styrene-butadiene-styrene block copolymer (SBS) in which the 1,2-bond units in the butadiene units are selectively hydrogenated, and the SBBS is a styrene-(1,4- The name is derived from the initial letters of (butadiene), butylene, and styrene.
In addition to styrene, styrene derivatives such as α-methylstyrene, 3-methylstyrene, 4-propylstyrene, and 4-cyclohexylstyrene can be used as raw material monomers for the styrene-based elastomer.
Among the above, SEBS is preferred as the styrene elastomer.
(熱硬化性樹脂組成物中における各成分の含有量)
 熱硬化性樹脂組成物中における各成分の含有量は、特に制限されないが、例えば、以下に記載する範囲とすることができる。
 熱硬化性樹脂組成物が(A)成分を含有する場合、その含有量は、熱硬化性樹脂組成物中の樹脂成分総量100質量部に対して、好ましくは2~40質量部、より好ましくは5~35質量部、さらに好ましくは10~30質量部である。(A)成分の含有量が前記下限値以上であると、比誘電率に優れる傾向にある。一方、前記上限値以下であると、耐熱性、成形性及び加工性に優れる傾向にある。
 熱硬化性樹脂組成物が(B)成分を含有する場合、その含有量は、熱硬化性樹脂組成物中の樹脂成分総量100質量部に対して、好ましくは0.1~10質量部、より好ましくは0.3~5質量部、さらに好ましくは0.5~3質量部である。(B)成分の含有量が前記範囲内であると、良好な耐熱性、保存安定性及び成形性が得られる傾向にある。
 熱硬化性樹脂組成物が(C)成分を含有する場合、その含有量は、熱硬化性樹脂組成物中の樹脂成分総量100質量部に対して、好ましくは10~90質量部、より好ましくは20~85質量部、さらに好ましくは30~70質量部である。(C)成分の含有量が前記下限値以上であると、耐熱性、比誘電率及び低熱膨張性に優れる傾向にある。一方、(C)成分の含有量が前記上限値以下であると、流動性及び成形性に優れる傾向にある。
(Content of each component in thermosetting resin composition)
The content of each component in the thermosetting resin composition is not particularly limited, but may be within the ranges described below, for example.
When the thermosetting resin composition contains component (A), the content thereof is preferably 2 to 40 parts by mass, more preferably 2 to 40 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition. The amount is 5 to 35 parts by weight, more preferably 10 to 30 parts by weight. When the content of component (A) is equal to or higher than the lower limit, the dielectric constant tends to be excellent. On the other hand, when it is below the upper limit, heat resistance, moldability, and processability tend to be excellent.
When the thermosetting resin composition contains component (B), the content is preferably 0.1 to 10 parts by mass, more preferably 0.1 to 10 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition. The amount is preferably 0.3 to 5 parts by weight, more preferably 0.5 to 3 parts by weight. When the content of component (B) is within the above range, good heat resistance, storage stability, and moldability tend to be obtained.
When the thermosetting resin composition contains component (C), the content is preferably 10 to 90 parts by mass, more preferably 10 to 90 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition. The amount is 20 to 85 parts by weight, more preferably 30 to 70 parts by weight. When the content of component (C) is equal to or higher than the lower limit, heat resistance, dielectric constant, and low thermal expansion properties tend to be excellent. On the other hand, when the content of component (C) is below the upper limit, fluidity and moldability tend to be excellent.
 熱硬化性樹脂組成物が(D)成分を含有する場合、その含有量は、熱硬化性樹脂組成物中の樹脂成分総量100質量部に対して、好ましくは30~200質量部、より好ましくは40~150質量部、さらに好ましくは45~120質量部、特に好ましくは60~100質量部である。(D)成分の含有量が前記下限値以上であると、低熱膨張性に優れる傾向にある。一方、前記上限値以下であると、耐熱性、流動性及び成形性に優れる傾向にある。
 熱硬化性樹脂組成物が(E)成分を含有する場合、その含有量は、熱硬化性樹脂組成物中の樹脂成分総量100質量部に対して、好ましくは2~40質量部、より好ましくは5~35質量部、さらに好ましくは10~30質量部である。(E)成分の含有量が、前記下限値以上であると、十分な難燃性が得られる傾向にある。一方、前記上限値以下であると、耐熱性及び成形性に優れる傾向にある。
 熱硬化性樹脂組成物が(F)成分を含有する場合、その含有量は、熱硬化性樹脂組成物中の樹脂成分総量100質量部に対して、好ましくは1~40質量部、より好ましくは3~30質量部、さらに好ましくは5~25質量部である。(F)成分の含有量が、前記下限値以上であると、比誘電率に優れる傾向にある。一方、前記上限値以下であると、良好な耐熱性、成形性、加工性及び難燃性が得られる傾向にある。
When the thermosetting resin composition contains component (D), the content thereof is preferably 30 to 200 parts by mass, more preferably 30 to 200 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition. The amount is 40 to 150 parts by weight, more preferably 45 to 120 parts by weight, particularly preferably 60 to 100 parts by weight. When the content of component (D) is equal to or higher than the lower limit, low thermal expansion properties tend to be excellent. On the other hand, when it is below the upper limit, heat resistance, fluidity and moldability tend to be excellent.
When the thermosetting resin composition contains component (E), the content thereof is preferably 2 to 40 parts by mass, more preferably 2 to 40 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition. The amount is 5 to 35 parts by weight, more preferably 10 to 30 parts by weight. When the content of component (E) is at least the lower limit, sufficient flame retardancy tends to be obtained. On the other hand, when it is below the upper limit, heat resistance and moldability tend to be excellent.
When the thermosetting resin composition contains component (F), the content thereof is preferably 1 to 40 parts by mass, more preferably 1 to 40 parts by mass, based on 100 parts by mass of the total amount of resin components in the thermosetting resin composition. The amount is 3 to 30 parts by weight, more preferably 5 to 25 parts by weight. When the content of component (F) is equal to or higher than the lower limit, the dielectric constant tends to be excellent. On the other hand, when it is below the upper limit, good heat resistance, moldability, workability, and flame retardancy tend to be obtained.
(その他の成分)
 熱硬化性樹脂組成物は、さらに、本実施形態の効果を損なわない範囲で、着色剤、酸化防止剤、還元剤、紫外線吸収剤、蛍光増白剤、密着性向上剤、有機充填材等のその他の成分を含有していてもよい。これらは、各々について、1種を単独で使用してもよいし、2種以上を併用してもよい。
(Other ingredients)
The thermosetting resin composition may further contain colorants, antioxidants, reducing agents, ultraviolet absorbers, optical brighteners, adhesion improvers, organic fillers, etc., within a range that does not impair the effects of the present embodiment. It may also contain other ingredients. Each of these may be used alone or in combination of two or more.
(有機溶媒)
 本発明の樹脂組成物は、誘電特性の観点、取り扱いを容易にするという観点及び後述するプリプレグを製造し易くする観点から、有機溶媒を含有させて固形分濃度を調整することが好ましい。
 有機溶媒としては、エタノール、プロパノール、ブタノール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系溶媒;テトラヒドロフラン等のエーテル系溶媒;トルエン、キシレン、メシチレン等の芳香族系溶媒;ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン等の窒素原子含有溶媒;ジメチルスルホキシド等の硫黄原子含有溶媒;γ-ブチロラクトン等のエステル系溶媒などが挙げられる。これらは1種を単独で用いてもよく、2種以上を併用してもよい。
(organic solvent)
The resin composition of the present invention preferably contains an organic solvent to adjust the solid content concentration from the viewpoint of dielectric properties, ease of handling, and ease of manufacturing the prepreg described below.
Examples of organic solvents include alcohol solvents such as ethanol, propanol, butanol, methyl cellosolve, butyl cellosolve, and propylene glycol monomethyl ether; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone; ether solvents such as tetrahydrofuran; toluene, Examples include aromatic solvents such as xylene and mesitylene; nitrogen atom-containing solvents such as dimethylformamide, dimethylacetamide, and N-methylpyrrolidone; sulfur atom-containing solvents such as dimethyl sulfoxide; and ester solvents such as γ-butyrolactone. These may be used alone or in combination of two or more.
〔プリプレグの製造方法〕
 前記絶縁層がプリプレグを硬化してなるものである場合、該プリプレグは、例えば、前記熱硬化性樹脂組成物を、シート状補強基材に含浸又は塗工し、加熱等により半硬化(Bステージ化)させて製造することができる。ここで、本開示において、B-ステージ化とは、JIS K6900(1994年)にて定義されるB-ステージの状態にすることである。
 シート状補強基材に熱硬化性樹脂組成物を含浸又は塗工する際、熱硬化性樹脂組成物は、メチルエチルケトン等の有機溶媒によって希釈されたワニスの状態であってもよい。ワニス中の不揮発分濃度は、例えば、40~80質量%であり、好ましくは50~75質量%である。
 含浸後の乾燥条件は特に限定されないが、加熱温度は、好ましくは120~200℃、より好ましくは140~180℃であり、加熱時間は、好ましくは30秒~30分間、より好ましくは1~10分間である。
[Method for manufacturing prepreg]
When the insulating layer is formed by curing a prepreg, the prepreg is obtained by, for example, impregnating or coating a sheet-like reinforcing base material with the thermosetting resin composition, and semi-curing (B stage) by heating or the like. can be manufactured by Here, in the present disclosure, "B-staging" refers to making a B-stage state defined in JIS K6900 (1994).
When impregnating or coating a sheet-like reinforcing base material with a thermosetting resin composition, the thermosetting resin composition may be in the form of a varnish diluted with an organic solvent such as methyl ethyl ketone. The concentration of nonvolatile matter in the varnish is, for example, 40 to 80% by mass, preferably 50 to 75% by mass.
The drying conditions after impregnation are not particularly limited, but the heating temperature is preferably 120 to 200°C, more preferably 140 to 180°C, and the heating time is preferably 30 seconds to 30 minutes, more preferably 1 to 10 minutes. It is a minute.
 プリプレグのシート状補強基材としては、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。シート状補強基材の材質としては、紙、コットンリンター等の天然繊維;ガラス繊維、アスベスト等の無機物繊維;アラミド、ポリイミド、ポリビニルアルコール、ポリエステル、テトラフルオロエチレン、アクリル等の有機繊維;これらの混合物などが挙げられる。これらの中でも、難燃性の観点から、ガラス繊維が好ましい。ガラス繊維基材としては、Eガラス、Cガラス、Dガラス、Sガラス等を用いたガラスクロス又は短繊維を有機バインダーで接着したガラスクロス;ガラス繊維とセルロース繊維とを混抄したもの等が挙げられる。これらの中でも、Eガラスを使用したガラスクロスが好ましい。
 これらのシート状補強基材は、織布、不織布、ロービンク、チョップドストランドマット又はサーフェシングマット等の形状を有する。なお、材質及び形状は、目的とする成形物の用途、性能等により選択され、1種を単独で使用してもよいし、必要に応じて、2種以上の材質及び形状を組み合わせることもできる。
 プリプレグの厚さは、成形性及び高密度配線を可能にする観点から、好ましくは0.01~0.5mm、より好ましくは0.02~0.3mm、さらに好ましくは0.05~0.2mmである。
As the prepreg sheet-like reinforcing base material, well-known materials used in various electrically insulating material laminates can be used. Materials for the sheet-like reinforcing base material include natural fibers such as paper and cotton linters; inorganic fibers such as glass fiber and asbestos; organic fibers such as aramid, polyimide, polyvinyl alcohol, polyester, tetrafluoroethylene, and acrylic; mixtures thereof. Examples include. Among these, glass fiber is preferred from the viewpoint of flame retardancy. Examples of the glass fiber base material include glass cloth using E glass, C glass, D glass, S glass, etc.; glass cloth made by bonding short fibers with an organic binder; and a mixture of glass fiber and cellulose fiber. . Among these, glass cloth using E glass is preferred.
These sheet-like reinforcing base materials have a shape such as a woven fabric, a non-woven fabric, a raw binder, a chopped strand mat, or a surfacing mat. The material and shape are selected depending on the purpose, performance, etc. of the intended molded product, and one type can be used alone, or two or more types of materials and shapes can be combined as necessary. .
The thickness of the prepreg is preferably 0.01 to 0.5 mm, more preferably 0.02 to 0.3 mm, and even more preferably 0.05 to 0.2 mm, from the viewpoint of moldability and enabling high-density wiring. It is.
 銅張積層板に含まれる絶縁層の厚さは、成形性及び高密度配線を可能にする観点から、好ましくは0.01~0.5mm、より好ましくは0.02~0.3mm、さらに好ましくは0.05~0.2mmである。 The thickness of the insulating layer included in the copper-clad laminate is preferably 0.01 to 0.5 mm, more preferably 0.02 to 0.3 mm, and even more preferably is 0.05 to 0.2 mm.
〔銅張積層板の製造方法〕
 本実施形態の銅張積層板は、本発明のプリプレグと金属箔とを含有してなる積層板である。本発明の積層板は、例えば、前記本発明のプリプレグの製造方法により得られたプリプレグと金属箔とを積層し、プレス法によって加熱及び加圧して硬化することによって製造できる。
[Method for manufacturing copper-clad laminates]
The copper-clad laminate of this embodiment is a laminate containing the prepreg of the present invention and metal foil. The laminate of the present invention can be manufactured, for example, by laminating the prepreg obtained by the prepreg manufacturing method of the present invention and metal foil, and curing the prepreg by heating and pressurizing using a pressing method.
 金属箔の金属としては、電気絶縁材料用途で用いられるものであれば特に制限されないが、導電性の観点から、銅、金、銀、ニッケル、白金、モリブデン、ルテニウム、アルミニウム、タングステン、鉄、チタン、クロム又はこれらの金属元素のうちの少なくとも1種を含む合金であることが好ましく、銅、アルミニウムであることが好ましく、銅であることが好ましい。 The metal of the metal foil is not particularly limited as long as it is used for electrical insulating materials, but from the viewpoint of conductivity copper, gold, silver, nickel, platinum, molybdenum, ruthenium, aluminum, tungsten, iron, titanium , chromium, or an alloy containing at least one of these metal elements, preferably copper or aluminum, and preferably copper.
 加熱加圧成形の条件は特に制限されるものではないが、例えば、温度が100~300℃、圧力が0.2~10.0MPa、時間が0.1~5時間の範囲で実施することができる。また加熱加圧成形は真空プレス等を用いて真空状態を0.5~5時間保持する方法を採用できる。 The conditions for heat and pressure molding are not particularly limited, but for example, it may be carried out at a temperature of 100 to 300°C, a pressure of 0.2 to 10.0 MPa, and a time of 0.1 to 5 hours. can. Further, the heating and pressure molding can be carried out by using a vacuum press or the like and maintaining a vacuum state for 0.5 to 5 hours.
[プリント配線板]
 本実施形態のプリント配線板は、本実施形態の銅張積層板を有するプリント配線板である。
 本実施形態のプリント配線板は、本実施形態の銅張積層板の銅箔に対して回路加工を施すことにより製造することができる。回路加工は、例えば、銅箔表面にレジストパターンを形成後、エッチングにより不要部分の銅箔を除去し、レジストパターンを除去後、ドリルにより必要なスルーホールを形成し、再度レジストパターンを形成後、スルーホールに導通させるためのメッキを施し、最後にレジストパターンを除去して行うことができる。得られたプリント配線板の表面にさらに銅張積層板を前記と同様の条件で積層及び回路加工する工程を必要回数繰り返し、多層プリント配線板とすることができる。
[Printed wiring board]
The printed wiring board of this embodiment is a printed wiring board having the copper-clad laminate of this embodiment.
The printed wiring board of this embodiment can be manufactured by performing circuit processing on the copper foil of the copper-clad laminate of this embodiment. For circuit processing, for example, after forming a resist pattern on the surface of the copper foil, removing unnecessary parts of the copper foil by etching, removing the resist pattern, forming the necessary through holes with a drill, forming the resist pattern again, This can be done by applying plating to make the through holes conductive, and finally removing the resist pattern. A multilayer printed wiring board can be obtained by repeating the steps of laminating a copper clad laminate on the surface of the obtained printed wiring board under the same conditions as described above and processing the circuit as many times as necessary.
[半導体パッケージ]
 本実施形態の半導体パッケージは、本実施形態のプリント配線板と、半導体素子と、を有する半導体パッケージである。本実施形態の半導体パッケージは、本実施形態のプリント配線板の所定の位置に、半導体チップ、メモリ等の半導体素子を搭載することによって製造することができる。
[Semiconductor package]
The semiconductor package of this embodiment is a semiconductor package that includes the printed wiring board of this embodiment and a semiconductor element. The semiconductor package of this embodiment can be manufactured by mounting semiconductor elements such as semiconductor chips and memories at predetermined positions on the printed wiring board of this embodiment.
 本実施形態の銅張積層板、プリント配線板及び半導体パッケージは、耐熱性に優れ、且つ、低伝送損失であるため、例えば10GHz以上の高周波信号を扱う電子機器にも好適に用いることができる。 The copper-clad laminate, printed wiring board, and semiconductor package of this embodiment have excellent heat resistance and low transmission loss, so they can be suitably used for electronic equipment that handles high-frequency signals of 10 GHz or higher, for example.
 以上、好適な実施形態を説明したが、これらは単なる例示であり、本実施形態を前記実施形態に限定する趣旨ではない。
 本実施形態は、その要旨を逸脱しない範囲で、上記実施形態とは異なる種々の態様で実施することができる。
Although preferred embodiments have been described above, these are merely examples, and are not intended to limit this embodiment to the above embodiments.
This embodiment can be implemented in various ways different from the above embodiment without departing from the gist thereof.
 次に、下記の実施例により本実施形態をさらに詳しく説明するが、これらの実施例は本実施形態をいかなる意味においても制限するものではない。 Next, this embodiment will be explained in more detail with reference to the following examples, but these examples are not intended to limit this embodiment in any way.
(重量平均分子量(Mw)及び数平均分子量(Mn)の測定方法)
 なお、重量平均分子量(Mw)及び数平均分子量(Mn)は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準ポリスチレンを用いた検量線から換算した。検量線は、標準ポリスチレン:TSKstandard POLYSTYRENE(Type;A-2500、A-5000、F-1、F-2、F-4、F-10、F-20、F-40)[東ソー株式会社製]を用いて3次式で近似した。GPCの条件は、以下に示す。
 装置:(ポンプ:L-6200型[株式会社日立ハイテクノロジーズ製])、
   (検出器:L-3300型RI[株式会社日立ハイテクノロジーズ製])、
   (カラムオーブン:L-655A-52[株式会社日立ハイテクノロジーズ製])
 カラム;TSKgel SuperHZ2000+TSKgel SuperHZ2300(すべて東ソー株式会社製)
 カラムサイズ:6.0×40mm(ガードカラム)、7.8×300mm(カラム)
 溶離液:テトラヒドロフラン
 試料濃度:30mg/5mL
 注入量:20μL
 流量:1.0mL/分
 測定温度:40℃
(Method for measuring weight average molecular weight (Mw) and number average molecular weight (Mn))
Note that the weight average molecular weight (Mw) and number average molecular weight (Mn) were calculated from a calibration curve using standard polystyrene by gel permeation chromatography (GPC). The calibration curve is standard polystyrene: TSK standard POLYSTYRENE (Type; A-2500, A-5000, F-1, F-2, F-4, F-10, F-20, F-40) [manufactured by Tosoh Corporation] It was approximated by a cubic equation using . The conditions for GPC are shown below.
Equipment: (Pump: L-6200 type [manufactured by Hitachi High-Technologies Corporation]),
(Detector: L-3300 type RI [manufactured by Hitachi High-Technologies Corporation]),
(Column oven: L-655A-52 [manufactured by Hitachi High-Technologies Corporation])
Column: TSKgel SuperHZ2000+TSKgel SuperHZ2300 (all manufactured by Tosoh Corporation)
Column size: 6.0 x 40 mm (guard column), 7.8 x 300 mm (column)
Eluent: Tetrahydrofuran Sample concentration: 30mg/5mL
Injection volume: 20μL
Flow rate: 1.0mL/min Measurement temperature: 40℃
(銅箔の表面粗さRz(十点平均粗さ)の測定方法)
 各例で使用した銅箔の表面粗さRzは、JIS B0601(2013年)に準拠して、接触式粗さ計「サーフコム TOUCH」(株式会社東京精密製)を用いて測定した。
(Method for measuring surface roughness Rz (10-point average roughness) of copper foil)
The surface roughness Rz of the copper foil used in each example was measured using a contact roughness meter "Surfcom TOUCH" (manufactured by Tokyo Seimitsu Co., Ltd.) in accordance with JIS B0601 (2013).
[測定及び評価方法]
<1.耐熱性(はんだ耐熱性)>
 実施例又は比較例で作製した4層銅張積層板を用いて、下記条件のプレッシャークッカー試験を実施せずに288℃の溶融はんだ中に20秒間、4層銅張積層板を浸漬した。
 また、下記条件のプレッシャークッカー試験(PCT)を1時間、3時間又は5時間実施した後、288℃の溶融はんだ中に20秒間、4層銅張積層板を浸漬した。その後、下記評価基準に従って4層銅張積層板の耐熱性を評価した。
(プレッシャークッカー試験条件)
 121℃、0.22MPa、相対湿度100%
(耐熱性の評価基準)
A:目視確認したところ、ブリスターが生じていなかった。
C:目視確認したところ、ブリスターが生じていた。
[Measurement and evaluation method]
<1. Heat resistance (soldering heat resistance)>
Using the four-layer copper-clad laminate produced in Examples or Comparative Examples, the four-layer copper-clad laminate was immersed in molten solder at 288° C. for 20 seconds without performing a pressure cooker test under the following conditions.
Further, after conducting a pressure cooker test (PCT) under the following conditions for 1 hour, 3 hours, or 5 hours, the 4-layer copper-clad laminate was immersed in molten solder at 288° C. for 20 seconds. Thereafter, the heat resistance of the four-layer copper-clad laminate was evaluated according to the following evaluation criteria.
(Pressure cooker test conditions)
121℃, 0.22MPa, relative humidity 100%
(Heat resistance evaluation criteria)
A: Upon visual inspection, no blisters were found.
C: Visual confirmation revealed that blisters had formed.
<2.伝送損失>
 製造例1で作製したプリプレグの両面に、表1に記載の銅箔1又は銅箔2を設置(但し、プリプレグの両面に設置する銅箔は同じものである。つまり、「銅箔1/プリプレグ/銅箔1」の態様か、又は、「銅箔2/プリプレグ/銅箔2」の態様である。)してから、温度185℃、圧力3.9MPa、時間60分の条件で積層一体化することによって、両面銅張積層板(厚さ:0.1mm)を作製した。
 次に、直径0.15mmのドリルを用いて、上記作製した両面銅張積層板に貫通孔を開けた。貫通孔を開けた両面銅張積層板に銅メッキを施すことによって表裏を接続した後、両面銅張積層板の表面の銅箔をエッチングにより除去し、所望の回路パターンを形成した。
 こうして作製した両面配線基板の伝送線路に、高周波プローブ「ACP65-A-GSG250」(Form Factor社製)を接触させ、同軸ケーブル「SUCOFLEX102」(HUBER+SUHNER社製)を介して接続されたネットワークアナライザ「N5227A」(キーサイトテクノロジー株式会社社製)から電力を供給し、伝送線路を通過する際の伝送損失を測定した。結果を図1に示すと共に、周波数80GHzの時の伝送損失を表2に示す。なお、伝送損失はマイナスの値であり、その絶対値が小さいほど伝送損失が小さいことを意味する。
<2. Transmission loss>
Copper foil 1 or copper foil 2 listed in Table 1 is installed on both sides of the prepreg produced in Production Example 1 (however, the copper foils installed on both sides of the prepreg are the same. In other words, "Copper foil 1/Prepreg" / copper foil 1" mode or "copper foil 2/prepreg/copper foil 2" mode), and then laminated and integrated at a temperature of 185°C, a pressure of 3.9 MPa, and a time of 60 minutes. By doing so, a double-sided copper-clad laminate (thickness: 0.1 mm) was produced.
Next, using a drill with a diameter of 0.15 mm, a through hole was made in the double-sided copper-clad laminate produced above. A double-sided copper-clad laminate with through holes was plated with copper to connect the front and back sides, and then the copper foil on the surface of the double-sided copper-clad laminate was removed by etching to form a desired circuit pattern.
A high frequency probe "ACP65-A-GSG250" (manufactured by Form Factor) was brought into contact with the transmission line of the double-sided wiring board produced in this way, and a network analyzer "N5227A" connected via a coaxial cable "SUCOFLEX102" (manufactured by HUBER+SUHNER) ” (manufactured by Keysight Technologies, Inc.) and measured the transmission loss when passing through the transmission line. The results are shown in FIG. 1, and the transmission loss at a frequency of 80 GHz is shown in Table 2. Note that the transmission loss is a negative value, and the smaller the absolute value, the smaller the transmission loss.
<3.銅箔のピール強度>
 実施例又は比較例で作製した2層銅張積層板を用いて、IPC-TM-650 2.4.8Cに準拠して銅箔のピール強度(銅箔と絶縁層との接着強度)を測定した。
<3. Peel strength of copper foil>
Using the two-layer copper-clad laminate produced in the example or comparative example, the peel strength of the copper foil (adhesion strength between the copper foil and the insulating layer) was measured in accordance with IPC-TM-650 2.4.8C. did.
<4.プリプレグ層間のピール強度>
 実施例又は比較例で作製した2層銅張積層板の銅箔をエッチングによって除去した後、両面にプリプレグを配してプレスすることで4層銅張積層板を得た。得られた4層銅張積層板から銅箔を除去した後、5mm×100mmに切断して試験片とした。
 当該試験片を当て板に固定した後、試験片端部から表層のプリプレグ層を剥離し、角度45度、剥離速度50mm/minにてプリプレグ層間(コア材のプリプレグ層と、表層のプリプレグ層との間)のピール強度を測定した。
<4. Peel strength between prepreg layers>
After removing the copper foil of the two-layer copper-clad laminate produced in Examples or Comparative Examples by etching, a four-layer copper-clad laminate was obtained by placing prepreg on both sides and pressing. After removing the copper foil from the obtained four-layer copper-clad laminate, it was cut into 5 mm x 100 mm to obtain test pieces.
After fixing the test piece to the patch plate, the surface prepreg layer was peeled off from the end of the test piece, and the gap between the prepreg layers (the core material prepreg layer and the surface prepreg layer) was peeled off at an angle of 45 degrees and a peeling rate of 50 mm/min. (between) was measured.
製造例1(プリプレグの作製)
 プリプレグを作製するに当たって、まず、下記に示す各成分を準備した。
Production example 1 (preparation of prepreg)
In producing the prepreg, first, each component shown below was prepared.
(A)成分:下記方法で製造したポリフェニレンエーテル誘導体
 温度計、撹拌装置及び還流冷却管付き水分定量器を備えた反応容器に、ポリフェニレンエーテル化合物「XYRON(登録商標)S202A」(旭化成ケミカルズ株式会社製)100質量部、p-アミノフェノール1.3質量部、t-ブチルペルオキシイソプロピルモノカーボネート2質量部、オクチル酸マンガン1.5質量部、トルエン530質量部及びプロピレングリコールモノメチルエーテル28質量部を入れ、90℃で6時間反応させた。
 その後、反応液に2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン7質量部、プロピレングリコールモノメチルエーテル28質量部を加え、108℃で5時間反応させることによって、ポリフェニレンエーテル誘導体(Mn=7,000~10,000)を得た。これを(A)成分として用いた。
Component (A): polyphenylene ether derivative produced by the following method In a reaction vessel equipped with a thermometer, a stirring device, and a moisture meter with a reflux condenser, polyphenylene ether compound "XYRON (registered trademark) S202A" (manufactured by Asahi Kasei Chemicals Co., Ltd.) was placed. ), 1.3 parts by mass of p-aminophenol, 2 parts by mass of t-butylperoxyisopropyl monocarbonate, 1.5 parts by mass of manganese octylate, 530 parts by mass of toluene and 28 parts by mass of propylene glycol monomethyl ether, The reaction was carried out at 90°C for 6 hours.
Thereafter, 7 parts by mass of 2,2-bis(4-(4-maleimidophenoxy)phenyl)propane and 28 parts by mass of propylene glycol monomethyl ether were added to the reaction solution, and the mixture was reacted at 108°C for 5 hours to obtain a polyphenylene ether derivative ( Mn=7,000-10,000) was obtained. This was used as component (A).
(B)成分:
・α,α’-ビス(t-ブチルパーオキシ)ジイソプロピルベンゼン
・イソシアネートマスクイミダゾール(ヘキサメチレンジイソシアネート樹脂と2-エチル-4-メチルイミダゾールの付加反応物)
(B) Component:
・α,α'-bis(t-butylperoxy)diisopropylbenzene ・Isocyanate mask imidazole (addition reaction product of hexamethylene diisocyanate resin and 2-ethyl-4-methylimidazole)
(C)成分:下記方法で製造したアミノ変性ビスマレイミド化合物
 温度計、撹拌装置及び還流冷却管付き水分定量器を備えた反応容器に、3,3’-ジメチル-5,5’-ジエチル-4,4’-ジフェニルメタンビスマレイミド25g、2,2-ビス(4-(4-マレイミドフェノキシ)フェニル)プロパン75g、4,4’-(1,3-フェニレンジイソプロピリデン)ビスアニリン13g及びプロピレングリコールモノメチルエーテル61gを入れ、125℃で3~5時間反応させることによって、アミノ変性ビスマレイミド化合物(Mw=1,250~1,450)を得た。これを(C)成分として用いた。
Component (C): Amino-modified bismaleimide compound produced by the following method. 3,3'-dimethyl-5,5'-diethyl-4 , 25 g of 4'-diphenylmethane bismaleimide, 75 g of 2,2-bis(4-(4-maleimidophenoxy)phenyl)propane, 13 g of 4,4'-(1,3-phenylenediisopropylidene)bisaniline, and propylene glycol monomethyl ether. 61 g was added and reacted at 125° C. for 3 to 5 hours to obtain an amino-modified bismaleimide compound (Mw=1,250 to 1,450). This was used as component (C).
(D)成分:
・ビニルシラン系カップリング剤により処理された溶融シリカ、平均粒子径:0.5μm、メチルイソブチルケトン分散液
(D) Component:
・Fused silica treated with vinyl silane coupling agent, average particle size: 0.5 μm, methyl isobutyl ketone dispersion
(E)成分:
・ジアルキルホスフィン酸アルミニウム塩
・下記構造を有するリン系難燃剤2
Figure JPOXMLDOC01-appb-C000010
(E) Component:
・Dialkylphosphinic acid aluminum salt ・Phosphorus flame retardant 2 having the following structure
Figure JPOXMLDOC01-appb-C000010
(F)成分:
・「SMA(登録商標)EF80」(スチレン/無水マレイン酸(モル比)=8、Mw=14,400、CRAY VALLEY社製)[スチレン系エラストマー1]
・「タフテック(登録商標)H1051」(旭化成株式会社製)、水添スチレン系熱可塑性エラストマー、SEBS[スチレン系エラストマー2]
(F) Ingredient:
・"SMA (registered trademark) EF80" (styrene/maleic anhydride (mole ratio) = 8, Mw = 14,400, manufactured by CRAY VALLEY) [Styrenic elastomer 1]
・"Tuftec (registered trademark) H1051" (manufactured by Asahi Kasei Corporation), hydrogenated styrene thermoplastic elastomer, SEBS [styrene elastomer 2]
 次に、(A)成分を100質量部、(B)成分をそれぞれ4質量部、(C)成分を310質量部、(D)成分を518質量部、(E)成分(ジアルキルホスフィン酸アルミニウム塩を97質量部及び前記リン系難燃剤2を46質量部)及び(F)成分を112質量部(スチレン系エラストマー1を13質量部及びスチレン系エラストマー2を99質量部)を配合し、さらにトルエン206質量部及びシクロヘキサノン36質量部を添加することによって、樹脂ワニスを調製した。なお、前記した各成分の配合量は、いずれも固形分の質量部であり、溶液(有機溶媒を除く)又は分散液の場合は固形分換算量である。
 得られた各樹脂ワニスをIPC規格#2013のガラスクロス(厚さ:0.080mm)に含浸させ、160℃で5分間程度乾燥することによってプリプレグを得た。
Next, 100 parts by mass of component (A), 4 parts by mass of each component (B), 310 parts by mass of component (C), 518 parts by mass of component (D), and component (E) (dialkyl phosphinate aluminum salt) and 46 parts by mass of the phosphorus flame retardant 2) and 112 parts by mass of component (F) (13 parts by mass of styrenic elastomer 1 and 99 parts by mass of styrene elastomer 2), and further added toluene. A resin varnish was prepared by adding 206 parts by weight and 36 parts by weight of cyclohexanone. The amounts of each of the above-mentioned components are based on parts by mass of the solid content, and in the case of solutions (excluding organic solvents) or dispersions, the amounts are in terms of solid content.
A prepreg was obtained by impregnating glass cloth (thickness: 0.080 mm) of IPC standard #2013 with each of the obtained resin varnishes and drying at 160° C. for about 5 minutes.
実施例1及び比較例1(銅張積層板の作製)
 製造例1で作製したプリプレグと表1に示す銅箔とを組み合わせて、以下に示す方法によって、2層銅張積層板と4層銅張積層板を作製した。
(2層銅張積層板の作製)
 プリプレグ1枚の両面に、表1に示す銅箔を、金属処理層がプリプレグ側となるように重ね、温度200℃、圧力40kgf/cm(3.90MPa)の条件で60分間加熱加圧成形し、2層銅張積層板を作製した。該2層銅張積層板を用いて、銅箔のピール強度の測定を行った。結果を表2に示す。
(4層銅張積層板の作製)
 プリプレグ1枚の両面に、表1に示す銅箔を、金属処理層がプリプレグ側となるように1枚ずつ重ね、温度185℃、圧力40kgf/cm(3.90MPa)の条件で60分間加熱加圧成形し、両面銅張積層板を作製した。次に、該両面銅張積層板の両面の銅箔表面に内層密着処理[マルチボンド100(マクダーミッド・パフォーマンス・ソリューションズ・ジャパン株式会社製)処理]を施し、コア材としての両面銅張積層板を得た。
 続いて、コア材としての前記両面銅張積層板の両面の銅箔にプリプレグを1枚ずつ重ね、さらに、当該プリプレグに表1に示す銅箔を、金属処理層がプリプレグ側となるように各面に1枚重ねた。その後、温度200℃、圧力30kgf/cm(2.90MPa)にて80分間加熱加圧成形して4層銅張積層板を作製した。該4層銅張積層板を用いて、各評価を行った。結果を表2に示す。
Example 1 and Comparative Example 1 (Production of copper-clad laminate)
By combining the prepreg produced in Production Example 1 and the copper foil shown in Table 1, a two-layer copper-clad laminate and a four-layer copper-clad laminate were produced by the method shown below.
(Production of two-layer copper-clad laminate)
Copper foil shown in Table 1 was layered on both sides of a sheet of prepreg, with the metal treatment layer facing the prepreg side, and heat and pressure molded for 60 minutes at a temperature of 200°C and a pressure of 40 kgf/cm 2 (3.90 MPa). Then, a two-layer copper-clad laminate was produced. Using the two-layer copper-clad laminate, the peel strength of the copper foil was measured. The results are shown in Table 2.
(Production of 4-layer copper-clad laminate)
Copper foils shown in Table 1 were stacked one by one on both sides of a sheet of prepreg, with the metal treatment layer facing the prepreg side, and heated for 60 minutes at a temperature of 185°C and a pressure of 40 kgf/cm 2 (3.90 MPa). Pressure molding was performed to produce a double-sided copper-clad laminate. Next, inner layer adhesion treatment [Multi-Bond 100 (manufactured by MacDermid Performance Solutions Japan Co., Ltd.) treatment] is applied to the copper foil surfaces on both sides of the double-sided copper-clad laminate, and the double-sided copper-clad laminate is used as a core material. Obtained.
Next, one sheet of prepreg was layered on the copper foil on both sides of the double-sided copper-clad laminate as a core material, and then the copper foil shown in Table 1 was placed on each prepreg so that the metal treatment layer was on the prepreg side. I put one on top of the other. Thereafter, a four-layer copper-clad laminate was produced by heating and press-molding at a temperature of 200° C. and a pressure of 30 kgf/cm 2 (2.90 MPa) for 80 minutes. Each evaluation was performed using the four-layer copper-clad laminate. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表2から、本実施形態の表面処理銅箔(I)を使用した実施例1の銅張積層板は、優れた耐熱性を有する上に、伝送損失が小さいことが分かる。
 また、実施例1の銅張積層板は、銅箔のピール強度(銅箔と絶縁層との接着強度)にも優れており、また、プリプレグ層間のピール強度(内層銅箔とプリプレグとの接着強度)が向上する傾向も現れている。
Table 2 shows that the copper-clad laminate of Example 1 using the surface-treated copper foil (I) of this embodiment has excellent heat resistance and low transmission loss.
In addition, the copper-clad laminate of Example 1 has excellent peel strength of the copper foil (adhesion strength between the copper foil and the insulating layer) and peel strength between the prepreg layers (adhesion strength between the inner layer copper foil and the prepreg). There is also a tendency for the strength to improve.

Claims (6)

  1.  樹脂を含有する絶縁層と、該絶縁層の少なくとも一方の面に配置された銅箔と、を含む銅張積層板であり、
     前記銅箔が、絶縁層と対向する面の表面粗さRzが0.30~0.60μmであり、且つ、ケイ素を80~300μg/dm含有する金属処理層を有する表面処理銅箔である、銅張積層板。
    A copper-clad laminate including an insulating layer containing a resin and a copper foil disposed on at least one surface of the insulating layer,
    The copper foil is a surface-treated copper foil having a surface roughness Rz of 0.30 to 0.60 μm on the surface facing the insulating layer and a metal treatment layer containing 80 to 300 μg/ dm2 of silicon. , copper clad laminate.
  2.  前記金属処理層が、さらに、亜鉛、ニッケル、コバルト及びモリブデンからなる群から選択される1種以上の金属を含有する、請求項1に記載の銅張積層板。 The copper-clad laminate according to claim 1, wherein the metal treatment layer further contains one or more metals selected from the group consisting of zinc, nickel, cobalt, and molybdenum.
  3.  前記金属処理層における、亜鉛の含有量が、10~2,500μg/dmである、請求項2に記載の銅張積層板。 The copper-clad laminate according to claim 2, wherein the metal treatment layer has a zinc content of 10 to 2,500 μg/dm 2 .
  4.  前記金属処理層における、ニッケル、コバルト及びモリブデンからなる群から選択される1種以上の金属の合計含有量が10~2,500μg/dmである、請求項2に記載の銅張積層板。 The copper-clad laminate according to claim 2, wherein the total content of one or more metals selected from the group consisting of nickel, cobalt, and molybdenum in the metal treatment layer is 10 to 2,500 μg/dm 2 .
  5.  請求項1~4のいずれか1項に記載の銅張積層板を有するプリント配線板。 A printed wiring board comprising the copper-clad laminate according to any one of claims 1 to 4.
  6.  請求項5に記載のプリント配線板と、半導体素子と、を有する半導体パッケージ。 A semiconductor package comprising the printed wiring board according to claim 5 and a semiconductor element.
PCT/JP2023/023907 2022-07-04 2023-06-28 Copper-clad laminate, printed wiring board, and semiconductor package WO2024009861A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-107867 2022-07-04
JP2022107867 2022-07-04

Publications (1)

Publication Number Publication Date
WO2024009861A1 true WO2024009861A1 (en) 2024-01-11

Family

ID=89453423

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023907 WO2024009861A1 (en) 2022-07-04 2023-06-28 Copper-clad laminate, printed wiring board, and semiconductor package

Country Status (2)

Country Link
TW (1) TW202404431A (en)
WO (1) WO2024009861A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202891A (en) * 2009-02-27 2010-09-16 Nippon Steel Chem Co Ltd Surface-treated copper foil and method of manufacturing the same
JP2016056452A (en) * 2012-03-29 2016-04-21 Jx金属株式会社 Surface-treated copper foil
WO2020017551A1 (en) * 2018-07-18 2020-01-23 日立化成株式会社 Copper-clad laminate, printed wiring board, semiconductor package and method for producing copper-clad laminate
WO2021132191A1 (en) * 2019-12-26 2021-07-01 ナミックス株式会社 Composite copper member treated with silane coupling agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010202891A (en) * 2009-02-27 2010-09-16 Nippon Steel Chem Co Ltd Surface-treated copper foil and method of manufacturing the same
JP2016056452A (en) * 2012-03-29 2016-04-21 Jx金属株式会社 Surface-treated copper foil
WO2020017551A1 (en) * 2018-07-18 2020-01-23 日立化成株式会社 Copper-clad laminate, printed wiring board, semiconductor package and method for producing copper-clad laminate
WO2021132191A1 (en) * 2019-12-26 2021-07-01 ナミックス株式会社 Composite copper member treated with silane coupling agent

Also Published As

Publication number Publication date
TW202404431A (en) 2024-01-16

Similar Documents

Publication Publication Date Title
EP3246352B1 (en) Resin composition, support with resin layer, prepreg, laminate, multilayered printed wiring board, and printed wiring board for millimeter-wave radar
US10689512B2 (en) Resin composition, and prepreg, metal-clad laminate, and printed circuit board using the same
KR101733646B1 (en) Thermosetting resin composition, and prepreg, insulating film with support, laminate plate, and printed wiring board, each obtained using same
JP6301173B2 (en) Curable resin composition, cured product thereof, composite material
JP6234143B2 (en) Curable resin composition, cured product thereof, electrical / electronic component and circuit board
KR20210133974A (en) Resin composition, prepreg, metal foil-clad laminate, resin composite sheet, and printed wiring board
KR102325101B1 (en) Maleimide resin composition, prepreg, laminate and printed circuit board
JP5181216B2 (en) Sheet-like glass substrate prepreg, laminate and printed wiring board
JP5914988B2 (en) Prepreg, laminate and printed wiring board using thermosetting resin composition
WO2019203292A1 (en) Thermal curing composition, prepreg, laminate, metal-foil-clad laminate, printed circuit board, and multi-layer printed circuit board
WO2022202346A1 (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
WO2020017551A1 (en) Copper-clad laminate, printed wiring board, semiconductor package and method for producing copper-clad laminate
WO2024009861A1 (en) Copper-clad laminate, printed wiring board, and semiconductor package
US20230399511A1 (en) Resin composition, prepreg, resin-coated film, resin-coated metal foil, metal-clad laminate, and wiring board
US20230323000A1 (en) Resin composition, prepreg, film provided with resin, metal foil provided with resin, metal-clad laminate, and wiring board
JP7371628B2 (en) Copper foil processing method, copper foil, laminate, copper-clad laminate, printed wiring board, and high-speed communication module
JP5447268B2 (en) Thermosetting resin composition, prepreg and laminate
JP2008075012A (en) Resin composition, prepreg and metal foil-clad laminate
JP2019119812A (en) Resin composition, prepreg, metal foil clad laminate, resin sheet, and printed wiring board
WO2024018946A1 (en) Resin composition, prepreg, film with resin, metal foil with resin, metal-clad laminate, and wiring board
JP4198508B2 (en) Modified polyimide resin composition and prepreg and laminate using the same
TW202227554A (en) Resin composition, metal foil with resin, prepreg, layered board, multilayered printed circuit board, and semiconductor package
WO2023243676A1 (en) Resin composition, prepreg, laminate, resin film, printed wiring board, and semiconductor package
JP2023124504A (en) resin composition
JP2022039594A (en) Resin composition, and resin film with carrier, resin substrate, prepreg, metal-clad laminate, printed wiring board, and semiconductor device using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23835393

Country of ref document: EP

Kind code of ref document: A1